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Abstract

Labour inspections are carried out nationwide by governmental agencies in countries
that have ratified the International Labour Organization’s Labour Inspection Conven-
tion (1947), to enforce decent working conditions and prevent injuries in workplaces.
The inspections are conducted by individual inspectors, typically using checklists to
survey inspected workplaces for non-compliance to health, environment, and safety-
related regulations. Carrying out inspections efficiently is becoming increasingly more
difficult, as workplaces are becoming more diversified and complex.

This thesis therefore investigates the potential for improving the efficiency of
labour inspections via machine learning (ML). Current research into this topic is very
limited, so we first investigate what kind of data and ML methods that could be used
to support labour inspection tasks. The investigation also involves assessing different
baselineMLmethods for selectingworkplaces for inspection, and for selecting relevant
(predefined) labour inspection checklists. We also assess various feature selection
methods to maximize the performance of the baselines. Although the initial results are
promising, we found that it was difficult to achieve good prediction accuracy even for
the best-performing methods.

We also propose ML methods for generating new checklists that could efficiently
aid inspectors in identifying working environment violations. One of these methods
can be used to generate dynamic checklists, which can be continuously adapted to any
new information that surfaces during inspections. Our work also includes proposed
explanation approaches to make the dynamic checklists more interpretable for inspec-
tors. We then look further into how such ML-based checklists should be evaluated, by
comparing the results from cross-validation performance estimates on existing data to
the results from a field study where the checklists are tested in real-world labour in-
spections. The results of the comparison suggest that the cross-validation performance
may not reflect the real-world field performance of the checklists. However, the results
from the field study also show that ML-based dynamic checklists significantly increase
the number of violations found in the inspections, improving inspection efficiency.

The overall results from this Ph.D. suggest a great potential for usingML in labour
inspection tasks. Therefore, our work could promote more independent research on
the topic.
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CHAPTER 1

Introduction

1.1 MACHINE LEARNING AND LABOUR INSPECTIONS

Workplaces generally carry many risks to human health, safety, and environment
(HSE). These risks vary from workplace to workplace, depending on many factors.
These factors can include the industrial sector of the workplace, workplace culture and
the geographical location [43]. To effectively address and mitigate these risks, labour
inspection authorities carry out inspections among business and organisations on a
large scale. These inspections are conducted in pursuant to the International Labour
Organisation’s (ILO) Labour Inspection Convention from 1947, and are important
to enforce compliance to national and international labour standards and promote
United Nation’s sustainable development goal of decent work (SDG 8).

A simplified abstraction of what the inspection process can look like is shown in
Figure 1.1.1 The inspections are carried out differently depending on the target organ-
isation, but common for all inspections is that the targeted organisations are surveyed
for non-compliance with the working environment regulations. Any violations found
in the inspections are cited individually in inspection reports. These reports are sent
back to the inspected organisations, eventually with orders to rectify the violations.
Further sanctions may be taken against organisations that fail to comply.

A challenge with labour inspections is that they are complex tasks and executing
them can be time consuming. Labour inspection authorities therefore face difficult de-
cision problems: How should labour inspections be carried out to maximize efficiency?
In which organisations should inspection efforts be concentrated? What should the
inspector look for in each individual target organisation? Since the goal of labour in-
spections is to ensure decent occupational health, safety, and environment, inspections
should rectify as many HSE risks and violations as possible [14, 44]. However, doing so
efficiently is becoming increasingly more difficult, and therefore the use of labour in-
spections as a regulation strategy has been declining in recent years [83, 119, 121]. One
of the reasons for this is that workplaces are increasingly becoming more diversified
and complex with significant variations in HSE risks [122], as illustrated by Figure 1.2.
Labour legislation is also increasing in complexity and volume in many nations [118].
In recent years, researchers have searched for solutions to these problems in new strate-
gic policies and principles for regulation enforcement [14, 121], and by increasing the
understanding of HSE risks in certain occupations and contexts [20, 25, 99, 123]. How-
ever, there has been far less research into how technology could be utilized to improve
labour inspection efficiency.
1In reality the labour inspection process can vary from nation to nation, and can also vary
depending on the context.

2



1.2 SCOPE OF THE THESIS ◀ 3

FIGURE 1.1. A simplified conceptual overview of how labour inspections are planned and
executed. In the planning phase, a target organisation is selected for an inspection.
This could for instance be a factory, a construction company or a hair dresser.
The inspector also selects the checklist (from many pre-defined checklists) that
they consider to be most appropriate for their inspection target. The next phase is
the execution of the inspection, which may be carried out differently depending on
the selected target organisation and checklist. During the inspection, the targeted
organisation is surveyed for non-compliance to working environment regulations.
After the inspection (execution phase) is completed, any violations that were found
are cited individually in an inspection report. These reports are sent back to the
inspected organisations, eventually with orders to rectify the violations. Further
sanctions may be taken against organisations that fail to comply.

Oneof the promising technologies that have not receivedmuch research ismachine
learning (ML), which has seen a significant increase in popularity over the recent years.
Especially traditional areas of ML such as natural language processing (NLP) and
computer vision have seen much progress and growth recently [94, 102]. ML is also
being researched and used in many application domains to improve task efficiency,
such as law enforcement [33, 68]. Therefore, this thesis aims to investigate howML
can be used to improve labour inspection efficiency.

1.2 SCOPE OF THE THESIS

This Ph.D.-project looks at howML can be used to improve labour inspections, but
is limited to the planning and execution phase in Figure 1.1. The project is based
on data from inspections carried out by Norwegian authorities, but the research is
likely relevant and can be used in other nations as well, by adapting or replacing the
data. The project is also limited to the ML-technical aspects of improving labour
inspections. Related topics, such as how labour inspections should be organised to
function optimally (with or without ML), are considered to be outside the scope. More
specifically, the project looks at howML can be used to create or select checklists that
are optimal for a specific context. The project also investigates the use ofML to predict
non-compliance to HSE regulations among organisations, which could be utilized to
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FIGURE 1.2. Different workplaces carry different risks to employee’s health, environment, and
safety. Employees at an industrial butchery or a construction company (top row)
may for instance be exposed to physical injuries, while office workers and bar-
tenders (bottom row) may have increased risks of certain muscle-skeletal disor-
ders. The introduction of new technologies, machines, hazardous substances,
processes and also new employment structures has made HSE risks more diversi-
fied and increased the complexity of labour inspections in recent years [118]. The
photos are owned and distributed by the Norwegian Labour Inspection Authority.

select organisations for inspections [34, 43, 61]. It is also important to understand the
data and processing methods that are necessary for these tasks, and these factors are
also considered in this work.

1.3 RESEARCH QUESTIONS

This section provides an overview of the research goal and research questions for this
thesis. The research goal represents the overall objective that the research seeks to
address, and is listed below.

Research Goal

Understanding howML can be used to improve labour inspection efficiency.

The scope of this research goal is large, as there are potentially many different ways
to improve labour inspection efficiency viaML. Therefore, the goal is broken down into
four research questions in order to focus the research efforts. The research questions
below are also designed to reflect research contributions and scientific advances in
both labour inspections and ML.
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Research question 1

What kind of data and ML methods are effective for improving labour inspec-
tions?

The effectiveness of using ML in any task can depend heavily on the data and
methods used, which is a motivation for the first research question. Research question
1 therefore relates to howML can be optimized for labour inspection tasks. This is
important considering that there are many different ML and data processing methods
available.

Research question 2

Can ML be used to create optimized checklists for real-world tasks?

Research question 2 relates to the checklists that labour inspection authorities
use for their inspections. The checklists are needed to survey individual organisations
for non-compliance to working environment regulations [35, 44, 64]. One of our
hypotheses in our research is that using ML to create new optimized checklists could
also improve labour inspection efficiency (research goal), by increasing the number
of violations found in the inspections. Since checklists are used for a wide range of
different tasks in addition to labour inspections [21, 55], the research could also be
relevant for other domains and therefore have a broader impact than only the labour
inspection domain [44, 45]. Thus, the research question reflects that its scope could be
considered to be wider. The research question also relies on the insights from Research
question 1, regarding what data and ML methods should be used to create optimized
checklists.

Research question 3

How should ML-based checklists be evaluated?

Research question 3 can be seen as an extension of Research question 2, since
ML-generated checklists need to be evaluated in order to understand how they impact
task performance [46]. Therefore, finding a reliable evaluation approach is important
to establish whether ML-based checklists can improve labour inspection efficiency
(research goal). Answering the research question may also be important in establish-
ing good evaluation practices for future research on ML-based checklists in other
applications, such as in medicine [77, 126].

Research question 4

How can we ensure that ML models for labour inspections are interpretable?

Research question 4 addresses the interpretability of ML models. Since this thesis
considers ML models that are meant to be used in regulation enforcement, it is es-
sential that they are interpretable [46, 110]. There are already many ways to ensure



6 ▶ CHAP. 1 INTRODUCTION

FIGURE 1.3. An overview of the research conducted as part of the Ph.D.-project. The research
goal is broken down into four research questions. The arrows between the ques-
tions indicate that, to some extent, they build on each other’s outcomes. Each of
the research questions is covered by a set of papers, which are listed in the figure
on the right-hand side. The papers are numbered from A to E in chronological
order.

interpretability and provide explanations for ML models [36, 41, 66]. However, most
of the existing methods yield detailed information that can be understandable by ML
or domain experts, but not necessarily by other users. In particular, there is a lack of
research into howML models can be made interpretable to end users in the labour
inspection domain, such as inspectors. Therefore, more research is needed on this
topic.

1.4 RESEARCH OVERVIEW

The research conducted in this Ph.D.-project is presented as a collection of five papers
that answer the research questions in Section 1.3. The papers are listed with letters
from A-E and can be found in Part 2 of this book. The papers have been reformatted
for readability and are also listed with the name and year of their publication channel,
as well as the official Norwegian Scientific Index (NVI) for the channel. The index
starts at level 0, whichmeans that the publication channel does not satisfy the necessary
standards for scientific quality according to the index. A publication channel listed as
level 1 means that it satisfies the requirements and standards of scientific quality and
that publications are sufficiently peer reviewed. Most conferences and journals are
listed as level 1. Level 2 is the highest level, reserved for the most leading international
publication channels that publish the most significant or ground-breaking papers
within their respective fields of science. Thus, the standards of the peer reviews in
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level 2 channels tend to be stricter than level 1, and getting papers accepted into level
2 channels is therefore usually much more difficult.

Figure 1.3 shows an overview of the papers written as part of this Ph.D.-project,
as well as how the papers relate to the research questions. A more detailed description
of how the papers relate to the research questions follows below.

Paper A

Title: Bayesian Feature Construction for Case-Based Reasoning: Generating
Good Checklists.
Published in: Proceedings of the International Conference on Case-Based
Reasoning (ICCBR), 2021.
Norwegian Scientific Index: level 1.

Paper A addresses Research question 1 by introducing a new dataset from NLIA
and testing a selection of baseline ML methods on a novel problem: constructing
checklists that optimize the execution of specific tasks in real-world applications. The
paper focuses on labour inspections, but the problem could potentially be adapted
to other domains as well. Paper A addresses Research question 2 by introducing and
formally defining the problem of constructing checklists, and by introducing a new
ML method (BCBR) to attack it. The paper also addresses Research question 4 by
focusing on transparency (white-box ML methods).

Paper B

Title: Stochastic Local Search Heuristics for Efficient Feature Selection: An
Experimental Study.
Published in: Norsk IKT konferanse for forskning og utdanning (NIKT),
2021.
Norwegian Scientific Index: level 1.

Paper B addresses Research question 1 by introducing a new method for feature
selection that performed well with ML models on datasets from different domains.
Among these datasets is an NLIA-dataset for predicting the most relevant checklists
for a particular labour inspection. A more refined version of this dataset is introduced
in Paper D.

Paper C

Title: Creating Dynamic Checklists via Bayesian Case-Based Reasoning: To-
wards Decent Working Conditions for All.
Published in: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2022.
Norwegian Scientific Index: level 2.

Paper C addresses Research question 2 by introducing a new ML method for
generating dynamic checklists, which are adapted according to information that in-
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spectors obtain during the inspections. The benefit of such checklists is that they can
automatically adapt to changes in context throughout the inspections. The research
could also be useful to other domains as well. Dynamic checklists are currently used in
medicine [38, 39], but there are no readily available ML methods to create them [45].

Paper D

Title: A Dataset for Efforts Towards Achieving the Sustainable Goal of Safe
Working Environments.
Published in: Advances in Neural Information Processing Systems (NeurIPS),
2022.
Norwegian Scientific Index: level 2.

Paper D addresses Research question 1 by introducing a dataset and two newML
problems. The paper addresses the research question by exploring different approaches
for feature selection, and also by testing a varied selection of baseline ML methods on
the two problems. The paper also discusses alternative definitions of the problems,
demonstrates complexity, and motivates directions for future work.

Paper E

Title: Creating Explainable Dynamic Checklists via Machine Learning to
Ensure Decent Working Environment for All: A Field Study with Labour
Inspections.
Published in: Prestigious Applications of Intelligent Systems 2023.
Norwegian Scientific Index: level 1.
Note: Received best paper award.

Paper E addresses Research question 3, as it presents the results of a field study
where the dynamic checklists generated by the ML method from Paper C (CBCBR)
are evaluated. Inspectors from NLIA participated in the field study, carrying out
inspections among Norwegian organisations. The paper also addresses Research
question 4 by introducing new user-oriented methods for explaining the content of
the dynamic checklists.

1.5 THESIS STRUCTURE

The rest of the thesis is structured as follows: Chapter 2 presents background infor-
mation that is useful to understand the thesis. Chapter 3 summarizes related work
by other authors. Chapter 4 presents and analyzes the thesis research results and
explains in more detail how these relate to the research questions presented earlier
in this section. A summary of the research contributions made by this thesis is also
presented. Chapter 5 presents the conclusion of the thesis and potential directions for
future work.



CHAPTER 2

Background

This chapter provides a brief introduction to some of the topics related to this thesis.
The first topic is labour inspections and the use of checklists for such inspections.
We then provide an overview and a general introduction to ML techniques and data
processing, since a wide range of different baseline methods for addressing labour
inspection tasks are explored in the thesis. We also give an introduction to interpretable
ML methods, which we focused on investigating for this thesis.

2.1 LABOUR INSPECTIONS

Labour inspections are an essential part of a nation’s labour administration system.
The main goal of the inspections is to enforce labour laws and regulations among
workplaces (organisations with employees). This can include employment-related
conditions such as wages, working hours and child labour, and also general health,
environment, and safety standards [118, 119]. One of the key foundations for modern
labour inspections is tripartism, which means communications and interactions be-
tween the labour inspection authority, employers and workers [118]. This could for
instance be consultations, negotiations or decision making and can happen on national
level (government, workers’ unions, and employers’ unions) or at business level (inspec-
tor, employer, and workers). The goal of tripartism is to promote cooperation between
parties and increase the legitimacy of labour inspections. Thus, the cooporation can
make regulation enforcement easier for inspectors in the field [57, 118].

Labour inspections are usually carried out at individual workplaces with preven-
tative a perspective, for instance by addressing potential risks of long or short-term
injuries [44, 118, 119]. The way inspections are executed can vary, depending on the
organisation of the labour inspection authority [118], the individual inspectors and the
inspected organisations [46]. Inspections also tend to be industry-oriented. As shown
in Table 2.1, there are many different areas of industries subjected to inspections. Each
main industry area consists of many different industries and the inspection approaches
vary accordingly. Some inspections can be physical in nature, where inspectors walk
around workplaces and visually assess the conditions there. Other inspections can
take place as a conversation in the office of the owner, leader, or management of the
workplace. The contents and agendas of inspections can also vary. When inspectors
find non-compliance to certain legal provisions in their inspections, an order to rectify
the problem(s) is often given to the inspected business. Consulting and advising the
inspected organisation on how to improve itself is also important to ensure that they
have the ability to cooperate andmake any necessary corrections. Thus, inspectors gen-
erally have to find a good balance between advisory and regulation enforcement [118].

9
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Industry Industry main
area code

𝑁

Agriculture, forestry and fishing A 65 118
Mining and quarrying B 1 683
Manufacturing C 22 690
Electricity, gas, steam and air condition-
ing supply

D 2 085

Water supply E 2 396
Construction F 72 756
Wholesale and retail trade G 73 135
Transportation and storage H 30 940
Accommodation and food service activ-
ities

I 18 504

Information and communication J 26 851
Financial and insurance activities K 4 880
Real estate activities L 64 813
Professional, scientific and technical ac-
tivities

M 69 759

Administrative and support service ac-
tivities

N 29 923

Public administration and defence O 4 674
Education P 21 184
Human health and social work activities Q 58 689
Arts, entertainment and recreation R 33 757
Other service activities S 24 339

TABLE 2.1. An overview of industries within Norway. The far right column (𝑁 ) shows the
number of organisations within each industry. Data and numbers are retrieved
from Statistics Norway [97]. The industry main area code represents the highest
level of a four-level hierarchy. Thus, each industry main area consists of many
different industries. The high number of industries and the number of organisa-
tions highlight the large scale, diversity, and complexity of labour inspections.
Any organisation can also be subject to inspections, but thorough inspection of
all of them is infeasible. Thus, inspection efforts tend to lean towards certain
high-risk industry areas such as manufacturing, accommodation and food, or
construction [46, 64]. Industries that are considered high-risk may also vary from
nation to nation.
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In some serious cases and usually as a last resort, the inspected business may be issued
administrative penalties or fines [118].

Selecting organisations for inspections can be difficult, as inspectors seek to avoid
workplaces that comply with the regulations of the working environment and focus on
those that are non-compliant [120]. Therefore, overall inspection activities and efforts
tend to lean toward certain industry areas that are considered high-risk, as shown in
Table 2.1. Additionally, inspectors tend to select organisations for inspections ran-
domly or based on their own knowledge about local businesses (proactive). Inspectors
may also select inspection targets and carry out their inspections reactively based on
certain criteria, such as public input or accident reports [118]. Sometimes, the inspec-
tion targets may also be selected randomly based on certain regulatory campaigns
or activities against specific working environment problems or risks. An example
of such activity in NLIA is inspections of workers’ living quarters during the corona
pandemic to ensure that they were compliant with the quarantine regulations. In
addition to these “traditional” approaches, some labour inspection authorities have
recently started developing ML models for selecting inspection targets [34]. Some of
these ML approaches are described in more details in Section 3.1. The research into
the use of ML to support other aspects of labour inspections is limited.

2.2 CHECKLISTS

Another challenge for labour inspections, in addition to deciding which organisations
to inspect, is determiningwhich regulations inspectors should check in eachworkplace.
Each workplace that receives an inspection may be subject to hundreds of different
regulations. However, going through all of them at once is not feasible [45]. For this
reason, many labour inspection authorities use checklists as aids and reminders of
what inspectors should go through during an inspection [21, 55]. Checklists are also
widely used in many other high-stakes decision-making applications as well, such as
food inspections, surgery or aviation [40, 55, 58].

The use of checklists for labour inspections faces some problems. One of them is
that hundreds of different pre-defined checklists need to be maintained to cover the
most relevant working environment risks in the different types of workplaces, which
is currently done manually by domain experts. Some of the checklists are industry-
specific [46, 64], intended to be used in certain industries (see Table 2.1). There are
various formal approaches for creating and maintaining checklists such as the Delphi
method [9, 28, 92], where a checklist is created, and then repeatedly presented to a
panel of domain experts and modified as an iterative process. An overview of the
approach is presented in Figure 2.1. There are many different variants of the Delphi
method, as well as other similar application-specific approaches [7, 48, 107]. Common
to all these methods is that they are time consuming, resource demanding, and the
results rely heavily on the expertise and consensus of the domain experts [52]. The
large number of checklists also makes them difficult to use, since inspectors have to
manually find and determine the best match for their inspections [43].

Another problem is that checklists also tend to be limited to only a few specific
thematic topics in terms of content (such as ergonomics or legal work contracts). As a
consequence, the checklists do not necessarily cover all relevant risks in an inspected
workplace very well. Thus, the use of checklists has been criticized by ILO for limiting
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FIGURE 2.1. An overview of the Delphi method, which is a well-known approach for creating
checklists. First, a facilitator (typically a domain expert) takes a problem scenario
and creates a checklist. The checklist is then presented to a panel of domain
experts who give an assessment of its content. The checklist is then revised via
the facilitator and could then be presented to the panel again if necessary. Thus,
the Delphi method is typically an iterative process, and the same approach can be
used to revise or update existing checklists when needed. The current approach
creating traditional labour inspection checklists is likely somewhat similar to the
Delphi method but simpler and less formal, as the Delphi method is mostly used to
create checklists for safety-critical tasks and can be very resource-demanding [52].

the scope of inspections, despite the advantages they may have as cognitive aids [101].
Addressing the above problems may require more research. Current research

efforts on checklists are often case-studies that focus on analyzing and identifying
advantages or disadvantages of using them [21, 55]. There has been little research into
how checklists should be created, used and maintained in general, besides what is
reported in this thesis and in medicine [38, 39].

2.3 MACHINE LEARNING TECHNIQUES

The general objective of ML is typically to train models that solve task(s) or problem(s),
by learning from existing experiences (data). ML methods are usually described as
supervised learning, unsupervised learning, or something in between these two. The
main difference between them is whether or not the ML method relies on labeled data.
This section gives a brief overview of the approaches.

2.3.1 Supervised Learning

Supervised learning methods are used to build models that generally rely on a dataset
D, where each instance 𝑑𝑖 ∈ D is a tuple 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ) that consists of independent
feature(s) 𝑥𝑖 and a label 𝑦𝑖 (dependent feature). For supervised learning, we wish to
predict unobserved values of the dependent feature𝑦, using the independent feature(s)
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(A) Binary classification task. (B) Regression task.

FIGURE 2.2. Two examples of supervised learning tasks; classification and regression. For
the decision task, an ML model relies on a decision boundary to classify data-
points (red/blue dots) as correctly as possible, given the input (𝑋1 and𝑋2). For the
regression task, the ML model can simply be a function (𝑓 (𝑋 )) that approximates
the value of the data-points (𝑌 ) as accurately as possible, given the input (𝑋 ). Thus,
the tasks are similar and the main difference between them is the representation
of the predicted values.

𝑥 and an ML model. Training an ML model means that a method or algorithm is used
to learn some map or function 𝑓 : 𝑋 → 𝑌 , used to obtain estimates𝑦 = 𝑓 (𝑥) of label
values𝑦. The approach for finding 𝑓 varies, but most methods use some optimization
process that aims to find a 𝑓 that minimizes the difference between 𝑦𝑖 = 𝑓 (𝑥𝑖 ) and
the ground truth label 𝑦𝑖 for every record 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ) in the training dataD. After
finding 𝑓 , the function can be used to predict the values of the ground truth labels for
future observations of 𝑥 .

There are many different ML methods for supervised learning, depending on the
task or problem to be solved. Figure 2.2 shows an illustration of binary classification
and regression, which are examples of well-known ML tasks. Binary classification
is typically associated with decision making, such as email spam classification or
churn prediction. Regression is typically associated with predicting quantities, such
as housing or stock prices. Since supervised learning tasks generally relies on labeled
data, it is possible to develop ML models for very specifically defined purposes and
goals.

2.3.2 Unsupervised Learning

In contrast to supervised learning, unsupervised learning is ML methods that do not
use labeled data. While most supervised methods seek to learn to predict the value
of annotated labels (𝑦), unsupervised methods often seek to learn representations of
input data for different purposes and tasks. One such task is clustering, as shown in
Figure 2.3a. The goal of clustering is usually to group data such that the data-points in
each group are more similar to each other than to data-points in other groups. Thus,
the clusters themselves become a simpler representation of the data-points within.
Popular clustering methods include 𝐾-means clustering, hierarchical clustering, den-
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(A) Clustering task. (B) Generation task.

FIGURE 2.3. Two conceptual examples of unsupervised learning tasks; clustering and genera-
tion. In the clustering task, the goal is to learn a set of optimal representations
(colored rings) for some data points (blue dots). These can then be used to repre-
sent both existing and new data points in a simplified manner. In the generation
task, the goal is also to learn a representation of data points (𝑋 ). The learned
representation is then used to generate samples𝑋 ′ that have distributions similar
to 𝑋 , so that any data points in 𝑋 ′ appear as if they could belong to 𝑋 .

sity based clustering, and more. Clustering can be used for dimensionality reduction
(see Section 2.3.4), and also to model similarity in tasks such as anomaly detection [2].
Another popular unsupervised learning task is generation, as shown in Figure 2.3b.
This also involves learning a representation of data, but the goal here is to generate new
data-points by sampling from the representation. Popular methods include Bayesian
Networks (sampling from the underlying joint probability distribution), Variational
Autoencoders, and Generative Adverserial Networks [32, 117, 124]. Generative meth-
ods can also be regarded as supervised learning, if they use labeled data for learning
representations.

2.3.3 Other Techniques

There may not always be a clear distinction between supervised and unsupervised
learning. For instance, methods that rely on self-supervised learning can be regarded as
both supervised and unsupervised. In self-supervised learning, ML is used to generate
synthetic labels from an unlabeled dataset [78]. The labeled data can then be used for
supervised learning. Thus, in self-supervised learning the task is converted from being
unsupervised to being supervised. Reinforcement learning is also an example of ML
that does not necessarily fit the description of either supervised or non-supervised
learning. In reinforcement learning, an agent is tasked to select a certain set of actions
(policy) in an environment in a way that maximizes a reward function [10]. One of the
problems in reinforcement learning is that the rewards of future actions are usually not
known to a certain extent in advance. ML is therefore used to find out which actions
that lead to the highest rewards, based on past experiences. Neither self-supervised
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learning nor reinforcement learning are a part of the research in this Ph.D.-project,
but they are still mentioned as they are important areas of ML in general.

2.3.4 Data Acquirement and Processing

In general, the quality of any ML model is heavily dependent on the data it is trained
on. Acquiring the necessary data for ML can sometimes be tedious manual work, and a
dataset often has to be integrated frommany different sources [31]. In some cases, data
can also be collected by “scraping” information from various sources such as social
media or news agencies. This can be a less labour intensive process, but the quality of
such data may vary and can for example contain racial bias or false information [69].
There may also be certain legal restrictions on what or how data can be used, such as
privacy or copyrights. Using or expanding existing datasets may therefore generally be
a good solution. In this sense, working with labour inspection tasks is an advantage, as
data is usually generated and quality-assured as a part of the case management process
in labour inspection authorities [6, 43].

Before using data for ML, it is usually necessary to perform cleaning operations by
removing noise and inconsistent elements. It may also be necessary to normalize the
data or address class imbalance. Such operations are often done directly on the data by
for instance re-balancing the dataset [6], but can sometimes also be implemented by
making corrections to the ML models [43]. Selecting and extracting features for the
ML model may also be relevant to reduce potential noise, redundancy, or irrelevant
information from a dataset [73, 87]. This process is often referred to as dimension-
ality reduction. Feature selection methods are often divided into different types of
approaches. One of them is filter methods, which involve assessing feature importance
and filtering out the least important features [73]. Examples of filter methods include
𝜒2 and ANOVA [88, 89]. These methods are typically relatively computationally inex-
pensive, but may not be as effective compared to other types of approaches. Another
approach is wrapper-based methods, which rely on searching for an optimal subset of
features. A drawback with this approach is that it can be computationally expensive,
since each candidate feature subset (search step) is evaluated on a classifier that needs
to be trained on the subset [43, 73]. SomeMLmethods may also have “built-in” feature
selection as a part of the model training, such as Decision Trees or many Artificial Neu-
ral Networks variants (ANN). These feature selection approaches are often referred
to as embedded feature selection methods [73]. However, they may still benefit from
additional pre-training feature selection in terms of lower computational costs and
slightly higher model accuracy [88, 89].

2.4 INTERPRETABLE MACHINE LEARNING METHODS

A potential problem with many ML methods is that the predictions they make can
be difficult to understand. Many methods such as deep learning (ANN), random
forests, or boosting methods tend to be called “black-box” methods, because their
size, complexity, low-level nature, and “hidden layers” (in ANNs) effectively hide their
internal logic [15]. The lack of transparency in these models makes them difficult
to interpret and explain, and such methods tend to rely on post-hoc explanations to
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FIGURE 2.4. A small and simple Bayesian network (BN) with binary variables𝑌 ,𝑋1 and𝑋2. This
particular network can also be seen as a Naive Bayes’ Classifier. The parameters
for the network are listed in the tables next to the graph. The symbols 𝑥1 , 𝑥2 and
𝑦 are short-hand notations for the events 𝑋1 = 1, 𝑋2 = 1 and 𝑌 = 1, respectively.
Collectively, the tables form an underlying joint probability distribution that can
be used for querying. For example, it is possible to find (𝑦 |𝑥1, 𝑥2 ) by using the
tables to solve 𝑃 (𝑦 |𝑥1, 𝑥2 ) = 𝑃 (𝑥1,𝑥2 |𝑦)𝑃 (𝑦)

𝑝 (𝑥1,𝑥2 ) . Thus, BNs are very flexible ML model
representations.

achieve some degree of interpretability [110]. In contrast, “white-box” methods are
transparent and can provide a better understanding of how predictions are made, since
it is feasible to track the logic behind predictions that the methods make [111]. One of
the motivations for using black-box methods is often prediction accuracy. However,
the lack of interpretability can negatively impact accuracy due to a lack of trust from
users [111]. In many cases, white-box methods may also be more accurate than black-
box methods, despite the lower model complexities [110]. For governmental agencies,
especially regulators such as labour inspectorates, making transparent decisions is vital
for maintaining trustworthiness. Forthcoming EU-regulations will also require more
use of interpretable ML models [29].

In this Ph.D.-project we therefore investigated interpretable (and relatively trans-
parent) ML methods for solving labour inspection tasks. The rest of this section
discusses the most important areas we looked into.

2.4.1 Probabilistic Machine Learning

Probabilistic MLmethods are used to create models that represent uncertainty, relying
on probability distributions and probability theory to make interpretable predictions
about future data [37, 49]. A commonly used probabilistic method for ML is General-
ized Linear Models (GLMs), which is a set of (inverse) linear models for predicting the
mean values on probability distributions from the exponential family [13, 93]. Both
linear and logistic regression are examples of GLMmodels.

Bayesian Network (BN) is another popular probabilistic method for addressing
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uncertainty with many application areas, such as fault diagnosis, medical diagnosis,
circuits modeling, and sensor validation [24, 37, 85, 86, 109]. The method is typically
used in classification tasks and can also handle incomplete input data [37]. Formally,
BNs are directed acyclic graphs (DAG) with nodes and edges. The nodes represent
variables (features), while the edges represent dependencies between the variables. The
variables in the network represent a joint probability distribution, with independencies
defined via the edges. Inference on the network is done by applying probability calculus
to the joint distribution, such as conditioning or marginalization. An example of a
BN is shown in Figure 2.4. The figure shows a Naive Bayes’ Classifier, which is a
popular variant of BNs for predicting or classifying the cause (dependent variable) of
observed effects (independent variables). The method is called “naive” because it is
naively assumed that all independent variables are conditionally independent, given
the dependent variable.

Creating and learning graph structures (DAGs) for BNs can be difficult and also
very computationally expensive, and it is an offline process in practice [113]. Finding
and accurately estimating the parameters for the underlying probability distributions
(conditional probability tables) of BNs can also be difficult, depending on whether the
training dataset is complete or not [16, 59].

BNs can be considered to be relatively interpretable compared to black-boxmodels
such as ANNs. Since reasoning in BNs is based on probability calculus, inferences or
predictions from such models can usually be traced and explained easily. Although
BNs can be relatively large [30, 109], they are typically much smaller than ANNs in
terms of number of nodes and edges. Nodes in BNs also often represent real-world
phenomena, unlike the hidden nodes in an ANN.

2.4.2 Case-Based Reasoning

Case-Based Reasoning (CBR) is a methodology used to solve many different problems
and tasks in ML, especially decision support for human users [1, 116]. Case-based
reasoning is used, for example, in recommendation systems [8, 62, 115] and for making
decisions in medical applications [11, 42]. The core idea in CBR is to solve (new)
problems by retrieving and reusing past experiences. This idea is different from many
other modern ML methods, which are typically based on learning models or functions
of data to solve new problems.

Figure 2.5 shows a generic overview of the CBR process, in terms of how the
methodology can be used to solve problems and learn from experiences. Central to
the CBR process is a case base that contains cases, which are representations of past
experiences. The CBR process can be broken down into four phases: retrieve the most
similar case(s) to the input problem, reuse the retrieved case on the input problem,
revise the case to solve the problem better, and finally retain the solved case. A brief
discussion of each of the four phases follows below.

1. Retrieve. The first phase consists of retrieving a past case that is similar to the
input case, shown in Figure 2.5. This is usually done by creating an input case
that contains the description of the problem that needs to be solved, and then
retrieving the past case(s) with the most similar description. The implementa-
tion of the retrieval phase varies. In some CBR methods, ML models are used



18 ▶ CHAP. 2 BACKGROUND

FIGURE 2.5. The figure is based on an illustration by Aamodt et Plaza. [1], and shows a concep-
tual overview of the CBR methodology. CBR can be broken down into four phases:
retrieve, reuse, revise, and retain.

to perform or enhance case retrievals, improving the match between input and
retrieved cases [96].

2. Reuse. The retrieved case(s) usually consists of a problem description-part and
a solution-part. Thus, the reuse phase consists of taking the solution-part of
the retrieved case and applying it to the input problem. This is often done by
simply copying the solution from the retrieved case, and then applying it [1, 72].
However, more elaborate approaches also exist. Some CBR methods can derive
a single solution from multiple cases [100] or modify the retrieved solution via
an ML model before it is used [72, 74, 125].

3. Revise. After the solution has been applied to the problem in the real-world
environment (reused), it is evaluated. Typically, feedback or an indication of
whether the solution was successful or not is given, such as a ground truth
label [44, 96]. If the solution was successful, it may be passed on for retention.
If the solution fails or does not work sufficiently to solve its problem, a repair
operation on the solution may be performed in addition to the evaluation [1].
This operation typically modifies the failed solution to better fit the problem,
in order to prevent future solution failures. Thus, one of the purposes of the
revision phase is to facilitate learning in the CBR system from both successful
or failed solutions.

4. Retain. In the last phase, the reused and revised solution and input case are
stored in the case-base, as shown in Figure 2.5. This means that the case can be
used to solve future problems. The implementation of the retain-phase usually
depends on the representation of cases in the case-base, and may therefore vary.
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The simplest implementation is to just retain every case indiscriminately, which
can include cases of successful and failed or repaired solutions [1]. Some CBR
methods also retain exclusively successful solutions [80]. Other methods may
rely on the construction of generalized cases for their retain-phases, where
information in the new case can be integrated into one of the existing cases [1].

One of the biggest advantages with CBR-based methods is that most of them
are transparent and interpretable (white-box) [65]. This is because each phase of the
CBR cycle is usually implemented with logic or algorithms that are relatively easy
to trace, which is crucial for systems used for decision support [1]. For example,
case-retrieval is often implemented as a variant of 𝑘-Nearest Neighbours (𝑘-NN),
retrieving cases based on a distance function [82]. CBR also provides intuitive example-
based reasoning and has a long history of implementations as explanatory frameworks,
where retrieved cases with predicted solutions are presented alongwith explanations to
users [1, 65, 116]. The implementation of such explanationsmay vary depending on the
goals they have [116], and what task or problem the CBR method addresses. A widely
used approach is to present information from retrieved cases so that users can compare
them with input cases, which can justify the solutions in the retrieved cases [46, 98]. A
closely related technique is to also display cases that are similar to the retrieved case,
and similar cases with solutions that contradict the retrieved case [71, 116]. CBR can
also be used to provide post-hoc example-based explanations for black-box methods,
such as ANNs [65].



