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1 Introduction

The possibility for CP -violation is arguably one of the most attractive features of Multi-Higgs-
Doublets models (NHDM), enabling them to accommodate baryogenesis [1, 2] and contributing
to much of their rich phenomenology [3, 4]. Yet, as with other symmetries of NHDMs, CP
symmetry can be apparent in one doublet basis and completely obfuscated in another. Indeed,
any basis transformation followed by the canonical CP transformation Φi(x⃗, t) → Φ∗

i (−x⃗, t)
can be a valid CP symmetry. That is, a general CP transformation takes the form

CP : Φi(x⃗, t) → VijΦ∗
j (−x⃗, t), (1.1)

for some matrix V ∈ U(N) [5]. In addition, a CP symmetry need not be of order 2, with
CP 2 being the identity, but may be of higher order p = 2q, with p > 2 the smallest integer
such that CP p is the identity instead. In contrast to higher-order CP symmetries, CP2 is
equivalent to the existence of a basis where all the parameters are real [6]. In other words,
CP2 is equivalent to the canonical CP in some basis. NHDMs with CPs of higher order than
2 often generate CP2 as an accidental symmetry, and CP2 was long considered to be the only
CP . However, while in the 2HDM CP2 is the only possible CP , a 3HDM with an order-4 CP
symmetry (CP4) and no other symmetries was identified and studied in [7, 8]. Even higher
order CP s than CP4, with no accidental symmetries, were constructed and examined in [9].

Thus, establishing whether a particular potential breaks CP is challenging but crucial
for conducting a phenomenological analysis. For the general 2HDM, necessary and sufficient
conditions for CP symmetry were first derived in terms of basis-invariant quantities in [6]
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and later using basis-covariant quantities in the bilinear formalism [10, 11]. Methods based
on basis-covariant objects proved to be quite powerful and have since been succesfully applied
to the 3HDM to detect CP2, CP4 as well as other symmetries [12–15]. In particular, within
this framework, a complete solution for detecting CP2 for N = 3 and a discussion of the cases
N > 3 was given in [12]. In this work, we show that this idea, formulated in the language
of representation theory, can be extended to derive necessary and sufficient conditions for
explicit CP2 conservation for arbitrary N . While the conditions themselves can be simply
formulated for all N , implementing them in practice is not trivial. Making extensive use of
Lie algebra and representation theory, we devise an efficient algorithm for detecting whether
an arbitrary potential has a CP2 symmetry. Thus we are able to check whether a real basis
exists, although the possibility of spontaneous CP violation is not addressed in this work.

Throughout this paper we allow N to be arbitrarily large, since our method in principle
applies to any number of doublets, although its computational cost increases with N . While
the 2HDM and 3HDM are currently the most relevant for phenomenology, models with
more doublets have received some attention. 4HDMs were studied in e.g. [16, 17] and [18].
In the latter article, one doublet couples to quarks and three doublets couple to charged
leptons, allowing for flavor changing neutral currents in the leptonic sector, but not in
the quark sector. 5HDMs in the context of higher order CP s were scrutinized in [9]. A
6HDM for Dark Matter was examined in [19], and Grand Unified Theories with eight and
nine Higgs doublets were studied in [20] and [21], respectively. Moreover, in the “Private
Higgs” extension of the SM each charged fermion acquire mass from its own Higgs doublet,
through O(1) Yukawa couplings, and is hence another example of a model with N = 9 Higgs
doublets [22, 23]. The analysis of such models may be facilitated by the general algorithm
for CP2 detection presented here.

The article is structured as follows: section 2 contains a presentation of the covariant
framework for identifying symmetries, which is then applied for deriving a characterization of
CP2 symmetry, as well as a reminder of Lie algebra theory and proofs of some representation
theoretical results for the orthogonal algebra so(N). Based on the characterization we derive,
algorithms for checking the existence of a CP2 symmetry are given in section 3. In section 4,
the algorithms are applied to concrete potentials to check for CP2. Finally, in section 5
we summarize our results and make final remarks. Additional mathematical results and
numerical values for a 7HDM example are found in appendix A and B.

2 Formalism

We write the potential for N Higgs SU(2) doublets Φi in the bilinear formalism [24]

V =M0K0 +MaKa + Λ0K
2
0 + LaK0Ka + ΛabKaKb (2.1)

where the bilinears Kα, α = 0, . . . , N2 − 1 are given in terms of the generalized Gell-Mann
matrices λa

K0 = Φ†
iΦi , Ka = Φ†

i (λa)ijΦj . (2.2)
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Writing the potential in this manner is advantageous because the bilinears have simple
transformation properties under a change of basis

Φi → UijΦj , U ∈ SU(N), (2.3)

with K0 being a singlet while Ka transforms according to the adjoint representation of SU(N)

K0 → K0 , Ka → Rab(U)Kb (2.4)

where
Rab(U) = 1

2Tr(U †λaUλb). (2.5)

Since the adjoint representation is the linear action of SU(N) on the vector space given by
its own Lie algebra, all the adjoint vectors which characterize the potential live in su(N)
which is then the natural setting to derive properties of the potential.

Now, to keep the potential V invariant under the change of basis (2.3), the matrix Λ
has to transform as

Λ → R(U)ΛRT (U). (2.6)

The generalized Gell-Mann matrices form a basis for the Lie algebra su(N) and satisfy the
commutation relations1

[λa, λb] = 2ifabcλc. (2.7)

For convenience, we order the generalized Gell-Mann matrices as in [25], where the anti-
symmetric matrices appear first. That is

λT
a = −λa for a = 1, . . . , k ≡ N(N − 1)

2 . (2.8)

As we will see in section 2.1, the fact that this subset is equivalent to the defining representation
of so(N) can be used to derive simple necessary and sufficient conditions for CP2 symmetry
in NHDMs.

