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Objective: Echocardiography, a critical tool for assessing left atrial (LA) volume, often relies on manual or semi-
automated measurements. This study introduces a fully automated, real-time method for measuring LA volume in
both 2-D and 3-D imaging, in the aim of offering accuracy comparable to that of expert assessments while saving
time and reducing operator variability.
Methods: We developed an automated pipeline comprising a network to identify the end-systole (ES) time point
and robust 2-D and 3-D U-Nets for segmentation. We employed data sets of 789 2-D images and 286 3-D record-
ings and explored various training regimes, including recurrent networks and pseudo-labeling, to estimate volume
curves.
Results: Our baseline results revealed an average volume difference of 2.9 mL for 2-D and 7.8 mL for 3-D, respec-
tively, compared with manual methods. The application of pseudo-labeling to all frames in the cine loop generally
led to more robust volume curves and notably improved ES measurement in cases with limited data.
Conclusion: Our results highlight the potential of automated LA volume estimation in clinical practice. The pro-
posed prototype application, capable of processing real-time data from a clinical ultrasound scanner, provides
valuable temporal volume curve information in the echo lab.
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Introduction

Echocardiography is the primary imaging modality for diagnosing
cardiac diseases. An extensive acquisition and analysis protocol that cov-
ers several 2-D views and multiple manual measurements is recom-
mended [1]. This process is time-consuming and prone to operator
subjectivity. Further, manual analysis is typically limited to one cardiac
cycle, even though guidelines recommend averaging over several. By
fully automating the image analysis in echocardiography, we can ana-
lyze more consistent measurements over multiple cardiac cycles and
time points. Furthermore, we can perform these measurements in real
time or at the bedside, much more quickly than a single manual expert
measurement.

In recent years, automated image analysis has improved in robust-
ness and accuracy. With the development and use of deep convolutional
neural networks (CNNs) based on supervised learning, the vision of a
fully automated analysis in echocardiography may be fulfilled. Previous
works have indicated that deep learning approaches perform compara-
bly to human experts in segmentation [2], cardiac view classification
[3], ejection fraction (EF) estimation [4−6] and assessment of diastolic
dysfunction [7].
In this work, we turn the focus on the assessment of the left atrium
(LA). Left atrial volume is a highly prognostic indicator in various car-
diac disease states [8], for example, stroke, atrial fibrillation and the
development of heart failure. The current recommendation for deter-
mining LA size is at end-systole (ES) using the apical window [9]. How-
ever, this requires the recording to be perfectly aligned in terms of angle
and orientation to ensure optimal images and capture of the actual vol-
ume. This process is vulnerable to error. Thus, it is recommended that
images of the LA be recorded separately from those for other chambers
[9]. The biplane method of disk summation (MOD) is recommended for
volume estimation of 2-D LA images at ES, requiring two views and two
manual contour measurements [9].

Today, 3-D echocardiography is becoming more available, and a
direct 3-D volume measurement of the left atrium can be made. This is
typically done using semi-automated segmentation with manual correc-
tions. With fewer geometrical assumptions, a better association was
achieved for 3-D imaging when compared with cardiac magnetic reso-
nance (CMR) [10]. Challenges for 3-D imaging currently include a low
frame rate and lower image quality, which can influence measurement
accuracy.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultrasmedbio.2023.08.024&domain=pdf
mailto:jieyu.hu@ntnu.no
https://doi.org/10.1016/j.ultrasmedbio.2023.08.024
https://doi.org/10.1016/j.ultrasmedbio.2023.08.024
https://doi.org/10.1016/j.ultrasmedbio.2023.08.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultrasmedbio


J. Hu et al. Ultrasound in Medicine& Biology 50 (2024) 47−56
Left atrium quantification for 2-D and 3-D imaging requires time-
consuming manual work. It relies on the annotator’s experience for
acquisition and measurement, which leads to inter- and intra-observer
variability that may limit clinical sensitivity and specificity for disease
identification. A fully automated LA volume estimation method in the
daily echo lab could improve efficiency, consistency and accuracy, espe-
cially for less experienced sonographers.