CHAPTER 3

Related Work

This chapter is intended to summarize research related to some of the most important
research topics for the Ph.D.-project. These are meant to provide motivation for the
research conducted as part of the Ph.D.

3.1 MACHINE LEARNING IN LABOUR INSPECTIONS

Despite the growing popularity of ML, the publicly available research on the use of ML
for labour inspection tasks is limited. In general, there is also a lack of publicly available
data to support research and development of ML models for labour inspections [43].
Yet, some ML models for predicting inspection targets have been proposed [43]. One
of them is an ensemble-based model called Super Learner [61]. The model predicts the
number of injuries from work accidents that can be averted for businesses that receive
inspections [61]. The businesses with the highest predicted numbers are typically
selected for inspections. A drawback with the approach is that the data the model
relies on may not be reliably used for this purpose due to bias and under-reporting
of accidents and injuries [79, 106]. NLIA has also developed its own ML model for
predicting inspection targets using logistic regression [34]. Their model predicts the
probability for finding serious working environment violations instead of the number
of injuries. This is similar to one of theML tasks addressed in Paper D [43]. MLmodels
for carrying out inspections addressing undeclared work have also been proposed
using association rule mining and associative classification [4–6].

There is also some research on the use of ML models to understand or predict
specific HSE orOSH related hazards or problems, such as hearing impairment [76, 128].
However, the scope of such models may be too narrow to be practically useful for
labour inspections [34]. Thus, there is not much publicly available research on the
use of ML for labour inspection tasks, besides this Ph.D.-project and the ML models
for prioritizing targets for labour inspections. Therefore, the research carried out
in this Ph.D. could potentially generate more interest in the topic from independent
researchers.

3.2 APPROACHES TO CHECKLISTS

There are many different ways to create and use checklists, as they can have different
objectives and purposes [21]. Figure 3.1 shows a simple classification of approaches
to checklists based on how they are created (manual versus ML-based creation) and

20
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Static Dynamic
Manually created Checklists are created

manually by domain ex-
perts. Refered to as
“traditional checklists” in
this thesis. Used in
medicine, aviation, food
inspections, labour in-
spections and more [21,
35, 55, 58].

Checklists are created
manually by domain ex-
perts. Dynamic adapta-
tions to the checklists
are made via manually
defined logic or models.
Used for surgeries and
to provide guidelines for
creative tasks [12, 39,
70].

ML-based Checklists are created
via ML. Used for med-
ical diagnosis and con-
struction site quality in-
spections [19, 77, 126].
Limited research besides
this Ph.D.-project [44].

Both creation and dy-
namic adaptations to the
checklists are done via
ML. No known use-cases
or research besides this
Ph.D-project [45, 46].

TABLE 3.1. An overview of different approaches to checklists. Checklists can be created
manually by domain experts or through ML and other data-driven approaches.
Checklists can also be static or dynamic. Static checklists typically remain fixed
in size and content after they have been created. Any changes to them are made
manually. Dynamic checklists are checklists that can automatically adapt and
change in size and content during use.

whether they can be automatically adapted after creation (static versus dynamic check-
lists). Some examples of what the checklists in each category are used for are listed in
the figure. This Ph.D.-project investigates the potential for static or dynamicML-based
checklists, particularly for labour inspections. Thus, a more detailed discussion of the
related work on ML-based as well as dynamic checklists follows.1

3.2.1 Machine Learning Based Checklists

One of the research questions for this Ph.D.-project is whetherML can be used to create
optimized checklists for real-world tasks, since creating themmanually can be difficult
and time-consuming [44, 45]. A generic illustration of howML can be used to generate
checklists is shown in Figure 3.1, but the architectural and functional details of the ML
methods vary across the application domains. Zhang et al. propose an ML method for
generating predictive checklists for medical diagnosis [126]. They define a medical
diagnosis checklist as a binary M-of-N decision problem. That is, a certain diagnosis
is predicted as positive if at least𝑀 of the 𝑁 items on the checklist (symptoms) are
checked as positive. If less than𝑀 items are checked, the diagnosis is predicted to be
negative. An integer program is used to select a set of 𝑁 items for an optimal checklist

1The background on traditional static checklists in context of labour inspections is discussed in
Section 2.2.
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FIGURE 3.1. A conceptual overview of how ML can be used to generate checklists. First, an
ML model for generating checklists is trained on a dataset that contains some
form of labeled text or checklist items. The objective of the model training is
to learn how to assemble optimal checklists for any given criteria or settings,
based on the labeled components in the data. The model can then be queried
after training, generating new checklists that match the queries. Checklists can
also be generated using optimization methods (search) instead of a trained ML
model [60, 126].

that most accurately predicts a diagnosis when at least𝑀 items are checked. Various
extensions of the method have also been proposed [60, 77]. However, a drawback with
this approach is that it relies heavily on the fact that a checklist represents a binary
𝑀-of-𝑁 decision problem. This is likely not the case for applications outside ofmedical
diagnosis, where each individual checklist item may represent a separate decision [45].
Another drawback is that the method is computationally expensive, as the problem
definition can be seen as a variant of a knapsack problem. There are also no case studies
that evaluate how well the checklists generated by their method perform in the real
world.

Cai et al. propose an approach for generating checklist items for quality assurance
inspections on construction sites [19]. The approach uses NLP to generate checklist
items from regulatory texts. Checklists are then assembled through SQL queries
generated via a user interface. The checklists can then be manually customized by
users after creation via the interface. The approach could be useful for applications
where checklists need to be generated from scratch and there are no relevant data on
existing checklists that could be used [45]. However, the authors do not present any
experimental evaluations and the approach may be less relevant for labour inspections,
since there are available data on checklist items [44]. Also, a problem with NLPmodels
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FIGURE 3.2. The figure [45] illustrates how dynamic checklists can adapt to changes in envi-
ronment or context during use. Such adaptations to the checklists can increase
their relevance and efficiency in aiding users for their intended tasks. For example,
checklist answers can be used to automatically detect that something goes wrong
during a surgery (context change), and use this information to adapt the checklist
accordingly [38]. This can reduce cognitive load on the surgeons and improve
checklist compliance and patient safety [39].

is that they are usually black boxes and it can therefore be difficult for domain experts
to make any corrections or adjustments to them. Another problem is ensuring that the
generated texts are factually correct and truthful because NLP models potentially use
information from many different independent sources [22, 127].

In summary, checklists are being used formany different applications, but research
into using ML for generating or optimizing checklist content is limited. The ML
methods discussed above only generate static checklists, and none of them are used to
adapt or improve the checklists while they are being used [45, 46].

3.2.2 Dynamic Checklists

Dynamic checklists are checklists that can adapt to changes in context during use [38],
and they are used in medicine for safety-critical tasks such as surgeries and intensive
care [39, 70]. A conceptual view of a dynamic checklist is shown in Figure 3.2, showing
how such checklists can be adapted during use based on how they are answered. An
advantage of dynamic checklists is that they may remain relevant under unexpected
events or circumstances, while static checklists may need to be replaced or manually
adjusted [112]. A variety of different designs of dynamic checklists in digital formats
have been proposed. One of the simplest designs is to use simple logic to hide, reveal, or
automatically check off checklist items [12, 112]. A similar design that relies on a rule-
based decision model has also been proposed for intensive care units (surgeries) [38].
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A process model has also been proposed and tested in different clinical settings [26].
Most of these designs also claim to improve checklist compliance and reduce errors.
Dynamic checklists are also proposed to manage the complexity of design guidelines
in creative tasks, by progressively removing or hiding irrelevant checklist items [12].

Dynamic checklists may also be useful for labour inspections, since the inspec-
tion approach can often (dynamically) change over time based on the information
obtained [45]. For the same reason, they may also be relevant for similar regulation
enforcement tasks such as food inspections [55]. However, models for traditional
dynamic checklists are created manually, which can be time-consuming [39, 70]. For
diverse and complex tasks, such as labour inspections, it is practically infeasible to
manually capture and model every possible unfolding inspection scenario [45, 70].
This effectively limits the use of dynamic checklists to narrow and repetitive tasks that
are performed in relatively controlled environments. This underscores the need for
research on ML and other data-driven methods for generating dynamic checklists.

3.3 BAYESIAN CASE-BASED REASONING

The ML methods that we proposed for generating checklists in this Ph.D.-project are
based on Bayesian Case-Based Reasoning (CBR). There are also other methods that
combine Bayesian models or methods with CBR. One of them is a framework for
prototype classification and clustering [67]. The model learns prototype observations
(cases) that represent clusters of a dataset, by performing Gibbs’ sampling on cluster
labels, prototypes, andmost important cluster features. Themethod has relatively good
performance on multi-class classification tasks such as recognition of hand-written
digits. Another method uses a combination of BNs and CBR as a two-stage model to
perform user profiling, where CBR is used to store and retrieve cases for calculating
probability values (parameters) of the BNs [114]. A similar method has been proposed
for tasks that rely on large datasets, as a way to improve the classification accuracy for
BN models [51]. There is also an approach that aims to improve the accuracy of CBR
case retrievals by using posterior probability distributions to modify or add features
to query cases [96]. The same approach can also be used to provide explanations for
case failures in various applications [95]. Combinations of Bayesian methods and CBR
have also been proposed to improve case-retrieval, and also to provide explanations in
other applications as well [50, 66].

A common motivation for most of the methods discussed above seems to be
that the combination of Bayesian methods and CBR could improve the handling of
uncertainty or incompleteness in data [17]. While there are many methods that rely
on Bayesian Case-Based Reasoning, they are usually specifically designed for many
different tasks and purposes. The methods are therefore not related to each other,
besides that they combine Bayesian methods with CBR. Further research into the topic
can be motivated by potential improvements in ML performance on certain tasks.
Especially for tasks where ML model interpretability is necessary, such as creating
checklists [44, 46]. Another motivation to investigate Bayesian Case-Based Reasoning
for creating checklists is that labour inspection data can be subjected to aleatoric or
stochastic uncertainty, due to a large number of various factors and complex relations
in the real world that are infeasible to capture sufficiently in the data [44, 46, 56].



CHAPTER 4

Research Results

This chapter provides an overview of the research conducted in this Ph.D.-project,
outlining how the research questions from Chapter 1 are answered by the results from
the research. Some of the limitations of the research contributions are also discussed
here.

4.1 SUMMARY OF RESEARCH CONTRIBUTIONS

This section summarizes the research contributions from this thesis, which are broken
down based on the four research questions fromChapter 1. The research contributions
are discussed in more details in Section 4.2.

Research question 1

What kind of data and ML methods are effective for improving labour inspec-
tions?

• Paper A introduces a new dataset for generating labour inspection
checklists via ML.

• Paper B shows that feature selection can increase ML performance on
the task of selecting a relevant checklist for an inspection in a given
target organisation.

• Paper D introduces a new dataset that supports two novel tasks. (1)
predicting an optimal relevant checklist that inspectors can use for a
given inspection, and (2) predicting non-compliance to working envi-
ronment regulations among organisations. The dataset could be useful
for future ML-research in these tasks.
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Research question 2

Can ML be used to create optimized checklists for real-world tasks?

• Paper A formally defines the problem of creating optimized checklists
for a certain task and introduces an ML method to solve the problem,
focusing on labour inspections.

• Paper C formally defines the problem of creating dynamic checklists
and introduces anMLmethod to do so, based on themethod fromPaper
A. Dynamic checklists are also used in medicine [26, 39, 70], but this is
the first ever ML-based approach for generating such checklists [45].

Research question 3

How should ML-based checklists be evaluated?

• Paper A and Paper C propose to evaluateML-based checklists based on
cross-validation on estimated ground truth labels based on empirical
distributions.

• Paper E presents the results from a labour inspection field study where
the dynamic checklists from Paper C are evaluated. The results from
the field study indicate that the evaluation approach from Paper A and
C is somewhat optimistic, even when only true ground truth labels are
considered in the experiment.

• Paper E also shows that dynamic checklists increase the number of
violations found in the inspection, compared to traditional static check-
lists used in labour inspection. The results therefore indicate that using
dynamic checklists increases labour inspection efficiency, since there
were also fewer items on these checklists.

Research question 4

How can we ensure that ML models for labour inspections are interpretable?

• The ML method (BCBR) introduced in Paper A is an interpretable
“white-box” method. The paper also discusses the importance of this
property, and focuses on using interpretable ML methods as baselines
in the experiments.

• Paper E introduces two new approaches for explaining the content
of dynamic checklists (generated by CBCBR from Paper C) to their
end-users (inspectors). The explanation methods are implemented in a
prototype used for the field study described in the paper.
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4.2 RESEARCH RESULTS AND DISCUSSION

The research results and contributions from this thesis are presented and discussed
here. The research is described in full detail in the papers (A-E), included in Part II.
The research results are broken down based on the research questions from Chapter 1,
in the same fashion as in the summary above.

4.2.1 Research Question 1 - What Kind of Data and ML Methods are Effective
for Improving Labour Inspections?

The first research question concerns the exploration of useful datasets andMLmethods
for labour inspection tasks, taking into consideration the ML research on the topic
besides this Ph.D.-project is limited (see Section 3.1). Due to the poor public availability
of datasets, the knowledge of what kind of ML methods that can support such tasks is
also limited. Many labour inspection authorities, such as NLIA, collect data as part
of their daily operations [6]. Therefore, we looked into how existing data could be
leveraged to support tasks that are related to planning and executing labour inspections.
In particular, Paper A investigates howdata on checklists used in past inspections can be
used to create new checklists that could enable inspectors to carry out their inspections
more efficiently. To support and promote further research on this topic, a dataset has
been published. The paper also explores a set of baseline ML-methods in a preliminary
experiment, to find out which baseline methods workmost effectively for the task. The
experiment answers the research question and serves as a stepping stone for Research
question 2. More contents and contributions from Paper A are discussed in more
details in Section 4.2.2.

Paper D also addresses Research question 1 by introducing a new dataset, support-
ing two newML problems for the labour inspection domain. Solving these problems
is currently an integral part of the workflow for planning and executing inspections in
NLIA and other labour inspection agencies. The first problem is to select an optimal
relevant checklist (among existing, predefined checklists) to use for an inspection. The
second problem is to predict non-compliance to working environment regulations
among businesses, which could be potential inspection targets. The paper identifies
and discusses some of the key independent features in the dataset for the two problems.
The paper also addresses some data processing issues, such as how the imbalanced
distribution of target labels in training and evaluation data should be addressed. We
also tested different baseline ML-methods for solving the two problems. Although
the Ph.D.-project mainly focuses on interpretable methods, it may be useful for future
research to also consider black-box baselines. Therefore, we tested both interpretable
baselines such as k-NN and regression methods, and black-box methods like AdaBoost
and Multi-layer perceptron (ANN). We identify Decision trees and AdaBoost as the
best-performing methods for solving the first and second problem, respectively. This
shows that black-box methods do not always outperform white-box methods with
much less complexity [110, 111].1

We also test some feature selection methods in paper D, where the results indicate
that filter-based methods such as Chi2 and Anova F work well. Paper B looks further

1The AdaBoost-baseline combines many decision trees models into a single predictive model.
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into the feature selection problem using an earlier version of the dataset from Paper D.
In the paper, we propose a new feature selection method (SLS4FS) based on Stochastic
Local Search (SLS). SLS an algorithm that performs a greedy search with stochastically
added noise and restarts [90]. One of the advantages with SLS4FS is that it can poten-
tially search for optimal feature sets more effectively than linear search methods like
forward or backward selection, without getting stuck in local optima. The experiments
show promising results for SLS4FS configurations using fixed or adaptive noise in
terms ofmeasured accuracy and number of features found. This can be both in terms of
increased model accuracy and reduced model training time and complexity as a result
of fewer features [88, 89]. We also used Markov chains to analyse the computational
costs of SLS in a different paper, not included as a part of this thesis [90]. Thus, both
paper B and D contribute to Research question 1 by showing how feature selection can
be used to improve ML model performance for labour inspection tasks. The papers
also briefly discuss the top selected features for the tasks, giving an insight into what
kind of features are useful in MLmodels for solving them. The highest ranked features
vary depending on feature selection method and task but tend to include industry
codes, business location, business age, number of employees, and financial data such
as unpaid public fees, revenues, costs, and assets [43].

4.2.2 Research Question 2 - Can ML be Used to Create Optimized Checklists for
Real-World Tasks?

The research goal of this thesis is to understand how ML can be used to improve
labour inspection efficiency. Therefore, the Ph.D.-project looks into the possibility of
using ML to create improved labour inspection checklists, since they implicitly govern
the inspection procedures (what the inspectors should do in the inspections). The
research also has a broader impact potential than just labour inspections, as checklists
are commonly used for many different tasks in other domains such as healthcare and
safety applications [38, 40, 55, 58]. At the beginning of this Ph.D.-project in 2019, there
was no available research on the use of ML to create checklists in general.

Paper A formally defines the problemof constructing checklists, enabling the use of
ML to solve it. This can be viewed as a type of generation task (see Section 2.3.2), which
involves the generation of new optimized checklists for any given target organisation.
The problem is to select the best possible set of 𝐾 items, from 𝑁 available items (small
𝐾 , large𝑁 ), that maximizes the number of violations (non-compliance) found at a given
inspection target. To address the problem, Paper A also introduces a method called
Bayesian Case-Based Reasoning (BCBR) for creating checklists. BCBR is a hybrid
method based on a combination of Bayesian inference on empirical distributions
(NBI) and CBR. One of the application-specific motivations for BCBR is to create
checklists that are effective (prioritizing checklist items that have high probability for
non-compliance) and relevant for each inspection (items are retrieved from checklists
used in similar past inspections).

BCBR works by first augmenting past CBR cases with probability estimates for
positive target labels (non-compliance toworking environment regulations) to enhance
the accuracy of case-retrievals from the case base. BCBR then builds a checklist by
retrieving 𝐾 augmented CBR cases with checklist items that have the highest prob-
ability to be found non-compliant for the given inspection target. This principle of
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TABLE 4.1. The table [45] shows a dynamic checklists with 5 initial items, generated for a
hotel inspection in Oslo. Two items on the checklist have been answered (as
indicated with blue circles). Two items have also been dynamically added to the
checklist (at the bottom), based on the answered items.

augmenting cases to enhance case-retrieval in CBR is novel and may also be relevant to
use in other applications as well [84]. The decision to use NBI to generate probability
estimates for the CBR cases is based on a preliminary experiment with a simpler prob-
lem [44]. The objective of the problem is to predict the correct answer of any checklist
item (classification problem). The results of the experiment show that NBI performed
best overall out of the methods considered. Paper A also introduces a cross-validation
approach, which is used in an experiment where BCBR and other baselines are eval-
uated. The results of the experiment indicate that the checklists generated by BCBR
are superior to traditional static checklists used in labour inspections, increasing the
expected average number of violations found per checklist item (precision) [44].

Paper C proposes an extension of BCBR called CBCBR, which creates dynamic
checklists that can self-adapt during inspections. CBCBR does so by using the checklist
answers provided by inspectors to recommend additional items that fit the context.
The recommendations are carried out by first updating the probability estimates in the
augmentedCBR cases, conditioning the estimates on the known checklist answers. Any
CBR cases that have received sufficiently increased estimates are then retrieved and
the embedded items are presented to the users. The new items can then be appended
to the checklists at the users’ discretion. As far as we know, CBCBR is the first AI- or
ML-based approach for generating dynamic checklists. The method is also versatile,
so the dynamic checklists can be implemented in many different ways. For example, in
addition to adding new items, it is possible to mark or even remove checklist items
that become less relevant during inspection. However, such functionalities could also
become confusing for users and may also complicate evaluations [45, 46], so this is
something that may be considered for future work.
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TABLE 4.2. The table [46] shows a traditional static checklist of 7 items that are used for
inspections within the hospitality industry (hotels, restaurants and catering) by
the Norwegian Labour Inspection Authority. This represents only one of multiple
checklists that are used in such inspections.

A demonstration of a dynamic checklist generated via CBCBR for a hotel inspec-
tion in Oslo is shown in Table 4.1. As a result of the two answers provided in the
checklist (blue rings), two more items related to those answers have been added at
the bottom. The added items cover additional topics and prompt inspectors to check
that employees receive overtime payments and do not work too much overtime. In
contrast, Table 4.2 shows a traditional static checklist that could also be used in the
same hotel inspection. This checklist remains the same throughout the inspection and
covers a much narrower set of topics compared to the dynamic checklist in Table 4.1.
The static checklist in Table 4.2 covers working agreements and that workers receive
the legal minimum wages. The dynamic checklist in Table 4.1 seems to cover most of
the same topics and more, such as routines for handling threats and violence. We made
the same observation when comparing more examples of dynamic versus traditional
checklists for other types of inspections as well. The comparisons indicate that the
CBCBRmodel from Paper C works as intended and is capable of generating optimized
checklists. The experiments conducted in Paper C indicate that the ability to adapt
the checklists while they are used by inspectors gives ML-based dynamic checklists
(CBCBR) a clear advantage over static checklists (BCBR as well as traditional checklists
currently used by NLIA).

All in all, Paper A and Paper C answer Research question 2 by introducing and
testing ML methods for creating checklists. These methods could also potentially
be used to generate checklists for tasks in other domains by using different training
datasets. In particular, CBCBR from Paper C could be relevant for applications where
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(A) Distribution of inspections in the test
group, using dynamic checklists.

(B) Distribution of inspections in the control
group, using paper-based checklists.

FIGURE 4.1. The diagrams [46] show the number of inspections conducted in organisations
belonging to different industries in the field study from Paper E (indicated by
letters A-Q). For the test group, most of the inspections were conducted within
the Accommodation & Food and Construction industries (I). The majority of the
inspections of the control group were carried out in construction businesses (F).
Interpretations for the letters shown the figures can be found in Table 2.1.

dynamic checklists are already being used, such as in healthcare [38, 39, 70] (see Section
3.2.2). In these applications, dynamic checklists rely on models that must be created
manually by domain experts, which can be time consuming [26, 39, 45, 46].

4.2.3 Research Question 3 - How Should ML-Based Checklists be Evaluated?

This research question is an extension of Research question 2. Both Paper A and Paper
C address Research question 2 by evaluating ML methods using cross-validation on
existing data. However, the effect of checklists on inspectors’ task performance can be
unpredictable [21, 39, 55] and evaluation methods on existing data may not account
for certain real-world factors, such as interaction effects between inspectors (human),
inspected organisations, and the ML-based checklists [81, 103, 104]. Thus, Paper E
addresses Research question 3 by presenting the results from a field study where the
ML-based checklists are tested in real-world environments by labour inspectors. To
our knowledge, this is the first published study on the use of ML-based checklists [46].
The purpose of the field study is: (1) to find out how checklists should be evaluated,
and (2) to confirm that ML-based checklists do indeed increase labour inspection
performance in the field. The field study was conducted with a test and control group,
with inspectors carrying out inspections usingML-based dynamic checklists in the test
group and traditional static checklists in the control group. As shown in Figure 4.1, the
inspections were carried out in a wide range of industries, which caused some selection
bias. This was done to avoid disrupting inspectors from their daily tasks, and shows
that it can be practically challenging to design real-world experiments for complex
applications such as labour inspections. To correct bias and allow fair comparisons,
the results from the study are weighted.

The results from the study in Paper E indicate that the evaluation methods pro-
posed in Paper A and C do not reflect the real-world field performance of the ML-
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FIGURE 4.2. Overall weighted average precision scores from the field study in Paper E (left)
versus ground truth precision (middle) and estimated precision scores (right)
from cross-validation in Paper C. The figure indicates that the cross-validation
approaches (middle and right) are too optimistic.

checklists being evaluated. This is shown in Figure 4.2, where the score of the dynamic
checklists in the field study is significantly lower than the cross-validation scores. This
insightmay have implications for future research in other domains whereML is used to
create checklists, such as medicine [77, 126]. The results also show that labour inspec-
tion efficiency increases when dynamic checklists are used because more violations are
found (up to 27% increase), using shorter checklists (up to 20% reduction). Therefore,
these results make a significant contribution to the research goal of understanding
howML can be used to improve labour inspection efficiency. However, some of the
inspectors also reported that they spent more time following up on violations. The
implications of this are discussed in more detail in Section 4.3.2.

4.2.4 Research Question 4 - How can we Ensure that ML Models for Labour
Inspections are Interpretable?

This research question addresses the fact that many of the recent ML methods are
“black boxes”, with the consequence that models (and their predictions) are difficult to
interpret or explain [110, 111]. To promote users’ trust and reliance on ML models,
it is important that ML models are interpretable so that their predictions can be
understood. Model-agnostic explanation methods for black boxes exist, such as LIME
or SHAP [47, 91, 108], but these methods do not fully explain models’ reasoning
processes that lead to their predictions. They can also be difficult to understand for
users who are not ML-experts [46, 110]. Inspectors and domain experts working with
labour inspections may be unable to understand detailed ML model characteristics
and explanations as well as ML experts. The research question is therefore a natural
progression towards the research goal from the other research questions because even
the best, most accurate ML models, can be useless if users cannot rely on them [110].
Furthermore, forthcoming EU-regulations will require a level of interpretability of
ML technologies [29].
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Paper A seeks to address Research question 4, showing that interpretable ML
methods can be achieved by focusing the research on ML methods that are naturally
interpretable or transparent. For example, the paper highlights BCBR as a transparent
method, since both of its components (NBI and CBR) are based on processes that can
be traced manually [116]. The NBI-component calculates probability estimates for
each CBR-case simply by counting instances in the dataset. The CBR-component
assigns scores to every case in the case-base via a similarity function and retrieves the
𝐾 cases that have the highest scores. The experiments in Paper A are also carried out
exclusively with relatively interpretable baselines such as logistic regression and the
naive Bayes’ classifier. In paper C, we also tested some black-box methods against both
BCBR and CBCBR, such as ANN and Random Forests. We found that the black-box
methods perform on par with NBI in terms of model accuracy, but worse than BCBR
and CBCBR. Time-wise, the black-box methods also perform significantly worse than
NBI, BCBR and CBCBR. Thus, the results in Paper C indicate that interpretability in
ML does not necessarily come at a cost to model accuracy [110].

Although Paper A and C introduce new ML methods that are transparent and
interpretable forML experts, the papers do not consider how to ensure interpretability
for inspectors. However, this topic is covered in Paper E and is important because
inspectors are unlikely to have the same level of technical skills as ML experts [46]. The
paper discusses how explanations can be provided to ensure that ML-based checklists
are interpretable for inspectors, with the goal of providing a certain level of justifi-
cation and transparency [116]. Paper E introduces two methods for explaining the
content of dynamic checklists (generated by CBCBR from Paper C) to inspectors [46].
The first method is to show the estimated probability for non-compliance on each
checklist item to inspectors, to justify the use of the items selected for each checklist.
The second method is to highlight the checklist answers that had the most impact
when recommending new items for a dynamic checklist. The method could help in-
spectors understand why certain extra checklist items are being recommended during
inspections. Both explanation methods are implemented in a prototype that is used for
the field study of labour inspections described in the paper. The explanations received
positive feedback from the inspectors who participated in the study. However, the
inspectors also requested explanations for why certain items did not make it on their
checklists [46]. It is currently possible to provide such explanations by examining
the cases in CBCBR’s case-base, but this has to be done manually. Finding a way to
generate such explanations automatically could be investigated in future work.

4.3 LIMITATIONS OF THE RESEARCH

This section discusses some of the limitations of the research contributions from the
Ph.D.-project, in context of the research questions discussed in the previous sections.

4.3.1 Implementation of Machine Learning in Labour Inspection Authorities

As mentioned in Section 1.2, the scope of the research in the Ph.D.-project does not
cover howMLmethods should be implemented and operationalized into labour inspec-
tions. This is still an important question, as some of the MLmethods that we proposed
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may need some adaptations and improvements to fit labour inspection processes and
operations. In our work, we have also assumed that one of the key performance indica-
tors (KPIs) for labour inspections is the number of violations found in the inspections.
Our assumption is that the number of violations found in an inspection should statisti-
cally correlate with the number of serious violations found as well. However, while this
KPI may make sense for countries like Norway, it may be less important in countries
such as Bangladesh or India where combating child labour has a much bigger focus
than addressing general working environment violations. This is usually related to
limited resources, which forces labour inspection authorities to make very specific
priorities [57]. This issue could potentially be solved by adapting or replacing the
datasets we used to accommodate other KPIs.

4.3.2 Measuring Increases in Labour Inspection Efficiency

Another limitation of the research is measuring labour inspection efficiency, which can
be difficult [118]. Efficiency can be defined as the amount of effort thatmust bemade to
get something done. In Paper E, we presented a field study showing that using dynamic
checklists increases the number of violations found in the inspections, with the dynamic
checklists generally being shorter than traditional static checklists. We assume that
the combination of fewer things to check for (shorter checklists), combined with an
increased number of violations being found in the inspections, indicates increased
labour inspections efficiency. However, as mentioned earlier, inspectors report that
they also spent more time following up the inspections when using dynamic checklist.
We have notmeasured howmuch time the inspectors spend on casemanagement in our
study. Therefore, it is not certain whether the total time inspectors spend on planning,
executing, and following up inspections increases or decreases as a consequence of
using dynamic checklists. However, studies in this area may be considered in future
work.

4.4 SOURCE CODE AND DATA

In addition to the research discussed above, the Ph.D.-project also generated data and
source code. This is important considering that the publicly available data on labour
inspections is very limited. An overview of the resources is provided below, including
URLs.

• The Checklist Items dataset, used to create checklists in Paper A, C and E:
https://dx.doi.org/10.21227/m1t7-hg51. The dataset consists of a collection of
almost 2 000 unique items from369 checklists used in 59 988 labour inspections
between 2013 and 2019.

• The Labour Inspection Checklist Dataset (LICD), analyzed and used for the ex-
periments in Paper D: https://doi.org/10.18710/7U6TZP. The dataset consists
of 63 634 inspections conducted between 2012 and 2019 and has 577 features
and labels. The dataset can be used to predict the most relevant checklists
that inspectors could use for their inspections or to predict non-compliance to

https://dx.doi.org/10.21227/m1t7-hg51
https://doi.org/10.18710/7U6TZP
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working environment regulations among organisations. An earlier version of
the dataset is used for the experiments in Paper B.

• Source code for the experiments in Paper C: https://github.com/ntnu-ai-lab/
cbcbr. The experiment compares the checklist generated by CBCBR from Paper
C and BCBR from Paper A to baselines such as ANN, NBI, DT and traditional
static checklists. The results are measured in terms of precision, accuracy, recall
and execution time. Installation instructions can be found in the repository.

• Source code for the prototype software to generate dynamic checklists, pre-
sented in Paper E: https://github.com/ntnu-ai-lab/cbcbr-prototype. The soft-
ware was installed on tablets and used by labor inspectors in the field study
discussed in the paper. The repository includes an executable file that can be
downloaded and installed in a Windows environment. The installation instruc-
tions can be found in the repository. The code may be unavailable at the time
of submission of this thesis.

https://github.com/ntnu-ai-lab/cbcbr
https://github.com/ntnu-ai-lab/cbcbr
https://github.com/ntnu-ai-lab/cbcbr-prototype


CHAPTER 5

Conclusion and Future Work

5.1 CONCLUSION

The goal of this research is to study how ML can be used to improve the efficiency
of labour inspections. These inspections are an integral part of the enforcement and
promotion of the United Nations’ decent work agenda (SDG 8) [101]. Pursuant to
the International Labour Organization’s (ILO) Labour Inspection Convention (1947),
labour inspections are carried out nationwide in ratifying states among organisations
that employ workers with the goal of addressing non-compliance to international
and national labour standards, including occupational health, environment and safety
(OSH) [119]. However, due to the increasing diversification of HSE risks in workplaces
as well as diminishing budgets, the effectiveness and number of labour inspections
being conducted have been declining in recent years [83, 119, 122]. To address these
challenges, this thesis focuses on the use ofML to improve how inspections are planned
and executed. More specifically, we useML to create or select checklists for inspections,
and to predict non-compliance to HSE regulations among organisations that could
potentially be targeted for inspections. Addressing these tasks via ML may mean that
inspectors could find violations in their inspections more effectively and potentially
conduct and complete their inspections faster.

In our work, we started by investigating prior ML research on labour inspection
tasks and found that there was not much available. There were very few datasets openly
available for research as well. Therefore, we publish two new datasets to support and
promote ML research, one in Paper A and one in Paper D. These datasets support the
use of ML to solve at least the three labour inspections tasks mentioned above. Paper A
covers the use of ML to create checklists, while Paper D covers the use of ML to select
an existing checklist for inspection (out of 369 available pre-established checklists).
Paper D also covers the task of predicting non-compliance to working environment
regulations among organisations, which could be potential targets for inspections. The
paper investigates potential ML methods that could be used to solve the tasks. Both
PaperB andDalso show that using feature selection could increasemodel performances
and reduce computational costs on the tasks. Thus, all three papers contribute to the
establishment of labour inspection tasks for ML, by introducing new datasets and
knowledge of how the data should be leveraged.

ILO is also concerned that the current use of pre-established checklists limits the
scope and impact of inspections [101]. This research focuses mostly on the task of
using ML to create new checklists for each inspection, so that labour inspections can
be carried out with higher efficiency without relying on pre-established checklists.
Paper A investigates a variation of baselines that could potentially be used to solve

36
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the checklist creation task, and finds that Naive Bayesian Inference on empirical
distributions (NBI) is the best-performing method. The paper also introduces a new
method called Bayesian Case-Based Reasoning (BCBR), which is a hybrid method
based on Case-Based Reasoning and the NBI model. In a cross-validation experiment,
the checklists generated by BCBR outperform the existing traditional static checklists
used by the Norwegian Labour Inspection Authority (NLIA), as well as the checklists
from the other ML baseline methods. Paper C also presents an extension of BCBR
called Context-aware Bayesian Case-Based Reasoning (CBCBR), which also makes it
possible to dynamically adapt the checklists based on how they are answered during
inspections. In practice, this means that the checklists are context-aware and can adapt
to findings throughout inspections. The cross-validation results in Paper C show that
CBCBR’s dynamic checklists perform better than BCBR’s static checklists. Thus, both
Paper A and C contributes to establishing an understanding of howML can be used to
create checklists that potentially increase labour inspection performance.

To further evaluate the dynamic checklists generated by CBCBR and understand
the impact they have on the efficiency of the labour inspections, the checklists are
tested in a field study with real-world labour inspections. The results are described in
Paper E and show that the dynamic checklists increase labour inspection performance
compared to traditional inspection checklists. The results also show that the cross-
validation performance estimates in Paper A and C are somewhat optimistic regarding
the real-world performance of the dynamic checklists. Therefore, the field study in
paper E validates that ML-based checklists can improve labour inspection efficiency
and also advances the understanding of howML-based checklists should be evaluated.
Paper E also introduces two explanation methods for explaining the content of the
dynamic checklists to inspectors, exploiting CBCBR being a “white-box” method. The
first explanation method is to highlight the probability for finding non-compliance
on each item on the checklist, while the second method explains how dynamically
added checklist items are related to the inspectors’ interactions with the checklists
during the inspections. The methods were well received by the inspectors participating
in the study, and could contribute to establishing an understanding of how dynamic
checklists can be explained.

Thus, the thesis has established a foundation for understanding howML can be
used in labour inspection tasks, to improve efficiency. However, the scope of this thesis
is relatively limited and there is still much potential for future work.

