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Introduction

Many mechanical systems relevant to engineering applications can be modelled
as multibody systems. These systems consist of a finite number of rigid and
elastic bodies that undergo large displacements and rotations. For example,
lumped mass systems are described as a combination of bars or links acting as
connecting elements, concentrated masses accounting for inertia, springs that
include stiffness, and dampers that dissipate energy [4, 44]. The configuration
space of these systems is typically nonlinear, since it consists of combinations
of rotations and translations, and is mathematically defined as a manifold. More
involved examples are represented by flexible slender structures like beams, ca-
bles, and hoses. Cosserat rod theory (see [3] and references therein) provides
a well-established model for the geometrically exact simulation of deformable
rods. The configuration of a Cosserat rod is represented by a curve of centroids
(or centre line) and the orientation of its cross sections, and thus evolves in
a nonlinear space as well (see, e.g., [41, 57]). Although they are essential in
high-performance engineering processes, the behaviour of these systems under
real operating conditions exceeds the capabilities of the modelling tools used in
the current product development cycles [1]. An important research area in this
context focusses on developing sophisticated modelling techniques for accurate
simulations while preserving fundamental geometric properties. In particular,
nonlinear configuration spaces often have a Lie group structure, making it ad-
vantageous to apply principles of differential geometry in developing efficient
numerical algorithms. The main methodology to construct numerical discreti-
sations that can cope with high flexibility and large rotations is based on a
finite-element space discretisation and geometric numerical integrators for time
evolution. When it comes to finite-element discretisation, one of the main chal-
lenges is the accurate approximation of finite rotations. For this reason, methods
for interpolation on manifolds (specifically the Lie groups of rotations SO(3)
or of rigid motions SE(3)) are used instead of the usual piecewise-polynomial
interpolation [6, 57].

Geometric numerical integration is a field of research concerning time in-
tegration of differential equations with underlying geometric structure, as, for
example, the preservation of symplecticity for Hamiltonian systems, the preser-
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Introduction

vation of volume or of invariants [33]. In the context of this thesis, Lie group
integrators, designed for solving ordinary differential equations on Lie groups
and homogeneous manifolds [18], are the geometric numerical integrators of
importance.

The traditional approach for the modelling and analysis of physical systems
in the fields of science and engineering has mostly hinged on physics-based
modelling. This involves formulating governing equations and developing
efficient computational algorithms of proven consistency, stability and conver-
gence. This approach has the advantage of being rooted in first principles,
which ensure interpretability and generalisability, and can be supported by
solid mathematical foundations. On the other hand, the abundance of obser-
vational data and the increasing power of modern computing infrastructures
have fostered the growth of a new data-driven paradigm, in which machine
learning algorithms play a pivotal role (see, e.g., [11] for a detailed overview
of the latest advancements). This approach relies on a large amount of data
to perform inference or prediction, and can be beneficial in situations where
the underlying physics is not fully captured by the existing model [8], or when
solving high-dimensional equations becomes challenging with traditional meth-
ods [31]. Nevertheless, several difficulties can arise in this scenario, which
include potential concerns regarding the model’s performance on previously
unseen data, the limited interpretability of the results of most deep learning
algorithms, and the lack of a proper mathematical theory to investigate stability
and uncertainty. Numerous paths of research are currently being explored to
address these issues. One approach involves incorporating physical laws into
the learning process [25, 26, 29, 38, 53, 54], while others leverage ideas from
dynamical systems, geometry, and optimisation theory to design and analyse
neural networks [7, 10, 15, 16, 19, 22, 25, 32, 49, 58].

This thesis focusses on applications of structure-preserving numerical meth-
ods and data-driven techniques to mechanical problems. It is a collection of
five papers, either published or in the submission process, each of which consti-
tutes a chapter. We study prototypical examples that encompass the aspects and
challenges mentioned above, aiming to illustrate the advantages and limitations
of the different approaches. The objective is to develop suitable techniques
that could be beneficial for the simulation of more complex systems, such as
real-life systems featuring highly flexible slender structures. There are two
main parts to this dissertation. The first one consists of papers 1, 2, and 3.
This part considers Lie group integrators of the Runge–Kutta–Munte–Kaas
(RKMK) and commutator free type and includes different numerical applica-
tions for Lagrangian and Hamiltonian systems evolving on manifolds [13, 14].
These methods are then employed in the data-driven modelling of Hamiltonian
systems, providing an example in which deep learning algorithms are com-
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1.1 Mechanical systems on manifolds

bined with geometric numerical integrators on homogeneous manifolds [17].
The second part of the thesis includes papers 4 and 5, and is more focused
on the use of fully data-driven procedures on two specific problems related
to the fields of mechanical and subsea engineering. It is based on supervised
machine learning techniques, in particular deep learning, for prediction and
classification. Paper 4 is based on a collaboration with the Institute of Applied
Dynamics at FAU Erlangen-Nürnberg, whereas paper 5 is the result of an intern-
ship at the industrial partner TechnipFMC in Lysaker. These works explore the
potential of machine learning-assisted methods in the fields of computational
mechanics [20] and engineering decision-making [23].

The remainder of this chapter introduces basic concepts and notation used
in the thesis, deferring most of the details to the forthcoming papers. It does not
aim to provide a comprehensive coverage of topics concerning differential ge-
ometry, geometric mechanics, and geometric numerical integration, for which
readers are directed to the standard textbooks and excellent expositions such
as [5, 33, 35, 43, 44, 50] and references therein. Finally, a concise overview of
each article is provided.

1.1 Mechanical systems on manifolds

Let the configuration of a mechanical system be represented by a set of d gener-
alised coordinates collected in the tuple q = (q1, . . . , qd ), with d corresponding
to the degrees of freedom of the system. The set of all configurations defines
the d-dimensional configuration space Q. Given a trajectory of the system de-
scribed by the differentiable curve q(t ) : [t0, tN ] →Q, the time derivative q̇(t )
defines the velocity at time t , which belongs to the tangent space of Q at q(t ),
that is, q̇ ∈ TqQ. The state of the system is then determined by (q, q̇) ∈ TQ, the
tangent bundle of the configuration manifold, which represents the state space
(velocity phase space) of the system.

In most of the thesis, we consider mechanical systems from a Lagrangian or
Hamiltonian perspective. Lagrangian mechanics is based on the principle that
motions of the systems are extremals of an action functional. The Lagrangian
function L : TQ → R is usually given by the difference of the kinetic energy
and a potential energy accounting for elastic deformation and possible exter-
nal loading. Hamilton’s variational principle states that the action functional,
defined as the integral of the Lagrangian along a motion of the system over a
fixed time interval, is stationary to first order. This requirement leads to the
Euler-Lagrange equations of motion, that govern the evolution of the physical
system. Let us consider a first order Lagrangian

L : T Q →R, L(q, q̇) = 1

2
q̇T M(q)q̇ −U (q) (1.1.1)

3



Introduction

defined by the difference between a kinetic energy, usually expressed as a
positive-definite quadratic form, and a potential energy that we assume be de-
pendent solely on the configuration variables. We can perform a change of
coordinates (q, q̇) → (q, p) by introducing the conjugate momentum p ∈ T ∗

q (Q),
lying in the cotangent space of Q at q , via the Legendre transform

FL : TQ → T ∗Q, (q, q̇) 7→ (q, p) :=
(

q,
∂L

∂q̇
(q, q̇)

)
, (1.1.2)

which we assume to be a global isomorphism between the tangent bundle and
the cotangent bundle of the configuration manifold Q 1. As a result, introducing
the Hamiltonian function on the cotangent bundle of Q (the phase space of the
system) as

H : T∗Q →R, H(q, p) = p · q̇ −L
(
q, q̇

)∣∣∣
(q,q̇)=FL−1(q,p)

, (1.1.3)

one can obtain the Hamilton’s equations of motion. We notice that, in the case
of the Lagrangian in (1.1.1), we have p = M(q)q̇ and

H(p, q) = p ·M(q)−1p −L
(
q, M(q)−1p

)
= p ·M(q)−1p − 1

2
pT M(q)−1p +U (q) = 1

2
pT M(q)−1p +U (q),

(1.1.4)

thus the Hamiltonian is the sum of the kinetic and potential energy of the
mechanical system.

The configuration space is in general a differentiable manifold that arises
from physical constraints imposed on the motion of the system. In particular,
we consider holonomic constraints defined by the function

g :Rn →Rm , g (q) = 0 ∈Rm , m < n. (1.1.5)

We assume that gi :Rn →R, i = 1, . . . ,m, are scalar differentiable functions with
linearly independent gradients, so that

Q = g−1(0) = {q ∈Rn | g (q) = 0} (1.1.6)

defines the constraint manifold of dimension d := n −m embedded in Rn . The
tangent bundle

TQ = {(q, q̇) ∈Rn ×Rn | q ∈Q, q̇ ∈ TqQ}

= {(q, q̇) ∈Rn ×Rn | g (q) = 0, G(q)q̇ = 0},
(1.1.7)

1This means that the Legendre transform is an invertible map, so that it defines a valid change
of variables. In this case, the Lagrangian is said to be hyperregular [35, 44, 50], and this is a
key assumption to establish the upcoming equivalence between the Lagrangian and Hamiltonian
equations of motion.
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1.1 Mechanical systems on manifolds

where G(q) is the Jacobian matrix of g , is a 2d-dimensional smooth mani-
fold, and an analogue result holds for the cotangent bundle of the constrained
configuration manifold [44, sec. 1.2].

In the following, we always assume that the configuration manifold is an
embedded submanifold of a finite-dimensional vector space Rn , called the am-
bient space. This enables us to extend the system under consideration to the
embedding vector space and to represent a point q ∈Q as a vector in Rn , pro-
vided that the equality conditions (1.1.5) are satisfied [44, p. 12]. Alternatively,
the manifold can be defined locally by a parametrisation (see, e.g., [35, sec.
2.1] or [33, sec. IV.5.1]), so that the constrained system can be fully described
by a set of d local coordinates or parameters.

A common approach to model constrained mechanical systems is to intro-
duce Lagrange multipliers to couple constraints to the Lagrangian function, thus
confining the evolution of the system on the tangent bundle of the constraint
manifold. The resulting augmented Lagrangian is used to derive constrained
Euler-Lagrange equations that assume the form of differential-algebraic equa-
tions [4]. An example of this approach is shown in Section 5.2.

In general, expressing constraints in terms of manifolds provides a method
to encode them directly, without resorting to a formulation based on a set of
minimal local coordinates, which typically encounter singularities, or on the
redundant coordinates of the embedding space along with Lagrange multipli-
ers. This approach conveniently exploits the tools of differential geometry and
results in a global, coordinate-free description of the system valid on the entire
configuration manifold. In particular, as shown in [44], a global formulation
of the Euler–Lagrange equations or Hamilton’s equations can be derived by
variational methods, where variations are restricted to the geometry of the con-
figuration manifold by means of an orthogonal projection operator mapping
Rn onto the tangent space TqQ, for each q ∈Q. This geometric framework is
adopted in various examples in the first three papers.

This section concludes with examples of manifolds that are significant in
the context of Lagrangian and Hamiltonian systems, such as Lie groups and
homogeneous manifolds, that are particularly relevant for this thesis.

A Lie group G is both a differentiable manifold and an algebraic group
equipped with a smooth binary operation G ×G → G and a smooth inversion
map (see, e.g, [36, Definition 2.8]). We consider, in particular, matrix Lie
groups 2, with the matrix multiplication as group operation. One of the most
representative matrix Lie groups is the group GL(n) of invertible n×n matrices,

2We focus on matrix Lie groups with real entries, that are submanifolds of the space M(n,R)

of n×n real matrices. The latter is a linear space and can be identified with Rn×n =Rn2
[35, sec.

5.1].
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Introduction

called the general linear group,

GL(n) = {
A ∈ M(n,R) | det A ̸= 0

}
. (1.1.8)

It can be shown that it is an n2-dimensional submanifold of the space of real
matrices M(n,R) [35, p. 168]. The special linear group SL(n) is a subgroup
of GL(n) composed of matrices with determinant 1, and has dimension n2 −1
(in fact, we are adding a scalar constraint with respect to GL(n)). The group
O(n) of orthogonal n ×n matrices is a n(n −1)/2-dimensional Lie group, and
the same applies for the special orthogonal group SO(n) of all n×n orthogonal
matrices with determinant 1 [35, sec. 5.1], SO(n) =O(n)∩SL(n), that is,

SO(n) =
{

A ∈GL(n) | A⊤A = A A⊤ = I , det A = 1
}

, (1.1.9)

with I the n ×n identity matrix. The group of proper rotations SO(3) of R3 is
of significant importance in practical applications, as is the Lie group of homo-
geneous transformations in three dimensions, denoted by SE(3). The latter is
called the special Euclidean group, and its elements (R, v) can be represented
as 4×4 matrices of the form

(R, v) =
[

R v
0 1

]
, (1.1.10)

where R ∈ SO(3), v ∈R3, 0 is a row vector in R3 and 1 is a real number. Given
a position vector w ∈R3, we have[

R v
0 1

][
w
1

]
=

[
Rw + v

1

]
, (1.1.11)

which shows that a group element (R, v) can be used to rotate and translate a
vector in the three-dimensional space, that is, SE(3) describes the rigid motions
of R3. More formally, the special Euclidean group is defined as the semidirect
product of SO(3) and R3,

SE(3) = SO(3)⋉R3. (1.1.12)

This means that, as a set, it is defined by pairs (R, v) ∈ SO(3)×R3, but the group
operation is defined as

(
R2, v2

)(
R1, v1

) = (
R2R1, v2 +R2v1

)
, as can be easily

verified using the representation in (1.1.10) 3. It is possible to show that SE(3)
is a six-dimensional manifold embedded in GL(4) [44, p. 24].

The notion of group action is fundamental for the upcoming discussion. We
denote by M a generic differentiable manifold. A (left) group action is a map
ψ : G ×M→M such that

3The set SO(3)×R3 with the natural composition
(
R2, v2

)(
R1, v1

)= (
R2R1, v2 + v1

)
is instead

referred to as the direct product of SO(3) and R3 [44, p. 9].
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1.2 Structure-preserving numerical methods

• ψ(h,ψ(g , y)) =ψ(hg , y) for all h, g ∈G and y ∈M,

• ψ(e, y) = y for all y ∈M, with e the identity element of G .

Every Lie group acts on itself by left multiplication. Another key concept is
that of transitive action, which allows us to transit from any location x ∈M
to any other location y in M. More specifically, the group action ψ is said
to be transitive provided that for every x, y ∈M there exists g ∈ G such that
y =ψ(g , x). In this case, the manifold M is a homogeneous manifold, acted
upon by G (see, e.g., [37]). An example that will be used extensively in this
thesis is the unit sphere in the three-dimensional space, that is acted upon
transitively by SO(3).

Another example of interest in the context of computational mechanics is
the group of unit quaternions, that can provide a parametrisation of the rota-
tional degrees of freedom of a system (for example, they are used in [41] to spec-
ify the orientation of the cross sections in a geometrically exact beam model).
Furthermore, products of the aforementioned manifolds are often found as con-
figuration manifolds of mechanical systems, as shown in some of the examples
provided in paper 1.

1.2 Structure-preserving numerical methods

Mechanical systems are usually characterised by invariant quantities of signifi-
cant physical meanings, like energy for conservative systems or total momen-
tum for systems with Lagrangians that are invariant under spatial translation.
Since they are formulated in the language of differential geometry, they can be
referred to as geometric attributes [37], and we can say that they endow the sys-
tem with an underlying geometric structure. In general, traditional numerical
techniques are not concerned with preserving this geometric structure, but are
primarily focused on dynamical features such as sensitivity to initial conditions
and perturbations (linked to conditioning) and stability (appropriate asymptotic
behaviour), as well as computational efficiency. Therefore, in the presence
geometric features or invariants, they could lead to simulations displaying non-
physical behaviour. For example, they introduce numerical dissipation when
used to solve conservative systems, as shown in Figure 1.1.

Geometric numerical integration is a field within numerical analysis that
focusses on the development and implementation of geometric or structure-
preserving numerical methods. These methods guarantee that the qualita-
tive properties of the continuous-time system are retained in the discrete do-
main, leading also to improved long-term accuracy in the numerical integration.
Drawing upon concepts from geometric mechanics and differential geometry, a
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Figure 1.1: Solutions of an ideal mass-spring system ẏ = J∇H , where y = (q, p)
and H = 1/2p2 +1/2q2, computed using the explicit Euler, implicit Euler, and
symplectic Euler methods ( [33, sec. I.1.2]). For all the three cases, the initial
values are (q0, p0) = (1,0), and the time step size is h = 0.1. All three methods
are first-order, with the symplectic Euler being a geometric integrator (see sec-
tion 1.2.1). In the upper right plot we observe that the solutions obtained with
the explicit and implicit Euler methods spiral outward and inward, respectively,
in the phase space, resulting in an increase or dissipation of energy depicted
in the final plot, which shows the error in the energy. In contrast, the solu-
tion obtained with the symplectic Euler method results in a closed orbit in the
phase space, demonstrating the correct qualitative behaviour. In the bottom
plots, we show the long-time behaviour of the solutions in terms of the global
error compared to the reference solution, as well as the preservation of energy.
Symplectic integrators on Hamiltonian systems show better energy conserva-
tion, while other integrators (like the explicit Euler) have errors that grow much
more rapidly.

wide range of computational techniques have been developed for solving gov-
erning equations of the mechanical systems while respecting their fundamental
physics. In this section, the emphasis is on numerical integration techniques
that preserve certain geometric properties, like the symplectic form (symplectic

8



1.2 Structure-preserving numerical methods

numerical integrators and variational integrators), and the geometry of the man-
ifold of constraints (Lie group integrators). We don’t focus on other important
properties such as energy or phase-space volume conservation, symmetries, or
time-reversibility. We refer to [33] for a comprehensive overview of the topic,
and [56] for a recent detailed review.

Let us introduce the following initial value problem

d

d t
y(t ) = f

(
y(t )

)
, y(0) = y0, (1.2.1)

where y : R→ Rn4. The map ϕt : Rn → Rn that associates the value of the
solution at time t with the initial data, i.e.

ϕt (y0) = y(t ), with y(0) = y0, (1.2.2)

is termed the flow map of the system. Let the approximation yn+1 ≈ y(tn+1)
be obtained using a numerical one-step method applied to yn with (constant)
stepsize h = tn+1 − tn . We call the mapping

Φh : yn 7→ yn+1 (1.2.3)

the numerical or discrete flow. For example, Φh(yn) = yn +h f (yn) defines the
explicit Euler method.

A function I (y) is called a first integral or constant of motion of the differ-
ential equation ẏ = f (y), with ẏ the time derivative of y and y either a vector or
a matrix, if I is constant along solutions y(t ) of the differential equations, i.e.
I (y(t )) = I (y0) = constant for all t > 0. Differentiating I (y(t )) with respect to t
gives the condition I ′(y) f (y) = 0. Geometric numerical integration focusses on
numerical methods that respect these geometric invariants or constants of the
flow. For example, it is easy to show that every Runge–Kutta method preserves
linear invariants of the form I (y) = d T y , with d ∈Rn a constant vector, so that
d T f (y) = 0 ∀y ∈Rn (see also [33, p. 99] and references therein). Indeed, let us
consider a general s-stages Runge–Kutta scheme

yn+1 = yn +h
s∑

i=1
bi Ki , Ki = f

(
yn +h

s∑
j=1

ai , j K j

)
, i = 1, . . . , s, (1.2.4)

and let us premultiply yn+1 by d T . Since d T Ki vanish for all i , we have

d T yn+1 = d T yn +h
s∑

i=1
bi d T Ki = d T yn , (1.2.5)

4We restrict our discussion to autonomous systems. We also assume well posedness of the
initial value problem.
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that is, the quantity d T y is conserved by the numerical flow. Furthermore,
it can be shown that only a subclass of Runge–Kutta methods preserve all
quadratic invariants [33, sec. IV.2], and no Runge–Kutta method conserves all
polynomial invariants of degree 3 or higher [33, sec. IV.3].

An example of first integral is provided by the Hamiltonian function (1.1.4),
that defines the following canonical Hamiltonian system:

ẏ = J∇H(y), y(0) = y0, (1.2.6)

where y = (q, p) ∈ R2n collects positions and conjugate momenta, q, p ∈ Rn ,
and

J =
[

0 I
−I 0

]
, I the n ×n identity matrix. (1.2.7)

Due to the skew-symmetry of the matrix J , we have

Ḣ =∇H(y)T ẏ =∇H(y)T J∇H(y) = 0. (1.2.8)

In other words, the total energy of the system is conserved.

1.2.1 Symplectic integrators

Besides energy conservation, the flow of a Hamiltonian system exhibits another
important geometric property, which is the preservation of the following skew-
symmetric bilinear form:

ω :R2n ×R2n →R, ω(ξ,η) = ξT Jη, (1.2.9)

that in this case denotes the standard symplectic form of R2n , with J as in
(1.2.7). This means that the Jacobian Ψ := D y (ϕt ,H (y)) :R2n →R2n of the flow
map ϕt ,H of a canonical Hamiltonian system is a symplectic transformation,
that is, it satisfies

ΨT JΨ= J (1.2.10)

in the domain of definition of Ψ, which implies

ω(Ψξ,Ψη) =ω(ξ,η) for all ξ,η ∈R2n . (1.2.11)

In R2, this means that the flow of the Hamiltonian system is area-preserving:
the area of a set of points A in the phase space is the same as the area of
ϕt ,H (A). In higher dimensions, the symplecticity of the Hamiltonian flow map
implies the conservation of volume in phase space (Liouville’s Theorem) [45, p.
55]. Thus, for Hamiltonian systems conserving the symplectic two-form is a
stronger property than conserving volume.

10



1.2 Structure-preserving numerical methods

Since the symplecticity of the flow is a distinctive feature of Hamiltonian
systems 5, it is natural to seek numerical techniques that retain this prop-
erty. Symplectic methods are specifically referred to as one-step methods
yn+1 =Φh(yn) where the numerical flow map Φh is symplectic. They result in
discrete solutions that exhibit good behaviour, in particular almost preservation
of total energy for long time, as already observed in Figure (1.1). This can be
explained through the theory of backword error analysis, by which it can be
proved that symplectic integrators exactly solve a close modified Hamiltonian
system [33, ch. 9]. However, the requirements that need to be met for an integra-
tor to be symplectic are usually strict and result in implicit schemes. Therefore,
a key issue is whether symplectic integrators should be favoured over nonsym-
plectic ones. Symplectic integrators are typically used when the focus is on
the qualitative aspects of the solution, while other types of high-order methods
may provide sufficiently accurate solutions (see, e.g., [55]).

As a final remark, it is worth noting that a known result in this field in-
dicates that a numerical integrator is unable to preserve both the symplectic
structure and the energy at the same time [21, 59]. Thus, for engineering appli-
cations it appears to be convenient to classify structure preserving integrators
for Hamiltonian systems in two main groups: integrators that preserve energy
and integrators that preserve symplecticity [46,56]. Each method offers its own
benefits, and the choice of the most suitable geometric numerical integration
technique depends on the specific Hamiltonian system under consideration.

1.2.2 Variational integrators

The idea behind variational integrators is to construct numerical approxima-
tions of Lagrangian and Hamiltonian systems by discretising Hamilton’s vari-
ational principle instead of the governing equations (Euler-Lagrange equa-
tions or Hamilton’s equations). The resulting numerical scheme is symplectic
and momentum-preserving 6 for conservative systems [51, sec. 1.1.2] (see
also [46]).

Let us consider a first-order Lagrangian L : T Q →R as in (1.1.1) and let us
define the action integral

S(q) =
∫ tN

t0

L
(
q(t ), q̇(t )

)
d t . (1.2.12)

5In particular, it can be shown that the flow of a system is symplectic if and only if the system
is locally Hamiltonian with respect to a certain Hamiltonian function [33, Theorem 2.6].

6Momentum refers to the momentum maps associated with symmetries of the system that,
following Noether’s theorem, indicate the existence of conserved quantities. Preservation of
momentum means that for a discrete system exhibiting symmetry, a discrete version of Noether’s
theorem identifies a quantity that remains conserved at the discrete level [24, 46].
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As mentioned in the previous section, extremising the action over all curves
q(t ) with fixed endpoints q(t0) = q0 and q(tN ) = qN results in the governing
Euler-Lagrange equations of the system:

d

d t

(
∂L

∂q̇

)
−

(
∂L

∂q

)
= 0. (1.2.13)

In variational integrators, a discrete Lagrangian Ld : Q ×Q → R is intro-
duced, with Q the configuration manifold. A trajectory q :

[
t0, tN

] → Q is
replaced by a discrete path qd :

{
t0, t0 +h, . . . , t0 +N h = tN

}→Q, where h ∈R
is a constant time step, so that qn = qd

(
t0 +nh

)
can be considered an approxi-

mation to q
(
t0 +nh

)
. To discretise the variational principle, a discrete action

Ld is defined as

Ld
(
qn , qn+1

)≈ ∫ tn+1

tn

L(q, q̇)d t , (1.2.14)

where the integral over the time interval tn , tn+1 is approximated with a quadra-
ture formula and finite difference schemes are used for the time derivatives.
Requiring stationarity of the discrete action sum

Sd

(
{qn}N

n=0

)
=

N−1∑
n=0

Ld
(
qn , qn+1

)
(1.2.15)

for all variations
{
δqn

}N−1
n=1 , with

{
δq0

} = {
δqN

} = 0, yield the discrete Euler-
Lagrange equations

D1Ld
(
qn , qn+1

)+D2Ld
(
qn−1, qn

)= 0, n = 1, . . . , N −1, (1.2.16)

that define the time-stepping scheme, with Di Ld representing the partial differ-
entiation of Ld with respect to the i -th argument.

In the presence of holonomic constraints, the configuration manifold Q
is defined as in (1.1.6), with Q embedded in Rn , so that q ∈ Rn must satisfy
(1.1.5). In this case, the usual approach is to augment the Lagrangian function
with Lagrange multipliers λ : [t0, tN ] →Rm (see, e.g., [47]) and define

L̄ : T
(
Rn ×Rm)→R, L̄(q,λ, q̇ , λ̇) = L(q, q̇)− g T (q) ·λ. (1.2.17)

The constrained Euler-Lagrange equations are then obtained as the following
set of differential algebraic equations on the ambient space:

∂L(q, q̇)

∂(q)
− d

d t

(
∂L(q, q̇)

∂q̇

)
−GT (q) ·λ= 0, (1.2.18)

g (q) = 0, (1.2.19)
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1.2 Structure-preserving numerical methods

where G(q) = Dq
(
g (q)

)
denotes the Jacobian of the constraint function, and

the term −GT (q) represents the constrained forces that act to keep the system
on the constraint surface, with their direction and magnitude determined by the
Lagrange multipliers λ ∈Rm . By a similar argument as before, the variational
scheme assumes the form of the following constrained discrete Euler-Lagrange
equations:

D1Ld
(
qn , qn+1

)+D2Ld
(
qn−1, qn

)−GT
d

(
qn

) ·λn = 0,

g
(
qn+1

)= 0,

which are solved for the unknowns
(
qn+1,λn

)
. It should be highlighted that the

constraint forces −GT
d

(
qn

) ·λn guarantee the satisfaction of the constraints at
the configuration node qn+1.

1.2.3 Numerical methods on manifolds

Let us now consider a differential equation on a n −m dimensional smooth
manifold M, that again we consider to be embedded in Rn and defined implic-
itly as the zero level set of a function g :Rn →Rm with full rank Jacobian, i.e.
M= g−1(0). Specifically, we consider an initial value problem

ẏ = f (y), y(0) = y0 ∈M, (1.2.20)

such that y0 ∈M implies y(t ) ∈M for all t , that is, the exact solution lies in
M for all t . This condition is equivalent to (see [33, pag. 115])

f (y) ∈ TyM for all y ∈M. (1.2.21)

Therefore, for all y ∈M, the vector field f (y) in (1.2.20) defines a mapping
from M to a unique tangent vector in the tangent space TyM. This situation
often arises in practical applications. For example, we observed in the previous
section that the Lagrangian vector field of a constrained Lagrangian system is
defined on the tangent bundle TQ ⊆ R2n of the constraint configuration man-
ifold Q ⊆ Rn . The physical solution is then required to satisfy the constraint
function, that is, to stay on Q.

Most traditional numerical integration techniques are designed for initial
value problems that evolve on a vector space R2n . Hence, an initial strategy
to solve the problem would involve directly applying standard numerical inte-
gration algorithms to the dynamics in the embedding vector space. Using this
approach, however, does not ensure that the numerical solution of an initial-
value problem starting on the configuration manifold will remain on it. For
example, a Runge–Kutta scheme will evaluate increments in the direction of
the vector field (1.2.21), that is tangent to the manifold, hence the approximate
solution will deviate from the configuration manifold.
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Specific structure-preserving techniques can be employed to force the nu-
merical solution to lie on the manifold (we refer to [33, Chapter 4] for a de-
tailed introduction). A natural approach consists in using a traditional one-step
method Φh on (1.2.20), with y represented as a vector in the embedding space,
and projecting the computed solution ỹn+1 = Φh(yn) back onto the configu-
ration manifold to obtain yn+1. Usually, this involves solving a constrained
minimization problem in some norm ∥ ·∥,

min∥yn+1 − ỹn+1∥ s.t . g (yn+1) = 0, (1.2.22)

with g the constraint function defining the manifold. Therefore, this method
can be computationally expensive.

Another significant class of techniques consists in applying the integration
scheme on the governing equations expressed in terms of a minimal set of
generalised coordinates [33, sec. IV.5]. However, as previously observed, a
formulation of the system based on minimal coordinates might be subject to
singularities and is in general not globally valid on the manifold. Moreover,
in the case of Lagrangian and Hamiltonian systems evolving on a constrained
space, it turns out that differential equations expressed in minimal coordinates
can be more difficult to derive than those formulated as differential algebraic
equations in the embedding space (various examples, like the double pendulum,
are provided in [4, 27]).

Finally, we present the underlying idea of geometric numerical methods
specifically designed for situations where the manifold is a Lie group. We
consider, in particular, the following differential equation

Ẏ = A(Y )Y , Y (0) = Y0 ∈G (1.2.23)

on a matrix Lie group G, with A : G → g a matrix valued function in the Lie
algebra g of G, which is the tangent space at the identity of the Lie group,
g= TeG .

Given a differential equation on a Lie group, the key idea of Lie group
methods is to write the solution of the differential equation by means of a
Lie group action [37]. A comprehensive and well-crafted exposition of these
techniques can be found in [36]. Here, we briefly introduce Runge-Kutta-
Munthe-Kaas methods (see [52] and references therein), which will be further
discussed in paper 1. The basic principle behind these methods consists of
expressing the solution of (1.2.23) as

Y (t ) =ψ(exp(σ(t )),Y0), (1.2.24)

with σ(t ) defined by a differential equation on the Lie algebra for equations on
matrix Lie groups. In (1.2.24), the action ψ reduces to the matrix multiplication
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Figure 1.2: Solutions of a differential equation Ṙ = A(R)R on SO(3) with
the explicit Euler method, Rn+1 = Rn +h A(Rn)Rn , and the Lie Euler method,
Rn+1 = exp

(
h A(Rn)

)
Rn , using a time step h = 0.01. The reference solu-

tion has been computed with the RK45 default method of scipy.integrate.
solve_ivp, setting relative and absolute tolerances to 10−15. Both the explicit
Euler and the Lie Euler methods are of first order. We notice that the solution
obtained with the Lie Euler method respects the constraints that define the man-
ifold, i.e. SO(3) = {R ∈GL(3) | RT R = I , detR = 1}, to machine accuracy.

exp(σ(t ))Y0, i.e., it is intended as the action of the Lie group on itself by left
multiplication.

Since the Lie algebra is a linear space, the numerical solution for σ(t ) can
be obtained with standard explicit or implicit Runge-Kutta methods, and we
can determine the group element exp(σ(t )) that, acting on Y0, takes the solution
to Y (t ). This process makes use of the exponential map

exp : g→G , exp(A) =
∞∑

j=0

A j

j
, (1.2.25)

which defines a diffeomorphism between a neighbourhood of the origin in g
and a neighbourhood of the identity in G. This actually means that the expo-
nential map provides a local parameterisation near the identity of the Lie group,
allowing us to identify a point on G with a set of coordinates on g, called in this
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case the canonical coordinates of the first kind. Other examples of parameteri-
sation are possible, such as the Cayley transform and the canonical coordinates
of the second kind [33, Section IV.8.3].

It is worth mentioning that a matrix Lie algebra comes with the bilinear
antisymmetric map

[·, ·] : g×g→ g, [A,B ] = AB −B A. (1.2.26)

known as the Lie bracket or commutator, and that σ satisfies an initial value
problem where the vector field is given in terms of nested commutators, as in
(2.2.6) in paper 1, and σ(0) = 0 ∈ g. Since the Lie algebra is closed under matrix
addition, scalar multiplication, and the commutator operation defined above,
we have that all operations involved in a Runge–Kutta method with step size h
(like evaluation of the vector field and computation of updates) produce results
in the Lie algebra, in particular the one-step approximation σ̃≈σ(h) which is
used to obtain the next approximation via the action exp(σ̃)Y0 ∈G . In figure 1.2
we show an example of differential equation on SO(3) solved with the explicit
Euler and the Lie Euler methods. The latter is a Lie group integrator based on
the standard explicit Euler scheme to get an approximation of σ(h) on the Lie
algebra.

