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ABSTRACT
Background:  Human cells and bacteria secrete extracellular vesicles (EV) which play a role in 
intercellular communication. EV from the host intestinal epithelium are involved in the regulation 
of bacterial gene expression and growth. Bacterial EV (bactEV) produced in the intestine can pass 
to various tissues where they deliver biomolecules to many kinds of cells, including neurons. 
Emerging data indicate that gut microbiota is altered in patients with psychotic disorders. We 
hypothesized that the amount and content of blood-borne EV from intestinal cells and bactEV in 
psychotic patients would differ from healthy controls.
Methods:  We analyzed for human intestinal proteins by proteomics, for bactEV by metaproteomic 
analysis, and by measuring the level of lipopolysaccharide (LPS) in blood-borne EV from patients 
with psychotic disorders (n = 25), tested twice, in the acute phase of psychosis and after 
improvement, with age- and sex-matched healthy controls (n = 25).
Results:  Patients with psychotic disorders had lower LPS levels in their EV compared to healthy 
controls (p = .027). Metaproteome analyses confirmed LPS finding and identified Firmicutes and 
Bacteroidetes as dominating phyla. Total amounts of human intestine proteins in EV isolated from 
blood was lower in patients compared to controls (p = .02).
Conclusions:  Our results suggest that bactEV and host intestinal EV are decreased in patients with 
psychosis and that this topic is worthy of further investigation given potential pathophysiological 
implications. Possible mechanisms involve dysregulation of the gut microbiota by host EV, altered 
translocation of bactEV to systemic circulation where bactEV can interact with both the brain and 
the immune system.

Introduction

Emerging data indicate that the gut microbiota is altered in 
patients with psychotic disorders [1,2]. The human cells and 
bacteria in the intestine produce extracellular vesicles (EV) which 
can deliver functional biomolecules like proteins from one cell 
or bacteria to another [3]. Studies on human and mice organ-
oids and mice have revealed mechanisms involved in the trans-
location of bacterial EV (bactEV) out of the intestinal lumen to 
the submucosa layer with immune and stem cells and further to 
the systemic circulation [4,5]. BactEV can influence the immune 
system in various ways [6,7]. A recent study showed that bactEV 
from the gut in mice are transported to various organs includ-
ing the brain. In the brain, the bactEV deliver biomolecules to 
neurons [4]. Interestingly, the areas with the highest uptake of 
functional biomolecules from bactEV were predominantly the 
striatum and to a lesser extent the cortex and hippocampus [4]. 

This study used healthy mice, not involving a model of any dis-
ease, suggesting that this interspecies communication between 
the bacteria in the intestine and the brain might be a part of 
normal physiology. However, the striatum is a key brain struc-
ture in the pathophysiology of psychosis as increased synthesis 
of dopamine is a robust finding among patients with psychotic 
disorders including the prodromal stages of the disease  
[8–11]. Cell and animal models showed that EV can affect dopa-
minergic neuromodulation [12,13]. Thus, a possible mechanism 
in the pathophysiology of psychosis could be a disturbed trans-
port of bactEV from the gut to the blood and thereby to the 
striatum where the delivered biomolecules affect dopamine 
synthesis.

Animal models have also shown beneficial effects such as 
reduced mortality after immunization with bactEV [14,15]. 
Psychotic disorders are associated with high morbidity and 
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mortality and their biological origin remains partly unknown; 
there are thus several reasons why bactEV are promising 
research targets in psychotic disorders [16,17].

EV from host intestinal epithelial cells are delivered both at 
the apical (luminal) and basal side of the intestine and play a 
role in the regulation of microbiota, antigen presentation, food 
tolerance, inhibition of CD4+ T-cell proliferation, and protection 
against infections [18–23]. However, the available mechanistic 
studies [18–23] are preclinical, and most clinical microbiota 
studies are association studies involving microbiota composi-
tion [24]. EV from gut bacterial and/or intestinal cells in human 
blood remain poorly characterized [25].