5.2 FUTURE WORK

First, the ML models discussed in the thesis have not yet been adopted by any labour
inspection agencies and there will likely be challenges that need to be addressed. For
example, introduction of new labour regulations would require corresponding new
checklist items to be incorporated into the CBCBR model and the dynamic check-
lists. In recommender systems, this challenge is known as the cold-start problem [75].
Another challenge is how records of completed checklists should be retained in the
case-base of the CBCBRmodel. There is also limited research into the design practices
for dynamic checklists, in terms of how to create model and interfaces that provide
the best possible user experiences. Finding new ways to explain checklist content to
inspectors is also another option. An area to consider is counterfactual explanations
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such as: What would happen if certain inspected checklist items are not inspected and
instead replaced with some other checklist items? These are just a few examples of
areas that could be explored in more detail with respect to dynamic checklists.

Another possibility for future work is to look for ways to expand the datasets
introduced in Paper A and D with more features. The dataset introduced in Paper A
contains around 10 features, which are categorical. Currently, CBCBR only supports
categorical features, but it could be possible to use binning techniques, potentially
combined with kernels or transformation functions, to support numerical features as
well [23, 53, 77], and then expand the dataset with more numerical features. The ML
performance in both of the tasks introduced in Paper D is promising but not great,
and expanding with new features could help boosting performance in these tasks.
Scraping data from the web or other large data sources could be an option to collect
more relevant data on potential inspection targets (organisations). Another option
is to collect data via physical sensors, for instance, to get visual or audio data from
inspections. Such data could potentially be used to capture dangerous situations in
certain workplaces, such as construction sites. However, collecting such data could
also be challenging due to privacy regulations. It may still be possible to use sensors to
capture useful information while maintaining privacy [54, 63], and doing so for labour
inspections could be a potential area for future research.

Another direction for futurework is to investigate data processingmethods further,
such as feature selection and feature extraction methods. Such methods are also
essential if data scraping is used to collect large amounts of data. Optimization-based
feature selection show promising results in both Paper B and D, but finding the optimal
set of features is an NP-hard problem [27]. It may be possible to achieve better ML
model performance by optimizing the search strategy for the optimal feature set(s),
where local search methods could be a starting point [27, 88, 89]. Feature extraction
methods and transformations are also topics that could be looked into.

There are also many potential tasks besides those mentioned in this thesis that
could be addressed with ML or AI. One of them could be to use NLP models to write
the inspection reports that are sent to the inspected organisations after inspections.
Another use-case could be to use NLP models to analyze and summarize tips that
the labour inspection authorities receive, which for instance could be used to create
new features in the datasets from Paper A and D. Such use-cases could potentially be
addressed by fine-tuning large-scale language models like GPT for the tasks, to make
generated texts more accurate and true to the sources used by the models [3, 18, 105].
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ABSTRACT

Checklists are used to aid the fulfillment of safety critical activities in a variety of
different applications, such as aviation, health care or labour inspections. However,
optimizing a checklist for a specific purpose can be challenging. Checklists also need to
be trustworthy and user friendly to promote user compliance. With labour inspections
as a starting point, we introduce the Checklist Construction Problem. To address the
problem, we seek to optimize the content of labour inspection checklists in order
to improve the working conditions in every organisation targeted for inspections.
To do so, we introduce a hybrid framework called BCBR to construct trustworthy
checklists. BCBR is based on case-based reasoning (CBR) and Bayesian inference (BI)
and constructs new checklists based on past cases. A key novelty of BCBR is the use of
BI for constructing new features in past cases. The augmented past cases are retrieved
via CBR to construct new checklists, which ensures justification for the content of the
checklists and promotes trust. Experiments suggest that BCBR is more effective than
any other baseline we tested, in terms of constructing trustworthy checklists.

A.1 INTRODUCTION

FIGURE A.1. Conceptual view of NLIA’s procedure

Context. Every year more than three million workers are victims of serious acci-
dents causing more then 4000 deaths due to poor working conditions in EU alone.1
World-wide, it has been estimated that there are at least 9.8 million people in forced
labour (2005) [1]. The most important measure to prevent poor working conditions is
regulations. Regulations are usually enforced through labour inspections, which make
them a vital part of the strategy employed by many countries to ensure good health,
1https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332
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safety, decent work conditions and well-being for workers (see UN’s SDGs 3, 8 and
162). Hence it is important to carry out labour inspections efficiently at large scale.

To identify poor working conditions, labour inspection agencies use surveys to
check individual organisations for non-compliance [2]. Such procedures vary between
different countries and wewill use the Norwegian Labour Inspection Authority (NLIA)
as an example. NLIA’s inspection procedure is shown in Figure A.1. It consists of a
checklist which is a set of control points that are answered during the inspection. Every
control point is a question that corresponds to a specific regulation. The answer to
each question indicates whether the inspected organisation is compliant or not. These
answers provide a basis for reactions if non-compliance is found. Checklists for ensur-
ing health and safety are also used in other domains such a surgery or flight procedures
to ensure high accuracy of due diligence, and success often relies on correctly applying
checklists [3].
Challenges with Checklists. Currently, labour inspection agencies operate with a
limited, fixed number of static procedures or checklists targeting specific industries
that organisations belong to. The inspectors select the checklist they subjectively
believe is most relevant to the organisation they are visiting. A drawback with this
approach is that the selected checklist can be poorly optimized for its target, while
also being limited in terms of scope. This may prevent the inspections from fulfilling
their purpose of addressing high risks to the workers’ health, environment and safety.
Checklists used for other applications such as aviation and health care may have similar
problems where poorly optimized checklists can suffer from compatibility issues with
users or contexts [3, 4]. This can have a negative effect on the users’ motivation to use
the checklists.
Contributions.We introduce the Checklist Construction Problem (CCP): Suppose
that we have 𝑁 unique questions with yes/no answers, where the answer to each
question has an unknown probability distribution. Given the questions, construct a
checklist for a target entity by selecting𝐾 unique questions thatmaximize the likelihood
for obtaining no-answers to every selected question.

This problem could be applied to any domain where checklist optimization is an
issue, such as healthcare or aviation. In these domains, the 𝑁 unique questions may be
designed to accomplish a specific task such as surgery or flight check and the target
entity may be a patient or an aircraft. Any question with a likely no-answer should
then be on the surgery or flight checklist so that yes-answers are obtained instead.
However, this work focuses on solving CCP for labour inspections and introduces a
new data set as a starting point to do so.

To solve CCP, we introduce BCBR, which is a framework based on Bayesian infer-
ence (BI) and case-based reasoning (CBR) for constructing new checklists optimized
for a target organisation (entity). BCBR uses CBR to retrieve questions from checklists
which have been used in past cases to survey organisations similar to the target organi-
sation. BI is used to construct features in past cases which ensures that the retrieved
questions have high probabilities for non-compliance. The approach starts with a data
set of cases containing organisations and questions from previously used checklists.
New features are then constructed by means of BI and added to each row in the data
set to create augmented cases. The augmented cases are added to a case base which
is queried using similarity based retrieval. The query contains a target probability

2https://sdgs.un.org/

https://sdgs.un.org/
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and organisation, which is used to retrieve cases containing the questions for a new
checklist (solution).

From a technical perspective, the use of augmented cases is a key novelty of BCBR
that can be viewed as a data-driven approach that uses feature construction to embed
solution knowledge in cases for case retrieval in CBR [5–7]. The use of BI to estimate
probability ensures transparency because the estimates are made by counting cases
in the data set. The use of similarity based retrieval also promotes trustworthiness
and ensures justification of the BI estimates because they are related to past cases.
Trustworthiness is important to ensure user compliance with the checklists. The core
contributions of this paper are:

• We introduce a formal definition of the Checklist Construction Problem and a
new data set of previously used questions (control points) collected fromNLIA’s
labour inspections between 2012 and 2019.

• We present the details for BCBR, which is designed for constructing checklists
based on CBR and Bayesian inference.

• We establish an approach for evaluating the checklists constructed by BCBR.
The framework is then empirically compared to baselines. The results show
that BCBR constructs more efficient checklists than the baselines.

A.2 RELATED WORK

Hybrid Frameworks Based on CBR and BI. There are multiple examples of frame-
works with combinations of CBR and BI to address uncertainty for applications where
some prior belief or information is available. Such frameworks also provide explana-
tions, where CBR has been used to achieve explanation goals [8] (such as transparency
and justification) or generate explanations [9]. Nikpour et al. [7] use Bayesian posterior
distributions to modify or add features to input case descriptions to increase accuracy
of similarity assessments in case retrieval. They also use the same approach to provide
explanations for case failures in different domains [10]. This approach is similar to
BCBR, but BCBR constructs new features which are also added to the case base-cases
rather than modifying input cases. Kenny et al. [11] also use a combination of BI
and CBR to exclude outlier cases from case retrieval and to provide explanations by
examples. The purpose of the framework is to predict grass growth for sustainable
dairy farming. Gogineni et al. [12] combines CBR and BI to retrieve and down-select
explanatory cases for underwater mine clearance.
Similarity Based Retrieval for Trustworthiness. Lee et al [13] replaced the output
layer of a neural network with 𝑘-nearest neighbour (kNN) to generate voted pre-
dictions and find the nearest neighbour cases to explain the predictions. This also
guarantees that every prediction can be justified by a relevant past explanatory case.
The justification via explanatory cases increases the reliability of the neural network
predictions and promotes trustworthiness. BCBR is also based on the same principle
where BI predictions are justified by being embedded in past cases as features.
Trustworthy Case-Based Recommender Systems. BCBR aims to select a subset
of all possible questions for a new checklist. Similarily, in recommender systems, a
user is recommended a subset of items from the space of all possible items. Such
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systems can be divided into two classes: collaborative and case-based (content or
user-based) recommender systems [14], where the latter approach could relate to our
work. The case-based approach has been used to predict running-paces for different
stages in ultra races, based on cases from similar runners in past cases [15]. CBR has
also been used to provide explanatory cases for black-box recommender systems to
achieve justification [16, 17]. Explanations for such systems can also be created through
relations between features (concepts) [18]. However, the quality of explanations for
black-box systems in terms of transparency, interpretability and trustworthiness can
still be questionable [19]. Some authors also suggest to avoid explainable black box
models in cases where they are not needed [20] and to use transparent, interpretable
models for high-stakes decision making [19].

A.3 CASE AND PROBLEM DEFINITION

Name Description Type
𝑥𝑖𝑠𝑐 Industry subgroup code Ordinal
𝑥𝑖𝑔𝑐 Industry group code Ordinal
𝑥𝑖𝑐 Industry code Ordinal
𝑥𝑖𝑎𝑐 Industry area code Ordinal
𝑥𝑖𝑚𝑎𝑐 Industry main area code Nominal
𝑥𝑚𝑛𝑟 Municipality number Ordinal
𝑥 𝑓 𝑦𝑙 Fylke (county) Nominal
𝑒 Question Nominal
𝑙 Non-compliance Binary

TABLE A.1. Description of a case in the data set

In this section we introduce the
formal case and problem defini-
tion used for the rest of the paper.
Data Set and Cases. A data
set D for variables Z is a finite
length tuple where a case d𝑗 ∈
D is an instantiation of Z [21].
A case is a tuple d = (𝑒, x, 𝑙)
where 𝑒 denotes a question from
a checklist, x is an entity and 𝑙 ∈
{0, 1} denotes the answer of the
question. A case in the data set is
a past experience where a ques-
tion 𝑒 has been applied to x to
obtain the answer 𝑙 . A case description is shown in Table A.1.

FIGURE A.2. Industry and location hier-
archies of an organisation

Entity. Every case 𝑑 in the data set contains
an entity description in the form of an organ-
isation x, defined by its location and industry.
The features are organised according to Fig-
ure A.2. An organisation can be implicitly
defined as x = (𝑥𝑚𝑛𝑟 , 𝑥𝑖𝑠𝑐 ), since the other
features of x are located higher in the hierar-
chies.
Question. Each case in the data set contains
a question (control point) 𝑒 with a yes/no an-
swer. The question is used to survey the entity
x in the case. A specific question can appear
in multiple checklists.
Checklist. A checklist y is defined as a set of yes/no questions constituted by cases
in the data set, so that y = (𝑒1 ∈ d1, 𝑒2 ∈ d2 ...𝑒𝑛𝑑 ∈ d𝑛𝑑 ). A question can only appear
once per checklist such that 𝑒𝑖 ≠ 𝑒 𝑗 for every 𝑒𝑖 ∧ 𝑒 𝑗 ∈ y.
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Answer. The label 𝑙 of a case is the observed answer from applying the question 𝑒 to
the entity x. The answer 𝑙 = 1 means that non-compliance has been found, while 𝑙 = 0
means that x is compliant.

FIGURE A.3. An overview of CCP.

The Checklist Construction Problem. The
problem is shown on Figure A.3. Let there be
a set of 𝑁 unique questions and a new target
entity x𝑐𝑛𝑑 . Each question has an unobserved
answer 𝑙 aboutx𝑐𝑛𝑑 that belongs to an unknown
distribution. Given the 𝑁 questions, a model
M first needs to correctly estimate the prob-
ability for observing 𝑙 = 1 for each question.
M then needs to select 𝐾 unique questions
(𝑒1, 𝑒2, ..., 𝑒𝐾 ), with the highest estimated prob-
ability, for a candidate checklist y𝑐𝑛𝑑 . The goal
is to observe as many 𝑙 = 1 answers as possible when applying y𝑐𝑛𝑑 to x𝑐𝑛𝑑 .

A.4 BCBR FRAMEWORK

An overview of the BCBR framework is shown in Figure A.4. The motivation for the
framework is to solve the CCP problem while also ensuring that every question 𝑒𝑖 ∈
y𝑐𝑛𝑑 can be justified by a relevant past experience (see Section A.5.3). The framework
can be described by the following three steps: (1) A naive Bayesian inference method is
used to generate two probability estimates (𝜃𝑏𝑒𝑥𝑖𝑠𝑐 and 𝜃

𝑏𝑒
𝑥𝑚𝑛𝑟

) for every case d𝑗 ∈ D . The
estimates are generated by counting the cases in the data set with the same question
and entity description as d𝑗 . This is done because many of the cases in the data set
contains identical questions and/or identical target entities. Using Bayesian inference
also ensures transparency for the estimates. (2) A case base CB of augmented CBR
cases c𝑗 is created. Each case c𝑗 ∈ CB is created by adding both estimates as features
to each d𝑗 ∈ D . (3) A query q is defined, which contains a target entity x𝑐𝑛𝑑 and target
values for the probability estimates. The query is used to retrieve a selection of𝐾 cases
from CB. Each case contains a question 𝑒𝑖 for the candidate checklist y𝑐𝑛𝑑 .

FIGURE A.4. An overview of the BCBR framework. The creation of augmented cases and
the case base happens offline. The case base is used for the construction of
checklists in the online-part.
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A.4.1 Bayesian Inference

We use empirical distributions of the data setD to estimate the probability for observ-
ing 𝑙 = 1, to achieve transparency for the BCBR framework. When prior knowledge or
belief about 𝑙 is available, BI can be used instead of the standard maximum likelihood
method. An advantage with BI is that it (to some extent) can be used to address inaccu-
rate empirical estimates caused low or zero case counts ("Zero count problem") [21].
The problem may have a negative impact on the quality of the 𝐾 answers selected by
BCBR. To further deal with this problem we use Naive Bayesian inference (NBI) which
generates two probability estimates instead of just one. A derivation for this follows
below.
Estimating the Empirical Probability for Non-compliance (l). By using the defi-
nitions from Section A.3, the empirical distribution of the data setD can be defined
as:

𝜃𝐷 (𝛼) =
D#(𝛼)
N (A.1)

whereD#(𝛼) is the number of cases in the data setD which satisfy the event 𝛼 andN
is the number of cases inD [21]. We denote the event 𝐿 = 1 as observing the outcome
𝑙 = 1 and 𝐿 = 0 for 𝑙 = 0. From the expression above, the probability for 𝐿 = 1 can
then be calculated given x and 𝑒 :

𝜃𝐷 (𝐿 = 1|𝛼) = 𝜃𝐷 (𝐿 = 1 ∧ 𝛼)
𝜃𝐷 (𝛼)

=
D#(𝐿 = 1 ∧ X = x ∧ 𝐸 = 𝑒)
D#(X = x ∧ 𝐸 = 𝑒) (A.2)

where 𝛼 = (X = x) ∧ (𝐸 = 𝑒). That is, the event where the entity description is given
as x and the question is given as 𝑒 .
Naive Bayesian Inference for Estimating Empirical Probability (l). The posterior
probability for an event𝐿 = 1|𝛼 can be expressed as themean of a Beta distribution [21]:

𝜃𝑏𝑒 (𝐿 = 1|𝛼) =
D#(𝐿 = 1 ∧ 𝛼) +𝜓𝐿=1 |𝑎

D#(𝐿 = 1 ∧ 𝛼) +𝜓𝐿=1 |𝑎 + D#(𝐿 = 0 ∧ 𝛼) +𝜓𝐿=0 |𝛼
(A.3)

where𝜓 is a set of prior belief parameters and where (D#(𝐿 = 1 ∧ 𝛼) +𝜓𝐿=1 |𝑎) and
(D#(𝐿 = 0 ∧ 𝛼) +𝜓𝐿=0 |𝑎) are the parameters for a Beta distribution.

From the components 𝑥𝑖𝑠𝑐 and 𝑥𝑚𝑛𝑟 of x, two NBI probability estimates 𝜃𝑏𝑒𝑥𝑖𝑠𝑐
and 𝜃𝑏𝑒𝑥𝑚𝑛𝑟

can be obtained from Equation A.3 by substituting 𝛼 : 𝜃𝑏𝑒𝑥𝑖𝑠𝑐 = 𝜃𝑏𝑒 (𝐿 =

1| (𝑋𝑖𝑠𝑐 = 𝑥𝑖𝑠𝑐 ∧ 𝐸 = 𝑒)) and 𝜃𝑏𝑒𝑥𝑚𝑛𝑟
= 𝜃𝑏𝑒 (𝐿 = 1| (𝑋𝑚𝑛𝑟 = 𝑥𝑚𝑛𝑟 ∧ 𝐸 = 𝑒)). Using two

probability estimates instead of one is an effective measure against low case counts
becauseD#(𝑋𝑖𝑠𝑐 = 𝑥𝑖𝑠𝑐 ∧𝐸 = 𝑒) ≥ D#(X = x∧𝐸 = 𝑒) andD#(𝑋𝑚𝑛𝑟 = 𝑥𝑚𝑛𝑟 ∧𝐸 =

𝑒) ≥ D#(X = x ∧ 𝐸 = 𝑒). The approach is "naive" since it assumes that 𝑥𝑚𝑛𝑟 and 𝑥𝑖𝑠𝑐
are independent given 𝑙 and 𝑒 .

A.4.2 Case Base Creation and CBR Engine

This section defines the details for the augmented CBR cases, case base and similarity
based retrieval from Figure A.4.
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Algorithm 1 Creation of a case base CB with cases c𝑗
Input : D;
Output : CB ← ();
foreach d𝑗 ∈ D do

//(𝑥𝑖𝑠𝑐,𝑗 , 𝑥𝑚𝑛𝑟,𝑗 , 𝑒 𝑗 ) ∈ d𝑗
𝜃𝑏𝑒𝑥𝑖𝑠𝑐 ← 𝜃𝑏𝑒 (𝐿 = 1| (𝑥𝑖𝑠𝑐,𝑗 , 𝑒 𝑗 ));
𝜃𝑏𝑒𝑥𝑚𝑛𝑟

← 𝜃𝑏𝑒 (𝐿 = 1| (𝑥𝑚𝑛𝑟,𝑗 , 𝑒 𝑗 ));
𝜅𝑥𝑚𝑛𝑟

← D#(𝐿 = 1 ∧ 𝑋𝑚𝑛𝑟 = 𝑥𝑚𝑛𝑟,𝑗 ∧ 𝐸 = 𝑒 𝑗 );
𝜅𝑥𝑖𝑠𝑐 ← D#(𝐿 = 1 ∧ 𝑋𝑖𝑠𝑐 = 𝑥𝑖𝑠𝑐, 𝑗 ∧ 𝐸 = 𝑒 𝑗 );
c𝑗 ← 𝐽𝑜𝑖𝑛(d𝑗 , 𝜃𝑏𝑒𝑥𝑚𝑛𝑟

,𝜃𝑏𝑒𝑥𝑖𝑠𝑐 , 𝜅𝑥𝑚𝑛𝑟
, 𝜅𝑥𝑖𝑠𝑐 );

CB ← 𝐽𝑜𝑖𝑛(CB, c𝑗 );
return CB;

Augmented CBR Case and Case Base. Algorithm 1 shows the creation of a case base
CB with augmented cases c. The algorithm includes two additional features: 𝜅𝑥𝑚𝑛𝑟

and 𝜅𝑥𝑖𝑠𝑐 . The features are included to adjust for the case counts of the probability
estimates when retrieving cases. The values for the𝜃𝑏𝑒 and the𝜅-features are estimated
fromD , given 𝑥𝑚𝑛𝑟,𝑗 , 𝑥𝑖𝑠𝑐, 𝑗 and 𝑒 𝑗 from d𝑗 ∈ D . The features are added to d𝑗 to form
a case c𝑗 for CB. An example showing the specific features of the augmented cases
can be found in Section A.4.3.
Case Retrieval and Similarity Function. To retrieve questions 𝑒𝑖 for the candidate
checklist y𝑐𝑛𝑑 , a query case q and similarity function is used. The query consists of the
target entity x𝑐𝑛𝑑 and the desired values for both the probability estimates and the case
count features. A similarity function assigns a score 𝑆𝑖𝑚(·, ·) ∈ [0, 1] to every pair
(q, c𝑗 ∈ CB). A set of unique 𝑒𝑖 for y𝑐𝑛𝑑 is then retrieved from the 𝐾 cases with the
highest similarity score. The similarity function is defined according to the equation
below:

𝑆𝑖𝑚(q, c𝑗 ) =
1∑
𝑤𝑖

∑︁
𝑖

𝑤𝑖 · 𝑠𝑖𝑚𝑖 (q, c𝑗 ). (A.4)

Where𝑤𝑖 is a weight, 𝑠𝑖𝑚𝑖 is a local similarity function and 𝑖 denotes a feature common
to the query and the case. Each local similarity function in Equation (A.4), yields a score
[0, 1] for each feature (𝑖) according to the similarity 𝑠𝑖𝑚𝑖 (q, c𝑗 ) between the cases q
and c𝑗 . The local similarity functions and the weights are defined by a domain expert
for the purpose of this work (see Section A.5.1).

A.4.3 Example: NBI Estimates, Case Retrieval and CBR Case

NBI Estimates. Let 𝑥𝑖𝑠𝑐 = 22.230, 𝑥𝑚𝑛𝑟 = 1507 be features of an entity description
x and 𝑒 =“Did the employer make sure to equip all employees who carry out work
at the construction site with a HSE card?” be a question of a case d ∈ D. The prior
parameters are𝜓𝐿=1 |𝛼 = 1 and𝜓𝐿=0 |𝛼 = 5 because 𝑙 = 1 is observed in approximately
1 of 6 cases. Given this information, 𝜃𝑏𝑒𝑥𝑖𝑠𝑐 is estimated by counting cases d in data setD
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Feature w Query 1 Case 1 Query 2 Case 2
𝑥𝑖𝑠𝑐 1 22.230 22.230 22.230 22.230
𝑥𝑖𝑔𝑐 2 22.23 22.23 22.23 22.23
𝑥𝑖𝑐 2 22.2 22.2 22.2 22.2
𝑥𝑖𝑎𝑐 2 22 22 22 22
𝑥𝑖𝑚𝑎𝑐 2 C C C C
𝑥𝑚𝑛𝑟 2 1507 1507 1507 1507
𝑥 𝑓 𝑦𝑙 2 MoM MoM MoM MoM
𝑙 0 - 0 - 0
𝑒 0 - 𝑒1 - 𝑒2
𝜃𝑏𝑒𝑥𝑖𝑠𝑐 9 100% 22% - 7%
𝜃𝑏𝑒𝑥𝑚𝑛𝑟

4 100% 32% - 7%
𝜅𝑥𝑖𝑠𝑐 1 70 1 - 0
𝜅𝑥𝑚𝑛𝑟

1 70 89 - 30
𝑆𝑖𝑚 - 0.546 - 0.448

TABLE A.2. Description of case features, similarity weights, query and retrieved case for the
example.

which satisfy𝑋𝑖𝑠𝑐 = 𝑥𝑖𝑠𝑐 and 𝐸 = 𝑒 . Applying 𝛼 = (𝑋𝑖𝑠𝑐 = 𝑥𝑖𝑠𝑐 ∧ 𝐸 = 𝑒) to Equation
A.3 yields: 𝜃𝑏𝑒𝑥𝑖𝑠𝑐 =

1+1
1+2+6 ≈ 22%.

This estimate is more accurate than the empirical probability estimate, which is
𝜃𝑥𝑖𝑠𝑐 = 1

1+2 ≈ 33% (Eq. A.2). The difference can be explained by low case count, which
affect the quality of both the Bayesian and empirical estimates.

The same procedure is used to calculate: 𝜃𝑏𝑒𝑥𝑚𝑛𝑟
= 89+1

89+186+6 ≈ 32%. In this case
the Bayesian estimate is approximately the same as the empirical probability estimate,
since the case count is high. The estimates are used to create an augmented CBR case c.
Case Retrieval and Augmented CBR Case. For this example we assume that a case
base of CBR cases has been created and that 𝐾 = 1, for the sake of brevity. The case
retrieval starts by defining a query case (Query 1), shown in Table A.2. 𝜃𝑏𝑒𝑥𝑖𝑠𝑐 and 𝜃

𝑏𝑒
𝑥𝑚𝑛𝑟

are set to 100%, which is the target value for the retrieved cases. Both 𝜅𝑥𝑖𝑠𝑐 and 𝜅𝑥𝑚𝑛𝑟

are set to 70 so that case counts of 70 or higher yield full similarity scores, according
to Figure A.5.

FIGURE A.5. Local similarity functions.

After applying the simi-
larity function to every pair
(q, c ∈ CB), the top 𝐾 = 1
case with highest similarity
(Case 1) is retrieved for the
candidate checklist y𝑐𝑛𝑑 .

For comparison, we also
define Query 2 in Table A.2
where 𝜃𝑏𝑒𝑥𝑖𝑠𝑐 , 𝜃

𝑏𝑒
𝑥𝑚𝑛𝑟

, 𝜅𝑥𝑖𝑠𝑐 and
𝜅𝑥𝑚𝑛𝑟

are undefined. The
𝐾 = 1 case returned from
CB is Case 2. Case 2 fully
matches Query 2 in terms of
x, but𝜃𝑏𝑒𝑥𝑖𝑠𝑐 and𝜃

𝑏𝑒
𝑥𝑚𝑛𝑟

suggest
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that it is unlikely to observe 𝑙 = 1 when 𝑒2 is applied to x. This is expected because we
removed the part of the query that maximizes the probability for observing 𝑙 = 1.

A.5 EXPERIMENTS

In this section three experiments are presented. In the first experiment a simple label
classification problem is introduced to establish a starting point for comparing ML
methods as baselines for the labour inspection CCP. The second experiment aims
to measure the justification of checklists constructed by BCBR and the two best-
performing baselines from the first experiment. The third experiment aims to measure
the performance of BCBR against the baselines from the second experiment.

A.5.1 Experimental Setup

Measure of Justification. We introduce Equation A.5 to measure the justification
(𝐽 ∈ [0, 100%]) of a checklist y for a given entity x, according to the proportion of
questions 𝑒𝑖 ∈ y which also exist in past cases (𝑒𝑖 , x, ·) ∈ D.

𝐽 (y, x,D) = |{𝑒𝑖 ∈ y : (𝑒𝑖 , x, ·) ∈ D}|
|{𝑒𝑖 ∈ y}|

(A.5)

The expression can be seen as an adaptation of Massie alignment score [22] that mea-
sures the percentage of questions 𝑒𝑖 ∈ y with full alignment to the nearest neighbour
case inD.
BCBR Configuration. For the experiments, BCBR uses the same configuration as in
Section A.4.3. The only difference is that 𝐾 = 15 is used instead of 𝐾 = 1, so that the
constructed checklists consist of 15 questions.

The weights and local similarity functions are set based on domain knowledge
and are shown in Table A.2 and Figure A.5 respectively. The weights are set according
to the importance of each feature, while the similarity functions are defined to model
the similarity according to the hierarchical relationship between the ordinal features
of the entity x (see Section A.3). For the other features not shown in Figure A.5, the
default option in the myCBR tool is used to define the local similarity functions.
Baselines for the Experiments. The baseline methods used for the experiments
are: CBR (CBR-BL), Logistic Regression(LR), Decision tree (DT) and Naive Bayes
classifier (NBC), Conditional probability estimates (CP), Bayesian inference (BI), Naive
conditional probability (NCP) and NBI.

CBR-BL generates predictions from the label of the closest neighbour case in
the training data. CP generates predictions for any pair (𝑒, x) according to Equation
A.2. BI uses Equation A.3 with 𝜓𝐿=1 |𝛼 = 1, 𝜓𝐿=0 |𝛼 = 5 and 𝛼 = (X = x ∧ 𝐸 = 𝑒).
NCP is based on Equation A.2 and is defined as: 𝜃 (𝐿 = 1|𝑒, x) = 𝜃𝑥𝑖𝑠𝑐 +𝜃𝑥𝑚𝑛𝑟

2 . The
baseline NBI estimates are calculated using𝜓𝐿=1 |𝛼 = 1 and𝜓𝐿=0 |𝛼 = 5 according to:
𝜃 (𝐿 = 1|𝑒, x) = 𝜃𝑏𝑒𝑥𝑖𝑠𝑐

+𝜃𝑏𝑒𝑥𝑚𝑛𝑟

2 .
Environment. A Dell XPS 9570 with Intel i9 8950hk, 32GB RAM andWindows 10
were used for the experiments. Every experiment is conducted in a Python environment
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Method Acc Prec Rec Avg Time
CBR-BL 0.677 0.178 0.246 0.367 60238
Random 0.500 0.161 0.500 0.387 -
CP 0.680 0.210 0.357 0.416 3.84
BI 0.760 0.270 0.288 0.439 3.89
DT 0.644 0.233 0.529 0.469 122.6
NCP 0.592 0.250 0.761 0.534 9.0
NBC 0.588 0.251 0.778 0.539 67.33
LR 0.591 0.252 0.782 0.542 68.4
NBI 0.605 0.261 0.790 0.552 10.4

TABLE A.3. Results from the experiment. Time is measured in seconds per validation fold.

using Jupyter Notebook. NBI for BCBR, NBI, BI, CP and NCP are implemented as
MSSQL17 queries via PYODBC. The similarity based retrieval for BCBR and CBR-
BL are implemented via MyCBR [23]. The rest of the methods are implemented via
Scikit-learn 0.24.
Data Set. For the experiments we introduce a new data set of questions used in
previous inspections conducted by NLIA.3 The data set is denoted asD for the rest
of this section and consists of 1,111,502 entries from inspections conducted between
01/01/2012 and 01/06/2019. Embedded in these entries are 𝑁 = 1, 967 unique
questions from checklists used in 59,988 inspections. Each entry (case) inD is also
associated with an 𝑖𝑑4 which maps to a checklist y (past solution) used to survey the
organisation x in one of the 59,988 inspections withinD.

A.5.2 Experiment 1: Answer Classification Performance (Baselines)

The goal of this experiment is to compare ML methods and select two of the best as
baselines for the labour inspection CCP. Because CCP is a complex problem, we here
study a new, simple classification problem as a stepping stone.
The Answer Classification Problem. Let each d𝑗 ∈ D be a case with a two-class
ground truth label 𝑙 𝑗 . A modelM is trained on the cases in D. For any new case
d = (𝑒, x, 𝑙) where 𝑙 = 0 (compliance) or 𝑙 = 1 (non-compliance), the problem goal is
forM to correctly classify the value of 𝑙 based on (𝑒, x).
Method. Each model is validated on the data set D, using 8-fold cross validation
with the same partitioning of data for every model. Each modelM outputs a class
prediction score for every (𝑒, x). Thus, the classification threshold is set to the median
ofM ’s scores for each validation fold. The results are measured in terms of accuracy,
precision and recall which are calculated for per validation fold: 𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 ,
𝑃𝑟𝑒𝑐 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 and 𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

Results and Discussion. The results are shown in Table A.3 where the baselines
are sorted according to𝐴𝑣𝑔, which is the average score of the preceding columns. In

3The data set is available at https://dx.doi.org/10.21227/m1t7-hg51
4The 𝑖𝑑 is a "key" for identifying a past checklist/organisation pair (value) inD.

https://dx.doi.org/10.21227/m1t7-hg51
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terms of the𝐴𝑣𝑔-score NBI performs better then standard ML methods such as LR,
DT and NBC. NBI also has the best recall and an average runtime of 10.4 seconds per
validation fold, which is significantly less than NBC, DT, LR and CBR-BL. BI has the
best performance in terms of accuracy and precision, but it also has poor recall which
results in a low average score. The worst performing method was CBR-BL where the
size of the training data was reduced to 100,000 cases due to long running time.

The results indicate that NBI yields the best average performance, whichmotivates
us to combine NBI with CBR. LR, NBC and NCP also perform well, but we select NBI
and LR as baselines for the next experiments. A limitation for this experiment is that it
cannot be used to evaluate BCBR, as BCBR is designed for CCP and not ACP.

A.5.3 Experiment 2: Trustworthiness of Constructed Checklists

The goal of this experiment is to measure justification of constructed checklists y𝑐𝑛𝑑
for the CCP. This is done by measuring the average proportion of questions 𝑒𝑖 ∈ y𝑐𝑛𝑑
which are justified by past cases. The experiment is based on Lee et al.’s use of past
cases to justify predictions and promote trust [13]. The experiment is conducted on
checklists constructed by BCBR and two of the baselines from Section A.5.2, NBI and
LR.
Method. Each modelM is trained on the data setD containing 1,111,502 entries.
An evaluation data setD𝑉 of 59,988 tuples (x𝑐𝑛𝑑 , y) of past entity/checklist pairs is
created using every unique 𝑖𝑑 fromD . For each x𝑐𝑛𝑑 ∈ D𝑉 ,M constructs a checklist
y𝑐𝑛𝑑 for x𝑐𝑛𝑑 as following depending on the model in question. ForM = 𝑁𝐵𝐼 or
M = 𝐿𝑅: M generates a prediction score for every unique 𝑒 𝑗 ∈ D. The 𝐾 = 15
questions with the highest prediction scores are selected as the candidate checklist
y𝑐𝑛𝑑 for x𝑐𝑛𝑑 . ForM = 𝐵𝐶𝐵𝑅: a query containing x𝑐𝑛𝑑 is defined to retrieve past
cases, containing 𝐾 = 15 unique questions for y𝑐𝑛𝑑 .

