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Abstract

Developing sustainable and robust data processing technology is an increas-
ingly important global priority in an energy-scarce world where computa-
tional resources limit state-of-the-art applications. Power-hungry generative
artificial intelligence systems consume vast amounts of energy and are find-
ing important new use cases along with fast-paced technological progress.
One strategy for surpassing the bottlenecks of development is to create new
and improved materials with properties that help solve the technological
challenges in a more energy-efficient manner. Metamaterials are one group
of candidate material systems where an engineered micro- or nanostruc-
ture can give rise to tunable material properties beyond those available
in common compound materials. These metamaterials can help with the
posed challenges by offering computation as a property of the substrate
itself; in-materio computation. This thesis concerns one specific group of
metamaterials: artificial spin ices, which are magnetic systems composed of
engineered configurations of nanomagnets. In artificial spin ices, the mag-
netic dipolar coupling between nanomagnets on a two-dimensional surface is
defined by its geometric configurations. Large arrays of these nanomagnets
with a vast number of interactions exhibit exotic emergent properties, such
as tunable magnetic order and emergent chiralities, and might also exhibit
emergent information-processing properties. The thesis aims to offer new
methods of understanding, designing, and controlling these systems, and it
builds on three papers. The first paper considers how to efficiently model
artificial spin ice systems on a large scale, where emergent properties of the
materials will manifest. A versatile and efficient simulator is introduced,
the foundation of the rest of the work. In the second paper, the transition
between two well-known artificial spin ice geometries is introduced, modeled,
and investigated experimentally. The magnetization of the nanomagnets in
the investigated artificial spin ices order into antiferromagnetic or ferromag-
netic order, and we observe regions of metamaterial domains of particular
magnetic orders. We find a controllable antiferromagnetic–ferromagnetic
order transition by rotating the elements of a square lattice artificial spin
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Abstract

ice. The transition is shown to have specific properties, continuity and
coupling-dependence, that require a slight modification of the point-dipole
simulator to model reliably. The second paper demonstrates experimentally
the predictive power of the simulator. The third paper introduces a new
method of controlling artificial spin ice. This method relies on details of the
switching mechanism of the nanomagnets, represented by an astroid-like
characteristic switching curve. Local control is achieved using globally
applied magnetic fields that exploit the inherent dynamics present at do-
main wall boundaries. This technique represents a new way to interact
with artificial spin ice systems that rely on the current microstate of the
system and selectively evolves the state only at applied field pulses. The
dynamics are governed by each field pulse in the sequence and we call the
method astroid clocking. Through these three papers, the thesis introduces
practical advances in designing and controlling artificial spin ices. These
advances are interesting from a fundamental physics perspective and can
help discover metamaterial properties useful for energy-efficient and scalable
computation.
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Sammendrag

Dette sammendraget er ikke en oversettelse av Abstract, men et forsøk på å
gjøre motivasjonen og hovedfunnene i forskninga tilgjengelig for et bredere
publikum.

Vi lever i en verden der stadig mer energi brukes på elektronisk databehan-
dling. Dette gjør vi fordi vi tror det er nyttig, selv om energien vi bruker er
en begrenset ressurs. Noen anvendelsesområder av digital regnekraft kan
være ekstremt nyttige, for eksempel i form av kunstig intelligens, men er be-
grenset av tilgjengelig regnekraft. Hovedmotivasjonen bak denne forskninga
er et ønske om å gjøre regnekraften vi bruker mer energieffektiv og mer
skalerbar, som vil si kraftigere.

For å jobbe mot dette målet har vi i denne forskninga undersøkt nye, mulig-
gjørende materialer. En stor del av grunnlaget for moderne informasjon-
steknologi ligger i gode materialer med passende egenskaper. Materialenes
egenskaper, som kan være alt fra kompresjonsstyrke til mer abstrakte egen-
skaper som signalresponsen i nervevev, bestemmes blant annet av deres
sammensetning og atomstruktur. Ved hjelp av nanoteknologi kan vi lage
helt nye materialer med helt nye egenskaper. Dette kan vi for eksempel gjøre
ved hjelp av konstruerte strukturer som har en størrelse mellom atomenes
verden og den makroskopiske verden vi opplever. Slike materialer kalles ofte
metamaterialer.

Denne avhandlingen omhandler et spesifikt magnetisk metamateriale som
kalles kunstig spinnis. Denne typen materiale består av knøttsmå nano-
magneter arrangert tett i tett, som vekselvirker gjennom sine magnetfelt.
Avhengig av hvordan vi arrangerer de små nanomagnetene får spinnis-
materialene forskjellige egenskaper, for eksempel hvordan de reagerer på
magnetfelt i ulike retninger. Vi vet at magnetiske materialer i teorien kan
behandle informasjon på en svært energieffektiv måte, og trolig på en svært
skalerbar måte. Forskninga vi har gjort tar steg mot å anvende denne
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Sammendrag

teoretiske muligheten gjennom å forstå systemene bedre og å utvikle nye
systemer med nye egenskaper.

Den første delen av arbeidet er en modell for effektiv datasimulering av store
sammensetninger av nanomagneter. Videre brukes dette simuleringsverk-
tøyet for å finne fram til nye nanomagnetsystemer med spesifikke makro-
magnetiske egenskaper midt mellom to kjente, motstridende magnetiske
egenskaper. Egenskapene til disse systemene verifiseres eksperimentelt. Til
slutt bruker vi innsikt fra modellen til å utvikle en ny metode hvor vi på en
praktisk måte kontrollerer magnetiseringen i materialene gjennom anvendte
ytre magnetfelt. Denne metoden tillater kontroll på et dypere detaljnivå
enn tidligere og benytter seg av de iboende egenskapene i materialet.

Avhandlingen bidrar gjennom utvikling av simuleringsverktøy, nye mate-
rialsystem og kontrollmetoder til å forstå hvordan vi kan skape og bruke
magnetiske materialer med ønskede egenskaper. Det er mye som gjenstår
før slike materialer kan anvendes i energieffektiv og skalerbar regnekraft.
Arbeidet presentert her bidrar med viktige steg mot praktisk anvendelse av
dette fagfeltet.
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1 Introduction

We are living in a material
world.