Here, we analyzed EV from peripheral blood, isolated in a 
previous publication, for human intestinal proteins and for 
bacterial content by metaproteomics and lipopolysaccharide 
(LPS) measurement, to test the hypothesis that the amount 
and content of EV from intestinal cells and bactEV differ 
between patients with psychotic disorders and healthy controls.

Metaproteomics is an emerging approach that can assess the 
complete suite of proteins (the metaproteome) in an environ-
mental sample or ecosystem, such as host-symbiont interfaces  
– this, in contrast [26]  with the proteome that defines the set of 
proteins in one single organism. The field is technically very 
demanding, that for both the experimental workflow [27] and 
the bioinformatics workflow [28], and we aimed to investigate if 
metaproteomics can be used to analyse non-bacterial enriched 
proteomics data, and thus to identify BactEV.

Methods

This is an add-on study based on EV isolated in a previous 
publication where we recruited 25 patients with psychotic 
disorders (Table 1). Patients were recruited during hospitaliza-
tion for psychosis [29]. The first blood sample was taken 
during the acute phase of psychosis (T1). The patients were 
retested (T2) after minimum six weeks. Seven patients were 
lost to follow-up. All patients had a lower Clinical Global 
Impression-Severity Scale score at the second time point. 
Patients included were diagnosed with schizophrenia (n = 12), 
substance-induced psychotic disorder (n = 4), acute and tran-
sient psychotic disorders (n = 3) and other psychotic disorders 
(n = 6). Exclusion criteria were cardiac, rheumatic, autoimmune 
and neurological disorders, cancer, organic causes of psycho-
sis, and pregnancy.

Blood sampling and EV isolation

Samples are prepared as described earlier [29]. Briefly, blood 
was drawn once from healthy controls and twice from 

patients [30]. The majority of samples were collected before 
lunch, data regarding fasting was not noted. Blood was col-
lected in sterile EDTA tubes (Vacuette, Greiner Bio-One) and 
centrifuged fresh (2000 g, 30 min, 4 °C)(within 2 h) to isolate 
cell-free plasma. Plasma was centrifuged (10,000 g, 30 min, 
4 °C). The supernatant was transferred to cryotubes, and were 
frozen at −80 °C awaiting further analysis. Pellet fractions 
were thawed in room temperature and resuspended in 100 µl 
phosphate-buffered saline (PBS). The samples were centri-
fuged again to remove any residual cells and debris, first at 
2000 g (30 min, 4 °C). The supernatant was transferred and 
centrifuged at 10,000 g (30 min, 4 °C). The resulting superna-
tant was discarded, and the pellet was resuspended in 
ammonium bicarbonate buffer (100 µl, 100 mM) for further 
analysis. Samples for proteomics were frozen at −80 °C in 
Protein LoBind Eppendorf tubes before further sample pro-
cessing. The mean concentration was 2.0 × 107 particles/ml 
plasma (SD 1.1 × 107, n = 68) and with a mean size of 191 nm 
(SD 21 nm, n = 68), as detailed previously [29].

The isolation method was calibrated to result in EV sam-
ples of the high recovery, low specificity category of 
MISEV2018 guidelines [31]. The method is submitted to the 
EV-TRACK knowledgebase (EV-TRACK ID: EV200067) [32].

Proteomic analysis of isolated EV

To address the presence of human-originating intestinal pro-
teins in the isolated EV, the proteomic raw data from an ear-
lier study was analysed [29] (available in PRIDE, dataset 
identifier PXD016293) [33], focusing on proteins enriched in 
intestines as based on the Human Protein Atlas (https://www.
proteinatlas.org) [34].