2.1 Covariant framework for detecting CP 2

Let us now describe the setting for characterizing CP2 using relations among basis-covariant
objects. Our method relies on viewing the adjoint vectors which characterize the potential
as elements of su(N), thanks to the Lie algebra isomorphism between su(N) and RN2−1

equipped with the F-product from [15]

F : RN2−1 × RN2−1 → RN2−1 (2.9)

(a, b) 7→ fijkaibj ≡ F
(a,b)
k (2.10)

1In this basis the Killing form is proportional to the identity hence we do not distinguish between upper and
lower Lie algebra indices. Moreover, we apply the physicist’s definition of a Lie algebra, for mathematicians
the mentioned basis would be {iλj}N2−1

j=1 .
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where fijk are the structure constants of su(N) in the Gell-Mann basis. The isomorphism
is then given by the map

Ω : RN2−1 → su(N) (2.11)
a 7→ aiλi. (2.12)

In what follows, we will denote vectors of RN2−1 with lower case letters, and the associated
su(N) matrices by uppercase letters, e.g. A ≡ Ω(a) = aiλi. By definition, the generalized
Gell-Mann matrices correspond via Ω to the canonical basis of RN2−1 i.e.

Ω(ea) = λa. (2.13)

That Ω is an isomorphism between the two algebras is easily shown by noticing that

F (a,b) = c ⇐⇒ [A,B] = 2iC. (2.14)

Using this isomorphism we can decompose RN2−1 into two subspaces

RN2−1 = EA ⊕ ES , (2.15)

with EA and ES corresponding respectively to the antisymmetric and symmetric matrices
in su(N). It is important to note that EA has a Lie algebra structure since it corresponds
to the so(N) subalgebra while ES is only a vector space.

Higgs basis transformations (2.3) act on su(N) as inner automorphisms

X → X ′ = UXU † for X ∈ su(N) (2.16)

and hence preserve commutation relations. It follows from (2.14) that F-product relations
are also preserved i.e.

F (a,b) = c ⇐⇒ F (a′,b′) = c′, (2.17)

where x′ = R(U)x, cf. (2.5). This is simply the statement that F-products relations are
vector relations in the adjoint representation of su(N). A consequence of (2.17) is that if a
subspace V ⊂ RN2−1 spanned by vectors {va}n

a=1 forms a subalgebra in the sense

F (va,vb) ∈ V, ∀ a, b ∈ {1, . . . , n} (2.18)

then the transformed basis {v′a = R(U)va}n
a=1 forms the same subalgebra. Since the NHDM

potential is completely determined by RN2−1 vectors, namely L, M and the eigenvectors
of Λ, and su(N) invariants, any intrinsic property of an arbitrary potential which can be
formulated as a set of characteristic vectors spanning a Lie subalgebra, can be verified in any
basis. We will now show that CP2 symmetry can be characterized in this way.

2.1.1 Necessary and sufficient conditions for CP 2 symmetry

Theorem 1. An NHDM potential admits a CP2 symmetry if and only if the following
conditions hold
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• k = N(N−1)
2 of Λ’s eigenvectors, {va}k

a=1, form a basis for the defining representation
of so(N)

• L · va =M · va = 0, ∀a ∈ {1, . . . , k}.

Proof. Suppose a potential (2.1) has a CP2 symmetry, then there exists a basis where all
the coefficients are real meaning that

Λ =
(
BN 0
0 AN

)
(2.19)

is block diagonal with BN and AN arbitrary symmetric matrices of dimension k × k and
N2 − 1− k ×N2 − 1− k, respectively. In this basis, it is evident that k of Λ’s eigenvectors
span EA, and therefore the image of this set by the isomorphism (2.11) is a basis for the
defining representation of so(N) = Span(λ1, . . . , λk). Denote this subset of eigenvectors by
{ta}k

a=1, it follows that
F (ta,tb) ∈ EA (2.20)

i.e. this subset of eigenvectors closes under the F-product, a property which can be observed
in any Higgs basis since F-product relations are basis-independent. In addition, the existence
of a real basis implies that the adjoint vectors L and M of the potential are in ES . Thus, the
following basis-invariant conditions

L · ta =M · ta = 0, ∀a ∈ {1, . . . , k}, (2.21)

must hold. We will sometimes refer to this condition concisely as LM -orthogonality.
Conversely, assume the two conditions of the Theorem hold. Indeed, by assumption the

representation given by {va}k
a=1 must be equivalent (i.e. isomorphic) to the defining represen-

tation generated by the first k Gell-Mann matrices. Since an equivalence of two hermitian
representations with the same underlying vector space is a similarity transformation [26]
which, as shown in Proposition 3, can always be chosen to be unitary, we have

UVaU
† ∈ Span(λ1, . . . , λk), ∀a ∈ {1, . . . , k}. (2.22)

The unitary matrix U above is a Higgs basis transformation which brings Λ to the block
diagonal form (2.19), i.e. it is a transformation to a real basis. To see this note that (2.22)
when written in terms of adjoint vectors reads

R(U)va ∈ EA, ∀a ∈ {1, . . . , k} (2.23)

which implies these k eigenvectors span EA and that the remaining ones {R(U)va}N2−1
a=k+1

span ES . Hence writing Λ in terms of its eigenvectors va and eigenvalues αa using its spectral
decomposition it follows that

R(U)ΛR(U)T =
N2−1∑
i=a

αaR(U)vav
T
a R(U)T (2.24)

is block diagonal as in (2.19) and hence does not generate complex terms in the potential.
Moreover, LM -orthogonality in that basis implies that L and M lie in ES meaning that no
complex terms come from these parts of the potential either. Therefore, the two conditions
of the Theorem lead to the existence of a real basis.

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
0

Thus the problem of detecting whether a potential has a CP2 symmetry is reduced
to determining whether Λ has k LM -orthogonal eigenvectors which form a basis for the
defining representation of so(N).