We also remark that, under some assumptions on the approximation of
σ(t ), the order of the underlying classical Runge-Kutta method is preserved
(see, e.g., [36, pag. 42] or [33, Theorem 8.5]). This can be considered as an
outcome of interpreting (1.2.24) as a smooth local change of variables that
transform (1.2.23) into an initial value problem on a linear space.

This method will be explained for the more general case of vector fields
on homogeneous manifolds in paper 1 . The setting will remain mostly the
same, except that a function f :M→ g is now being introduced, which reduces
to A(Y ) in the case of equation (1.2.23). Most of the codes are available in
THREAD’s GitHub repository [2].

1.3 Data-driven methods in engineering

In recent years, advances in machine learning technologies, especially deep
neural networks, have been significant across various scientific and engineer-
ing domains. This progress has been made possible, among others, by the
abundance of data from physical systems measurements, the decreasing cost of
sensors, the increase in computational capabilities, and the improvement of data
storage technologies. As a result, data-driven methodologies are prompting a
shift in the way many problems in science and engineering are approached (we
refer to [11] for a thorough introduction on the subject). Notably, they have
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proven to be effective in modelling mechanical systems and in making predic-
tions about their states, as we investigate in paper 4 with respect to the static
equilibria of Euler’s elastica.

Machine learning methods are useful for identifying underlying relation-
ships and hidden patterns within a dataset. On one side, this approach can help
to improve existing models, for example identifying unknown model parame-
ters, or to discover governing equations of dynamical systems [12]. On the other
side, methods that extract informative patterns, for example uncovering corre-
lations between different variables, can provide guidance for decision-making
in various engineering fields, as we study in paper 5.

Usually, data are gathered in multidimensional arrays that exhibit low-rank
( [11, p. 3]). Therefore, a key goal is to identify the underlying low-dimensional
feature space in which the data can be represented (this assumption is also called
the manifold hypothesis, see e.g. [30, sec. 3.6.2] or [28, sec. 5.11.3]). This
procedure can be completely data-driven or can be enhanced by feature engi-
neering guided by expert knowledge. By features, we mean all the attributes of
measurements or observations collected into data points. Feature engineering
involves the process of converting original features into new ones that are more
relevant to the specific task, i.e., that can be useful to develop better classifiers
or predictors. A few examples are shown in paper 5, where principal component
analysis and correlation are crucial in the preprocessing of data.

An important aspect to consider is that the majority of machine learning
methods are framed as optimisation problems, with the aim of maximising
the accuracy of regression and classification models [11]. In deep learning,
the model is formulated as a neural network fθ, which is a composition of
parametric maps applied to the input x. The parameters θ are determined by
solving an optimisation problem

argmin
θ

L
(

fθ(x)
)

. (1.3.1)

Here, L represents a cost function that must be minimised, usually called loss.
The solution of the optimisation problem via iterative methods is called training.
The parameters are determined by evaluating how well the model fits the data
during the training process, and subsequently the optimal model is selected
based on its capacity to generalise to new, unseen data. Various network ar-
chitectures (i.e., how the compositional maps are defined) will be presented
in papers 3, 4, and 5. Here, we provide a short overview of the minimisation
procedure, and refer to [11, 34, 40, 42] for further details.

A cost function usually involves summing individual terms Cx i , i = 1, . . . , N ,
across the training data xi and taking the mean, for example

L(θ) = 1

M

N∑
i=1

Cx i (θ), (1.3.2)

17



Introduction

as in (5.4.1) in paper 4. In (1.3.2) we explicitly write the loss as a function of
the parameters θ. Minimisation is typically performed using gradient descent,
which requires calculating the gradients of the loss function with respect to all
the parameters in the neural network. The learning process typically employs
stochastic gradient descent methods (see [30, p. 15] and references therein),
where the idea is to substitute the real gradient with an approximation obtained
from a randomly chosen subset of the data, called batch. Therefore, we choose
s integers

{
k1,k2, . . . ,ks

}
, s ≪ N , uniformly at random from {1,2, . . . , N }, and

we define the update rule as

θ 7→ θ−η1

s

s∑
i=1

∇Cxki (θ), (1.3.3)

where the learning rate η determines the size of the step in the direction of the
negative gradient and is crucial in determining how fast the algorithm converges
to a minimum. In (1.3.3), the set

{
xki

}s

i=1
is the batch, with s the batch size.

The batch aims to provide a statistically meaningful sample of the complete
training dataset and changes with each iteration. It is possible for the same
sample to be selected multiple times in subsequent steps for different batches,
or alternatively, the training set can be randomly split into distinct batches. In
either case, the algorithm cycles through the batches until all training inputs are
used, corresponding to an epoch of training. At that point, it starts over with a
new training epoch.

The number of training epochs, as well as the batch size and the learn-
ing rate, are known as hyperparameters, in order to distinguish them from
the parameters of the neural network. Their selection, along with additional
architectural choices, is made with the aim of speeding up convergence and
improving expressiveness, and could also be adjusted dynamically during the
training process.

The volume of parameters and training data tends to be extremely large
in deep learning, making it costly to calculate the gradient vector of the loss
function during each iteration of the gradient descent method. Irrespective of
the optimisation method used (such as stochastic gradient descent or one of
its adaptations like the widely used Adam algorithm [39]), neural networks
make use of an efficient algorithm called backpropagation (see [30, p. 14] and
references therein) to compute gradients of the loss function. Backpropagation
is an automatic differentiation technique and, in particular, can be considered
an instance of reverse-mode differentiation. It is based on the chain rule and
leverages the hierarchical structure of neural networks to calculate gradients (a
basic introduction is presented in [34] and [40]).

In the experiments of this thesis, we use the deep learning framework pro-
vided by PyTorch to define and train deep learning models. A key feature of
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PyTorch is that it records all computations in a directed acyclic graph and en-
ables reverse-mode automatic differentiation, making it ideal for efficiently and
accurately computing derivatives in functions that exhibit graph-like structures,
such as neural networks.

It should be remarked that, in the context of deep learning, we usually deal
with challenging non-convex optimization problems [30, p. 57] (see also [48]),
whose solutions depend on the specific definition of the loss function and net-
work architecture, and on the appropriate choice of the optimisation algorithm.
Striking the right balance between training ease and network expressiveness,
i.e. the class of functions that can be approximated by the network, is crucial.
Regarding the second aspect, theoretical results, known as universal approxima-
tion theorems, demonstrate that neural networks possess significant expressive
capabilities. For example, they show that neural networks have the ability to
approximate any continuous multi-input multi-output function with arbitrary
precision (see, e.g., [40, Sec. 3.1], [9, Sec. 2.1], and references therein). How-
ever, their practical relevance is limited, as they do not offer assurance such
neural network and the appropriate parameters can be found. Finally, in or-
der for the neural network to generalise well, a range of techniques known as
regularization strategies can be utilized. These usually involve extra terms in
the definition of the loss and can be helpful for creating informative represen-
tations and avoiding overfitting, which occurs when a model performs well
on the training data, but poorly on new, unseen inputs. A few examples are
provided in paper 4, e.g. in the definition of the loss (5.5.1). A recent trend
involves enhancing data-driven models with physical principles and geometric
properties, such as conservation laws, constraints and symmetries. This results
in hybrid approaches that improve the reliability of the data-driven models
and alleviate their lack of interpretability, especially in the case of deep neural
networks. An example of encoding the physics in both the definition of the
network architecture and the learning procedure is shown in paper 3.

1.4 Summary of papers

Paper 1: Lie group integrators for mechanical systems

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Davide Murari, Brynjulf Owren

International Journal of Computer Mathematics 99(1), 58–88

In this article, we provide a review of Lie group integration methods for
mechanical systems, whose dynamics can be described by a Lie group acting
on a manifold. We set up the necessary differential geometric background, with
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a specific emphasis on the Lie groups SO(3) and SE(3), and perform various
numerical experiments using two classes of numerical schemes, RKMK and
commutator-free Lie group integrators. In particular, we consider different Lie
group formulations of the heavy top equations, a chain of pendulums, and a
multibody system model for drone dynamics. In the last two cases, we show
that the configuration manifold is homogeneous and write the corresponding
transitive action on the velocity phase space. The numerical experiments show
how Lie group integrators preserve the geometry of the entire phase space
to machine accuracy, much better than classical methods like ODE45 or the
Runge–Kutta 4.

Paper 2: Dynamics of the N-fold Pendulum in the Framework of Lie Group
Integrators

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Davide Murari, Brynjulf Owren

Progress in Industrial Mathematics at ECMI 2021. Mathematics in Industry,
vol 39. Springer Cham, pp. 297-304

This short conference proceedings paper is an extension of the previous
one. After an overview of RKMK methods, we better clarify how to extend Lie
group actions to Cartesian products of homogeneous manifolds. We then focus
on variable step-size methods, showing how to implement them in a Lie group
context. We perform numerical experiments considering the example of the
chain of pendulums, and we compare constant- and adaptive-step-size RKMK
methods.

Paper 3: Learning Hamiltonians of constrained mechanical systems

Elena Celledoni, Andrea Leone, Davide Murari, Brynjulf Owren

Journal of Computational and Applied Mathematics 417, 114608

This article combines the structure-preserving numerical methods intro-
duced before with a data-driven approach for modelling Hamiltonian mechan-
ical systems. In particular, we describe a neural network-based approach to
approximate (learn) the Hamiltonian of mechanical systems with holonomic
constraints, given trajectory data. In the learning process, we integrate the
resulting Hamilton’s equations to match the given trajectories. We investigate
whether this learning strategy profits from integration methods that preserve
the constraints, specifically from RKMK methods.
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Paper 4: Neural networks for the approximation of Euler’s elastica

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Sigrid Leyendecker, Davide Murari, Brynjulf Owren,
Rodrigo T. Sato Martín de Almagro, Martina Stavole

Submitted

In this paper, we address the problem of approximating solutions of the
planar Euler’s elastica in the static regime with neural networks. We propose
two approaches in which we learn discrete and continuous approximations of
the solutions, discussing limitations and advantages in both cases. We present
numerical experiments showing that the proposed neural networks can effec-
tively approximate configurations of the planar Euler’s elastica for a range of
different boundary conditions and have good generalisation capability. Deter-
mining the static equilibria of an inextensible planar Euler elastica, described
by a constrained second order Lagrangian, is a classical problem of beam the-
ory. This work showcases both the potential and limitations of deep learning
in industrial settings involving flexible systems that experience large bending
deformations.

Paper 5: Supervised time series classification for anomaly classification in
subsea engineering

Ergys Çokaj, Halvor Snersrud Gustad, Andrea Leone,
Per Thomas Moe, Lasse Moldestad

To appear on the Journal of Computational Dynamics

This article compares different data-based approaches to perform binary
classification of multi-sensor time series signals. The goal is to detect a system-
atic change in the structural response of a subsea production system exposed to
operational loads. More specifically, given a synthetic data set based on sensor
simulations, we determine the status (broken versus intact) of subsea oil wells.
We start by explaining how to preprocess the data for effective feature extrac-
tion. Then, we apply both traditional statistical methods and modern machine
learning techniques, discussing the advantages and drawbacks of each. Despite
using established algorithms, it is important to note that we apply them to a
specific type of time series data, mimicking real sensor measurements from
physical systems to ensure practical relevance. The significance of this study
in the offshore oil industry lies in the importance of preventing any loss of
structural integrity and pressure control caused by wellhead cracking. We show
that machine learning algorithms can provide advantages by reducing the need
for human decision-making.
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Statement on the layout of the thesis and the use of AI tools. The layout,
bibliography, and presentation style of the papers have been unified, and some
typographical errors have been rectified. To conform to the B5 format of this
thesis, some equations have been reformatted. No other substantial modifica-
tions have been made.

The thesis has been written using the LATEX editor Overleaf, with the help
of the Writefull extension for language feedback and grammar check.
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Lie Group integrators for mechanical systems

Abstract. Since they were introduced in the 1990s, Lie group integrators
have become a method of choice in many application areas. These include
multibody dynamics, shape analysis, data science, image registration and bio-
physical simulations. Two important classes of intrinsic Lie group integrators
are the Runge–Kutta–Munthe–Kaas methods and the commutator free Lie
group integrators. We give a short introduction to these classes of methods.
The Hamiltonian framework is attractive for many mechanical problems, and
in particular we shall consider Lie group integrators for problems on cotangent
bundles of Lie groups where a number of different formulations are possible.
There is a natural symplectic structure on such manifolds and through varia-
tional principles one may derive symplectic Lie group integrators. We also
consider the practical aspects of the implementation of Lie group integrators,
such as adaptive time stepping. The theory is illustrated by applying the meth-
ods to two nontrivial applications in mechanics. One is the N-fold spherical
pendulum where we introduce the restriction of the adjoint action of the group
SE(3) to T S2, the tangent bundle of the two-dimensional sphere. Finally, we
show how Lie group integrators can be applied to model the controlled path
of a payload being transported by two rotors. This problem is modeled on
R6×(

SO(3)×so(3)
)2×(T S2)2 and put in a format where Lie group integrators

can be applied.

2.1 Introduction

In many physical problems, including multi-body dynamics, the configuration
space is not a linear space, but rather consists of a collection of rotations and
translations. A simple example is the free rigid body whose configuration space
consists of rotations in 3D. A more advanced example is the simplified model
of the human body, where the skeleton at a given time is described as a system
of interacting rods and joints. Mathematically, the structure of such problems
is usually best described as a manifold. Since manifolds by definition can be
equipped with local coordinates, one can always describe and simulate such
systems locally as if they were linear spaces. There are of course many choices
of local coordinates, for rotations some famous ones are: Euler angles, the
Tait-Bryan angles commonly used in aerospace applications, the unit length
quaternions, and the exponentiated skew-symmetric 3×3-matrices. Lie group
integrators represent a somewhat different strategy. Rather than specifying a
choice of local coordinates from the outset, in this approach the model and
the numerical integrator are expressed entirely in terms of a Lie group and its
action on the phase space. This often leads to a more abstract and simpler
formulation of the mechanical system and of the numerical schemes, deferring
further details to the implementation phase.

31



Lie group integrators for mechanical systems

In the literature one can find many different types and formats of Lie group
integrators. Some of these are completely general and intrinsic, meaning that
they only make use of inherent properties of Lie groups and manifolds as was
suggested in [6,11,40]. But many numerical methods have been suggested that
add structure or utilise properties which are specific to a particular Lie group
or manifold. Notable examples of this are the methods based on canonical
coordinates of the second kind [45], and the methods based on the Cayley
transformation [13, 31], applicable e.g. to the rotation groups and Euclidean
groups. In some applications e.g. in multi-body systems, it may be useful to
formulate the problem as a mix between Lie groups and kinematic constraints,
introducing for instance Lagrange multipliers. Sometimes this may lead to more
practical implementations where a basic general setup involving Lie groups
can be further equipped with different choices of constraints depending on the
particular application. Such constrained formulations are outside the scope
of the present paper. It should also be noted that the Lie group integrators
devised here do not make any a priori assumptions about how the manifold is
represented.

The applications of Lie group integrators for mechanical problems also
have a long history, two of the early important contributions were the Newmark
methods of Simo and Vu–Quoc [49] and the symplectic and energy-momentum
methods by Lewis and Simo [31]. Mechanical systems are often described as
Euler–Lagrange equations or as Hamiltonian systems on manifolds, with or
without external forces, [28]. Important ideas for the discretization of mechan-
ical systems originated also from the work of Moser and Veselov [37, 51] on
discrete integrable systems. This work served as motivation for further devel-
opments in the field of geometric mechanics and for the theory of (Lie group)
discrete variational integrators [20, 27, 29]. The majority of Lie group methods
found in the literature are one-step type generalisations for classical methods,
such as Runge–Kutta type formulas. In mechanical engineering, the classical
BDF methods have played an important role, and were recently generalised [54]
to Lie groups. Similarly, the celebrated α-method for linear spaces proposed
by Hilber, Hughes and Taylor [22] has been popular for solving problems in
multibody dynamics, and in [1, 2, 4] this method is generalised to a Lie group
integrator.

The literature on Lie group integrators is rich and diverse, the interested
reader may consult the surveys [7, 10, 26, 44] and Chapter 4 of the monograph
[18] for further details.

In this paper we discuss different ways of applying Lie group integrators to
simulating the dynamics of mechanical multi-body systems. Our point of de-
parture is the formulation of the models as differential equations on manifolds.
Assuming to be given either a Lie group acting transitively on the manifold
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M or a set of frame vector fields on M, we use them to describe the mechani-
cal system and further to build the numerical integrator. We shall here mostly
consider schemes of the types commonly known as Crouch–Grossman meth-
ods [11], Runge–Kutta–Munthe–Kaas methods [39, 40] and Commutator-free
Lie group methods [6].

The choice of Lie group action is often not unique and thus the same me-
chanical system can be described in different equivalent ways. Under numerical
discretization the different formulations can lead to the conservation of differ-
ent geometric properties of the mechanical system. In particular, we explore
the effect of these different formulations on a selection of examples in multi-
body dynamics. Lie group integrators have been succesfully applied for the
simulation of mechanical systems, and in problems of control, bio-mechanics
and other engineering applications, see for example [46], [27] [9], [25]. The
present work is motivated by applications in modeling and simulation of slender
structures like Cosserat rods and beams [49], and one of the examples presented
here is the application to a chain of pendula. Another example considers an
application for the controlled dynamics of a multibody system.

In section 2.2 we give a review of the methods using only the essential in-
trinsic tools of Lie group integrators. The algorithms are simple and amenable
for a coordinate-free description suited to object oriented implementations. In
section 2.3, we discuss Hamiltonian systems on Lie groups, and we present
three different Lie group formulations of the heavy top equations. These sys-
tems (and their Lagrangian counterpart) often arise in applications as building
blocks of more realistic systems which comprise also damping and control
forces. In section 2.4, we discuss some ways of adapting the integration step
size in time. In section 2.5 we consider the application to a chain of pendula.
And in section 2.6 we consider the application of a multi-body system of inter-
est in the simulation and control of drone dynamics.

2.2 Lie group integrators

2.2.1 The formulation of differential equations on manifolds

Lie group integrators solve differential equations whose solution evolve on a
manifold M. For ease of notation we restrict the discussion to the case of
autonomous vector fields, although allowing for explicit t-dependence could
easily have been included. This means that we seek a curve y(t ) ∈M whose
tangent at any point coincides with a vector field F ∈X (M) and passing through
a designated initial value y0 at t = t0

ẏ(t ) = F |y(t ), y(t0) = y0. (2.2.1)
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Before addressing numerical methods for solving (2.2.1) it is necessary to in-
troduce a convenient way of representing the vector field F . There are different
ways of doing this. One is to furnish M with a transitive actionψ : G×M→M
by some Lie group G of dimension d ≥ dimM. We denote the action of g on
m as g ·m, i.e. g ·m = ψ(g ,m). Let g be the Lie algebra of G, and denote
by exp : g → G the exponential map. We define ψ∗ : g → X (M) to be the
infinitesimal generator of the action, i.e.

Fξ
∣∣∣
m
= ψ∗(ξ)

∣∣
m = d

d t

∣∣∣∣∣
t=0

ψ(exp(tξ),m). (2.2.2)

The transitivity of the action now ensures that ψ∗(g)
∣∣
m = TmM for any m ∈M,

such that any tangent vector vm ∈ TmM can be represented as vm = ψ∗(ξv )
∣∣
m

for some ξv ∈ g (ξv may not be unique). Consequently, for any vector field
F ∈X (M) there exists a map f :M→ g1 such that

F |m = ψ∗( f (m))
∣∣
m , for all m ∈M. (2.2.3)

This is the original tool [40] for representing a vector field on a manifold
with a group action. Another approach was used in [11] where a set of frame
vector fields E1, . . . ,Ed in X (M) was introduced assuming that for every m ∈
M,

span{ E1
∣∣
m , . . . , Ed

∣∣
m} = TmM.

Then, for any vector field F ∈X (M) there are, in general non-unique, functions
fi :M→R, which can be chosen with the same regularity as F , such that

F |m =
d∑

i=1
fi (m) Ei

∣∣
m .

A fixed vector ξ ∈Rd will define a vector field Fξ on M similar to (2.2.2)

Fξ
∣∣∣
m
=

d∑
i=1

ξi Ei |m . (2.2.4)

If ξi = fi (p) for some p ∈M, the corresponding Fξ will be a vector field in the
linear span of the frame which coincides with F at the point p. Such a vector
field was named by [11] as a the vector field frozen at p.

The two formulations just presented are in many cases connected, and can
then be used in an equivalent manner. Suppose that e1, . . . ,ed is a basis of the

1If the Lie group action is smooth, a map f of the same regularity as F can be found [53]
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2.2 Lie group integrators

Lie algebra g, then we can simply define frame vector fields as Ei =ψ∗(ei ) and
the vector field we aim to describe is,

F |m = ψ∗( f (m))
∣∣
m = ψ∗(

∑
i

fi (m)ei )

∣∣∣∣∣
m

=∑
i

fi Ei
∣∣
m .

As mentioned above there is a non-uniqueness issue when defining a vector
field by means of a group action or a frame. A more fundamental description
can be obtained using the machinery of connections. The assumption is that the
simply connected manifold M is equipped with a connection which is flat and
has constant torsion. Then Fp , the frozen vector field of F at p defined above,
can be defined as the unique element Fp ∈X (M) satisfying

1. Fp |p = F |p ,

2. ∇X Fp = 0 for any X ∈X (M).

So Fp is the vector field that coincides with F at p and is parallel transported
to any other point on M by the connection ∇. Since the connection is flat, the
parallel transport from the point p to another point m ∈M does not depend on
the chosen path between the two points. For further details, see e.g. [32].

Example 1. For mechanical systems on Lie groups, two important construc-
tions are the adjoint and coadjoint representatons. For every g ∈G there is an
automorphism Adg : g→ g defined as

Adg (ξ) = T Lg ◦T Rg−1 (ξ),

where Lg and Rg are the left and right multiplications respectively, Lg (h) = g h
and Rg (h) = hg . Since Ad is a representation, i.e. Adg h = Adg ◦Adh it also
defines a left Lie group action by G on g. From this definition and a duality
pairing 〈·, ·〉 between g and g∗, we can also derive a representation on g∗

denoted Ad∗
g , simply by

〈Ad∗
g (µ),ξ〉 = 〈µ,Adg (ξ)〉, ξ ∈ g, µ ∈ g∗.

The action g ·µ= Ad∗
g−1 (µ) has infinitesimal generator given as

ψ∗(ξ)
∣∣
µ =−ad∗

ξµ.

Following [34], for a Hamiltonian H : T ∗G →R, define H− to be its restriction
to g∗. Then the Lie-Poisson reduction of the dynamical system is defined on g∗

as
µ̇=−ad∗

∂H−
∂µ

µ,
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and this vector field is precisely of the form (2.2.3) with f (µ) = ∂H−
∂µ (µ). A side

effect of this is that the integral curves of these Lie-Poisson systems preserve
coadjoint orbits, making the coadjoint action an attractive choice for Lie group
integrators.

Let us now detail the situation for the very simple case where G = SO(3).
The Lie algebra so(3) can be modeled as 3×3 skew-symmetric matrices, and
via the standard basis we identify each such matrix ξ̂ by a vector ξ ∈ R3, this
identification is known as the hat map

ξ̂=

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 . (2.2.5)

Now, we also write the elements of so(3)∗ as vectors in R3 with duality pairing
〈µ,ξ〉 =µT ξ. With these representations, we find that the coadjoint action can
be expressed as

g ·µ=ψ(g ,µ) = Ad∗
g−1µ= gµ,

the rightmost expression being a simple matrix-vector multiplication. Since g
is orthogonal, it follows that the coadjoint orbits foliate 3-space into spherical
shells, and the coadjoint action is transitive on each of these orbits. The free
rigid body can be cast as a problem on T SO(3)∗ with a left invariant Hamilto-
nian which reduces to the function

H−(µ) = 1

2
〈µ, I−1µ〉

on so(3)∗ where I : so(3) → so(3)∗ is the inertia tensor. From this, we can now
set f (µ) = ∂H−/∂µ= I−1µ. We then recover the Euler free rigid body equation
as

µ̇= ψ∗( f (µ)
∣∣
µ =−ad∗

I−1µ
µ=−I−1µ×µ,

where the last expression involves the cross product of vectors in R3.

2.2.2 Two classes of Lie group integrators

The simplest numerical integrator for linear spaces is the explicit Euler method.
Given an initial value problem ẏ = F (y), y(0) = y0 the method is defined as
yn+1 = yn +hF (yn) for some stepsize h. In the spirit of the previous section,
one could think of the Euler method as the h-flow of the constant vector field
Fyn (y) = F (yn), that is

yn+1 = exp(hFyn ) yn .

This definition of the Euler method makes sense also when F is replaced by
a vector field on some manifold. In this general situation it is known as the
Lie–Euler method.

36



2.2 Lie group integrators

We shall here consider the two classes of methods known as Runge–Kutta–
Munthe–Kaas (RKMK) methods and Commutator-free Lie group methods.

For RKMK methods the underlying idea is to transform the problem from
the manifold M to the Lie algebra g, take a time step, and map the result back
to M. The transformation we use is

y(t ) = exp(σ(t )) · y0, σ(0) = 0.

The transformed differential equation for σ(t ) makes use of the derivative of
the exponential mapping, the reader should consult [40] for details about the
derivation, we give the final result

σ̇(t ) = dexp−1
σ(t )( f (exp(σ(t )) · y0)). (2.2.6)

The map v 7→ dexpu(v) is linear and invertible when u belongs to some suffi-
ciently small neighborhood of 0 ∈ g. It has an expansion in nested Lie brack-
ets [21]. Using the operator adu(v) = [u, v] and its powers ad2

u v = [u, [u, v]]
etc, one can write

dexpu(v) = ez −1

z

∣∣∣∣∣
z=adu

(v) = v + 1

2
[u, v]+ 1

6
[u, [u, v]]+·· · (2.2.7)

and the inverse is

dexp−1
u (v) = z

ez −1

∣∣∣∣
z=adu

(v) = v − 1

2
[u, v]+ 1

12
[u, [u, v]]+·· · (2.2.8)

The RKMK methods are now obtained simply by applying some standard
Runge–Kutta method to the transformed equation (2.2.6) with a time step h,
using initial value σ(0) = 0. This leads to an output σ1 ∈ g and one simply sets
y1 = exp(σ1) · y0. Then one repeats the procedure replacing y0 by y1 in the next
step etc. While solving (2.2.6) one needs to evaluate dexp−1

u (v) as a part of the
process. This can be done by truncating the series (2.2.8) since σ(0) = 0 im-
plies that we always evaluate dexp−1

u with u =O(h), and thus, the kth iterated
commutator adk

u =O(hk ). For a given Runge–Kutta method, there are some
clever tricks that can be done to minimise the total number of commutators
to be included from the expansion of dexp−1

u v , see [5, 41]. We give here one
concrete example of an RKMK method proposed in [5]

fn,1 = h f (yn),

fn,2 = h f (exp( 1
2 fn,1) · yn),

fn,3 = h f (exp( 1
2 fn,2 − 1

8 [ fn,1, fn,2]) · yn),

fn,4 = h f (exp( fn,3) · yn),

yn+1 = exp( 1
6 ( fn,1 +2 fn,2 +2 fn,3 + fn,4 − 1

2 [ fn,1, fn,4])) · yn .
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The other option is to compute the exact expression for dexp−1
u (v) for the

particular Lie algebra we use. For instance, it was shown in [8] that for the Lie
algebra so(3) one has

dexp−1
u (v) = v − 1

2
u × v +α−2(1− α

2 cot α2 ) u × (u × v).

We will present the corresponding formula for se(3) in Section 2.2.3.
The second class of Lie group integrators to be considered here are the

commutator-free methods, named this way in [6] to emphasize the contrast
to RKMK schemes which usually include commutators in the method format.
These schemes include the Crouch-Grossman methods [11] and they have the
format

Yn,r = exp

(
h

∑
k
αk

r,J fn,k

)
· · ·exp

(
h

∑
k
αk

r,1 fn,k

)
· yn ,

fn,r = f (Yn,r ),

yn+1 = exp

(
h

∑
k
βk

J fn,k

)
· · ·exp

(
h

∑
k
βk

1 fn,k

)
· yn .

Here the Runge–Kutta coefficients αk
r, j , β

r
j are related to a classical Runge–

Kutta scheme with coefficients ak
r , br in that ak

r =∑
j α

k
r, j and br =∑

j β
r
j . The

αk
r, j , βr

j are usually chosen to obtain computationally inexpensive schemes with
the highest possible order of convergence. The computational complexity of
the above schemes depends on the cost of computing an exponential as well as
of evaluating the vector field. Therefore it makes sense to keep the number of
exponentials J in each stage as low as possible, and possibly also the number of
stages s. A trick proposed in [6] was to select coefficients that make it possible
to reuse exponentials from one stage to another. This is perhaps best illustrated
through the following example from [6], a generalisation of the classical 4th
order Runge–Kutta method.

Yn,1 = yn ,

Yn,2 = exp( 1
2 h fn,1) · yn ,

Yn,3 = exp( 1
2 h fn,2) · yn ,

Yn,4 = exp(h fn,3 − 1
2 h fn,1) ·Yn,2,

yn+ 1
2
= exp( 1

12 h(3 fn,1 +2 fn,2 +2 fn,3 − fn,4)) · yn ,

yn+1 = exp( 1
12 h(− fn,1 +2 fn,2 +2 fn,3 +3 fn,4)) · yn+ 1

2
,

(2.2.9)

where fn,i = f (Yn,i ). Here, we see that one exponential is saved in computing
Yn,4 by making use of Yn,2.
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2.2 Lie group integrators

2.2.3 An exact expression for dexp−1
u (v) in se(3)

As an alternative to using a truncated version of the infinite series for dexp−1
u

(2.2.8), one can consider exact expressions obtained for certain Lie algebras.
Since se(3) is particularly important in applications to mechanics, we give
here its exact expression. For this, we represent elements of se(3) as a pair
(A, a) ∈ R3 ×R3 ∼= R6, the first component corresponding to a skew-symmetric
matrix Â via (2.2.5) and a is the translational part. Now, let ϕ(z) be a real
analytic function at z = 0. We define

ϕ+(z) = ϕ(i z)+ϕ(−i z)

2
, ϕ−(z) = ϕ(i z)−ϕ(−i z)

2i
.

We next define the four functions

g1(z) = ϕ−(z)

z
, g̃1(z) = g ′

1(z)

z
, g2(z) = ϕ(0)−ϕ+(z)

z2 , g̃2(z) = g ′
2(z)

z
,

and the two scalars ρ = AT a, α= ∥A∥2. One can show that for any (A, a) and
(B ,b) in se(3), it holds that

ϕ(ad(A,a))(B ,b) = (C ,c),

where

C =ϕ(0)B + g1(α)A×B + g2(α) A× (A×B),

c =ϕ(0)b + g1(α) (a ×B + A×b)+ρg̃1(α) A×B +ρg̃2(α) A× (A×B)

+ g2(α) (a × (A×B)+ A× (a ×B)+ A× (A×b)).

Considering for instance (2.2.8), we may now use ϕ(z) = z
ez−1 to calculate

g1(z) =−1

2
, g̃1(z) = 0, g2(z) = 1− z

2 cot z
2

z2 , g̃2(z) = 1

z

d

d z
g2(z), ϕ(0) = 1.

and thereby obtain an expression for dexp−1
(A,a)(B ,b) with the formula above.

Similar types of formulas are known for computing the matrix exponential
as well as functions of the ad-operator for several other Lie groups of small and
medium dimension. For instance in [38] a variety of coordinate mappings for
rigid body motions are discussed. For Lie algebras of larger dimension, both
the exponential mapping and dexp−1

u may become computationally infeasible.
For these cases, one may benefit from replacing the exponential by some other
coordinate map for the Lie group φ : g→ G. One option is to use canonical
coordinates of the second kind [45]. Then for some Lie groups such as the
orthogonal, unitary and symplectic groups, there exist other maps that can be
used and which are computationally less expensive. A popular choice is the
Cayley transformation [13].
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2.3 Hamiltonian systems on Lie groups

In this section we consider Hamiltonian systems on Lie groups. These
systems (and their Lagrangian counterpart) often appear in mechanics appli-
cations as building blocks for more realistic systems with additional damping
and control forces. We consider canonical systems on the cotangent bundle of
a Lie group and Lie-Poisson systems which can arise by symmetry reduction
or otherwise. We illustrate the various cases with different formulations of the
heavy top system.

2.3.1 Semi-direct products

The coadjoint action by G on g∗ is denoted Ad∗
g defined for any g ∈G as

〈Ad∗
gµ,ξ〉 = 〈µ,Adgξ〉, ∀ξ ∈ g, (2.3.1)

where Ad : g → g is the adjoint representation and for a duality pairing 〈·, ·〉
between g∗ and g.