Metaproteomic reanalysis to identify bactEV

The raw files obtained [29] were reanalysed applying a 
metaproteomic approach [35]. To encompass all possible bac-
terial species that could be potential candidates an unbiased 
analysis of a large set of different microorganisms is required. 
We searched against a concatenated target-decoy database 
of the human proteome (20,000 proteins) combined with the 
integrated gene catalogue (IGC, approximal 10 million gut 
microbe genes) [36]. This catalogue includes data from 1267 
sequenced samples and is expected to represent a close-to-
complete data sets of genes for most gut microbes [37]. We 
also need to include the human proteome as the majority of 
proteins in the analyzed samples are expected to be human 
and a repository of common contaminants [38]. The reanaly-
sis result files, including raw files, search files and database 

Table 1. D escription of study participants.

Psychotic patients (T1) After improvement (T2) Healthy controls

Number of participants 25 18 25
Age in years, mean (SD) 33.1 (11.0) years 34.2 (11.2)
Sex 19 males, 6 females 14 males, 4 females 19 males, 6 females
Clinical global impression-severity scale score 6.5 (0.65) 3.8 (1.23)
Time since debut of first psychotic episode 63 (81) months
Time between sampling points (T1 and T2) 79 (34) days. Range 42–162 d

Values given as mean (SD) if not specified otherwise.

https://www.proteinatlas.org
https://www.proteinatlas.org
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used are available at the PRIDE partner repository (dataset 
identifier PXD029074) [33].

Metaproteomic data analysis and taxonomic profiling

Statistical analyses of metaproteomic results were performed 
with Perseus (version 1.6.14) [39]. The number of validated 
peptide-to-spectrum-matches (PSMs) was normalized by 
dividing the validated PSMs for each protein with the sum of 
validated PSMs for statistical analysis. Differences in protein 
detection between sample groups were analysed using 
Student’s t-test, corrected for multiple hypothesis testing 
(permutation-based FDR < 0.05, artificial within group vari-
ance s0 = 0.1). Missing values were imputed from a normal 
distribution with a 1.8 standard deviation shift from the aver-
age and a width of 0.3. Peptides matched to microbial pro-
teins that were significantly different between groups were 
extracted from peptide identification results. We analyzed 
taxa with the Unipept desktop application [35], to validate 
microbial proteins to specific species. In addition, the pep-
tides that constituted bacterial proteins that differed between 
groups and the dominating bacteria phyla in the samples 
were aligned to known sequence databases using NCBI Blast 
to verify bacteria origin [40]. To identify potentially sources of 
bacterial contamination in our samples, results were also 
search for bacteria from human skin [41] and typical contam-
ination bacteria in laboratories and low biomass samples 
[42,43].

LPS analysis

Since EV from Gram-negative bacteria contain inner mem-
brane and cytoplasmic components in addition to the outer 
LPS-containing membrane, LPS can be used as a marker for 
Gram-negative bacteria [25]. The content of LPS in the iso-
lated EV was determined by the PyroGene recombinant fac-
tor C endotoxin detection end-point assay (Lonza, Belgium). 
Two to four dilutions were prepared for each sample, and the 
test was performed in a 96-well format with three technical 
replicates of each dilution. To assure data reliability with 
respect to test interference, 0.5 EU/mL control standard 
endotoxin from the kit was spiked into each dilution in three 
technical replicates. Based on the kit protocol, spike recovery 
between 50% and 200% was accepted. The released fluores-
cence substrate was measured fluorometrically at 440 nm 
(excitation 380 nm) using a fluorescence microplate reader 
(TECAN, Infinite M200 PRO). The detection range of the assay 
was 0.005–5 EU/mL.

Statistical analyses

Initial data for LPS/vesicle contained extreme outliers (modi-
fied z scores ranging from 7 to 43) considered to be caused 
by contamination or error in the analyses and therefor were 
removed before further analyses (n = 2 in the healthy control 
group, n = 1 in patients at T1 and n = 1 in patients at T2) [44].

The distribution of data was assessed by the Kolmogorov–
Smirnof test and statistical tests were chosen based on this. 

We used an independent t-test to compare LPS measure-
ments between healthy controls and patients at T1 (data for 
the healthy control group were slightly skewed and data for 
the patient group at T1 were normally distributed) [45]. To 
compare LPS measurements in patients before and after 
improvement we used related samples Wilcoxon signed rank 
test as data at T2 was highly skewed and the analyses only 
involved 16 pairs.