2.2 Identifying Lie algebras and representations

Applying the characterization of CP2 derived in the previous section requires identifying
Lie algebras and their representations. Therefore, for the purpose of making the present
paper self-contained, we now give a brief reminder of Lie algebra theory focusing on the
classification of semisimple Lie algebras and their representations. This presentation is not
meant to be exhaustive but simply to introduce characteristics of Lie algebras and how they
can be computed in practice. For more complete expositions of Lie algebra and representation
theory see e.g. [26–28].

Given a Lie algebra g, a Cartan subalgebra h ⊂ g is a maximal commuting subalgebra
i.e. a subalgebra of maximal dimension such that

[X,Y ] = 0, ∀X,Y ∈ h. (2.25)

The dimension of h is called the rank of g and is an important number characterizing a
Lie algebra. Denote dim(g) ≡ d and rank(g) ≡ r and let {Hi}r

i=1 be a basis for a Cartan
subalgebra. By construction, the adjoint matrices adHi can be simultaneously diagonalized
and will have r common nullvectors hi since

adHihj = 0 ⇐⇒ [Hi, Hj ] = 0. (2.26)

The d− r remaining eigenvectors eα are called the roots of the algebra and satisfy

adHieα = αieα ⇐⇒ [Hi, Eα] = αiEα (2.27)

while the d − r eigenvalue tuples α = (α1, . . . , αr), thought of as vectors of Rr, form the
so-called root system of g. It was shown by Dynkin that semisimple Lie algebras can be
classified according to their root system [29].

Thus an unknown semisimple Lie algebra can be identified if one can compute a Cartan
subalgebra for it. This can be done by calculating the nullspace of an adjoint matrix adX

where X is, by definition, any regular element of g [30, 31]. For su(N) and its subalgebras,2
an element is regular if all its eigenvalues are distinct. Thus a Cartan subalgebra can be
computed from a generic element e.g. randomly sampled.

The dimension of the nullspace of adX then gives the rank of g, and the nullvectors hi

provide a basis Hi for a Cartan subalgebra. One can then simultaneously diagonalize the
matrices adHi and find the root system. Figure 1 shows how so(7) and sp(6), which have
the same dimension and rank, differ by their root system.

Once the root system R has been found and an ordered set of positive simple roots
{β1, . . . , βr} ⊂ R has been chosen [26], the Lie algebra representation at hand can be identified
by computing its highest weight Υ which, for an n-dimensional irreducible representation, is a
vector of Rr characterizing that representation [27]. In the case of a reducible representation

2If g′ ⊂ g and x is regular in g then x is regular in g′ [30].
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(a) so(7) (b) sp(6)

Figure 1. Root systems of so(7) and sp(6) with long (short) roots shown in red (blue). The root
system distinguishes these two 21-dimensional rank-3 algebras.

there will be one highest weight per irreducible component. To each highest weight corresponds
a simultaneous nullvector v0 of the positive simple roots

Eβi
v0 ≡ 0 , ∀i ∈ {1, . . . , r}. (2.28)

The components of the highest weight Υ = (a1, . . . , ar) in the basis of so-called fundamental
weights {ωi}r

i=1 [27], sometimes called Dynkin labels, are the smallest integers satisfying

E1+ai
−βi

v0 = 0 , i ∈ {1, . . . , r}. (2.29)

The dimension of an irreducible representation ΓΥ with highest weight Υ is then given
by the Weyl dimension formula [27, 32]

dim(ΓΥ) =
∏

α∈R+

(α, ρ+Υ)
(α, ρ) , (2.30)

where R+ ⊂ R is the set of positive roots, ρ is half the sum of the positive roots and (, ) is the
Euclidean inner product. The irreducible representations where one Dynkin label equals one
and all other Dynkin labels are zero are called fundamental representations. In particular, the
fundamental representation (1, 0, . . . , 0) usually corresponds to the defining representation.

2.2.1 so(N) subalgebras of su(N)

We now prove results about so(N) subalgebras of su(N) that will enable us to devise an
algorithm for identifying the defining representation of so(N) which, as shown in Theorem 1,
characterizes CP2 symmetry in the NHDM potential.

– 7 –
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It can be shown using eq. (2.30) that the fundamental representations of the odd
orthogonal Lie algebras Br = so(2r + 1)C with r ≥ 2, have the following dimensions [27]:

dim(Γωk
) =

(
2r + 1
k

)
, k < r

dim(Γωr) = 2r. (2.31)

On the other hand, for the even orthogonal algebras Dr = so(2r)C with r ≥ 4, the fundamental
representations have dimensions given by [27]

dim(Γωk
) =

(
2r
k

)
, k ≤ r − 2

dim(Γωr−1) = dim(Γωr) = 2r−1. (2.32)

Proposition 1. If N ≥ 3 and N ̸= 4, 8, the defining representation N is the only irreducible
representation of so(N) of dimension N , up to equivalence of representations.

Proof. We will here consider the complexification of so(N), so(N)C, but there is a bijection
ψ between the complex representations of the real and the complexified Lie algebra, with
ψ(Π)(X + iY ) = Π(X) + iΠ(Y ), with Π a complex representation of the real Lie algebra, and
X and Y elements of the real Lie algebra. Moreover, ψ(Π) is an irreducible representation of
the complexified algebra if and only if Π is an irreducible representation of the real algebra [33].

The non-trivial representations with the smallest dimensions are the fundamental repre-
sentations Γωi , where ωi is a fundamental weight [27]. Recalling that these representations
have one Dynkin label being 1 and the others 0, this follows from the Weyl dimension for-
mula (2.30) and the fact that the dimension of an irreducible representation strictly increases
if the any of the Dynkin labels are increased:

dim(Γ(a1,...,ai,...,ar)) < dim(Γ(a1,...,ai+1,...,ar)), (2.33)

where Γ(a1,...,ar) is the irreducible representation with Dynkin labels (a1, . . . , ar), that is,
highest weight Υ = a1ω1 + . . .+arωr. Indeed, since the highest weight Υ is always an integral
dominant element, meaning (Υ, α) ≥ 0 for each root α ∈ R+, (2.30) yields the inequality
in (2.33). This inequality is strict since the positive roots span all Rr, and hence for all
fundamental weights ωi there exists a positive root α such that (α, ωi) > 0.