Madonna

A material can be a single pure substance, a complex mixture of substances,
or a macroscopic composite of other materials, described by its properties,
structure, the way it is made, or simply by its use[1]. Historical periods are
named after essential materials of their time, a witness to materials’ defining
societal, technological, and cultural significance. However, the available
selection of materials is defined by the materials of the natural world or
man-made composites of such materials. Technological progress is coupled
with an insatiable appetite for better and more sustainable materials for a
better world. Nanofabrication advances answer this call by introducing novel
material applications and a new distinct class of materials: metamaterials.

Metamaterials are materials with properties that go beyond what can be
obtained with conventional composite materials. These new or extended
properties are obtained by constructing materials of repeated microscopic or
nanoscopic elements, metaparticles, with a range of interactions[2]. Similar
to conventional composite materials, metamaterials are manufactured. In
contrast to conventional composites, metamaterials derive their unique
properties not from the mixture of chemically distinct components but from
their structure, metaparticles, and local interactions. While conventional
composites like the straw-reinforced clay brick have existed for millennia,
composite metamaterials are a recent addition[3].

The first examples of metamaterials were created in the second half of
the 1940s as materials with new properties for radio frequency waves by
W. E. Kock [4–6]. The metaparticles of Kock’s radio frequency metamaterials
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were rather large metallic elements on the centimeter scale, suitable only
for radiation with wavelengths larger than, or comparable to, these metallic
elements. With the advent of nanotechnology, it has become feasible to
create metamaterials with applications relevant to much more than radio
waves, such as optical properties requiring features well below 1 µm[7, 8].

Technological advancements provide the metamaterial toolbox of tuning, ex-
tending and combining materials, creating a vast space of possible properties

— and the list of sought after properties is long. Examples include mechanical,
chemical, optical, and electrical properties, such as the compressive strength
of concrete, the chemical inertness of glass, the refractive index of a polymer
coating, and the tunable conductivity of a semiconductor. There are also
more specialized and complex properties, such as the signal response of
neural tissue, which is highly dependent on the networked structure within
the material. Improved technological capabilities broaden available charac-
teristics of engineered materials and allow a high degree of material control.
This control extends to the class of magnetic properties, an integral part of
current and developing technological use.

Magnetic properties in materials are critical for various applications, from
data storage and magnetic sensors to energy generation and medical imaging.
The use of, not to mention the fascination with, magnets is ancient. One
example is their use in navigation as compass needles. The origin of the term
magnet itself was first described by the natural philosopher Pliny the Elder
(23–79 CE) in his Historia Naturalis[9]. While he perished in the Mount
Vesuvius eruption of 79 CE, along with thousands of scrolls of ancient texts
such as the Herculaneum scroll, magnets and magnetic materials continued
to develop and be used. In October 2023, magnets were vital to reviving
the first text passages of the Herculaneum scroll using the Diamond Light
Source synchrotron[10], although there is little hope for Pliny himself.

In summary, materials define the world. With nanotechnology, we can more
fully define their properties, including the magnetic properties. Magnetic
materials are marvels of the past, present, and future. The following
sections will provide a more detailed historical and technological context for
using magnetic materials and explore the primary motivation for this work:
scalable, energy-efficient computing using nanomagnets.
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1.1 Historical and technological context

1.1 Historical and technological context

The foundational understanding of magnetism in the context of modern
technology began with Ørsted’s discovery in the early 1800s, linking elec-
tricity and magnetism[11]. Maxwell’s formulation of electromagnetic theory
further established a theoretical description of electromagnetic fields and
their interactions with matter[12]. Maxwell’s equations created a frame-
work for technological applications such as wireless telegraphy, radio, and a
vast number of electromagnetic devices. In the early 1900s, Pierre Weiss
established a microscopic origin of magnetism and introduced the concept of
magnetic domains, clarifying how materials exhibit magnetism at the macro-
scopic level[13]. Developing a theoretical understanding of magnets provided
the foundation for the modern use of magnetic material properties.

Magnetic domains of ferromagnetic materials were used as recording and
data storage media soon after their discovery[14]. During the 20th century,
magnetic materials developed and became widespread, from ferrite magnets
used in magnetic core memory to floppy disks and hard disk drives. At the
end of the 20th century, giant magnetoresistance (GMR) was simultaneously
discovered by two independent research groups led by Albert Fert and Peter
Grünberg[15, 16], which dramatically increased the data storage density
as read heads switched from inductive to much more sensitive resistive
readout.

The discovery of GMR significantly enhanced magnetic storage media by
utilizing the electron’s spin, a quantum mechanical property of the electron,
marking the beginning of the spintronics era. In spintronics, the electron
spin, not just their electric charge, is exploited for information processing
and storage.

Following the discovery of GMR, several important discoveries directly im-
pacted storage media, sensors, and computer technology. The discovery of
tunnel magnetoresistance (TMR)[17] in magnetic tunnel junctions (MTJs),
and spin transfer torque (STT)[18] led to the development of magnetore-
sistive random-access memory (MRAM)[19] and the conceptualization of
STT-MRAM[20]. The latter has the potential to dramatically impact how
we use the modern computer by providing a competitive universal memory
technology that combines permanent and fast storage. In the early 2000s,
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1 Introduction

there were several milestones in spintronics, such as the discovery of the
spin Hall effect[21], topological insulators[22], and the quantum spin Hall
effect[23].

The field of spintronics utilizes many magnetic materials with different
magnetic orders. Electronic switching of an antiferromagnet was established
within the last decade, and paves the way for technology that can offer faster
and more energy-efficient magnetic switching[24]. This energy efficiency
might be further enhanced by eliminating electron transport through devices
based on the waves of the electron spins, with the field of magnonics
emerging[25]. Another avenue for energy efficiency is emerging spintronic
devices. These devices are based on novel material structures, such as
two-dimensional magnetic crystals[26] or the quantum anomalous Hall effect
enabling the switching of magnets with tiny currents[27]. Advances in
material quality and material engineering facilitated these developments.
Recently, a new phase of magnetic order has gathered attention, termed
altermagnetism[28, 29]. A brand new phase of magnetic order is a prominent
example of magnetic material properties as a relevant research avenue.