Each y𝑐𝑛𝑑 constructed by one of the modelsM then forms an evaluation pair
(y𝑐𝑛𝑑 , x𝑐𝑛𝑑 ) with each corresponding x𝑐𝑛𝑑 from D𝑉 . Based on Equation A.5, the
average justification (𝐽M ) for every pair (y𝑐𝑛𝑑 , x𝑐𝑛𝑑 ) givenM is:

𝐽M (D,D𝑉 ) =
∑
(y𝑐𝑛𝑑 ,x𝑐𝑛𝑑 ) 𝐽 (y𝑐𝑛𝑑 , x𝑐𝑛𝑑 ,D)

|D𝑉 |
(A.6)

𝐽M measures the average percentage of questions 𝑒𝑖 ∈ y𝑐𝑛𝑑 where at least one cor-
responding explanatory case (𝑒𝑖 , x𝑐𝑛𝑑 , ·) exists inD. The purpose of the 𝐽M score is
to enable a fair comparison between the three models. A higher relative score means
higher justification of the checklists constructed byM.
Results and Discussion. The results are: 𝐽𝑁𝐵𝐼 = 0.6%, 𝐽𝐿𝑅 = 4.8% and 𝐽𝐵𝐶𝐵𝑅 = 64%.
This suggests that both LR and NBI perform poorly in terms of justification of their
constructed checklists. Qualitative assessments of some of the checklists also reveal
that many of their questions (𝑒𝑖 ∈ y𝑐𝑛𝑑 ) are unrelated to and incompatible with the
target entities. Because of the incompatibility issues and that less than 5% of the
items on the checklists are justified, LR and NBI are not trustworthy. BCBR scored
64% which is significantly higher. Incompatible questions also seam to appear less
frequently in BCBR’s checklists.
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A.5.4 Experiment 3: Evaluation of Constructed Checklists

The goal of this experiment is to evaluate the performance of the BCBR framework
against LR, NBI and the original past checklists from the data set. Since BCBR uses
similarity based retrieval, NBI and LR serve as non-similarity based baselines to com-
pare with. Due to the results in Section A.5.3, a filter is applied to both LR and NBI
to ensure that every checklist can be justified by past cases. This is necessary for the
evaluation procedure, as it assumes that the questions on the checklists can be justified
by past similar cases.
Method. The evaluation approach is done on the data setD which contains 1,111,502
entries. The approach can be summarized as following: The data setD is partitioned
into a training fold (D𝑇 ) and validation fold (DCB ), where the training fold is used to
calculate probability estimates for the validation cases. The validation fold is used as
the case base and for performance evaluation. A modelM is trained onD𝑇 and the
evaluation is done on every checklist y𝑐𝑛𝑑 constructed byM.

A problem with the validation is that since every y𝑐𝑛𝑑 is a new checklist, the
ground truths 𝑙 needed to evaluate y𝑐𝑛𝑑 can be missing. A common solution to this
problem is to collect the ground truth empirically [24], but this is not an option for
us. To get a meaningful validation result, the performance statistics for the evaluation
need to be estimated. To accomplish this, the following assumption is made: Let
d𝑐𝑛𝑑 = (−, x𝑐𝑛𝑑 ,−) be a case without question component or observed ground truth
answer and d = (𝑒, x, 𝑙) be any validation case with ground truth. If x𝑐𝑛𝑑 and x are
content-wise equal or similar, we assume that the unobserved ground truth answer
𝑙𝑐𝑛𝑑 from applying 𝑒 to x𝑐𝑛𝑑 is correctly estimated from an empirical distribution of 𝑙 ,
conditioned on x, 𝑒 and the validation data fold. This is based on the assumption that
similar problems have similar solutions [5].

Based on the assumption, we introduce the following procedure to estimate accu-
racy (Acc), precision (Prec)5 and recall (Rec) for every modelM.

1. Let D𝑇 be the training fold and DCB be both the validation fold and case
base(for BCBR). LetD𝑉 be a set of past entity/checklist pairs (x𝑐𝑛𝑑 , y) from
DCB , created using every unique 𝑖𝑑 inDCB . A modelM is trained onD𝑇 .

2. For every x𝑐𝑛𝑑 ∈ D𝑉 ,M selects 𝐾 unique questions (𝑒𝑖 ) for a checklist y𝑐𝑛𝑑 to
form a validation pair (x𝑐𝑛𝑑 , y𝑐𝑛𝑑 ). The questions are selected fromDCB .

3. For each pair (x𝑐𝑛𝑑 , y𝑐𝑛𝑑 ) the number of true positives (𝑇𝑃 ), false positives (𝐹𝑃 ),
true negatives (𝑇𝑁 ) and false negatives (𝐹𝑁 ) are estimated by evaluating each
𝑒𝑖 ∈ y𝑐𝑛𝑑 (predicted positives) and 𝑒 𝑗 ∉ y𝑐𝑛𝑑 (predicted negatives).

4. For every question 𝑒𝑖 ∈ y𝑐𝑛𝑑 , both𝑇𝑃𝑒𝑖 and 𝐹𝑃𝑒𝑖 are estimated using the fol-
lowing function: 𝑓 (𝑙, x0, 𝑒𝑖 ) = DCB#(𝐿=𝑙∧X=x0∧𝐸=𝑒𝑖 )

DCB#(X=x0∧𝐸=𝑒𝑖 ) , so that𝑇𝑃𝑒𝑖 = 𝑓 (1, x0, 𝑒𝑖 )
and 𝐹𝑃𝑒𝑖 = 𝑓 (0, x0, 𝑒𝑖 ). If DCB#(X = x𝑐𝑛𝑑 ∧ 𝐸 = 𝑒𝑖 ) > 0, then x0 = x𝑐𝑛𝑑
is applied to 𝑓 . If DCB#(X = x𝑐𝑛𝑑 ∧ 𝐸 = 𝑒𝑖 ) = 0, then x0 = x𝑖 from the
case (𝑒𝑖 , x𝑖 , 𝑙𝑖 ), retrieved by BCBR6 for y𝑐𝑛𝑑 , is used because there is no data to

5An additional statistic Prec(gt) is included, which is precision calculated (step 4-8) using only
𝑒𝑖 ∈ {y𝑐𝑛𝑑 ∩ y} from cases containing the original ground truth labels.

6The conditionDCB#(X = x𝑐𝑛𝑑 ∧ 𝐸 = 𝑒𝑖 ) = 0 only occurs if BCBR is used.
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Method Acc Prec (gt) Prec Rec Avg
Org. CL 0.337 0.170 0.181 0.622 0.328
LR 0.484 0.226 0.267 0.694 0.418
NBI 0.486 0.229 0.270 0.698 0.421
BCBR 0.574 0.259 0.343 0.718 0.474

TABLE A.4. 8 fold cross validation results of the constructed vs. the original checklists (Org.
CL).

evaluate (𝑒𝑖 , x𝑐𝑛𝑑 ). Each𝑇𝑃𝑒𝑖 and 𝐹𝑃𝑒𝑖 is assigned a value 𝑣 ∈ [0, 1] via 𝑓 so
that𝑇𝑃𝑒𝑖 = 1 − 𝐹𝑃𝑒𝑖 .

5. For every unique question 𝑒 𝑗 ∉ y𝑐𝑛𝑑 inDCB , both𝑇𝑁𝑒 𝑗 and 𝐹𝑁𝑒 𝑗 are estimated
using the function: 𝑔(𝑙, 𝑒 𝑗 ∉ y𝑐𝑛𝑑 ) = DCB#(𝐿=𝑙∧X=x𝑐𝑛𝑑∧𝐸=𝑒 𝑗 )

DCB#(X=x𝑐𝑛𝑑∧𝐸=𝑒 𝑗 )
. The function is

used to obtain 𝑇𝑁𝑒 𝑗 = 𝑔(0, 𝑒 𝑗 ) and 𝐹𝑁𝑒 𝑗 = 𝑔(1, 𝑒 𝑗 ), so that each 𝑇𝑁𝑒 𝑗 and
𝐹𝑁𝑒 𝑗 receives a value of 𝑣 ∈ [0, 1] and that𝑇𝑁𝑒 𝑗 = 1 − 𝐹𝑁𝑒 𝑗 .

6. 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 and𝑇𝑁 for each candidate checklist y𝑐𝑛𝑑 ∈ (x𝑐𝑛𝑑 , y𝑐𝑛𝑑 ) are cal-
culated as following: 𝑇𝑃 =

∑
𝑒𝑖
𝑇𝑃𝑒𝑖 , 𝐹𝑃 =

∑
𝑒𝑖
𝐹𝑃𝑒𝑖 , 𝑇𝑁 =

∑
𝑒 𝑗
𝑇𝑁𝑒 𝑗 and

𝐹𝑁 =
∑
𝑒 𝑗
𝐹𝑁𝑒 𝑗 for every unique 𝑒𝑖 ∈ y𝑐𝑛𝑑 and 𝑒 𝑗 ∉ y𝑐𝑛𝑑 fromDCB .

7. Statistics are then calculated for eachy𝑐𝑛𝑑 :𝐴𝑐𝑐y𝑐𝑛𝑑 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 ,𝑃𝑟𝑒𝑐y𝑐𝑛𝑑 =

𝑇𝑃
𝑇𝑃+𝐹𝑃 and 𝑅𝑒𝑐y𝑐𝑛𝑑 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Repeat from Step 2 until every pair (x𝑐𝑛𝑑 , y𝑐𝑛𝑑 )
is evaluated.

8. The average Acc, Prec and Rec of every checklist y𝑐𝑛𝑑 constructed byM is:
𝐴𝑐𝑐 =

∑
y𝑐𝑛𝑑 𝐴𝑐𝑐y𝑐𝑛𝑑

|D𝑉 | , 𝑃𝑟𝑒𝑐 =
∑

y𝑐𝑛𝑑 𝑃𝑟𝑒𝑐y𝑐𝑛𝑑

|D𝑉 | and 𝑅𝑒𝑐 =
∑

y𝑐𝑛𝑑 𝑅𝑒𝑐y𝑐𝑛𝑑

|D𝑉 | .

The procedure is used to evaluate BCBR and the other baselines. To evaluate the
original checklists, the procedure is applied to the past checklists in the validation fold
so that y𝑐𝑛𝑑 = y for y ∈ D𝑉 in Step 2. Step 2 for NBI and LR is done by generating
predictions for every unique question (see Sect. A.5.3). Then a filter is applied after
prediction and before the selection of the questions for y𝑐𝑛𝑑 . The filter excludes any
question (𝑒) from selection if (𝑒, x𝑐𝑛𝑑 , ·) ∉ DCB . This means that every 𝑒𝑖 ∈ 𝑦𝑐𝑛𝑑 is
justified by a past case so that 𝐽𝑁𝐵𝐼 and 𝐽𝐿𝑅 is 100% (Eq. A.6). The filter is necessary
for the evaluation to ensure that NBI and LR construct checklists that satisfy the
assumption above. The models use 𝐾 = 15 and are validated using 4,8 and 16-fold
cross validation.
Results and Discussion. The results are shown in in Table A.4. The 𝐴𝑣𝑔 column
shows the average of the four preceding columns, where the results suggest that the
checklists constructed by NBI, LR and BCBR are more effective than the original
checklists. BCBR scores 0.474 which is significantly higher than the original checklists
and also higher than NBI and LR. Figure A.6 shows the results for different numbers of
validation folds. The figure suggests that BCBR consistently outperforms NBI and LR
in accuracy and precision. Also, both accuracy and precision statistics tend to increase
with the size of the validation data sets. We believe this is caused by the fact that𝑇𝑃
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and𝑇𝑁 increases compared to 𝐹𝑃 and 𝐹𝑁 as the quality of the retrieved questions
increases when more cases are available. Recall also decreases with the size of the
validation data sets as the number of predicted positives is fixed (𝐾 = 15), which entails
that 𝐹𝑁 increases more than 𝑇𝑃 when the size of the validation set increases. The
experiment suggests that BCBR is more effective for constructing checklists than LR
or NBI.

FIGURE A.6. Crossvalidation results for different validation fold sizes

A limitation of this experiment is that the results are based on estimates of𝐴𝑐𝑐 ,
𝑃𝑟𝑒𝑐 and 𝑅𝑒𝑐 . For CBR frameworks, the validity of the evaluation results partially
depends on high similarity between the x-part of the query and retrieved cases. This
could be problematic when evaluating and comparingmultiple CBR-based frameworks
and should be investigated in future work.

A.6 CONCLUSION

In this paper we studied the problem of constructing checklists for safety critical appli-
cations, in particular labour inspections where constructing good high-performance
checklists manually is difficult. Thus, we proposed the CCP where we consider the
automatic construction of good, justifiable checklists. To address the CCP we intro-
duced BCBR, which uses naive BI to construct features in CBR cases for retrieving
questions for the checklists. We conducted three experiments on a data set of past
labour inspections, whichwe introduced for the paper. Because CCP is a fairly complex
problem, we conducted our first experiment on a simple answer classification problem.
The goal of the experiment was to select two baselines for CCP, which was NBI and LR.
In the second experiment we measured the justification of the checklist constructed
by BCBR, NBI and LR, where we found that only BCBR constructs checklists which
are justified by past cases. Another conclusion from the experiment is that questions
selected for the constructed checklists should be justified in terms of prior use in
similar entities, because some questions may be closely related to the entities that
they originally were designed for. The results from the last experiment also suggest
that BCBR is the most effective method for constructing checklists to address poor
working conditions in inspected organisations. The checklists constructed by BCBR
also perform significantly better than the original checklists.

One of the things that could be addressed in future work is solution adaptation,
such as adapting questions after they have been retrieved for a checklist. Another
option is to explore data-driven approaches to derive the weights and local functions
for BCBR. It could also be interesting to see how BCBR perform in other CCPs such
as surgery or preflight checklists.
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ABSTRACT

Feature engineering, including feature selection, plays a key role in data science, knowl-
edge discovery, machine learning, and statistics. Recently, much progress has been
made in increasing the accuracy ofmachine learning for complex problems. In part, this
is due to improvements in feature engineering, for example by means of deep learning
or feature selection. This progress has, to a large extent, come at the cost of dramatic
and perhaps unsustainable increases in the computational resources used. Conse-
quently, there is now a need to emphasize not only accuracy but also computational
cost in research on and applications of machine learning including feature selection.
With a focus on both the accuracy and computational cost of feature selection, we study
stochastic local search (SLS) methods when applied to feature selection in this paper.
With an eye to containing computational cost, we consider an SLS method for efficient
feature selection, SLS4FS. SLS4FS is an amalgamation of several heuristics, including
filter and wrapper methods, controlled by hyperparameters. While SLS4FS admits, for
certain hyperparameter settings, analysis by means of homogeneous Markov chains,
our focus is on experiments with several realworld datasets in this paper. Our experi-
mental study suggests that SLS4FS is competitive with several existing methods, and
is useful in settings where one wants to control the computational cost.

B.1 INTRODUCTION

Context. Feature selection (FS), i.e., finding the best features or attributes among a
large number of them, plays an important role in machine learning (ML), knowledge
discovery, and data mining [1–4]. Reasons for feature selection include improved accu-
racy, explainability, understandability, and computational efficiency of the resulting
machine learning model [1, 2]. There is an important distinction between filter and
wrapper methods for feature selection [1]. The filter approach selects features in a
preprocessing step, and the features selected do not depend on the ML algorithm used.
The wrapper approach, in contrast, uses an ML algorithm as an integral part of the FS
process. Variants of local search (such as backward selection and forward selection)
have traditionally been employed for wrapper-based FS [2]. Methods such as genetic
algorithms [5], regression [6], stochastic local search [7] and item sets [8] have also been
used.

This paper encourages cross-fertilization between research on FS and stochastic
local search (SLS). An SLS algorithm is a generalization of local searchwhere stochastic-
ity (or randomization) is also applied. Thus, SLS algorithms make occasional random
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search steps in order to avoid getting stuck or trapped in local but non-global optima.
SLS is among the best methods to solve many computationally hard problems [9]. For
example, SLS performs well in solving the satisfiability (SAT) problem [9, 10] as well as
in computing the maximum a posteriori (MAP) hypothesis [11] and the most probable
explanation (MPE) [12, 13] in Bayesian networks (BNs). SLS and its variants have
also been widely used in other applications, such as sparse signal recovery [14], neural
architecture search [15], sentence summarization [16], and subset selection [17, 18].
Problems. Clearly, recent advances in AI and ML have been impressive. At the
same time, one may want to reflect on the massive computational, energy, and human
resources brought to bear in today’s AI and ML efforts, and how such resource con-
sumption has recently increased. For example, OpenAI, a prominent AI development
and deployment company, made the following observations on May 16, 2018:1

[S]ince 2012, the amount of compute used in the largest AI training runs
has been increasing exponentially with a 3.4-month doubling time (by
comparison, Moore’s Law had a 2-year doubling period). Since 2012,
this metric has grown by more than 300,000x (a 2-year doubling period
would yield only a 7x increase).

While a 300,000x growth in compute over a 6-year period is impressive, there may
also reason to be concerned. If this growth continues, where does it lead to? What are
the sustainability implications? And which individuals and organizations can afford
to participate in and drive AI and ML research forward, if such massive compute
resources are dramatically beneficial or (even worse) required to stay competitive?
Contributions. The contributions in this paper are in part motivated by concerns
about the dramatic increases in resources being consumed in AI or ML. We make
resource utilization, in particular computational cost measured in terms of compute
time, more of a consideration compared to much previous research. At the same time,
we acknowledge that FS research has, with notable exceptions [2, 19], often been heavily
experimental.

In this paper, we integrate filter and wrapper methods for FS via SLS4FS, “Stochas-
tic Local Search (SLS) for (4) Feature Selection (FS),” and provide experimental results.
Compared to the most closely related work [7], SLS4FS adds and integrates three
heuristics, detailed in this paper: soft greedy search, FS filters, and a randomized neigh-
borhood relation [20]. Key intuitions underlying the results with our hybrid SLS4FS
method include (i) in FS, the computational cost of a wrapper’s greedy search step is
typically much greater than the computational cost of a noisy or an initialization (or
filter) search step and (ii) the greedy steps are still useful in FS for refining a filter’s
results when optimizing a feature subset. Our experiments with SLS4FS with three
different classifiers and several real-world datasets provide further details about these
intuitions and demonstrate the competitiveness of SLS4FS. SLS4FS is formulated such
that a Markov Chain analysis is possible (see [7, 12]), however such analysis is not
pursued here.

1https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/
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B.2 THE CHALLENGES OF FEATURE SELECTION

We focus here on two goals for SLS: maximizing fitness and controlling computational
cost. In SLS for FS specifically, maximizing fitness corresponds to maximizing ML
model accuracy, and controlling computational cost corresponds to controlling the
training time of ML models. We further discuss these two FS goals below.
Maximizing Fitness. We study search spaces consisting of bit-strings B = {0, 1}𝑛 .
Fitness 𝑓 is a pseudo-boolean function (PBF) that maps from B to the non-negative
real numbers R≥0. Our focus is to optimize (without loss of generality, maximize) the
fitness function 𝑓 and find a global optimum b∗:

b∗ = arg max
b∈B

𝑓 (b) . (B.1)

When considering FS problems, a bit 𝑏 in a bitstring b indicates whether a correspond-
ing feature in a dataset is present (𝑏 = 1) or absent (𝑏 = 0) for purposes of learning.
One can generalize (B.1) in order to handle multiple optima b∗1, b∗2, . . . and multiple
fitness (or objective) functions 𝑓1, 𝑓2, . . .. But we here keep it simple, in order not to
complicate the notation and discussion.
Controlling Computational Cost.What is the time it takes for an algorithm to search
for and find b∗ or a good approximation? There are several factors, but let us highlight
these. First, it depends on the cost 𝑔, for example compute time, it takes to compute
𝑓 (b) for a state b ∈ B: 𝑔 (b). Here, 𝑔maps from B to R≥0. Second, it depends on the
complexity of the search landscape induced by 𝑓 , and how that landspace interacts
with the search algorithm. An SLS algorithm will in general evaluate 𝑔(b) for many
b ∈ B when running. Given these factors, controlling computational cost of FS is
an important goal. We are motivated by the fact that the amount of compute used in
the largest AI training runs has recently increased exponentially with a 3.4-month
doubling time2 and with runtimes of days or weeks. In contrast, the compute time per
experiment in Section B.4 is cut off at a maximum of 100 seconds, thus enabling an
exploratory and human-centric workflow that includes ML as a component.
Hyperparameters and Heuristic Settings. In order to maximize fitness and control
cost as discussed above, we need to optimize SLS hyperparameter and heuristic settings.
This could be done via recent hyperparameter tuning methods including Bayesian
optimization (BO) [21–23]. Unfortunately, while such methods are often general and
mathematically elegant, they do not always scale well [24]. We focus in this paper on
fast experiments with SLS under limited computing resources, on the order of seconds
or minutes, while BO typically takes hours or days.

Multi-objective optimization algorithms (MOOAs), for example multi-objective
evolutionary algorithms [25, 26], may seem like another alternative to adress the above
two goals related to fitness 𝑓 and cost 𝑔. A MOOA would compute a Pareto front
that approximates Pareto optimality, trading off the two objectives of fitness 𝑓 and
computational cost 𝑔 of the resulting model, for example a classifier. However, we are
in this paper interested in a different problem. We study the computational cost 𝑔 of
the SLS process itself when searching for b∗, a bitstring of maximal fitness 𝑓 ∗ = 𝑓 (b∗) .

Specifically, we study the effect of varying several heuristics and hyperparameters
for real-world FS problems. This is a challenge, as both the FS problems and the
2See above and https://openai.com/blog/ai-and-compute/.

https://openai.com/blog/ai-and-compute/
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configuration of SLS4FS are potentially high-dimensional and complex multi-modal
search spaces.

B.3 SLS4FS: SLS FOR FEATURE SELECTION

Wenowdiscuss our algorithm for SLS-based feature selection, “Stochastic Local Search
(SLS) for (4) Feature Selection (FS)” (or SLS4FS). The algorithm is presented briefly in
previous work [20]. In this paper we provide a detailed discussion of SLS4FS, including
pseudo-code, and its performance in three experiments with real-world datasets. In
this section we first discuss the components or search steps of SLS4FS in Section B.3.1
before presenting the algorithm’s overall structure in Section B.3.2.

B.3.1 SLS Search Steps

Local search takes place in the proximity, or in the neighborhood, of the current state
b, and we introduce these definitions.

Definition 1 (Neighborhood) Let b = 𝑏1 . . . 𝑏𝑖 . . . 𝑏𝑛 ∈ {0, 1}𝑛
and b′ = 𝑏′1 . . . 𝑏

′
𝑖 . . . 𝑏

′
𝑛 ∈ {0, 1}𝑛 . Further, use ⊕ for exclusive or and define Hamming

distance𝐻 as𝐻 (b′, b) =∑𝑛
𝑖=1 (𝑏′𝑖 ⊕ 𝑏𝑖 ). The neighborhood 𝑁 (b) ⊂ {0, 1}𝑛 of b is defined

as all bitstrings with a Hamming distance𝐻 of one to b: 𝑁 (b) = {b′ ∈ {0, 1}𝑛 |𝐻 (b′, b) =
1}.

In FS [3] and other problems with non-trivial𝑔, working with the neighborhood 𝑁 (b)
may be too compute-intensive and we therefore introduce a subset of it, 𝑁 (b, 𝑁𝑟 ), as
follows.

Definition 2 (Randomized Neighborhood) Let 𝑁𝑟 ∈ N+ with 0 < 𝑁𝑟 ≤ 𝑛. A ran-
domized neighborhood is defined as a set 𝑁 (b, 𝑁𝑟 ) ⊆ 𝑁 (b):

𝑁 (b, 𝑁𝑟 ) = {b′ ∈ 𝑁 (b) |b′ is picked randomly from 𝑁 (b)}, (B.2)

such that |𝑁 (b, 𝑁𝑟 ) | = 𝑁𝑟 .

“Picked randomly” in (B.2) means “picked uniformly at random without replacement.”
The computational benefit of 𝑁 (b, 𝑁𝑟 ) compared to 𝑁 (b) is perhaps clearer when
considering SLS4FS search, which we do now.

SLS4FS seeks to find or approximate an optimal state b∗. This is done via repeated
application of a greedy step GreedyStep, a noise stepNoiseStep, and a restart step
RestartStep, given the current state b. These search steps are formally defined as
follows.

Definition 3 (Greedy Step) A greedy step GreedyStep(b, 𝑁𝑟 , 𝑓 , 𝐿, 𝐷) computes from
bitstring b a bitstring b′ ∈ 𝑁 (b, 𝑁𝑟 ) while maximizing the objective function 𝑓 (b′) by using
the learning algorithm 𝐿 with dataset𝐷 . If there is a tie in 𝑓 (b′) among neighbors 𝑁 (b, 𝑁𝑟 ),
one of these neighbor is picked uniformly at random. A strict greedy step GreedyStep𝑠
stays with b if 𝑓 (b) ≥ 𝑓 (b′) for all b′ ∈ 𝑁 (b, 𝑁𝑟 ), while a loose or soft greedy step
GreedyStepℓ always moves to the best-fit neighbor.
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The GreedyStep highlights the wrapper nature [1] of SLS4FS, via its use of the
learning algorithm 𝐿. Definition 3 introduces two variants of the GreedyStep. For
both variants we move to a neighbor b′ ∈ 𝑁 (b). The first variant, for 𝑁𝑟 = 𝑛,
is a complete greedy step. The second variant, for 𝑁𝑟 < 𝑛, is a randomized greedy
step. This randomized variant’s purpose is to reduce the computational cost of a
complete greedy step. Thus, when 𝑁𝑟 < 𝑛, GreedyStep(b, 𝑁𝑟 , 𝑓 ) in Definition 3
employs randomization as follows. First, it randomly chooses 𝑁𝑟 neighbors among
𝑁 (b) and then picks a neighbor maximizing the objective function 𝑓 (b′) among
them. Intuitively, with high-dimensional datasets (large 𝑛) and 𝑁𝑟 ≪ 𝑛, this provides
substantial computational saving relative to using 𝑁 (b), at the obvious drawback of
not necessarily finding the best neighbor.

The goal in FS is to find a global optimum b∗ (a best feature subset) or an approxi-
mation thereof. However, in many cases there are in FS problems local but non-global
optima, as demonstrated in Section B.4.2, where search can get stuck. SLS4FS contains
two search operators, theNoiseStep and the RestartStep, to handle this problem.

Definition 4 (Noise Step) A noise step NoiseStep(b) randomly jumps from bitstring b
to a neighbor b′ ∈ 𝑁 (𝑏); note that b′ ≠ b.

While there are different ways to randomize noise steps [12, 27], we focus in this paper
on the simple and easy-to-analyze NoiseStep of picking a neighbor uniformly at
random.

Definition 5 (Restart Step) A restart step RestartStep(𝐹 ,𝐷 ) randomly computes a bit-
string b ∈ {0, 1}𝑛 , using a filter algorithm 𝐹 with a dataset 𝐷 .

Clever restart and initialization algorithms can have a very positive impact on SLS
optimization [13, 27]. For FS specifically, a filter 𝐹 should ideally start search close
to b∗ at low computational cost. For the RestartStep, we study in this paper both
naive methods and more advanced filter algorithms from the FS literature [2–4]. We
consider the following three naive filter methods.

Definition 6 (Zeros Filter) The all-zeros filter 𝐹0s creates an initial feature subset in this
way: We set each bit 𝑏𝑖 to zero, 𝑏𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑛.

Definition 7 (Ones Filter) The all-ones filter 𝐹1s creates an initial feature subset in this
way: We set each bit 𝑏𝑖 to one, 𝑏𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛.

Definition 8 (Uniform (at Random) Filter) The uniform at random filter 𝐹U creates
an initial feature subset in this way: For each bit 𝑏𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, we flip an unbiased
coin. If the coin comes up heads, we set 𝑏𝑖 = 1. If it comes up tails, we set 𝑏𝑖 = 0.

The advanced filters studied can be defined as follows.
Definition 9 (Score-Based Filter) A score-based filter creates an initial feature subset
by assigning a score to every feature. For each bit 𝑏𝑖 , if the corresponding feature’s score is in
the 90th percentile or above, 𝑏𝑖 = 1, else 𝑏𝑖 = 0.

The following 8 score-based filters are used in this paper: mutual information
(𝐹MI), ANOVA (𝐹A), 𝜒2 (𝐹𝜒2 ), variance (𝐹V), random forrest impurity (𝐹RFI), random
forrest permutations (𝐹RFP), lasso regression (𝐹LR) [28], and ridge regression (𝐹RR) [29].
Both the advanced, score-based filters as well as the naive 𝐹U, 𝐹0s, and 𝐹1s filters are
studied experimentally in Section B.4.
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Algorithm 1: SLS for FS (SLS4FS).
Input :Probability of restart 𝑃𝑟 , noise step 𝑃𝑛 , dataset 𝐷 with number of

instances 𝑑 and features 𝑛, machine learner 𝐿, filter 𝐹 , accuracy
𝑓 (b, 𝐷, 𝐿) for 𝐿 on dataset𝐷 with subset b, termination threshold 𝜏 ,
strict or soft GreedyStep𝑋 , number of neighbors 𝑁𝑟 for the
GreedyStep.

Output :Optimized feature subset b+
b← RestartStep(𝐹 ,𝐷), 𝑐 ← 0, 𝑓 + ← 0, b+← b
while ¬ Terminate() do

𝑐 ← 𝑐 + 1
if Rand(0,1) < 𝑃𝑟 then

b← RestartStep(𝐹 ,𝐷) { Def. 5 }
else

if rand(0,1) < 𝑃𝑛 then
b←NoiseStep(b) { Def. 4 }

else
𝑜𝑙𝑑_𝑏 ← b
b← GreedyStep𝑋 (b, 𝑁𝑟 , 𝑓 , 𝐿, 𝐷) { Def. 3 }
if 𝑜𝑙𝑑_𝑏 = b then

{ We may be stuck in a local optimum }
𝑃𝑟 = 𝑃𝑟 + 𝑃𝑟𝛼𝑟 { Increase 𝑃𝑟 }
𝑃𝑛 = 𝑃𝑛 + 𝑃𝑛𝛼𝑛 { Increase 𝑃𝑛 }

else
𝑃𝑟 = 𝑃𝑟 (1 − 𝛼𝑟/2)
𝑃𝑛 = 𝑃𝑛 (1 − 𝛼𝑛/2)

if 𝑓 (b) > 𝑓 + then
{ Update the current best subset b+ }
𝑓 + ← 𝑓 (b, 𝐷, 𝐿)
b+ ← b

return b+

B.3.2 The SLS4FS Algorithm

The SLS4FS algorithm, summarized in Algorithm 1, searches the bitstring space {0, 1}𝑛
representing feature subsets while optimizing accuracy 𝑓 as discussed below. An
optimized feature subset, represented as a bitstring b+, is the output of SLS4FS. SLS4FS
is tailored to FS [20] but is based on previous SLS algorithms [7, 12].

Input andOutput. Given amachine learner 𝐿, the objective function 𝑓 is computed in
wrapper fashion [1]. For a feature subset b, we run 𝐿 on D using the features indicated
by b; 𝑓 (b) gives the estimated accuracy of 𝐿 [1, 20]. The estimated accuracy is obtained
by cross-validation (CV) on a training set or by validation on a separate test set.

Initialization and Search. SLS4FS starts, using RestartStep(𝐹 ,𝐷), from a random
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ID Name # Features 𝑛 # Instances 𝑑
1 breast cancer (UCI) 9 700
2 m-of-n-3-7-10 (UCI) 10 1,324
3 checklists 575 63,634
4 cleve (UCI) 9 202
5 madelon [30] 500 2,000
6 bioresponse [31] 1,776 3,751
7 gas-drift (UCI) 128 13,910
8 crime (UCI) 124 2,215

TABLE B.1. Datasets for experimental evaluation.

initial state b among the 2𝑛 possible bitstrings.3 RestartStep(𝐹 ,𝐷 ) initializes a feature
subset using a filter method 𝐹 operating on the dataset 𝐷 . In each search step, SLS4FS
performs (i) a GreedyStep with probability (1 − 𝑃𝑟 ) (1 − 𝑃𝑛); (ii) aNoiseStep with
probability (1 − 𝑃𝑟 )𝑃𝑛 ; or (iii) a RestartStep with probability 𝑃𝑟 . During search,
SLS4FS keeps track of a best-so-far b+. If, for the 𝑖-th search step 𝑓 (b) > 𝑓 (b+), then
b is the new best-so-far. Upon termination, SLS returns b+ as an approximation to b∗.
Hyperparameters 𝛼𝑟 and 𝛼𝑛 can be used to dynamically adapt 𝑃𝑟 and 𝑃𝑟 .4

Termination. Different termination criteria can be used in SLS4FS, as suggested by
Terminate() in Algorithm 1. In this work, SLS4FS terminates upon reaching an upper
bound on compute time 𝜏 or when a local optimum is found.

We identify a special case of SLS4FS when only initialization is randomized:

Definition 10 (Purely greedy SLS4FS) SLS4FS run with input parameters 𝑃𝑟 = 0,
𝑃𝑛 = 0, 𝑁𝑟 = 𝑛, GreedyStep𝑠 , 𝐹 = 𝐹U, and Terminate() at a local optimum is denoted
purely greedy SLS4FS.

Remark 1. Akey advantage of the SLS4FS algorithm is its ability to handle local optima
due to its randomizedNoiseStep and RestartStep. Further, the RestartStep can
provide fruitful starting points due to the use of a filter 𝐹 in RestartStep(𝐹 , 𝐷). For
simplicity, one can use an all-zeroes filter 𝐹0𝑠 . Alternatively, a more advanced filter 𝐹
may result in SLS4FS computing better feature sets.
Remark 2. When applying SLS to FS, a significant difference from many other appli-
cations of SLS is the greatly varying computational cost of search steps.

We study both of these points, and others, in experiments in Section B.4.

B.4 EXPERIMENTAL RESULTS

We conduct three experiments to analyze SLS4FS. First, in Section B.4.2, we analyze
several FS problems for real-world datasets to find out if they exhibit local optima. One
3Note that (i) a deterministic initialization, for example at b = 0...0 using 𝐹0𝑠 , is a special case of
a randomized initialization and (ii) randomized initialization may or may not be uniformly at
random.

4To enable a homogeneous Markov chain analysis [7, 12], one can use probabilistic restart and
not adapt the probability parameters 𝑃𝑟 and 𝑃𝑛 when running SLS4FS [7, 24].
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of the advantages of SLS4FS is the possibility of it using noise and restart steps to escape
local optima in the search space. In the second experiment, in Section B.4.3, we evaluate
the performance of SLS4FS when varying its noise parameter, restart parameter, and
the filter. Third, in Section B.4.4, we compare and analyze the performance of SLS4FS
against other FS methods on several real-world datasets.

B.4.1 Datasets and Methods

Using Naive Bayes, Decision Tree, and Support Vector Machine classifiers, we conduct
experiments on 8 real-world datasets to validate our hybrid SLS4FS method. For this
work, we focus on small and medium sized datasets to ensure that meaningful results
can be obtained within a reasonable amount of time.5 Most of these are also real-world
datasets, which are often limited in size. Table B.1 lists the datasets with the number of
features and instances used in our experiments. The datasets are taken from the UCI
repository6 or the literature. We have also included a new dataset called checklists.7 A
similar dataset has also been used for constructing new checklists [32]. Experiments 2
and 3 are executed in NTNU’s IDUN cluster environment, using one CPU and 24 GB
of memory per run. Implementations are in Python using Scikit-learn.8

B.4.2 Experiment 1: Multiple Local Optima in Feature Selection

Goal. The challenge of local but non-global optima in FS motivated us to design the
noise and restart steps in SLS4FS. To what extent does FS for real-world datasets
exhibit such local optima?
Method and Data. To investigate this question, we run purely greedy SLS4FS (see
Definition 10) 1,000 times for three FS problems. SLS4FS terminates upon finding a
bitstring b+ with higher accuracy than all neighbors 𝑁 (b+). We use a Decision Tree
model as 𝐿 in SLS4FS and compute accuracy 𝑓 (b+) of the model. For each problem,
we report a histogram reflecting the model’s accuracy, see the plots in Figure B.1.
Results and Discussion. We report the results for three small-scale problems (breast
cancer, m-of-n-3-7-10, and cleve) to get a comprehensive picture. The results are
shown in Figure B.1. Among the 1,000 experiments, about 600 find suboptimal so-
lutions on the breast cancer dataset. Similar observations can be made for the other
two datasets; clearly m-of-n-3-7-10 is most difficult in that about 730 experiments
terminate with suboptimal solutions. These results suggest that real-world FS prob-
lems contain local but non-global optima. Local optima are problematic for traditional
greedy FS algorithms, like ForwardSelection and BackwardSelection. At the same time,

5Some FS methods can take hours or even days to fully complete on one of our medium-sized
datasets.