For so(2r + 1)C with r ≥ 2, dim(Γω1) = 2r + 1 < dim(Γωk
) for r > 2 and 1 < k ≤ r,

cf. (2.31). For r = 2, dim(Γω2) = 4, but the defining representation Γω1 is still the unique
irreducible representation of dimension 5, since dim(Γ2ω2) = 10 and dim(Γ(ω1+ω2)) = 16,
according to LieART [32], where the latter representations correspond to Dynkin labels (0, 2)
and (1, 1), respectively. Since the dimension increases strictly with increasing Dynkin labels,
cf. (2.33), there are no representations with the same dimension as the defining representation.

In the case so(2r)C with r ≥ 4, the dimension of the defining representation, dim(Γω1) =
2r < Γωk

for 1 < k ≤ r − 2 by (2.32), while for the cases k > r − 2, dim(Γω1) = 2r < 2r−1

when r > 4, so the defining representation has the uniquely least dimension among the
fundamental representations, for r > 4. And again, due to (2.33), the defining representation
of so(2r)C becomes the unique irreducible representation with dimension 2r for r > 4. Note
that for r = 4 (i.e. N = 8), (2.32) gives dim(Γω1) =dim(Γω3) = dim(Γω4) = 8, but this is one
of the two cases the Proposition is not valid.

– 8 –
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For the remaining values of N , i.e. N = 3, 6, we have Lie algebra isomorphisms between
so(N)C and Lie algebras with root system Ar. The Lie algebra so(3)C ∼= sl(2)C = A1 has
exactly one irreducible representation of dimension 3 (this representation does not correspond
to a fundamental weight). Finally, so(6)C ∼= sl(4)C = A3 has exactly one 6-dimensional
representation, Γω2 .

The defining representation of so(2) is not irreducible over C and is hence not included
in this Proposition.

Both representations and subalgebras of Lie algebras are defined in terms of Lie algebra
homomorphisms. The only difference between the two concepts is that a Lie subalgebra always
corresponds to an injective (1-1) homomorphism with image in the algebra to which it is a
subalgebra, while no such restrictions apply to a representation in general. A subalgebra so(N)
of su(N) is then the same as a faithful representation of so(N) with image in su(N). We will by
this apply Proposition 1, which is about representations, to prove a result which describes all
possible so(N) subalgebras of su(N), and that is helpful to detect CP2 symmetry for any N :

Proposition 2. The defining representation N of so(N) is the only so(N) subalgebra of
su(N) up to equivalence (i.e. conjugation) for N ≥ 3, with the following exceptions:

N = 3: 2 + 1

N = 4: 2 + 2′

N = 5: 4 + 1

N = 6: 4 + 1 + 1 and 4̄ + 1 + 1

N = 8: 8c and 8s

Proof. All subalgebras so(N) of su(N) correspond to a faithful sum of irreducible representa-
tions, where the dimensions of the representations sum up to N . By the discussion of the
possible dimensions of irreducible representations of so(N) in the proof of Proposition 1, the
defining representation N of so(N) is the only irreducible representation of dimension ≤ N

for N ≥ 9.
In the case N = 8, the dimension formulas (2.32) show there are two additional 8d

irreducible representations. Both of these are faithful, and hence subalgebras, since so(8)
is simple.

In the case N = 7 the defining representation is the unique non-trivial representation of
lowest dimension, as given by eqs. (2.31) and (2.33).

For N = 6, so(6) ∼= su(4) has a 4d irreducible representation 4, which also has an inequiv-
alent conjugate representation 4̄. These two inequivalent 4d representations will generate two
6d representations, as displayed in the Proposition. The latter are also inequivalent, because
the decomposition into a direct sum of irreducible representations is essentially unique (up
to a mixing of equivalent summands), since the “isotypic” decomposition is unique [34].
LieART [32] can be applied to check that there are no other irreducible representations of
so(6) of dimension less than 6.

– 9 –
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For N = 5 there is also a 4 since so(5)C ∼= sp(4)C, and hence there exists a corresponding
4d irreducible representation of so(5)R due to the 1-1 correspondence between complex
representations of real and complex Lie algebras, even though so(5)R ≇ sp(4)R ∼= so(2, 3).

Moreover, for so(3) ∼= su(2) and so(4) ∼= su(2)⊕ su(2) we have a 3d representation and
a 4d representation, respectively, built from the 2 ∼= 2̄ of su(2). The algebra so(4) has two
inequivalent, irreducible but unfaithful 2d representations, which we will denote 2 and 2′. One
of these representations maps the first semisimple component of so(4) to the Pauli matrices,
while the other component is mapped to zero, and vice versa for the other representation.
Then 2 + 2′ is a reducible but faithful 4d representation of so(4), and hence corresponds to a
so(4) subalgebra of su(4). Representations of so(4) like 3 + 1 and 3′ + 1 are not faithful, and
do hence not yield so(4) subalgebras. So 2 + 2′ is the only possible subalgebra for N = 4, in
addition to the defining representation 4.

These are the only alternative N -dimensional faithful representations for these algebras
and hence the only alternative so(N) subalgebras in su(N). Their existence is due to the
exceptional isomorphisms among the low-rank simple Lie algebras and in the very special
case of so(8), the high symmetry of the D4 Dynkin diagram [28].

Finally, all these representations of the compact Lie algebra so(N) may be written by
hermitian matrices [35], and will hence exist in su(N), just like any representation of a
compact Lie group is equivalent to a unitary representation.