What material properties are relevant, and what materials are technolog-
ically available? While most of the novel magnetic materials with exotic
spintronic properties are chemically or physically synthesized, they are
governed by the stable states of the arrangements of atomic matter. With
nanofabrication and the concept of metamaterials, a top-down approach is
feasible, introducing many degrees of freedom in designing materials and
their resulting properties.

Magnetic metamaterial tuning involves structurally manipulating these at
the nanoscale to tailor their magnetic properties for specific applications.
This tuning can lead to materials with customizable magnetization dynamics,
enhanced magnetic field sensitivity, or novel quantum effects, offering a
pathway to overcoming the limitations of conventional magnetic materials.

One example of such magnetic metamaterial systems is artificial spin ices
(ASIs), first introduced by Wang et al.[30]. Nanofabrication techniques,
notably electron beam lithography, enable the fabrication of large arrays
of single-domain nanomagnets that interact through their dipolar fields.
These systems exhibit a plethora of emergent behavior and have attracted
considerable research interest[31, 32]. They come in a large variety of config-
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1.1 Historical and technological context

urations, typically in some variation of two-dimensional tiling. Applications
range from model systems of statistical thermodynamics to next-generation
computing devices. Their shared features are metaparticles of well-defined
magnetization arranged in an extended geometric configuration, well in line
with the definition of a metamaterial (barring the typical two-dimensionality
of ASIs).

With ASIs, it is possible to engineer specific material properties. These
properties are not limited to the materials’ magnetic properties, but can be
more abstract and complex. One important example is the artificial spin ice
(ASI) response to some signal, analogous to the signal response of neural
tissue mentioned earlier. The possibility to design material properties makes
ASIs relevant for several applications in computing devices, such as com-
putation in-materio[33]. Recently, researchers have performed experiments
where ASIs are used in the first step towards neuromorphic computation
with nanomagnets[34, 35]
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1.2 Motivation for the thesis

Your scientists were so
preoccupied with whether or not
they could, they didn’t stop to
think if they should.

Dr. Ian Malcolm, Jurassic Park

1.2.1 Energy efficient compuation

The information and communication technology (ICT) sector is a significant
consumer of global electricity, a scarce resource that is still directly linked
to CO2 emissions. In 2022, data centers and telecommunication networks
alone accounted for between 2.8% to 3.8% of all electric energy use in the
EU[36]. The ICT sector is growing rapidly; from 2010 to 2018, the global
installed storage capacity increased by a factor of 26 and data center internet
traffic by a factor of 11[37]. Current generative artificial intelligence (AI)
models are particularly power-hungry, and generating a single artificial
image can consume as much energy as a full battery charge of a typical
smartphone[38]. With the exponential growth of data production fueled
by advancements in AI, internet of things (IoT), and cloud services, this
computation consumption is expected to increase, posing immense challenges
in sustainability and energy efficiency. Fortunately, the significant increases
in scale have up until now been offset by considerable energy efficiency
increases. However, continued focus on research and innovation is required
to keep pace with the rapidly growing consumption of ICT services.

The pursuit of energy-efficient computation naturally poses the question of
fundamental limits of information processing. In his foundational work, Rolf
Landauer proposes a theoretical thermodynamic minimum amount of energy
required to erase one bit of information, the so-called Landauer limit [39].
The Landauer limit establishes a boundary on the minimum energy cost for
the irreversible manipulation of information, due to a corresponding and
unavoidable increase in entropy[40]. This limit has since been established
experimentally and is not a completely esoteric concept[41]. Landauer’s
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insight reveals that computing will never be entirely energy-free, but there
is significant room to improve the energy efficiency of current technologies.
Standard electronics see substantial energy dissipation through resistive loss
due to the need for electron transport.

Devices based on magnetic material systems offer pathways to increase
energy efficiency in computation. Unlike traditional electronic devices that
rely on charge-based information transfer by electron transport, magnetic
systems can leverage spin-based information processing. Nanomagnetic
systems can operate with substantially lower energy dissipation, shown
to approach the Landauer limit in simulations of nanomagnetic logic[42].
Research into novel magnetic materials and new computation paradigms
using nanomagnetic systems are critical research areas for a sustainable ICT
sector.

1.2.2 Scalable neuromorphic computation

The exponentially growing consumption of computation requires vast
amounts of energy but is ultimately driven by important societal and tech-
nological needs. One recent example is the vast amounts of computer power
required to train large language models (LLMs) for artificial intelligence
(AI). Such models are trained using a staggering number of floating-point
operations (FLOPs), such as GPT-4, which used 2.1 × 1025 FLOPs, or 21
billion petaFLOP, using the method of reinforcement learning on large data
sets[43]. Google Deepmind’s Gemini Ultra model, trained in the same man-
ner, is nearing 80 billion petaFLOP and rapidly approaching the disclosure
limit of the recent U.S. Executive Order of 100 billion petaFLOP[43, 44].
Currently, consumption of FLOPs for training AI increases at 0.6 orders of
magnitude each year[44].

It might be possible to decrease the computation required for AI performance
by algorithmic improvements rather than scaling. Such algorithmic improve-
ments could be explicitly engineering in human insights instead of relying on
shear brute-force computation by reinforcement learning. However, as the
father of reinforcement learning, Richard Sutton, puts forth in his argument
on the "Bitter Lesson", this strategy historically and ultimately falls short of
upscaling computation[45]. The critical insight of the Bitter Lesson suggests
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that general methods leveraging computation, such as search and learn,
are ultimately more effective than approaches relying on humanly designed
features or conceptions of knowledge. Thus, the scalability of computation
presents another significant global challenge.