We consider the cotangent bundle of a Lie group G, T ∗G and identify it
with G ×g∗ using the right multiplication Rg : G →G and its tangent mapping
Rg∗ := T Rg . The cartesian product G ×g∗ can be given a semi-direct product
structure that turns it into a Lie group G :=G⋉g∗ where the group multiplication
is

(g1,µ1) · (g2,µ2) = (g1 · g2,µ1 +Ad∗
g−1

1
µ2). (2.3.2)

Acting by left multiplication any vector field F ∈ X (G) is expressed by
means of a map f : G → Te G,

F (g ,µ) = Te R(g ,µ) f (g ,µ) = (Rg∗ f1, f2 −ad∗
f1
µ), (2.3.3)

where f1 = f1(g ,µ) ∈ g, f2 = f2(g ,µ) ∈ g∗ are the two components of f .

2.3.2 Symplectic form and Hamiltonian vector fields

The right trivialised2 symplectic form pulled back to G reads

ω(g ,µ)((Rg∗ξ1,δν1), (Rg∗ξ2,δν2))

= 〈δν2,ξ1〉+−〈δν1,ξ2〉−〈µ, [ξ1,ξ2]〉, ξ1,ξ2 ∈ g.
(2.3.4)

2ω(g ,µ) is obtained from the natural symplectic form on T∗G (which is a differential two-
form), defined as

Ω(g ,pg )((δv1,δπ1), (δv2,δπ2)) = 〈δπ2,δv1〉−〈δπ1,δv2〉,
by right trivialization.
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See [31] for more details, proofs and for a the left trivialized symplectic form.
The vector field F is a Hamiltonian vector field if it satisfies

iFω= d H ,

for some Hamiltonian function H : T ∗G → R, where iF is defined as iF (X ) :=
ω(F, X ) for any vector field X . This implies that the map f for such a Hamilto-
nian vector field gets the form

f (g ,µ) =
(
∂H

∂µ
(g ,µ),−R∗

g
∂H

∂g
(g ,µ)

)
. (2.3.5)

The following is a one-parameter family of symplectic Lie group integrators
on T ∗G:

Mθ = dexp∗
−ξ(µ0 +Ad∗

exp(θξ)(n̄))−θdexp∗
−θξAd∗

exp(θξ)(n̄), (2.3.6)

(ξ, n̄) = h f
(
exp(θξ) · g0, Mθ

)
, (2.3.7)

(g1,µ1) = (exp(ξ),Ad∗
exp((θ−1)ξ)n̄) · (g0,µ0). (2.3.8)

For higher order integrators of this type and a complete treatment see [3].

2.3.3 Reduced equations Lie Poisson systems

A mechanical system formulated on the cotangent bundle T ∗G with a left or
right invariant Hamiltonian can be reduced to a system on g∗ [33]. In fact for
a Hamiltonian H right invariant under the left action of G, ∂H

∂g = 0, and from
(2.3.3) and (2.3.5) we get for the second equation

µ̇=∓ad∗
∂H
∂µ

µ, (2.3.9)

where the positive sign is used in case of left invariance (see e.g. section 13.4
in [35]). The solution to this system preserves coadjoint orbits, thus using the
Lie group action

g ·µ= Ad∗
g−1µ,

to build a Lie group integrator results in preservation of such coadjoint orbits.
Lie group integrators for this interesting case were studied in [15].

The Lagrangian counterpart to these Hamiltonian equations are the Euler–
Poincaré equations3, [24].

3The Euler–Poincaré equations are Euler–Lagrange equations with respect to a Lagrange–
d’Alembert principle obtained taking constraint variations.
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2.3.4 Three different formulations of the heavy top equations

The heavy top is a simple test example for illustrating the behaviour of Lie group
methods. We will consider three different formulations for this mechanical
system. The first formulation is on T ∗SO(3) where the equations are canonical
Hamiltonian, a second point of view is that the system is a Lie–Poisson system
on se(3)∗, and finally it is canonical Hamiltonian on a larger group with a
quadratic Hamiltonian function. The three different formulations suggest the
use of different Lie group integrators.

Figure 2.1: Illustration of the heavy top, where C M is the center of mass of the
body, O is the fixed point, g⃗ is the gravitational acceleration vector, and ℓ,Q, χ⃗
follow the notation introduced in Section 2.3.4

Heavy top equations on T ∗SO(3).

The heavy top is a rigid body with a fixed point in a gravitational field. The
phase space of this mechanical system is T ∗SO(3) where the equations of the
heavy top are in canonical Hamiltonian form. Assuming (Q, p) are coordinates
for T ∗SO(3), Π = (Te LQ )∗(p) is the left trivialized or body momentum. The
Hamiltonian of the heavy top is given in terms of (Q,Π) as

H : SO(3)⋉so(3)∗ →R, H(Q,Π) = 1

2
〈Π, I−1Π〉+M gℓΓ ·X , Γ=Q−1Γ0,

where I : so(3) → so(3)∗ is the inertia tensor, here represented as a diagonal 3×3
matrix, Γ=Q−1Γ0, where Γ0 ∈ R3 is the axis of the spatial coordinate system
parallel to the direction of gravity but pointing upwards, M is the mass of the
body, g is the gravitational acceleration, X is the body fixed unit vector of the
oriented line segment pointing from the fixed point to the center of mass of the
body, ℓ is the length of this segment. The equations of motion on SO(3)⋉so(3)∗
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are

Π̇=Π× I−1Π+M gℓΓ×X , (2.3.10)

Q̇ =Q �I−1Π. (2.3.11)

The identification of T ∗SO(3) with SO(3)⋉ so(3)∗ via right trivialization
leads to the spatial momentum variable π= (Te RQ )∗(p) =QΠ. The equations
written in the space variables (Q,π) get the form

π̇= M gℓΓ0 ×QX , (2.3.12)

Q̇ = ω̂Q ω=QI−1QTπ. (2.3.13)

where, the first equation states that the component of π parallel to Γ0 is constant
in time. These equations can be obtained from (2.3.3) and (2.3.5) on the right
trivialized T ∗SO(3), SO(3)⋉ so(3)∗, with the heavy top Hamiltonian and the
symplectic Lie group integrators (2.3.7)-(2.3.8) can be applied in this case.
Similar methods were proposed in [31] and [48].

Heavy top equations on se∗(3).

The Hamiltonian of the heavy top is not invariant under the action of SO(3),
so the equations (2.3.10)-(2.3.11) given in section (2.3.4) cannot be reduced to
so∗(3), nevertheless the heavy top equations are Lie–Poisson on se∗(3), [17,47,
52].

Observe that the equations of the heavy top on T ∗SO(3) (2.3.10)-(2.3.11)
can be easily modified eliminating the variable Q ∈ SO(3) and replacing it with
Γ ∈R3 Γ=Q−1Γ0 to obtain

Π̇=Π× I−1Π+M gℓΓ×X , (2.3.14)

Γ̇= Γ× (I−1Π). (2.3.15)

We will see that the solutions of these equations evolve on se∗(3). In what
follows, we consider elements of se∗(3) to be pairs of vectors in R3, e.g. (Π,Γ).
Correspondingly the elements of SE(3) are represented as pairs (g ,u) with
g ∈ SO(3) and u ∈R3. The group multiplication in SE(3) is then

(g1,u1) · (g2,u2) = (g1g2, g1u2 +u1),

where g1g2 is the product in SO(3) and g1u is the product of a 3×3 orthogonal
matrix with a vector in R3. The coadjoint representation and its infinitesimal
generator on se∗(3) take the form

Ad∗
(g ,u)(Π,Γ) = (g−1(Π−u×Γ), g−1Γ), ad∗

(ξ,u)(Π,Γ) = (−ξ×Π−u×Γ,−ξ×Γ).
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Using this expression for ad∗
(ξ,u) with (ξ= ∂H

∂Π ,u = ∂H
∂Γ ), it can be easily seen that

the equations (2.3.9) in this setting reproduce the heavy top equations (2.3.14)-
(2.3.15). Therefore the equations are Lie–Poisson equations on se∗(3). How-
ever since the heavy top is a rigid body with a fixed point and there are no trans-
lations, these equations do not arise from a reduction of T ∗SE(3). Moreover
the Hamiltonian on se(3)∗ is not quadratic and the equations are not geodesic
equations. Implicit and explicit Lie group integrators applicable to this formula-
tion of the heavy top equations and preserving coadjoint orbits were discussed
in [15], for a variable stepsize integrator applied to this formulation of the heavy
top see [12].

Heavy top equations with quadratic Hamiltonian.

We rewrite the heavy top equations one more time considering the constant
vector p =−M gℓX as a momentum variable conjugate to the position q ∈ R3

and where p =Q−1Γ0 + q̇, and the Hamiltonian is a quadratic function of Π, Q,
p and q:

H : T ∗SO(3)×R3∗×R3 →R,

H((Π,Q), (p,q)) = 1

2
〈Π, I−1Π〉+ 1

2
∥p−Q−1Γ0∥2 − 1

2
∥Q−1Γ0∥2,

see [23, section 8.5]. This Hamiltonian is invariant under the left action of
SO(3). The corresponding equations are canonical on T ∗S ≡ S ⋉ s∗ where
S = SO(3)×R3 with Lie algebra s := so(3)×R3 and T ∗S can be identified with
T ∗SO(3)×R3∗×R3. The equations are

Π̇=Π× I−1Π− (Q−1Γ0)×p, (2.3.16)

Q̇ =Q �I−1Π, (2.3.17)

ṗ = 0, (2.3.18)

q̇ = p−Q−1Γ0. (2.3.19)

and in the spatial momentum variables

π̇=−Γ0 ×Qp, (2.3.20)

Q̇ = ω̂Q, ω=QI−1QTπ, (2.3.21)

ṗ = 0, (2.3.22)

q̇ = p−Q−1Γ0. (2.3.23)

Similar formulations were considered in [30] for the stability analysis of an
underwater vehicle. A similar but different formulation of the heavy top was
considered in [4].
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Numerical experiments.

We apply various implicit Lie group integrators to the heavy top system. The
test problem we consider is the same as in [4], where Q(0) = I , ℓ= 2, M = 15
I = diag(0.234375,0.46875,0.234375), π(0) = I(0,150,−4.61538), X = (0,1,0)
Γ0 = (0,0,−9.81).

Figure 2.2: Symplectic Lie group integrators integration on the time interval
[0,1]. Left: 3D plot of MℓQ−1Γ0. Center: components of QX . The left and
center plots are computed with the same step-size. Right: verification of the
order of the methods.

In Figure 2.2 we report the performance of the symplectic Lie group in-
tegrators (2.3.6)-(2.3.8) applied both on the equations (2.3.12)-(2.3.13) with
θ = 0, θ = 1

2 and θ = 1 (SLGI), and to the equations (2.3.20)-(2.3.23) with θ = 1
2

(SLGIKK). The methods with θ = 1
2 attain order 2. In Figure 2.3 we show

the energy error for the symplectic Lie group integrators with θ = 1
2 and θ = 0

integrating with stepsize h = 0.01 for 6000 steps.

2.4 Variable step size

One approach for varying the step size is based on the use of an embedded
Runge–Kutta pair. This principle can be carried from standard Runge–Kutta
methods in vector spaces to the present situation with RKMK and commutator-
free schemes via minor modifications. We briefly summarise the main principle
of embedded pairs before giving more specific details for the case of Lie group
integrators. This approach is very well documented in the literature and goes
back to Merson [36] and a detailed treatment can be found in [19, p. 165–168].

An embedded pair consists of a main method used to propagate the numer-
ical solution, together with some auxiliary method that is only used to obtain
an estimate of the local error. This local error estimate is in turn used to derive
a step size adjustment formula that attempts to keep the local error estimate
approximately equal to some user defined tolerance tol in every step. Suppose
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Figure 2.3: Symplectic Lie group integrators, long time integration, h = 0.01,
6000 steps.. Top: energy error, bottom 3D plot of MℓQ−1Γ0.

the main method is of order p and the auxiliary method is of order p̃ ̸= p. 4

Both methods are applied to the input value yn and yields approximations yn+1

and ỹn+1 respectively, using the same step size hn+1. Now, some distance mea-
sure5 between yn+1 and ỹn+1 provides an estimate en+1 for the size of the local
truncation error. Thus, en+1 =C h p̃+1

n+1 +O(h p̃+2). Aiming at en+1 ≈ tol in every
step, one may use a formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn (2.4.1)

where θ is a ‘safety factor’, typically chosen between 0.8 and 0.9. In case the
step is rejected because en > tol we can redo the step with a step size obtained
by the same formula. We summarise the approach in the following algorithm

Given yn , hn , tol
Let h := hn

4In this paper we will assume p̃ < p in which case the local error estimate is relevant for the
approximation ỹn+1

5There are many options for how to do this in practice, and the choice may also depend on
the application. E.g. a Riemannian metric is a natural and robust alternative here.
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2.4 Variable step size

repeat
Compute yn+1, ỹn+1, en+1 from yn , h

Update stepsize h := θ
(

tol
en+1

)α
h

accepted := en+1 < tol
if accepted

update step index: n := n +1
hn := h

until accepted

Here we have used again the safety factor θ, and the parameter α is generally
chosen as α= 1

1+min(p,p̃) .

2.4.1 RKMK methods with variable stepsize

We need to specify how to calculate the quantity en+1 in each step. For RKMK
methods the situation is simplified by the fact that we are solving the local
problem (2.2.6) in the linear space g, where the known theory can be applied
directly. So any standard embedded pair of Runge–Kutta methods described by
coefficients (ai j ,bi , ãi j , b̃i ) of orders (p, p̃) can be applied to the full dexpinv-
equation (2.2.6) to obtain local Lie algebra approximations σ1, σ̃1 and one
uses e.g. en+1 = ∥σ1 − σ̃1∥ (note that the equation itself depends on yn). For
methods which use a truncated version of the series for dexp−1

u one may also
try to optimise performance by including commutators that are shared between
the main method and the auxiliary scheme.

2.4.2 Commutator-free methods with variable stepsize

For the commutator-free methods of section 2.2.2 the situation is different since
such methods do not have a natural local representation in a linear space. One
can still derive embedded pairs, and this can be achieved by studying order
conditions [43] as was done in [12]. Now one obtains after each step two
approximations yn+1 and ỹn+1 on M both by using the same initial value yn

and step size hn . One must also have access to some metric d to calculate
en+1 = d(yn+1, ỹn+1) We give a few examples of embedded pairs.

Pairs of order (p, p̃) = (3,2)

It is possible to obtain embedded pairs of order 3(2) which satisfy the require-
ments above. We present two examples from [12]. The first one reuses the
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second stage exponential in the update

Yn,1 = yn ,

Yn,2 = exp( 1
3 h fn,1) · yn ,

Yn,3 = exp( 2
3 h fn,2) · yn ,

yn+1 = exp(h(− 1
12 fn,1 + 3

4 fn,3)) ·Yn,2,

ỹn+1 = exp( 1
2 h( fn,2 + fn,3)) · yn .

One could also have reused the third stage Yn,3 in the update, rather than Yn,2.

Yn,1 = yn ,

Yn,2 = exp( 2
3 h fn,1) · yn ,

Yn,3 = exp(h( 5
12 fn,1 + 1

4 fn,2) · yn ,

yn+1 = exp(h(−1
6 fn,1 − 1

2 fn,2 + fn,3)) ·Yn,3,

ỹn+1 = exp( 1
4 h( fn,1 +3 fn,3)) · yn .

It is always understood that the frozen vector fields are fn,i := fYn,i .

Order (4,3)

The procedure of deriving efficient pairs becomes more complicated as the
order increases. In [12] a low cost pair of order (4,3) was derived, in the sense
that one attempted to minimise the number of stages and exponentials in the
embedded pair as a whole. This came, however, at the expense of a relatively
large error constant. So rather than presenting the method from that paper, we
suggest a simpler procedure at the cost of some more computational work per
step, we simply furnish the commutator-free method of section 2.2 by a third
order auxiliary scheme. It can be described as follows:

1. Compute Yn,i , i = 1. . . ,4 and yn+1 from (2.2.9)

2. Compute an additional stage Ȳn,3 and then ỹn+1 as

Ȳn,3 = exp( 3
4 h fn,2) · yn ,

ỹn+1 = exp( h
9 (− fn,1 +3 fn,2 +4 f̄n,3)) ·exp( h

3 fn,1) · yn .
(2.4.2)

2.5 The N -fold 3D pendulum

In this section, we present a model for a system of N connected 3-dimensional
pendulums. The modelling part comes from [28], and here we study the vec-
tor field describing the dynamics, in order to re-frame it into the Lie group
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2.5 The N -fold 3D pendulum

integrators setting described in the previous sections. The model we use is
not completely realistic since, for example, it neglects possible interactions be-
tween pendulums, and it assumes ideal spherical joints between them. However,
this is still a relevant example from the point of view of geometric numerical
integration. More precisely, we show a possible way to work with a configu-
ration manifold which is not a Lie group, applying the theoretical instruments
introduced before. The Lagrangian we consider is a function from (T S2)N to R.

Figure 2.4: 3−fold pendulum at a fixed time instant, with fixed point placed at the origin.

Instead of the coordinates (q1, ..., qN , q̇1, ..., q̇N ), where q̇i ∈ Tqi S2, we choose
to work with the angular velocities. Precisely,

Tqi S2 = {v ∈R3 : vT qi = 0} = 〈qi 〉⊥ ⊂R3,

and hence for any q̇i ∈ Tqi S2 there exist ωi ∈ R3 such that q̇i =ωi ×qi , which
can be interpreted as the angular velocity of qi . So we can assume without
loss of generality that ωT

i qi = 0 (i.e. ωi ∈ Tqi S2) and pass to the coordinates
(q1,ω1, q2,ω2, ..., qN ,ωN ) ∈ (T S2)N to describe the dynamics. In this section
we denote with m1, ...,mN the masses of the pendulums and with L1, ...,LN

their lengths. Figure 2.4 shows the case N = 3. We organize the section into
three parts:

1. We define the transitive Lie group action used to integrate this model
numerically,

2. We show a possible way to express the dynamics in terms of the infinites-
imal generator of this action, for the general case of N joint pendulums,

3. We focus on the case N = 2, as a particular example. For this setting,
we present some numerical experiment comparing various Lie group
integrators and some classical numerical integrator. Then we conclude
with numerical experiments on variable step size.
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2.5.1 Transitive group action on (T S2)N

We characterize a transitive action for (T S2)N , starting with the case N = 1 and
generalizing it to N > 1 . The action we consider is based on the identification
between se(3), the Lie algebra of SE(3), and R6. We start from the Ad-action
of SE(3) on se(3) (see [23]), which writes

Ad : SE(3)×se(3) → se(3),

Ad((R,r ), (u, v)) = (Ru,Rv + r̂ Ru).

Since se(3) ≃ R6, the Ad-action allows us to define the following Lie group
action on R6

ψ : SE(3)×R6 →R6, ψ((R,r ), (u, v)) = (Ru,Rv + r̂ Ru).

We can think of ψ as a Lie group action on T S2 since, for any q ∈R3, it maps
points of

T S2
|q| := {(q̃ ,ω̃) ∈R3 ×R3 : ω̃T q̃ = 0, |q̃| = |q|} ⊂R6

into other points of T S2
|q|. Moreover, with standard arguments (see [42]), it is

possible to prove that the orbit of a generic point m = (q,ω) ∈R6 with ωT q = 0
coincides with

Orb(m) = T S2
|q|.

In particular, when q ∈R3 is a unit vector (i.e. q ∈ S2), ψ allows us to define a
transitive Lie group action on T S2 = T S2

|q|=1 which writes

ψ : SE(3)×T S2 → T S2,

ψ((A, a), (q,ω)) :=ψ(A,a)(q,ω) = (Aq, Aω+ â Aq) = (q̄ ,ω̄).

To conclude the description of the action, we report here its infinitesimal gener-
ator which is fundamental in the Lie group integrators setting

ψ∗((u, v))
∣∣
(q,ω) = (ûq, ûω+ v̂ q).

We can extend this construction to the case N > 1 in a natural way, i.e. through
the action of a Lie group obtained from cartesian products of SE(3) and equipped
with the direct product structure. More precisely, we consider the group G =
(SE(3))N and by direct product structure we mean that for any pair of elements

δ(1) = (δ(1)
1 , ...,δ(1)

N ), δ(2) = (δ(2)
1 , ...,δ(2)

N ) ∈G ,

denoted with ∗ the semidirect product of SE(3), we define the product ◦ on G
as

δ(1) ◦δ(2) := (δ(1)
1 ∗δ(2)

1 , ...,δ(1)
N ∗δ(2)

N ) ∈G .
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2.5 The N -fold 3D pendulum

With this group structure defined, we can generalize the action introduced for
N = 1 to larger Ns as follows

ψ : (SE(3))N × (T S2)N → (T S2)N ,

ψ((A1, a1, ..., AN , an), (q1,ω1, ..., qN ,ωN )) =
= (A1q1, A1ω1 + â1 A1q1, ..., AN qN , ANωN + âN AN qN ),

whose infinitesimal generator writes

ψ∗(ξ)|m = (û1q1, û1ω1 + v̂1q1, ..., ûN qN , ûNωN + v̂N qN ),

where ξ = [u1, v1, ...,uN , vN ] ∈ se(3)N and m = (q1,ω1, ..., qN ,ωN ) ∈ (T S2)N .
We have now the only group action we need to deal with the N−fold spherical
pendulum. In the following part of this section we work on the vector field
describing the dynamics and adapt it to the Lie group integrators setting.

2.5.2 Full chain

We consider the vector field F ∈ X((T S2)N ), describing the dynamics of the
N -fold 3D pendulum, and we express it in terms of the infinitesimal generator
of the action defined above. More precisely, we find a function F : (T S2)N →
se(3)N such that

ψ∗( f (m))|m = F |m , ∀m ∈ (T S2)N .

We omit the derivation of F starting from the Lagrangian of the system, which
can be found in the section devoted to mechanical systems on (S2)N of [28]. The
configuration manifold of the system is (S2)N , while the Lagrangian, expressed
in terms of the variables (q1,ω1, ..., qN ,ωN ) ∈ (T S2)N , writes

L(q,ω) = T (q,ω)−U (q) = 1

2

N∑
i , j=1

(
Mi jω

T
i q̂T

i q̂ jω j

)
−

N∑
i=1

( N∑
j=i

m j

)
g Li eT

3 qi ,

where

Mi j =
( N∑

k=max{i , j }
mk

)
Li L j I3 ∈R3×3

is the inertia matrix of the system, I3 is the 3× 3 identity matrix, and e3 =
[0,0,1]T . Noticing that when i = j we get

ωT
i q̂T

i q̂iωi =ωT
i (I3 −qi qT

i )ωi =ωT
i ωi ,

we simplify the notation writing

T (q,ω) = 1

2

N∑
i , j=1

(
ωT

i R(q)i jω j

)
,
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where R(q) ∈R3N×3N is a symmetric block matrix defined as

R(q)i i =
( N∑

j=i
m j

)
L2

i I3 ∈R3×3,

R(q)i j =
( N∑

k= j
mk

)
Li L j q̂T

i q̂ j ∈R3×3 = R(q)T
j i , i < j .

The vector field on which we need to work defines the following first-order
ODE

q̇i =ωi ×qi , i = 1, ..., N ,

R(q)ω̇=

 N∑
j=1
j ̸=i

Mi j |ω j |2q̂i q j −
( N∑

j=i
m j

)
g Li q̂i e3


i=1,...,N

∈R3N .

By direct computation it is possible to see that, for any q = (q1, ..., qN ) ∈ (S2)N

and ω ∈ Tq1 S2 × ...×TqN S2, we have

(R(q)ω)i ∈ Tqi S2.

Therefore, there is a well-defined linear map

Aq : Tq1 S2 × ...×TqN S2 → Tq1 S2 × ...×TqN S2, Aq (ω) := R(q)ω.

We can even notice that R(q) defines a positive-definite bilinear form on this
linear space, since

ωT R(q)ω=
N∑

i , j=1
ωT

i q̂T
i Mi j q̂ jω j =

N∑
i , j=1

(q̂iωi )T Mi j (q̂ jω j ) = vT M v > 0.

The last inequality holds because M is the inertia matrix of the system and hence
it defines a symmetric positive-definite bilinear form on Tq1 S2× ...×TqN S2, see
e.g. [16] 6. This implies the map Aq is invertible and hence we are ready to

6It follows from the definition of the inertia tensor, i.e.

0 ≤ T̃ (q, q̇) = 1

2

N∑
i=1

( ∑
j≥i

m j

)
Li L j q̇T

i q̇ j := 1

2
q̇T M q̇ .

Moreover, in this situation it is even possible to explicitly find the Cholesky factorization of the
matrix M with an iterative algorithm.
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express the vector field in terms of the infinitesimal generator. We can rewrite
the ODEs for the angular velocities as follows:

ω̇= A−1
q

(
[g1, ..., gN ]T

)
=

 h1(q,ω)
...

hN (q,ω)

=

 a1(q,ω)×q1

...
aN (q,ω)×qN

 ,

where

gi = gi (q,ω) =
N∑

j=1
j ̸=i

M(q)i j |ω j |2q̂i q j −
( N∑

j=i
m j

)
g Li q̂i e3, i = 1, ..., N

and a1, ..., aN : (T S2)N → R3 are N functions whose existence is guaranteed
by the analysis done above. Indeed, we can set ai (q,ω) := qi ×hi (q,ω) and
conclude that a mapping f from (T S2)N to (se(3))N such that

ψ∗( f (q,ω))|(q,ω) = F |(q,ω)

is the following one

f (q,ω) =



ω1

q1 ×h1

...

...
ωN

qN ×hN


∈ se(3)N ≃R6N .

We will not go into the Hamiltonian formulation of this problem; however, we
remark that a similar approach works even in that situation. Indeed, following
the derivation presented in [28], we see that for a mechanical system on (S2)N

the conjugate momentum writes

T ∗
q1

S2 × ...T ∗
qN

S2 ∋π= (π1, ...,πN ), where πi =−q̂2
i
∂L

∂ωi

and its components are still orthogonal to the respective base points qi ∈ S2.
Moreover, Hamilton’s equations take the form

q̇i = ∂H(q,π)

∂πi
×qi ,

π̇i = ∂H(q,π)

∂qi
×qi + ∂H(q,π)

∂πi
×πi ,

which implies that setting

f (q,π) =
[
∂q1 H(q,π), ∂π1 H(q,π), . . . , ∂qN H(q,π), ∂πN H(q,π)

]
we can represent even the Hamiltonian vector field of the N−fold 3D pendulum
in terms of this group action.
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Case N = 2

We have seen how it is possible to turn the equations of motion of a N−chain of
pendulums into the Lie group integrators setting. Now we focus on the example
with N = 2 pendulums. The equations of motion write

q̇1 = ω̂1q1, q̇2 = ω̂2q2,

R(q)

[
ω̇1

ω̇2

]
=

[
(−m2L1L2|ω2|2q̂2 + (m1 +m2)g L1ê3)q1

(−m2L1L2|ω1|2q̂1 +m2g L2ê3)q2

]
, (2.5.1)

where

R(q) =
[

(m1 +m2)L2
1I3 m2L1L2q̂T

1 q̂2

m2L1L2q̂T
2 q̂1 m2L2

2I3

]
.

As presented above, the matrix R(q) defines a linear invertible map of the space
Tq1 S2 ×Tq2 S2 onto itself:

A(q1,q2) : Tq1 S2 ×Tq2 S2 → Tq1 S2 ×Tq2 S2, [ω1,ω2]T → R(q)[ω1,ω2]T .

We can easily see that it is well defined since

R(q)

[
ω1

ω2

]
=

[
(m1 +m2)L2

1I3 m2L1L2q̂T
1 q̂2

m2L1L2q̂T
2 q̂1 m2L2

2I3

][
v̂1q1

v̂2q2

]
=

[
r̂1q1

r̂2q2

]
∈ (T S2)2

with
r1(q,ω) := (m1 +m2)L2

1v1 +m2L1L2q̂2v̂2q2,

r2(q,ω) := m2L1L2q̂1v̂1q1 +m2L2
2v2.

This map guarantees that if we rewrite the pair of equations for the angular
velocities in (2.5.1) as

ω̇= R−1(q)

[
(−m2L1L2|ω2|2q̂2 + (m1 +m2)g L1ê3)q1

(−m2L1L2|ω1|2q̂1 +m2g L2ê3)q2

]
= R−1(q)b =

= A−1
(q1,q2)(b) =

[
h1

h2

]
∈ Tq1 S2 ×Tq2 S2,

then we are assured that there exists a pair of functions a1, a2 : T S2×T S2 →R3

such that

ω̇=
[

a1(q,ω)×q1

a2(q,ω)×q2

]
=

[
h1(q)
h2(q)

]
.

54



2.5 The N -fold 3D pendulum

Since we want ai ×qi = hi , we just impose ai = qi ×hi and hence the whole
vector field can be rewritten as

q̇1

ω̇1

q̇2

ω̇2

=


ω1 ×q1

(q1 ×h1)×q1

ω2 ×q2

(q2 ×h2)×q2

= F |(q,ω),

with hi = hi (q,ω) and[
h1(q,ω)
h2(q,ω)

]
= R−1(q)

[
(−m2L1L2|ω2|2q̂2 + (m1 +m2)g L1ê3)q1

(−m2L1L2|ω1|2q̂1 +m2g L2ê3)q2

]
.

Therefore, we can express the whole vector field in terms of the infinitesimal
generator of the action of SE(3)×SE(3) as

ψ∗( f (q,ω))|(q,ω) = F |(q,ω)

through the function

f : T S2 ×T S2 → se(3)×se(3) ≃R12, (q,ω) → (ω1, q1 ×h1,ω2, q2 ×h2).

2.5.3 Numerical experiments

In this section, we present some numerical experiment for the N−chain of pen-
dulums. We start by comparing the various Lie group integrators that we have
tested (with the choice N = 2), and conclude by analyzing an implementation
of variable step size. Lie group integrators allow to keep the evolution of the
solution in the correct manifold, which is T S2 ×T S2 when N = 2. Hence, we
briefly report two sets of numerical experiments. In the first one, we show the
convergence rate of all the Lie group integrators tested on this model. In the
second one, we check how they behave in terms of preserving the two following
relations:

• qi (t )T qi (t ) = 1, i.e. qi (t ) ∈ S2, i = 1,2,

• qi (t )Tωi (t ) = 0, i.e. ωi (t ) ∈ Tqi (t )S2, i = 1,2,

completing the analysis with a comparison with the classical Runge–Kutta
4 and with ODE45 of MATLAB. The Lie group integrators used to obtain
the following experiments are Lie Euler, Lie Euler Heun, three versions of
Runge–Kutta–Munthe–Kaas methods of order four and one of order three. The
RKMK4 with two commutators mentioned in the plots, is the one presented in
Section 2.2, while the other schemes can be found for example in [7].
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Figure 2.5 presents the plots of the errors, in logarithmic scale, obtained
considering as a reference solution the one given by the ODE45 method, with
strict tolerance. Here, we used an exact expression for the dexp−1

σ function.
However, we could obtain the same results with a truncated version of this
function, keeping a sufficiently high number of commutators, or after some
clever manipulations of the commutators (as with RKMK4 with 2 commutators,
see Section 2.2.2). The schemes show the right convergence rates, so we can
move to the analysis of the time evolution on T S2 ×T S2.

Figure 2.5: Convergence rate of the implemented Lie group integrators, based
on global error considering as a reference solution the one of ODE45, with
strict tolerance.

In Figure 2.6 we can see the comparison of the time evolution of the
2−norms of q1(t ) and q2(t ), for 0 ≤ t ≤ T = 5. As highlighted above, un-
like classical numerical integrators like the one implemented in ODE45 or the
Runge–Kutta 4, the Lie group methods preserve the norm of the base com-
ponents of the solutions, i.e. |q1(t )| = |q2(t )| = 1 ∀t ∈ [0,T ]. Therefore, as
expected, these integrators preserve the configuration manifold. However, to
complete this analysis, we show the plots making a similar comparison but
with the tangentiality conditions. Indeed, in Figure 2.7 we compare the time
evolutions of the inner products q1(t )Tω1(t ) and q2(t )Tω2(t ) for t ∈ [0,5], i.e.
we see if these integrators preserve the geometry of the whole phase space
T S2 ×T S2. As we can see, while for Lie group methods these inner products
are of the order of 10−14 and 10−15, the ones obtained with classical integrators
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Figure 2.6: Visualization of the quantity 1−qi (t )T qi (t ), i = 1,2, for time t ∈
[0,5]. These plots focus on the preservation of the geometry of S2.

show that the tangentiality conditions are not preserved with the same accuracy.

We now move to some experiments on variable stepsize. In this last part
we focus on the RKMK pair coming from Dormand–Prince method (DOPRI
5(4) [14]), which we denote with RKMK(5,4). The aim of the plots we show
is to compare the same schemes, both with constant and variable stepsize. We
start by setting a tolerance and solving the system with the RKMK(5,4) scheme.
Using the same number of time steps, we solve it again with RKMK of order
5. These experiments show that, for some tolerance and some initial condi-
tions, the step size’s adaptivity improves the numerical approximation accuracy.
Since we do not have an available analytical solution to quantify these two
schemes’ accuracy, we compare them with the solution obtained with a strict
tolerance and ODE45. We compute such accuracy, at time T = 3, by means of
the Euclidean norm of the ambient space R6N .