The “exceptional” subalgebras of Proposition 2 are consistent with the low N subalgebra
tables of [32] and [36]. Ref. [36] lists complex subalgebras of complex, simple algebras, but
for su(N), every semisimple complex subalgebra of the complexified algebra su(N)C will
correspond to a semisimple real subalgebra of the compact, real algebra su(N), and vice
versa. The latter direction holds for all algebras, while compact su(N) have real semisimple
subalgebras in 1-1 correspondence with the semisimple complex subalgebras of su(N)C. The
reason is a complex subalgebra hC ⊂ su(N)C also is a faithful, complex representation of
the subalgebra. And since there is a 1-1 correspondence between complex representations
of real and complex variants of the algebras, there will also be a corresponding complex
representation of the real, compact form h of hC. This representation will exist in the real
algebra su(N), since every representation of a compact algebra is equivalent with a Hermitian
representation [35], i.e. it is found among the Hermitian matrices of su(N).

3 Algorithms

We now present an algorithm which implements the necessary and sufficient condition of
Theorem 1, in order to determine if an arbitrary potential has a CP2 symmetry. The
algorithm works in two steps: first identifying the eigenvectors of Λ which are orthogonal
to both L and M , and then searching for a set of eigenvectors that generates the defining
representation of so(N).

3.1 Finding all LM-orthogonal eigenvectors

It is advantageous to start by checking the orthogonality conditions (2.21) first since that
will reduce the number of candidates to be considered when searching for the defining
representation of so(N) among the eigenvectors of Λ. These orthogonality conditions are
straightforward to check, but care must be taken when there are eigenvalue subspaces of
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1 Given an NHDM potential, compute the N2 − 1 eigenvectors of Λ

2 Initialize B, a maximal set of LM -orthogonal eigenvectors

3 For each eigenvalue subspace Wλ

• Solve
{
M ·X = 0
L ·X = 0 for X ∈Wλ

• Add an orthonormal basis for the space of solutions to B

4 Return B

Algorithm 1. Identifying LM -orthogonal eigenvectors.

dimension larger than 1. Indeed, when this is the case, it may be that none of the degenerate
eigenvectors are orthogonal to both L and M , yet some linear combinations are. Thus the
conditions should be checked in an appropriate eigenvector basis where for each eigenvalue
subspace Wλ, corresponding to an eigenvalue λ, all the independent linear combinations
orthogonal to L and M have been extracted. A practical procedure for achieving this is
given in Algorithm 1.

3.2 Detecting the defining representation of so(N) in su(N)

In this section we show an efficient algorithm for determining whether a set of eigenvectors
contains a subset which forms a basis for the defining representation of so(N).

The strategy is to first determine if a subset of k eigenvectors of Λ closes under the
F-product i.e. forms a k-dimensional subalgebra. If such a subalgebra exists, we must verify
whether it is the so(N) algebra or some other k-dimensional subalgebra, since e.g. both
so(5) and su(3) ⊕ u(1) ⊕ u(1) are 10-dimensional subalgebras of su(5). For even N = 2r,
computing the rank of the unknown algebra using the method described in 2.2 is enough to
unambiguously identify so(2r), as it is the only3 subalgebra of su(2r) with dimension k and
rank r. For odd N = 2r + 1, su(2r + 1) always has, in addition to so(2r + 1), at least an
sp(2r) subalgebra which has the same dimension and rank. Thus, beyond r = 1 and r = 2
where one has the isomorphisms so(3) ∼= sp(2) and so(5) ∼= sp(4), the root system of the
unknown algebra must be computed in order to establish that it is so(2r + 1).

Having identified an so(N) subalgebra, it remains to check whether it corresponds to
the defining representation. As shown in Proposition 2, unless N = 3, 4, 5, 6, 8 the defining
representation is the only so(N) subalgebra in su(N) and we are done. For the remaining
special values, the representation must be identified by computing its highest weights.

The complete procedure for arbitrary N is given in Algorithm 2.

3.2.1 Testing for a subalgebra

In order to implement Algorithm 2, one must be able to detect whether a subset of vectors
forms a basis for a subalgebra, which can be done by considering the structure constants.

3We have checked this up to N = 22 (rank 11) by exhausting all the possible semisimple Lie algebras of
rank r and dimension r(2r − 1) and checking against the su(N) subalgebra tables of [32]. For N ≥ 24, there
may be subalgebras of same dimension and rank as so(N) and one has to look at the root systems.
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1 Input a set of orthonormal eigenvectors.

2 If there exists a subset of k eigenvectors {va} forming a basis for a subalgebra
g ⊂ su(N) (see 3.2.1), proceed. Else, return False.

3 Compute r ≡ Rank(g) (see 2.2).

• If N is odd and r = N−1
2 , proceed.

• If N is even and r = N
2 , go to 5 if r ≤ 11, else proceed.

• Else return False.

4 If the root system of g is that of so(N) (see 2.2), proceed. Else, return False.

5 If N ̸= 3, 4, 5, 6, 8, return True. Else, compute the highest weights of the
N -dimensional representation of so(N).

6 If the highest weight is that of the defining representation (see 2.2), return True.
Else return False.

Algorithm 2. Checking if eigenvectors generate the defining representation of so(N).

Let {vi}N2−1
i=1 be an orthonormal set of eigenvectors of the real symmetric matrix Λ, the

structure constants in that basis of su(N) are given by

Zijk ≡ F (vi,vj) · vk = −i
4 tr

(
[Vi, Vj ]Vk

)
, (3.1)

and the closure of a subalgebra generated by a subset {va}a∈I , I ⊂ {1, . . . , N2−1} means that

Zabc = 0 ∀a, b ∈ I, c /∈ I. (3.2)

The presence of such a pattern in the structure constants is typically easy to detect, except in
the isolated cases where the structure constants array Z is sparse. This happens for instance
when the matrix Λ is exactly diagonal in some basis in which case we have Zijk = fijk and it
becomes difficult to identify the pattern (3.2) among the many zeroes of Z, without resorting
to brute-force checking all the possible subsets of eigenvectors. In the context of a uniform
numerical scan this is not an issue, since parameter points corresponding to exactly diagonal
Λ matrices are a measure zero parameter space subset, and hence in practice are almost
never sampled. In a more general setting, one can deduce from the sparsity of Z that the
potential takes a very simple form in some basis, and thus is likely to have large symmetries.
A case-by-case analysis may be necessary to identify these symmetries when the number of
doublets is too large to check for the pattern (3.2) using brute-force.