In this work, we introduce and evaluate a fully automated pipeline
for quantifying the LA volume for 2-D and 3-D echocardiography. We
aim to develop a tool to automatically quantify LA volume in the echo
lab and further for large-scale analyses in echo databases, that is, for
data mining and phenotyping purposes. Our main contributions are the
following:

1. Solutions to fully automate the estimation of the LA volume based on
deep learning from both 2-D and 3-D echocardiography

2. A training scheme that exploits the full temporal sequence of ultra-
sound images

3. A solution for robust LA volume curve estimation throughout the car-
diac cycle

4. A comprehensive evaluation using a large echocardiographic data set
with clinical expert reference measurements

5. An application prototype that measures the LA volume in real time
using images streamed from a clinical ultrasound scanner

Methods

Segmentation network architectures

We evaluated different segmentation networks for our study, consid-
ering metrics such as accuracy, memory usage and inference speed. The
Figure 1. Two-dimensional U-Net (Lite) model. The model 2-D U-Net (Full) [2] is bu
lows an increasing channel sequence of [8, 16, 32, 64, 128, 256], reaching a 4 × 4 la
decoder ([256, 128, 64, 32, 16, 8]), using upsampling 2-D layers. Each upsampling s
features. The 2-D U-Net (Lite) model, with 85% fewer parameters, reduces the encode
16], converging to an 8 × 8 latent space with 128 channels.
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chosen network should not only deliver high average accuracy but
should also exhibit robustness to outliers. Past studies [2,11,12] have
attested to the exceptional performance of the U-Net structure and its
variants in medical image segmentation tasks. In particular, Leclerc et
al. [2] and Smistad et al. [6,13] reported the efficacy of U-Net for cardiac
ultrasound segmentation tasks for both 2-D and 3-D. Given these consid-
erations, we selected U-Net as the baseline network architecture for this
study. We incorporated three U-Net models of varying complexity and
other network structures for an initial comparison.

We used a similar U-Net structure for 2-D and 3-D images, substitut-
ing 2-D convolutional layers for 3-D equivalents. The architecture
includes an encoder, a decoder and standard convolutional layers with
ReLU activation. We used Adam as an optimizer with an initial learning
rate of 5e-4 and a batch size of 24. Augmentations in the form of random
image rotation, flipping, non-rigid deformation and gamma intensity
transformations were applied during training. The Dice metric loss func-
tion was used during training.

The 2-D images were resized to an input size of 256 × 256 pixels,
while the 3-D data were resized to 64 × 64 × 64 voxels to balance infer-
ence speed and accuracy. Two variants of the baseline U-Net architec-
ture with the same structure but different feature maps and parameters
were evaluated. The lightweight U-Net is depicted in Figure 1, and the
3-D U-Net architecture is provided in Figure 2.

Alternative segmentation networks

We assessed three additional segmentation networks alongside the
baseline U-Net: E-Net [14], TransU-Net [15] and nnU-Net [12]. E-Net is
optimized for rapid inference, whereas nnU-Net, optimizes the U-Net by
adapting the training setup to the given data [12,14]. TransU-Net com-
bines the U-Net architecture with transformers to better capture global
ilt with convolutional 2-D, ReLU and maximum pooling layers. The encoder fol-
tent space with 512 channels, followed by a decreasing channel sequence in the
tep concatenates with the corresponding encoder layer to retain high-resolution
r channels to [32, 32, 64, 128, 128] and decoder channels to [128, 128, 64, 32,



Figure 2. Architecture of the 3-D U-Net, adapted from its 2-D counterpart for lower spatial sampling (64 × 64 × 64). The encoder is constructed using Conv3D layers,
ReLU activations and 3-D max-pooling layers, with a channel progression of [8, 16, 32, 64]. The decoder follows a similar pattern with [128, 64, 32, 16] channels. The
model converges to a latent space of 4 × 4 dimensions with 128 channels.
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information. The hybrid architecture equips TransU-Net with improved
global and local information to improve predictions [15].
A fully automated pipeline

Developing a fully automated pipeline for left atrial end-systolic vol-
ume (LAESV) measurements necessitates extracting the ES frame for seg-
mentation. Ideally, the measurement should be performed biplane, using
the LA four-chamber and two-chamber cross-sections. To this end, for
estimating LAESV, we compared two pipelines that can be used for both
retrospective and real-time measurements: (i) a separate timing extrac-
tion network for identifying the ES frame + ES frame
segmentation + LAESV volume calculation; and (ii) segmentation of all
frames within the cardiac cycle + identification of ES frame as the frame
with the largest volume + LAESV calculation.