In Figure 2.8, we compare the performance of the constant and variable
stepsize methods, where the structure of the initial condition is always the same,
but what changes is the number of connected pendulums. The considered initial
condition is (qi ,ωi ) =

(p
2/2,0,

p
2/2,0,1,0

)
, ∀i = 1, ..., N , and all the masses

and lengths are set to 1. From these experiments we can notice situations where
the variable step size beats the constant one in terms of accuracy at the final
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Figure 2.7: Visualization of the inner product qi (t )Tωi (t ), i = 1,2, for t ∈ [0,5].
These plots focus on the preservation of the geometry of Tqi (t )S2.

Figure 2.8: Comparison of accuracy at final time (on the left) and step adapta-
tion for the case N = 20 (on the right), with all pendulums of length Li = 1.
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time, like the case N = 2 which we discuss in more detail afterwards.

The results presented in Figure 2.10 (left) do not aim to highlight any partic-
ular relation between how the number of pendulums increases or the regularity
of the solution. Indeed, as we add more pendulums, we keep incrementing
the total length of the chain since

∑N
i=1 Li = N . Thus, here we do not have

any appropriate limiting behaviour in the solution as N →+∞. The behaviour
presented in that figure seems to highlight an improvement in accuracy for the
RKMK5 method as N increases. However, this is biased by the fact that when
we increase N , to achieve the fixed tolerance of 10−6 with RKMKK(5,4), we
need more time steps in the discretization. Thus, this plot does not say that as
N increases, the dynamics becomes more regular; it suggests that the number
of required timesteps increases faster than the “degree of complexity" of the
dynamics.

(a) (q1(t ),ω1(t )) (b) (q2(t ),ω2(t ))

Figure 2.9: In these plots we represent the six components of the solution
describing the dynamics of the first mass (on the left) and of the second mass
(on the right), for the case N = 2. We compare the behaviour of the solution
obtained with constant stepsize RKMK5, the variable stepsize RKMK(5,4) and
ODE45.

For the case N = 2, we notice a relevant improvement passing to variable
stepsize. In Figures 2.9 and 2.11 we can see that, for this choice of the parame-
ters, the solution behaves smoothly in most of the time interval, but then there
is a peak in the second component of the angular velocities of both the masses,
at t ≈ 2.2. We can observe this behaviour both in the plots of Figure 2.9, where
we project the solution on the twelve components and even in Figure 2.11c. In
the latter, we plot two of the vector field components, i.e. the second compo-
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nents of the angular accelerations ω̇i (t ), i = 1,2. They show an abrupt change
in the vector field in correspondence to t ≈ 2.2, where the step is considerably
restricted. Thus, to summarize, the gain we see with variable stepsize when
N = 2 is motivated by the unbalance in the length of the time intervals with no
abrupt changes in the dynamics and those where they appear. Indeed, we see
that apart from a neighbourhood of t ≈ 2.2, the vector field does not change
quickly. On the other hand, for the case N = 20, this is the case. Thus, the
adaptivity of the stepsize does not bring relevant improvements in the latter
situation.

The motivating application behind our choice of this mechanical system
has been some intuitive relation with a beam model, as highlighted in the
introduction of this work. However, for this limiting behaviour to make sense,
we should fix the length of the entire chain of pendulums to some L (the length
of the beam at rest) and then set the size of each pendulum to Li = L/N . In this
case, keeping the same tolerance of 10−6 for RKMK(5,4), we get the results
presented in the following plot. We do not investigate more in details this
approach, which might be relevant for further work, however we highlight that
here the step adaptivity improves the results as we expected.

Figure 2.10: Comparison of accuracy at final time (on the left) and step adapta-
tion for the case N = 20 (on the right), with all pendulums of length Li = 5/N .

2.6 Dynamics of two quadrotors transporting a mass
point

In this section we consider a multibody system made of two cooperating
quadrotor unmanned aerial vehicles (UAV) connected to a point mass (sus-
pended load) via rigid links. This model is described in [28, 50].

We consider an inertial frame whose third axis goes in the direction of
gravity, but opposite orientation, and we denote with y ∈R3 the mass point and
with y1, y2 ∈R3 the two quadrotors. We assume that the links between the two
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(a) Step adaptation (b) Zoom at final times (c) Values of ω̇(2)
i (t )

Figure 2.11: On the left, we compare the adaptation of the stepsize of
RKMK(5,4) with the one of ODE45 and with the constant stepsize of RKMK5.
In the center we plot the second component of the angular velocities ω(2)

i ,
i = 1,2, and we zoom in the last time interval t ∈ [2.1,3] to see that the variable
stepsize version of the method better reproduces the reference solution. On the
right, we visualize the speed of variation of second component of the angular
velocities.

quadrotors and the mass point are of a fixed length L1,L2 ∈R+. The configura-
tion variables of the system are: the position of the mass point in the inertial
frame, y ∈ R3, the attitude matrices of the two quadrotors, (R1,R2) ∈ (SO(3))2

and the directions of the links which connect the center of mass of each quadro-
tor respectively with the mass point, (q1, q2) ∈ (S2)2. The configuration mani-
fold of the system is Q =R3×(SO(3))2×(S2)2. In order to present the equations

Figure 2.12: Two quadrotors connected to the mass point my via massless links
of lengths Li .

of motion of the system we start by identifying T SO(3) ≃ SO(3)× so(3) via
left-trivialization. This choice allows us to write the kinematic equations of the
system as

Ṙi = Ri Ω̂i , q̇i = ω̂i qi i = 1,2, (2.6.1)
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where Ω1,Ω2 ∈ R3 represent the angular velocities of each quadrotor, respec-
tively, and ω1,ω2 express the time derivatives of the orientations q1, q2 ∈ S2,
respectively, in terms of angular velocities, expressed with respect to the body-
fixed frames. From these equations we define the trivialized Lagrangian

L(y, ẏ ,R1,Ω1,R2,Ω2, q1,ω1, q2,ω2) :R6 × (
SO(3)×so(3)

)2 × (T S2)2 →R,

as the difference of the total kinetic energy of the system and the total potential
(gravitational) energy, L = T −U , with:

T = 1

2
my∥ẏ∥2 + 1

2

2∑
i=1

(mi∥ẏ −Li ω̂i qi∥2 +ΩT
i JiΩi ),

and

U =−my g eT
3 y −

2∑
i=1

mi g eT
3 (y −Li qi ),

where J1, J2 ∈R3×3 are the inertia matrices of the two quadrotors and m1,m2 ∈
R+ are their respective total masses. In this system each of the two quadrotors
generates a thrust force, which we denote with ui =−Ti Ri e3 ∈R3, where Ti is
the magnitude, while e3 is the direction of this vector in the i−th body-fixed
frame, i = 1,2. The presence of these forces make it a non conservative system.
Moreover, the rotors of the two quadrotors generate a moment vector, and we
denote with M1, M2 ∈ R3 the cumulative moment vector of each of the two
quadrotors. To derive the Euler–Lagrange equations, a possible approach is
through Lagrange–d’Alambert’s principle, as presented in [28]. We write them
in matrix form as

A(z)ż = h(z) (2.6.2)

where
z = [y, v,Ω1,Ω2,ω1,ω2]T ∈R18,

A(z) =



I3 03 03 03 03 03

03 Mq 03 03 03 03

03 03 J1 03 03 03

03 03 03 J2 03 03

03 − 1
L1

q̂1 03 03 I3 03

03 − 1
L2

q̂2 03 03 03 I3


,

h(z) =



h1(z)
h2(z)
h3(z)
h4(z)
h5(z)
h6(z)


=



v

−∑2
i=1 mi Li∥ωi∥2qi +Mq g e3 +∑2

i=1 u∥
i

−Ω1 × J1Ω1 +M1

−Ω2 × J2Ω2 +M2

− 1
L1

g q̂1e3 − 1
m1L1

q1 ×u⊥
1

− 1
L2

g q̂2e3 − 1
m2L2

q2 ×u⊥
2


,
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where Mq = my I3 +∑2
i=1 mi qi qT

i , and u∥
i ,u⊥

i are respectively the orthogonal
projection of ui along qi and to the plane Tqi S2, i = 1,2, i.e. u∥

i = qi qT
i ui ,

u⊥
i = (I −qi qT

i )ui . These equations, coupled with the kinematic equations in
(2.6.1), describe the dynamics of a point

P = [
y, v, R1, Ω1, R2, Ω2, q1, ω1, q2, ω2

] ∈ M = TQ.

Since the matrix A(z) is invertible, we pass to the following set of equations

ż = A−1(z)h(z) := h̃(z) := h̄(P ) = [h̄1(P ), ..., h̄7(P )]T . (2.6.3)

2.6.1 Analysis via transitive group actions

We identify the phase space M with M ≃ TR3× (T SO(3))2× (T S2)2. The group
we consider is

Ḡ =R6 × (T SO(3))2 × (SE(3))2,

where the groups are combined with a direct-product structure and R6 is the
additive group. For a group element

g = ((a1, a2), ((B1,b1), (B2,b2)), ((C1,c1), (C2,c2))) ∈ Ḡ

and a point P ∈ M in the manifold, we consider the following left action

ψg (P ) = [y +a1, v +a2, B1R1, Ω1 +b1, B2R2, Ω2 +b2,

C1q1, C1ω1 + c1 ×C1q1, C2q2, C2ω2 + c2 ×C2q2].

The well-definiteness and transitivity of this action come from standard argu-
ments, see for example [42]. The infinitesimal generator associated to

ξ= [
ξ1, ξ2, η1, η2, η3, η4, µ1, µ2, µ3, µ4

] ∈ ḡ,

where ḡ= TeḠ , writes

ψ∗(ξ)|P = [ξ1, ξ2, η̂1R1, η2, η̂3R2, η4,

µ̂1q1, µ̂1ω1 + µ̂2q1, µ̂3q2, µ̂3ω2 + µ̂4q2].

We can now focus on the construction of the function f : M → ḡ such that
ψ∗( f (P ))|P = F |P , where

F |P = [h̄1(P ), h̄2(P ), R1Ω̂1, h̄3(P ), R2Ω̂2,

h̄4(P ), ω̂1q1, h̄5(P ), ω̂2q2, h̄6(P )] ∈ TP M
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is the vector field obtained combining the equations (2.6.1) and (2.6.3). We
have

f (P ) = [h̄1(P ), h̄2(P ), R1Ω1, h̄3(P ), R2Ω2, h̄4(P ),

ω1, q1 × h̄5(P ), ω2, q2 × h̄6(P )] ∈ ḡ.

We have obtained the local representation of the vector field F ∈X(M) in terms
of the infinitesimal generator of the transitive group action ψ, hence we can
solve for one time step ∆t the IVPσ̇(t ) = dexp−1

σ(t )

(
f
(
ψ(exp(σ(t )),P (t ))

))
σ(0) = 0 ∈ ḡ

and then update the solution P (t +∆t ) =ψ(exp(σ(∆t )),P (t )).
The above construction is completely independent of the control functions

{u∥
i ,u⊥

i , Mi }i=1,2 and hence it is compatible with any choice of these parameters.

2.6.2 Numerical experiments

We tested Lie group numerical integrators for a load transportation problem
presented in [50]. The control inputs {u∥

i ,u⊥
i , Mi }i=1,2 are constructed such

that the point mass asymptotically follows a given desired trajectory yd ∈ R3,
given by a smooth function of time, and the quadrotors maintain a prescribed
formation relative to the point mass. In particular, the parallel components
u∥

i are designed such that the payload follows the desired trajectory yd (load
transportation problem), while the normal components u⊥

i are designed such
that qi converge to desired directions qi d (tracking problem in S2). Finally, Mi

are designed to control the attitude of the quadrotors.
In this experiment we focus on a simplified dynamics model, i.e. we ne-

glect the construction of the controllers Mi for the attitude dynamics of the
quadrotors. However, the full dynamics model can also be easily integrated,
once the expressions for the attitude controllers are available.

In Figure 2.13 we show the convergence rate of four different RKMK meth-
ods compared with the reference solution obtained with ODE45 in MATLAB.

In Figures 2.14-2.18 we show results in the tracking of a parabolic trajec-
tory, obtained by integrating the system (2.6.2) with a RKMK method of order
4.

2.7 Summary and outlook

In this paper we have considered Lie group integrators with a particular focus
on problems from mechanics. In mathematical terms this means that the Lie
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Figure 2.13: Convergence rate of the numerical schemes compared with ODE45

groups and manifolds of particular interest are SO(n), n = 2,3, SE(n), n = 2,3
as well as the manifolds S2 and T S2. The abstract formulations by e.g. Crouch
and Grossman [11], Munthe-Kaas [40] and Celledoni et al. [6] have often been
demonstrated on small toy problems in the literature, such as the free rigid
body or the heavy top systems. But in papers like [4], hybrid versions of Lie
group integrators have been applied to more complex beam and multi-body
problems. The present paper is attempting to move in the direction of more
relevant examples without causing the numerical solution to depend on how the
manifold is embedded in an ambient space, or the choice of local coordinates.

It will be the subject of future work to explore more examples and to aim
for a more systematic approach to applying Lie group integrators to mechanical
problems. In particular, it is of interest to the authors to consider models of
beams, that could be seen as a generalisation of the N -fold pendulum discussed
here.

Acknowledgments This work was supported by Marie Sklodowska-Curie
[860124].
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Figure 2.14: Snapshots at 0 ≤ t ≤ 5. Figure 2.15: Components of the load
position (in blue) and the desired tra-
jectory (in red) as a function time.

Figure 2.16: Deviation of the load
position from the target trajectory.

Figure 2.17: Direction error of the
links.

Figure 2.18: Preservation of the norms of q1, q2 ∈ S2.
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Dynamics of the N-fold Pendulum in the
framework of Lie Group Integrators

Abstract. Since their introduction, Lie group integrators have become a
method of choice in many application areas. Various formulations of these
integrators exist, and in this work we focus on Runge–Kutta–Munthe–Kaas
methods. First, we briefly introduce this class of integrators, considering some
of the practical aspects of their implementation, such as adaptive time stepping.
We then present some mathematical background that allows us to apply them
to some families of Lagrangian mechanical systems. We conclude with an
application to a nontrivial mechanical system: the N-fold 3D pendulum.

3.1 Introduction

Lie group integrators are used to simulate problems whose solution evolves
on a manifold. Many approaches to Lie group integrators can be found in the
literature, with several applications for mechanical systems (see, e.g. [2], [8],
[3]).

The present work is motivated by applications in modelling and simulation
of slender structures like beams, and the example considered here is a chain of
pendulums. The dynamics of this mechanical system is described in terms of a
Lie group G acting transitively on the phase space M. This setting is used to
build also a numerical integrator.

In Section 3.2 we give a brief overview of the Runge–Kutta–Munthe–Kaas
(RKMK) methods with particular focus on the variable step size methods,
which we use later in subsection 3.4.2 for the numerical experiments.

In Section 3.3 we introduce some necessary mathematical background that
allows us to apply RKMK methods to the system of interest. In particular, we
focus on a condition that guarantees the homogeneity of the tangent bundle
TQ of a manifold Q. We then consider Cartesian products of homogeneous
manifolds.

In Section 3.4 we reframe the ODE system of the chain of N connected 3D
pendulums in the geometric framework presented in Section 3.3. We write the
equations of motion and represent them in terms of the infinitesimal generator
of the transitive action. The final part shows some numerical experiments where
the constant and variable step size methods are compared.

3.2 RKMK methods with variable step size

The underlying idea of RKMK methods is to express a vector field F ∈X(M)
as F |m =ψ∗( f (m))|m , where ψ∗ is the infinitesimal generator of ψ, a transitive
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action on M, and f : M→ g. This allows us to transform the problem from
the manifold M to the Lie algebra g, on which we can perform a time step
integration. We then map the result back to M, and repeat this up to the final
integration time. More explicitly, let hn be the size of the n−th time step, we
then update yn ∈M to yn+1 by

σ(0) = 0 ∈ g,

σ̇(t ) = dexp−1
σ(t ) ◦ f ◦ψ(exp(σ(t )), yn) ∈ Tσ(t )g,

yn+1 =ψ(exp(σ1), yn) ∈M,

(3.2.1)

where σ1 ≈σ(hn) ∈ g is computed with a Runge-Kutta method.
One approach for varying the step size is based on embedded Runge–Kutta

pairs for vector spaces. This approach consists of a principal method of order p,
used to propagate the numerical solution, together with some auxiliary method,
of order p̃ < p, that is only used to obtain an estimate of the local error. This
local error estimate is in turn used to derive a step size adjustment formula
that attempts to keep the local error estimate approximately equal to some
user-defined tolerance tol in every step. Both methods are applied to solve the
ODE for σ(t ) in (3.2.1), yielding two approximations σ1 and σ̃1 respectively,
using the same step size hn . Now, some distance measure between σ1 and
σ̃1 provides an estimate en+1 for the size of the local truncation error. Thus,
en+1 = C h p̃+1

n+1 +O(h p̃+2). Aiming at en+1 ≈ tol in every step, one may use a
formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn (3.2.2)

where θ is typically chosen between 0.8 and 0.9. If en > tol, the step is rejected.
Hence, we can redo the step with the step size obtained by the same formula.

3.3 Mathematical background

This section introduces the mathematical background that allows us to study
many mechanical systems in the framework of Lie group integrators and Lie
group actions. In particular, we provide some results that we use to study the
model of a chain of N 3D-pendulums presented in the last section.

3.3.1 The tangent bundle of some homogeneous manifolds is ho-
mogeneous

For Lagrangian mechanical systems, the phase space is usually the tangent
bundle TQ of some configuration manifold Q. In [1] the authors present a
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setting in which the homogeneity of Q implies that of TQ. We now briefly
review and reframe it in the notation used throughout the paper.

Consider a smooth homogeneous n−dimensional manifold Q. This means
that Q is endowed with a transitive G-group action Λ : G ×Q →Q, i.e., for any
pair q1, q2 ∈ Q there is g ∈ G such that Λ(g , q1) = q2. Assume that for each
q ∈ Q, the map Λq : G → Q defined as Λq (g ) := Λ(g , q), is a submersion at
e ∈G . When these hypotheses hold, it can be shown that TQ is a homogeneous
manifold as well, and an explicit transitive action can be obtained from Λ.
Let Λ∗ be the infinitesimal generator of the group action Λ, and denote with
ξ̄(q) := Λ∗(ξ)(q) ∈ TqQ the differential at the identity element e ∈ G of Λq ,
evaluated at ξ ∈ g. We then introduce Λg : Q →Q, q 7→Λ(g , q) and call Tq̄Λg

its tangent lift at q̄ ∈Q.
Consider the manifold Ḡ := G ⋉g, equipped with the semi-direct product

Lie group structure (see, e.g., [5]). We can introduce a transitive group action
on TQ as follows:

ϕ : Ḡ ×TQ → TQ, ((g ,ξ), (q, v)) 7→
(
Λ(g , q), ξ̄(Λ(g , q))+TqΛg (v)

)
.

By direct computation and basic properties of Lie groups (see, e.g., [6]), it can
be seen that the action ϕ is well defined. Since the action Λ is transitive on Q
and Λq is assumed to be a submersion at e ∈G , we have that

∀v ′ ∈ Tq ′Q ∃ξ ∈ g s.t. Λ∗(ξ)(q ′) = ξ̄(Λ(g , q)) = v ′−TqΛg (v).

Thus, we conclude that M= TQ is a homogeneous manifold.
In the application treated in the next section, we are interested in the case

in which Q = S2 ⊂ R3, i.e., the unit sphere. In this setting, a transitive group
action Λ is given by

Λ : SO(3)×S2 → S2, (R, q) 7→ Rq,

Tq S2 ∋Λ∗(ξ)(q) = ξ̄(q) = ξ×q, TqΛR (v) = Rv ∈ TRq S2.

Therefore, in this case we recover the restriction to T S2 ⊂ R6 ≃ se(3) of the
Adjoint action of Ḡ = SE(3) = SO(3)⋉R3 ≃ SO(3)⋉so(3) (see, e.g., [7])

ϕ((R,r ), (q, v)) = (Rq,Rv + r ×Rq) = 1(Rq,Rv + r̂ Rq) (3.3.1)

which hence becomes a particular case of a more general framework.

1Here r̂ =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

, where r =

r1
r2
r3

.
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3.3.2 The Cartesian product of homogeneous manifolds is homo-
geneous

Consider a family of homogeneous manifolds M1, ...,Mn . Call (Gi ,⊙i ) the
Lie group acting transitively on the associated smooth manifold Mi , and ϕi

such a transitive action. Let gi be the Lie algebra of Gi , i = 1, ...,n, and

M=M1 ×M2 × ...×Mn , G =G1 ×G2 × ...×Gn .

The manifold G can be naturally equipped with a Lie group structure given by
the direct product. More precisely, for a pair of elements G ∋ gi = (g 1

i , ..., g n
i ),

i = 1,2, we can define their product g1 · g2 := (g 1
1 ⊙1 g 1

2 , ..., g n
1 ⊙n g n

2 ) ∈ G . We
can similarly define componentwise the exponential map.

This construction ensures that the manifold M is homogeneous too, and G
acts transitively on it. That is, let

g = (g 1, ..., g n) ∈G , m = (m1, ...,mn) ∈M,

then
ϕ : G ×M→M, ϕ(g ,m) := (ϕ1(g 1,m1), ...,ϕn(g n ,mn)).

We now restrict to the specific case Mi = T S2 for i = 1, ...,n. Since T S2 is
a homogeneous manifold with transitive action ϕ defined as in equation (3.3.1),
we can write the transitive group action

ψ : (SE(3))n × (T S2)n → (T S2)n ,

ψ((g 1, ..., g n), (m1, ...,mn)) = (ϕ(g 1,m1), ...,ϕ(g n ,mn)),

where g i := (Ri ,ri ) ∈ SE(3), mi = (qi , vi ) ∈ T S2.

3.4 The N-fold 3D pendulum

We now apply the geometric setting from section 3.3 to the specific problem of
a chain of N connected 3D pendulums, whose dynamics evolves on (T S2)N .

3.4.1 Equations of motion

Let us consider a chain of N pendulums subject to constant gravity g . The
system is modeled by N rigid, massless links serially connected by spherical
joints, with the first link connected to a fixed point placed at the origin of the
ambient space R3, as in figure 3.1. We neglect friction and interactions among
the pendulums.

The modeling part comes from [9] and we omit details. We denote by
qi ∈ S2 the configuration vector of the i−th mass, mi , of the chain. Following
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Figure 3.1: Chain of 3 connected pendulums at a fixed time instant.

[?], we express the Euler–Lagrange equations for our system in terms of the
configuration variables (q1, . . . , qN ) ∈ (S2)N ⊂R3N , and their angular velocities
(ω1, ...,ωN ) ∈ Tq1 S2 × ...×TqN S2 ⊂ R3N , defined be the following kinematic
equations:

q̇i =ωi ×qi , i = 1, . . . , N . (3.4.1)

The Euler–Lagrange equations of the system can be written as

R(q)ω̇=

 N∑
j=1
j ̸=i

Mi j |ω j |2q̂i q j −
( N∑

j=i
m j

)
g Li q̂i e3


i=1,...,N

=


r1
...

rN

 ∈R3N ,

(3.4.2)
where R(q) ∈R3N×3N is a symmetric block matrix defined as

R(q)i i =
( N∑

j=i
m j

)
L2

i I3 ∈R3×3,

R(q)i j =
( N∑

k= j
mk

)
Li L j q̂T

i q̂ j ∈R3×3 = R(q)T
j i , i < j ,

and

Mi j =
( N∑

k=max{i , j }
mk

)
Li L j I3 ∈R3×3.

Equations (3.4.1)-(3.4.2) define the dynamics of the N-fold pendulum, and
hence a vector field F ∈ X((T S2)N ). We now find a function f : (T S2)N →
se(3)N such that

ψ( f (m))|m = F |m , ∀m ∈ (T S2)N ,

where ψ is defined as in subsection 3.3.2.
Since R(q) defines a linear invertible map (see [2])

Aq : Tq1 S2 × ...×TqN S2 → Tq1 S2 × ...×TqN S2, Aq (ω) := R(q)ω,
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we can rewrite the ODEs for the angular velocities as follows:

ω̇= A−1
q




r1
...

rN


=


h1(q,ω)

...
hN (q,ω)

=


a1(q,ω)×q1

...
aN (q,ω)×qN

 . (3.4.3)

In equation (3.4.3) the ri s are defined as in (3.4.2), and a1, ..., aN : (T S2)N →R3

can be defined as ai (q,ω) := qi ×hi (q,ω). Thus, the map f is given by

f (q,ω) =



ω1

q1 ×h1(q,ω)
...
ωN

qN ×hN (q,ω)

 ∈ se(3)N ≃R6N .

3.4.2 Numerical experiments

In this section we show a numerical experiment with the N-fold 3D pendu-
lum, in which we compare the performance of constant and variable step size
methods. We do not show results on the preservation of the geometry (up to
machine accuracy), since this is given by construction. We consider the RKMK
pair coming from Dormand–Prince method (DOPRI 5(4) [4], which we denote
by RKMK(5,4)). We set a tolerance of 10−6 and solve the system with the
RKMK(5,4) scheme. Fixing the number of time steps required by RKMK(5,4),
we repeat the experiment with RKMK of order 5 (denoted by RKMK5). The
comparison occurs at the final time T = 3 using the Euclidean norm of the
ambient space R6N . The quality of the approximation is measured against a
reference solution obtained with ODE45 from MATLAB with a strict tolerance.

The motivating application behind the choice of this mechanical system has
been some intuitive relation with flexible slender structures like beams. For this
limiting behaviour to make sense, we first fix the length of the entire chain of
pendulums to some L, then we set the size of each pendulum to Li = L/N and
initialize (qi ,ωi ) = (

1,0,0,0,0,0
)
, ∀i = 1, ..., N . As we can see in figure 3.2a,

the results of our experiments show that number of time steps that RKMK(5,4)
requires to reach the desired accuracy increases with N , and this can be read
in terms of an augmentation of the dynamics’ complexity. For this reason, as
highlighted in figure 3.2, distributing these time steps uniformly in the time
interval [0,T ] becomes an inefficient approach, and hence a variable step size
method gives better performance.

We further design a slightly different experiment to compare the compu-
tational time of the constant and variable stepsize RKMK methods. First, we
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(a) Accuracy against the number of pendulums (b) Comparison of step sizes with 20 pendulums

Figure 3.2: Comparisons of variable versus constant stepsize for the N-fold 3D pendulum

fix the tolerance tol = 10−6 for RKMK(5,4) and compute its distance from
the reference solution with ODE45. Then, we aim to replicate this error with
RKMK5, increasing the number of performed time steps. We report in Table
3.1 the results of the experiment. Because of the more efficient distribution of
the time steps, we notice smaller values with RKMK(5,4) for the more involved
systems.

Pendulums 2 4 6 8 10 12 14 16 18 20

RKMK5 0.12 0.42 1.04 2.24 3.80 6.74 9.09 12.71 18.51 27.67

RKMK(5,4) 0.16 0.38 0.91 1.59 2.83 4.51 6.93 9.71 13.68 18.81

Ratio 0.75 1.11 1.14 1.41 1.34 1.49 1.31 1.31 1.35 1.47

Table 3.1: Elapsed times (in seconds) obtained with RKMK5 (second row) and
with RKMK(5,4) (third row) for systems having different number of pendulums
(first row). In the last row we report the ratio between the RKMK5 and the
RKMK(5,4) runtimes. These are obtained with the tic–toc command of
MATLAB.
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Learning Hamiltonians of constrained
mechanical systems

Abstract. Recently, there has been an increasing interest in modelling and
computation of physical systems with neural networks. Hamiltonian systems
are an elegant and compact formalism in classical mechanics, where the dy-
namics is fully determined by one scalar function, the Hamiltonian. The
solution trajectories are often constrained to evolve on a submanifold of a
linear vector space. In this work, we propose new approaches for the accurate
approximation of the Hamiltonian function of constrained mechanical systems
given sample data information of their solutions. We focus on the importance
of the preservation of the constraints in the learning strategy by using both
explicit Lie group integrators and other classical schemes.

4.1 Introduction

Neural networks have been proven to be effective in learning patterns from
data in many different contexts. Recently there has been an increasing interest
in applying neural networks to learn physical models from data, for example
models of classical mechanics. For Hamiltonian systems, multiple approaches
have been proposed to approximate the energy function, see, e.g., [9], [14],
[26], [13], [23]. Building on these results, we propose an improved learning
procedure. Our main contribution is an approach to learn the Hamiltonian for
systems defined on the cotangent bundle T ∗Q of some manifold Q embedded
in a vector space. Under the assumption that T ∗Q is homogeneous, we show
how to do that while preserving the geometry during the learning phase. In
this paper, by preservation of the geometry we mean the accurate conservation
of the constraints rather than of other geometric features such as symplecticity,
energy or other first integrals of the system.

As in [13], we express the dynamics of constrained systems by embedding
the problem in a vector space of larger dimension, but in our approach we do
not make use of Lagrange multipliers. With the aim of understanding the im-
portance of the geometry in this approximation problem, we compare learning
procedures based on numerical integrators that preserve the phase space of
the system with others that do not. We restrict to homogeneous spaces where
Lie group methods can preserve the geometry up to machine accuracy (see,
e.g., [8]). For example, multi-body lumped mass systems fall naturally in this
setting [20, Chapter 2]. This restriction still includes systems with the configu-
ration manifold that is a Lie group, as in some problems of rigid body and rod
dynamics, but we will not consider these applications here. The experiments
show that there are specific problems where approximating the Hamiltonian
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using a Lie group method can be relevant. Surprisingly, in many other settings
classical Runge–Kutta integrators produce comparable results.

The main focus of the present paper is to learn an approximation of a Hamil-
tonian system where the training data are given as a set of trajectory segments.
To do so, one could learn the dynamics either by approximating the Hamilto-
nian vector field or the Hamiltonian function as done in our work. Another
relevant difference in the learning framework consists of considering in the
training procedure either one time step of the flow map (see, e.g., [14]) or a
sequence of successive time steps as proposed in [9]. In the latter work it is
shown with experimental evidence that taking into account temporal depen-
dencies improves performance. We follow the second strategy when dealing
with unconstrained systems, whereas we test both of them with our approach
to constrained systems.

In principle, the Hamiltonian can be any differentiable function. However,
for mechanical systems, it is often made by the sum of (quadratic) kinetic energy
and a potential energy, [25], [15], [21]. Following [26], we make the ansatz that
the kinetic energy is characterized by a symmetric and positive definite matrix,
and hence we aim to estimate it.

We conclude this Section with a more precise definition of the problem of
interest. In the second Section, we introduce the Hamiltonian formalism for
both unconstrained and constrained systems. In the third Section, we focus on
unconstrained systems, presenting the general learning procedure that will be
extended to constrained systems in the fourth Section. We also discuss how
additional known information about the dynamical system can be included in
the network training procedure. The experimental results show that physics-
based regularization could be helpful to improve the extrapolation capability
of the network and its stability in the presence of noise. In the last Section,
we formalize the problem of learning a constrained Hamiltonian mechanical
system and discuss the importance of the geometry for this class of problems.
Finally, we complete this Section with numerical experiments in the PyTorch
framework, showing how the predicted Hamiltonian depends on some training
parameters and on the presence of noise. The numerical implementations are
available in the GitHub repository associated to the paper1.

4.1.1 Description of the problem

Suppose to be given a set of N sampled trajectories coming from a Hamilto-
nian system defined on a submanifold M = T ∗Q of R2n , where T ∗Q is the
cotangent bundle of the configuration manifold Q (see [19][Chapter 11] for
more details). Moreover, assume that each of these trajectories contains M

1https://github.com/davidemurari/learningConstrainedHamiltonians

86

https://github.com/davidemurari/learningConstrainedHamiltonians


4.1 Introduction

equispaced (in time) points. In other words, suppose that

{(xi , ȳ2
i , ..., ȳ M

i )}i=1,...,N , ȳ j
i =Φ( j−1)∆t

XH
(xi ) (4.1.1)

as a training set, where Φt
XH

is the time t-flow of the exact, unknown Hamilto-
nian system. In practice, we never have access to the exact trajectories but to
either a noisy version of them or a numerical approximation.

The approach we use aims to approximate the vector field XH ∈X(M) that
governs the dynamics, where by X(M) we denote the collection of all smooth
vector fields on M.. However, we know that such a vector field is Hamiltonian,
i.e. there exists a scalar function H :M→R which, together with the geometry
given by M, characterizes the dynamics completely. For this reason, we do not
need to directly approximate XH , but just H and then eventually recover XH .