6UCI repository: http://archive.ics.uci.edu/ml/
7The checklists dataset consists of 63,634 inspections conducted by the Norwegian Labour
Inspection Authority. The dataset contains 575 features related to the economical and organi-
sational information about the target organisation. Each instance also has a binary target label,
denoting whether the target organisation was found non-compliant or not at the inspection.

8https://scikit-learn.org/stable/.

http://archive.ics.uci.edu/ml/
https://scikit-learn.org/stable/
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FIGURE B.1. Experimental FS results for three datasets breast cancer, m-of-n-3-7-10, and cleve.
In each panel, the 𝑥 -axis shows the accuracies achieved by solutions (feature
subsets) computed by SLS4FS for a dataset. The 𝑦-axis counts the number of
occurrences at each accuracy level. This clearly demonstrates that there are
multiple local optima in each of these FS problems.

the randomization in SLS algorithms such as SLS4FS are able to handle local optima,
using 𝑃𝑟 > 0 or 𝑃𝑛 > 0. Motivated by these results, we carefully study the impact and
optimization of 𝑃𝑟 , 𝑃𝑛 , and other SLS4FS heuristics in Section B.4.3.

B.4.3 Experiment 2: Varying SLS4FS Heuristics and Settings

Goal. How do different settings of heuristics and hyperparameters impact SLS4FS’s
accuracy? We assess how SLS4FS performance is affected by varying these heuristics:
strict versus soft Greedy, 𝐹 , 𝑃𝑛 , and 𝑃𝑟 .

Dataset Classifier Time 𝜏 (sec) Nrn
breast cancer SVM 0.2 1.0
m-of-n-3-7-10 SVM 2.0 1.0
madelon DT 60.0 1.0
bioresponse NB 60.0 0.1
checklists DT 60.0 0.1
gas-drift DT 60.0 0.2
crime NB 10.0 1.0

TABLE B.2. Experimental setting in Section B.4.3. The ratio of neighbors considered in the
greedy step is 𝑁𝑟 /𝑛.
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FIGURE B.2. Runtimes for 8 different FS filters (on 𝑥 -axis) on 7 different datasets (on 𝑦-axis).
Runtimes are classified from extremely low (dark green) to extremely high (dark
red). The filters are, left to right, mutual information (𝐹MI), ANOVA (𝐹A), 𝜒2 (𝐹𝜒2 ),
variance (𝐹V), random forrest impurity (𝐹RFI), random forrest permutations (𝐹RFP),
lasso regression (𝐹LR) and ridge regression (𝐹RR). Per-filter runtime averages,
which vary quite dramatically, are in the bottom row. Figure B.3 contains corre-
sponding accuracies.

Method and Data. To inform the 𝐹 -parameter of SLS4FS, we test different FS filters
and record runtime and accuracy. These filters are either well-known or prominent in
the FS literature [4, 33]; see Section B.3. Runtimes are shown in Figure B.2; 𝐹𝜒2 or 𝐹V
have the best performances on almost every dataset. 𝐹𝜒2 also has the highest recorded
mean accuracy when applied to the datasets, see Figure B.3. Thus, for our experiment
below we use 𝐹 = 𝐹𝜒2 in our SLS4FS algorithm. Further, we include 𝐹 = 𝐹0s as a
simple baseline.

Based on these filter results, we test each configuration of SLS4FS using several
datasets, see Table B.2. Each problem consists of a dataset, anMLmethod 𝐿, a compute
time bound 𝜏 , and a neighborhood size 𝑁𝑟 . The neighborhood size determines the
fraction of neighbors included in the randomized neighborhood. The time limit
and neighborhood size are set to limit the overall running time of SLS4FS. SLS4FS
hyperparameters and heuristics that are varied are: 𝑃𝑛 , 𝑃𝑟 , 𝐹 , andGreedyStep𝑠 versus
GreedyStepℓ .

Every evaluation in the experiment is done by restricting the dataset based on the
SLS4FS-selected features, initializing the ML method, training the ML method on 2/3
of the dataset and calculating the accuracy based on the other 1/3.
Results andDiscussion. Four configurations of SLS4FS, each tested with 20 different
values of noise probability 𝑃𝑛 , are shown in Figure B.4.9 The plots are consistent
with findings about local optima in Section B.4.2 as well as previous Markov chain

9Other configurations were also tested, but the ones in Figure B.4 illustrate the main findings
well.
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FIGURE B.3. Accuracy scores for 8 different FS filters (on 𝑥 -axis) on 7 different datasets (on
𝑦-axis). Per-filter accuracy averages are in the bottom row. While 𝜒2 (𝐹𝜒2 ) has the
highest average accuracy, the differences in averages for the best methods are
very small and not statistical significant. This table corresponds to the table with
runtimes in Figure B.2.

analyses and experiments with SLS [12, 13, 34]: 𝑃𝑛 being varied clearly has a significant
impact on performance. And the optimal noise probability varies between different
problem instances. Plots B.4(a) and B.4(b) do not show large differences between strict
GreedyStep𝑠 and soft GreedyStepℓ . However, soft outperforms strict on the m-of-
n-3-7-10 dataset, and in general seems to be at least as good. As seen in Plot B.4(d),
restart has little effect on most problems, and a slight negative effect on a few. This is a
small surprise, given previous research highlighting the benefit of restart [12, 13], and
an area for future research.

FIGURE B.4. Accuracy (on 𝑦-axis) versus 𝑃𝑛 (on 𝑥 -axis) for four configurations of SLS4FEVE
(in plots (a), (b), (c), and (d)) as applied to six datasets. Each datapoint in a plot is
the average over 10 runs, with the error bars showing the 95% confidence interval.

Subjectively, we deem these to be the most promising configurations of SLS4FS:
soft Greedy, 𝑃𝑟 = 0, 𝑃𝑛 ∈ [0.1, 0.5] , and with either 𝐹 = 𝐹0s or 𝐹 = 𝐹𝜒2 as filter
depending on the selected dataset. These results inform our experiments with four
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different SLS4FS configurations in Section B.4.4.

Algorithm Configuration
RFE N/A
ForwardSelection (𝐹0s) N/A
BackwardSelection (𝐹1s) N/A
AdaptiveNoise 𝜙 = 0.2, 𝜃 = 1/6
AdaptiveSLS 𝑃𝑛 = 0.0, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.32
SoftSLS 𝑃𝑛 = 0.5, 𝑃𝑟 = 1/𝑛, 𝛼𝑛, 𝛼𝑟 = 0.0
SLS4FS (𝐹𝜒2) 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹𝜒2

SLS4FS (𝑃𝑟 = 0.1) 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.1, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹𝜒2

SLS4FS (𝐹0s) 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹0s
SLS4FS (adaptive) 𝑃𝑛 = 0.0, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.32, 𝐹𝜒2

TABLE B.3. Algorithms and configurations used in Section B.4.4. RFE [35], AdaptiveNoise [34],
AdaptiveSLS [7], and SoftSLS [7] are from the literature, the other algorithms are
well-known or described in this paper.

B.4.4 Experiment 3: Comparing SLS4FS to Other Algorithms

Goal. How does SLS4FS compare to other FS wrappers using local search?
Method and Data.We test four configurations of SLS4FS and six other algorithms,
recording the accuracy of the best feature subset for each algorithm (see Table B.3).
The algorithms are tested on problem instances from Table B.1 and evaluations are
performed similar to in Section B.4.3. However, a time limit of 𝜏 = 100 sec is used in
every problem instance, Here, 𝑁𝑟 = ⌈𝑛/10⌉ and GreedyStepℓ are used for SLS4FS
while 𝛼𝑛 = 𝛼𝑟 = 0.32 are used for AdaptiveSLS and SLS4FS (adaptive).10

Results and Discussion. The results are summarised in Table B.4.11 The top three
performers, ranked by mean accuracy (in the right-most column), are all variations of
SLS4FS. SLS4FS is quite robust across all problems compared to existing algorithms.
For example, ForwardSelection achieves the highest accuracy for three problems but
is far behind for other problems, leading it to be ranked as one of the last overall.

For the checklists dataset, there were differences in the number of features that
were found by the best performing FS configurations. On average, ForwardSelec-
tion selected 8 features while AdaptiveSLS and SoftSLS selected 7 features. SLS4FS
(𝐹0s) selected 47 features with similar performance in terms of accuracy. The same
pattern was also observed for the other large datasets when comparing SLS4FS to
ForwardSelection and the existing SLS algorithms. Generally, by using a randomized
neighborhood, SLS4FS is able to take more steps per time unit and explore a larger
fraction of the search space which yields more features with approximatly the same
computational cost.
10The hyperparameters 𝛼𝑛 and 𝛼𝑟 were optimized empirically in pilot studies. In the pilot
studies both synthetic and real-world problems were used. In the results reported here, 𝛼𝑛
and 𝛼𝑟 are kept constant.

11The main conclusion, but not the dataset-specific results, of this table has been presented
earlier [20].
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breast
cancer

m-of-n-
3-7-10

madelonbiores-
ponse

check-
lists

gas-
drift

crime Mean Rank

RFE 0.978 ±
0.000

1.000 ±
0.000

0.738 ±
0.000

0.636 ±
0.000

NA 0.976 ±
0.000

0.808 ±
0.000

0.734 9

ForwardSelection 0.991 ±
0.000

0.780 ±
0.000

0.582 ±
0.000

0.797 ±
0.000

0.751 ±
0.000

0.982 ±
0.000

0.818 ±
0.000

0.803 8

BackwardSelection 0.996 ±
0.000

1.000 ±
0.000

0.726 ±
0.000

0.628 ±
0.000

0.675 ±
0.000

0.970 ±
0.000

0.784 ±
0.000

0.826 6

AdaptiveNoise 0.996 ±
0.000

1.000 ±
0.000

0.731 ±
0.029

0.620 ±
0.017

0.667 ±
0.000

0.973 ±
0.002

0.854 ±
0.004

0.834 5

AdaptiveSLS 0.996 ±
0.000

1.000 ±
0.000

0.732 ±
0.024

0.623 ±
0.025

0.751 ±
0.000

0.974 ±
0.003

0.830 ±
0.007

0.844 4

SoftSLS 0.996 ±
0.000

1.000 ±
0.000

0.796 ±
0.005

0.626 ±
0.023

0.749 ±
0.001

0.974 ±
0.003

0.848 ±
0.007

0.856 3

SLS4FS (𝐹𝜒2 ) 0.996 ±
0.000

1.000 ±
0.000

0.803 ±
0.006

0.734 ±
0.008

0.678 ±
0.002

0.982 ±
0.002

0.845 ±
0.002

0.862 2

SLS4FS (𝑃𝑟 = 0.1) 0.996 ±
0.000

1.000 ±
0.000

0.795 ±
0.006

0.717 ±
0.008

0.673 ±
0.000

0.982 ±
0.001

0.829 ±
0.003

0.856 3

SLS4FS (𝐹0s) 0.996 ±
0.000

1.000 ±
0.000

0.804 ±
0.012

0.774 ±
0.005

0.749 ±
0.003

0.980 ±
0.002

0.843 ±
0.004

0.878 1

SLS4FS (adaptive) 0.996 ±
0.000

0.790 ±
0.019

0.796 ±
0.008

0.724 ±
0.007

0.677 ±
0.001

0.982 ±
0.001

0.684 ±
0.009

0.807 7

TABLE B.4. Mean accuracy and standard deviation for 4 versions of SLS4FS and 6 other algo-
rithms, applied to 7 datasets. The two right-most columns show Mean accuracy
(higher is better) and Rank (lower is better) for all 10 algorithms across the 7
datasets. Overall, SLS4FS (𝐹0s) is the best algorithm among the 10 for these
datasets.

B.5 CONCLUSION AND FUTURE WORK

In this paper, we adapt and apply stochastic local search (SLS) to the problem of fea-
ture selection. We study an SLS algorithm SLS4FS for feature selection; it is a hybrid
approach that integrates the well-known filter and wrapper approaches. Relative to
the most closely related research [7], SLS4FS adds and integrates three heuristics: soft
greedy search, filters, and a randomized neighborhood relation [20]. Experimentally,
motivated by constraining computational resources, we study different FS filter algo-
rithms with SLS4FS and three ML classifiers: Decision Tree, Naive Bayes, and Support
Vector Machine. SLS4FS produces competitive results on several different datasets in
experiments, at modest computational cost, thus reflecting our goals of maximizing
model accuracy while controlling training time.

These are a few areas for future work: First, it would be useful to more systemati-
cally vary SLS4FS hyperparameters including 𝑃𝑟 and 𝑃𝑛 . Second, we plan to investigate
other classifiers and even larger datasets withmore features. Third, it would be interest-
ing to automatically optimize the hyperparameters of SLS4FS [7, 24, 36], considering
the varying computational costs of search steps for different computers and datasets.
Fourth, it could be interesting to compare SLS4FS to other methods, such as tabu
search, simulated annealing, and evolutionary algorithms. Fifth, we plan to further
study SLS4FS from a theoretical perspective, using Markov chain hitting time analysis.
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ABSTRACT

Every year there are 1.9 million deaths worldwide attributed to occupational health
and safety risk factors. To address poor working conditions and fulfill UN’s SDG
8,“protect labour rights and promote safe working environments for all workers”, gov-
ernmental agencies conduct labour inspections, using checklists to survey individual
organisations for working environment violations. Recent research highlights the ben-
efits of using machine learning for creating checklists. However, the current methods
only create static checklists and do not adapt them to new information that surfaces
during use. In contrast, we propose a new method called Context-aware Bayesian
Case-Based Reasoning (CBCBR) that creates dynamic checklists. These checklists are
continuously adapted as the inspections progress, based on how they are answered.
Our evaluations show that CBCBR’s dynamic checklists outperform static checklists
created via the current state-of-the-art methods, increasing the expected number of
working environment violations found in the labour inspections.

C.1 INTRODUCTION

FIGURE C.1. A conceptual view of a checklist for labour inspections. For a given inspection, a
checklist ideally contains a subset of the 𝐾 items most likely to be non-compliant,
out of 𝑁 possible items.

Checklists are extensively used in high-stakes decision making, such as in surgery
or food inspections [1, 2]. They are also used by government agencies in labour inspec-
tions, to survey individual organisations for non-compliance to working environment
regulations [3, 4]. Such inspections are important to globally achieve UN’s SDG 8, “pro-
tect labour rights and promote safe working environments for all workers”, specifically
SDG 8.8. Despite the inspection efforts, there are still 1.9 million registered deaths
world-wide each year that are attributed to occupational health and safety risk factors
[5]. Our goal in this paper is to attack this problem by introducing dynamic checklists
created via machine learning.
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A conceptual view of a labour inspection checklist is shown in Figure C.1. Here,
a checklist consists of a subset of 𝐾 of 𝑁 items where each item corresponds to a
specific regulation. Each item has a yes or no answer which indicates the inspected
organisation’s compliance to the corresponding regulation. Any non-compliant item
found at an inspection is cited individually in a report which is sent to the inspected
organisation, with an order to rectify the violations.

Each inspected organisation may be subjected to several hundred different regula-
tions, which vary according to its size, location and industry. Prioritizing the correct
regulations for inspections, in terms of risks to workers’ health and safety, is very
difficult. Assessing compliance to regulations is also time-consuming, so a checklist
should ideally contain a small subset𝐾 of 𝑁 possible items that are most likely to be
found non-compliant at the inspection. Creating or using such checklists is difficult,
partly because they are situation dependent [2, 6].

In order to create optimized checklists efficiently, Flogard et al. [7] propose to
use machine learning (ML) to construct checklists and a newML problem called the
Checklist construction problem (CCP). They introduce a method called BCBR, which
constructs checklists for labour inspections. BCBR uses Bayesian inference (BI) to
construct features for cases used in case-based reasoning (CBR) [8]. The input to
BCBR is an organisation targeted for a labour inspection. BCBR then selects cases that
contain a set of the 𝐾 out of 𝑁 possible unique items that are most likely to be found
non-compliant at the given organisation. The output is an optimized checklist that
consists of the selected 𝐾 items.
Motivation. A shortcoming with BCBR is that it only creates static checklists, which
can be inaccurate in many real-world situations where the context changes over time
[9]. For instance, new information obtained during an inspection could suggest that
inquiries should be made into regulations that are not represented by the 𝐾 items
currently on the checklist on Figure C.1. A possible solution for this is to dynamically
adapt the checklists during use. Figure C.2 shows how a dynamic checklist can be
adapted to a situation, inferred from how a user answers the checklist. This idea has
been proposed and studied in clinical surgery trials [10], where the current approaches
for adapting checklists are based on process [11] or rule-based models [12]. However,
these models need to be built and maintained manually by domain experts, which
is infeasible for creating the ideal high-detailed models needed for many complex
tasks. Kulp et al. [10] also discuss this limitation and highlight the need for a technical
solution that can adapt checklists without relying on manually created models.
Scientific Contributions. There are two main contributions in this work. The first
contribution is to establish ML as a means to create dynamic checklists. As far as we
know, this is a difficult problem where ML has not been used before. A challenge here
is to develop a method that is accurate and fast enough to make real-time dynamic
adaptations of checklists.

The second contribution is a new method called Context-aware Bayesian Case-
Based Reasoning (CBCBR), which is an extension of BCBR. The novelty, compared to
BCBR, is a context-aware naive Bayesian inference model that enables dynamic adap-
tations to the constructed checklists during use. This means that CBCBR both creates
new checklists and adapts them. The adaptations are done as recommendations of new
items for the checklists. The recommendations are based on answers of the checklists,
which can be considered a part of the temporal context of the situations where the
checklists are used [13]. CBCBR is also a fully transparent, online model that enables
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FIGURE C.2. A dynamic checklist is a digital checklist that can adapt to changes in environment
or context during use. Such adaptations to the checklists can increase their
relevance and efficiency in aiding users for their intended tasks.

real-time creation and adaptation of checklists, which is crucial for their usability in
real-world situations. Online learning models are known for their effectiveness in
dynamic or non-stationary situations [14, 15], such as labour inspections.
Social Impact. Our work focuses on improving checklists used for labour inspections,
which will have a direct impact on the promotion of decent work (see SDG 8). We
show that CBCBR’s dynamic checklists can improve task completion and increase the
number of violations (non-compliance) found during inspections, which in turn will
increase levels of compliance with working environment and labour rights and also
reduce injuries (SDG indicator 8.8.1 and 8.8.2). More effective checklists could also
reduce social dumping (SDG 8.5), human trafficking and forced labour (SDG 8.7).

C.2 RELATED WORK

Checklist Construction. Until recently, checklists have been created manually by
domain experts via approaches like the Delphi method [16, 17]. However, creating
checklists manually is difficult and time consuming [18]. Instead of relying on human
experts, Flogard et al. [7] propose BCBR for constructing static checklists. In experi-
ments, they show that labour inspection checklists constructed by BCBR outperform
human domain experts and other ML methods. Zhang et al. [19] propose an ML
method for constructing checklists for medical diagnosis, assuming that a checklist is
a binary𝑀-of-𝑁 decision problem. They use an integer program to find an optimal
checklist of 𝑁 items that most accurately predict a diagnose, given that at least 𝑀
items are checked. However, their method only creates static checklists and is also
not usable for creating labour inspection checklists, as they are not binary𝑀-of-𝑁
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decision problems. An approach for generating checklist items for construction site
inspections is proposed by Cai et al. [20]. The approach is based on Natural Language
Processing and generates new items from regulation document texts. Checklists are
generated via SQL queries, by matching generated items with keywords specified by
a user. The checklists are described as dynamic, but only in the sense that they are
presented digitally, enabling users to manually customize them.
Context-Aware Recommender Systems. Research shows that dynamically elevating
items on checklists can be effective for adapting them to context changes [12]. CBCBR’s
recommendations can also be seen as a way to elevate context-relevant items and is
inspired by context-aware recommender systems (CARS) and contextual modelling
[21].
Case-Based Reasoning. In recommender systems, CBR is used to address explainabil-
ity and the long tail problem, which are known issues in collaborative filtering [22, 23].
Reasoning in CBR (and CBCBR) is based on retrieving the best past cases to solve a
given problem [8]. To improve reasoning, Bayesian methods are used to infer missing
case features or information in CBR systems [24, 25]. For the same reason, CBCBR’s
cases are augmented with probability estimates to improve case retrieval. CBCBR
also learns from answered checklists items, by using them for checklist adaptations or
retaining them to create future checklists.
Summary. To our knowledge, there is no previous work where ML is used to dy-
namically adapt checklists. In our work, we show that checklists can be significantly
improved by doing so, using answers to past items in a checklist to adapt future items
in the same checklist. The approach is also generic and can likely be used in many
other domains, since most checklists have some kind of answers recorded in them.
Thus, our work can potentially be seen as a starting point for future ML research into
dynamic context-aware checklists.

C.3 DEFINITIONS

Data Set and Cases. A data setD for variables Z = {𝐸,𝑋, 𝐿} is a tuple (d1, ..., d𝑁 )
where a case d𝑗 ∈ D is an instantiation of Z [26]. A case can be defined as a tuple
d = (𝑒, 𝑥, 𝑙) where 𝑒 denotes a single item of a checklist, 𝑥 is the target organisation
for the item and 𝑙 ∈ {0, 1} denotes the binary answer to the item. A case in the data set
can be viewed as a past experience where an item 𝑒 has been applied to 𝑥 to obtain the
answer 𝑙 . Any 𝑒 , 𝑥 and 𝑙 are instantiations of the variables 𝐸,𝑋 and 𝐿, respectively.
Organisation. Every case in the data set contains a target organisation description
𝑥 , that consists of multiple sub-features. These sub-features are all categorical and
describe the organisation’s location and industry [7]. For brevity we treat 𝑥 and𝑋 as
categorical in our work.
Item. Each case in the data set contains an answerable item 𝑒 , used to survey the
organisation 𝑥 . There are 𝑁 unique items in the data set, so an item 𝑒 is a categorical
value that may appear in multiple cases. Thus, 𝐸 is also categorical.
Checklist. The item in each case of the data set belongs to a checklist y, which is a
solution applied to the organisation 𝑥 . A checklist consists of a set of items such that
y = (𝑒1 ∈ d1, 𝑒2 ∈ d2, ..., 𝑒𝑛 ∈ d𝑛). An item can only occur once per checklist, such
that 𝑒𝑖 ≠ 𝑒 𝑗 for every 𝑒𝑖 ∧ 𝑒 𝑗 ∈ y. Thus, y consists of items from multiple cases.
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Answer. The label 𝑙 ∈ {0, 1} of each case d𝑗 ∈ D is the recorded answer from applying
the item 𝑒 to the organisation 𝑥 . A positive answer (non-compliance) is observed if
𝑙 = 1.
The Checklist Construction Problem. Given a candidate target organisation 𝑥𝑐𝑛𝑑 , a
modelM needs to select𝐾 out of𝑁 unique items (𝑒1, 𝑒2, ..., 𝑒𝐾 ) for an initial candidate
checklist y𝑐𝑛𝑑 . Each item 𝑒𝑖 ∈ y𝑐𝑛𝑑 needs to be selected so that it maximizes the
probability for observing the answer 𝑙𝑖 = 1 when applied to the targeted 𝑥𝑐𝑛𝑑 .
Dynamic Adaptation of Checklists. Let (𝑙1, ..., 𝑙𝑖 ) be the observed answers to the
items (𝑒1, ..., 𝑒𝑖 ) ∈ y𝑐𝑛𝑑 where 𝑖 ≤ 𝐾 . Given the target organisation 𝑥𝑐𝑛𝑑 and the
answered items, adapt the checklist so that the posterior probability for observing
a positive answer to any unanswered items on the changed checklist is maximized.
The adaptation could be done by adding or removing items to the checklist in many
ways. In this work adaptation is done by recommending any additional𝑀 of 𝑁 items
𝑒 ∉ 𝑦𝑐𝑛𝑑 that have higher posterior probability for observing 𝑙 = 1 (given (𝑙1, ..., 𝑙𝑖 )),
compared to any existing items on 𝑦𝑐𝑛𝑑 . The𝑀 recommendations are appended to
the existing 𝐾 items of y𝑐𝑛𝑑 .

C.4 CBCBR FRAMEWORK

The purpose of CBCBR is to create a dynamic checklist for any given 𝑥𝑐𝑛𝑑 , by re-
trieving past cases with items used in similar organisations, and with high estimated
probabilities for non-compliance. Answering the checklist may change the estimates,
triggering dynamic updates to the checklist.

An overview of CBCBR is shown in Figure C.3 and consists of the following steps:
(1) a naive Bayesian inference (NBI) model generates probability estimates (𝜃𝑏𝑒 ) for
answers based on empirical distributions of the data set D. (2) A case base CB of
augmented CBR cases c𝑗 is created by adding 𝜃𝑏𝑒 as feature to the instances d𝑗 ∈ D.
(3) Similarity based retrieval is used to retrieve 𝐾 cases from CB, given a query q that
contains the target organisation 𝑥𝑐𝑛𝑑 and a fixed target value for 𝜃𝑏𝑒 in the cases. The
retrieved cases contain the items for the initial candidate checklist y𝑐𝑛𝑑 , as illustrated
by the white arrows on Figure C.3. (4) The novel recommendation part for adapting
y𝑐𝑛𝑑 is shown by the blue arrows in Figure C.3. First, an item on y𝑐𝑛𝑑 is answered,
which prompts CBCBR to refresh the CB with updated posterior 𝜃𝑏𝑒 estimates (via
NBI). CBCBR then retrieves any new cases from CB with sufficiently increased 𝜃𝑏𝑒 ,
containing𝑀 recommended items which are appended to y𝑐𝑛𝑑 .

Further details for how 𝜃𝑏𝑒 is calculated by the NBI model in steps 1 and 4 are
covered in Section C.4.1 and C.4.2, respectively. The other details for step 2-4 are
found in Section C.4.3.

C.4.1 Naive Bayesian Inference for Checklist Construction

NBI is based on using empirical distributions of the data setD to estimate the proba-
bility for the event 𝐿 = 1|𝑥, 𝑒 , expressed as the mean of a Beta distribution [26]:
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FIGURE C.3. An overview of CBCBR. The black arrows show how the case base is created
or updated. The white arrows show the creation of a candidate checklist. The
checklist is dynamically updated via the blue (and black) arrows, starting from the
candidate checklist.

𝜃𝑏𝑒 (𝐿 = 1|𝑥, 𝑒) =
D#(𝐿 = 1 ∧ 𝑋 = 𝑥 ∧ 𝐸 = 𝑒) +𝜓𝐿=1 |𝑥,𝑒∑1
𝑙=0D#(𝐿 = 𝑙 ∧ 𝑋 = 𝑥 ∧ 𝐸 = 𝑒) +𝜓𝐿=𝑙 |𝑥,𝑒

(C.1)

where 𝐿 = 𝑙 , 𝑋 = 𝑥 and 𝐸 = 𝑒 denote the event where the outcomes 𝑙 , 𝑥 and 𝑒 are
observed. Both (D#(𝐿 = 1 ∧ 𝑋 = 𝑥 ∧ 𝐸 = 𝑒) and (D#(𝐿 = 0 ∧ 𝑋 = 𝑥 ∧ 𝐸 = 𝑒)
are parameters for the Beta distribution, and𝜓𝐿=𝑙 |𝑥,𝑒 denotes the prior parameters.
Equation C.1 is used to calculate the probability estimates needed for selecting the
optimal items when constructing the initial checklist y𝑐𝑛𝑑 .

C.4.2 Naive Bayesian Inference for Item Recommendations

After answering an item 𝑒𝑖 on the checklist y𝑐𝑛𝑑 , the obtained answer 𝑙𝑖 holds evidence
that can be used to update the posterior belief in any unobserved answer 𝑙 for a candi-
date item 𝑒 .1 This assumption can be used to update the probability estimates from
Equation C.1, by estimating new additional Beta distribution parameters with the
following equation:

1In this setting, 𝑒 is a potential candidate for recommendation.
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𝑝 (𝑙, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 ) = D#(𝐿 = 𝑙 ∧ 𝑋 = 𝑥∧
𝐸 ∈ {𝑒 : (𝑒, 𝑒𝑖 ) ∈ y ∧ (𝑥, 𝑒𝑖 , 𝑙𝑖 ) ∈ D}). (C.2)

The parameters are made by counting cases in D. Each case in D is counted
if it contains the given 𝑥 , 𝑙 ∈ {0, 1}, 𝑒 and if there exist at least one other case d =

(𝑥, 𝑒𝑖 , 𝑙𝑖 ) and a past checklist y inD such that both 𝑒𝑖 and 𝑒 exists in that checklist. The
posterior estimates can now be updated by inserting the parameters above into the
Beta distribution from Equation C.1:

𝜃𝑏𝑒 (𝐿 = 1|𝑥, 𝑒, y𝑐𝑛𝑑 ) =
𝛽𝐿=1 |𝑥,𝑒 +

∑
(𝑙𝑖 ,𝑒𝑖 ∈y𝑐𝑛𝑑 ) 𝑝 (1, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )∑1

𝑙=0 𝛽𝐿=𝑙 |𝑥,𝑒 +
∑
(𝑙𝑖 ,𝑒𝑖 ∈y𝑐𝑛𝑑 ) 𝑝 (𝑙, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )

(C.3)

where 𝛽
𝐿=𝑙 |𝑥,𝑒 = D#(𝐿 = 𝑙 ∧𝑋 = 𝑥 ∧ 𝐸 = 𝑒) +𝜓

𝐿=𝑙 |𝑥,𝑒 . The 𝜃
𝑏𝑒 estimate in Equation

C.3 is calculated by summing the parameters for every 𝑒𝑖 ∈ y𝑐𝑛𝑑 that has an observed
answer 𝑙𝑖 . It should be noted that the equation above “naively” assumes that all applied
items 𝑒𝑖 are mutually independent of each other given 𝑥 . This is done to decrease the
amount of 𝜃𝑏𝑒 estimates based on low or zero case counts [26]. Equation C.3 is an
important technical contribution of this paper, since it enables online adaptations of
checklists.

C.4.3 Case Base and Retrieval of Checklist Items

This section defines the details for the augmented CBR cases, case base and similarity
based retrieval from Figure C.3.
Creating Augmented CBR Cases and Case Base. Algorithm 1 shows the creation of
a case base CB with augmented cases c. The 𝜅 feature is included to adjust for the case
counts of the probability estimates when retrieving cases [7]. The algorithm iterates
through each case d𝑗 ∈ D and creates 𝜅 and 𝜃𝑏𝑒 estimates for the case via Equation
C.1. Both 𝜃𝑏𝑒 and𝜅 are conditioned on the case features 𝑥 and 𝑒 𝑗 and added as features
to each d𝑗 , to create cases c for CB.
Case Retrieval for the Candidate Checklist. To retrieve items 𝑒𝑖 for the candidate
checklist y𝑐𝑛𝑑 , a query case q and a similarity function are used. The query consists of
the target organisation 𝑥𝑐𝑛𝑑 and the desired values for both the probability estimates
and the case count features. The similarity function assigns a score 𝑆𝑖𝑚(·, ·) ∈ [0, 1]
to every pair (q, c𝑗 ∈ CB). The function is the same linear weight similarity function
used by Flogard et al. [7]. The function is applied to every c𝑗 ∈ CB and a set of unique
items (𝑒1, ..., 𝑒𝐾 ) is then retrieved from the 𝐾 cases with the highest similarity score,
to create an initial checklist y𝑐𝑛𝑑 with 𝐾 items.
Case Base Update and Retrieval for Recommendations. Algorithm 1 also shows
how the case base is refreshed after answering items on the checklist. This procedure is
done after an item 𝑒𝑖 ∈ y𝑐𝑛𝑑 has been applied to 𝑥𝑐𝑛𝑑 . First the existing CB is cleared
for cases. Then updated probability estimates are calculated for each case d𝑗 ∈ D
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Algorithm 1 Creating or updating CB with cases c containing new 𝜃𝑏𝑒 esti-
mates.
Input : D , y𝑐𝑛𝑑 ; //y𝑐𝑛𝑑 is only included when updating CB with new poste-

rior 𝜃𝑏𝑒 estimates after answering items.
Output :CB ← (); //Initialize CB.
foreach d𝑗 ∈ D do

//Both 𝑥 𝑗 and 𝑒 𝑗 are found in the current case d𝑗 .
if y𝑐𝑛𝑑 is empty then
𝜃 ← 𝜃𝑏𝑒 (𝐿 = 1|𝑥 𝑗 , 𝑒 𝑗 ); //Eq. C.1

else
𝜃 ← 𝜃𝑏𝑒 (𝐿 = 1|𝑥 𝑗 , 𝑒 𝑗 , y𝑐𝑛𝑑 ); //Eq. C.3

𝜅 ← D#(𝐿 = 1 ∧ 𝑋 = 𝑥 𝑗 ∧ 𝐸 = 𝑒 𝑗 );
c← 𝐽𝑜𝑖𝑛(d𝑗 , 𝜃 , 𝜅); //merge d𝑗 , 𝜃 , 𝜅 to a single case.
CB ← 𝐼𝑛𝑠𝑒𝑟𝑡 (c); //Add the new case c to CB.

return CB; //The CB is now ready for any case retrievals.

via Eq. C.3, conditioned on 𝑥 𝑗 , 𝑒 𝑗 and every 𝑒𝑖 ∈ y𝑐𝑛𝑑 with an obtained 𝑙𝑖 . The newly
calculated 𝜃 and 𝜅 features are concatenated to each d𝑗 to create the updated cases c
for CB.

The updated cases are then retrieved for recommendation. First, the function
𝑆𝑖𝑚(q, c𝑗 ) is again applied to q and every c𝑗 ∈ CB. A filter is then applied to remove
all cases with similarity scores less than any of the 𝐾 cases that were selected for the
initial y𝑐𝑛𝑑 . Duplicated items are also removed so that 𝑀 cases with unique items
remain. The size of𝑀 is usually very small (between 0 and 4) and is not known or
fixed, but simply depends on how many eligible cases that remain after applying the
filter. If there are𝑀 > 0 remaining cases, the items from these cases are recommended
for the checklist.

C.5 DEMONSTRATION AND ASSESSMENT OF CBCBR

Data Set. We use the Checklist data set introduced by Flogard et al. [7], which has
1 111 502 entries d𝑗 . The entries constitute 63 634 inspections conducted with 369
different unique checklists, which in turn contain𝑁 = 1 947 unique items in total. The
checklists cover a wide range of industries and the items on each checklist typically
have an inspection topic that specifically relates to a few intended target industries.
Mengshoel et al. [27] also use a similar data set.
Query. We use the configuration from Section C.6.1. A recommendation is done after
answering each item. The query is q = (𝑥𝑐𝑛𝑑 , 𝜃, 𝜅) and contains the desired values of
the retrieved cases, where 𝜃 is set to 100% and 𝜅 to 70. The target organisation for the
inspection 𝑥𝑐𝑛𝑑 is a hotel in Oslo.
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TABLE C.1. The state of a dynamic checklist y𝑐𝑛𝑑 with𝐾 = 5 initial items, generated for a hotel
inspection in Oslo. Two items on the checklist have been answered (as indicated
with blue circles). Two items have also been dynamically added to the checklist
(at the bottom), based on the answered items.