3.3 Numerical considerations

Some comments about the practical implementation of CP2 detection by means of Algo-
rithms 1 and 2 are in order. First, all the steps in these algorithms are linear algebra
computations which can, in principle, be carried out analytically. However, a complete
analytic treatment would require very simple expressions for the eigenvectors of Λ which is un-
likely to be the case for non-trivial potentials. Thus, in practice, a numerical implementation
of the algorithms is most relevant.
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1 Let B be the result of Algorithm 1. If B contains less than k eigenvectors, return
False. Otherwise proceed.

2 If Algorithm 2 applied to B returns True then return True. Else return False.

Algorithm 3. Detecting CP2 symmetry.

Secondly, it is often the case (e.g. in a uniform parameter scan) that a symmetry cannot
truly be exact. This can be due to the symmetric subset of the parameter space having
measure zero, or simply finite numerical precision. Either way, an appropriate numerical
tolerance has to be defined such that parameter points which are sufficiently close to exact
symmetry are considered symmetric. We want to emphasize that Algorithms 1 and 2 can
be implemented with such a tolerance in order to detect parameter points close to exact
CP2 symmetry. Indeed, if the tolerance is encoded by a small number ϵ, then it suffices to
neglect all numbers smaller than ϵ in the numerical computations.

Lastly, even though large values of N have limited practical applications to e.g. phe-
nomenology, one might wonder about the computational cost of Algorithm 2 and how it
scales with N . The most expensive step is checking for a subalgebra since that requires the
computation of the structure constants (3.1)4 for which the required number of operations
scales as N12. While the computation time increases fast, the presence or absence of CP2
can be established almost instantaneously for N = 3 and N = 4 doublets which are, arguably,
the most important use cases.

4 Examples

We now illustrate how our CP2 detection method, summarized in Algorithm 3, can be
applied concretely to determine whether a particular instance of a NHDM potential has
a CP2 symmetry.

4.1 N = 3 : the Ivanov-Silva potential

The Ivanov-Silva potential is an example of a model with a CP4 symmetry but no CP2
symmetry, and hence a CP -conserving potential without a real basis [8]. Consider a particular
numerical instance of this potential in a basis where the existence of neither a CP2 or CP4
symmetry is obvious, given by the following parameters

Λ =



−22 −4
√
3 2 0 2

√
3 −12 2

√
3 8

−4
√
3 −14 −6

√
3 4

√
3 6 2

√
3 4 −8

√
3

2 −6
√
3 −2 0 6

√
3 −18 2

√
3 0

0 4
√
3 0 16 0 −4 0 0

2
√
3 6 6

√
3 0 10 6

√
3 6 0

−12 2
√
3 −18 −4 6

√
3 −10 4

√
3 −24

2
√
3 4 2

√
3 0 6 4

√
3 −18 − 8√

3
8 −8

√
3 0 0 0 −24 − 8√

3 − 40
3


(4.1)

4With the exception of the pathological cases discussed in 3.2.1.
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L =
(
− 16√

3 0 0 0 0 0 16
3

32
3

√
3

)
(4.2)

M =
(
−8

√
3 0 0 0 0 0 8 16√

3

)
(4.3)

Λ0 = −64
9 , M0 = −112

3 . (4.4)

Applying Algorithm 3, we start by looking for a maximal set of LM -orthogonal eigenvec-
tors which may contain up to seven elements since in this particular case L and M happen
to be colinear. Now, Λ has two 2d eigenvalue subspaces, both being LM -orthogonal, while
all remaining 1d eigenvalue spaces except one, are LM -orthogonal. Thus one finds that the
eigenvectors associated with the eigenvalues

−48, −8
√
5, −8, 8

√
5, 32, (4.5)

where eigenvalues ±8
√
5 have multiplicity 2, form a set of maximal LM -orthogonal eigenvec-

tors which we denote {va}7
a=1. Eq. (4.6) below shows the structure constants Z(ab)c in this

basis of eigenvectors, arranged as a matrix with non-zero elements denoted by ∗.

Z(ab)c =F (va,vb) ·vc =

v1 v2 v3 v4 v5 v6 v7



0 0 ∗ 0 ∗ ∗ 0 F (v1,v2)

0 ∗ 0 0 ∗ ∗ 0 F (v1,v3)

0 0 0 0 0 0 ∗ F (v1,v4)

0 ∗ ∗ 0 0 ∗ 0 F (v1,v5)

0 ∗ ∗ 0 ∗ 0 0 F (v1,v6)

0 0 0 ∗ 0 0 0 F (v1,v7)

∗ 0 0 ∗ 0 0 ∗ F (v2,v3)

0 0 ∗ 0 ∗ 0 0 F (v2,v4)

∗ 0 0 ∗ 0 0 ∗ F (v2,v5)

∗ 0 0 0 0 0 ∗ F (v2,v6)

0 0 ∗ 0 ∗ ∗ 0 F (v2,v7)

0 ∗ 0 0 0 ∗ 0 F (v3,v4)

∗ 0 0 0 0 0 ∗ F (v3,v5)

∗ 0 0 ∗ 0 0 ∗ F (v3,v6)

0 ∗ 0 0 ∗ ∗ 0 F (v3,v7)

0 ∗ 0 0 0 ∗ 0 F (v4,v5)