The detailed steps of both pipelines are illustrated in Figure 3.
Timing network

The timing network used in this study consists of five 3-D convolu-
tional layers with an increasing number of filters and two long short-
term memory (LSTM) blocks [6]. The network was previously reported
to have a mean absolute error (MAE) of 1.6 frames for ES when evalu-
ated on left ventricular (LV) focused views.
Figure 3. Pipeline 1 involves the use of two consecutive neural networks. The ultraso
systole moment. The output of the timing network is then sent to a segmentation net
Finally, the LAESV is calculated based on the segmentation using a disk summation a
maximum volume of the left atrium. In this pipeline, the segmentation network must s
imum volume in each cardiac cycle, the LAESV. LAESV, left atrial end-systolic volume
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When evaluated on LA-focused views, an MAE of 2.9 frames was
found. Considering an average frame rate of 75.5 frames/s, the average
error in time of 39 ms was deemed acceptable.
Volume estimation

The formula for calculating LA volume using the biplane disk sum-
mation algorithm is expressed as

LAvol � π
4
∑
20

i�1
D1iD2i � L

20
�1�

where D1 and D2 denote the diameters of the sliced circular for A2C and
A4C views, respectively; L is the LA long axis, divided into 20 portions;
and i represents each circular slice. For correct measurement of LA vol-
ume, the guideline [9] emphasizes that the maximum length L on the
segmentation mask should be taken as the true LA long axis.

In the case of 3-D data, the LA volume was calculated based on the
image voxel spacing and 3-D segmentation mask. The LAESV was then
determined as the maximum volume during the cardiac cycle.
Semi-supervised learning: pseudo-labeling

To tackle the challenge of manual annotation, where time restricts
the practically possible number of annotated frames per examination,
und videos are first sent to a timing network, predicting each cardiac cycle’s end-
work, which detects and returns a mask for the left atrium region in the image.
pproach. Pipeline 2 is based on a well-established medical fact: the LAESV is the
egment each frame received, trace the volume and locate the frame with the max-
; MOD, method of disk summation.



Figure 4. Distribution of left atrial size of cohort with N = 325, presented by
manual measurements of biplane left atrial end-systolic volume.
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we incorporated pseudo-labeling into our training pipeline [16]. We ini-
tially utilized a data set with annotations limited to ES frames. Using
these data, we trained an initial network for LA segmentation. By using
this initial network for inference, we generated a comprehensive set of
annotations, effectively expanding the data set to encompass the entire
cardiac cycle. These generated annotations subsequently served as the
training foundation for the final segmentation network. This approach
served two purposes: first, to enhance performance when data are
scarce, and second, to provide annotations for all frames required for
temporal networks.

To ensure the reliability of our pseudo-labeled data, we automati-
cally identified and excluded frames with apparent segmentation errors.
A smoothed LA area trace was generated, and frames that deviated sig-
nificantly from the smoothed trace were identified as outliers. We per-
formed linear interpolation between neighboring segmentation masks to
replace invalid annotations. Further information on our pseudo-labeling
method can be found in our previously published work [17].

Temporal networks

To improve the temporal consistency of the LA volume trace, we
added Convolutional LSTM (ConvLSTM) layers into U-Net at each level
in the encoder. Models with and without convLSTMs were compared
qualitatively and quantitatively. Convolutional LSTM (ConvLSTM) pro-
posed by Shi et al. [18] solved a spatiotemporal sequence forecasting
problem that captured spatiotemporal correlations better than fully con-
nected LSTM (FC-LSTM). More details on the method, additional experi-
ments and results can be found in our previously published work
[17,19].