Constructed Checklist and Item Recommendations. Table C.1 shows the con-
structed checklist y𝑐𝑛𝑑 for the target hotel 𝑥𝑐𝑛𝑑 where two of the items have been
answered. The answers were randomly selected. The initial size of the checklist is
𝐾 = 5 items, however two items have been added as recommendations based on the
answered items. Further items may be added after more answers are given. The added
items increases the checklist length, but allow the inspector to focus more on highly
relevant risks in the inspected organisation.
Qualitative Assessment. The items in Table C.1 cover a variety of topics such as
working hours, overtime payment and violence. These are all common risks for the
hotel industry, especially in a large city such as Oslo. The added items shown in the
table are also relevant and closely related to the two answered items on the top of the
checklist. Thus, the recommendations align well with the findings at the inspection.
CBCBR also performed well when we, with domain experts, assessed a variety of other
inputs (𝑥𝑐𝑛𝑑 ) and lengths (𝐾 ).

C.6 EXPERIMENT

In this section we conduct an experiment to measure the performance of CBCBR
against BCBR and other baselines.
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C.6.1 Experimental Setup

CBCBR and BCBR Configuration. Both CBCBR and BCBR generate the exact same
initial checklists, but BCBR does not perform any additional recommendations or
dynamic adaptations. The two methods use the same configuration as Flogard et al. [7].
The NBI models for CBCBR and BCBR use fixed priors𝜓𝐿=1 |𝑥,𝑒 = 1 and𝜓𝐿=0 |𝑥,𝑒 = 5.
For every query q, the target matching value for 𝜃𝑏𝑒 is set to 100%. The target value
for 𝜅 is set to 70. The NBI models are created and updated via MSSQL17 queries
and stored as Python data frames. The similarity based retrieval is implemented via
MyCBR [28] for both methods. For performance reasons, CBCBR recommendations
are made each time 5 items on the checklist have been answered.
Generating Checklist Answers for Predictive CBCBR Recommendations. To
generate predictive recommendations for CBCBR in the experiment, we introduce
a simulator. The approach is similar to user-behaviour simulations in recommender
systems [29], as the goal of the simulator is to perform a realistic walk-through of an
initial checklist to obtain an answer 𝑙𝑖 for each item 𝑒𝑖 ∈ y𝑐𝑛𝑑 . These answers are then
used to generate realistic item recommendations in the experiment below. This is done
as follows:

1. For a given target organisation 𝑥𝑐𝑛𝑑 , CBCBR (modelM) first constructs an
initial checklist y𝑐𝑛𝑑 with items 𝑒𝑖 . Each 𝑒𝑖 is retrieved from a case c𝑖 ∈ CB
and has an unobserved answer 𝑙𝑖 .

2. For each 𝑒𝑖 ∈ y𝑐𝑛𝑑 , a value for 𝑙𝑖 needs to be generated by drawing from the set
{0, 1}.

3. To do so, the parameters b𝑖 of a Bernoulli distributionB for 𝑙𝑖 are estimated em-
pirically from CB using the following expression: b𝑖 = CB#(𝐿=1∧𝑋=𝑥𝑐𝑛𝑑∧𝐸=𝑒𝑖 )

CB#(𝑋=𝑥𝑐𝑛𝑑∧𝐸=𝑒𝑖 )
.

4. If 𝑒𝑖 is an item that has been recommended earlier in the simulation, the recom-
mendation context is taken into account when calculating b𝑖 . This is done by
applying Eq. C.3 to CB (instead ofD): b𝑖 = 𝜃𝑏𝑒 (𝐿 = 1|𝑥𝑐𝑛𝑑 , 𝑒𝑖 , y𝑐𝑛𝑑 ).

5. The value 𝑙𝑖 ∈ {0, 1} is now drawn from a Bernoulli distribution, given by
B(b𝑖 , 1 − b𝑖 ). If 5 values have been generated since the last recommendation,
then proceed to the next step. Otherwise, go to Step 2.

6. After 5 𝑙𝑖-values are generated, CBCBR is updated with the new values in order
to perform a recommendation. Any recommended items are then automatically
appended to y𝑐𝑛𝑑 . After the recommendation, go to Step 2 if there are any
unanswered items left in y𝑐𝑛𝑑 .

After the procedure above has been applied, the extended checklist is ready for
evaluation.
Baselines for the Experiment.We use these following baselines to generate static
checklists: Multi layer perceptron (NN), Random forest (RF), Naive Bayes inference
(NBI), Decision tree (DT) and Logistic regression (LR).

Each baseline (M) above generates a checklist of𝐾 items as follows: (1)M is first
trained on a training setD𝑇 ofD , using 𝑙 from each instance d = (𝑒, 𝑥, 𝑙) as the target
label. EachM is trained with the goal of correctly classifying the value of 𝑙 , given 𝑥 and
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𝑒 . (2) Given a validation setD𝐶𝐵 ofD and an input 𝑥𝑐𝑛𝑑 ,M generates a prediction
score ([0, 1]) for every 𝑁 possible items. Predictions are only generated for items (𝑒)
with at least one corresponding instance (𝑒, 𝑥, 𝑙) ∈ D𝐶𝐵 where 𝑥 = 𝑥𝑐𝑛𝑑 . (3) The 𝐾
items with the highest scores are selected for the candidate checklist y𝑐𝑛𝑑 .

We also use the original, domain expert created checklists (ECL) from theChecklist
data set as baseline.
Baselines Configuration. The NBI-baseline is calculated using Equation C.1 and
is implemented via MSSQL17. The other baselines are implemented via Sklearn,
using the default configurations for most of them. For the NN and RF baselines we
used GridsearchCV (Sklearn) for hyperparameter tuning. The optimal configuration
for NN was 20 layers, logistic activation function and L2 penalty of 0.0001. The
optimal configuration for RF was 50 estimators, bootstrapping sample size of 50% and
minimum sample size of 10 for node splits.
Environment. The experiment is conducted on a fully upgraded Dell Precision 5560
with Intel i9 11950h and 64GB RAM, in a Python environment using Scikit-learn
(Sklearn).

C.6.2 Evaluation of CBCBR’s Dynamic Checklists

The goal of this experiment is to evaluate the performance of CBCBR against BCBR
and other baselines.
Method and Data. The experiment is done on the data setD from Section C.5. An
8-fold cross-validation is used whereD is partitioned into training folds (D𝑇 ) and
validation folds (DCB ). D𝑇 is used to calculate any probability estimates needed to
select or recommend items for a checklist y𝑐𝑛𝑑 .DCB is used for the case base (CB) and
for performance evaluation. Each validation fold has 138 938 instances that constitutes
7 954 inspections. Each inspection contains a target organisation 𝑥 that is used as
input (𝑥𝑐𝑛𝑑 ) to each checklist construction modelM . Each modelM then generates a
candidate checklist y𝑐𝑛𝑑 for each given 𝑥 as described in Section C.4 and C.6.1. The
target length of y𝑐𝑛𝑑 is set to 𝐾 = 15.2

Statistics for all checklists created by eachM are calculated as follows: For each
generated y𝑐𝑛𝑑 , all items 𝑒𝑖 ∈ y𝑐𝑛𝑑 are considered as having predicted positive answers
𝑙𝑖 = 1. The rest of the 𝑁 possible items where 𝑒 ∉ y𝑐𝑛𝑑 are considered as having
predicted negative. The number of true positive (𝑇𝑃 )/false positive (𝐹𝑃 ) answers and
true negative (𝑇𝑁 )/false negative (𝐹𝑁 ) answers of y𝑐𝑛𝑑 are estimated from empirical
distributions ofDCB , as described by Flogard et al. [7]. This is done because every y𝑐𝑛𝑑
is a new checklist, somost items𝑒𝑖 ∈ y𝑐𝑛𝑑 do not have an observed ground truth answer
𝑙𝑖 . The estimates are used to calculate accuracy, precision and recall statistics for each
y𝑐𝑛𝑑 via: 𝐴𝑐𝑐y𝑐𝑛𝑑 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 , 𝑃𝑟𝑒𝑐y𝑐𝑛𝑑 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 and𝑅𝑒𝑐y𝑐𝑛𝑑 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . The final
mean Acc, Prec and Rec for each validation fold are found by averaging each statistic
over all 7954 generated y𝑐𝑛𝑑 . We also included Prec (gt), which is mean precision
calculated by only using the subset of items on the checklists where ground truth

2For CBCBR, each generated y𝑐𝑛𝑑 also includes recommended items. The initial length of
CBCBR’s checklists are 𝐾 = 15, before adding any extra items. The code for the experiment is
published at https://github.com/ntnu-ai-lab/cbcbr.

https://github.com/ntnu-ai-lab/cbcbr
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Method Acc Prec (gt) Prec Rec Avg Time (sec)
ECL 0.365 0.177 0.176 0.592 0.328 -
DT 0.494 0.229 0.258 0.610 0.398 3 641
LR 0.513 0.247 0.272 0.664 0.424 205
RF 0.518 0.253 0.284 0.676 0.433 4 222
NBI 0.520 0.254 0.286 0.686 0.437 7.2
NN (MLP) 0.521 0.256 0.290 0.688 0.439 14 280
BCBR 0.675 0.313 0.479 0.764 0.558 8.7
CBCBR 0.675 0.322 0.497 0.808 0.576 8.6 (4.5)

TABLE C.2. The mean accuracy Acc, ground truth precision Prec (gt), precision Prec and recall
Rec for the content of the checklists, created via the various methods in the table.
The Avg column shows the average scores of the four preceding columns. The
last column shows the training times in seconds for each method.

answers are available. The statistics are comparable to mean average (MA), used to
evaluate recommender systems [30].
Results and Discussion. The results are shown in Table C.2. CBCBR has the highest
Avg score and has higher scores than BCBR on most of the statistics. This is impressive
as CBCBR’s checklists are longer and should generally have lower Acc, Prec and Prec
(gt), since only 17.7% of the instances in the data set have positive labels (𝑙 = 1) and
longer checklists means more predicted positives. NN has the third highest Avg score,
only marginally higher than NBI. It may be possible to improve the results for NN
with more advanced parameter tuning methods, but this will unlikely be enough to
match BCBR or CBCBR’s performance. The domain experts’ checklists (ECL) have
the lowest score.

On average, the checklists constructed by CBCBR contain 9.13 violations (true
positives) against 7.19 for BCBR. CBCBR’s checklists also contain 18.1 items against
15.0 for BCBR. This means that CBCBR recommends 3.1 items on average, because
CBCBR creates the same initial checklists as BCBR. There are 1.94 violations found
among the 3.1 recommended items, which corresponds to a precision score of 0.63.
Thus, CBCBR’s recommendations have much higher precision than static checklists
created by BCBR or other baselines in Table C.2. Overall, the results suggest that
using CBCBR’s dynamic checklists for labour inspections will increase efficiency and
the amount of violations to working environment regulations found at the inspected
organisations.

Time-wise, the slowest method is NN with an average training time of 14 280
seconds, excluding hyper parameter optimization. The fastest method is NBI with
7.2 seconds training time. CBCBR is nearly as fast, as the combined time for model
training and generating an initial checklist is 8.6 seconds. This is much faster than
LR and DT, which are known for their low training times. It also takes 4.5 seconds to
update CBCBR and recommend new items after answering a checklist. However, the
cross-validation took more than 20 days to complete because CBCBR must be trained
and updated individually for each validation case. Still, the short individual training
and update times for each checklist means that CBCBR can be used as an online model
and we believe that further speed-ups can be achieved via parallelization.
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C.7 CONCLUSION

In this work we show that dynamic answer-based adaptations to checklists can signifi-
cantly increase the number of violations found in labour inspections. We introduce
CBCBR for real-time generation and adaption of checklists, which could be employed
by labour inspection agencies to increase the efficiency of their inspections. This will
likely increase national and global levels of compliance with labour rights and reduce
injuries (see SDG indicator 8.8.1 and 8.8.2). We are currently testing the real-world
performance of CBCBR in a trial.

This paper only explores one of many possible approaches for dynamically adapt-
ing checklists. Future work could investigate other designs as well. An example is to
dynamically build checklists from ground-up, starting with one item and adding 𝐾
more, one-by-one as answers are obtained. Another direction for future work is to
explore approaches for creating checklist items, where Cai et al. [20] could be a starting
point. It could also be interesting to look into other ML methods for dynamically
adapting checklists, such as RNNs. CBCBR’s dynamic checklists could also be tested
in other relevant tasks, such as food inspections, aviation or surgeries.

C.8 REFERENCES

[1] Srdjan Jelacic, Andrew Bowdle, Bala G Nair, Kei Togashi, Daniel J Boorman,
Kevin CCain, JohnDLang, and E PatchenDellinger. Aviation-style computerized
surgical safety checklist displayed on a large screen and operated by the anesthesia
provider improves checklist performance. Anesthesia&Analgesia, 130(2):382–390,
2020.

[2] Daniel E Ho, Sam Sherman, and Phil Wyman. Do checklists make a difference?
a natural experiment from food safety enforcement. Journal of Empirical Legal
Studies, 15(2):242–277, 2018.

[3] ØyvindDahl andMarius Søberg. Labour inspection and its impact on enterprises’
compliance with safety regulations. Safety Science Monitor, 17(2):1–12, 2013.

[4] Nektarios Karanikas and Sikder Mohammad Tawhidul Hasan. Occupational
health & safety and other worker wellbeing areas: Results from labour inspections
in the bangladesh textile industry. Safety Science, 146:105533, 2022.

[5] W̃orld Health Organization. Joint estimates of the work-related burden of disease
and injury, 2000-2016: Global monitoring report. Technical report, 2021.

[6] Ken Catchpole and Stephanie Russ. The problem with checklists. BMJ quality &
safety, 24(9):545–549, 2015.

[7] Eirik Lund Flogard, Ole Jakob Mengshoel, and Kerstin Bach. Bayesian feature
construction for case-based reasoning: Generating good checklists. In ICCBR,
pages 94–109. Springer, 2021.



100 ▶ PAPER C

[8] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications, 7(1):39–
59, 1994.

[9] Eliot Grigg. Smarter clinical checklists: how to minimize checklist fatigue and
maximize clinician performance. Anesthesia & Analgesia, 121(2):570–573, 2015.

[10] Leah Kulp, Aleksandra Sarcevic, Megan Cheng, and Randall S Burd. Towards
dynamic checklists: Understanding contexts of use and deriving requirements
for context-driven adaptation. ACM TOCHI, 28(2):1–33, 2021.

[11] Stefan C Christov, Heather M Conboy, Nancy Famigletti, George S Avrunin,
Lori A Clarke, and Leon J Osterweil. Smart checklists to improve healthcare
outcomes. In International Workshop on SEHS, pages 54–57, 2016.

[12] AJRDe Bie, SNan, LREVermeulen, PMEVanGorp, RA Bouwman, AJGHBindels,
and HHM Korsten. Intelligent dynamic clinical checklists improved checklist
compliance in the intensive care unit. BJA: British Journal of Anaesthesia, 119(2):
231–238, 2017.

[13] Khalid Haruna, Maizatul Akmar Ismail, Suhendroyono Suhendroyono, Damiasih
Damiasih, Adi Cilik Pierewan, Haruna Chiroma, and Tutut Herawan. Context-
aware recommender system: A review of recent developmental process and future
research direction. Applied Sciences, 7(12):1211, 2017.

[14] WasimHuleihel, Soumyabrata Pal, and Ofer Shayevitz. Learning user preferences
in non-stationary environments. In AISTATS, pages 1432–1440. PMLR, 2021.

[15] Mobin M Idrees, Leandro L Minku, Frederic Stahl, and Atta Badii. A heteroge-
neous online learning ensemble for non-stationary environments. Knowledge-
Based Systems, 188:104983, 2020.

[16] Pamela J Morgan, Jenny Lam-McCulloch, Jodi Herold-McIlroy, and Jordan
Tarshis. Simulation performance checklist generation using the delphi technique.
Canadian journal of anaesthesia, 54(12):992–997, 2007.

[17] Marly Ryoko Amaya, Danieli Parreira da Silva Stalisz da Paixão, Leila
Maria Mansano Sarquis, and Elaine Drehmer de Almeida Cruz. Construction
and content validation of checklist for patient safety in emergency care. Revista
gaucha de enfermagem, 37, 2017.

[18] Felicity Hasson, Sinead Keeney, and Hugh McKenna. Research guidelines for the
delphi survey technique. Journal of advanced nursing, 32(4):1008–1015, 2000.

[19] Haoran Zhang, Quaid Morris, Berk Ustun, and Marzyeh Ghassemi. Learning
optimal predictive checklists. NeurIPS, 34, 2021.

[20] Hubo Cai, JungHo Jeon, Xin Xu, Yuxi Zhang, Liu Yang, et al. Automating the
generation of construction checklists. Technical report, Purdue University. Joint
Transportation Research Program, 2020.



C.8 REFERENCES ◀ 101

[21] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender
systems. In Recommender systems handbook, pages 217–253. 2011.

[22] Gharbi Alshammari, Jose L Jorro-Aragoneses, Stelios Kapetanakis,Miltos Petridis,
Juan A Recio-García, and Belén Díaz-Agudo. A hybrid cbr approach for the long
tail problem in recommender systems. In ICCBR, pages 35–45. Springer, 2017.

[23] Jose Luis Jorro-Aragoneses, Marta Caro-Martínez, Belén Díaz-Agudo, and Juan A
Recio-García. A user-centric evaluation to generate case-based explanations
using formal concept analysis. In ICCBR, pages 195–210. Springer, 2020.

[24] Hoda Nikpour and Agnar Aamodt. Fault diagnosis under uncertain situations
within a bayesian knowledge-intensive cbr system. Progress in Artificial Intelligence,
pages 1–14, 2021.

[25] BeenKim, Cynthia Rudin, and Julie A Shah. The bayesian casemodel: A generative
approach for case-based reasoning and prototype classification. InNeurIPS, pages
1952–1960, 2014.

[26] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge
university press, 2009.

[27] Ole Jakob Mengshoel, Eirik Flogard, Jon Riege, and Tong Yu. Stochastic local
search heuristics for efficient feature selection: An experimental study. InNorsk
IKT-konferanse for forskning og utdanning, pages 58–71, 2021.

[28] Kerstin Bach, Bjørn Magnus Mathisen, and Amar Jaiswal. Demonstrating the
mycbr rest api. In ICCBR Workshops, pages 144–155, 2019.

[29] Shuo Zhang and Krisztian Balog. Evaluating conversational recommender sys-
tems via user simulation. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1512–1520, 2020.

[30] Garima Natani and Satoru Watanabe. Knowledge graph-based data transforma-
tion recommendation engine. In IEEE BigData, pages 4617–4623. IEEE, 2021.



102 ▶ PAPER D

PAPER D:
A DATASET FOR EFFORTS TOWARDS ACHIEVING THE SUS-
TAINABLE DEVELOPMENT GOAL OF SAFE WORKING ENVI-
RONMENTS

Published in: Advances in Neural Information Processing Systems (NeurIPS), 2022.
Acceptance rate: 25.6% (2022)
Norwegian Scientific Index Level: 2 (highest)

Notes. This paper is published in Advances onNeural Information Processing Systems,
which is one of themost leading publications in the field of machine learning (ML). The
channel receives contributions from the topML researchers and has an acceptance rate
of 25.6% for 2022. Neurips is ranked among the top 10 most influential publication
channels in science by Google Scholar in 2022. The publication channel is also ranked
at the highest level (2) in the Norwegian Scientific Index in 2022, placing it above most
other conferences and journals in the AI field. Level 2 is generally reserved for the
most leading publication channels, publishing the most significant research within
their respective fields of science. Advances on Neural Information Processing Systems
is registered with an ISSN number and is regarded as a journal in the Norwegian
publication channel register, meaning that the paper is worth 3 publication points.
The paper has been reformatted to ensure readability and consistency with the other
papers in the thesis.

Contribution Statement. My contribution to the paper includes the ideas presented
in the paper, writing the first draft, data collection and carrying out the experiments
described in the paper. The co-author of the paper is my supervisor who helped
to refine the paper. He also helped to write the final version of the abstract and
introduction of the paper.



D.1 INTRODUCTION ◀ 103

A DATASET FOR EFFORTS TOWARDS ACHIEVING THE
SUSTAINABLE DEVELOPMENT GOAL OF SAFE

WORKING ENVIRONMENTS

Eirik Lund Flogard1,2 andOle JakobMengshoel2
1Norwegian Labour Inspection Authority

2Norwegian University of Science and Technology
eirik.flogard@arbeidstilsynet.no, ole.j.mengshoel@ntnu.no

ABSTRACT

Among United Nations’ 17 Sustainable Development Goals (SDGs), we highlight SDG
8 on Decent Work and Economic Growth. Specifically, we consider how to achieve
subgoal 8.8, “protect labour rights and promote safe working environments for all
workers [. . . ]”, in light of poor health, safety and environment (HSE) conditions being
a widespread problem at workplaces. In EU alone, it is estimated that more than 4000
deaths occur each year due to poor working conditions. To handle the problem and
achieve SDG 8, governmental agencies conduct labour inspections and it is therefore
essential that these are carried out efficiently. Current research suggests that machine
learning (ML) can be used to improve labour inspections, for instance by selecting
organisations for inspections more effectively. However, the research in this area is
very limited, in part due to a lack of publicly available data. Consequently, we introduce
a new dataset called the Labour Inspection Checklists Dataset (LICD), which we have
made publicly available. LICD consists of 63634 instances where each instance is an
inspection conducted by the Norwegian Labour Inspection Authority. LICD has 577
features and labels. The dataset provides severalML research opportunities; we discuss
two demonstration experiments. One experiment deals with the problem of selecting
a relevant checklist for inspecting a given target organisation. The other experiment
concerns the problem of predicting HSE violations, given a specific checklist and a
target organisation. Our experimental results, while promising, suggest that achieving
good ML classification performance is difficult for both problems. This motivates
future research to improve ML performance, inspire other data analysis efforts, and
ultimately achieve SDG 8.

D.1 INTRODUCTION

Background. Poor health, safety and environment (HSE) conditions in workplaces
is a widespread problem that negatively affects both individuals and society. Every
year in EU alone, more than three million workers are victims of serious accidents
causing more than 4000 deaths due to poor working conditions [1]. World-wide,
it has been estimated that at least 9.8 million people are in forced labour (2005) [2].
Labour inspections, a part of the International Labour Organization’s “Decent Work
Agenda,” seek to preventing this and enforce regulations that protect workers’ health,
environment and safety [3]. Labour inspections are also important to globally achieve
UN’s Sustainable Development Goal (SDG) 8.8, “protect labour rights and promote
safe working environments for all workers [. . . ].”
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To identify poor HSE conditions, labour inspection agencies use checklists to
survey organisations for non-compliance [4–6]. Each checklist contains questions
that relate to common working environment violations within one or more indus-
tries. The answers to the questions indicate whether non-compliance to HSE and
working environment regulations are found within the targeted organisations. When
non-compliance is found, the agency follows up with reactions against the organisa-
tions. Checklists are also used in other high-stakes domains including aviation, food
inspection and surgery [7, 8]. They are also used in machine learning (ML) for various
tasks, such as testing and evaluating NLP models [9, 10] or fairness assessments [11].

Since labour inspection agencies usually have limited resources, it is vital that
the inspections are carried out efficiently. This is challenging, as inspection strategies
are difficult to adapt to a world that is constantly changing [12, 13]. Therefore, some
agencies have recently started to useML to select organisations for inspections [14, 15].
This is shown to increase inspection efficiency, as violations are far more common in
the organisations that are selected using ML. However, ML research in this areas has
been very limited. To our knowledge, and other than our previous work [15, 16], there
is a lack of publicly available datasets to enable such research.
The Labour Inspection Checklists Dataset. In order to address SDG 8, specifically
SDG 8.8, we present the Labour Inspection Checklists dataset (LICD) [17]. We aim to
support and inspire ML research on labour inspections. Our current LICD dataset
complements previous SDG-related NeurIPS datasets and benchmarks [18, 19], since
none of them covers SDG 8. LICD is a Norwegian dataset, translated to English, that
consists of results from inspections conducted by the Norwegian Labour Inspection
Authority (NLIA) between January 2012 and June 2019. The dataset contains 63634
instances and 575 features. Each instance contains organisational and financial in-
formation about the organisation targeted for the inspection, a description of the
checklist used and a binary variable that indicates whether violations were found. To
demonstrate possible LICD use-cases, we introduce and show initial experimental ML
results for these two problems:
The Checklist Selection Problem (CLSP): Let there be a selection of𝑁 checklists and a target
organisation x. Given the 𝑁 possible checklists, select the best checklist 𝑦 to survey the target
organisation x. In this setting, the best checklist is the checklist that its user (the inspector)
considers to be most relevant for surveying x. The problem can be seen as a classification
problem.

The Non-compliance Classification Problem (NCP): Given a checklist 𝑦 and a target
organisation x, classify the target organisation’s compliance 𝑙 to any of the regulations given by
the content of 𝑦. The value of 𝑙 is unknown until the completion of the inspection and belongs
to a Bernoulli distribution where 𝑙 = 1 means that the target organisation is non-compliant
and 𝑙 = 0 means that the organisation is compliant.

Both problems are non-trivial and important to promote safe workplaces. For
CLSP, there are 𝑁 = 369 different checklists that can be used for any given organisa-
tion. Table D.1 demonstrates how labour inspection checklists can vary significantly,
even among similar organisations. The reason for this is that organisations are sub-
jected to numerous regulations and only a few of these are covered by each checklist.
Selecting a checklist that covers all the most relevant subset of regulations is no trivial
task, so CLSP is therefore difficult to solve. The task is also important, as a conse-
quence of selecting wrong checklists may be that working environment violations are
left unaddressed [15]. NCP is also important as it can be useful for selecting the best
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Checklist Content Industry County Result
Working agreements, HSE and working environment training, Working hour
schedules, Occupational health service, Building and equipment conditions,
Risk assessment and measures, ...

Accommodation
business

Oslo Compliant

Market control - chemicals, Substance register. Manufacture of
metal products

Rogaland Non-compliant

HSE and working environment training, Occupational health service, Mapping
and risk assessment of chemicals and biological factors, Personal protective
gear - technical, Noise exposure, ...

Manufacture of
metal products

Viken Non-compliant

TABLE D.1. Summary of three inspections of three different organisations. The inspections are
conducted in two different industries, with three different checklists. The last two
rows show different checklists being used for similar organisations, illustrating
that checklists are situation dependent.

combinations of checklists and organisations for inspections, by predicting whether
violations at a potential organisation is found when using a potential checklist. Alter-
natively, the checklist-component in NCP can be omitted so that the problem only
focuses on predicting violations in organisations [14]. Both CLSP and NCP could also
be solved as a multi-objective problem of selecting the most relevant checklist (CLSP)
that also maximizes the likelihood for finding non-compliance in the inspected organ-
isation (NCP). However, for simplicity we treat CLSP and NCP as single-objective
problems in this paper.
Paper Overview. The rest of the paper has the following structure. In Section D.2
we present an overview of related work. A formal description of LICD is provided
in Section D.3. Section D.4 describes how the data was collected and processed. An
analysis of the dataset is provided in Section D.5. Two baseline CLSP and NCP experi-
ments are conducted in Section D.6. In Section D.7, we discuss implications of this
work, including ideas for future work.

D.2 RELATED WORK

Regulation Enforcement Datasets. Earlier, we used a dataset similar to LICD to
construct new checklists via ML [15, 16]. However, the previous dataset only contains
4 independent features and cannot easily be used for other tasks beyond constructing
new checklists. In contrast, LICD contains as many features as we have been able to
collect (that can also be shared to the public within legal and ethical limits). Further,
LICD is designed for checklist selection and non-compliance prediction rather than
checklist construction. Since selecting existing checklists may be much simpler than
creating new ones, an ML method for doing so may be easier to adopt for labour
inspection agencies.

Superficially similar labour inspection datasets from other countries are publicly
available, such as the Danish Smiley dataset [20]. Unfortunately, the Smiley dataset
only contains instances where organisational non-compliance is found (positive labels);
there are no instances where the organisation is compliant (negative labels) that also
include inspection details. Another example is a dataset published by the American
OSHA, which is frequently used in health and safety research [21, 22]. However, the
dataset is not complete from anML perspective since it only contains records about
the regulations that were found non-compliant at the inspections (positive labels). The
OSHA dataset also contains injury records, so Johnson et al. [23] propose to use ML
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on them to prioritize organisations for inspections. However, injury data may not
be reliable for this purpose due to bias and under-reporting of accidents and injuries
to authorities [24]. Other labour inspection datasets have been analysed [5, 6], but
none are published openly. A mining safety inspection dataset is openly available [25],
but such inspections are highly specialized; health and safety hazards and regulations
in other industries are quite different. Datasets from other enforcement domains
have also been published. These datasets include environmental inspections where
ML has been used to predict violations in facilities [26]. There is also the Vancouver
Crime dataset for law enforcement, which has been used for both criminology and
ML research [27, 28]. Another example is the Chicago Food Inspection dataset, which
includes anMLclassificationmodel [29, 30]. These datasets are fundamentally different
from LICD, but highlight the importance of ML research within other branches of
regulation enforcement.
Checklists in Other Domains. In addition to labour inspections, checklists are
used in other situations where ensuring human health and safety is critical. In surg-
eries, checklists are used to ensure compliance to safety standards. For example, the
WHO Surgical Safety Checklist from 2008 has substantial positive effects on patients’
safety [31]. However, there are challenges related to implementation of the checklist in
daily use. Some of the challenges are communication errors, lack of user compliance
and lack of flexibility since standards of medicine varies from country to country [32].
Cockpit checklists in the aviation industry also face similar challenges, as improper
checklist usage can lead to accidents [33]. The success of using a checklist may depend
on having the correct content for a given context. Selecting the most relevant checklist
for a given context is also one of the motivations for our work.
Long-tail Classification. In Section D.5 we observe that the distribution of checklists
in LICD is long-tailed and since the dataset contains 𝑁 = 369 unique checklists, the
dataset could be relevant for methods which address long tail classification problems.
Dealing with long tail distributions, where classes tend to be distributed according to
Zipf’s law, can be challenging as models usually perform better when dealing with head-
classes than the tail-classes [34]. Some well known long tail distributed datasets besides
LICD already exist, such as CIFAR-100-LT, Fashion-MNIST or ImageNet-LT [35, 36],
but these are not directly SDG-relevant. Themost well-known approaches to deal with
long tailed distributions are balancing methods, such as under- or oversampling [37].
Various ML and feature extraction-based methods to improve classification perfor-
mance on long-tailed datasets have also been proposed [38–41]. However, the scope
of this paper is to describe LICD rather than developing new methods for addressing
problems such as classification of long-tail distributions.

D.3 DATASET DESCRIPTION

The LICD consists of 63634 instances with past inspections conducted by NLIA be-
tween 01/01/2012 and 01/06/2019 [17]. Each instance in LICD is described via 575
features and two target variables. Each feature represents either organisational or
financial information about the inspected organisation. The first target variable is an
identifier for the checklist that was used to inspect the organisation. The second target
variable denotes whether non-compliance was found at the inspection. The features,
target variables and column names of the dataset have been translated fromNorwegian
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FIGURE D.1. Diagram showing relations between different features and entities in the dataset.
All of these are contained within a single table.

to English.
DataCollection. LetD be LICD (table) where each instance (row) consists of an inspec-
tion d. The initiation of an inspection usually happens as a result of risk assessments.
Each inspection takes 1-4 hours and is carried out using a checklist (𝑦), which is a form
that consists of yes/no questions. A no-answer to any of the questions means that the
organisation is non-compliant (𝑙 = 1) to one of the regulations enforced by the agency.
After the completion of the inspection, the completed checklist is uploaded digitally
to NLIA’s case management system. A report is then generated and delivered to the
target organisation, regardless of the findings at the inspection. For any violations that
are found, the corresponding questions and answers in the completed checklist are
quoted in the report.

The information from each report is used to create an instance d in the dataset
D. Thus, each instance in the dataset is collected organically as part of NLIA’s daily
operations without additional interventions. Figure D.1 shows the relations between
various entities of the dataset. A description of these follows below.
Inspection. An inspection is a single instance in LICD and can be viewed as a tuple
d = (x, 𝑦, 𝑙) where x is a target organisation, 𝑦 is a checklist and 𝑙 is the outcome of
the inspection after using𝑦 to survey x. x consists of the 575 features in the dataset,
while𝑦 and 𝑙 represent the target variables.
Organisation. An organisation x ∈ d is described by the 575 features in LICD.
Each feature contains either organisational or financial information about the target
organisation. Figure D.1 shows how organisational information is contained in these
features: Industry codes1 (categorical), presence in the employer and VAT register
(binary), county (categorical) and number of employees (integer). The other features,
which are real numbers, contain financial information about the inspected organisation.
Many of the instances in LICD have missing values (“NULL”) for the financial features
whenever these are irrelevant for the organisations’ daily operations or fiscal reports.
We therefore recommend replacing these missing values with 0 for the purpose of
training ML models on the dataset.
1Interpretation table for industry codes: https://www.ssb.no/en/klass/klassifikasjoner/6

https://www.ssb.no/en/klass/klassifikasjoner/6
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Checklist. Each instance d in LICD contains a checklist𝑦, used to survey an organisa-
tion x. The content of 𝑦 is described by a column named Checklist Content, which
lists of all the topics that are being investigated during the inspection. Every checklist
𝑦 is also associated with an identifier (Checklist ID). The Checklist ID is categorical
and is one of the target variables in LICD. Since there are 369 unique checklists in the
dataset, the Checklist ID can take on 369 different values.
Non-Compliance. Each inspection has an outcome 𝑙 in LICD, where 𝑙 = 1 denotes
that at least one of the questions on the checklist were found to be non-compliant
(violation) at the inspection. The value 𝑙 = 0 means that no checklist questions were
found to be non-compliant. The outcome 𝑙 is also considered to be one of the potential
target variables in the dataset.

D.4 DATASET ACQUISITION

Processing and Validation. LICD is a new dataset that is now being made publicly
available, with exclusive permission from NLIA. The dataset was retrieved from the
agency’s databases using MSSQL17. Quality and integrity assurance is dealt with by
NLIA’s case management system, since this is essential for the system’s operations (see
Section D.3). This assurance includes validation of data type, range and constraints.
Consistency is also ensured by saving “information snapshots” of the target organi-
sations at the time of the inspection, so that inspection records are unaffected by any
updates to the organisations’ registered information.
Data Source Availability and Harm Prevention. LICD contains information from
sources that are publicly available, to some extent. Some of the organisational and
financial features are available throughNorway’s official CentralCoordinatingRegister,
but the register has no historical records. The checklists and inspection outcomes are
only available from inspection reports. Some of these may be available to the public,
but access is granted only on a case-by-case basis via requests.

Since it is difficult to prevent identification of organisations in LICD, our strategy
for harm prevention is to ensure that the dataset only contains information that is
safe to make publicly accessible. For this reason we have not included details such as
which regulations were found to be non-compliant. As an extra precaution we also
deliberately make it difficult to identify organisations in the dataset. To do so we have
excluded the organisation names, identifiers and precise locations from the dataset.

D.5 ANALYSIS OF THE DATASET

In this section we conduct some analyses on LICD to highlight how the target labels
and some of the key features of the dataset are distributed. We focus on industry
and location (county), because these features are known to be important for labour
inspections [12, 15, 16].
Distribution of Inspections Over Industries. Labour inspections are industry-
oriented [12], so Figure D.2a shows a histogram of inspections over different industry
codes in the dataset. The horizontal axis represents the industry codes, which can
be regarded as an ordinal feature where each number represents a specific industry.
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(A) Histogram of inspec-
tions over industry
codes.