The problem under consideration can be described as an inverse problem,
since we want to infer the function H from trajectory data of the corresponding
dynamical system rather than from samples of the function H itself. This
description of the problem motivates how we measure the accuracy of our
approximation, denoted by a parametric model HΘ. Indeed, the target is not
to approximate the trajectories of the given Hamiltonian system with some
neural network, but to approximate the Hamiltonian. Thus the quality of the
approximation can be computed in at least two ways. First, one can compare
some measured trajectories with those obtained from the approximation. More
precisely, we randomly generate Ñ initial conditions zi ∈ M, their M̃ time
updates, and compute

E1

({
u j

i

} j=1,...,M̃

i=1,...,Ñ
,
{

v j
i

} j=1,...,M̃

i=1,...,Ñ

)
= 1

Ñ M̃

M̃∑
j=1

Ñ∑
i=1

∥∥∥u j
i − v j

i

∥∥∥2
, (4.1.2)

where ∥ ·∥ is the Euclidean norm of R2n , u1
i = zi , v1

i = zi , u j+1
i =Ψh

XH
(u j

i ) and

v j+1
i =Ψh

XHΘ
(v j

i ) for a numerical integrator Ψh of choice. One can randomly
generate these initial conditions for academic examples where the true Hamil-
tonian is actually known. In this case, Ñ and M̃ can be specified arbitrarily,
usually with Ñ less the the number of training trajectories N . On the other
hand, in more realistic applications one has to work with the initial conditions
for which the related trajectory segments are known. In this case Ñ and M̃ are
constrained by the available data, in particular the number of total trajectories
is split into N for training and Ñ for test. In our experiments, we adopted the
SciPy implementation of the Dormand-Prince pair of order (5,4) with a strict
tolerance. In fact, following the PyTorch implementation of the mean squared
error, E1 is actually divided by 2n. Alternatively, as introduced in [11], one can
compare pointwise values of the approximated and the true Hamiltonian, when
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known. This gives

E2(H , HΘ) = 1

Ñ

Ñ∑
i=1

∣∣∣∣∣∣H(zi )−HΘ(zi )− 1

Ñ

Ñ∑
l=1

(
H(zl )−HΘ(zl )

)∣∣∣∣∣∣ , (4.1.3)

where E2 handles the fact that Hamiltonians differing, on M, by a constant
generate the same vector field. Indeed, E2(H , H + c) = 0.

4.2 Hamiltonian mechanical systems

In this work, we focus on Hamiltonian mechanical systems based on a con-
figuration manifold Q ⊆ Rn . We now introduce some basic elements of the
theory of unconstrained Hamiltonian dynamics on R2n , which corresponds to
the case Q= Rn . Then we extend this formulation to constrained systems on
T ∗Q⊂R2n .

The Hamiltonian formalism gives a particular class of conservative vector
fields which, in contrast to the Lagrangian one, can always be expressed with
a system of first-order ordinary differential equations. For the unconstrained
case, the equations are of the form ẋ(t ) = J∇H(x(t )) := XH (x(t )) where x(t ) =
[q(t ), p(t )] ∈ R2n comprises the configuration variables and their conjugate
momenta. Here, H : R2n → R is a smooth function called the Hamiltonian of
the system, and J ∈R2n×2n is the symplectic matrix.

In this work, we focus on Hamiltonian systems whose energy function is
of the form

H(q, p) = 1

2
pT M−1(q)p +V (q)

where M(q) is the mass matrix of the system, possibly depending on the con-
figuration q ∈Rn , and V (q) is the potential energy of the system. This is not a
too restrictive assumption since it still includes a quite broad family of systems.
For unconstrained systems, we will further restrict to the case where M is a
constant matrix and the Hamiltonian is separable. This assumption allows to
implement symplectic numerical integration without needing implicit updates.
On the other hand, in the constrained setting we aim at preserving the geometry
of the numerical flow map rather than other properties such as symplecticity.
As a consequence, we can work with variable mass matrices still using explicit
numerical integrators as in the unconstrained case.

We now briefly formalize how to extend this formulation to Hamiltonian
systems that are holonomically constrained on some configuration manifold
Q= {q ∈Rn : g (q) = 0} embedded in Rn (for a more detailed derivation of this
formalism we refer to [20, Chapter 8]). Many mechanical systems relevant
for applications are characterized by the presence of some constraints that are
coupled to the ODE defining the dynamics. One way to model this kind of
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problems is based on Lagrange multipliers, which lead to differential algebraic
equations (DAEs). There has been some work in the direction of extending the
Hamiltonian neural network’s framework to constrained systems (see, e.g., [13]
in which this strategy of introducing Lagrange multipliers is applied).

In this manuscript, we want to present an alternative approach based on the
assumption that the constrained manifold Q is embedded in some linear space
Rn . This is actually not a restriction, since Whitney’s embedding theorem al-
ways guarantees the existence of such an ambient space (see, e.g., [19, Chapter
6]). More explicitly, because of this embedding property, constrained multi-
body systems can be modelled by means of some projection operator and the
vector field is written in such a way that it directly respects the constraints,
without the addition of algebraic equations.

Furthermore, we assume that the components gi : Rn → R, i = 1, ...,m,
are functionally independent on the zero level set, so that the Hamiltonian is
defined on the (2n −2m) dimensional cotangent bundle M= T ∗Q. Working
with elements of the tangent space at q , TqQ, as vectors in Rn , we introduce
a linear operator that defines the orthogonal projection of an arbitrary vector
v ∈Rn onto TqQ, i.e.

∀q ∈Q, we set P (q) :Rn → TqQ, v 7→ P (q)v.

P (q)T can be seen as a map sending vectors of Rn into covectors in T ∗
q Q. If

g (q) is differentiable, assuming G(q) is the Jacobian matrix of g (q), we have

TqQ = KerG(q), and so P (q) = In −G(q)
(
G(q)T G(q))

)−1
G(q)T , where In ∈

Rn×n is the identity matrix. This projection map allows us to define Hamilton’s
equations as followsq̇ = P (q)∂p H(q, p)

ṗ =−P (q)T ∂q H(q, p)+W (q, p)∂p H(q, p),
(4.2.1)

where

W (q, p) = P (q)TΛ(q, p)T P (q)+Λ(q, p)P (q)−P (q)TΛ(q, p)T ,

with Λ(q, p) = ∂P (q)T p

∂q
.

It is important to remark that since T ∗Q ⊂ R2n , we can work with the coor-
dinates of the ambient space in the subsequent development. We notice that
when Q=Rn , we can set P (q) = I and recover the unconstrained formulation.
These equations of motion can be derived by the standard Hamilton’s varia-
tional principle on the phase space or by the Legendre transform applied to the
Euler-Lagrange equations. However, due to the geometry of the system, the
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variations need to be constrained to the right spaces and this is done with the
projection map P (q). We will focus on the case Q = S2 × ...×S2 = (S2)k in Sec-
tion 4.4.2, where the mass matrix M(q) and equation (4.2.1) takes a structured
form, with S2 the unit sphere in R3.

4.3 Learning unconstrained systems

As in [9], we base the training on a recurrent approach, that is graphically
described in Figure 4.1.

As mentioned in Subsection 4.1.1, we work with numerically generated
training trajectories that we denote by

{(xi , y2
i , ..., y M

i )}i=1,...,N .

We limit the treatment of noisy training data to Subsection 4.3.2. To obtain an
approximation of the Hamiltonian H , we define a parametric model HΘ and
look for a Θ so that the trajectories generated by HΘ resemble the given ones.
HΘ in principle can be any parametric function depending on the parameters
Θ. In our approach, Θ will collect a factor of the mass matrix and the weights
of a neural network, as specified in equation (4.3.3). We use some numerical
one-step method Ψ∆t

XHΘ
to generate the trajectories

ŷ j
i (Θ) :=Ψ∆t

XHΘ
(ŷ j−1

i (Θ)), ŷ1
i (Θ) := xi , j = 2, . . . , M , i = 1, . . . , N . (4.3.1)

For unconstrained problems we use symplectic numerical integrators, since they
can take an explict form and their adoption in the training procedure allows to
have a target modified Hamiltonian to approximate (see, e.g., [27]). We then
optimize a loss function measuring the distance between the given trajectories
y j

i and the generated ones ŷ j
i , defined as

L(Θ) := 1

2n

1

N M

N∑
i=1

Li (Θ) = 1

2n

1

N M

N∑
i=1

M∑
j=1

∥ŷ j
i (Θ)− y j

i ∥2, (4.3.2)

where ∥ · ∥ is the Euclidean metric of R2n . This is implemented with the Py-
Torch MSELoss loss function. Such a training procedure resembles the one
of Recurrent Neural Networks (RNNs), introduced in [24], as shown for the
forward pass of a single training trajectory in Figure 4.1. Indeed, the weight
sharing principle of RNNs is reproduced by the time steps in the numerical
integrator which are all based on the same approximation of the Hamiltonian,
and hence on the same weights Θ. Finally, in Algorithm 4.1 we report one
training epoch for a batch of data points.
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4.3 Learning unconstrained systems

Figure 4.1: Forward pass of an input training trajectory (xi , y2
i , ..., y M

i ). The
picture highlights the resemblance to an unrolled version of a Recurrent Neural
Network. The network outputs (ŷ2

i , . . . , ŷ M
i ).

Algorithm 4.1 One epoch of the recurrent approximation of the Hamiltonian.
1: Choose a numerical integrator (s stages)
2: N̂ ←batch size, Loss← 0
3: for i = 1, . . . , N̂ do
4: ŷ1

i ← xi

5: for j = 1, . . . , M do
6: ŷ j ,[1]

i ← ŷ j
i

7: for k = 1, . . . , s −1 do
8: Compute current value of Hamiltonian HΘ(ŷ j ,[k]

i )

9: Compute ∇HΘ(ŷ j ,[k]
i ) ▷ With automatic differentiation

10: Compute stage ŷ j ,[k+1]
i

11: end for
12: Compute ŷ j+1

i
13: Increase Loss following equation (4.3.2)
14: end for
15: end for
16: Optimize Loss

4.3.1 Architecture of the network

In this work, the role of the neural network is to model the Hamiltonian, i.e. a
scalar function defined on the phase space R2n . Thus, the starting and arrival
spaces are fixed. For unconstrained systems we assume that

H(q, p) = 1

2
pT M−1p +V (q) = K (p)+V (q)
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Learning Hamiltonians of constrained mechanical systems

is separable. Here, the kinetic energy is a quadratic form defined by the symmet-
ric positive definite matrix M−1. It can hence be modelled through a learnable
matrix A, K (p) ≈ K A(p), by replacing M−1 or M with AT A during the learning
procedure. This modelling choice improves extrapolation properties since it
allows to learn local (on a compact set) information that is valid on a larger
domain, i.e. the mass matrix. In Section 4.4 we extend this reasoning to some
configuration dependent mass matrices, where M(q) is modelled through a con-
stant symmetric and positive definite matrix. Recalling that AT A can even be
singular or close to singular, one can promote the positive definiteness of the
modelled matrix adding a positive definite perturbation matrix to AT A. No-
tice that, in principle, the imposition of the positive (semi)definiteness of the
matrix defining the kinetic energy is not necessary, but it allows to get more
interpretable results. Indeed, it is known that the kinetic energy should define
a metric on Rn and the assumption we are making guarantees such a property.
For constrained systems we proceed in a similar way, as shown in equation
(4.4.3). For the potential energy, a possible modelling strategy is to work with
standard feedforward neural networks, and hence to define

V (q) ≈Vθ(q) = fθm ◦ ...◦ fθ1 (q),

θi = (Wi ,bi ) ∈Rni×ni−1 ×Rni , θ := [θ1, ...,θm],

fθi (u) :=Σ(Wi u +bi ), Rn ∋ z 7→Σ(z) = [σ(z1), ...,σ(zn)] ∈Rn ,

for example with σ(x) = tanh(x). In particular applications, where some addi-
tional information is known about the system, one can impose more structure
on the architecture modelling V (q). For example, in the case of odd potential
or rotationally symmetric potential, one can define respectively an odd neural
network Vθ or a rotationally equivariant one (see, e.g., [4]). Therefore, we have
that

Θ= [A,θ], H(q, p) ≈ HΘ(q, p) = K A(p)+Vθ(q). (4.3.3)

We remark that the Hamiltonian does not need to be approximated by a neu-
ral network, and hence in a compositional way. Many other parametrizations
are possible. For example, starting from the sparse identification of dynam-
ical systems approach presented in [3], in [12] it is proposed to parametrize
the Hamiltonian with a dictionary of functions, for example polynomials and
trigonometric functions. In our work, however, we opt for standard feedforward
neural networks as the modelling assumption.

We now provide further details on the extrapolation capabilities of this
network model. The learning procedure presented above is based on extracting
temporal information coming from a set of trajectories belonging to a compact
subset Ω⊂R2n . In general, there is no reason why the Hamiltonian should be
accurate outside of this set. To be more precise, denoting by T > 0 the largest
time at which we know the trajectories, we have that
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4.3 Learning unconstrained systems

1. given enough samples in set Ω, distributed in order to capture the be-
haviour of the dynamical system, the prediction of the network is ex-
pected to be accurate in Ω[0,T ] := {Φt

XH
(x) : t ∈ [0,T ], x ∈Ω}, i.e. for any

z0 ∈Ω[0,T ] and any t̄ > 0 such that Φt (z0) ∈Ω[0,T ] for all t ∈ [0, t̄ ],

2. outside Ω[0,T ] one cannot guarantee that the prediction will be accurate.

If we think of classical regression problems or even classification ones, it seems
reasonable not to have information about the approximated quantity outside the
sampled area. In those cases, with generalization we mean being sufficiently
accurate close to the training points but still inside the sampled domain. How-
ever, here we know that the inferred function H(q, p) has physical meaning
and properties, so we might incorporate global known information about it to
extend the applicability of the predictions.

This discussion supports the architectural choice for the kinetic energy sug-
gested before (as in [26]). Indeed, supposing the Hamiltonian is separable, we
know that the variable p appears in the energy function only via the quadratic
form 1

2 pT M−1p. Thus, our modelling assumption allows us to approximate the
mass matrix M just from a set of trajectories, hence capturing the dependency
of H on the variable p also outside Ω[0,T ]. Other possible improvements can
be obtained when some symmetry structure is known for the Hamiltonian. On
a similar direction, in Subsection 4.3.2, we add some regularization based on
other prior physical knowledge.

We present in Figure 4.2 the comparison between ten learned trajectories
and the corresponding exact ones of the Hamiltonian system XH ∈X(R4) with
Hamiltonian

H(q, p) = 1

2

[
p1 p2

]T
[

5 −1
−1 5

][
p1

p2

]
+ q4

1 +q4
2

4
+ q2

1 +q2
2

2
. (4.3.4)

The training procedure of the network is based on 900 trajectories, sampled
uniformly in 6 time instants, on the interval 0 ≤ t ≤ 0.3. We remark that the
training initial conditions are carefully chosen so that their associated trajec-
tory segments well-capture the dynamics of interest. Figure 4.2 collects test
trajectories corresponding to the time interval [0,1]. Since we are interested
in approximating the Hamiltonian and not directly the trajectories, we are not
constrained to evaluate the quality of the approximation with the same time
integrator as the one used for training. In fact, these test trajectories have been
generated with an embedded Runge–Kutta pair of order (5,4), with same relative
and absolute accuracies for both the real and learned systems. Experimentally,
it is clear that the qualitative behaviour of the Hamiltonian is well captured,
as we can see from Figure 4.2. To quantify the agreement of the prediction
with the true Hamiltonian we report the E1 metric, as defined in (4.1.2), that is
6.59 ·10−5. Furthermore, the training loss is 4.62 ·10−7.
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(a) Projection on (q1, p1) (b) Projection on (q2, p2)

Figure 4.2: Comparison of real and predicted test trajectories for the Hamil-
tonian (4.3.4). In this case, for the potential energy we used a feedforward
network with 3 hidden layers having respectively 100, 50 and 50 neurons and
tanh as activation function. The training integrator is Störmer-Verlet, with
M = 6 and final time T = 0.3 and we use the Adam optimizer. The test tra-
jectories, at M̃ = 20 uniformly distributed points in the time interval [0,1], are
obtained with ODE(5,4). These trajectories correspond to Ñ = 100 initial con-
ditions on which the network has not been trained.

4.3.2 Robustness to noise and regularization

In real world applications, data is contaminated by noise which usually comes
from the measurement process. Thus, we need to test the robustness of the
learning framework to the presence of noise in the training trajectories. To do
so, we synthetically generate the trajectories as before, and then add random
normal noise to all the points except the initial condition (for an averaging
strategy that allows to deal even with perturbed initial conditions, see, e.g., [9]).
By construction, the network necessarily learns a Hamiltonian function, that is
expected to generate trajectories close to the noisy ones. Since the training does
not rely on clean trajectories, it is reasonable not to expect neither a loss value
which is as small as in the absence of noise, nor a too accurate approximation
of the Hamiltonian and the trajectories. Nevertheless, we aim for a learned
Hamiltonian with level sets close to the exact ones, hence giving trajectories
that resemble the true ones. One way of improving the quality of the neural
networks proposed here, is to make use of a priori known physical properties
of the dynamical system. We use an approach based on soft constraints which
means that we take the known physical properties into account by adding a reg-
ularization term in the cost function. An example of such a property could be
one or more known conserved quantities, so called first integrals. Hamiltonian
systems always have at least one first integral, namely the Hamiltonian func-
tion itself, but there might be additional independent ones. Enforcing the first

94



4.3 Learning unconstrained systems

integrals to be preserved or nearly preserved seems to be a reasonable strategy
for obtaining improved qualitative behaviour of the resulting approximation as
shown in the following example.

Consider a Hamiltonian system with Hamiltonian function H : R2n → R,
and a functionally independent first integral G , i.e. ∇H(x) and ∇G(x) are never
parallel. Consider the numerical integration ŷ j

k , j = 1, ..., M of the approxi-
mated Hamiltonian vector field XHΘ

, starting at ŷ1
k = xk . In the ideal case in

which the learned Hamiltonian HΘ coincides with H and the numerical flow
is replaced with the exact one, both H and G should be conserved. For this
reason, we suggest adding to the loss function in equation (4.3.2) the following
“regularization" term:

µ
∑
j∈I

(
G(ŷ j

k )−G(xk )
)2

for all the training points xk . Here I is a subset of indices contained in {1, ..., M },
and µ is a regularization parameter that balances the importance of the preser-
vation of the additional first integral against the perfect fitting of the training
trajectories. We test this regularization procedure with the Hamiltonian system
XH ∈X(R4) defined by

H(q1, q2, p1, p2) = q2
1 +p2

1

2
+ p2

2

2
+ 1

2
q2

2 +
1

4
q4

2 = h1(q1, p1)+h2(q2, p2).

This system has G(q, p) := h1(q1, p1) as an additional independent first integral
other than H . We report in Figure 4.3 some plots of the obtained E1 values as
defined in (4.1.2). In these experiments we add some random noise of the form
εδ to the points y j

i of the numerical trajectories, where δ∼N (0,1) follows a
standard normal distribution. The same experiment is run 5 times, and for each
of these we plot the obtained E1 value. For each experiment we generate new
training and test trajectories, and these are used for both the regularized training
and the non regularized one. Furthermore, each experiment has a different
random initialization of the weights, which is however shared between the
regularized and non regularized networks. We notice that with regularization
we can consistently get a better error in terms of the E1 measure. There is not
a huge difference between the results, however. This suggests that when prior
information is known, it might be important to experiment with this kind of
regularizing terms. To conclude the Section, we highlight how remarkable it is
that even without the regularization term, the trajectories are qualitatively well
captured by the network and hence the test error is quite low. This is mostly
due to the prior physical knowledge we impose on the learning procedure, i.e.
that the vector field should be Hamiltonian. Indeed, since in the worst case the
network approximates the wrong Hamiltonian, we always expect that it does
not overfit the noisy trajectories, since they can not be learned exactly. On
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(a) Case ε= 0.1 (b) Case ε= 0.3 (c) Case ε= 0.5

Figure 4.3: 5 repeated experiments for each perturbation regime. We plot on
the y axis the average accuracy, in terms of the E1 measure, obtained with the
trained network, when compared with the real (non-noisy) trajectories.

the other hand, without the prior knowledge of the Hamiltonian nature of the
system, all the overfitting problems of standard neural networks reoccur and
the risk of being closer to an interpolant of the noisy trajectories is higher.

4.4 Learning constrained Hamiltonian systems

The approximation of the Hamiltonians of constrained mechanical systems with
neural networks has already been studied in the literature. Two main approaches
can be identified. One of them is based on local coordinates on the constrained
manifold (see, e.g., [9], [14]) and the other uses ambient space coordinates and
Lagrange multipliers (see [13]). In principle, both the formulations apply to
any constrained Hamiltonian system. However, as remarked in [13], the choice
of a redundant system of coordinates usually gives a simpler expression for
the Hamiltonian. This results in a more data efficient training procedure. In
the second approach an embedded Runge–Kutta pair of order (5,4) is used to
train the network. This choice inevitably leads to a drift from the constrained
manifold during the training, even if it can be reduced by setting the tolerances
of the integrator. However, in this way the cost of the integrator increases,
hence this is not the most efficient way to preserve the constraints.

In this work, we use an alternative global formulation of the dynamics,
as introduced in Section 4.2. In principle this formulation adapts to any con-
strained Hamiltonian system whose configuration manifold is a submanifold
of Rn . Coupling this description of the dynamics with the learning framework
introduced in Section 4.3, their Hamiltonian functions can be approximated.
To be more precise, one can use any numerical integrator to discretize the con-
strained trajectories and compare them with the training data. For example,
Runge–Kutta 4 method can be used and this experimentally gives fast training
procedures and accurate approximations of the Hamiltonian, as shown in the
experiments of Subsection 4.4.3.
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4.4 Learning constrained Hamiltonian systems

We remark that in general numerical integrators do not preserve the geome-
try of the system and there might be a drift from the constrained manifold (see,
e.g., [15, Chapter 7]). Experimentally this does not seem to have a great impact
on the quality of the predicted Hamiltonian in most of the cases. However, as
we present in the numerical experiments with Lie group integrators, there might
be situations in which one benefits from training the Hamiltonian with an inte-
grator preserving the phase space. Notice that the Hamiltonian that defines the
dynamics has non-unique extension outside the phase space M= T ∗Q. This is

due to the projection matrix P (q) = In −G(q)
(
G(q)T G(q))

)−1
G(q)T appearing

Equation (4.2.1), where G(q) is the Jacobian matrix of the constraint function
g (q) defining Q. This justifies investigating the importance of the preservation
of the manifold T ∗Q in the training procedure.

As introduced in Section 4.2, in this work we assume that the constrained
configuration manifold Q is known. Referring to equation (4.2.1), we notice
that once the geometry is known, it is enough to specify the Hamiltonian func-
tion H : T ∗Q⊆R2n →R in order to characterize the dynamics of a system. We
show a setting in which the geometry can be preserved by Lie group integrators
(see, [18], [6], [8]) focusing on the case T ∗Q is homogeneous2. We see this
even as an opportunity to study the behaviour of this class of methods in an
applied framework and combined with neural networks. This geometric setup
applies, for example, when Q is a homogeneous manifold and the transitive
action ψ : G ×Q→Q defines, for any q ∈Q, a submersion ψq : G →Q at the
identity element e ∈G (see, e.g., [2], [7]). Cartesian products of homogeneous
manifolds are homogeneous too. Usually, multibody systems have constrained
configuration manifolds given by cartesian products of S2, Rk , SO(3) and SE(3),
which are respectively the special orthogonal and Euclidean groups. These are
all homogeneous manifolds and so are their tangent and cotangent bundles.

4.4.1 Lie group methods and neural networks

Among the various classes of Lie group methods, we consider the Runge–Kutta–
Munthe–Kaas (RKMK) methods and the commutator free ones (see, e.g., [22],
[5]). The underlying idea of RKMK methods, applied to F ∈X(M), with M an
arbitrary homogeneous manifold, is to express F as F |m =ψ∗( f (m))|m . Here
ψ∗ is the infinitesimal generator of ψ, a transitive Lie group action of G on M,
and f : M→ g is a function that locally lifts the dynamics to the Lie algebra
g of G. On this linear space, we can perform a time step integration. We then
map the result back to M, and repeat this up to the final integration time. More

2A smooth manifold M is homogeneous if for any pair of points m1,m2 ∈M there is g ∈G
such that ψ(g ,m1) = m2, where ψ : G ×M→M is a Lie group action. In other words, ψ is a
transitive action.
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explicitly, let ∆t be the size of the uniform time step of the discretization, we
then update yn ∈M to yn+1 by

γ(0) = 0 ∈ g,

γ̇(t ) = dexp−1
γ(t ) ◦ f ◦ψ(exp(γ(t )), yn) ∈ Tγ(t )g,

yn+1 =ψ(exp(γ1), yn) ∈M,

(4.4.1)

where γ1 ≈ γ(∆t ) ∈ g is computed with a Runge–Kutta method, and dexp−1 is
the inverse of the differential of the exponential map exp : g→G as defined, for
example, in [18, Section 2.6]. We do not go into the details of commutator free
methods, but the following development applies to them as well. In particular
the function f still plays a fundamental role.

We now present a natural way to combine the learning framework typical
of unconstrained systems with Lie group integrators. This is done introducing a
Lie group method during the learning procedure. Indeed, since we want to apply
a Lie group integrator to deal with nonlinear geometries, we set Ψ∆t , defined in
equation (4.3.1), to be the ∆t update given by some RKMK method. In other
words, using the notation of equation (4.4.1), we get Ψ∆t (z) = ψ(exp(γ1), z)
with γ1 ∈ g.

The setting presented above for generic vector fields on homogeneous man-
ifolds simplifies considerably in the presence of Hamiltonian systems. Indeed,
for this type of systems, what is needed to fully determine the dynamics is the
geometry given by M= T ∗Q and the scalar Hamiltonian function H :M→R.
In other words, we can think of the function f :M→ g, that allows to express
the vector field in terms of the infinitesimal generator of the action, as the re-
sult of an operator F : C 1(M,R) → {T ∗M→ g} acting on a scalar function H .
More explicitly, we can write f = F [H ] where F and H encode respectively
the geometry and the dynamics of the system. This operator is not really nec-
essary, but it clarifies considerably how the neural network comes into play in
the learning framework. Indeed, because of this construction, we can write the
numerical flow Ψ∆t as the map sending yn into yn+1 =ψ(exp(γ∆t ,yn ), yn) with
γ∆t ,yn being an approximation of the solution γ(∆t ) of the following initial
value problemγ̇(t ) = dexp−1

γ(t ) ◦F [HΘ]◦ψ(exp(γ(t )), yn) ∈ Tγ(t )g,

γ(0) = 0 ∈ g.

Here HΘ is the approximation of the Hamiltonian given by the current weights
Θ of the neural network. Thus, applying a particular family of geometric numer-
ical integrators, we can directly study some constrained systems with the same
ideas coming from learning unconstrained ones. Since following this procedure
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the geometry is preserved, one can consider replacing the Euclidean distance
in the loss function defined in equation (4.3.2) with a Riemannian metric of
the constrained manifold. This would bring to distances between points that
correspond to the length of the minimal geodesic connecting them, which is in
general different from the length of the segment in the ambient space having
them as extrema. In the remaining part of the Section, we specialize this reason-
ing to mechanical systems defined on copies of T ∗S2. We focus on a chain of
spherical pendula, but the geometric setting applies also to other systems (see,
e.g., [20, Section 10.5]).

4.4.2 Mechanical systems on (T ∗S2)k

As anticipated in the introductory Section, in this geometric setting we are not
involving symplectic integrators and we do not assume to have a separable
Hamiltonian anymore. Thus, we now model a more general family of Hamilto-
nians as

H(q, p) = 1

2
pT M−1(q)p +V (q). (4.4.2)

We model the potential energy as before, however we need an alternative strat-
egy for the inverse of the mass matrix, which is no longer assumed to be con-
stant. Based on the problem, one can choose various parametrizations of the
mass matrix or its inverse. We decide to specialize the architecture based on
the fact that the geometry of the system is known to be M= (T ∗S2)k , where
S2 ⊂R3. We coordinatize M with (q, p) = (q1, . . . , qk , p1, . . . , pk ) ∈R6k . In this
case, when p ∈ R3k is intended as the vector of linear momenta, the matrix
M(q) in equation (4.4.2) is a block matrix, with

i , j = 1, ...,k, R3×3 ∋ M(q)i j =
mi i I3, i = j

mi j (I3 −qi qT
i ), otherwise,

see [20, Section 8.3.3] for further details. Here, the matrix having constant
entries mi j is symmetric and positive definite. For this reason, we leverage this
form of the kinetic energy and learn a constant matrix A ∈ Rk×k and a vector
b ∈Rk so that 

m11 ... m1k

m21 ... m2k
...

...
...

mk1 ... mkk

≈ AT A+


b̃1 0 ... 0

0 b̃2
. . .

...
...

. . . . . . 0
0 ... 0 b̃k

 (4.4.3)

where b̃i := max(0,bi ) are terms added to promote the positive definiteness
of the right-hand side. We tested also elevating to the second power the bi
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instead of taking the maximum with 0, but we got better results with the choice
presented in equation (4.4.3). The matrix on the left-hand side of equation
(4.4.3) is exactly the one appearing in Hamiltonian formulations with Cartesian
coordinates, as the one used in [13].

For the spherical pendulum we have k = 1 and hence the Hamiltonian
dynamics is defined on its cotangent bundle T ∗S2, which is a homogeneous
manifold. This can be obtained thanks to the transitivity of the group action

Ψ : SE(3)×T ∗S2 → T ∗S2, ((R,r ), (q, pT )) 7→ (Rq, (Rp + r ×Rq)T ),

where the transpose comes from the usual interpretation of covectors as row
vectors. As in [16, Chapter 6], we represent a generic element of the special
Euclidean group G = SE(3) as an ordered pair (R,r ), where R ∈ SO(3) is a ro-
tation matrix and r ∈ R3 is a vector. With this specific choice of the geometry,
the formulation presented in equation (4.2.1) simplifies considerably. Indeed
P (q) = I3 −qqT which implies W (q, p) = pqT −qpT . Replacing these expres-
sions in (4.2.1) and using the triple product rule we end up with the following
set of ODEs q̇ = (I −qqT )∂p H(q, p)

ṗ =−(I −qqT )∂q H(q, p)+∂p H(q, p)× (p ×q).
(4.4.4)

This vector field X (q, p) can be expressed as ψ∗(F [H ](q, p))(q, p) with

ψ∗((ξ,η))(q, p) = (ξ×q,ξ×p +η×q), (ξ,η) ∈ g= se(3)

and

F [H ](q, p) = (ξ,η) =
(

q × ∂H(q, p)

∂p
,
∂H(q, p)

∂q
×q + ∂H(q, p)

∂p
×p

)
.

A similar reasoning can be extended to a chain of k connected pendula, and
hence to a system on (T ∗S2)k . The main idea is to replicate both the equations
(4.4.4) and the expression F [H ] for all the k copies of T ∗S2. A more detailed
explanation can be found in [8].

We present in Figure 4.4 the results obtained for the training of a double
pendulum, i.e. k = 2. To train the network, we generate a set of N = 500 training
trajectories with the embedded Runge–Kutta pair of order (5,4) of SciPy. The
final integration time is T = 0.1 and M = 5. To model the potential energy, we
use a feedforward network with 3 hidden layers of 100 neurons each. In the
plots we show the configuration variables, q1, q2 ∈ S2, obtained for 100 test
trajectories in the time interval [0,1], where the network HΘ has been trained
with a commutator free method of order 4.
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Figure 4.4: Comparison between 100 test trajectories obtained with the true
Hamiltonian H and the predicted one HΘ. To train HΘ, a Lie group method is
used. This gives E1 = 2.65 ·10−6 and a final training loss of 1.6 ·10−9.

4.4.3 Experimental study of the learning procedure

We investigate the influence of the training setup on the error measures E1, E2,
defined in (4.1.3), and on the training loss. More precisely, we test how the
parameters M , N , the noise magnitude and the training integrator affect the
performance of the network. We quantify the magnitude of noise in the train-
ing trajectories with a parameter ε> 0, as in Subsection 4.3.2. The integrators
that we study are Lie Euler, explicit Euler (both of order 1), commutator free
and Runge–Kutta (both of order 4). In particular, Lie Euler and commutator
free methods preserve the phase space M up to machine accuracy. To get a
sufficient sample of experiments, we repeat all the tests 5 times, and look at
the medians and geometric means3 of the obtained results. To be precise, we
test N ∈ {50,500,1000,1500}, M ∈ {2,3,5}, and ε ∈ {0,0.001,0.01,0.1}. There-
fore, we perform a total of 960 experiments, and also here the potential energy
is modelled with a feedforward network of 3 hidden layers having 100 neu-
rons each. Furthermore, for the four experiments performed varying just the
integrator, and with the other parameters fixed, the network’s weights are ini-
tialized to be the same, and also the training and test initial conditions are the
same. For all these experiments, we focus on the single spherical pendulum,
we keep the final training time to T = 0.1, and we don’t use regularization
terms. The training trajectories have been generated with the SciPy imple-

3The choice of geometric means is because of the exponential nature of the error measures
and the training loss.
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mentation of the Dormand-Prince pair of order (5,4) with strict tolerance.

Order Integrator E1 E2 Training Loss
1 EE 5.7e-5 1.13e-2 2.12e-6
1 LE 4.9e-5 1.07e-2 1.17e-6
4 RK4 1.12e-5 3.83e-3 2.63e-7
4 CF4 1.12e-5 3.85e-3 2.64e-7

Table 4.1: In this table we report the geometric means of the quantities E1, E2

and the training loss. Here we average over all the 240 experiments that have
the same integrator. We denote the four integrators with EE (explicit Euler),
LE (Lie Euler), RK4 (Runge–Kutta 4), and CF4 (commutator free 4).