Evaluation metrics

We assessed segmentation accuracy using the Dice score, which
quantifies the overlap of the segmentation masks, and the Hausdorff dis-
tance (HD), which measures the maximum distance in millimeters
between the segmentation contour and the manually traced contour. All
metrics were evaluated using 10-fold cross-validation. Bland−Altman
plots were used to evaluate bias and limits of agreement for the clinical
volume measurements.

Real-time application

To determine the feasibility of integrating automated LA volume cal-
culation into clinical practice, we developed an application that pro-
cesses incoming 2-D or 3-D ultrasound images in real time. The
application outputs a volume curve and the corresponding LA volume at
ES. We used the FAST framework for real-time inference and image visu-
alization [20].

Data material

HUNT4
The HUNT4 echo study, a part of the fourth wave of the Trndelag

health population study from 2017 to 2019, consists of 2462 partici-
pants. The echo examination included standard 2-D imaging for the mor-
phological and functional assessment of the heart, supplemented by 3-D
imaging of the LV and the LA. All echocardiograms were recorded using
a GE Vivid E95 system with 2-D M5S and 3-D 4V probes (GE Vingmed
Ultrasound AS, Horten, Norway).

We extracted 2-D and 3-D recordings with LA-focused views for
LAESV assessment. Our study comprised N = 325 individuals with 2-D
biplane volume measurements, of whom N = 286 also underwent 3-D
LA imaging and volume measurement. The age of participants ranged
from 19 to 92, with a mean of 62.2 ± 12.1. Women constituted 45.3% of
the cohort. A notable 87.7% exhibited no evident cardiac diseases. How-
ever, 12.3% presented with various abnormalities, including atrial
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fibrillation (N = 3), myocardial infarction (N = 6), aortic insufficiency
(N = 5), left ventricular hypertrophy (N = 4), insufficient EF (N = 7)
and other abnormalities. Figure 4 illustrates the distribution of LA size,
presented by manual measurements of biplane LAESV.

We categorized all 2-D images into three classes based on their data
quality: images with a clear view of the LA, images with myocardial
dropouts and images affected by the reflection of the descending aorta.
These categories are illustrated in Figure 5a, 5b and 5c, respectively.
Annotation extraction
The left atrial recordings were manually traced by clinical experts

using the commercial GE EchoPAC analysis software (GE Vingmed Ultra-
sound AS). The resulting contours were overlaid on the Dicom preview
image, which we automatically extracted using an image processing
approach: (i) We first applied a simple color threshold to separate the
colored contour from the grayscale background, and (ii) used a contour
extraction method [21] to determine the LA trace coordinates, (iii)
which we fitted using a smooth spline representation. We further
defined the mitral annular plane as a straight line and used its midpoint
as an initial point to locate the apex of the LA, which was identified as
the longest distance from the midpoint to the contour. This served as the
LA centerline for volume calculation. Figure 5a provides an example in
which the blue/green dotted lines represent manually traced contours,
and the red mask depicts the extracted area of the annotation.

The LA-focused 3-D echocardiographic recordings were annotated
using a semi-automated GE EchoPAC tool comprising auto-tracing and
manual editing. Figure 5d illustrates the GE EchoPAC tool tracing the LA
in 3-D across cardiac cycles, while Figure 5e presents the sliced tracing
extracted from the 3-D volume. An experienced physician validated and
discarded invalid annotations, resulting in the final data set of 789 A2C
and A4C LA-focused images of 325 individuals.
Results

2-D and 3-D segmentation accuracy

The data set was partitioned into training, validation and testing sub-
sets on a per-patient basis in the ratio of 80%, 10% and 10%, respec-
tively. Table 1 outlines the performance of the evaluated network
architectures, summarized average Dice and HD metrics, number of
parameters (indicating memory utilization) and inference time. The
results suggest a comparable average Dice score among all networks.
Although the nnU-Net slightly surpassed the baseline U-Net by 0.6 mm
in HD, it also required 15 times more parameters and a more intricate
training procedure. Figure 6 provides representative performance exam-
ples using the baseline U-Net for four-chamber and two-chamber views.