For proteomic results we performed an independent t-test 
(unpaired) between patients at T1 and healthy controls with 
correction for multiple hypothesis testing by using 
permutation-based FDR <0.01 and artificial within group vari-
ance s0 = 0.1, to evaluate if the total level of intestinal human 
proteins differed between groups. To evaluate if the intestine 
proteins were affected by the status of psychosis, we used a 
paired t-test.

We compared the spectral counts of the microbial pro-
teins, as identified by the metaproteomic searches for patients 
at T1 and healthy controls by the Mann Whitney U test [36]. 
To evaluate if disease status affected the microbial constitu-
ents at T1 and T2, we used Wilcoxon related sample signed 
rank test.

Statistical analysis was performed using Perseus (version 
1.6.14.0) [39] and IBM SPSS Statistics for Windows (ver-
sion 26.0.).

Ethics

The study was approved by the Regional Ethics committee, 
South East Norway (2016/949). All participants gave written 
informed consent.

Results

LPS

As LPS is found in the outer membrane of bactEV from 
Gram-negative bacteria, we measured LPS in our EV as an 
indicator of the bactEV content in the blood (Figure 1) [25].

Figure 1. S catter plot with mean (bar) and standard deviation (error bars) of 
LPS in EV in patients at T1 and T2 and healthy controls (HC).
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Microbial proteins

The metaproteomic analysis resulted in 2744 proteins identi-
fied with more than one peptide across all analyzed samples, 
whereof 178 protein identities were mapped to bacterial pro-
teins in the IGC. Patients at T1 had a lower number of PSMs 
mapped to bacterial proteins (mean 2.6 × 10−3±1.3 × 10−3, 
median 2.4 × 10−3) compared to healthy controls (mean 
3.2 × 10−3±1.3 × 10−3, median 3.3 × 10−3) (N = 50, p = .049, 
Independent samples Mann Whitney). Unipept identified in 
total 24,741 peptides, whereof 17,510 (71%) is from eukary-
otic organisms, 1116 peptides (5%) were mapped to bacteria, 
5 (0.002%) were mapped to Archaea and 6109 peptides 
(25%) were mapped as undefined. Firmicutes, therein 
Clostridiales, and Bacteroidetes were the most frequent iden-
tified bacterial phyla across all samples (Figure 2), the con-
tent of these did not differ between groups. Six microbial 
proteins were initially identified as significantly different 
between groups, based on normalized spectra. Of these, four 
were only presented by a small number of spectra (<5 across 
all samples), while two proteins, with entries in IGC: 
159268001-stool2_revised_scaffold1240_2_gene6335 and 

MH0124_GL0029177, were identified by 395 and 236 spectra, 
respectively. We therefore selected these two proteins for 
extended manual curation, to qualify the identifications 
(Table S1). Identified peptides for these two proteins were 
evaluated by NCBI Protein BLAST to verify microbial origin 
and identify the specific organisms these proteins originated 
from, as a quality control. However, although links could be 
found from the identified peptides to bacterial species, the 
highly similar or mass equivalent peptide sequences could be 
mapped to serum albumin and glyceraldehyde 3-phosphate 
dehydrogenase, proteins that are both highly conserved 
between species and are expected to have a high abundance 
in human samples, as peripheral blood is. Thus, we cannot 
conclude that these two proteins are solely originating from 
bactEV. We also did individual quality control of the 858 pep-
tide sequences determined to belong to the phyla 
Bacteroidetes and Firmicutes by the Unipept desktop, which 
were the most frequent bacteria phyla identified in our sam-
ples. Three of the 858 peptides were revealed to most likely 
be derived from human albumin, one of the peptides had a 
100% peptide coverage with bacterial protein and 90% cov-
erage with human ‘natural killer cell receptor2B4’ and and 

Figure 2. T reeview of identified peptides and species match in Unipept, where the thickness of the line indicates the amount of unique peptide evidence at each 
taxonomic level.

https://doi.org/10.1080/08039488.2023.2223572
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should therefore considered to be doubtful. The rest of the 
peptides were confirmed as true bacterial identifications.