Magnetic computation, e.g., computation with ASI systems, presents an
innovative approach to scaling computation beyond Moore’s law. By lever-
aging the magnetic properties of materials for computation in materio,
magnetic systems potentially offer a scalable alternative that surpasses
traditional electronic constraints[46]. Traditional computers rely on myriads
of transistors in simple logic gates that build an ever-expanding hierarchical
tower of abstractions. However, other computation paradigms exist, and we
already know of some, such as the computation offered by neural tissue in the
brain. These new computational models rely on entirely different architec-
tures of computation; one example is commonly referred to as neuromorphic
computing.

Neuromorphic computing is computing based on a network of computational
parts and nodes. The network structure, reminiscent of the architectural
model of the human brain, enables more efficient processing of complex data
patterns and adaptive learning capabilities. Unlike traditional computing
architectures that separate memory and processing units, neuromorphic
systems integrate these functions in a network of artificial neurons and
connections. While many current instances of neuromorphic computing
use virtual nodes and simulated connections, material neuromorphic com-
putation can be realized in custom hardware and is a developing area of
research[47].

In conventional CMOS technology there are also promising computational
models for scalable computation that involve specialized hardware. While the
increase in base clock frequency of commercial processors stalled more than
a decade ago, manufacturers have pivoted to provide multi-core processors or
specialized GPU hardware to keep up with the development[48]. GPU price-
performance improvements hint at how successful this approach has been,
as the cost of computation capacity (measured in FLOPs per second per
dollar) halves roughly every 2.5 years[49]. This immense success of GPUs is
evidence that specialized hardware is a viable strategy. Computation using
magnetic materials, e.g., neuromorphic computation, can be a potential
avenue for future specialized hardware[46].
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In summary, the research of this research is driven by the urgent need
for more energy-efficient electronics, sensors, and computers to address
the environmental impact of our growing digital footprint. Moreover, it is
inspired by the potential of ASI systems to usher in a new computation
paradigm. This paradigm could significantly reduce energy consumption
and enhance scalability, thus contributing to the development of sustainable
AI. This effort towards more sustainable computing practices embodies both
a technical challenge and a moral imperative. We must consider the broader
implications and costs of the capabilities we unlock through technological
innovation in the big picture.

The research is inspired by the possibility of mitigating the energy con-
sumption of computation and the scalability issues current applications face.
We believe this can be done by exploiting ASI systems and their unique
advantages, which combine the energy-efficient information processing of
magnetic systems, the available tunability of the emergent properties, and
the access to directly observe and understand their behavior. However,
there is a long way to go, but it will be necessary to start with mastering the
design and control of the material systems. The following section presents
the direct goals of the thesis.

1.3 Aim of thesis

The main goal of this thesis is to expand the framework for designing,
controlling, and analyzing metamaterial systems of ASI. In order to achieve
this, the work presented herein involves extensive modeling and experimental
work.

The overall goal can be divided into the following specific goals:

1. Model the physics of ASI systems practically and efficiently to manifest
large-scale material properties.

2. Develop and optimize the design process for fabricating ASI systems
of any configuration.
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3. Control the state and dynamics of ASIs.

4. Develop tools to analyze ASI states and responses to stimuli.

Together, these goals expand the foundation for ASI systems as a theoretical
and experimental testbed for new and useful magnetic materials. With
the tools and methods presented herein, ASI systems demonstrate new
metamaterial properties and provide information processing substrates for
next-generation computation.
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2 Nanomagnetic systems

2.1 Magnetism

To understand the modeling of nanomagnetic systems, it is helpful first to
understand what a nanomagnetic system is or even what a magnet is. In
the colloquial sense, magnets are objects of a magnetic material, typically
ferromagnetic, that exhibit a spontaneous net magnetization. In other
words, magnets are objects with an internal quantity of magnetic moment
that does not cancel out, and thus also with an extended magnetic field
outside it, the so-called magnetic stray field[9, 50]. For the layman, the
stray field that interacts with other materials is a magnet’s quintessential
and nearly magical property. The stray field of a magnet can induce a
magnetization in another object, which in turn can favor energy-minimizing
attraction between the two. Magnetization and stray fields are fundamental
concepts that underlie the work of this thesis. However, the atomic origin
of magnetism will not be necessary for the discussion in this thesis, and
the reader is referred to the excellent work of Stöhr and Siegmann for more
information[9].

Magnetization is a measure of the density of magnetic moments. Magnetic
moments, or magnetic dipole moments, are vector quantities (noted m) that
we define here as the source of a magnetic field, the vector representing the
moment strength and direction. By the superposition principle, magnetic
moments accumulate or cancel out, and magnetization typically refers to
the net magnetic moment of an object divided by its volume to provide a
measure of magnetic moment density. It is useful to describe magnetization
as a vector field, M, a field which is zero at any point r = (x, y, z), ∈ R3

outside a magnetic material and non-zero inside:

M(r) = Mx(r) î + My(r) ĵ + Mz(r) k̂, (2.1)
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where Mx(r), My(r), and Mz(r) are the components of the magnetization
vector in the x, y, and z directions, respectively, each as a function of r.

The magnetic field, or magnetic flux density (noted B), is a slightly more
nuanced physical quantity. It can be defined by the Lorentz force it exerts
on charged particles or simply by the magnetic torque τ ,

τ = m × B, (2.2)

that a single magnetic moment m experiences in its presence. The mag-
netic flux density B encompasses both an applied magnetic field and the
magnetization response of a material subjected to B. However, it is useful
to distinguish these effects, and an auxiliary field H is defined such that

B = µ0(M + H), (2.3)

where µ0 is the vacuum permeability. H is also known as the magnetic
field strength, and outside a magnetic material, i.e., where M = 0, it
is proportional to B. In this thesis, it will be most relevant to refer to
the magnetic field outside of magnetic materials, and the term stray field
(occasionally dipolar field or demagnetization field) will be used to refer
to the H-field originating from a magnet. For practical reasons, values
for the H-field magnitude will be given in units of tesla (T, or often mT),
technically designating the quantity µ0H where H is the magnitude of H.

The most relevant aspects of magnetism necessary to understand this thesis
are the magnetization of magnetic materials, or magnets, and the magnetic
stray field they emit. However, magnets come in all shapes and sizes, which
affects their magnetic properties and introduces new important aspects such
as anisotropies and switching.