Table 1
Performance comparison of 2-D and 3-D segmentation networks

2-D segmentation network Number of parametersa Inference speedb (fps) Average Dice Average HD (mm)

E-Net 0.4M 184 0.93±0.03 5.4±2.8
U-Net 2 (Lite) 2.0M 214 0.94±0.04 4.9±2.0
U-Net 1 (Full) 13.4M 193 0.94±0.03 4.6±2.0
nnU-Net1 (2-D) 29.9M 103 0.94±0.03 4.3±1.9
TransU-Net 105.3M 98 0.94±0.03 4.6±1.8

3-D segmentation network Number of parameters Inference speed (frames/s) Average Dice Whole Sequence Average Dice at ES
3-D U-Net 2.5M 111 0.88±0.06 0.89±0.05
nnU-Net 16.5M 62 0.89±0.05 0.91±0.04

The table summarizes results evaluated via 10-fold cross-validation over the entire data set for average Dice scores and Hausdorff distan-
ces (HD). Hausdorff distance values are given in millimeters.

a Number of parameters learned per network (in millions).
b Inference speed, measured in frames per second, was obtained using an RTX A6000 GPU for a 2-D image (256 × 256 pixels) and a 3-D

image (64 × 64 × 64 pixels).

Figure 5. Representative data. (a) Normal data with a view that clearly displays the LA. (b) Dropouts with an incomplete atrial contour. (c) Descending aorta reflection
with artifact. Red masks: Example of data extraction process; auto-extraction overlapped (red mask) with manually traced contour (green or blue dotted lines). (d) Capture
from GE EchoPAC, which uses a semi-automated segmentation method to segment the LA in 3-D during the cardiac cycle. (e) Extracted 2-D contours from 3-D mesh
model. LA, left atrium.
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For 3-D segmentation, we observed similar findings, with Dice scores
slightly lower than 2-D segmentation but consistent between the light-
weight 3-D U-Net and the more complex 3-D nnU-Net.

Data set size and pseudo-labeling

We conducted an experiment to investigate the influence of the
quantity of annotated training data on performance, hypothesizing that
pseudo-labeling could enhance performance in scenarios in which data
are limited.

Figure 7 illustrates the average Dice and HD and standard deviation
by including 5% to 80% of the data for training, corresponding to data
sets of N = 23 to N = 368 patients. As illustrated, pseudo-labeling posi-
tively affected both metrics for small data sets and generally improved
the Hausdorff metric, thus reducing the number of outliers.
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Clinical measurements

In the Bland−Altman plots shown in Figure 8, we compared the LA
volume measurement results using three different approaches for timing
extraction: (i) using the manually annotated ES frame; (ii) using a sepa-
rate neural network to extract the ES time point; and (iii) using the time
of maximum volume in the cardiac cycle as ES. For all cases, the U-Net
(Lite) was used for segmentation.

The average difference between the predicted LAESV and the manual
measurement was 2.9 mL when employing the manual ES time point and
timing network, and 3.7 mL when using the maximum volume as the ES
time point. In a clinical context, the low average bias suggests the robust
performance of our U-Net and training procedure. The standard devia-
tions were 8.0, 8.5 and 10.5 mL for the manually annotated time, the
timing network and the maximum volume method, respectively. No



Figure 6. Examples of average and bad performance of four-chamber and two-chamber views for U-Net (Lite).

Figure 7. Test performance on 10% of data using different amounts of training
data. The performance on both Dice score and Hausdorff distance (HD)
increased with more training data.

Figure 8. Findings for biplane volume estimation. (a) Using the same frame as the re
line 1, which uses a timing network to locate the frame of ES. (c) Pipeline 2, which c
chamber; ES, end-systole; std, standard deviation.
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proportional bias was observed. The separate timing network provided
results superior to those of the maximum volume approach, particularly
with respect to outliers.