Figure 4.5: This is a parallel coordinate plot reporting the dependencies of E1,
E2 and the training loss on the parameters N , M , ε and on the integrator. Each
coloured polyline corresponds to the median over 5 experiments, i.e. same N ,
M , ε and same integrator. The lines in cyan color represent the combinations
giving E1 < 10−7.

As shown in Table 4.1, the order of the numerical integrator used to train the
network plays an important role. Indeed, we get results that are similar for
methods of the same order, but there is a noticeable decay in the errors and in
the loss when we increase the order from one to four. As highlighted in [27],
this effect can be explained with a standard argument of backward error anal-
ysis, see e.g. [15, Chapter 9]. From the results reported in Table 4.1 we see
that the local error of the integrator is more important than the preservation
of the geometry. Therefore, even if from a theoretical point of view it seems
relevant to remain on the manifold during the training, in practice this does
not seem to be very important in the particular experiment considered here. In
Figure 4.5, we plot the dependencies of E1, E2 and the training loss, on N , M ,
ε and the integrator. We notice that values of E1 below a threshold of 10−7
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Without noise
Integrator of order 1 Integrator of order 4

N M Int. E1 E2 N M Int. E1 E2

1500 5 LE 1e-6 2.4e-3 1500 2 CF4 3.2e-8 1.3e-4
1000 5 LE 1e-6 2.3e-3 1500 5 RK4 3.3e-8 1.4e-4
1000 5 EE 1e-6 2.4e-3 1500 3 RK4 3.4e-8 1.4e-4
1500 5 EE 1e-6 2.5e-3 1500 2 RK4 3.6e-8 1.5e-4
500 5 LE 2e-6 2.6e-3 1500 3 CF4 3.7e-8 1.5e-4

With noise
Integrator of order 1 Integrator of order 4

N M Int. E1 E2 N M Int. E1 E2

1500 5 LE 1.2e-5 6.6e-3 1500 5 RK4 5e-6 3.4e-3
1500 5 EE 1.2e-5 6.3e-3 1500 5 CF4 6e-6 4.1e-3
1000 5 LE 1.5e-5 6.6e-3 1000 5 CF4 7e-6 3.8e-3
1000 5 EE 1.6e-5 6.8e-3 1000 5 RK4 8e-6 4.3e-3
500 5 LE 1.8e-5 6.7e-3 1000 3 RK4 8e-6 4.2e-3

Table 4.2: In this Table we report the combinations that give the 5 best values
of E1, together with the corresponding value E2. These are the geometric means
among all the experiments. The two tables compare the performance on data
with and without noise.

can be reached only with integrators of order four and with the smallest value
of ε. The interplay of N , M and ε is further investigated in Table 4.2. An
interactive version of Figure 4.5, together with other parallel coordinate plots,
can be found at the GitHub Page https://davidemurari.github.io/
learningConstrainedHamiltonians/, while the dataset is available
in the GitHub repository associated to the paper.

We conclude this parameter study considering separately the case with and
without noise, ε > 0 and ε = 0 respectively. The results are reported in Table
4.2. In general the lowest values of E1 are obtained with high N . For the model
under consideration, N = 1000 seems already high enough to achieve good
results. Regarding M , Table 4.2 shows that to achieve lower values of E1 in
the presence of noise, one needs to adopt a higher M . On the other hand, in
the absence of noise it seems important to have a high M only for low order
integrators. Finally, as may be expected, even if this Table does not distinguish
among the different magnitudes of the noise, we see that with ε = 0 better
results can be achieved.

We also point out that the experiments were performed for short integration
times, where not only symplectic integrators can generate physically meaning-
ful trajectories. It would be interesting to explore the performance of sympelctic
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and constraint preserving integrators in this setting (see, e.g., [1]) and we defer
this to further work.

Besides the theoretical aspect of the non-uniqueness of the extension of the
dynamics outisde of M⊂ R2n , we now report a numerical experiment where
the preservation of the geometry during the training is beneficial. We consider
again a simple spherical pendulum and we assume to know that the potential
energy is linear. We hence impose this prior information on the architecture
of the network. Due to the problem’s simplicity, we aim to reach very low E1

and E2 values. Training the same architecture for 200 epochs, both with Runge–
Kutta and commutator free methods of order 4, we get the results in Table 4.3.
Indeed the geometric integrator outperforms the classical Runge-Kutta method
in this experiment.

Numerical method in the training E1 E2

Runge-Kutta of order 4 4.2e-12 1.5e-6
Commutator free of order 4 1.1e-14 2.5e-7

Table 4.3: Comparison of the accuracy measures E1 and E2 obtained with the
two integrators. These results are obtained imposing the linear structure of the
potential energy on the network modelling the Hamiltonian of the spherical
pendulum. The kinetic energy has been modelled as in previous experiments.

This experiment suggests that the choice of an integrator that does not fully
exploit the available information, like the geometry, might limit the quality of
the obtained approximations. For those cases in which one is interested in as
accurate as possible predictions, this might be a relevant issue.

The experiments performed lead to the conclusion that modelling multi-
body systems with neural networks can be a valuable approach. However, to
better leverage the approximation capabilities of machine learning techniques
(see, e.g., [17], [10]) we believe that a deeper investigation and understanding
of how they interface with physical models is necessary.
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Neural networks for the approximation of
Euler’s elastica

Abstract. Euler’s elastica is a classical model of flexible slender structures,
relevant in many industrial applications. Static equilibrium equations can be
derived via a variational principle. The accurate approximation of solutions of
this problem can be challenging due to nonlinearity and constraints. We here
present two neural network based approaches for the simulation of this Euler’s
elastica. Starting from a data set of solutions of the discretised static equilibria,
we train the neural networks to produce solutions for unseen boundary con-
ditions. We present a discrete approach learning discrete solutions from the
discrete data. We then consider a continuous approach using the same training
data set, but learning continuous solutions to the problem. We present numer-
ical evidence that the proposed neural networks can effectively approximate
configurations of the planar Euler’s elastica for a range of different boundary
conditions.

5.1 Introduction

Modelling of mechanical systems is relevant in various branches of engineer-
ing. Typically, it leads to the formulation of variational problems and dif-
ferential equations, whose solutions are approximated with numerical tech-
niques. The efficient solution of linear and non-linear systems resulting from
the discretisation of mechanical problems has been a persistent challenge of
applied mathematics. While classical solvers are characterised by a well-
established and mature body of literature [3, 13, 14, 26, 30, 33, 36], the past
decade has witnessed a surge in the use of novel machine learning-assisted
techniques [4, 5, 7, 8, 10, 12, 16, 20, 21, 23, 24, 28, 29, 34, 38, 39, 46]. These
approaches aim at enhancing solution methods by leveraging the wealth of
available data and known physical principles. The use of deep learning tech-
niques to improve the performance of traditional numerical algorithms in terms
of efficiency, accuracy, and computational scalability, is becoming increasingly
popular also in computational mechanics. Examples comprise virtually any
problem where approximation of functions is required, but also efficient re-
duced order modelling e.g. in fluid mechanics, the deep Ritz method, or more
specific numerical tasks such as optimisation of the quadrature rule for the com-
putation of the finite element stiffness matrix, acceleration of simulations on
coarser meshes by learning appropriate collocation points, and replacing ex-
pensive numerical computations with data-driven predictions [4, 18, 44, 46, 47].
This recent literature is evidence that neural networks can be used successfully
as surrogate models for the solution operators of various differential equations.

In the context of ordinary and partial differential equations, two main trends
can be identified. The first one aims at providing a machine learning based
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approximation to the discrete solutions of differential problems on a certain
space-time grid, for example by solving linear or nonlinear systems efficiently
and accelerating convergence of iterative schemes [5,12,16,20,21]. The second
one provides instead solutions to the differential problem as continuous (and
differentiable) functions of the temporal and spatial variables. Depending on
the context, conditions on such approximate solutions are then provided by the
differential problem itself, by the initial values and the boundary conditions, and
by the available data. The idea of providing approximate solutions as functions
defined on the space-time domain and parametrised as neural networks was
proposed in the nineties [19] and was recently revived in the framework of
Physics-Informed Neural Networks in [34]. Since then, such an approach has
attracted a lot of interest and has developed in many directions [7, 18, 39].

In this work, we use neural networks to approximate the configurations of
highly flexible slender structures modelled as beams. Such models are of great
interest in industrial applications like cable car ropes, diverse types of wires
or endoscopes [25, 31, 37, 41]. Notwithstanding their ingenious and simple
mathematical formulation, slender structure models can accurately reproduce
complex mechanical behaviour and for this reason their numerical discretisation
is often challenging. Furthermore, the use of 3-dimensional models requires
high computational time. Due to the fact that slender deformable structures
have one dimension (length) being orders of magnitude larger than their other
dimensions (cross-section), it is possible to reduce the complexity of the prob-
lem from a 3-dimensional elastic continuum to a 1-dimensional beam. A beam
is modelled as a centerline curve, q :

[
0,L

]→Rn , s 7→ q (s), with n = 2 or n = 3,
along which a rigid cross-section Σ (s) is attached. The main model assumption
is that the diameter of Σ (s) is small compared with the undeformed length L.
We here consider a special case of a beam where the cross-section Σ (s) is con-
stant and orthogonal to the centerline, the 2-dimensional Euler’s elastica [9]. In
this case, q (s) is inextensible with fixed boundary conditions and is the solution
of a bending energy minimisation problem [22, 27, 40].

When approximating static equilibria of the Euler’s elastica via neural net-
works, a key issue is to ensure the inextensibility of the curve (having unit
norm tangents) as well as the boundary conditions. Two main approaches can
be found in the literature [18,35,39]. One is the weak imposition of constraints
and boundary conditions adding appropriate, extra terms to the loss function.
The other is a strong imposition strategy consisting in shaping the network
architectures so that they satisfy the constraints by construction. We show
examples of both the approaches in Sections 5.4 and 5.5.

The paper is organised as follows. In Section 5.2, we present the mathemat-
ical model of the planar Euler’s elastica, including its continuous and discrete
equilibrium equations. We describe the approach used to generate the data sets
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for the numerical experiments. In Section 5.3, we introduce some basic theory
and notation for neural networks that we shall use in the succeeding sections.
Starting from general theory, we specialise in the task of approximating con-
figurations of the Euler’s elastica. In Section 5.4, we introduce the discrete
approach, which aims to approximate precomputed numerical discretisations
of the Euler’s elastica. We discuss some drawbacks associated with this ap-
proach and then propose an alternative approximation strategy in Section 5.5.
The continuous approach consists in computing an arc length parametrisation
of the beam configuration. We provide insights into two additional networks
and analyse how the test accuracy changes with varying constraints, such as
boundary conditions or tangent vector norms.

Main contributions: This paper presents advancements in the approxi-
mation of beam configurations using neural networks. These advancements
include: (i) An extensive experimental analysis of approximating numerical
discretisations of Euler’s elastica configurations through what we call discrete
networks, (ii) Identification and discussion of the limitations associated with
this discrete approach, and (iii) Introduction of a new parametrisation strategy
called continuous network to address some of these drawbacks.

5.2 Euler’s elastica model

We consider an inextensible beam model in which the cross-section Σ (s) is as-
sumed to be constant along the arc length s and perpendicular to the centerline
q (s), which means that no shear deformation can occur. Thus, the deformation
of the centerline is a pure bending problem, precisely the Euler’s elastica curve.
In the following, we assume q ∈ C 2

([
0,L

]
,R2

)
, i.e., the curve is planar and

twice continuously differentiable with length L. If s denotes the arc length pa-
rameter, then

∥∥q′ (s)
∥∥= 1, where ′ = d

d s , for all s ∈ [
0,L

]
. The elastica problem

consists in minimising the following Euler-Bernoulli energy functional∫ L

0
κ (s)2 d s,

where κ (s) denotes the curvature of q (s), [27]. Given the arc length parametri-
sation, then κ (s) = ∥∥q′′ (s)

∥∥.
We can reformulate this problem as a constrained Lagrangian problem as

follows. Consider the second-order Lagrangian L : T (2)Q → R, where T (2)Q
denotes the second-order tangent bundle [6] of the configuration manifold Q,
which in this case is R2:

L
(
q,q′,q′′)= 1

2
E I

∥∥q′′∥∥2 . (5.2.1)
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Nomenclature

L continuous Lagrangian function
S continuous action functional
Ld discrete Lagrangian function
Sd discrete action functional
q configuration of the beam
q′ first spatial derivative of q
θ tangential angle
s arc length parameter
κ curvature
L length of the undeformed beam

E I bending stiffness, with E the elastic modulus and I the second
moment of area

q̂ numerical approximation of q
N +1 number of discretisation nodes, with N the number of intervals

h space step (length of each interval)
qd
ρ discrete neural network

qc
ρ continuous neural network approximating the solution curve q (s)
θc
ρ continuous neural network approximating the angular function θ (s)
ρ parameters of the neural network
ℓ number of layers in the neural network
σ activation function
M number of training data
B size of one training batch

MSE mean squared error
MLP multi layer perceptron

ResNet residual neural network
MULT multiplicative neural network
D differential operator
I quadrature operator

Table 5.1: List of abbreviations and notations.

Here, abusing the notation, ′ denotes a spatial derivative, but we do not initially
assume arc length parametrisation. The parameter E I is the bending stiffness,
which governs the response of the elastica under bending. This mechanical
parameter consists of a material and a geometric properties, where E is the
Young’s modulus and I is the second moment of area of the cross-section Σ.
For simplicity, these parameters are assumed to be constant along the length of
the beam.

In order to recover the solutions of the elastica, the Lagrangian in Equa-
tion (5.2.1) must be supplemented with the constraint equation

Φ
(
q,q′)= ∥∥q′∥∥2 −1 = 0. (5.2.2)
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This imposes arc length parametrisation of the curve q (s) and leads to the
augmented Lagrangian L̃ : T (2)Q ×R→R

L̃
(
q,q′,q′′,Λ

)=L
(
q,q′,q′′)+ΛΦ(

q,q′) , (5.2.3)

where Λ (s) is a Lagrange multiplier, see [40]. The Lagrangian function coin-
cides with the total elastic energy over solutions of the corresponding Euler-
Lagrange equations. The internal bending moment is directly related to the
curvature κ (s).

The continuous action functional S is defined as:

S
[
q
]= ∫ L

0
L̃

(
q,q′,q′′,Λ

)
d s. (5.2.4)

Applying Hamilton’s principle of stationary action, δS = 0, yields the Euler-
Lagrange equations

d 2

d s2

(
∂L
∂q′′

)
− d

d s

(
∂L
∂q′

)
+ ∂L
∂q

= d

d s

(
∂Φ

∂q′Λ

)
− ∂Φ

∂q
Λ,

∥∥q′∥∥2 −1 = 0,

(5.2.5)

which need to be satisfied together with the boundary conditions on positions
and tangents, i.e.,

(
q (0) ,q′ (0)

)= (
q0,q′

0

)
and

(
q

(
L
)

,q′ (L
))= (

qN ,q′
N

)
.

5.2.1 Space discretisation of the elastica

The continuous augmented Lagrangian L̃ in Equation (5.2.3) and the action
integral S in Equation (5.2.4) are discretised over the beam length L with con-
stant space steps h and N+1 equidistant nodes 0 = s0 < s1 < . . . < sN−1 < sN = L.
In second-order systems, the discrete Lagrangian is a function L̃d : T Q ×T Q ×
R×R→R. In this study, we refer to a discretisation of the Lagrangian function
proposed in [11] based on the trapezoidal rule:

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= h

2

[
L̃

(
qk ,q′

k ,
(
q′′

k

)−
,Λk

)
+ L̃

(
qk+1,q′

k+1,
(
q′′

k+1

)+
,Λk+1

)]
where qk , q′

k and Λk are approximations of q
(
sk

)
, q′ (sk

)
, and Λ

(
sk

)
, and the

curvature on the interval
[
sk , sk+1

]
is approximated in terms of lower order

derivatives as follows

q′′ (sk
)≈ (

q′′
k

)− =
(
−2q′

k+1 −4q′
k

)
h +6

(
qk+1 −qk

)
h2 ,

q′′ (sk+1
)≈ (

q′′
k+1

)+ =
(
4q′

k+1 +2q′
k

)
h −6

(
qk+1 −qk

)
h2 .
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This amounts to a piece-wise linear and discontinuous approximation of the
curvature on

[
0,L

]
.

The action integral in Equation (5.2.4) along the exact solution q with
boundary conditions

(
q0,q′

0

)
and

(
qN ,q′

N

)
is approximated by

Sd =
N−1∑
k=0

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
. (5.2.6)

The discrete variational principle δSd = 0 leads to the following discrete Euler-
Lagrange equations:

D3L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D1L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D4L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D2L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D6L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D5L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

(5.2.7)
for k = 1, . . . , N −1, which approximate the equilibrium equations of the beam
in Equations (5.2.5) and can be solved together with the boundary conditions.

5.2.2 Data generation

The elastica was one of the first examples displaying elastic instability and bi-
furcation phenomena [2,42]. Elastic instability implies that small perturbations
of the boundary conditions might lead to large changes in the beam configura-
tion, which results in unstable equilibria. Under certain boundary conditions,
bifurcation can appear leading to a multiplicity of solutions [27]. In particular,
this means that the numerical problem may display history-dependence and con-
verge to solutions that do not minimise the bending energy. In order to generate
a physically meaningful data set, avoiding unstable and non-unique solutions
is essential. Thus, in addition to the minimisation of the discrete action Sd in
Equation (5.2.6), we ensure the fulfilment of the discrete Euler-Lagrange equa-
tions (5.2.7), which can be seen as necessary conditions for the stationarity of
the discrete action. We exclude from the data set numerical solutions computed
with boundary conditions where minimisation of Equation (5.2.6) and accurate
solution of Equations (5.2.7) can not be simultaneously achieved.

In particular, we consider a curve of length L = 3.3 and bending stiffness
E I = 10, divided into N = 50 intervals. We fix the endpoints q0 =

(
0,0

)
, qN =(

3,0
)
. The units of measurement are deliberately omitted as they have no impact

on the results of this work. We impose boundary conditions on the tangents in
the following two variants:
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1. the angle of the tangents with respect to the x-axis at the boundary, θ0 and
θN , is prescribed in the range

[
0,2π

]
, in a specular symmetric fashion,

i.e.,θN =π−θ0. Hereafter, we refer to this case as both-ends,

2. the angle of the left tangent is left fixed as θ0 = 0 and the angle of the
right tangent, θN , varies in the range of

[
0,2π

]
. We refer to this case as

right-end.

Based on these parameters and boundary values, we generate a data set of
2000 trajectories (1000 trajectories for each case) by minimising the particu-
lar action in Equation (5.2.6), with the trust-constr solver of the opti-
mize.minimize procedure provided in SciPy [43]. We check the resulting
solutions by using them as initial guesses for the optimize.root method
of SciPy, solving the discrete Euler-Lagrange equations (5.2.7).

5.3 Approximation with neural networks

We start providing a concise overview on neural networks, and we refer to
[15,18] and references therein for a more comprehensive introduction. A neural
network is a parametric function fρ : I →O with parameters ρ ∈Ψ given as a
composition of multiple transformations,

fρ := fℓ ◦ · · · ◦ f j ◦ · · · ◦ f1, (5.3.1)

where each f j represents the j -th layer of the network, with j = 1, . . . ,ℓ, and
ℓ is the number of layers. For example, multi-layer perceptrons (MLPs) have
each layer f j defined as

f MLP
j (x) =σ

(
A j x+b j

)
∈Rn j , (5.3.2)

where x ∈ Rn j−1 , and A j ∈ Rn j×n j−1 , b j ∈ Rn j are the parameters of the j -th

layer, i.e., ρ =
{

A j ,b j

}ℓ
j=1

. The activation function σ is a continuous nonlinear

scalar function, which acts component-wise on vectors. The architecture of the
neural network is prescribed by the layers f j in Equation (5.3.1) and determines
the space of functions F =

{
fρ : I →O, ρ ∈Ψ

}
that can be represented. The

weights ρ are chosen such that fρ approximates accurately enough a map of
interest f : I →O. Usually, this choice follows from minimising a purposely
designed loss function Loss

(
ρ

)
.

In supervised learning, we are given a data set Ω=
{

xi ,yi
}M

i=1
consisting of

M pairs
(

xi ,yi = f
(
xi

))
. The loss function is measuring the distance between
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the network predictions fρ
(
xi

)
and the desired outputs yi in some appropriate

norm ∥·∥
Loss(ρ) = 1

M

M∑
i=1

∥∥∥∥ fρ
(
xi

)
−yi

∥∥∥∥2

.

The training of the network is the process of minimising Loss(ρ) with respect
to ρ and it is usually done with gradient descent (GD):

ρ(k) 7→ρ(k) −η∇Loss
(
ρ(k)

)
=:ρ(k+1).

The scalar value η is known as the learning rate. The iteration process is often
implemented using subsets of data B ⊂Ω of cardinality B = |B| (batches). In
this paper we use an accelerated version of GD known as Adam [17].

Once the training is complete, we assess the model’s accuracy in predicting
the correct output for new inputs included in the test set that are unseen during
training. In the following, we measure the accuracy on both the training and the
test data using the mean squared error of the difference between the predicted
trajectories and the true ones.

We now turn to the task of approximating the static equilibria of the pla-
nar elastica introduced in Section 5.2, i.e., approximating a family of curves{

qi :
[
0,L

] 7→R2
}

determined by boundary conditions,

{
qi (0) = qi

0, qi (
L
)= qi

N ,
(
qi

)′
(0) =

(
qi

0

)′
,
(
qi

)′ (
L
)= (

qi
N

)′}
, (5.3.3)

where
(

qi
0,qi

N ,
(
qi

0

)′
,
(
qi

N

)′) ∈R8. In order to tackle this problem, we require a

set of evaluations
{

qi
k ,

(
qi

k

)′}
on the nodes sk ∈ [

0,L
]

of a discretisation. More

precisely, in our setting, the data set includes numerical approximations q̂ of
the solution q (s) and its spatial derivative q′ (s) at the N −1 discrete locations
sk = kh

L in the interval
[
0,L

]
, for M sets of boundary conditions, as described

in Section 5.2.2.

5.4 The discrete network

The discretisation of Euler’s elastica presented in Section 5.2.1 provides dis-
crete solutions on a set of nodes along the curve. These solutions can sometimes
be hard to obtain since a non-convex optimisation problem needs to be solved,
and the number of nodes can be large. This motivates the use of neural net-
works to learn the approximate solution on the internal nodes, for a given set
of boundary conditions. The data set Ω consists of M precomputed discrete
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5.4 The discrete network

solutions

Ω=
{(

xi ,yi
)}M

i=1
,

where
xi =

(
qi

0,qi
N ,

(
qi

0

)′
,
(
qi

N

)′) ∈R8

are the input boundary conditions and

yi =
(

q̂i
1, . . . , q̂i

N−1,
(
q̂i

1

)′
, . . . ,

(
q̂i

N−1

)′) ∈R4(N−1)

are the computed solutions at the internal nodes that serve as output data for
the training of the network.

For any symmetric positive definite matrix W , we define the weighted norm
∥x∥W = ∥W x∥2. The weighted MSE loss

Loss(ρ) = 1

4M
(
N −1

) M∑
i=1

∥∥∥∥qd
ρ

(
xi

)
−yi

∥∥∥∥2

W
, (5.4.1)

will be used to learn the input-to output map qd
ρ : R8 → R4(N−1), where the

superscript d stands for discrete. One should be aware that there is a numerical
error in yi compared to the exact solution and the size of this error will pose a
limit to the accuracy of the neural network approximation.

5.4.1 Numerical experiments

This section provides experimental support to the proposed learning framework.
We perform a series of experiments varying the architecture of the neural net-
work and the hyperparameters in the training procedure. The codes to run
the experiments in this work are written using the machine learning library
PyTorch [32]. We use the Adam optimiser [17] for the training, carefully
selecting learning rate and weight decay to prevent over-fitting, see Table 5.2.
In (5.4.1) we use the weight matrix

W = I +γGT G

where G = S − I with S the forward shift operator on vectors of R4(N−1). We
test a range of different batch sizes B ≤ M and fix the total number of epochs
to 300. Finally, we also test for the influence of performing normalisation of
the input data. We collect in Table 5.2 all the hyperparameters and network
architectures with their corresponding ranges.

We rely on the software framework Optuna [1] to automate and efficiently
conduct the search for the combination that yields the best result. This is
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Hyperparameter Range Distribution

architecture {MLP, ResNet} discrete uniform
normalisation {True, False} discrete uniform

activation function σ {Tanh, Swish, Sigmoid,
ReLU, LeakyReLU}

discrete uniform

#layers ℓ {0,1,2,3,4} discrete uniform
#hidden nodes in each layer [32,1024]∩N discrete uniform

learning rate η [1 ·10−4,1 ·10−1] log uniform
weight decay [1 ·10−7,5 ·10−4] log uniform

γ [0,1 ·10−2] uniform
batch size {32,64,128} discrete uniform

Table 5.2: Hyperparameter ranges for the discrete network qd
ρ tested on the

both-ends data set. The first column of the table reports the hyperparameters
and network architectures we test for. The second describes the set of allowed
values for each, while the third specifies how such values are explored through
Optuna. MLP corresponds to the network in Equation (5.3.2), Section 5.3,
while ResNet is a residual neural network defined in Equation (5.A.1) of Ap-
pendix 5.A.

reported in Table 5.3. The resulting training error on the both-end data set is
2.791 · 10−7, and the test error on a set of trajectories belonging to the same
data set is 3.028 ·10−7. Figure 5.1 compares test trajectories for q and q′. We
remark that, as already clear from the low value of the training and test errors,
the network can accurately replicate the behaviour of the training and test data.
Furthermore, since the network is trained only on the internal nodes and the
boundary values are appended to the predicted solution in a post processing
phase, we have zero errors at the end nodes. On the other hand, since this
discrete approach does not relate the components as evaluations of a smooth
curve, there is no regular behaviour in the error.

As an additional evaluation of the deep learning framework’s behaviour,
we conduct experiments to assess how the learning process performs when the
number of training data varies, i.e., with different splittings of the data set into
training and test sets. We report the results in Table 5.4 and summarise the
corresponding hyperparameters in Table 5.12 of the Appendix.

We also report results obtained by merging the both-end and the right-end
trajectories, with 90%−10% splitting of the whole new data set into training and
test set. The results are shown in Figure 5.2 and the selected hyperparameters
are collected in Table 5.5. The resulting training and test errors are, respectively,
3.047 ·10−7 and 3.141 ·10−7. Finally, we remark that the test accuracy is a good
measure of the generalisation error of neural network under the hypothesis that
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Selected hyperparameters

architecture MLP
normalisation True

activation function σ Tanh
#layers ℓ 4

#hidden nodes in each layer 879
learning rate η 1.378 ·10−3

weight decay 1.535 ·10−7

γ 4.242 ·10−3

batch size 32

Table 5.3: Combination of hyperparameters yielding the best results for the
discrete network qd

ρ tested on the both-ends data set with 90%−10% splitting
into training and test set. The results are shown in Figure 5.1.

Data set splitting
Training - test Training accuracy Test accuracy

10% - 10% 6.530 ·10−5 5.636 ·10−4

20% - 10% 2.096 ·10−5 3.457 ·10−5

40% - 10% 2.186 ·10−6 3.494 ·10−6

90% - 10% 2.791 ·10−7 3.028 ·10−7

Table 5.4: Behaviour of the discrete network qd
ρ tested on the both-ends data

set with fewer training data points. The size of the training set varies, while
that of the test set is fixed. The last row corresponds to the results in Figure 5.1.

the test and the training sets are independent of each other, but follow the same
distribution. If we test over input boundary conditions that not only are unseen
during the training, but also do not belong in the the same range of the training
data, the resulting accuracy is expected to be low, since neural networks are in
general not able to perform this sort of extrapolation. To show this, we consider
the neural network trained and tested over the both-ends data set, related to
the results in Figure 5.1 and in the last row of Table 5.4. We use 10% of the
right-end data set as a test set, and we obtain a test error equal to 2.228 ·10−2.
This highlights that care must be taken when using the trained network to make
inference over new input data.

5.5 The continuous network

The approach described in the previous section shows accurate results, given a
large enough amount of beam discretisations with a fixed number of nodes N+1,
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Figure 5.1: Comparison over test trajectories for q and q′ for the discrete net-
work qd

ρ tested on the both-ends data set with 90%−10% splitting into training
and test set. These results are obtained with the hyperparameters from Table
5.3, that yield a training error equal to 2.791 · 10−7 and a test error equal to
3.028 ·10−7 . For presentation purposes, only 10 randomly selected trajectories
are considered in the first two plots.

equally distributed in
[
0,L

]
. It seems reasonable to expect that the parametric

model’s approximation quality improves when the number of discretisation
nodes increases. However, in this approach, the dimension of the predicted
vector grows with N , and hence minimising the loss function (5.4.1) becomes
more difficult. In addition, the fact that the discrete network approach depends
on the spatial discretisation of the training data restricts the output dimension
to a specific number of nodes. Consequently, there would be two main options
to assess the solution at different locations: training the network once more, or
interpolating the previously obtained approximation. These limitations make
such a discrete approach less appealing and suggest that having a neural network
that is a smooth function of the arc length coordinate s can be beneficial. This
modelling assumption would also be compatible with different discretisations
of the curve and would not suffer from the curse of dimensionality if more nodes
were added. In this setting, the discrete node sk at which an approximation of
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Figure 5.2: Comparison over test trajectories for q and q′ for the discrete net-
work qd

ρ tested on the both-ends + right-end data set with 90%−10% splitting
into training and test set. These results are obtained with the hyperparameters
from Table 5.5, that yield a training error equal to 3.047 ·10−7 and a test error
equal to 3.141 · 10−7. For presentation purposes, only 10 randomly selected
trajectories are considered in the first two plots.

the solution is available, is included in the input data together with the boundary
conditions. As a result, we work with the following data set

Ω=
{(

sk , xi
)

, yi
k

}i=1,...,M

k=0,...,N
,

where, as in the previous section,

xi =
(

qi
0, qi

N ,
(
qi

0

)′
,
(
qi

N

)′) ∈R8,

and
yi

k =
(

q̂i
k ,

(
q̂i

k

)′)
.

Here q̂i
k is the numerical solution q̂ on the node sk , satisfying the i -th boundary

conditions in Equation (5.3.3). Let us introduce the neural network

qc
ρ :R8 → C∞

([
0,L

]
,R2

)
,
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Selected hyperparameters

architecture MLP
normalisation True

activation function σ LeakyReLU
#layers ℓ 2

#hidden nodes in each layer 1006
learning rate η 3.611 ·10−3

weight decay 1.515 ·10−7

γ 6.388 ·10−3

batch size 32

Table 5.5: Combination of hyperparameters yielding the best results for the
discrete network qd

ρ tested on the both-ends + right-end data set with 90%-
−10% splitting into training and test set. The results are shown in Figure 5.2.

and the differential operator

D : C∞
([

0,L
]

,R2
)
→ C∞

([
0,L

]
,R2

)
, D

(
qc
ρ

(
xi

))(
sk

)= d

d s

(
qc
ρ

(
x i

))
(s)

∣∣∣
s=sk

,

so that we can define

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, D

(
qc
ρ

(
xi

))(
sk

))
.

To train the network qc
ρ , we define the loss function

Loss(ρ) = 1

4M(N +1)

M∑
i=1

N∑
k=0

(∥∥∥∥yρ
(
xi

)(
sk

)− y i
k

∥∥∥∥2

2

+γ
(∥∥∥∥πD(

yρ
(
xi

)(
sk

))∥∥∥∥2

2
−1

)2
)

,

(5.5.1)

where πD :R8 →R4 is the projection on the second component D
(

qc
ρ

(
x i

))(
sk

)
,

and γ ≥ 0 weighs the violation of the normality constraint. The map qc
ρ is

now a neural network that associates each set of boundary conditions x i with
a smooth curve qc

ρ

(
x i

)
:
[
0,L

] → R2 that can be evaluated at every point s ∈[
0,L

]
. We denote this network with the superscript c, since this curve is in

particular continuous. The outputs qc
ρ

(
x i

)
(s) ∈ R2 are approximations of the

configuration of the beam at s ∈ [
0,L

]
.

We point out that, contrarily to the discrete case, here we learn approxima-
tions of q (s) also on the end nodes, i.e., at s = 0 and s = L. This is due to the fact
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5.5 The continuous network

that we do not impose the boundary conditions by construction. Even though
there are multiple approaches to embed them into the network architecture, the
one we try in our experiments made the optimisation problem too difficult, thus
we only impose the boundary conditions weakly in the loss function.