2.2 Origin of nanomagnetism and 2D nanomagnets

While the magnetization of a macroscopic magnet often can be described
as an average magnetization or a single total magnetic moment, this is a
gross simplification. In the early 20th century, Pierre Weiss introduced
the concept of ferromagnetic domains[13]. A macroscopic magnet is not
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magnetically homogeneous, but rather a collection of microscopic regions
with uniform magnetization along different directions, known as domains.
The magnetization of these domains collectively sum to the magnetization
of the magnet. The domains are separated by domain walls, and the exact
configuration is a delicate balance of domain walls and domains with their
resultant stray fields.

The minimization of the total free energy of the magnet determines the
domain structure. For simplicity and relevance to the material system
of this thesis, we consider a magnet without material magnetocrystalline
anisotropy, and in the absence of an applied field for now. We also ignore
contributions like stress and magnetostriction. Two energy contributions
remain, and they dominate the magnetic microscopic structure: the energy
associated with the stray field and the energy associated with the so-called
exchange interactions[51].

The energy cost of the stray field is due to its self-interaction with the
magnet, which favors demagnetization. The stray field is, therefore, often
called the demagnetizing field (and then refers to the field inside the magnet
as well), and the energy is expressed as

Edemag = −1
2µ0

∫
magnet

M · HdemagdV. (2.4)

The stray field and thus, Edemag, can be minimized by arranging the magne-
tization of domains to establish magnetic flux closure inside the magnet[52].
Reduction of magnetization by field minimization leads to preferred mag-
netization directions for magnets of different shapes and sizes, known as
shape anisotropy. The magnetization of otherwise magnetically isotropic
thin films lie in an in-plane direction due to this shape anisotropy, and this
is also why magnetic compass needles have a well-defined magnetization
that lies along their long axis.

Exchange interactions put a bound on the intricacy of the magnetic domains
that a magnet can exhibit. While the origin of these interactions is quantum
mechanical and relates to the atomic origin of magnetism, it can be under-
stood as the energy cost of neighboring misaligned magnetic moments inside
the magnet. Inside a magnetic domain, the exchange energy is minimized
as all moments align favorably, while the exchange interaction is significant
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M

Hdemag

a) b) c)

Figure 2.1: Schematic of domain creation by minimization of the stray field.
a) A single-domain magnet with a significant demagnetizing field
Hdemag. b) By introducing a single domain wall (dashed line) and a
new domain of opposite magnetization, the demagnetizing field is
significantly reduced. c) By introducing more domain walls, com-
plete magnetic flux closure can occur within the magnet, and the
demagnetizing field is eliminated at the cost of creating domain
walls.

across a domain wall where the magnetization changes abruptly. Therefore,
the exchange interaction favors minimizing domain walls in a magnet.

Minimization of the stray field by demagnetization and minimization of
domain walls are competing effects, illustrated in Figure 2.1. In the single-
domain case, the entire magnetization of the magnet contributes to the
stray field, which is maximized, but there are no domain walls, so exchange
energy is minimized. As domain walls are introduced, the demagnetization
energy is decreased, at the cost of exchange energy. This simple picture
portrays the competing effects that balance the domain wall formation and
the stray field.

It is worth noting that the demagnetization energy is a function of the total
volume of the magnet. In contrast, the exchange energy associated with
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domain walls is a function of the cross-section. For a magnet of a particular
characteristic size d, the demagnetization energy contribution grows with
the volume (∝ d3), while the domain wall contribution grows with the
cross-section (∝ d2). In the limit of very large magnets, we expect to find
a magnet with many domains and domain walls but a fully canceled-out
magnetization and no demagnetization field. However, in the limit of very
small magnets, we expect the energy cost of even a single domain wall to
surpass the energy of a completely uniform magnetization: a single-domain
particle.

The single-domain magnet is typically observed for submicron particles, i.e.,
magnetic nanoparticles or nanomagnets[53, 54]. They are the fundamental
building blocks of nanomagnetic systems, and the motivation for their size
mirrors the classic motivation for nanoparticles, where bulk and surface
effects switch dominance. The exact size threshold for single-domain nano-
magnets depends on the exact shape and material properties. Due to the
shape anisotropy, elongated nanomagnets are more likely single-domain,
even at larger dimensions. For elongated magnets, the shape anisotropy
also ensures that the magnetization favors alignment along the long axis,
establishing two stable magnetization configurations: a bistable nanomag-
net[55].

It is worth noting that single-domain particles also exist in the reduced two-
dimensional system, e.g., in a patterned magnetic thin film. Domain walls in
a thin film are functionally one-dimensional, and the domains that produce
the demagnetization field are two-dimensional. The topology restricts the
creation and movement of domain walls, affecting nanomagnet behavior
such as magnetization reversal.

While a single-domain nanomagnet, by definition, does not have domain
walls that can move, the magnetization can change in response to stimuli
such as an external field or temperature. Circular and rounded, near-circular
nanomagnets do not have significant barriers between stable magnetization
configurations, and the magnetization coherently rotates in response to the
applied field[56]. Bistable nanomagnets, on the other hand, have a high shape
anisotropy-induced energy cost for the magnetization state perpendicular to
the long axis, which would occur for coherent magnetization switching. Other
switching mechanisms, such as domain wall nucleation and propagation,
can occur as the cost of a domain wall across the short dimension is lower
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than across the long dimension[54]. Switching is also influenced by other
factors such as the edge roughness of the magnet[57].

Switching in single-domain nanomagnets has been well-described mathe-
matically, notably by Stoner and Wohlfarth[58]. They formulate the energy
E of an ellipsoidal particle of volume V and saturation magnetization MS
as the sum of two terms,

E = KV sin2 θ − MSV H cos(ϕ − θ), (2.5)

where θ is the angle of the magnetization direction and ϕ is the angle of
the applied field, both with respect to the long-axis. H denotes the applied
field strength. The first term describes the anisotropy energy and the cost
associated with off-axis magnetization, and the second term is the energy
due to the applied field, the Zeeman energy[9]. The stable magnetization
direction for any given field minimizes the total energy of Equation (2.5).
An elongated nanoparticle with a magnetization along one direction of the
long axis can be described as a stable point in an energy landscape. There
is also a stable point at the opposite magnetization direction, separated by
an energy barrier, see Figure 2.2a. If an external field is applied, the energy
landscape changes as described by Equation (2.5), and the magnetization
will favor alignment with the field. When the applied field becomes strong
enough, a jump in the magnetization occurs. This hysteresis behavior
of the magnetization of a nanoparticle as a function of the applied field
in the Stoner-Wohlfarth model is plotted for two applied field angles in
Figure 2.2d.