In Figure 9, we compare the 3-D predicted LAESV to 3-D semi-auto-
mated manual measurements. The mean difference ± standard deviation
between the 3-D predicted volume and 3-D manual measurements was
7.8 ± 9.1 mL. This mean difference is larger than the 2-D volume errors
above. However, these variations align with our Dice findings for 2-D
and 3-D imaging, suggesting inherent challenges with 3-D measure-
ments.

Volume trace measurements

A representative example of volume curves using the different
approaches is provided in Figure 10, including an image example where
the segmentation results differ. The pseudo-labeling approach provided
labels for every frame, leading to a more stable temporal volume curve.

The volume trace estimates were compared quantitatively for a sepa-
rate data set of 28 participants (126 frames), where annotations were
available at multiple time points (three to five time points). As seen in
Figure 10, the initial model deviated from the reference at several time
points. Pseudo-labeling here enhanced considerably both quantitative
and qualitative performance without requiring additional manual work.
ference, compared between manual measurements and network results. (b) Pipe-
onsiders the frame with the largest volume as ES. 2CH, two-chamber; 4CH, four-



Figure 9. Comparison of 3-D volume prediction with 3-D man-
ual measurements. std, standard deviation.
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The summarized results in Table 2 indicate that pseudo-labeling, using
the simpler baseline model, improved the average Dice score from 0.87
to 0.90. However, incorporating temporal blocks into the model did not
enhance the metrics but further stabilized the volume trace.

Within our manually annotated data set, N = 240 patients had
LAESV measured for both 2-D and 3-D recordings, enabling a compara-
tive analysis of automated 2-D and 3-D volume estimation. In Figure 11
is a representable volume trace for a single patient, indicating that the
curves exhibit similar trends and comparable values.

Real-time application

Figure 12 illustrates screen captures of both 2-D and 3-D volume
measurement applications. The open source FAST framework [20]
enabled rapid prototyping, while data streaming was facilitated by the
open source OpenIGTLink format [22]. The software provides an oppor-
tunity to evaluate the efficacy of our approach in daily clinical practice
in the echo lab.

Discussion

We developed and evaluated a deep learning approach to segment
the LA in echocardiography, facilitating automated clinical volumetric
measurements for both 2-D and 3-D imaging in real time. The proposed
approach achieved a high degree of agreement with reference measure-
ments, with the standard deviation within the expected range of inter-
observer variability for both 2-D and 3-D segmentation [23]. Thus, our
approach is suitable for further evaluation and wider clinical use. As our
evaluation data set is limited in size, and the data consisted mainly of LA
size within the normal range, the method should be further validated in
larger external data sets and for more variation in pathology. Further-
more, because our data was acquired using a single ultrasound system
vendor, additional validation would be required to generalize the find-
ings to data sourced from other vendors.
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Three-dimensional segmentation enables direct LA volumetric meas-
urements, which could result in a more robust and easy-to-use approach.
Comparison of 2-D and 3-D performance revealed a slight overestima-
tion in volume by the 3-D approach. However, the standard deviation
was at the same level as in the 2-D automated measurements.

Three-dimensional images generally have lower image quality and
frame rates than 2-D images, which limits their usage in clinical diagno-
sis, but it represents a promising trend for the future.

Both 2-D and 3-D segmentation networks were based on the U-Net
architecture. Comparison of the listed architectures revealed that our
lightweight U-Net was a good compromise when considering inference
speed, memory usage and accuracy. This was important for developing
the real-time prototype application for the echo lab. While our light U-
Net provided a high average accuracy, the more complex nnU-Net han-
dled outliers better. An example of this was the data with a descending
aorta reflection, as illustrated in Figure 5c. As we had a very limited
number of such cases in our data set (N = 15), the issue may be handled
by including more training data.

Pseudo-labeling was introduced to add annotations and exploit all
frames in the cine loops, further enabling the training of temporal net-
works. As illustrated in Figure 7, pseudo-labeling improved network per-
formance at ES, primarily for smaller data sets. Across all data sizes, the
benefit of pseudo-labeling was more evident for the HD metric than the
Dice score, indicating that we generally reduce outliers with less realistic
pathological shapes. Pseudo-labeling contributed to more stable volume
traces and should be considered for similar applications. However, the
processing used to modify the most significant outliers may have the
effect of interfering with the most critical frames that need manual anno-
tation. Therefore, a targeted approach to annotation in which the most
challenging frames are manually annotated should also be investigated.