None of the most frequent human skin bacteria 
(Proprionibacterium species, Corynebacterium species, and 
Staphylococcus species) [41] were detected in our samples by 
Unipept. Of the 59 genera detected by Salter et  al. as typical 
contaminants in low-mass biosamples belonging to the phy-
lum Proteobacteria; [42] Burkholderia was identified with 17 
peptides, Oxalobacter with 16 peptides, Acinetocanter with 
three peptides, Enterobacter with 123 peptides, and Escherichia 
with 11 peptides. Of the phylum Actinobacteria none of the 
typical bacterial contaminants from the Salters study were 
detected in our study [42]. Within the Firmictues phylum 
identified as typical contaminating bacteria by Salter et  al. 
only Paenibacillus and Streptococcus were identified with 3 
and 26 peptides indicating that the main part of the species 
of Firmicutes in our samples are not originating from con-
tamination. Of the bacteria shown to be involved in contam-
ination within the phylum Bacteroidetes [42] only 
Flavobacterium were identified by two peptides also 

indicating that the main population of the identified 
Bacteroidetes is not due to contamination. A newer study 
investigating contamination in modern and ancient labora-
tory facilities showed that contaminating bacteria in modern 
laboratories, as ours, typically belongs to the phyla Fimicutes 
and Proteobacteria and that the bacteria with increased 
abundance were Erythrobacteraceae (phylum Proteobacteria) 
and Staphylococcus taxa (phylum Firmicutes) [43]. 
Erythrobacteraceae and Staphylococcus taxa were not identi-
fied in our study.

Intestine-enriched proteins

The number of PSMs identified for intestinal proteins was sig-
nificantly higher in healthy controls compared with T1 [34]. 
Three individual proteins were significantly different between 
healthy controls and T1: Apolipoprotein A4 (APOA4) and 
P0C671 Chromosome 6 open reading frame 222 (C6orf222) 
were lower and Sorcin was elevated in psychotic patients 
(Figure 3).

Figure 3. S catter plot for normalized average precursor intensity with mean (bar) and standard deviation (error bars) for human intestinal proteins in the isolated 
EV. (A) The sum of normalized average precursor intensities across all intestine-elevated proteins. (B–D) normalized average precursor intensity for the three 
individual intestine proteins identified as significantly different between psychotic patients during psychosis (T1) and/or in improved state (T2) (correction for 
multiple hypothesis testing by using permutation-based FDR <0.01 and artificial within group variance s0 = 0.1) Individual values (per patient) shown as circles.
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Discussion

Bacteria-derived EV

Mean levels of LPS in EV were lower in patients with psy-
chotic disorders compared to healthy controls, indicating 
lower levels of bactEV.

In mice, there is evidence of a ‘bactEV axis’ from the intes-
tinal lumen to the striatum [4]. If this is true also in humans, 
a disturbance of the amount or type of bactEV, that is trans-
ported to the striatum, could be involved in the increased 
dopamine synthesis in psychotic disorders [8,12,13].

EV from specific gut bacteria can elicit immunosuppres-
sive responses [6], promote wound healing [6], protect 
against colitis [46], provide anti-tumor effects [7], and increase 
BDNF expression in neurons and offer antidepressant effects 
in mice [47]. Mice immunized with bactEV from different bac-
teria also live longer than control mice [14]. Thus, identifica-
tion of bactEV and their constitution and origin in the blood 
may allow novel insights into which and how bacteria might 
be involved in the pathophysiology of psychosis and might 
contribute to increased mortality. BactEV-based vaccines 
against infections have been approved for use in humans 
[48]. A possible mechanism behind the increased mortality 
due to infections in patients with psychotic disorders could 
be a disturbance in the natural bactEV amount and/or con-
tent reducing the natural immunity against infections as a 
lack of natural effective vaccines [49].