For any applied field direction, there is a corresponding field strength that
is strong enough to switch the magnetization, unless the magnetization is
already aligned in the energy-minimizing direction. This field is referred to
as the critical switching field. The strength of the critical switching field
for any direction can be plotted as a curve of field strengths in terms of the
parallel and perpendicular field components, see Figure 2.2f. The result is
an astroid curve and is called the Stoner-Wohlfarth astroid[58, 59].

One nanomagnet alon and and its states, field, and switching criteria do not
give rise to interesting dynamics and ambitious, far-reaching applications.
We need many of them for that. Nanomagnetic systems are more extensive
collections of nanomagnets. Nanomagnets can be colloidal magnetic particles
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Figure 2.2: The Stoner-Wohlfarth model of stable magnetization states for a
single-domain particle. a-c) The energy landscape for a single-
domain particle as a function of magnetization direction θ for: a)
no applied field, b) a field applied at ϕ = 5◦, and c) the same
field strength applied at ϕ = 25◦. d) Hysteresis curves for the two
applied field directions, ϕ = 5◦ and ϕ = 25◦, indicating the field-
parallel component of the stable magnetization M for a given field
strength H. Dashed lines indicate a magnetization switch between
the up state (θ = 0◦, green curve) and the down state (θ = π, pink
curve). The applied field strength ∥H∥ is large enough to switch the
magnetization down-to-up if applied at ϕ = 25◦ but not at ϕ = 5◦.
e) Schematic of the two stable magnetization states at no applied
field. f) The resulting Stoner-Wohlfarth astroid, depicting critical
values of the parallel and perpendicular field components, H∥ and
H⊥, and the two applied fields. An applied field will switch a magnet
to the green (pink) state if the vector crosses the green (pink) curve.
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that aggregate into micro- or macroscopic structures or simply arranged on
a surface as a patterned magnetic thin film. One example of a nanomagnetic
system is a collection of two-dimensional particles that interact through
their stray fields, such as that of ordered thin film nanomagnets found in
artificial spin ice (ASI).

2.3 Artificial spin ice

Artificial spin ices are engineered nanomagnetic systems, originally designed
to mimic the frustration and degeneracy found in pyrochlore spin ice ma-
terials[60–62]. The concept of spin ice materials originates from the study
of rare earth titanates[63], and are characterized by so-called frustrated
magnetic order. The work with pyrochlore spin ices laid the theoretical
groundwork for artificial spin ices, which are engineered magnetic systems
that deliberately exhibit magnetic frustration by their geometric design.
The etymological origin thus derives from the fact that the nanomagnets
are not true electron spins but artificial spins (macrospins). Further, the
ice nomenclature is inherited from the pyrochlores, whose spin structure
resembles the hydrogen orientation in water ice. In the original conception
of ASI, artificial spin ice, pyrochlore spin ice, and water ice all obey the
so-called ice rules, i.e., vertices of two-in-two-out[64–66]. Several so-called
ASI configurations stray significantly from their namesake through the
analogy to the water ice structure and could be better termed artificial
spin systems[32]. This thesis will use the acronym ASI to describe all ASI
derivatives, ice-like or not, for obvious reasons.

Despite the esoteric name ASIs offer a macroscopic scale that allows for
practical, direct observation and manipulation of magnetic moments in
a nanomagnetic system[67–70]. This practical accessibility makes ASIs
relevant as analog model systems for studying magnetic frustration and
statistical mechanics[71]. Furthermore, researchers have developed and used
ASI systems for a range of other applications, for example as a metamate-
rial with emergent physical phenomena[72] or as reconfigurable magnonic
crystals[73].

There have been many experiments studying ASI and their behavior. The
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first physical realization of ASI, lithographically patterned nanomagnet ar-
rays, was designed to topologically mimic the frustration found in pyrochlore
spin ice[30]. This first example demonstrated the prototypical square ASI,
and focused on studying frustrated magnetism that was directly observable
on a macroscopic scale. Various lattice geometries were soon explored in
order to study their impact on the magnetic behavior. Examples include the
honeycomb lattice ASI, or Kagome ASI, which revealed monopole dynamics,
i.e., magnetically charged vertices and how they interact on the lattice[67].
Many experiments were made viable through magnetic force microscopy,
which can be used to directly observe the microstates of ASI structures at
a single-spin resolution[68, 74]. Emergent phenomena, like the formation
of magnetic charge crystallites, i.e., metamaterial domains, were observed
directly and highlights the potential for using ASI as a metamaterial[75].
Advancements in the control and manipulation of ASI systems have opened
new avenues for research and applications. One example is advanced charac-
terization techniques like photoemission electron microscopy (PEEM) using
x-ray magnetic circular dichroism (XMCD) contrast[74, 76, 77]. These
studies supplied direct experimental evidence supporting the theoretical
framework of spin ices.

The theoretical foundation of ASI is deeply rooted in geometric frustration,
where the spatial arrangement of elements prevents the minimization of
energy in all interactions simultaneously. Several spins terminate at ASI
vertices, and the spin orientation is subject to competing influences by neigh-
boring interactions. This is sometimes referred to as the ice rules, which
appear in the square ASI where vertices of similarly low energy compete[78].
This phenomenon often leads to a degenerate ground state and a wealth
of emergent behaviors[79]. The topology of the ASI lattice thus plays a
crucial role in its magnetic properties. Regular lattices of ordered vertices
can support Dirac strings and magnetically charged quasiparticle excitations
that emerge from the topology of the spin configurations[80]. These effective
particles behave as positive or negative charges and can move through
the lattice, providing a macroscopic manifestation of magnetic charge cur-
rents[74]. The interplay between geometric frustration, lattice topology, and
the dynamics of emergent magnetic charges and their domains[81] creates
a platform for exploring fundamental questions in physics, including the
nature of phase transitions[82, 83]. These systems also allow the study of
collective phenomena. Recent studies focus on the emergent phenomena in
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ASI and their applications beyond the study of frustrated magnetism, such
as their potential in realizing novel computational paradigms[35, 84].