Having the full LA volume traces available may be a valuable tool
when studying the development of diastolic dysfunction and generally
the coupling between the left ventricular performance and loading con-
ditions [24]. Although semi-automated approaches for volume trace



Figure 10. Segmentation results for baseline U-Net versus pseudo-labeling with and without temporal networks. (a) U-Net (Lite) trained with data annotated at ES. (b)
U-Net (Lite) trained with pseudo-labels. (c) U-Net (Lite) with convLSTM layers trained with pseudo-labels. (d) Area trace of these three approaches. ES, end-systole.

Figure 11. Left atrium volume comparison for one patient of 2-D biplane and
3-D. Blue line: 2-D biplane LA volume; orange line: 3-D-predicted LA volume;
green line: semi-automated method−measured 3-D LA volume. LA, left atrium.
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estimation are commercially available, these rely on substantial user cor-
rections to ensure sufficient accuracy for all frames. Our fully automated
workflow can deliver robust volume traces for both 2-D and 3-D LA vol-
umes, providing valuable data for future physiological and clinical stud-
ies. Specifically, this may enable evaluation of the LA’s conduit and
booster functions by using parameters including the minimum and maxi-
mum volumes of the LA and the volume at the occurrence of the P wave.

In clinical practice, limited time is available, and often simple eye-
balling is the basis for evaluation, or at least a prioritized selection is
made for what images to acquire and measure in the extensive echo pro-
tocol. Robust automated measurements can help increase the number of
quantitative measurements, and thus, the data material for clinical
decision-making and research can be significantly increased. A viable
clinical workflow then involves the clinicians who need to eyeball and
approve the output of the automated measurement. Real-time measure-
ments enable clinicians to optimize the view and image quality for
the given measurement while scanning. Based on this work, we will
evaluate our prototype application in the echo lab to document potential
benefits.

Both offline and real-time approaches rely on sufficiently robust and
accurate segmentation. One challenge in this respect is the subjectivity



Table 2
Performance comparison of pseudo-labeling approaches

Approach Average Dice score Average Hausdorff distance (mm)

Annotations only at ESa 0.87 ± 0.08 3.4 ± 2.1
Pseudo-labels (without post-processing)b 0.90 ± 0.05 3.0 ± 2.0
Pseudo-labels c 0.90 ± 0.04 2.7 ± 1.2
Pseudo-labels + convLSTMd 0.90 ± 0.05 3.1 ± 3.1

All methods were evaluated on a data set from 28 external participants, comprising 126 manually
annotated frames.
ES, end-systole.

a Baseline model trained solely on ES frames.
b Use of pseudo labels without post-processing of the generated annotations.
c Use of pseudo labels to improve performance.
d Signifies the addition of convLSTM layers to the baseline model.

Figure 12. Real-time applications for (a) 2-D images and (b) 3-D volumes. LAESV, left atrial end-systolic volume.
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in annotation, where individual user experience can influence what is
perceived as correct. It is hoped that the development and possibilities
of robust artificial intelligence−based automated measurements can
push the agenda further to achieve consensus on how detailed echocar-
diographic measurements should be done.

Conclusions

Our fully automated approach robustly and accurately measures left
atrial volume in echocardiography, and our lightweight U-Net implementa-
tion is suitable for real-time (>100 frames/s) and retrospective use. We vali-
dated our approach against manual measurements using common
segmentation metrics and volume estimates and found its performance was
comparable to that of human experts and within the expected inter-observer
variability. Using pseudo-labeling to annotate all frames in the cine loops
proved particularly beneficial for smaller data sets, generally decreasing out-
liers and yielding more stable volume curves. Further work aims to explore
how automated and real-time measurement of LA volume can enhance effi-
ciency and efficacy daily in the echo lab.
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