Another strategy is to compute the angles θk between the tangents (q̂k )′ and
the x-axis and to use them as training data. To this end, we define the neural
network

θc
ρ :R8 → C∞

([
0,L

]
,R

)
as θc

ρ = θ̂c
ρ ◦π, where

θ̂c
ρ :R2 → C∞

([
0,L

]
,R

)
(5.5.2)

is a neural network and the function π :R8 →R2 extracts the tangential angles
from the boundary conditions, i.e., π

(
x i

)
=

(
θi

0,θi
N

)
. Such a network should

approximate the angular function θ :
[
0,L

] ∋ s →R, so that

τc
ρ

(
x i

)
(s) :=

(
cos

(
θc
ρ

(
x i

)
(s)

)
, sin

(
θc
ρ

(
x i

)
(s)

))
∈R2 (5.5.3)

gets close to the tangent vector q′ (s). As a result, the constraint on the unit
norm of the tangents is satisfied by construction, and the inextensibility of the
elastica is guaranteed. The curve

q (s) = q0 +
∫ s

0
q′(s̄)ds̄

can then be approximated through the reconstruction formula

qc
ρ

(
x i

)
(s) = q0 +I

(
τc
ρ

(
x i

))
(s) , (5.5.4)

where the operator I : C∞
([

0,L
]

,R2
)
→ C∞

([
0,L

]
,R2

)
is such that

I
(
τc
ρ

(
x i

))
(s) ≈

∫ s

0
τc
ρ

(
xi

)
(s̄)ds̄.

In the numerical experiments, I is based on the 3-point Gaussian quadrature
formula applied to a partition of the interval

[
0,L

]
, see [33, Chapter 9]. As done

previously, we define the vector

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, τc
ρ

(
x i

)(
sk

))
, (5.5.5)

with components defined as in Equations (5.5.3) and (5.5.4). This allows us
to train the network θc

ρ by minimising the same loss function as in Equation
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(5.5.1), where this time yc
ρ is given by Equation (5.5.5). Furthermore, since

by construction this case satisfies

∥∥∥∥∥πD
(

yc
ρ

(
x i

)
(s)

)∥∥∥∥∥
2

=
∥∥∥∥τc

ρ

(
x i

)
(s)

∥∥∥∥
2
≡ 1, we

set γ= 0. We present numerical experiments for the two proposed continuous
networks qc

ρ and θc
ρ . In the latter case, by neural network architecture we refer

to θ̂c
ρ rather than θc

ρ in what follows. We analyse qc
ρ more thoroughly in Sec-

tion 5.5.1, mirroring most of the discrete case experiments. In Section 5.5.2 we
study how the results are affected when we impose the arc length parametriza-
tion and enforce the boundary conditions to be exactly satisfied by the network
θc
ρ .

5.5.1 Numerical experiments with qc
ρ

As for the case of the discrete network, we perform an in-depth investigation
of this learning setting by varying the architecture of the continuous neural
network and the hyperparameters in the training procedure, whose range of
options can be found in Table 5.6. In this case, we define the loss as in Equation
(5.5.1), with γ= 10−2. The weight decay is systematically set to 0.

Hyperparameter Range Distribution

architecture {MLP, ResNet, MULT} discrete uniform
normalisation {True, False} discrete uniform

activation function σ {Tanh, Swish, Sigmoid, Sine} discrete uniform
#layers ℓ {3, . . . ,8} discrete uniform

#hidden nodes in each layer [10,200]∩N discrete uniform
learning rate η [1 ·10−4,1 ·10−1] log uniform

Table 5.6: Hyperparameter ranges for the continuous network qc
ρ tested on the

both-ends data set with 90%−10% splitting into training and test set. The first
column of the table reports the hyperparameters and network architectures we
test for. The second describes the set of allowed values for each, while the third
specifies how such values are explored through Optuna. The weight decay
is systematically set to 0. MULT stands for multiplicative neural network and
corresponds to the network in Equations (5.A.2)-(5.A.6) of Appendix 5.A.

Table 5.7 collects the combination of hyperparameters yielding the best
results on the both-ends data set. This leads to a training error equal to 1.869 ·
10−6 and a test error equal to 4.81 ·10−6. In Figure 5.3, the comparison over
test trajectories for q and q′ is shown. As we can see in the plot showing the
mean error over the trajectories, the error on the end nodes is nonzero, since
we are not imposing boundary conditions by construction. This is in contrast
to the corresponding plot for the discrete network in Figure 5.1.
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Selected hyperparameters

architecture MULT
normalisation True

activation function σ Tanh
#layers ℓ 5

#hidden nodes in each layer 190
learning rate η 3.025 ·10−3

Table 5.7: Combination of hyperparameters yielding the best results for the
continuous network qc

ρ tested on the both-ends data set with 90%−10% splitting
into training and test set. The results are shown in Figure 5.3.

Also in this case, we examine the behaviour of the learning process with dif-
ferent splittings of the data set into training and test sets. We display the results
in Table 5.8 and summarise the corresponding hyperparameters in Appendix
5.B, Table 5.13.

Data set splitting
Training - test Training accuracy Test accuracy

10% - 10% 2.383 ·10−4 7.784 ·10−4

20% - 10% 5.612 ·10−5 7.285 ·10−5

40% - 10% 7.104 ·10−6 9.275 ·10−6

90% - 10% 1.869 ·10−6 4.810 ·10−6

Table 5.8: Behaviour of the continuous network qc
ρ tested on the both-ends data

set with fewer training data points. The size of the training set varies, while
that of the test set is fixed. The last row corresponds to the results in Figure 5.3.

5.5.2 Numerical experiments with θc
ρ

Here we consider a neural network approximation of the angle θ (s) that parametrises
the tangent vector q′ (s) =

(
cos

(
θ (s)

)
, sin

(
θ (s)

))
. By design, the approxima-

tion τc
ρ of the tangent vector q′ satisfies the constraint

∥∥∥∥τc
ρ

(
x i

)
(s)

∥∥∥∥
2
= 1 for

every s ∈ [
0,L

]
and x i ∈ R8. We also analyse how the neural network ap-

proximation behaves when the boundary conditions τc
ρ

(
x i

)
(0) = q′ (0) and

τc
ρ

(
x i

)(
L
)= q′ (L

)
are imposed by construction. To do so, we model the para-

metric function θ̂c
ρ , defined in Equation (5.5.2), in one of the two following

ways:
θ̂c
ρ

(
x i

)
(s) = fρ(s,θi

0,θi
N ), (5.5.6)
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Figure 5.3: Comparison over test trajectories for q and q′ for the continuous
network qc

ρ tested on the both-ends data set with 90% − 10% splitting into
training and test set. These results are obtained with the hyperparameters from
Table 5.7, that yield a training error equal to 1.869·10−6 and a test error equal to
4.810 ·10−6. For presentation purposes, only 10 randomly selected trajectories
are considered in the first two plots.

θ̂c
ρ

(
x i

)
(s) = fρ(s,θi

0,θi
N )+ (θi

0 − fρ(0,θi
0,θi

N ))e−100s2

+ (θi
N − fρ(L,θi

0,θi
N ))e−100(s−L)2

,
(5.5.7)

where fρ : R3 → R is any neural network, and we recall that π
(

x i
)
=

(
θi

0,θi
N

)
.

We remark that, in the case of the parameterisation in Equation (5.5.7), one
gets θc

ρ

(
x i

)
(0) = θi

0 and θc
ρ

(
x i

)(
L
) = θi

N up to machine precision, due to the
fast decay of the Gaussian function. As in the previous sections, we collect the
hyperparameter and architecture options with the respective range of choices in
Table 5.9, and we report the results without imposing the boundary conditions
in Figure 5.4, while those imposing them in Figure 5.5, in both cases using
the both-ends data set, with 90%−10% splitting into training and test set. The
results shown in the two figures correspond respectively to training errors of
5.821 ·10−6 and 6.068 ·10−6, and test errors of 6.231 ·10−6 and 6.289 ·10−6. The
best performing hyperparameter combinations can be found in Tables 5.10 and
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5.11.

Hyperparameter Range Distribution

architecture {MLP, ResNet, MULT} discrete uniform
activation function σ {Tanh, Swish, Sigmoid} discrete uniform

#layers ℓ {3, . . . ,8} discrete uniform
#hidden nodes in each layer [50,200]∩N discrete uniform

learning rate η [1 ·10−3,1 ·10−1] log uniform

Table 5.9: Hyperparameter ranges for the continuous network θc
ρ tested on the

both-ends data set. The first column of the table reports the hyperparameters
and network architectures we test for. The second describes the set of allowed
values for each, while the third specifies how such values are explored through
Optuna. The weight decay is systematically set to 0, and no normalisation is
applied.

Selected hyperparameters

architecture MULT
activation function σ Tanh

#layers ℓ 7
#hidden nodes in each layer 143

learning rate η 3.007 ·10−3

Table 5.10: Combination of hyperparameters yielding the best results for the
case when θc

ρ is modelled as in Equation (5.5.6), with 90%−10% splitting of
the both-ends data set into training and test set. The results are shown in Figure
5.4.

5.6 Discussion

The results in Figures 5.4 and 5.5 are comparable, especially looking at the
mean error plots. This suggests that the imposition of the boundary conditions,
in the proposed way, is not limiting the expressivity of the considered network.
Thus, given the boundary value nature of our problem, these figures advocate
the enforcement of the boundary conditions on the network θc

ρ . However, due
to the chosen reconstruction procedure in Equation (5.5.4) for the variable q,
we are able to impose the boundary conditions on q only on the left node.
Clearly, other more symmetric reconstruction procedures can be adopted, but
the proposed one has proved to provide better experimental results.
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Figure 5.4: Comparison over test trajectories for q and q′, for the case θc
ρ is

modelled as in Equation (5.5.6), with 90%−10% splitting of the both-ends data
set into training and test set. These results are obtained with the hyperparam-
eters from Table 5.10, that yield a training error equal to 5.821 · 10−6 and a
test error equal to 6.231 ·10−6. For presentation purposes, only 10 randomly
selected trajectories are considered in the first two plots.

Comparing the results related to qc
ρ with those of θc

ρ , we notice similar
performances in terms of training and test errors. In both the cases, they have
one order of magnitude more than the corresponding training and test errors of
the discrete network qd

ρ . Thus, as a results of our experiments, we can conclude
that

• if the accuracy and the efficient evaluation of the model at the discrete
nodes are of interest, the discrete network is the best option;

• for a more flexible model, not restricted to the discrete nodes, the con-
tinuous network is a better choice; among the two proposed modelling
strategies, working with qc

ρ is more suitable for an easy parametrisa-
tion of both q and q′, while θc

ρ is more suitable to impose geometrical
structure and constraints.

The total accuracy error of a neural network model can be defined by splitting
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Figure 5.5: Comparison over test trajectories for q and q′, for the case θc
ρ is

modelled as in Equation (5.5.7), with 90%−10% splitting of the both-ends data
set into training and test set. These results are obtained with the hyperparam-
eters from Table 5.11, that yield a training error equal to 6.068 · 10−6 and a
test error equal to 6.289 ·10−6. For presentation purposes, only 10 randomly
selected trajectories are considered in the first two plots.

it into three components: approximation error, optimisation error, and generali-
sation error (see, e.g., [23]). To achieve excellent agreement between predicted
and reference trajectories, it is important to select the appropriate architecture
and fine-tune the model hyperparameters. Our results demonstrate that we can
construct a network that is expressive enough to provide a small approximation
error and with very good generalisation capability.

5.6.1 Future work

In the methods presented in this paper, there is no interaction between the math-
ematical problem and the neural network model once the data set is created.
As a way to improve the results presented here, one could include the Euler
elastica model directly into the training process. This could be done either by
directly imposing in the loss function that q (s) satisfies the differential equa-
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Selected hyperparameters

architecture MULT
activation function σ Tanh

#layers ℓ 4
#hidden nodes in each layer 175

learning rate η 1.846 ·10−3

Table 5.11: Combination of hyperparameters yielding the best results for the
case when θc

ρ is modelled as in Equation (5.5.7), with 90%−10% splitting of
the both-ends data set into training and test set. The results are shown in Figure
5.5.

tions (5.2.5), or one could add the constrained action integral from Equation
(5.2.4) into the loss function that is minimised, see e.g. [19, 34, 38, 46].

There are many promising directions in order to follow up this work. One is
to consider 3D versions of the Euler elastica, another is to look at the dynamical
problem, and finally one may examine industrial applications. As an example,
we refer to the modelling of endoscopes due to the high bending deformation
of these medical devices under certain loading cases [41]. The approximation
of the elastica through neural networks can indeed help in the prediction of the
deformed configuration of the beam in constrained narrow environments.
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Skłodowska-Curie grant agreement No 860124. This work was partially sup-
ported by a grant from the Simons Foundation (DM). This contribution reflects
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Appendix 5.A Other neural network architectures

Another example of neural network architecture, besides the MLP defined in
Equation (5.3.2), is the residual neural network (ResNet), where

f RES
j (x) = x+BT

j σ(A j x+b j ) ∈Rn , (5.A.1)

with x ∈Rn , A j ,B j ∈Rn j×n , b j ∈Rn j , and ρ =
{

A j ,b j ,B j

}ℓ
j=1

. We also provide

the expression of the forward propagation of the multiplicative network used
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for the experiments in Section 5.5:

U =σ(
W1x+b1

)
, V =φ(

W2x+b2
)

(5.A.2)

H1 =σ
(
W3x+b3

)
(5.A.3)

Z j =σ
(
Wz

j H j +bz
j

)
, j = 1, . . . ,ℓ (5.A.4)

H j+1 =
(
1−Z j

)
⊙U+Z j ⊙V, j = 1, . . . ,ℓ (5.A.5)

f MU LT
ρ (x) = WHℓ+1 +b, (5.A.6)

where ⊙ denotes the component-wise multiplications. In this case,

ρ =
{

W1,b1,W2,b2,W3,b3,
(
Wz

j ,bz
j

)ℓ
j=1

,W,b
}

, and the weight matrices and

biases have shapes that allow for the expressions (5.A.2)-(5.A.6) to be well-
defined. This architecture is inspired by neural attention mechanisms and was
introduced in [45] to improve the gradient behaviour. A further motivation for
our choice of including this architecture is experimental since it has proven
effective in solving the task of interest, while still having a similar number of
parameters to the MLP architecture. Throughout the paper, we refer to this
architecture as multiplicative since it includes component-wise multiplications,
which help capture multiplicative interactions between the variables.

Appendix 5.B Further results on the hyperparameters
of the neural networks

Hyperparameter
combination

Data set splitting

10% - 10% 20% - 10% 40% - 10% 90% - 10%

architecture MLP MLP MLP MLP
normalization False False False True

activation function σ Tanh Tanh Tanh Tanh
number of layers ℓ 4 4 3 4

#hidden nodes in each layer 950 351 904 879
learning rate η 1.019 ·10−3 5.455 ·10−3 1.429 ·10−3 1.378 ·10−3

weight decay 1.79 ·10−6 2.142 ·10−7 1.317 ·10−7 1.535 ·10−7

γ 8.595 ·10−3 2.973 ·10−3 9.338 ·10−3 4.242 ·10−3

batch size 64 32 32 32

Table 5.12: Choice of hyperparameters for the training of the discrete network
qd
ρ tested on the both-ends data set with different numbers of training data

points.
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Hyperparameter
combination

Data set splitting

10% - 10% 20% - 10% 40% - 10% 90% - 10%

architecture MULT MULT MULT MULT
normalization True True True True

activation function σ Tanh Tanh Sine Tanh
number of layers ℓ 5 6 6 5

#hidden nodes in each layer 193 121 169 190
learning rate η 4.548 ·10−3 4.913 ·10−3 4.2 ·10−3 3.025 ·10−3

Table 5.13: Choice of hyperparameters for the training of the continuous net-
work qc

ρ tested on the both-ends data set with different numbers of training data
points. The weight decay is systematically set to 0.
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Supervised Time Series Classification for
Anomaly Detection in Subsea Engineering

Abstract. Time series classification is of significant importance in monitoring
structural systems. In this work, we investigate the use of supervised machine
learning classification algorithms on simulated data based on a physical system
with two states: Intact and Broken. We provide a comprehensive discussion
of the preprocessing of temporal data, using measures of statistical dispersion
and dimension reduction techniques. We present an intuitive baseline method
and discuss its efficiency. We conclude with a comparison of the various
methods based on different performance metrics, showing the advantage of
using machine learning techniques as a tool in decision making.

6.1 Introduction

In the offshore petroleum industry, drilling, completion and workover of subsea
wells is usually performed by semi-submersible drilling rigs. A string of pipe
sections extends from the rig to the subsea well and provides a conduit for fluid
and tools. To prevent uncontrolled release of oil and gas to the environment this
riser system includes a blowout preventer (BOP) directly on the top of the well.
The BOP is a heavy steel structure with valves and allows for safe disconnect
from the well if needed. A sketch of a BOP stack on a well can be seen in
Figure 1 in Section 2.

During operations wave forces acting on the rig, riser and BOP system
induce cyclic loading in the uppermost part of the well (the wellhead). This
will in turn cause fatigue damage and increase the risk of cracks to develop
and grow in critical sections of the wellhead. A total or even partial loss of
structural integrity and pressure control due to cracking of the wellhead must be
prevented. For this reason great emphasis is placed on predicting and detecting
changes in structural response.

During an operation sensor systems may continuously monitor riser and
BOP accelerations and the resulting bending moments applied to the wellhead.
A systematic change in the relationship between these responses may be an
indication of structural failure of the wellhead system. The change may, how-
ever, not be easily detectable for a human operator. This paper compares time
series classification (TSC) methods for detecting changes in structural response.
Several machine learning (ML) algorithms are trained on a synthetic, labelled,
data set. Classification is performed either on the raw time series or by first
making use of measures of variability of the data, like standard deviation (STD).
Being able to classify a labelled data set with time series would serve as a proof
of concept for training anomaly detection algorithms to detect cases where a
crack occurs.
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Our point of departure is a method relying on STD analysis of the data,
which we will refer to as the baseline method. In this paper, we investigate and
compare a range of alternative statistical approaches and ML techniques for
binary classification of time series. We use synthetic, but physically realistic
data simulated by a state of the art commercial code and perform our analysis
in a supervised learning setting.

The structure of this paper is as follows. In Section 6.2 we summarize
the main characteristics of the data set and perform some preliminary analysis,
which lays the basis for the following sections. We also introduce a formal
definition of the supervised learning classification problem for the given time
series data set. We conclude the section with a concise overview of Principal
Component Analysis (PCA), one of the most popular dimension reduction
techniques, whose theory goes back to Pearson [28] and Hotelling [14]. We
use [15] as our main reference.

Sections 6.3-6.7 illustrate five methods to perform the classification task
addressed in this work. For each method, we provide a brief description and
report on the experimental results.

The baseline method is presented in Section 6.3. This is mainly based on
measures of variation of the values in the data set and on regression techniques.

In Section 6.4, logistic regression (LogR) is used on the transformed data
from Section 6.2, combined with PCA. LogR was first introduced by Berkson
[5] in 1944 and applied to bioassay. Through the years it has been widely used
in areas such as biology, medicine, psychology, finance and economics. It has
become one of the most used classification algorithms, thanks to its simplicity,
efficiency and interpretability, see e.g. [12, 16, 23].

Section 6.5 covers Decision Trees (DTs), a popular supervised classification
and regression technique introduced in the 1960s by Morgan and Sonquist
in [25]. New concepts, reviews of decision trees and their applications in
different fields such as medicine, finance, environmental sciences, are presented
in [29, 35, 37].

Section 6.6 illustrates how to use a Support Vector Machine (SVM) [6], an
ML algorithm for binary classification of data that continues to be widely pop-
ular due to its high performance and robustness to noise. Since the introduction
of SVM in 1992 at AT&T Bell Laboratories, it has been applied in fields such
as medicine, biology, finance and technology [8].

The last method considered in this paper, investigated in Section 6.7, be-
longs to the class of deep learning algorithms and uses a Convolutional Neural
Network (CNN). Although CNNs were specifically introduced to work with
image data [19], thus with input in the form of matrices (tabular data sets), they
reached state of the art results also in other fields. In particular, they proved to
be effective at capturing patterns in time series, making them among the most
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successful deep learning architectures for time series processing [4, 11, 20].
In Section 6.8 we compare the methods based on different accuracy metrics

and finally we provide conclusions and discuss research directions in Section
6.9.

Nomenclature
accx , accy x and y component of the acceleration
ASM Attribute Selection Measure
bmx, bmy x and y component of the bending moment
BOP Blowout Preventer
CNN Convolutional Neural Network
DAS Data Acquisition System
DT Decision Tree
DWS Deep Water Strain
FJ Flex Joint
LogR Logistic Regression
ML Machine Learning
MLP Multi-layer Perceptron
PCA Principal Component Analysis
SMU Subsea Motion Units
STD Standard Deviation
SVD Singular Value Decomposition
SVM Support Vector Machine
TSC Time Series Classification
WLR Wire Load Relief

Table 6.1: List of abbreviations and notations.

6.2 The data set under consideration

The data set at hand is based on simulated data from the Orcaflex software
package [26]. This is done due to lack of measurements in the event of a
well cracking. The simulated data is obtained from a three-dimensional finite
element dynamic analysis in the time domain of the global riser, BOP and
wellhead system. The system is exposed to realistic operational loads from a
two-dimensional wave energy spectrum based on hindcast data gathered from
representative operations. The two-dimensional sea state comprises 200 linear
Airy wave components with different combinations of direction, frequency, and
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amplitude. In addition to waves, the system is exposed to a statistical median
current profile for the same representative area. This is a unidirectional current
with velocity varying with depth.

The riser, BOP and wellhead system is represented with one-dimensional
line elements with six degrees of freedom. They are modelled with hydrody-
namic, hydrostatic and structural properties aimed at giving realistic dynamic
load exposure from the environment. This gives a realistic resulting dynamic
load and deflection response.

The vessel used for the simulations is stationary, representing a bottom
fixed operation vessel, and serves as a fixed reference for the top of the riser.
The riser is in constant positive effective tension, with tension magnitude de-
creasing with water depth. The wellhead is modelled as a composition of line
elements, and non-linear force displacement connections with nonlinear lateral
force-displacement soil support in the form of P-Y curves, as is recommended
practice, see [2] and references therein.

In order to accurately capture the behaviour of intact and broken conditions,
the model used in this study is adjusted to match the full three-dimensional
solid finite element models of the broken and intact wellhead systems in soil,
exposed to representative static loads. The simulation models for the global
system and the wellhead calibration model are based on DNV-RP-E104, edition
2019-09 [2].

Sensors logging at 5 Hz are simulated at likely sensor spots, see Figure
6.1. For each sea state two one-hour data sets are created, each based on a
simulation with and without a crack in the well, hereby referred to as broken
and intact. The event where a crack occurs has to the authors’ knowledge
not been measured, nor is it simulated in the data set. Noise is added to the
signal based on the sensor accuracy found in the data sheets relative to the in-
operation sensors, with only [10] being publicly available. Two other datasets
are created with noise multiplied by 10 and 50, to test the robustness of the
different methods. Hereby we refer to the three data sets as Noise 1, Noise 10,
and Noise 50.

All of the data is normalised before applying any ML algorithms. Further
details on data preprocessing can be found in Appendix 6.A. Although the
data observed in real-life operations may have more complex behaviour, we
consider the artificial sensor data to suffice as a proof of concept that could be
developed further in a later project with data gathered from the field.

Before moving forward, we provide a formal definition of the supervised
learning problem addressed in this work. We denote a univariate time series
as Xuts =

[
x1, x2, . . . , xn

]
, which is an ordered set of real values xt indexed by

integers t = 1,2, . . . ,n, with xt the value at the t-th discrete time point. We
consider Xuts as a column vector in Rn . The simulations in our data set are
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SMU DAS

SMU FJ

DWS

accx FJ

accx DAS

bmx

accy FJ

accy DAS

bmy

Figure 6.1: Stack with sensors and corresponding data

associated with one-hour long measurements from 3 sensors, sampled at a rate
of 5 Hz. Each sensor outputs a signal for the x- and y-direction, hence we have
a total of m = 6 univariate time series with n = 18001 data points. We can
collect them in a multivariate time series, which we represent as a matrix

Xmts =
[

X 1
uts, X 2

uts, . . . , X 6
uts

]
∈Rn×m . (6.2.1)

We adopt a supervised learning approach to address the classification problem,
as we have access to labelled data. More specifically, the dataset includes N

pairs D =
{(

Xi ,Yi
)}N

i=1
, where Xi ∈ X are input time series and Yi ∈ Y the

corresponding output variables. Here, X and Y denote the feature and label
domains, respectively. Our aim is to approximate the mapping function

F :X →Y , Yi = F
(
Xi

)
, (6.2.2)

with sufficient accuracy so that we can make predictions about the output for
any unseen input data. To this end, the data set is split 80%−20% into a training-
and test-data set. A training procedure is performed on the former set by defin-
ing a loss function, that measures the distance between the predictions of the
approximation to F and the true labels, and a fitting optimisation algorithm.
The accuracy of the approximation is then evaluated on the test set.

In this paper, we deal with a binary classification problem. We map input
data into two discrete categories, intact and broken, to which we associate the
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labels 0 and 1 respectively, hence Y ≡ {0,1}. Our original data set consists of
N = 103 multivariate time series, 54 related to the intact case, and 49 to the
broken one. Each of them is a collection of 18001 values relative to 6 signals,
thus X ⊂R18001×6. The 6 columns of each input data are called channels, and
we will also refer to them as the number of input feature maps with a slightly
abuse of terminology.

6.2.1 Exploratory data analysis

As we can see in Figure 6.2, it is difficult to separate between an intact or
broken well based on a single observation. We do however notice a difference
in the spread of the data. This suggests to use a measure of dispersion when
classifying.
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Figure 6.2: Two 1-hour simulations from the dataset comparing a broken and
intact well under similar conditions. Plots are given for the x and y component
of the different physical measurements. The two top rows give the time series
while the bottom row shows phase plots.
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Standard deviations transformation

To ensure that a crack in the wellhead is quickly noticed we look into classify-
ing subintervals of the full data set. The simplest dispersion-based classification
method consists of taking the standard deviation for each subinterval. More pre-
cisely, for each channel m, the standard deviation is calculated over one-minute
intervals. Therefore, each one-minute interval with m channels is mapped to a
single data point with m dimensions. One-minute intervals allow for updates
of the well status at a satisfying frequency while being long enough to give
reliable results.

Applying this method to our data set gives us the point clouds found in
Figure 6.3. We immediately observe an increased ability to separate the two
cases.
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Figure 6.3: Pair plot showing of the scatter and distribution of data after a
standard deviation transform (left). Plot visualizing the transformed data in 3
dimensions (right).

Covariance transformation

The standard deviation of the signals can be seen as a meaningful way of sep-
arating the data. This suggests that other statistical properties of the signals
could be employed. Significant descriptive measures are provided by the co-
variance and correlation functions [34], therefore we introduce the covariance
matrix

Σ=


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)
...

...
. . .

...
Cov(Xn , X1) Cov(Xn , X2) · · · Var(Xn)

 . (6.2.3)
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Since we are working with standard deviations, we take the square root of the
covariance matrix, given by

Σ
1
2 =Q⊤Λ

1
2 Q,

where Q and Λ store the eigenvectors and eigenvalues of Σ. As standard devi-
ations are implicitly included in the covariance matrix, we highlight that the
covariance transform expands the STD transform, thus adding more informa-
tion.

It is worth noting that the covariance and correlation matrices are closely
related since

Cor(X ) = diag(Σ)−
1
2 Σ diag(Σ)−

1
2 . (6.2.4)

For most of the classification methods later presented, the covariance matrix is
used, but in Section 6.7 correlation is indirectly utilized.

Given the symmetry of the covariance matrix, only the upper triangular part
of the matrix is used in the feature set. If m defines the number of channels, one
expects 1

2 m(m +1) features. For the data set at hand this corresponds to 6 or
21 features, depending on whether one is using one or two physical directions
from the sensor output.

In Figure 6.4 we have restricted the data set to one physical direction and
plotted a pairwise scatter plot to visualize the transformed data. We observe an
increased ability to distinguish between broken and intact compared to the stan-
dard deviation method, though the closeness of the point clouds still suggests
difficulty in making correct classifications. The main method of transforming
the data will mainly be through the use of the covariance matrix.

The attentive reader can also observe that the top left 3×3 block in Figure
6.4 is similar to its corresponding figure with the standard deviation transform.
This is to be expected, but underlines that the covariance matrix only adds
relevant features.

6.2.2 Principal Component Analysis

PCA is an unsupervised dimension reduction technique that finds patterns or
structures in the data and uses them to express the data in a compressed form.
This increases the interpretability of multidimensional data while preserving
the maximum amount of information and enables its visualization. Preserv-
ing the maximum amount of information is equivalent to finding uncorrelated
linear combinations of the original data set, called principal components, that
successively maximize variance in addition to being uncorrelated with each
other. Finding such new variables reduces to solving an eigenvalue-eigenvector
problem. More precisely, a data set X is given as input to Algorithm 6.1, pro-
vided below. In this work, X will be either the STD- or the COV-transformed
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Figure 6.4: Pair plot of the data after using aforementioned covariance trans-
form. For certain combinations the broken and intact cases separate quite well.

data. The algorithm starts by solving an eigenvalue problem for the covariance
matrix Σ. The m ×m matrix V of eigenvectors diagonalizes the covariance
matrix while D is the m ×m diagonal matrix of eigenvalues of Σ. The eigen-
vectors form a basis for the data and the eigenvalues represent the distribution
of the information of the source data.

The goal is to choose a small enough subset of d eigenvectors correspond-
ing to the d largest eigenvalues of Σ. These will be the new basis vectors onto
which we can project the data and still preserve a high quantity of information.
This is shown in the final step, where the i -th column of P is the projection of
the data points onto the i -th principal component.
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Algorithm 6.1 Principal Component Analysis
1: function P = PCA(X ): ▷ X - input, P - output
2: X −→ X−µ

σ ▷ Normalize the data: µ - mean, σ - standard deviation
3: Σ= 1

n X ⊤X ▷ Calculate the covariance matrix
4: V TΣV = D ▷ Compute eigenvectors and eigenvalues of Σ
5: W =

[
w1, w2, . . . , . . . , wd

]
▷ Transformation matrix consisting on the

first d eigenvectors of V arranged in order of decreasing eigenvalues

6: P = X W ▷ Project the data onto the new basis
7: end function

Figure 6.5 shows the ratio each component explains in the cases when
the data is both STD- (left) and COV-transformed (right). In the first case,
we see that most of the information is contained in the first 3 components,
suggesting one only needs 3 PCs. In the second case, we see that the majority
of information is contained in the first 7 components. The accuracy of the
method increases along with the number of PCs.
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Figure 6.5: Ratio each component explains.

6.3 Baseline method

The baseline method relies on standard deviation and regression, and is cur-
rently being used in production. It was designed to enable continuous hu-
man inspection and provide an intuitive visual representation of the current
behaviour of the wellhead system. This is achieved by drawing regression lines
on a monitor.
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The method works by sliding a ten-minute window over each of the time
series captured by the sensors. The window is split into one-minute intervals for
which the standard deviation is calculated. Assume m is the number of sensor
channels and let X ∈ Rm×10 represent a matrix storing 10 calculated standard
deviations for each channel. The method then relies on choosing two rows from
X and performing a linear regression. The two rows are typically chosen to
be a bending moment and a flex joint acceleration corresponding to the same
direction. The regression is given by the following equation[

β0

β1

]
=

[
x⊤x x⊤1
1⊤x 1⊤1

]−1 [
x⊤

1⊤

]
y, (6.3.1)

where β0 is the intercept and β1 is the incline of the regression line, respectively.
The ten-minute time window is then moved one time step forward and a new
line is drawn. The time step is user defined and is typically set to one minute.

Any significant change between the drawn lines indicates a change in be-
haviour of the system. Therefore, the occurrence of a crack should be detectable
through continuous monitoring of the data. An example of the lines for the
cases of a broken/intact well, simulated in a similar environment, can be seen
in Figure 6.6. The event where a crack occurs has to the authors’ knowledge
not been measured, nor is it simulated in the data set.
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Figure 6.6: Left: Visualization of the lines capturing the relation between
the standard deviation of accelerations in the flex-joint and wellhead bending
moments using linear regression. The lines are meant to be displayed on a
vessel’s monitor and gradually fade over time highlighting the most recent
behaviour. Right: Distribution of data for the baseline method.
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To analyse the method further, we look at the distribution of the intercept
and incline of the regression line. The plot to the right in Figure 6.6 illustrates
how data points are separated based on whether the well is broken or intact.
One may observe a noticeable separation of data, but there is overlap and they
lie very close. Similarly to what was observed in Figure 6.4, the closeness
of the two distributions suggests difficulty in detecting change in behaviour
implying difficulty in classifying the data.

An important feature with this baseline method is the temporal dependence
between the lines (left) or points (right) in Figure 6.6. Given the lack of
recorded cracking events, we can only speculate on its efficiency. We could
however expect a crack to cause the data points to move from their positions in
the point cloud representing intact cases to a similar position in the point cloud
representing broken. However, given the constraints of our data set, we limit
ourselves to examine individual data points whenever a method of dispersion
is used.

As a final remark, the linear regression is related to the covariance transform.
This becomes clearer when rewriting equation (6.3.1) using the mean, variance
and covariance as follows

β0 =µy − µx Cov(x, y)

Var(x)
,

β1 = Cov(x, y)

Var(x)
.

From the equation we read that the baseline method essentially approximates
the point clouds from a subplot, depending on the sensor chosen, in Figure 6.4
with a linear regression. The method does however suffer from high uncertainty
due to the small set of samples in each prediction.