0 0 ∗ 0 ∗ 0 0 F (v4,v6)

∗ 0 0 0 0 0 0 F (v4,v7)

∗ 0 0 ∗ 0 0 ∗ F (v5,v6)

0 ∗ ∗ 0 0 ∗ 0 F (v5,v7)

0 ∗ ∗ 0 ∗ 0 0 F (v6,v7)

(4.6)

It is now easy to isolate which subsets of 3 eigenvectors may close under the F-product.
Indeed two eigenvectors can only be a basis for a 3d subalgebra if their F-product has
components along no more than one other eigenvector. By implementing this criteria one
avoids to blindly check all

(7
3
)
= 35 possible subsets for closure under the F-product. In

the example at hand, this analysis reveals that

(V1, V4, V7) (4.7)
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forms a 3d, rank-1 subalgebra of su(3) which must then be so(3). It remains to identify
which representation is generated by (4.7) by computing the Dynkin labels. Without loss
of generality, take V7 as the basis for a Cartan subalgebra and let Ṽi be the matrices in the
basis where V7 is diagonal. The only positive simple root is then given by

E+ = Ṽ1 + iṼ4 (4.8)

and has two orthogonal nullvectors u1 and u2 satisfying

E−u1 = 0 (4.9)
E2

−u2 = 0 (4.10)

showing that the representation has two highest weights with Dynkin labels 0 and 1. The
potential given by (4.1)–(4.4) has therefore, as expected, no CP2 symmetry since Λ has three
eigenvectors forming a basis for the representation 2 + 1 of so(3) while it is 3 which corresponds
to CP2. Actually the representation 2 + 1, accompanied by the LM -orthogonality conditions,
corresponds to a different block structure which partially characterizes CP4 in 3HDMs [13].

4.2 N = 4 : Z6-symmetric potential

As an example with four doublets, we now study a Z6-symmetric 4HDM potential which
has both non-CP2 and CP2-symmetric parameter points [37]. Consider the following
numerical instance

Λ =



3
8 0 0 0 0 − 7

8 0 0 0 0 0 0 0 0 0

0 1
4 −

√
3

16 −
√

3
16

1
4 0

√
3

16 0 0 0 0
√

3
16

1
16

√
3

16 −
√

3
2

8

0 −
√

3
16

1
4 − 1

2

√
3

16 0 − 1
16 0 0 0 0 3

16

√
3

16 − 1
16

1
8
√

2

0 −
√

3
16 − 1

2
1
4

√
3

16 0 − 1
16 0 0 0 0 3

16

√
3

16 − 1
16

1
8
√

2

0 1
4

√
3

16

√
3

16
1
4 0 −

√
3

16 0 0 0 0 −
√

3
16 − 1

16 −
√

3
16

√
3
2

8

− 7
8 0 0 0 0 3

8 0 0 0 0 0 0 0 0 0

0
√

3
16 − 1

16 − 1
16 −

√
3

16 0 − 1
8 0 0 0 0 − 3

8 −
√

3
16

1
16 − 1

8
√

2

0 0 0 0 0 0 0 11
8 0 0 − 1

8 0 0 0 0

0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0

0 0 0 0 0 0 0 − 1
8 0 0 11

8 0 0 0 0

0
√

3
16

3
16

3
16 −

√
3

16 0 − 3
8 0 0 0 0 3

8 −
√

3
16

1
16 − 1

8
√

2

0 1
16

√
3

16

√
3

16 − 1
16 0 −

√
3

16 0 0 0 0 −
√

3
16

1
2

1
4
√

3
− 1

2
√

6

0
√

3
16 − 1

16 − 1
16 −

√
3

16 0 1
16 0 0 0 0 1

16
1

4
√

3
1
2

1
2
√

2

0 −
√

3
2

8
1

8
√

2
1

8
√

2

√
3
2

8 0 − 1
8
√

2
0 0 0 0 − 1

8
√

2
− 1

2
√

6
1

2
√

2
1
4



(4.11)

L =M = 0 (4.12)

Λ0 = 5
4 , M0 = −1 (4.13)

which, in the notation of [37], corresponds to the couplings taking on the values

m2 = 1, Λ = 1, Λ′ = 2, Λ′′ = 3, Λ̃′ = 4, Λ̃′′ = −1
2 , λ1 = i,

λ2 = i, λ3 = ei 2π
3 , λ4 = 1, λ5 = 2, (4.14)

and transformed to a different basis.
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Since L = M = 0, the orthogonality conditions are automatically satisfied by all
eigenvectors of (4.11) and we proceed to compute the su(N) structure constants Z(ij)k in the
basis of eigenvectors, in order to look for 6d subalgebras. Due to its large size, displaying
the Z-matrix is impractical and not very illuminating, therefore we omit it. Nevertheless,
the subalgebra search is easily done using a computer program to implement the strategies
explained in section 4.1, and it is found that two sets of eigenvectors generate 6d subalgebras
of rank 2, for which the only candidate is so(4). Thus it is not necessary to compute the
root system, and it only remains to identify which 4d representations have been found.
From Proposition 2, the only possibilities are 4, i.e. the defining representation, and the
reducible representation 2 + 2′. Computing the Dynkin labels of both representations as
described in section 2.2 one finds

(1, 0) + (0, 1) ∼ 2 + 2′, (4.15)

which is the aforementioned reducible representation, and

(1, 1) ∼ 4 (4.16)

which is the defining representation, as can be verified using e.g. LieART [32]. The detection
of the defining representation (4.16) implies the existence of a CP2 symmetry for this
parameter point.

4.3 N = 7

As a last example which, while mostly academic, shows the power of this method for CP2
detection, we apply Algorithm 3 to a 7HDM potential whose parameter values are given in
appendix B. From a Lie algebraic perspective, N = 7 is interesting as it is the first value
where there exists a semisimple Lie algebra with the same dimension and rank as so(N),
but which is not isomorphic to it, namely sp(6).