We did not measure free LPS, however, it should be noted 
that LPS besides being a well-known trigger of inflammation, 
LPS has the capacity to reprogram the immune system with 
prolonged exposure, including suppression of inflammatory 
cytokines, in particular TNF-α, IL6 and IL-12p40 [49]. This is in 
contrast to patients with schizophrenia who commonly have 
increased IL-1β, IL6, and TNF-α levels [50]. Patients with 
schizophrenia have a markedly increased mortality owing to, 
among other things, infections, and cardiovascular diseases 
[16,49], but interestingly, mice treated with LPS from specific 
bacteria to reach tolerance are protected against systemic 
infections [51], and also show improved glucose and lipid 
metabolism [52], suggesting a possibility for novel treatment 
approaches in patients with psychotic disorders.

The size of EV in our study and in a previous study of bact 
EV in gastrointestinal patients by Tulkens et  al. was similar, 
and the latter investigators also found LPS levels in healthy 
controls similar to our study although they used a sophisti-
cated protocol for bactEV enrichment [29,53].

The results from the metaproteome analysis confirm the 
LPS result by finding less bacteria peptides in the EV from 
patients compared to healthy controls. Although none of the 
individual microbial proteins identified as differently 
expressed, could be verified as true bacterial findings, Unipept 
analysis revealed a large number of peptides likely originat-
ing from bacterial species.

Our results identify Firmicutes and Bacteroidetes as the 
dominating phyla in our samples and the manual curation ver-
ifies bacteria origin for 854 of 858 peptides. Firmicutes and 
Bacteroidetes are the dominating phyla in the gut, represent-
ing 90% of gut microbiota [54]. We expect our analyses to be 

exposed to some contamination, however, the profile of our 
bacterial finding does not match the typical profile of contam-
ination in laboratories [43,55]. Together, this supports that our 
material contains bactEV originating from the intestine.

Thus, we conclude that metaproteomics in a non-enriched 
sample is possible, but improved sample preparations are 
recommended to yield better coverage and a statistical basis 
for identifying bacterial proteins in the isolated EV.

Intestinal-derived EV

The total level of human intestinal proteins was lower in EV 
from patients compared to healthy controls. A search through 
our previous findings in the overrepresented Gene Ontology 
Term analyses support the validity of the observed difference 
in total intestinal proteins between the groups. In these analy-
ses, the categories ‘regulation of digestive system process’ 
(GO:0044058), ‘regulation of intestinal absorption’ (GO:1904478), 
‘regulation of intestinal cholesterol absorption’ (GO:0030300), 
‘regulation of intestinal lipid absorption’ (GO:1904729) were 
found to be downregulated in patients with psychotic disor-
ders compared to healthy controls [29]. Notably, no 
organ-specific processes, except for those related to the intes-
tine, were identified in these analyses, with the exception of 
processes primarily associated with the brain, such as ‘main 
axon’ and ‘postsynapse’ [29]. In addition, the overall brain-related 
proteins did not exhibit similar changes (see also Figure 3(F) in 
[29]), indicating that the EV change in intestinal proteins are 
organ-specific. Overall, these findings suggest that there is a 
difference in the production or transport of EV from intestinal 
cells in psychotic patients, as evidenced by the lower levels of 
intestinal proteins in their EV compared to healthy controls.

EV originating from epithelial intestinal cells play a role in 
antigen presentation and are important in the defense 
against pathogens [23]. Evidence from humans and mice 
indicates that EV from intestinal epithelial cells are the main 
contributor to miRNA in feces [19,56]. These intestinal miR-
NAs in EV from the host are internalized by bacteria in the 
intestine, thereby regulating bacterial gene expression and 
growth. Deficiency of host epithelial-originated miRNAs result 
in a more diverse microbiota and changed the intestinal bar-
rier integrity in mice [19]. These effects can be countered by 
fecal transplantation containing intestinal cell-originating 
miRNAs [19]. Thus, a disturbance in the hosts regulating 
capacity by EV could explain the altered microbiota in 
patients with psychotic disorders [1,2]. Interestingly, there is 
a genetic correlation between schizophrenia and inflamma-
tory bowel disease [57]. Evidence suggests that EV have a 
role in the development of inflammatory bowel disease 
including the inflammatory and microbiota regulatory aspects 
of the pathophysiology [58] The host intestinal EV proteome 
is changed in inflammatory bowel disease [59] as also possi-
bly indicated in our study of patients with psychotic disorders.