There is a plethora of established ASI geometries. Some examples include
the Ising, square, pinwheel, or Kagome ASIs, illustrated in Figure 2.3. Note
that while the Ising model is not, strictly, an example of a spin ice, the
physical implementation of the Ising model with artificial spins is here
considered as a prototypical artificial spin system and referred to under the
ASI label. Furthermore, there are also non-periodic tilings like the ASIs
inspired by Penrose tilings[85, 86]. With parametrized design, it is possible to
create ASIs of any imaginable design, such as the aperiodic, infinite Einstein
tiling[87]. An ASI does not need to tile the plane, and there has been work in
limited ASI configurations generated by an evolutionary algorithm to satisfy
the demand of a computational fitness function[88, 89]. It is also possible to
do arbitrary permutations to well-known lattices in order to introduce new
and impactful effects, such as higher-order anisotropies, dilutions, or other
methods I am not able to disclose here. ASIs offer an extensive toolbox of
interesting nanomagnetic systems with many applications.

Recently, applications for ASI towards computation have been a focus
of research. These research efforts make practical relevance of the large
foundation of theoretical work related to ASIs, e.g., in implementations of
neuromorphic computation or reservoir computation[33–35, 46, 90]. Com-
putational models using a physical substrate, or a metamaterial, as a means
of computation are examples of computation in materio. Magnetic sys-
tems can dissipate very little energy in information processing, and thus,
material computation can be a viable candidate for future energy-efficient
computation[42, 91, 92].

ASIs are nanomagnetic systems with a solid theoretical foundation and
several promising technological applications. They exhibit exotic behavior,
such as frustration and emergence, and provide a versatile metamaterial
platform because of the tunability of their design. While the technological
potential is vast, so is the design space, and much research remains.

20



2.3 Artificial spin ice

a) b)

c) d)

Figure 2.3: Schematics of some examples of conventional ASI geometries: a)
Ising, b) square, c) pinwheel, d) Kagome.
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3.1 Micromagnetic modeling

The continuum approximation, where materials are approximated as con-
tinuous media[93], is a powerful description of the physical world. When
applied to the world of magnetic materials, the continuum approximation
is described as the micromagnetic approach[94, 95]. Micromagnetic theory
abstracts away the complex atomic origin of magnetism but is detailed
enough to resolve domain walls and other sub-micron magnetization details.
It can be applied to both magnetostatic equilibrium problems and dynamical
problems.

Problems in micromagnetic modeling are solved by defining an initial magne-
tization state and applying an equation to evaluate and update the state. In
equilibrium problems, the goal is to find a stable minimum, and a numerical
solver explores the vast space of magnetization states to identify one with
minimum energy. In dynamical problems, the goal is to find the next state,
i.e., the time evolution of the system. These problems are governed by the
Landau-Lifshitz-Gilbert (LLG) equation, which is expressed as

∂M
∂t

= −γM × Heff + α

MS
M × ∂M

∂t
, (3.1)

where M is the magnetization vector, Heff is the effective magnetic field
including external and internal contributions, γ is the gyromagnetic ratio,
α is the magnetic precession damping parameter, and MS is the saturation
magnetization[96]. The first term on the right-hand side represents the
precession of the magnetization vector around the effective field. The second
term represents the damping that aligns M with Heff, leading to energy
dissipation and the eventual stabilization of M in the direction of Heff.
Equation Equation (3.1) combines both the dynamics of magnetization
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precession due to the magnetic field and the relaxation towards equilibrium
through damping. In modern uses of micromagnetic modeling, the equation
is solved by computationally efficient numerical solvers and simulation
tools.

Two of the most common micromagnetic simulation tools are OOMMF and
mumax3 [97–99]. The framework most used in this thesis is the mumax3

framework developed by the DyNaMat group at Ghent University. mumax3

uses finite-difference discretization and defines the model world on a grid.
Properties like fields and magnetization are evaluated at the grid cell centers,
while couplings like the exchange interaction are evaluated at grid cell
interfaces. All physical contributions — such as thermal effects, electrical
currents, or spin-transfer torques — are expressed in terms of effective
fields or magnetic torques. The sum of the effective fields and torques are
used to solve Equation (3.1) with respect to energy minimization or time
evolution.

The physical contributions available in mumax3 include spin-transfer
torques[18, 100], the Dzyaloshinskii-Moriya interaction[101], the magne-
tocrystalline anisotropy[102], and thermal fluctuations[103]. Including these
phenomena allows the assessment of micromagnetic systems for various
device applications, including electrical interactions. However, the most
relevant contributions for the work in this thesis are the magnetostatic
field, the exchange interaction[94], and the Landau-Lifshitz torque[104, 105].
With these three contributions, it is possible to calculate the equilibrium
state and switching characteristics of a nanomagnetic element with no
magnetocrystalline anisotropy, such as the polycrystalline Permalloy (NiFe)
structures used in this thesis. In figure Figure 3.1, the relaxed magnetization
configuration of a typical nanomagnetic element is shown. Such simula-
tions can help infer the single-domain state of various nanoparticle shapes,
calculate their stray fields, or even their switching characteristics.

mumax3 provides trustworthy solutions to problems relating to the proper-
ties of nanomagnetic elements, such as the hysteresis behavior. Simulation
of the critical field-strength switching threshold for a range of angles can
provide a characteristic switching curve similar to that of Figure 2.2f. In
Figure 3.2, the magnetic hysteresis curve for two field angles, the total
characteristic switching curve, and the corresponding states of a typical
stadium nanomagnet, as obtained from mumax3 simulations, are shown.
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Figure 3.1: Mumax simulation showing the relaxed magnetization of a typical
stadium-shaped nanomagnet. The magnet is 220 nm × 80 nm in
length and width, and 10 nm thick in the plane. The color wheel
indicates the magnetization direction that each pixel represents.
Gray is non-magnetic. The magnet has a coherent single domain
with slight aberrations near the ends due to shape anisotropy.