(B) Distribution of non-
compliance in LICD.

(C) Histogram of check-
lists. Each unique
checklist is denoted as
a number on the x-axis.

FIGURE D.2. Histograms of inspections, non-compliance and checklists with discrete unit bins
on the horizontal axes. The vertical axes on the figures represent the number of
occurrences in LICD.

Industries with codes in close proximity to each other are often related. The vertical
axis shows how many inspections that have been carried out in a particular industry
code. As seen on the figure, most of the inspections are focused on industry codes from
50 to 60, which correspond to most of the building and road construction industries.
Distribution of Non-Compliance. As seen in Figure D.2b, non-compliance (𝑙 = 1) is
found in more than 40000 inspections in LICD. In other words, at least one violation
is found in 74% of the inspections in the dataset. The fact that the majority of the
inspected organisations are found to be non-compliant reflects the importance of
labour inspections, in terms of correcting health, environment and safety problems in
workplaces.
Distribution of Checklists. Figure D.2c shows a histogram of the observation count
of each unique checklist for all industries. The checklists are shown on the horizontal
axis, ordered according to their number of observations in LICD. The vertical axis
shows the number of observations in the dataset. The figure suggests that checklists
usage follows a long-tailed distribution [34], since only a small fraction of the checklists
are used very often.

County Count #
Agder 3375
Innlandet 5179
Møre & Romsdal 4368
Nordland 3555
Oslo 7688
Rogaland 5358
Svalbard 59
Troms & Finnmark 4148
Trøndelag 5463
Vestfold & Telemark 4922
Vestland 5773
Viken 13746

TABLE D.2. Overview of the distribution
of inspections for different
locations in the dataset.

Figure D.2c also shows the distribution
of checklists used within industry code 41,
which is long-tailed. Industry code 41 corre-
sponds to “building construction” and is one
of the industries with the highest number of
inspections in LICD. The figure reveals that
more than 140 different unique checklists
are used for inspections within that indus-
try. However, most of the inspections are
carried out using 20 of the available check-
lists. The high number of checklists used
within a single industry code points to the
fact that there is a significant diversity in
the health, environmental and safety risks
for organisations, even within the same in-
dustry.
Distribution of Inspections Over Regions. Table D.2 shows the distribution of
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inspections across different counties or regions (fylke). Most inspections are carried
out in Viken and Oslo, the two regions with the highest populations in Norway. The
inspection counts seem to correlate with the population count of each region.

D.6 DEMONSTRATION EXPERIMENTS

In this section we conduct two simple experiments to demonstrate potential use-
cases for LICD. The first experiment addresses the problem of predicting the best
checklist for a given organisation. The second experiment addresses the problem
of predicting non-compliance, when a specific organisation and checklist is given.
Due to the high number of features in LICD, we also evaluate some simple feature
selection algorithms. Feature selection is known to promote explainability for ML
in tasks involving high-stakes decision making, such as labour inspections [15, 42].
Feature selection can also improve computational and model performance via data
dimensionality reductions [43, 44] and could therefore be another use-case for LICD.
We used an earlier, unpublished version of LICD to evaluate feature selection methods
in our previous work [43].

D.6.1 Data Preprocessing

For the experiments, we use one-hot encoding for categorical features. The other
features are used directly in their original form. Many of the financial features contain
missing values, which are denoted as NULL (see Section D.3). We replaced these
missing values with 0 for the experiments, because this is usually the most correct
interpretation. We also excluded financial features with less than 10 observations,
since these are unlikely to be useful for ML. Since we are using feature selection for
the experiments, we decided to set this threshold fairly low.

D.6.2 Setup and Environment

The feature selection and ML methods used for the experiments are implemented via
Scikit-learn. We study the following methods for feature selection: Anova F, 𝜒2 , Model
Coefficients, Mutual Information, Forward Selection and Recursive Elimination. The
MLmethods used for the experiments are: Decision tree (DT), Logistic regression (LR),
Naive Bayes’ Classifier (NBC), K-Nearest-Neighbor (𝑘-NN), AdaBoost, GradientBoost
and Multi layered Perceptron (MLP). We are using GridSearchCV for hyper parameter
tuning for 𝑘-NN, AdaBoost, GradientBoost and MLP. For each method, prediction
threshold is set to 0.5 (NCP) or the class that has the highest prediction score (CLSP).
We decided to not set the prediction threshold individually for each method, in order
to keep the experiment simple and to avoid introducing bias.

Each ML method is always evaluated on 8 different feature set sizes that are
selected via feature selection. The set sizes are 0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%
and 50% of the 575 features in the dataset, rounded up to the closest integer.

ADell Precision 5560 laptopwith Intel i9 11950h at 5Ghz, 64GBRAMat 3200Mhz,
Nvidia Quadro RTX A2000 and Windows 10 are used for the experiments. The
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experiments are conducted in a Python environment using Scikit-learn 0.24 and Jupyter
Notebook.

D.6.3 Experiment 1: The Checklist Selection Problem (CLSP)

The goal of this demonstration experiment is to establish baselines for solving the
CLSP problem described in Section D.1. The experiment is broken down in two phases:
a pilot experiment where we evaluate feature selection methods for the problem, and
the main demonstration experiment.
Evaluation of Feature Selection Methods. Since LICD contains many features, we
decided to assess a range of feature selection methods for the main experiment. The
feature selection methods and evaluation details are discussed in Section D.6.2. We
use DT for the evaluation, since it is fast and compatible with all the feature selection
methods. After assessing each feature selection method, we then take the top three best
performing methods in terms of accuracy and use the two fastest performing methods
for our experiment.

Method Acc Time
Anova F .106 .75
𝜒2 .070 .78
Model coefficients .099 19.1
Mutual Info .106 296
Forward Selection .108 6146
Recursive elimination .105 306

TABLE D.3. Result from the feature se-
lection evaluation for CLSP
using DT, with time mea-
sured in seconds.

The results from testing the feature
selection methods are listed in Table D.3.
There are only minor differences between
most of the methods in the test. Forward
Selection, Anova F and Mutual Informa-
tion have the best recorded accuracy scores.
Forward Selection has the highest accuracy
but the score is recorded from one run
where only 0.1% of the features are selected.
Forward Selection was unable to complete
within two hours for any of the larger fea-
ture sets. We decided to move forward with
Anova F and Mutual Information for the main experiment, since they are the fastest
performing methods among the top three with highest accuracy.
Design of the Main Experiment. We are using the ML methods and setup described
in Section D.6.2. Each feature selection algorithm is applied to LICD before model
training and evaluation, using the 8 configurations of feature set sizes described in
Section D.6.2.

After performing hyper parameter tuning, the optimal configuration for AdaBoost
is 0.5 learning rate and 50 estimators. The optimal configuration for GradientBoost is
0.1 learning rate and 20 estimators. For 𝑘-NN, the optimal configuration is distance-
based weights and 𝑘 = 100 neighbors. The best settings for MLP are logistic activation
function, 100 hidden layers and constant learning rate.

Each configuration is evaluated using 5-fold cross-validation with randomly se-
lected training-evaluation sets from LICD. The performance is measured in terms of
balanced accuracy2, accuracy, precision and recall scores using the available methods
in the Scikit-learn library. The average standard deviation for each cross-validation is
also recorded. The results for each method are recorded by calculating the average of
the scores reported from the 8 feature selection configurations.

2Balanced accuracy is accuracy score calculated via Sklearn with class-balanced sample weights.
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Method Mutual Info Anova F Time
Bal. Acc Acc Prec Rec Bal. Acc Acc Prec Rec

LR .01±0 .02±.01 0±0 0±0 .01±0 .03±.01 0±0 .01±0 381
NBC .01±0 .01±0 .01±0 .01±0 .02±0 .01±.01 .01±0 .02±0 13.6
DT .06±.01 .09±.01 .05±0 .04±.01 .06±.01 .09±.02 .05±0 .05±.01 33.2
𝑘 -NN .05±.01 .08±.01 .05±.01 .03±0 .04±0 .07±.01 .04±0 .03±0 40.0
AdaBoost .01±0 .05±.02 0±0 .01±0 .02±0 .04±.02 0±0 .02±0 619
GradientBoost .03±.01 .06±.02 .03±.01 .02±.01 .04±.01 .08±.02 .03±0 .03±0 22316
MLP .01±.01 .04±.02 .01±.01 .01±0 .02±.01 .05±.02 .02±.01 .02±.01 338

TABLE D.4. Prediction performance with average standard deviations and run times from the
CLSP main experiment on LICD. Times are measured in seconds.

Results and Discussion. The results from the main demonstration experiment are
shown in Table D.4, where the best score in each column is highlighted. In overall,
it seems that achieving high prediction performance for CLSP is challenging. The
prediction performance scores are reasonably low since the target variable consists of
369 different classes. When comparing accuracy and balanced accuracy in the table, the
accuracy is in most cases greater than the balanced accuracy. This is probably caused by
the long tailed distribution of the target variable classes (unique checklists) in the dataset.
Out of the ML-methods we tested, DT had the highest balanced accuracy, accuracy,
precision and recall scores. The results are somewhat surprising, especially since both
AdaBoost and GradientBoost are based on using Decision trees as weak learners to
improve model predictions. However, these methods are also susceptible to overfitting,
which could be caused by the long-tailed class distribution of the target variable [34].
𝑘-NN also performed well in comparison, ranked as second best on nearly all the
scores in Table D.4. However, the results show that there is not significant differences
in balanced accuracy, accuracy and precision between the two best configurations of
𝑘-NN and DT. By naively predicting the most frequently used checklist from Figure
D.2c as positive, one can expect an accuracy and precision score of 2414

63634 ≈ 0.04. Both
𝑘-NN and DT perform better than this, which is promising. It is still questionable
whether these methods also would outperform an inspector or domain expert. Time-
wise, DT has an average cross-validation time of 33.2 seconds. This is slightly better
than 𝑘-NN’s 40.0 seconds.

Figure D.3a and D.3b show the number predictions that each of the 369 checklists
receives from DT and 𝑘-NN, and offer additional insights regarding the performance
of the two best configurations in Table D.4. Ideally, the distributions in Figure D.3a
and D.3b should be similar to the distribution of ground truth labels in Figure D.3c.
Compared to the distribution of predictions from 𝑘-NN, the distribution for DT is
more similar. In particular, the checklist with number 200 has the highest number
of observations in both Figure D.3a and D.3c. For 𝑘-NN, checklist number 9 has
940 predictions which is over 3 times as many as the number of ground truth labels.
Also, the predictions are much more concentrated between checklist number 0-100
in comparison to DT and the ground truths. Despite the similarities between Figure
D.3a and D.3c, the amount of true positives (matches between predicted checklists and
ground truths) for DT is low. One possible reason for this discrepancy is discussed in
Section D.6.5.

The overall difference in prediction performance between Mutual Information
and Anova F in Table D.4 is minor, but may slightly be in favour of Anova F for all
the methods except 𝑘-NN and AdaBoost. Despite this, the highest ranked features for
Mutual Info seem to bemore relevant than for Anova F. The highest ranked features for
Mutual Info include business age, public fees, payroll costs, industry codes and counties.
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(A) Distribution of pre-
dictions for DT, us-
ing feature selection
with Anova F and a
10% set size.

(B) Distribution of pre-
dictions for𝑘 -NN, us-
ing Mutual Info and
a 10% feature set
size.

(C) Distribution of
ground truth labels.

FIGURE D.3. Distributions on the evaluation set of a random paired 80-20 training-evaluation
split. The horizontal axes represent the identifiers for 369 possible checklists
(classes). The vertical axes on the figures represent the number of observations
for each class in the evaluation set.

For Anova F, the highest ranked features are business age and financial features such as
assets, equity and bank deposits, dept, costs (including payroll), revenues, investments
and profits. Industry codes are not ranked high by Anova F, which is surprising
considering that checklists aim to address HSE risks which typically are industry-
specific [15]. Thus, the results indicate that feature selection for ML is not always
intuitive.

The goal of this experiment is to solve the NCP problem described in Section D.1.
The experiment is structured in two phases in the same manner as in Section D.6.3,
with an evaluation of feature selection methods before the main experiment.
Evaluation of Feature SelectionMethods. The assessment and selection of feature
selection methods is done as in the previous experiment, where the two fastest per-
forming methods out of the three methods with the highest accuracy are selected for
the main experiment. We are using the feature selection methods and the feature set
sizes described in Section D.6.2. The feature selection methods are evaluated using
DT.

D.6.4 Experiment 2: The Non-Compliance Classification Problem (NCP)

Method Acc Time
𝜒2 .667 .29
Anova F .684 .58
Mutual Info .661 229
Model coefficients .657 12.3
Forward Selection .750 5464
Recursive elimination .658 300

TABLE D.5. Result from the feature se-
lection evaluation for NCP
with DT.

The results from the evaluation are shown
in Table D.5. The best performing method
was Forward Selection, but we were only
able to run it on the 0.1% and 0.5% fea-
ture set sizes within the time limit of two
hours. Thus, the recorded accuracy is the
average for only these two feature sets. The
methodwith the second best accuracy score
is Anova F and 𝜒2 is the third best scor-
ing method. Time-wise 𝜒2 is the best per-
forming method with an average comple-
tion time of 0.29 seconds for all the feature set sizes. Theworst performingmethodwas
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Method 𝜒2 Anova F Time
Bal. Acc Acc Prec Rec AUC Bal. Acc Acc Prec Rec AUC

LR .42±.02 .44±.02 .68±.02 .46±.02 .41±.02 .46±.02 .45±.02 .72±.02 .43±.02 .47±.02 3.56
NBC .56±.04 .49±.11 .72±.20 .42±.18 .57±.04 .57±.02 .53±.02 .81±.02 .48±.02 .59±.02 1.06
DT .54±.01 .45±.02 .59±.01 .35±.03 .57±.01 .51±0 .30±0 .20±0 .08±.01 .56±.01 14.2
𝑘 -NN .58±.02 .53±.04 .81±.01 .49±.07 .61±.02 .57±.02 .52±.02 .79±.06 .47±.03 .61±.02 100
AdaBoost .58±.01 .51±.03 .82±.01 .44±.07 .63±.02 .62±.01 .57±.02 .84±.01 .52±.04 .68±.02 241
GradBoost .58±.01 .50±.03 .82±.01 .43±.06 .63±.02 .62±.01 .57±.02 .84±.01 .51±.04 .68±.02 1352
MLP .53±.01 .40±.03 .78±.02 .27±.05 .53±.01 .54±.01 .39±.02 .82±.02 .23±.05 .56±.02 27.7

TABLE D.6. Results with average standard deviations from the NCP main experiment. The
average time in seconds per cross-validation is shown on the far right column.

Forward Selection with almost 1.5 hours. Even though Forward Selection is the best
performing method in terms of accuracy, the long running time makes it unfeasible
for large feature sets or ML-methods with high computational complexity. Thus, we
decide to use 𝜒2 and Anova F for the main experiment.
Design of the Main Experiment. For the experiment, we use the ML methods and
configurations described in Section D.6.2. We also performed hyper parameter tuning
for AdaBoost, GradientBoost, MLP and 𝑘-NN. After performing hyper parameter
tuning, the optimal configuration for AdaBoost is 1.0 learning rate and 200 estimators.
The optimal configuration for GradientBoost is 0.1 learning rate and 500 estimators.
ForMLP, the optimal configuration is logistic activation, 20 hidden layers, 0.0001 alpha
and adaptive learning rate. The best configuration for 𝑘-NN is 𝑘 = 500 neighbors and
uniform weights.

All the ML methods in the experiment are evaluated using 5-fold cross validation
where each fold consists of separate training (72%), test (8%) and evaluation sets (20%).
Since the target variable is unbalanced with 74% positive labels (see Figure D.2b), the
prediction thresholds for the evaluation sets are set to the median prediction-scores of
the corresponding test sets. As a result there should be an approximately equal number
of predicted positives and predicted negatives for each evaluation set. The performance
of each ML method is measured using the same statistics with standard deviations as
in Section D.6.3. Area under receiver operating characteristic curve (AUC) is also used.
Results and Discussion. The results from the experiment are shown in Table D.6.
These results are a bit more nuanced compared to the previous experiment. The best
configurations are AdaBoost and GradientBoost with Anova F for feature selection,
with significantly higher classification performance scores compared to 𝜒2 . For 𝜒2 , the
best performing methods are AdaBoost, GradientBoost and 𝑘-NN. 𝑘-NN has slightly
higher accuracy and recall scores than AdaBoost and GradientBoost, but AUC and
precision scores are slightly lower. However, these differences are not significant. Time-
wise, 𝑘-NN has the best performance with an average time of 100 seconds. AdaBoost
outperforms GradientBoost with an average time of only 241 seconds, compared
to 1352 for GradientBoost. Overall, AdaBoost seems to be the best method in this
experiment, in terms of both time and classification performance.

The AUC score for AdaBoost is only 0.68, which indicates that there is room for
improvements in terms of classification performance. On a first glance, the precision
score of 0.84 looks better than the AUC score. However, the dataset is imbalanced
74:26 towards positives (non-compliance), so predicting all labels in the dataset as
positive would yield a precision of 0.74. The difference is only 0.12 points, but this also
translates into a 66% increase (3.16 to 5.25) in the odds of finding non-compliance in
an organisation that is predicted as positive by the model. The difference is therefore
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an important improvement from a labour inspection perspective.
The highest ranked features from feature selection with Anova F are business

age, number of employees, unpaid public fees, revenue, costs, industry codes and
county (location). For 𝜒2 , the highest ranked features are somewhat limited in terms
of variety and only include financial features related to taxes, revenue, costs, loans and
equity. Thus, we would argue that Anova F selects a better, more informed feature
set compared to 𝜒2 . Anova F also yields higher performance than 𝜒2 for most of the
methods in Table D.6.

D.6.5 Machine Learning Performance for CLSP and NCP

While some of the results from the experiments look promising, none of the methods
we tested perform very well in terms of classification performance on either CLSP or
NCP. This is also a motivation to use LICD in future research that aims to develop new,
better performing ML methods. For this domain, a high precision score is arguably
the most important statistic because it means that more effective checklists are being
selected (CLSP) or a higher rate of non-compliance is found per inspection (NCP). A
high recall is also desirable, but less important. Accuracy or AUC is also important, in
order to ensure that ML methods have decent classification performance.

For CLSP, the highest recorded precision score in Table D.4 is only 0.05 (DT). This
is better than the naive selection strategy (0.04), but it is still questionable whether DT
or any of the other methods perform well enough to be useful from a labour inspection
perspective. However, it may be possible to improve performance by treating CLSP
as a recommendation problem where a fixed number of checklists with the highest
prediction scores are selected, leaving the user to decide which of them to use. This
approach could be considered since the results in Figure D.3 may suggest that there
often are multiple optimal checklists for a given organisation, while CLSP assumes that
there is only one. Collecting more information or features for LICD could be another
way to improve performance, but more research is needed in order to understand what
kind of information that should be collected.

There may also be ways to increase ML classification performance for NCP. The
results for Forward Selection in Table D.5 indicate that wrapper-basedmethods for fea-
ture selectionmay increase accuracy. Although using Forward Selection onLICD seems
to be time-wise infeasible for feature sets larger than 0.1%, some of the more recent
wrapper-based algorithms such as Stochastic Local Search or Differential Evolution
could be more viable as they have comparably lower computational costs [43, 45–47].

D.7 CONCLUSION AND FUTURE WORK

In this paper we have proposed LICD, a new dataset with labour inspection checklists.
The dataset can be used to address working environment violations in organisations.
Addressing such violations is important for efforts towards achieving SDG 8.8, to
“protect labour rights and promote safeworking environment for all workers”. Research
on ML for labour inspection is currently limited, so our motivation for this work is to
promote further research on this subject.
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LICD consists of 63634 instances with past inspections conducted by NLIA. The
dataset contains 575 features and 2 possible target variables: Non-compliance and
Checklist. Based on the target variables, the dataset could potentially be used for
the following tasks: a) To select the most relevant checklist to inspect a given target
organisation (CLSP). b) To classify whether non-compliance is found at an inspection,
for a given organisation and checklist (NCP). Two demonstration experiments with
CLSP and NCP suggest that they are promising but difficult problems, thus motivating
future research.

A potential direction for future work is to explore ways to solve a combination of
both CLSP and NCP as a multi-objective optimizations problem: to select the most
relevant inspection checklist that maximizes the number of violations found in a given
organization. A simple way to solve the problem could be to use a two-stage approach
for selecting checklists. The first stage could be to select a subset of relevant checklists as
candidates for the second stage. The second stage could then be to select the candidate
that is most likely to be classified as non-compliant. Addressing a combination of CLSP
and NCP could provide valuable decision support for inspectors and the approach can
potentially be easier to adopt for inspection agencies, compared to our previous work
where ML is used to create new checklists [15, 16]. Another direction is to develop
more accurate ML methods for solving the CLSP and NCP problems, especially since
none of the methods in our demonstration experiments achieved outstanding results
in terms of accuracy, precision and recall scores. For the same reason, LICD could be
relevant for benchmarking ML methods. The dataset could for instance be used in an
SDG framework like SustainBench [18], which currently lacks a dataset that addresses
the SDG on decent work and economic growth (SDG 8).

D.8 REFERENCES

[1] Communication from the commission to the European parliament, the coun-
cil, the European economic and social committee and the committee of the re-
gions. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
52014DC0332. Accessed: 2022-08-15.

[2] Patrick Belser. Forced labour and human trafficking: Estimating the profits.
Available at SSRN, 2005.

[3] DavidWeil. A strategic approach to labour inspection. International Labour Review,
147(4):349–375, 2008.

[4] David Weil. If OSHA is so bad, why is compliance so good? RAND Journal of
Economics, 27(3):620, 1996.

[5] ØyvindDahl, TorbjørnRundmo, and EspenOlsen. The impact of business leaders’
formal health and safety training on the establishment of robust occupational
safety and health management systems: Three studies based on data from labour
inspections. International Journal of Environmental Research and Public Health, 19
(3):1269, 2022.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332


D.8 REFERENCES ◀ 117

[6] Nektarios Karanikas and Sikder Mohammad Tawhidul Hasan. Occupational
health & safety and other worker wellbeing areas: Results from labour inspections
in the Bangladesh textile industry. Safety Science, 146:105533, 2022.

[7] Srdjan Jelacic, Andrew Bowdle, Bala G. Nair, Kei Togashi, Daniel J. Boorman,
Kevin C. Cain, John D. Lang, and E. Patchen Dellinger. Aviation-style comput-
erized surgical safety checklist displayed on a large screen and operated by the
anesthesia provider improves checklist performance. Anesthesia & Analgesia, 130
(2):382–390, 2020.

[8] Daniel E. Ho, Sam Sherman, and Phil Wyman. Do checklists make a difference?
a natural experiment from food safety enforcement. Journal of Empirical Legal
Studies, 15(2):242–277, 2018.

[9] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Be-
yond accuracy: Behavioral testing of NLP models with checklist. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages
4902–4912, 2020.

[10] Shaily Bhatt, Rahul Jain, Sandipan Dandapat, and Sunayana Sitaram. A case study
of efficacy and challenges in practical human-in-loop evaluation of NLP systems
using checklist. In Proceedings of the Workshop on Human Evaluation of NLP Systems
(HumEval), pages 120–130, 2021.

[11] Michael A. Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach.
Co-designing checklists to understand organizational challenges and opportuni-
ties around fairness in AI. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–14, 2020.

[12] David Weil. Improving workplace conditions through strategic enforcement.
Boston U. School of Management Research Paper, (2010-20), 2010.

[13] Päivi Mattila-Wiro, Yogindra Samant, Wiking Husberg, Magnus Falk, Annemarie
Knudsen, and Eyjolfur Saemundsson. Work today and in the future: perspectives
on occupational safety and health challenges and opportunities for the nordic
labour inspectorates. Technical report, Nordic labour inspectorates, 2020.

[14] Øyvind Dahl and A. Starren. The future role of big data and machine learning in
health and safety inspection efficiency. Technical report, European Agency for
Safety and Health, 2019.

[15] Eirik Lund Flogard, Ole JakobMengshoel, andKerstin Bach. Bayesian feature con-
struction for case-based reasoning: Generating good checklists. In International
Conference on Case-Based Reasoning, pages 94–109. Springer, 2021.

[16] Eirik Lund Flogard, Ole Jakob Mengshoel, and Kerstin Bach. Creating dynamic
checklists via Bayesian case-based reasoning: Towards decentworking conditions
for all. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 5108–5114, 2022. doi: 10.24963/ijcai.2022/709. URL
https://doi.org/10.24963/ijcai.2022/709.

https://doi.org/10.24963/ijcai.2022/709


118 ▶ PAPER D

[17] Eirik Lund Flogard. Labour Inspection Checklist Dataset. https://doi.org/10.
18710/7U6TZP, 2022. URL https://doi.org/10.18710/7U6TZP.

[18] Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick
Liu, Jihyeon Lee, Marshall Burke, David B. Lobell, and Stefano Ermon. Sus-
tainbench: Benchmarks for monitoring the sustainable development goals with
machine learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

[19] Samriddhi Singla, Ayan Mukhopadhyay, Michael Wilbur, Tina Diao, Vinayak
Gajjewar, Ahmed Eldawy, Mykel Kochenderfer, Ross Shachter, and Abhishek
Dubey. Wildfiredb: An open-source dataset connecting wildfire spread with
relevant determinants. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

[20] Danish labour inspection authority’s smiley dataset. https://at.dk/
tilsyn/efter-tilsynsbesoeget/viden-om/roed-gul-groen-og-kronesmiley/
smiley-soegning/. Accessed: 2022-08-15.

[21] Alison D. Morantz. Has devolution injured American workers? state and federal
enforcement of construction safety. The Journal of Law, Economics, & Organization,
25(1):183–210, 2009.

[22] Don J. Lofgren. Results of inspections in health hazard industries in a region of
the state of Washington. Journal of Occupational and Environmental Hygiene, 5(6):
367–379, 2008.

[23] MatthewS. Johnson, David I. Levine, andMichaelW. Toffel. Improving regulatory
effectiveness through better targeting: Evidence from OSHA. Harvard Business
School Technology & Operations Mgt. Unit Working Paper, (20-019), 2020.

[24] Glenn Pransky, Terry Snyder, Allard Dembe, and Jay Himmelstein. Under-
reporting of work-related disorders in the workplace: a case study and review of
the literature. Ergonomics, 42(1):171–182, 1999.

[25] Olivia Milam, Haroon Malik, and Sarah Surber. Digital canaries: Identifying
hazardous patterns in MSHA data using a machine learner. Procedia Computer
Science, 177:227–233, 2020.

[26] Miyuki Hino, Elinor Benami, and Nina Brooks. Machine learning for environ-
mental monitoring. Nature Sustainability, 1(10):583–588, 2018.

[27] Suhong Kim, Param Joshi, Parminder Singh Kalsi, and Pooya Taheri. Crime anal-
ysis through machine learning. In Proceedings of the IEEE 9th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), pages
415–420, 2018.

[28] Andrea S.N. Curman, Martin A. Andresen, and Paul J. Brantingham. Crime and
place: A longitudinal examination of street segment patterns in Vancouver, bc.
Journal of Quantitative Criminology, 31(1):127–147, 2015.

https://doi.org/10.18710/7U6TZP
https://doi.org/10.18710/7U6TZP
https://doi.org/10.18710/7U6TZP
https://at.dk/tilsyn/efter-tilsynsbesoeget/viden-om/roed-gul-groen-og-kronesmiley/smiley-soegning/
https://at.dk/tilsyn/efter-tilsynsbesoeget/viden-om/roed-gul-groen-og-kronesmiley/smiley-soegning/
https://at.dk/tilsyn/efter-tilsynsbesoeget/viden-om/roed-gul-groen-og-kronesmiley/smiley-soegning/


D.8 REFERENCES ◀ 119

[29] Keegan McBride, Gerli Aavik, Tarmo Kalvet, and Robert Krimmer. Co-creating
an open government data driven public service: The case of Chicago’s food inspec-
tion forecasting model. In Proceedings of the 51st Hawaii International Conference
on System Sciences, pages 2453–2462, 2018.

[30] Vinesh Kannan, Matthew A. Shapiro, and Mustafa Bilgic. Hindsight analysis of
the Chicago food inspection forecasting model. arXiv preprint arXiv:1910.04906,
2019.

[31] I.A. Walker, S. Reshamwalla, and I.H Wilson. Surgical safety checklists: do they
improve outcomes? British journal of anaesthesia, 109(1):47–54, 2012.

[32] Amit Vats, C.A. Vincent, Kamal Nagpal, R.W. Davies, Ara Darzi, and Krishna
Moorthy. Practical challenges of introducing who surgical checklist: Uk pilot
experience. British Medical Journal (BMJ), 340, 2010.

[33] Asaf Degani and Earl L. Wiener. Cockpit checklists: Concepts, design, and use.
Human factors, 35(2):345–359, 1993.

[34] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification
by keeping the good and removing the bad momentum causal effect. Advances in
Neural Information Processing Systems, 33:1513–1524, 2020.

[35] Caidan Zhao and Yang Lei. Intra-class cutmix for unbalanced data augmentation.
In 13th International Conference on Machine Learning and Computing, pages 246–
251, 2021.

[36] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and
Stella X Yu. Large-scale long-tailed recognition in an open world. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2537–2546, 2019.

[37] Chris Drummond and Robert C Holte. C4. 5, class imbalance, and cost sensitivity:
why under-sampling beats over-sampling. InWorkshop on learning from imbalanced
datasets II, volume 11, pages 1–8, 2003.

[38] PengChu, Xiao Bian, Shaopeng Liu, andHaibin Ling. Feature space augmentation
for long-tailed data. In European Conference on Computer Vision, pages 694–710.
Springer, 2020.

[39] Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems
and how to leverage it. In Proceedings of the 2008 ACM conference on Recommender
systems, pages 11–18, 2008.

[40] Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. Capturing long-tail
distributions of object subcategories. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 915–922, 2014.

[41] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 7032–7042, 2017.



120 ▶ PAPER D

[42] Christie M. Fuller, David P. Biros, and Dursun Delen. Exploration of feature
selection and advanced classification models for high-stakes deception detection.
In Proceedings of the 41st Annual Hawaii International Conference on System Sciences
(HICSS), pages 80–80. IEEE, 2008.

[43] Ole Jakob Mengshoel, Eirik Flogard, Jon Riege, and Tong Yu. Stochastic local
search heuristics for efficient feature selection: An experimental study. InNorsk
IKT-konferanse for forskning og utdanning, pages 58–71, 2021.

[44] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino,
Jiliang Tang, and Huan Liu. Feature selection: A data perspective. ACM computing
surveys (CSUR), 50(6):1–45, 2017.

[45] Ole Jakob Mengshoel, Tong Yu, Jon Riege, and Eirik Flogard. Stochastic local
search for efficient hybrid feature selection. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pages 133–134, 2021.

[46] Ole Jakob Mengshoel, Eirik Lund Flogard, Tong Yu, and Jon Riege. Understand-
ing the cost of fitness evaluation for subset selection: Markov chain analysis of
stochastic local search. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 251–259, 2022.

[47] Omid Tarkhaneh, Thanh Thi Nguyen, and Samaneh Mazaheri. A novel wrapper-
based feature subset selectionmethod usingmodified binary differential evolution
algorithm. Information Sciences, 565:278–305, 2021.



PAPER E ◀ 121

PAPER E
CREATING EXPLAINABLE DYNAMIC CHECKLISTS VIA MA-
CHINE LEARNING TO ENSURE DECENT WORKING ENVI-
RONMENT FOR ALL: A FIELD STUDY WITH LABOUR IN-
SPECTIONS

Published in: Conference on Prestigious Applications of Artificial Intelligence, 2023.
Norwegian Scientific Index Level (NVI): 1.
Received best paper award.

Notes. The paper has been accepted to the conference, held 30. September 2023 to
5. October 2023, and is receiving the best paper award. The publication venue is
one of the leading conferences in applied artificial intelligence, and is held as a part
of the European Conference on Artificial Intelligence (ECAI). All submissions to the
conference are peer reviewed in accordance with scientific standards required for
level 1 in the Norwegian Scientific Index. The paper has been reformatted to ensure
readability and consistency with the other papers in this thesis.

ContributionStatement.Mycontribution includeswriting the first draft of the paper,
the ideas and development of the explanation methods and the prototype described in
the paper, and processing all the reported results. The field study was organised by me
and Ole Magnus Theisen (third author), who also helped to write the final version of
the paper. The other co-authors of the paper (Ole Jakob Mengshoel and Kerstin Bach)
are my supervisors and helped with revising the paper.



122 ▶ PAPER E

CREATING EXPLAINABLE DYNAMIC CHECKLISTS VIA
MACHINE LEARNING TO ENSURE DECENT

WORKING ENVIRONMENT FOR ALL: A FIELD STUDY
WITH LABOUR INSPECTIONS

Eirik Lund Flogard1,2,Ole JakobMengshoel2,Ole Magnus Theisen1

and Kerstin Bach2
1Norwegian Labour Inspection Authority

2Norwegian University of Science and Technology

ABSTRACT

To address poor working conditions and promote United Nations’ sustainable devel-
opment goal 8.8, “protect labour rights and promote safe working environments for
all workers [...]”, government agencies around the world conduct labour inspections.
To carry out these inspections, inspectors traditionally use paper-based checklists
as a means to survey individual organisations for working environment violations.
Currently, these checklists are created by domain experts, but recent research indicates
that machine learning (ML) could be used to generate dynamic checklists to increase
inspection efficiency. A drawback with the dynamic checklists is that they are complex
and could be difficult to understand for inspectors. They have also never been field-
tested. In this paper, we therefore propose user-oriented explanation methods for
Context-aware Bayesian Case-Based Reasoning (CBCBR), which is the current state-
of-art MLmethod for generating dynamic checklists. We also introduce a prototype of
CBCBR and present a field study where we test it in real-world labour inspections. The
results from the study indicate that using the explainable dynamic checklists increases
the efficiency of the labour inspections, and inspectors also report that they find the
checklists useful. The results also suggest that current ML evaluation methods, where
model prediction performance is evaluated on existing data, may not fully reflect the
real-world field performance of checklists.

E.1 INTRODUCTION

Labour inspections are conducted by government agencies around theworld to address
poor working conditions and promote United Nations’ sustainable development goal
(SDG) 8.8 “to protect labour rights and promote safe working environments for all
workers”. The inspections are carried out in workplaces (organisations) on a large scale
to enforce national and international labour laws and standards, pursuant to the Inter-
national Labour Organization’s (ILO) Labour Inspection Convention (1947). Despite
the inspection efforts, there are still 1.9 million registered deaths worldwide annually
attributable to occupational health and safety risks [1]. Increasing the efficiency of
inspections is therefore important. To carry out these inspections, inspectors often
use checklists to survey individual organisations for non-compliance to health, safety,
and environment (HSE) regulations [2, 3]. A labour inspection checklist consists of a
non-fixed-sized subset of 𝐾 out of 𝑁 items, where each item has a binary response
(non-compliant/compliant) and corresponds to a specific health and safety regulation.
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FIGURE E.1. An illustration of how dynamic checklists work. First, the initial checklist to the left
is created via a query specified by the user. After the user answers the checklist, it
is then dynamically updated by the ML model. The updated checklist is shown on
the right side.