Algorithm 1 reveals that a maximal set of orthonormal eigenvectors satisfying LM -
orthogonality has 41 elements. With so many candidate eigenvectors, searching for the
subalgebra pattern (3.2) in su(7) starts to become computationally expensive. For reference,
running our implementation of Algorithm 3 on an ordinary computer it takes less than
a minute to find that 21 eigenvectors close under the F-product, forming a 21d rank-3
subalgebra. The root systems of the two possible algebras, so(7) and sp(6), which differ
only by the lengths of the roots, are shown in figure 1. In the example at hand one finds
that the root system of the algebra to be identified is in fact that of sp(6), and hence the
corresponding potential has no CP2 symmetry.

5 Summary

We have derived necessary and sufficient conditions for an NHDM potential to admit a
CP2 symmetry, which are formulated as relations among vectors that transform according
to the adjoint representation under an SU(N) change of doublet basis. Such vectors can
naturally be thought of elements of su(N), which allows one to use the Lie algebra structure
to verify basis-invariant properties such as being related to a particular subspace in the
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adjoint space. In the case of CP2, the relevant subspace actually corresponds to a so(N)
subalgebra of su(N) and the main task for detecting this symmetry is checking whether a
subset of eigenvectors of the bilinear quadratic form Λ generates the defining representation of
so(N). By considering all the k-dimensional subalgebras of su(N) and all the N -dimensional
representations of so(N) we developed an optimized computable algorithm for this task.
The complete algorithm for detecting CP2 works in principle for any number of doublets
N , and is only limited by computational cost. We find that, running our algorithm on a
regular desktop computer, a generic parameter space point can be labelled CP2-conserving
or CP2-violating in less than a minute for N ≤ 7. However, when a CP2 symmetry exists,
finding a real basis explicitly in general remains out of reach.
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A Additional mathematical results

Proposition 3. Let {Xa} and {Ya} be bases of two equivalent, Hermitian, irreducible and
complex representations of the same Lie algebra i.e. there exists an invertible S such that
Ya = SXaS

−1 for all a. Then S can be chosen to be special unitary.

Proof. We have

Y †
a = (S−1)†X†

aS
† = (S−1)†XaS

† = Ya = SXaS
−1

=⇒ XaS
†S = S†SXa

for all a. The matrix S†S thus commutes with all the elements of an irreducible complex
representation and hence, by Schur’s lemma, S†S must be proportional to the identity. Let λ
be the proportionality constant, then λ > 0 since it is an eigenvalue of the positive definite
matrix S†S. Then the rescaled matrix S/

√
λ is unitary, and may always be written as a special

unitary matrix U times a complex phase eiθ. Hence S =
√
λ eiθU while S−1 = U †/(

√
λ eiθ),

and the result follows.

An immediate consequence of Proposition 3 is then the following:

Proposition 4. Two equivalent, irreducible representations of so(N) contained in su(N)
may always be related by a similarity transformation given by a unitary matrix U .

B Parameter values for the N = 7 numerical example

Below are the numerical values for the parameter point used in the example analyzed in
section 4.3. All the non-zero elements are listed, except those which can be obtained by
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symmetry of Λ.

Λ1,3 = −1, Λ4,6 = 1
2 , Λ7,19 = 5

2 , Λ7,43 = 1
2
√
2
,

Λ7,44 = − 1
2
√
6
, Λ7,45 = − 1

4
√
3
, Λ7,46 = −

√
5
4 ,

Λ8,20 = 1, Λ10,13 = 3
2 , Λ11,15 = −1

4 , Λ11,16 = 3
4 ,

Λ11,17 = 1
4 , Λ12,21 = 1, Λ15,16 = 1

4 , Λ15,17 = 1,

Λ15,18 = 1
2
√
2
, Λ16,17 = −1

4 , Λ17,18 = 1
2
√
2
, Λ19,43 = 1

2
√
2
,

Λ19,44 = − 1
2
√
6
, Λ19,45 = − 1

4
√
3
, Λ19,46 = −

√
5
4 , Λ22,24 = −3

2 ,

Λ25,27 = −1
2 , Λ28,31 = 1

4 , Λ28,34 = −1
4 , Λ28,40 = −3

4 ,

Λ29,41 = −2, Λ30,31 = − 1
2
√
2
, Λ30,34 = − 1

2
√
2
, Λ31,34 = 3

2 ,

Λ31,40 = 1
4 , Λ32,37 = 3

2 , Λ33,42 = −3, Λ34,40 = −1
4 ,

Λ35,36 = − 1
2
√
2
, Λ35,38 = − 1

2
√
2
, Λ36,38 = 7

4 , Λ43,44 = −
√
3
4 ,

Λ43,45 = −1
4

√
3
2 , Λ43,46 = −3

4

√
5
2 , Λ44,45 = − 1

4
√
2
, Λ44,46 = 3

4

√
3
10 ,

Λ44,47 = − 3√
5
, Λ45,46 = 1

4

√
3
5 , Λ45,47 = 1

2
√
10
, Λ45,48 = −

√
7
2 ,

Λ46,47 = 11
10

√
6
, Λ46,48 =

√
7
30 , Λ47,48 = 1

3

√
7
5

Li = 1, i = 1, 2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 27,

Li =
1√
2
, i = 7, 8, 10, 11, 12, 15, 28, 29, 31, 32, 33, 36, 40, 41, 42,

Li = − 1√
2
, i = 13, 16, 17, 19, 20, 21, 34, 37, 38,

L43 =
√
3
2 , L44 = 1

6
(
1 + 2

√
5
)
,

L45 = 5 +
√
5 + 3

√
105

30
√
2

, L46 = 1
60
(
−7

√
6− 3

√
14 + 5

√
30
)
,

L47 = 1
30
(
18−

√
21
)
, L48 = 1

2

√
5
3 ,

M = L.
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