6.4 Logistic Regression

Given the reduced feature matrix P from Algorithm 6.1 in Section 6.2.2, binary
LogR uses a regression technique to solve the two-class classification prob-
lem with the class variable Target = {Broken, Intact} by modelling the class
probability P = Pr(Target= Intact | P ) as

log
P

1−P
=β0 +β⊤P , (6.4.1)

with an intercept β0 and a parameter vector β. The class probability is defined
as

P =
exp

(
β0 +β⊤P

)
1+exp

(
β0 +β⊤P

) . (6.4.2)
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Fitting a logistic regression model means estimating the intercept β0 and the
parameter vector β. In our experiments, this is done via the LogisticRe-
gression from sklearn.linear_model with all parameters set to their
defaults.

6.4.1 Experiments

In this subsection, we show experiments performed by applying LogR to the
reduced feature data set, the output of Algorithm 6.1. We utilize the existing
implementation of PCA outlined in Algorithm 1, available through the function
PCA from sklearn.decomposition. We fit LogisticRegression
to the training set and use the predict function to predict the test set result.
The LogR-PCA approach is applied to both the STD- and the COV-transformed
data from the data set Noise 1, Noise 10, and Noise 50, respectively. For the
STD-transformed data, we test the accuracy of the method with the number of
PCs going from 1 to 6. In the case of the COV-transformed data, we test for
PCs from 1 to 7, since we see from Figure 6.5 that those contain the majority of
information. The accuracy of the method in such scenarios, measured with ac-
curacy.score of sklearn.metrics as the ratio of correctly predicted
samples to the total number of samples, is reported in Table 6.2. We see that
for the same number of PCs, a higher level of noise leads to a lower accuracy.
Hence, to achieve high accuracy even with noisy data, it is necessary to increase
the number of PCs. In Figures 6.7 and 6.8, the classification of the time series in
the training and test sets is shown for both the STD- and the COV-transformed
Noise 1 data.

Data set and
data transformation

Accuracy (%)
Number of PCs

1 2 3 4 5 6 7

Noise 1
STD 55.99 54.53 69.26 69.17 98.46 98.62 -
COV 55.24 55.56 65.88 99.69 99.84 100 100

Noise 10
STD 55.66 54.53 69.17 69.17 98.14 98.14 -
COV 55.56 55.87 64.16 99.53 99.84 99.84 99.84

Noise 50
STD 54.29 54.21 68.77 69.01 89.97 91.26 -
COV 55.56 56.81 54.93 79.34 91.06 95.62 96.09

Table 6.2: Accuracy of LogR-PCA applied to the STD and COV data from
the different data sets with different number of PCs. In bold are marked the
scenarios that will be reported in Table 6.6 for comparison purposes.
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PCA-LogR with STD data 

 Training set                                                           Test set

Intact
Broken

Figure 6.7: Classification of the STD data from the Noise 1 data set with 3
principal components.

PCA-LogR with COV data 

 Training set                                                           Test set

Intact
Broken

Figure 6.8: Classification of the COV data from the Noise 1 data set with 4
principal components. The 3D visualization is made with 3 components.

6.5 Decision trees

A decision tree (DT) is a model that predicts the value of a target variable
by learning simple decision rules inferred from the data features. Given a
labelled data set, the model categorizes the data into purer subsets, i.e., subsets
consisting of highly homogeneous data, based on a set of if-else conditions.
One can think of a DT as a piece-wise constant approximation of the final
classification. Figure 6.9 provides some common terminology and illustrates
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the idea behind decision trees.

Root node
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Leaf node

Leaf node

Decision node

Decision node

Leaf node

Leaf node

Leaf node
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2

3

Branch/sub-tree

Figure 6.9: Example of a horizontal decision tree with depth 3. Node 1 is the
parent node of nodes 2 and 3.

The quality of the splitting, which refers to the purity of the resulting nodes,
is measured with Attribute Selection Measure (ASM) techniques. The root
node feature is selected based on the results of the ASM, and the procedure
is repeated until a node cannot be split into sub-nodes, i.e., until it becomes
a leaf node. More specifically, starting from the root node, we evaluate how
poorly each feature splits the data into the correct classes, intact or broken. The
feature resulting in the lowest impurity is chosen as the best feature for splitting
the current node. This is repeated for each subsequent node. There exist two
typical ASM techniques for measuring purity, namely Gini impurity or Gini
index and information entropy or information gain, [24, 32, 36].

The Gini impurity, or the Gini index, (G I ) measures the probability of a
particular variable being wrongly classified when randomly chosen. In node d ,
the quantity G I is calculated as

G Id = 1−
l∑

k=1
p2

d ,k , (6.5.1)

where pd ,k denotes the probability of an object in node d being classified into
the class k = 1, . . . , l . When the parent node d is split, based on a feature f ,
into m nodes di , i = 1, . . . ,m, the resulting GI is calculated as the following
weighted average:

G Id | f =
m∑

i=1

|di |
|d | G Idi , (6.5.2)

where | · | denotes the number of data in a node and G Idi are calculated as in
Equation (6.5.1). When this criterion is used for the selection of the root node
feature, the feature with the smallest G I is selected. The lower the G I of a node,
the closer the node is to being a leaf node. The G I of a pure node is 0.
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The information Gain (IG) criterion is based on the entropy (E) measured
in each node, which decreases as the purity of the node increases. A pure node
has entropy 0. In node d , the quantity E is calculated as:

Ed =−
l∑

k=1
pd ,k ̸=0

pd ,k log2(pd ,k ), (6.5.3)

where pd ,k is as before. The information Gain (IG) measures the decrease
in entropy by computing the difference between entropy before the split and
average entropy after the split of the node, based on the chosen feature. Suppose,
similarly to above, that the parent node d is split, based on a feature f , into m
nodes di , i = 1, . . . ,m. Then IG of the feature f in node d is calculated as:

IGd | f = Ed −
m∑

i=1

|di |
|d | Edi , (6.5.4)

where Edi are calculated as in Equation (6.5.3). The feature yielding the highest
IG is chosen as the splitting feature for the node in consideration.

There is no big difference between Gini impurity and entropy when it
comes to efficiency, see [31]. The choice varies significantly on the particular
circumstances and the data set. One advantage of the GI to the entropy approach
is that it does not involve logarithms, which are expensive from a computational
point of view. Figure 6.10 shows how the DT algorithm works.

Data set

Training data

Test data

Measure purity
and select the best
feature using ASM

Split the data set
into smaller subsets

Repeat recursively
for each child node

Test the model
on unseen data

Generating the decision tree

Figure 6.10: Decision tree algorithm illustrated as in [17].

One common difficulty for DTs is overfitting. It can be prevented in two
common ways, namely constraining the tree size and pruning the tree, often
known as pre-pruning and post-pruning, respectively. Pre-pruning is done by
controlling the following parameters: the minimum number of samples required
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for a node to split, the minimum number of samples for a leaf node, the maxi-
mum number of leaf nodes, the maximum depth of the tree, the maximum num-
ber of features to consider while searching for the best split. In post-pruning,
nodes and subtrees are replaced with leaves to reduce the complexity of the
tree.

6.5.1 Experiments

In the numerical experiments, the trees are generated using the function
tree.DecisionClassifier from sklearn of Python, where one can
choose between entropy or Gini splitting criterion, and they are dis-
played using the visualization tool of the tree class. sklearn uses an opti-
mised version of the CART algorithm [21] which uses gini as splitting crite-
rion and considers a binary split for each attribute. When entropy is chosen
as splitting criterion, the ID3 algorithm [30] is used. Pre-pruning is performed
using the function GridSearchCV from sklearn, which does a thorough
search for an estimator over the specific set of parameter values described in
the previous section. For the post-pruning, the cost_complexity_prun-
ing_path function is used, which is parameterized by the cost complexity
parameter ccp_alpha. By increasing the value of ccp_alpha, the number
of pruned nodes increases, and consequently the accuracy decreases, see Figure
6.12. Therefore, one has to make a clever choice of this parameter in order to
have significant results. One has to accept a decrease in accuracy in return for
a significant reduction in tree complexity.

A series of experiments are run on different scenarios and the results are
reported in Table 6.3. The hyperparameter range for the pre-pruning and choice
of the α for the post-pruning of the DTs, used to obtain the results reported in
Table 6.3, is provided in Appendix 6.B. There is no sign of overfitting of the
model in the case of Noise 1 and Noise 10 but we notice overfitting in the case
of Noise 50. We can also see the positive effect of pruning in the reduction
of overfitting, in particular when post-pruning. In Figure 6.11, this is shown
for the Noise 50, COV-PCA(4) data split with Gini criterion, corresponding
to the values in the bottom-right block in Table 6.3. In Figure 6.13, we show
the tree generated with entropy as splitting criterion applied to the data set
consisting of the first four PCs of the COV data. In Figure 6.14, the post-
pruned version of the same tree with ccp_alpha = 0.01 is shown. The value
for ccp_alpha is suitably chosen in Figure 6.12. For presentation purposes,
the labels are shown only on the root node. The root and decision nodes include
the following information: the feature in the data set that best divides the data,
the value of the entropy, the number of the samples, their division into the
classes and the dominant class, respectively. Leaf nodes are pure and there is
no decision to be made.
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Figure 6.11: The effect of post-pruning in the reduction of overfitting. Scenario:
Noise 50, COV-PCA(4), Gini (bottom-right block of Table 6.3.)
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Figure 6.12: The effect of ccp_alpha on the structure and the accuracy of
the tree. Scenario: Noise 1, COV-PCA(4), Entropy (marked in bold in Table
6.3.)

6.6 Support Vector Machine

Support Vector Machines (SVMs) are ML algorithms that attempt to draw a
plane between binary classified data. In the original paper [6], the authors first
explain how an optimal hyperplane can be found. This plane can be described
as

D(x) =
N∑

i=0
ωiφi (x)+b, (6.6.1)

where x is the input and φi is a user-defined basis function. Lastly, ωi and b are
the trainable weights and bias usually found by solving an optimisation problem.
The binary classification of the data is based on the sign of the decision function
D(x).

The decision function may also be written as

D(x) =
l∑

j=0
y jα j K (x j , x)+b. (6.6.2)
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Figure 6.13: DT generated with entropy as splitting criterion on the data set
consisting of the first four PCs of the COV data. Blue and orange are used
for intact and broken, respectively. A light colour indicates a high entropy, an
intense colour a low entropy.

Here, αi and b are the trainable parameters. The function K is a kernel related
to the user functions φi and x j are input data. These components are obtained
from the dual of the optimisation problem referred to above. In modern soft-
ware, the kernel is typically defined by the user such that the basis function is
never explicitly defined. Commonly used kernels are linear, polynomial and a
variety of radial basis functions (RBF).

In [6], the authors demonstrate that training the ML method involves solv-
ing a convex quadratic program. The soft margin was later introduced in [9],
using l2-penalization of mislabelled data points, thereby allowing for a feasible
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Figure 6.14: The same DT as in Figure 6.13 post pruned with ccp_alpha =
0.01.

solution in the case of overlapping classes. Our model is trained by solving the
quadratic program that follows,

Primal

min
α,ξ,b

1

2
ω2 +Cξ⊤1

s.t. yi (ω⊤φ(xi )+b) > 1−ξi

ξi ≥ 0

for all i

Dual

min
α

1

2
α⊤Hα−α⊤1

s.t. α⊤Y = 0

0 ≤α≤C1,

and differs slightly from the original method in [6] as it uses l1-penalization
of mislabelled data. Here Y = {y0, . . . , yp } are the classifications of the data set,
H is an l × l matrix with elements Hi j = yi y j K (xi , x j ). The hyperparameter C
allows for a soft margin and ξi is the measure of the deviation of point xi from
the margin. Any data point xi for which the corresponding αi > 0 is consid-
ered a support vector. Penalizing the deviations by increasing C increases the
number of support vectors, which may lead to overfitting.
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6.6.1 Experiments

In this subsection, we evaluate the performance of the SVM through a set of
experiments. As in the previous two sections, we apply a dispersion method
to transform the data. When the transformation involves the covariance matrix
we have also, for comparability between transformations, applied SVM to the
top three PCs.

For experiments limited to three dimensions the results are visualised in
Figure 6.15. The plots illustrate how a linear plane is able to separate the data
points. One can see how the data is relative to the decision border of the linear
SVM both for STD transform and COV transform with 3 PCs.

In the experiments, SVMs are trained with either an RBF or a linear kernel.
For each choice of kernel, every combination of number of PCs, transforma-
tion method and noise level is tested. For each test, the hyperparameter C is
optimised using sklearns GridSearchCV method. The test accuracy is
reported in Table 6.4 along with the number of support vectors needed by the
RBF SVMs. For the linear SVM the hyperplane is defined by n+1 coefficients,
where n is the number of PCs.

Although there is overlap between all the point clouds in Figure 6.15, the
PCA based model manages a greater relative distance to the hyperplane, indi-
cating higher robustness. This also becomes apparent by inspecting the number
of support vectors for the cases with the same number of PCs, but different
transformations, in Table 6.4. The STD based approaches need significantly
more support vectors than the COV based, while still performing worse on the
test set. SVMs using the COV transform and 7 PCs, essentially spanning the
whole data set, only needed a few more support vectors than the ones with
21 PCs. Given that the SVM with RBF kernel relies on a number of support
vectors much larger than the number of PCs, it is slower to evaluate than the
linear SVM.

6.7 Convolutional Neural Networks

As mentioned in Section 6.2, the supervised learning task consists of estimating
the function F in (6.2.2) through a parameterized function Fθ, with θ repre-
senting the parameters to be learnt. In this section, we illustrate how neural
networks can provide a useful framework to achieve this task.

In the most basic form of fully connected, feedforward neural networks, the
input-output mapping Fθ is obtained by a composition of nonlinear functions
φ:

Fθ(x0) =φL ◦φL−1 ◦ · · · ◦φl ◦ . . .φ1(x0), (6.7.1)

with x0 ∈Rn0 a given input data, L the number of layers in the network, which
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Data
trans.
(#PCs)

Noise 1 Noise 10 Noise 50
Linear RBF Linear RBF Linear RBF

Acc. Acc. SV Acc. Acc. SV Acc. Acc. SV
STD(3)* 0.940 0.950 1264 0.866 0.874 1866 0.650 0.668 3591
COV(3)* 0.986 0.986 465 0.974 0.987 568 0.928 0.923 1066
COV(4)* 0.983 0.990 418 0.988 0.984 441 0.927 0.940 980
COV(6)* 0.994 0.999 364 0.983 0.994 444 0.933 0.942 954
STD(6) 0.978 0.983 969 0.926 0.942 1345 0.682 0.726 3239
COV(6) 0.988 0.993 621 0.982 0.994 616 0.946 0.958 992
COV(7) 0.993 0.998 484 0.993 0.996 481 0.953 0.970 853
COV(21) 0.999 1.000 462 0.996 0.998 519 0.947 0.972 923

Table 6.4: Accuracy for linear SVM and RBF SVM applied to the noisy test
sets. The number of support vectors for the SVM with the RBF kernel is given in
the SV columns. An asterisk (*) indicates that only one physical direction was
used from the sensors. In bold are marked the scenarios that will be reported in
Table 6.6 for comparison purposes.
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Figure 6.15: Figure showing linear SVMs performance on dataset with STD
transform (left column) or COV transform and 3 PCs (right column). Both are
created from a subset of the data set containing only one physical direction.
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determines its depth, and φl : Rnl−1 → Rnl , φl (xl−1) := σ
(
W l xl−1 +bl

)
for

l = 1, . . . ,L. We also refer to these networks as multilayer perceptrons (MLPs).
Weight matrices W l ∈ Rnl×nl−1 and bias vectors bl ∈ Rnl contain trainable pa-
rameters. The nonlinear activation function σ : Rnl → Rnl , acting component-
wise, typically belongs to C 0 and is monotonically non-decreasing. Examples
of such functions are the sigmoid function and the rectified linear unit (ReLU).
The training procedure consists of minimising a differentiable loss function,
that quantifies the discrepancy between the predictions of the network and the
labels, over the network parameters. Usually, a stochastic gradient descent
algorithm is used.

Convolutional Neural Networks (CNNs) use particular affine mappings in
the feedforward propagation of the input data. In the following, we consider
one-dimensional CNNs, where each layer applies a one-dimensional linear
kernel K over sections S of the input data, to detect relevant features. Assuming
that both the filter K and the receptive field S are defined on the integer i , with
S ∈ Rs and K having finite support in the set {1− s,2− s, . . . , s − 2, s − 1}, this
operation corresponds to a discrete convolution

(S ∗K )(i ) =
s∑

j=1
S( j )K (i − j ).

The parameters to be determined during the training are the entries of the linear
filters. This results in a significant reduction in parameters, in contrast to dense
fully connected neural networks. It should be noted that, reflecting the filter, the
convolution operation can be interchanged with correlation. Therefore, since
the filter is learnable, its application can also be described in terms of correla-
tion. Input data can include multiple channels, which may vary across different
layers. In such cases, the filters are represented by tensors and the convolution
operation becomes multidimensional. This allows for the learning of unique
features for each channel and the generation diverse feature maps. Each convo-
lutional layer is followed by a pooling layer which uses pooling filters to reduce
the dimensionality of the feature maps. The most commonly used pooling tech-
niques are max pooling and average pooling, which, respectively, propagate the
maximum and average values from sections of the feature maps [13].

As a result, we can model the forward propagation of the input data in a
CNN as a composition of mappings φcn given by

φcn :Rnl−1×ml−1 →Rnl×ml , φcn(xl−1) = P (σ(C (xl−1))),

where nl and ml are, respectively, the length and the number of channels of
the output tensor of layer l , C is a convolution operator resulting from sliding
linear filters across the feature maps from the previous layer and adding a bias,
σ is a nonlinear activation function, and P is a pooling operator that coarsens
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the grid over which the feature maps are defined [7]. Moving deeper into the
network, higher-level features are created. The ones returned from the final
pooling layer are usually mapped to a vector and fed to an MLP, which returns
a prediction about the class label.
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Figure 6.16: A typical one-dimensional CNN architecture.

6.7.1 Experiments

The time series in the original data set were split into one-minute intervals and
collected into non-overlapping training and test sets, with the former containing
80% of the resulting series and the latter the remaining 20%. In Figure 6.17,
we show the results obtained using a CNN with 3 convolutional layers, each of
which doubles the number of channels and is followed by an averaging pooling
layer. Finally, an MLP consisting of one hidden layer and an output layer
consisting of a sigmoid function is used for prediction. To assign a label to the
input data, a threshold is fixed to 0.5, so that when the output is greater than
or equal to the threshold, the input time series is classified as broken, or intact
otherwise. Details on network architecture can be found in the code snippet
listed in Appendix 6.C, written in PyTorch [27].

The experiments are run with the number of epochs set to 100. The activa-
tion function and certain hyperparameters in the training procedure are varied
using the Optuna software framework [1]. More specifically, we evaluate
different values of batch size, learning rate, and weight decay for the Adam
algorithm [18], which is used as optimiser. The specific ranges for each pa-
rameter are listed in Table 6.8 in the Appendix. The loss function is defined as
the mean squared error (MSE) between the true labels and the predictions of
the network. The combinations of hyperparameters yielding the best results on
the test set for each level of noise, along with the corresponding mean squared
errors on the training and test sets, are presented in Table 6.5.
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Selected hyperparameters

Noise 1 Noise 10 Noise 50

activation
function

LeakyReLU LeakyReLU Swish

learning rate η 2.562 ·10−2 2.102 ·10−3 1.017 ·10−2

weight decay 1.243 ·10−5 1.221 ·10−5 1.520 ·10−7

batch size 30 10 30

MSE train 8.856 ·10−6 5.968 ·10−5 6.068 ·10−4

MSE test 2.815 ·10−5 3.054 ·10−4 2.427 ·10−3

Table 6.5: Combination of hyperparameters yielding the best results in each
scenario, corresponding to the plots in Figure 6.17, after conducting 100 trials
with Optuna.

6.8 Comparison of methods

In this section, we compare the tested methods based on performance metrics.
We consider precision, recall and F1-score, defined in terms of the entries in
the so-called confusion matrix in Figure 6.18 as:

Precision= T P

T P +F P
, Recall= T P

T P +F N
, F1-score= 2 ·Precision ·Recall

Precision+Recall
.

In Table 6.6, we report the performance of the methods measured with the
Python functions of sklearn.metrics: classification_report
gives the precision, recall and F1 scores.

TP

true positives - number of cor-
rectly classified broken wells

FP

false positives - number of
wrongly classified broken wells

FN

false negatives - number of
wrongly classified intact wells

TN

true negatives - number of cor-
rectly classified intact wells
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Figure 6.18: Confusion matrix used to evaluate the performance of the classifi-
cation techniques.

For the methods where we have tested different scenarios, we report here
only the best-performing ones, marked in bold in the respective sections. The
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Training set CNN - Noise 1 Training set CNN - Noise 10

intact
broken

Training set CNN - Noise 50

Test set CNN - Noise 1 Test set CNN - Noise 10 Test set CNN - Noise 50

Figure 6.17: The figures illustrate the transformation of the input data by the
CNN in both the training and test sets, under the three different noise scenarios.
Prior to the output layer, which predicts the class, each individual time series
is converted into a two-dimensional vector and can be visually represented as a
point on a plane. In the case of Noise 1 and Noise 10, the data points belonging
to the two categories form separate clusters.

results indicate that all the classical ML algorithms perform similarly well in
terms of accuracy, but are outperformed by the more advanced CNN. For the
different methods there are significant differences in the train and test times.

Already with 4 PCs, LogR-PCA shows almost perfect results. The number
of parameters needed to make the classifications is only one more than the
dimensionality of the data, proving that non-complex algorithms could suffice
in classification of the data. The decision trees score second to best using 4 PCs,
but needs significantly more parameters than the LogR. As the dimensionality
increases so does the number of parameters, making it prone to overfitting.
The SVM gets a lower comparative score than the two previously mentioned
methods, and needs 940 support vectors. However, as the number of PCs
increases, the number of support vectors is reduced, as seen in Section 6.6.
This suggests that the SVM would perform better and with higher robustness
on a data set with increased dimensionality than e.g. the DTs. Finally, CNN
provides the best results in terms of accuracy, and is able to correctly classify
all the time series in the Noise 1 and Noise 10 datasets, without requiring pre-
processing with PCA and COV-transform. As is common for deep learning
algorithms, however, it requires longer offline training time, and a fine tuning
of different hyper-parameters.
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Data set Method Precision Recall
F1

Score

Train
Time
(ms)

Test
Time
(ms)

Noise 1

LogR-PCA 0.997 0.997 0.997 10.195 0.990
DT-PCA 0.997 0.987 0.992 6.662 0.998
SVM-PCA 0.990 0.990 0.990 133.799 51.615
CNN 1.000 1.000 1.000 ∼ 3 min 30.535

Noise 10

LogR-PCA 0.997 0.994 0.995 12.408 1.001
DT-PCA 1.000 0.987 0.993 5.207 0.999
SVM-PCA 0.988 0.988 0.988 24.639 3.003
CNN 1.000 1.000 1.000 ∼ 3 min 27.133

Noise 50

LogR-PCA 0.808 0.750 0.778 11.026 1.016
DT-PCA 0.830 0.808 0.819 10.910 0.994
SVM-PCA 0.940 0.940 0.940 212.493 106.985
CNN 0.995 1.000 0.998 ∼ 4 min 49.181

Table 6.6: Performance of the methods. Given the high scoring of the classical
ML algorithms on the full data set they are here compared using 4 PCs of the
COV-transformed data set.

6.9 Conclusion

We observed in Section 6.2 that measures of statistical dispersion applied to
shorter time series are a good preprocessing tool for ML algorithms not specif-
ically designed to handle temporal dependencies. Additionally, we observed
how the dimensionality of the COV-transform data set could be significantly
reduced using PCA.

We presented in Section 6.3 a baseline method for classifying the time
series and discussed its efficiency. Given the method’s reliance on human
assistance, we were unable to evaluate its performance. However, we found
that the method, to a certain extent, would be able to distinguish between
broken or intact. Although the method is based on known statistical properties
and visualization techniques, making it easy to use for practitioners, it is prone
to human error.

In Sections 6.4-6.7, popular ML algorithms were trained on the prepro-
cessed data set. The tests showed that they performed remarkably well. In
particular, the good results obtained with a simple and popular method like
LogR validates the data transformation in the preprocessing phase. It was ob-
served that the performance of SVM deteriorated faster than LogR and DTs
as the dimensionality, i.e., the number of principal components, was reduced.
However, the low number of support vectors needed by the SVM with suffi-
ciently high dimensionality makes it a viable choice.
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Our findings indicate that classical ML algorithms, even when they are
not originally designed to take temporal dependencies into account, can excel
in TSC given proper pre-processing. CNNs, on the other hand, suggest that
deep learning is a powerful tool to extract discriminative features in time series,
without the need of any data manipulation other than normalization. However,
a common downside of deep learning algorithms is that the learned features
do not have an immediate interpretation. Additionally, when choosing an ML
method to be used in production one must carefully weigh the need for compu-
tational power versus accuracy.

Given the experimental results, we conclude that ML algorithms are advan-
tageous in order to reduce dependence on human decision making. In future
work, it would be of interest to investigate the use of both one-class ML and
unsupervised ML algorithms trained on field-measured data, as there are, to the
author’s knowledge, no documented measurements of a broken well. Such al-
gorithms could be, among others, one-class SVM [33], autoencoders [3], CNN
with Long Short Term Memory algorithms [4] or isolation forests [22], which
have shown good results for anomaly detection.
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Owren and Mathias Hansen for the valuable discussions in various stages of
this work. E.Ç. and A.L. would like to thank the group of Structural Analy-
sis Engineering at TechnipFMC Lysaker and Kongsberg for their support and
hospitality during their industrial secondment.

Appendix 6.A Data set

In the given maintenance operations, referenced in Section 6.1, the BOP is
monitored through the use of Deep Water Strain sensors (DWS) and Subsea
Motion Units (SMU). The DWSs give strain values at a cross-section close
to the well, which again may be used to calculate loads. The SMUs are used
to measure accelerations and rotational velocities above and below the flex
joint that connects the riser to the BOP. In certain cases, a load relief system
may be applied. One of these is the Wire Load Relief (WLR), which consists
of attaching wires to the BOP and securing it to a nearby sturdy structure.
Whenever WLR is used, one may also get access to the loads on each wire, but
we assume that we do not in this project.

A challenge in this project is that there exist no measurements of a well
with a confirmed crack. We model several different cases with an intact and
a broken well and analyze the data. The model is set up in the commercial
software Orcaflex [26]. The data set we work with is simulated based on a
generic well in the North Sea.
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When accessing a well, a decision must be made about which tools and con-
figurations to use. This is planned before the start of each operation. Whether
one or more configurations will be used varies depending on the operation be-
ing carried out. There are, however, specific configurations that, once selected,
cannot be changed easily. We set up the data set as follows.

We first consider a realistic combination of permanent configurations based
on

• load relief (3 settings),

• drilling or completion (2 settings),

• slack or tight wellhead housing (2 settings).

Other configurations may vary. In our case, we look into

• drillpipe tension (3 settings),

• sea states (18 settings).

Finally, for each combination of the above configurations, two simulations
are run with either the well broken or intact. Some settings do not combine
and some analyses are not able to converge, hence a total of 987 different
analyses are generated, each one hour long. Figure 6.19 gives an overview of
the structure of the data set.

NoWLR

XT

Slack

94

Tight

108

BOP

Slack

103

Tight

108

WLR-1

XT

Slack

108

Tight

108

BOP

Slack

108

Tight

108

WLR-2

XT

Tight

46

BOP

Tight

96

Figure 6.19: Number of analyses for fixed configurations. In red is the combi-
nation of configurations that we analyze in this work.

For each analysis, three sensors are simulated at likely sensor positions.
Two of these sensors, known as subsea motion units (SMUs), measure accel-
eration. One sensor measures strains at the wellhead and calculates bending
moments, and is known as a deep water strain sensor (DWS). All of these
sensors give information about the x- and y-direction and are logging at 5 Hz.
A possible setup is shown in Figure 6.1.
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Figure 6.20: To the left a pair plot of the data after using aforementioned
standard deviation transform on wells with a tight wellhead housing. For certain
combinations the broken and intact cases separate quite well. To the right a 3D
plot showing the spread of the data.
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Figure 6.23: Pair plot of the data after using aforementioned covariance trans-
form on wells with a slack wellhead housing. For certain combinations the
broken and intact cases separate quite well. 173
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Figure 6.21: Pair plot of the data after using aforementioned covariance trans-
form on wells with a tight wellhead housing. For certain combinations the
broken and intact cases separate quite well.

The specific configuration about the wellhead housing (slack/tight) is of
particular importance as one might not be sure about this property before ac-
cessing the well. If the wellhead housing is slack the BOP is prone to move
more around, which is a similar property to a cracked well. In such case we
observe an increased difficulty in classifying on slack data. This becomes ap-
parent when we view the data of the slack and tight WH housing in Figure 6.20
to 6.23

Since tight wellhead housing leads to a simpler classification problem than
the case with slack, the data set used in the main sections was limited to slack
wellhead housing.
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Figure 6.22: To the left a pair plot of the data after using aforementioned
standard deviation transform on wells with a slack wellhead housing. For
certain combinations the broken and intact cases separate quite well. To the
right a 3D plot showing the spread of the data.

6.A.1 Prepocessing the data set

Whether the time series are passed through a transformation described in Sec-
tion 6.2 or fed directly to the ML algorithm, they need to be pre-processed to
improve performance.

To standardize the data set’s features to unit scale, i.e., mean equal to 0
and variance equal to 1, we use StandardScaler from sklearn.pre-
processing. We may then apply Algorithm 6.1 to the standardized training
and test set, using PCA from sklearn.decomposition, to reduce the
dimensionality.

To train and validate the methods, we divide our data set into a training set
and a test set. Typically, these contain 80% and 20% of the original data set,
respectively. The machine learning algorithms in this paper makes predictions
on the training data and then corrects itself based on the true outputs. Learning
stops once the algorithm has achieved an acceptable level of performance on
the training set, and the accuracy is measured on the unseen data in the test set.
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Appendix 6.B Supplementary material for the repro-
ducibility of the experiments: Decision
trees

Pre-pruning Post-pruning
Data
transformation

Splitting
criterion

Hyperparameter Range α

STD

Entropy
max_depth [2,13]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

Gini
max_depth [2,13]∩N
min_samples_split [2,4]∩N 0.002
min_samples_leaf [1,2]∩N

COV

Entropy
max_depth [2,5]∩N
min_samples_split [2,4]∩N 0.01
min_samples_leaf [1,2]∩N

Gini
max_depth [2,6]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

COV-PCA(4)

Entropy
max_depth [2,8]∩N
min_samples_split [2,4]∩N 0.01*
min_samples_leaf [1,2]∩N

Gini
max_depth [2,8]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

Table 6.7: Hyperparameter ranges for the pre-pruning and choice of the α for
the post-pruning of the DTs, used to obtain the results reported in Table 6.3.
* except for the Noise 50 data set where α = 0.003.

Appendix 6.C Supplementary material for the repro-
ducibility of the experiments: Convolu-
tional Neural Networks

1 class cnnseries(nn.Module):
2 def __init__(self, act_name=’lrelu’):
3 super(cnnseries, self).__init__()
4

5 torch.manual_seed(1)
6 np.random.seed(1)
7 random.seed(1)
8
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9 self.conv1 = torch.nn.Conv1d(in_channels = 6,
out_channels = 12, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True)

10 self.conv2 = torch.nn.Conv1d(in_channels = 12,
out_channels = 24, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode=’zeros’,
device=None, dtype=None)

11 self.conv3 = torch.nn.Conv1d(in_channels = 24,
out_channels = 48, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode=’zeros’,
device=None, dtype=None)

12 self.avgpool = torch.nn.AvgPool1d(kernel_size = 15,
stride=5, padding=0, ceil_mode=False, count_include_pad=
True)

13 self.fc2 = nn.Linear(2, 1, bias=True, device=None,
dtype=None)

14 self.fc1 = nn.Linear(48, 2, bias=True, device=None,
dtype=None)

15 self.act_dict = {"tanh":lambda x : torch.tanh(x),
16 "sigmoid":lambda x : torch.sigmoid(x),
17 "swish":lambda x : x*torch.sigmoid(x),
18 "relu":lambda x : torch.relu(x),
19 "lrelu":lambda x : F.leaky_relu(x)}
20 self.act = self.act_dict[act_name]
21

22 def forward(self, x):
23 x = self.act(self.conv1(x))
24 x = self.avgpool(x)
25 x = self.act(self.conv2(x))
26 x = self.avgpool(x)
27 x = x.view(x.size(0), -1)
28 x = self.act(self.fc1(x))
29 x2 = x
30 x = torch.sigmoid(self.fc2(x))
31 return x, x2

Listing 6.1: Architecture of the CNN used in the eperiments of Section 6.7.

Hyperparameter Range Distribution

activation function {Tanh, Swish, Sigmoid,
ReLU, LeakyReLU}

discrete uniform

learning rate [1 ·10−4,1 ·10−1] log uniform
weight decay [1 ·10−7,5 ·10−4] log uniform

batch size {10,30,50,100} discrete uniform

Table 6.8: Range of values allowed for each hyperparameter in the experiments
with CNNs, with the third column describing how the values were explored
using Optuna.
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