After fecal transplantation, mice receiving feces from 
patients with schizophrenia developed psychomotor hyperac-
tivity, impaired learning and memory, reduced levels of glu-
tamate and higher glutamine and GABA in the hippocampus 
[60,61]. Thus, transplantation of healthy donor feces for 
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psychotic disorders could be an avenue for future research, 
although the lasting effect of fecal transplantation might be 
limited if a disturbance in the microbiota regulation by intes-
tinal EV and their miRNA is an underlying problem

In our study, following correction for multiple hypothesis 
testing, patients had higher levels of the intestine proteins 
Sorcin and C6orf222 and lower levels of ApoA4. Sorcin, a 
calcium-binding protein, has been suggested as an early 
marker of neurodegeneration [62]. A study demonstrated 
lower levels of this protein in the brain tissue from 15 
patients with schizophrenia [63]. Moreover, in line with the 
increased levels in our data, another recent study showed a 
higher level of Sorcin in the intestinal biopsies of patients 
with irritable bowel syndrome compared to the controls [64]. 
C6orf222 (also named BNIP5) has a high specificity to intesti-
nal cells. To our knowledge, studies regarding the function of 
C6orf222 or its relation to EV have not been conducted. 
ApoA4 is a lipid-binding protein primarily synthesized in the 
small intestines and is secreted into the intestinal lymphatics 
during fat absorption. Studies have showed inconsistently 
altered levels of APoA4 (not EV bound) in patients with 
schizophrenia [65–67]. Approximately 25% of ApoA4 in the 
blood are bound to lipids, mainly HDL [68]. ApoA4 has been 
identified in EV, but the proportion of EV-bound ApoA4 is 
unknown [69,70]. LPS induces the expression of ApoA4 in 
mice [71]. If this is true also in humans, low level of LPS 
could lead to lower levels of ApoA4, as in our study. ApoA4 
deficiency is associated with atherosclerosis and diabetes 
[72,73], and these conditions are more frequent in patients 
with psychotic disorders [16,74–76]. Our findings suggest 
that C6orf222, ApoA4 and Sorcin are protein candidates for 
further studies regarding their function and role in EV and 
the potential impact on the pathophysiology of psychosis.

Limitations

The number of participants in our study was low, and our EV 
isolation approach favored high yield over the specific selec-
tion of EV populations [29]. Small EV are frequently reported 
isolated by >100,000 g. Proteomic analysis of fractions iso-
lated both by 10,000 g and 110,000 g was performed as pre-
liminary work for this study. Here, known EV markers were 
identified solely in the 10,000 g fraction. We suggest that this 
may be caused by aggregation of EV during freezing, and the 
10,000 g EV-enriched fraction was chosen for further studies, 
as presented. We did not perform specialized metaproteomic 
wet-lab procedures [77] and our bacterial analyses could be 
prone to contamination as pyrogen-free glasses was not used 
throughout all steps of the laboratory process. Moreover, we 
did not collect data on fasting, which should be considered 
in future studies. On the positive side, this is the first study 
exploring intestinal and bacterial EV in patients with psy-
chotic disorders, opening a promising research field.

Conclusions

Our data suggest that blood-borne EV originating from the 
intestine, both from bacteria and human intestinal cells, differ 
between patients with psychotic disorders and healthy 

controls. If confirmed in future studies with protocols enrich-
ing for bactEV, it is possible that bactEV could be involved in 
several aspects of the pathophysiology of psychotic disorders 
which could have implications for the development of new 
treatments.
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