Each inspected organisation may be subjected to hundreds of different regulations [4],
but a checklist ideally contains between 5 and 30 items. Creating such checklists man-
ually is difficult since checklists are situation-dependent and labour inspections can
be executed in many different ways depending on the context [5, 6]. This means that
the contents of the checklists need to vary between individual inspected organisations.
Traditional static, paper-based checklists are still often too long, making it difficult to
differentiate between critical and less important tasks for their users [7].

Instead of relying on traditional checklists, it is possible to use ML to generate
dynamic checklists. Figure E.1 shows an overview of a dynamic checklist, where an
ML model is given an inspection target (workplace) as input. The model then creates
an initial checklist containing a set of 𝐾 out of 𝑁 possible items (small 𝐾 , large 𝑁 ).
Based on how the user answers the checklist, it is dynamically updated with additional
items to make it more contextually relevant to the situation it is being used in. To our
knowledge, the state-of-the-art method for generating dynamic checklists is Context-
aware Bayesian Case-Based Reasoning (CBCBR) [8]. CBCBR aims to create checklists
that maximize the number of violations found during inspections, by generating and
dynamically updating checklists specifically for each inspection target. It is assumed
that the dynamic checklists can increase the detection and rectification of working
environment violations in the inspections compared to traditional paper-based check-
lists, thereby increasing efficiency [8]. The main purpose of this paper is to test this
assumption by conducting an empirical field study, to determine ifML-based checklists
are indeed superior for real-world inspections.
Motivation. It is hard to tell how effective current ML-generated checklists are,
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since they have never been tested in real-world environments [9, 10]. Flogard et al.
propose a cross-validation approach that shows promising results for the dynamic
checklists in labour inspections. However, lacking ground truth cases, the approach is
essentially a simulation that is mostly based on labels that are generated from existing
data [8, 11]. Since the approach relies on existing data, it also does not account for real-
world factors that could impact labour inspection performance, such as intervention
effects from replacing the current domain expert-designed checklists [12]. This is
potentially problematic as inspections are complex tasks, and the success of using
checklists could depend on many factors, such as implementation details or how
users interact with them [6, 13]. Another problem is that CBCBR currently lacks
explanationmethods. Dynamic checklists are complex constructs, rendering it difficult
for inspectors to understand the dynamic changes to their checklists during inspections.
If the dynamic checklists are not understood or justified, they may be difficult to
use, undermining any advantages they may have on task performance [6]. Moreover,
forthcoming EU regulations will require a certain level of explanation in ML and
related technologies [14].
Contributions. Toaddress the problemsmentioned above, our scientific contributions
in this paper are as follows:

(1) Technical:Weproposemethods for explaining the content of dynamic checklists
to their end-users (inspectors), focusing on justification and transparency as explana-
tion goals [15]. We also developed a prototype based on the state-of-the-art method
for generating checklists (CBCBR), implementing the explanation methods.1

(2) Social: As far as we know, ML-based checklists remain untested in the field, let
alone implemented or adopted. Collaborating with the Norwegian Labour Inspection
Authority (NLIA), we conducted a field study, testing the prototype in dynamic real-
world environments with seven inspectors carrying out 69 valid inspections across
various industries. Both qualitative and quantitative results are presented and com-
pared to inspections conducted by the same inspectors, using ordinary static checklists
created by domain experts. The results show that dynamic checklists increase the
efficiency and number of violations being addressed in labour inspections. This insight
is essential in order to determine whether the adoption of the dynamic checklists is
worth the investment, as most labour inspection authorities have limited resources [16].

(3) Analytical: Our analyses of the results from the study show significant discrep-
ancies between field performance and existing cross-validation performance estimates
of dynamic checklists. Current ML evaluation practices may therefore be insufficient
for estimating field performance of checklists. This insight could have implications
for research in other domains where ML or AI is used to create checklists, such as
medicine [17–19].
Social Impact. Due to the results from our field study, the Norwegian Labour Inspec-
tion Authority (NLIA) plans to adopt the dynamic checklists into their inspections. We
believe that our work could inspire labour inspection authorities in other countries
to do the same. A widespread adoption of dynamic checklists could increase levels of
compliance with working environment laws and labour rights in society and reduce
both long and short-term injuries (SDG indicators 8.8.1 and 8.8.2), as inspections
become more efficient in addressing and reducing violations in workplaces.

1The source code for the prototype can be found at: https://github.com/ntnu-ai-lab/
cbcbr-prototype.

https://github.com/ntnu-ai-lab/cbcbr-prototype
https://github.com/ntnu-ai-lab/cbcbr-prototype
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FIGURE E.2. The figure [8] shows an overview of CBCBR. The black arrows show how the case
base is created or updated. The white arrows show the creation of a candidate
checklist. The checklist is dynamically updated via the blue (and black) arrows,
starting from the candidate checklist on the right hand side.

E.2 RELATED WORK

Dynamic Checklists. Digital dynamic checklists have also been proposed to deal with
context changes inmedical applications, such as emergency care or surgeries. However,
these checklists are currently created via rule [20] or process-based models [21] that
are not based on ML, requiring manual construction and maintenance that limits the
models’ complexity and nuance [7, 8]. Nevertheless, some of these have been success-
fully tested in medical trials. De Bie et al. show that dynamic checklists improved
user compliance, compared to traditional paper checklists for intensive care units in
a trial [22]. Kulp et al. propose a dynamic digital checklist for trauma resuscitation
modeled as an iterative process via user interviews, and test it in a trial [7]. The results
are promising, but the checklists’ impact on task execution and performance in many
medical situations turned out differently than expected, underscoring the complexity
of checklists and the importance of analyzing and testing them in the field before
adoption. This is also a motivation for our field study, especially considering that
ML-based checklists have never been field-tested before.
Machine Learning Methods for Creating Checklists. Research on ML for creating
checklists is currently limited. Besides CBCBR and BCBR proposed by Flogard et
al. [8, 11], there are other methods for checklist creation [17, 18, 23]. These are
unsuitable for creating dynamic checklists or checklists for labour inspections [8]. As
far as we know, CBCBR is currently the only readily available ML method for creating
dynamic checklists for labour inspections. CBCBR is a hybridmethod that uses a Naive
Bayesian inference (NBI) model to construct features for cases used in Case-Based
Reasoning (CBR) [24]. CBCBR creates a dynamic checklist for a given organisation
targeted for an inspection by retrieving and reusing past cases with checklist items used
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in similar organisations, that also have high estimated probabilities for non-compliance.
CBCBR, see Figure E.2, operates in two phases. (1) In the first phase, an initial checklist
is created. A naive Bayesian inference (NBI) model is used to generate probability
estimates for non-compliance (𝜃𝑏𝑒 ), based on empirical distributions from the dataset
D. The probability estimates are added to dataset instances d𝑗 ∈ D as new features,
to create new augmented CBR cases c𝑗 for a case base CB. Similarity based retrieval
is then used to create an initial candidate checklist by retrieving 𝐾 CBR cases with
unique items, using a query q = (𝑥𝑐𝑛𝑑 , 𝜃, 𝜅) that contains feature values for the target
organisation (𝑥𝑐𝑛𝑑 ), a fixed target value (𝜃 ) for the probability estimate embedded in
each of the CBR cases and a target value (𝜅) for the number of observed instances
that are used to calculate the probability estimate. (2) The second phase consists of
dynamic updates to the candidate checklist via the case-base. After the user answers
a checklist item, the NBI model updates the CBR cases c𝑗 ∈ CB with new posterior
probability estimates for non-compliance. CBCBR then retrieves any additional cases
that have sufficiently increased estimates, which are appended to the checklist as a
dynamic update. Depending on the setup, this phase is repeated after a certain number
of checklist items are answered. A complete formal definition of dynamic checklists
and a more detailed description and analysis of the CBCBR framework is given by
Flogard et al. [8].
Explanations for Dynamic Checklists. As far as we know, no one has proposed
any method that offers user-oriented explanations of dynamic checklists. However,
CBCBR is a good starting point for new explanation approaches since it is based on
two transparent methods: CBR and parameter estimates from empirical distributions
(NBI) [24, 25]. There aremany examples of CBR systems being used to provide explana-
tions, often as post-hoc or in twin configurations with black box systems [26, 27]. Many
methods based onmodel agnostic approaches also exist, such as LIME or SHAP [28, 29].
However, most of the current explanation methods address other explanation goals
than ours and are not good starting points for explaining the content of dynamic check-
lists, and are therefore not considered within the scope of our work. Explanations
should generally be goal-oriented and serve a specific target audience [15, 29]. Thus,
we propose approaches for providing user-oriented explanations with justification
and transparency goals in mind, both for initially created checklists (before inspection
starts) and for any dynamic updates to the checklists that are made during inspections.

E.3 EXPLANATION METHODS FOR DYNAMIC CHECKLISTS

To reach the explanation goals mentioned earlier, we propose two approaches. Both
approaches are based on showing traces of model logic to the users [15].
Showing Estimated Probabilities for Non-Compliance. The first approach is to
show CBCBR’s estimated probability of finding non-compliance on each checklist
item to the users. The probability estimates are calculated via the NBI model that was
proposed by Flogard et al. [8], but these have not been used for explanations in previous
work. As each item on a checklist has its own estimate that depends on the inspection
target, the purpose of the explanations is to provide prediction transparency and justify
the use of the items. Since the estimates are based on sufficient statistics using empirical
distributions [25], they should in theory reflect the probabilities observed in the real
world if unbiased data is used and all prior parameters are known. This property should
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ensure that the estimates are as consistent as possible with the real world, within the
limitation of the dataset being used, which is necessary to promote long-term trust [30].
Probability estimates are also an intuitive way to communicate uncertainty [25].
Showing the Most Important Answer for a Dynamic Update. The purpose of this
second approach is to make the users aware of why additional items are dynamically
added to their checklist (justification), and how these are related to the answered
part of the checklist (transparency), which could promote trustworthiness [31, 32]. A
formula for finding the most important answer is derived as follows: Let 𝑥 be a target
organisation for an ongoing inspection and y𝑐𝑛𝑑 be a candidate checklist that a user
interacts with during the inspection. Let’s assume that an item 𝑒 ∉ y𝑐𝑛𝑑 is considered
as a candidate to be dynamically added to the checklist. Let (𝑒𝑖 , 𝑙𝑖 ) ∈ y𝑐𝑛𝑑 be pairs of
existing items and given answers in the checklist, respectively, with the position in y𝑐𝑛𝑑
indexed by 𝑖 . The probability for finding non-compliance (𝐿 = 1) for any candidate
item 𝑒 , given 𝑥 and every pair (𝑒𝑖 , 𝑙𝑖 ), can be estimated via [8]:

𝜃𝑏𝑒 (𝐿 = 1|𝑥, 𝑒, y𝑐𝑛𝑑 ) =
𝛽𝐿=1 |𝑥,𝑒 +

∑
(𝑙𝑖 ,𝑒𝑖 ∈y𝑐𝑛𝑑 ) 𝑝 (1, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )∑1

𝑙=0 𝛽𝐿=𝑙 |𝑥,𝑒 +
∑
(𝑙𝑖 ,𝑒𝑖 ∈y𝑐𝑛𝑑 ) 𝑝 (𝑙, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )

, (E.1)

which CBCBR relies on to dynamically update the checklists and is the mean of a pos-
terior beta distribution (see Flogard et al. [8] for more details). Given this information,
we seek to find the index of the pair (𝑒𝑖 , 𝑙𝑖 ) that has the most impact on an 𝑒 being
selected for a dynamic update to the checklist. The index 𝑖 can be found by altering
Equation E.1 to depend on only single pairs (𝑒𝑖 , 𝑙𝑖 ) as follows:

arg max
𝑖

𝜃𝑏𝑒 (𝐿 = 1|𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 ) = arg max
𝑖

𝛽𝐿=1 |𝑥,𝑒 + 𝑝 (1, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )∑1
𝑙=0 𝛽𝐿=𝑙 |𝑥,𝑒 + 𝑝 (𝑙, 𝑥, 𝑒, 𝑒𝑖 , 𝑙𝑖 )

. (E.2)

The right hand side of Equation E.2 can be reduced to arg max𝑖 𝑝 (1,𝑥,𝑒,𝑒𝑖 ,𝑙𝑖 )∑1
𝑙=0 𝑝 (𝑙,𝑥,𝑒,𝑒𝑖 ,𝑙𝑖 )

. In

some cases arg max𝑖 𝜃𝑏𝑒 may have multiple solutions. In that case, we select one of
them randomly. We compute arg max𝑖 𝜃𝑏𝑒 via sequential search in the checklist y𝑐𝑛𝑑 ,
when a dynamic update takes place. This runs quite fast as checklists are relatively
short and because we calculate the parameters 𝑝 and store them in tables immediately
each time an item on the checklist is answered, to reduce computational costs. After
finding 𝑖 , an explanation text for the item 𝑒 in the dynamic update is generated. A
demonstration of the text is presented in Section E.4.

E.4 IMPLEMENTATION OF DYNAMIC CHECKLISTS

For the field study, we have created a prototype based on the CBCBR framework
introduced by Flogard et al. [8]. The prototype is developed based on the Minimum
Viable Product (MVP) scheme, which is a lean and cost-effective way to confirm or
refute hypotheses about a product’s benefits or values [33]. The prototype is also
designed according to the Human-AI interaction guidelines proposed by Amershi et
al. [32]. The details regarding the interface, functionality, and configuration of the
prototype are described below. We also demonstrate a comparison between a dynamic
and traditional checklist.
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E.4.1 Prototype Interface and Functionality

A screenshot of a short checklist generated with the prototype is shown in Figure E.3.
The graphical interface of the software consists of three parts: the input fields, the
checklist and pop-upwindowswith dynamic updates to the checklist. The functionality
of these are described below.
Input Fields. The input fields, shown at the top in Figure E.3, are used to specify the
features of the organisation that is targeted for the inspection. The features describe
the location (municipality) and industry2 of the target organisation. The fields are used
to build the query in Figure E.2. The query is executed once the user (inspector) presses
the start button. After the user presses the start button, an initial checklist that matches
the query appears below the input fields. Different input values to the prototype can
yield very different checklists.
Checklist. The checklist-part of Figure E.3 corresponds to the candidate checklist in
Figure E.2. The checklist is generated for a hotel (ISC 55.101) located in Trondheim
municipality, with an initial length of 𝐾 = 5 items. It is possible to adjust the initial
checklist length in the upper left corner. To enhance readability for longer checklists,
items are grouped under headlines according to the main working environment factor
each belongs to. The groups and itemswithin are also initially sorted alphabetically, but
users can easily reorder them. The checklist can be saved and opened in Excel format
(Save Excel button), where the estimated probability for finding non-compliance is
listed for each item to serve as an explanation. We decided not to list the estimates
(explanations) on the main GUI to avoid cluttering. As mentioned in Section E.3,
the purpose of the estimates is to provide ML model transparency and justification
regarding the selected items.

The checklist is answered chronologically from top-to-bottom, as shown by the
partially filled-out checklist in Figure E.3. The user can select answers from a drop-
down menu by clicking on the “apply current item” button. The options are “non-
compliance” (red color), “yes” (green), “not relevant” (yellow), “not controlled” (yellow),
“follow up later” (yellow), and “regulation already checked” (yellow). A yes-answer
means that the regulation for the corresponding item is compliant; “not relevant” is
used for items that do not relate to the target organisation’s operations; and “not
controlled” or “follow up later” are used if the inspector does not have time or lacks
the knowledge/information to follow up the item immediately during the inspection.
Finally, “regulation already checked” means that the checklist contains another item
that corresponds to the same regulation. Since CBCBR relies on binary target labels
for training and prediction, we have designated the “non-compliance” answer as 1
(positive) and the rest of the answers as 0 (negative). The logic is that 1 means that
non-compliance is found and 0 means that non-compliance is not found. The resulting
binary values, mapped from the answers, are also used to update CBCBR and provide
dynamic updates with additional items for the checklist.
Dynamic Updates to the Checklist. Dynamic updates to the checklists are imple-
mented as dynamic recommendations for additional items to use during the inspections.
Figure E.4 demonstrates a recommendation of an additional item, based on all the
answers from Figure E.3. The recommended item is appended to the bottom of the
2An overview of Norwegian industry codes can be found at: https://www.ssb.no/en/klass/
klassifikasjoner/6

https://www.ssb.no/en/klass/klassifikasjoner/6
https://www.ssb.no/en/klass/klassifikasjoner/6
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FIGURE E.4. A pop-up with recommendation of an additional item and an explanation, based
on the answers from the checklist in Figure E.3.

checklist if the user presses the “yes” button in the dialogue, and it is answered in the
same manner as ordinary checklist items. In our implementation, dynamic updates
are attempted each time all the checklist items grouped under a headline have been
answered. This is the case in Figure E.3, where all items under “organisational working
conditions” have been answered. It is also worth noting that sometimes no recommen-
dations are made if there are no eligible items outside the checklist that have received
sufficiently increased posterior probability estimates to appear in a recommendation.
Below the recommended item in Figure E.4, an explanation is also provided. The
explanation shows the answer on the checklist (Figure E.3) that had the most impact
on the recommendation of the item, as described in Section E.3. For the purpose of
the field study, we have encouraged inspectors to accept any dynamic items that are
recommended for the checklists. We have chosen not to dynamically remove checklist
items, or forcibly append new items to the checklists in the software without user
approval as this could strain or confuse users [8].
Using the Prototype in Inspections. We intentionally designed the prototype to
operate in a wide range of labour inspections. This is important as the execution
of labour inspections is contextual and varies [34, 35]. Inspections can be based on
conversations in an office, or perception-based where inspectors walk around and
inspect working areas or equipment. Before an inspection starts, an initial checklist is
created with the prototype. As the inspection progresses, the checklist (including any
dynamic items) is filled out as described above. After the inspection is completed, the
inspector saves the checklist to an Excel spreadsheet and then manually uploads it into
the case management system where a draft for an inspection report is automatically
generated.

E.4.2 Comparison of Dynamic vs. Traditional Checklist

An example of a traditional checklist is presented in Figure E.5, to highlight the differ-
ence from the dynamic checklist in Figure E.3. Figure E.5 shows one of many different
checklists that are typically used for an inspection at a hotel (ISC 55.101). The checklist
contains 7 items that focus only on working agreements, working hours, and wage
requirements. The dynamic checklist in Figure E.3 is generated for ISC 55.101 and
has 5 items, plus the dynamic recommended item in Figure E.4. It covers working
agreements, working hours, systematic HSE risk assessments, and overtime payments.
The content of the dynamic checklist is broader and more relevant to the inspected
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FIGURE E.5. A simplified version of a traditional checklist currently used by NLIA for inspections
in hotels and restaurants. A yes-answer on the checklist means that the inspected
organisation is compliant with the regulation in question, while no means that it is
non-compliant.

organisation and addresses more specific violation risks than the traditional checklist.
More specifically, both checklists cover working agreements and salaries but the dy-
namic checklist also focuses on routines to minimize risk of injuries and ensure decent
working hours.

It should be noted that the relevant content of a checklist varies depending on the
inspected organisation, as the applicable HSE risks and regulations also vary between
organisations. This is a challenge with the current traditional checklists, as hundreds
of predefined checklists need to be maintained (NLIA has 369) [4]. Selecting the
correct traditional checklist for each specific inspection can therefore be difficult.
Such variations are not a problem for dynamic checklists, since they can be created
on-demand specifically for each inspected organisation.

E.4.3 Prototype Configurations and Setup

We are using the same configurations as Flogard et al. proposed for their example
demonstration of CBCBR, where the components of the query 𝑞 are 𝜃 = 100%, 𝜅 = 70.
The NBI model is implemented via MSSQL2019 and uses the same fixed prior param-
eter values as Flogard et al. [8]. CBCBR’s similarity-based retrieval is implemented via
myCBR [36]. To generate the dynamic checklists, the prototype relies on the dataset
that Flogard et al. introduced for generating labour inspection checklists [11]. The
dataset contains 𝑁 = 1967 different unique checklist items from checklists used in
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(A) Test group distribution of inspections
using dynamic checklists.

(B) Control group distribution of inspec-
tions using paper-based checklists.

FIGURE E.6. The diagrams show the number of inspections conducted within each industry. For
the test group, most of the inspections were conductedwithin the Accommodation
& Food (I) and Construction industries (F). The majority of the inspections of the
control group were carried out in Construction businesses (F).

59989 past labour inspections. Another related dataset exists [4], but it is not suit-
able for creating new checklists from scratch. We are using the municipality/county
and industry code hierarchy from the dataset as features to represent organisations
(𝑥 ) [8, 11]. The GUI of the prototype is implemented via TKinter and installed on
Microsoft Surface Pro tablets. CBCBR also runs locally on each tablet. Response times
for generating an initial checklist and for dynamic updates are circa 10 and 5 seconds,
respectively.

E.5 FIELD STUDY WITH DYNAMIC CHECKLISTS

In this section, we present the results from testing our implementation of explainable
dynamic checklists in labour inspections. The purpose of the field study is to test the
assumption that the checklists increase labour inspection efficiency and the number of
violations found by inspectors.

E.5.1 Method and Design.

Design of a Test and Control Group. For the study, seven of NLIA’s inspectors
volunteered to participate. The field study is conducted as a paired test where the
same seven inspectors participate in both a test group and a control group. The test
group consists of 69 inspections conducted between March 1. 2022 and October
1. 2022, using the CBCBR prototype. The control group consists of 171 ordinary
inspections that the same inspectors conducted within the same period using NLIA’s
standard paper-based checklists, without any interventions from us. Figure E.6a shows
how the 69 inspections in the test group are distributed. Most of the efforts are
concentrated on Accommodation & Food (I, with 33 inspections), Construction (F,
with 17 inspections), and Wholesale & Retail (G, with 9 inspections).2 Figure E.6b



E.5 FIELD STUDY WITH DYNAMIC CHECKLISTS ◀ 133

shows a different distribution for the control group, where most of the inspections
are conducted within the Construction industry. For both the test and control groups,
the inspections in Accommodation & Food (F) were carried out by four of the seven
inspectors. The inspections in Construction were distinctly carried out by further two
of the seven of inspectors. The inspections in Wholesale & Retail and the remaining
industries were carried out by the one remaining inspector, in addition to three of the
inspectors from Accommodation & Food. The inspections were divided in this manner
to avoid disrupting NLIA’s inspection efforts and allow inspectors to freely select their
targets (discussed in the ethical statement), as inspectors tend to be specialists and
therefore carry out most of their inspections within a few industries that are familiar to
them. We reviewed other factors such as the size (number of employees) and location
of the inspected organisations and found no significant differences between the test
and control groups.

Measuring Results. Because labour inspections are industry oriented and due to
the differences between the distributions of inspections in the test and control group
in Figure E.6, we report the results from the study by the following categories to
address bias: Accommodation & Food (I), Construction (F), Others and All inspections.
This is important as there are substantial differences in how checklists are used and
inspections are carried out between Construction and Accommodation & Food. There
are relatively few inspections in Wholesale & Retail (G) and the other industries in
our study. We therefore grouped these industries into the category named Others, as
the inspection results in these industries are similar. The results are reported for each
category in terms of average relative frequency of checklist answers per inspection,
average number of discovered violations (𝐴𝑣𝑔𝑣 ), and average length (𝐴𝑣𝑔𝑙 ) of the
checklists used. We also use two different average precision scores [8, 11]. These are
calculated from a set of 𝑁 completed inspections as follows: 𝑃𝑟𝑒𝑐𝑣 = 1

𝑁

∑𝑁
𝑖=1

𝑣𝑖
|𝑦𝑖 |

and 𝑃𝑟𝑒𝑐𝑟 = 1
𝑁

∑𝑁
𝑖=1

𝑟𝑖
|𝑦𝑖 | . |𝑦𝑖 | is the number of items in each completed checklist 𝑦𝑖

(predicted positives), 𝑣𝑖 ∈ R≥0 and 𝑟𝑖 ∈ R≥0 is the number of violations and the number
of reactions in the 𝑖-th inspection (true positives), respectively. Each checklist can at
most have one violation/reaction per checklist item, so that 𝑣𝑖 ≤ |𝑦𝑖 | and 𝑟𝑖 ≤ |𝑦𝑖 |
always holds. In words, 𝑃𝑟𝑒𝑐𝑣 can be explained as the average number of violations
per checklist item and 𝑃𝑟𝑒𝑐𝑟 as the average number of reactions per checklist item. We
also use an additional statistic 𝐷 𝑃𝑟𝑒𝑐𝑣 , which is 𝑃𝑟𝑒𝑐𝑣 calculated exclusively on the
dynamically added part of the checklists. Ideally, it would be beneficial to have more
statistics such as recall or accuracy in the study. However, the ground truth (negatives)
needed to calculate these is not feasible to obtain [11]. To compare the overall results
from the study with current cross-validation scores, we use an industry-weighted
average precision score from all inspections in the study to remove bias (see Fig. E.6):
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑗 𝑤 𝑗 𝑃𝑟𝑒𝑐𝑣 ( 𝑗), where 𝑃𝑟𝑒𝑐𝑣 ( 𝑗) = 1

𝑁 𝑗

∑𝑁 𝑗

𝑖=1
𝑣𝑖
|𝑦𝑖 | is calculated

on the set of all (𝑁 𝑗 ) completed inspections within each industry 𝑗 (see 𝑃𝑟𝑒𝑐𝑣 ). The
weights𝑤 satisfy

∑
𝑗 𝑤 𝑗 = 1 and each𝑤 𝑗 is calculated using Flogard et al.’s dataset [11]

D as follows:𝑤 𝑗 =
𝑆 𝑗

𝑆D
, where 𝑆 𝑗 is the number of inspections inD within industry 𝑗

and 𝑆D is the total number of inspections inD.
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Test Group - Dynamic Checklists
Acc&Food Construction Others All

Avgv 9.03 ± 0.52 2.94 ± 0.76 3.53 ± 0.59 6.02 ± 0.54
Avgl 17.0 ± 0.49 17.5 ± 0.49 16.2 ± 0.58 17.0 ± 0.31
Precv 0.53 ± 0.02 0.17 ± 0.02 0.22 ± 0.02 0.35 ± 0.01
Precr 0.37 ± 0.02 0.11 ± 0.02 0.18 ± 0.02 0.25 ± 0.01
DPrecv 0.71 ± 0.10 0.24 ± 0.09 0.12 ± 0.06 0.49 ± 0.08

Control Group - Traditional Checklists
Acc&Food Construction Others All

Avgv 7.50 ± 0.86 2.88 ± 0.26 2.78 ± 0.38 3.70 ± 0.26
Avgl 17.6 ± 1.05 22.1 ± 0.78 19.1 ± 0.86 20.6 ± 0.56
Precv 0.42 ± 0.03 0.14 ± 0.01 0.15 ± 0.01 0.15 ± 0.01
Precr 0.30 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.12 ± 0.01

TABLE E.1. Quantitative results from the test and control group of inspections conducted in
the study.

E.5.2 Qualitative Results and Discussions.

We conducted both conversational and structured qualitative interviews with the
inspectors in the study, which are summarized due to space restrictions: Overall,
the CBCBR prototype is mostly well-received. Most of the inspectors reported an
increase in the number of significant working environment violations they found
in the inspections when using dynamic checklists, but they also had to spend a bit
more time on case management afterward to follow up on the extra violations. The
inspectors also perceive dynamic checklists asmore relevant to the target organisations,
in comparison to the existing paper-based checklists. This is because the content of
each checklist is tailored to match the working environment risks in each organisation.
The inspectors also reported that they found violations on items that they normally
would not think of, especially among the dynamically added items. They found the
explanatory probability estimates (explanation method 1) helpful to understand the
model’s confidence in finding violations to items on the checklists. The explanations
for the dynamic checklist updates (explanation method 2) were also useful, both for
understanding how and why they should be used. On the negative side, the inspectors
reported that dynamic checklists aremore difficult tomemorize than their paper-based
counterparts due to their uniqueness. The checklists also require more attention from
the inspectors when operated due to the dynamic updates. The prototype’s GUI also
needs some improvements.

E.5.3 Quantitative Results and Discussions.

Overall Results from the Field Study. The results in Table E.1 show significant
increases in the average number of violations found per inspection (𝐴𝑣𝑔𝑣 ) between the
test and control groups. For all inspections, the increase is 62.7% (6.02 vs 3.70), but
some of the difference can be explained by the fact that the test group contains more
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Acc&Food Construction Others All
Non-compliance 0.53 0.17 0.22 0.35
Yes 0.42 0.52 0.59 0.49
Not controlled 0 0.06 0.04 0.03
Not relevant 0.04 0.25 0.15 0.13
Follow up later 0.01 0 0 0
Total 1.00 1.00 1.00 1.00

TABLE E.2. Average relative frequency distribution of checklist answers per inspection from
the test group in the field study.

inspections conducted in Accommodation & Food than the control group (see Figure
E.6), where inspectors find more violations than any other industries. For Accommo-
dation & Food and Others, the increases are 20.5% (9.03 vs 7.50) and 27% (3.53 vs 2.78)
respectively, which are significant and likely attributed to the dynamic checklists. It
seems that the dynamic checklists are less effective in Construction, as the increase in
𝐴𝑣𝑔𝑣 is insignificant. However, the average precision per checklist item for violations
(𝑃𝑟𝑒𝑐𝑣 ) for Construction is still significantly higher in the test group, as the average
checklist size (𝐴𝑣𝑔𝑙 ) is lower. 𝑃𝑟𝑒𝑐𝑣 is also significantly higher in Accommodation &
Food and in Others as well, as more violations are found. The benefits of finding more
violations are discussed in Section E.1, and shorter checklists may also decrease time
spent on the inspections and the cognitive load for the inspectors [22]. Thus, the overall
increases in 𝑃𝑟𝑒𝑐𝑣 in the test group can therefore be seen as indicators for increased
labour inspection efficiency [8, 11]. The results in Table E.1 also support Flogard et
al.’s claim that dynamic updates to the checklists increase overall precision [8]. 𝐷 𝑃𝑟𝑒𝑐𝑣
is the precision score exclusively for the dynamic part of checklists and the overall
score is 49% (0.49), which is significantly higher than the 𝑃𝑟𝑒𝑐𝑣 score of 35% for the
full dynamic checklists in the test group. Without the checklist updates, the overall
𝑃𝑟𝑒𝑐𝑣 would have been 33%. The effectiveness of the dynamic items varies among
the industries, and they seem to be less effective in the Others category (test group) as
𝐷 𝑃𝑟𝑒𝑐𝑣 is 9 percentage points less than 𝑃𝑟𝑒𝑐𝑣 .
Distribution of Checklist Answers. Table E.1 also shows variations in the scores
between different industries, which are similar for both the test and control groups.
Therefore, we look more closely into how the checklists are used in the different
industries for the test group only. Table E.2 shows the distribution of checklist answers
in the test group. There are clear differences in how inspectors interact with the
checklists, based on the industries. For all industries combined, 35% of the checklist
items are non-compliant, 49% are compliant, and the rest are either not controlled or
not relevant. TheConstruction industry has the highest share of checklist itemsmarked
as “not relevant” and “not controlled” (31%), which is interesting as Construction also
has the lowest𝑃𝑟𝑒𝑐𝑣 scores in Table E.1 for both the test and control groups. In contrast,
the shares of these answers in the Others and Accommodation & Food categories
are only 19% and 4% respectively. Therefore, it seems that inspectors generally find
checklists less relevant for inspections in Construction, compared to other industries.
There are also considerably less yes-answers and more non-compliance-answers in
Accommodation & Food compared to the Others category, which indicates lower
compliance with overall working environment regulations for this industry. However,
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FIGURE E.7. Weighted average precision scores from this field study (left) versus ground truth
precision (middle) and estimated precision scores (right) from cross-validations
done in previous work [8]. The standard error is 0.01 for the field study and 0 for
the rest.

some of these observed differences between the industries may not be industry-specific
but could be caused by individual differences between inspectors of the different
industries. This is because inspection efforts in each industry are distinctly divided
between the 7 inspectors participating in the study, pair-wise for both test and control
groups as mentioned earlier.

Field Study versus Cross-Validation Performance. Figure E.7 shows the average
precision performance scores for dynamic vs. traditional checklists for different exper-
imental setups. The right plots show 𝑃𝑟𝑒𝑐𝑣 scores based on estimates, using empirical
distributions from the validation parts of the dataset [8]. The middle plots show cross-
validation scores using only available ground truth labels [8]. The left plots show the
overall 𝑃𝑟𝑒𝑐𝑣 scores from this field study, which are weighted according to how in-
spections are distributed among industries in Flogard et al.’s dataset, for comparisons
with the other plots. For the baseline traditional checklists (orange), all the scores are
nearly identical with 0.17 for the field study and 0.18 for the data sets. For the dynamic
checklists (blue), the weighted score from the field study (0.24) is much lower than
the cross-validation scores of 0.32 and 0.50. This indicates that the cross-validations
are unable to accurately estimate the field performance of dynamic checklists. The
discrepanciesmight be attributed to confounding factors related to the use of checklists
in the real world that are not accounted for in the cross-validation, such as how users
interact with their checklists [37]. Cross-validation may still not be completely unreli-
able, as Figure E.7 shows that dynamic checklists consistently outperform traditional
checklists in both the cross-validations and field study. Yet, the differences between
the field study and cross-validation results highlight the importance of field-testing
ML methods.
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E.6 CONCLUSION

In this paper, we developed a prototype based on the current state-of-the-art ML
method for generating dynamic checklists (CBCBR). We also propose two different
approaches for explaining the content of the checklists to inspectors, which are imple-
mented into the prototype. The prototype is tested in a field study of real-world labour
inspections. The results indicate that the efficiency of labour inspections significantly
increases with explainable dynamic checklists. The way checklists are answered varies
based on the industry where the inspections are carried out. Some of these variations
could be caused by individual differences in inspection practices between inspectors.
Our findings also suggest that current cross-validation methods [8] do not accurately
reflect real-world performances of ML-based checklists. Field testing is therefore
essential for obtaining fully reliable estimates of checklist performance.

Research on using ML for generating checklists is in an early stage. Despite this,
we believe that the results from the field study are strong enough to encourage labour
inspection authorities to adopt and further developMLmethods for creating checklists,
which could increase national and global levels of compliance with labour rights and
reduce injuries (SDG indicators 8.8.1 and 8.8.2). NLIA has already plans to further
develop our prototype into a system that can be used nationwide in Norway, replacing
the 369 different traditional checklists currently being used [4]. To accomplish this,
improving the user interface of the prototype is important. Based on the results from
the study and the feedback from the inspectors, it is likely that doing so could further
increase inspection performance. The dataset used for the prototype does not have
many features, so adding more features and using feature selection could be an option
to optimize performance [4, 38–40]. Another direction for future work is to take
advantage of the transparency of the CBCBR method, and develop more explanation
methods to promote and increase the inspectors’ trust in the system. In particular,
inspectors have requested methods that provide counterfactual explanations for why
certain items have not made it into their checklists.

ETHICAL STATEMENT

We seek to avoid conducting research in ways that can have negative impacts. An
ethical concern for this field study is that the time the inspectors spend on inspections
for the study could be spent on something else. Thus, we designed the study to avoid
disrupting inspectors from their daily tasks or degrading the quality of the inspections.
Some of the design choices may therefore not be optimal from a scientific point of
view, such as letting the inspectors select organisations for inspections based on their
own decisions (in both test and control groups) or that appending extra dynamic items
to the checklists is not done automatically without approval from the user. Privacy for
the participating inspectors is also a possible concern, and we have therefore collected
an informed consent from the participating inspectors for the purpose of this paper.
We have also taken care to not provide any results or information in this paper that
can be used to identify any businesses subjected to the labour inspections.
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