There are no inherent limitations to the geometries that mumax3 can simu-
late, except those set by the finite-difference discretization. Parametrization
allows a search for optimal properties through the automatic construction
of geometries. The configurations are not limited to periodic structures,
and other algorithmic tilings are easily accessible. It is only the imagination
of the creator that limits the possibilities. One example of a non-regular
packing, which tiles the plane and is algorithmically defined, is shown inFig-
ure 3.3. Parametrization of geometric design is a powerful technique that
has been extensively used in this thesis.

mumax3 offers an incredibly versatile micromagnetic platform. However,
there are limitations, particularly concerning the size of the system. The
size limitation is due to the computationally costly nature of micromagnetic
modeling. Because simulations using micromagnetic models must be limited
in size and scope, at least with the limitations of current computer hardware,
a higher level of abstraction is needed to model large-scale nanomagnetic
systems.
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Figure 3.2: Switching characteristics of a simulated nanomagnet. a) Hystere-
sis curves of the stadium-shaped nanomagnet (Figure 3.1) for two
applied fields Hϕ along an angle ϕ with respect to the long axis.
Purple crosses mark the critical switching field strength where the
magnetization switches. Dashed lines are interpolated as only the
increasing parts of the field sweeps where simulated. b) Critical
switching curve for the nanomagnet (purple line) obtained from
mumax3 simulations. The critical fields are expressed in terms of the
parallel and perpendicular components with respect to the magnet’s
long axis. Purple crosses mark the identified critical switching fields
and the purple line represents the extracted critical switching curve
mirrored to the other three quadrants. The dotted lines indicate the
two field directions of ϕ = 5◦ and ϕ = 25◦). c) Magnetization states
for selected values of the applied field Hϕ up to switching.
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3.1 Micromagnetic modeling

Figure 3.3: Example of algorithmically defined nanomagnetic structure simulated
in mumax3: a sunflower tiling[106] of NiFe nanodisks. The shown
states are the remanent relaxed states at different points during
a magnetic field sweep, starting at the top left. Each nanodisk is
100 nm in diameter and each sunflower is 2.8 µm across.
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3 Modeling nanomagnetic systems

3.2 The point-dipole model

The complexity of nanomagnetic systems requires various modeling ap-
proaches, each with its abstractions and approximations. A higher level
of abstraction compared to micromagnetic modeling is to consider the in-
ternal structure of a nanomagnet as being effectively represented by the
characteristic behavior of a single spin[107]. This approach leads us to the
point-dipole model, a widely used abstraction that, despite its simplicity,
provides insightful predictions for the behavior of nanomagnetic systems[75,
108].

In the point-dipole model, each nanomagnet is approximated by a single
spin of no physical extent, a point-dipole, and the internal magnetization
structure is ignored[72]. The spin has a well-defined state (a magnetic
moment), an associated stray field, and criteria for switching. The state is
defined by the orientation of a magnetic moment assumed to be concentrated
at a single point in space. A bistable magnetic moment similar to the bistable
states of an elongated magnetic nanoparticle is often used. For a given state,
the point dipole is the source of a magnetic dipolar field. Switching dynamics,
or the reorientation of the dipole moment to another stable state, can be
induced by stimuli such as external magnetic fields or thermal fluctuations.
Th point-dipole model allows for the straightforward calculation of magnetic
fields and interactions between dipoles, assuming that the magnetic elements’
spatial extension and internal structure can be neglected.

The magnetic field Hpoint dipole generated by a point-dipole spin is described
by the magnetic dipolar field equation,

Hpoint dipole(r) = 1
4π

[3(mdip · r)r
r5 − mdip

r3

]
, (3.2)

where mdip describes the magnetic moment of the spin and r is the position
vector relative to the spin with length r.

The evaluation and temporal evolution of nanomagnetic systems modeled
by point dipoles can be approached through various computational meth-
ods. Monte Carlo simulations are particularly common and explore the
statistical mechanics of dipolar systems, allowing for the study of ensemble
statistics and equilibrium properties. These simulations can be athermal
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investigations of applied-field driven dynamics[76, 108] or thermal behavior
such as equilibrium and transition rates driven by stochastic Metropolis
updates[109, 110] and kinetic Monte Carlo modeling[109, 111]. The inves-
tigation of relaxed states of ASI systems has typically used Monte Carlo
simulations in conjunction with thermal annealing experiments[70, 112, 113].
While the Monte Carlo approach is a probabilistic model that searches for
an outcome, an equilibrium, or stable transition rates, it is not ideally suited
for calculating the path or dynamical evolution of a system[114]. Simulating
the dynamics of nanomagnetic systems might be better approached through
other methods that carefully evaluate the switching criteria and sequences.

With the point-dipole approach, modeling nanomagnetic systems of vast
sizes are possible. In this way, the emergent properties of nanomagnetic
metamaterials can be explored in a computationally efficient manner. Fur-
thermore, parametric design is essential in optimizing the configurations
and interactions within these systems, and the versatility of the point-dipole
model helps realize nanomagnetic arrays and devices with tailored properties.
One example is shown in Figure 3.4, where parametric design is used to
simulate a system that interpolates between the square and 45◦-pinwheel
ASIs.

The point-dipole model is a robust approximation but is still an approx-
imation. The assumption of magnetic moments being localized to points
neglects the effects of spatial extension and non-uniform magnetization
textures of real nanomagnets. This neglected detail will, in turn, affect
the emitted stray fields and thus the important interactions that govern
nanomagnetic systems’ emergent behavior. While the point-dipole approx-
imation is often valid and useful, it should be applied cautiously, and its
predictions validated against more comprehensive models and experimental
observations whenever possible.

3.3 The dumbbell-dipole model

Minor adjustments can be introduced to enhance the accuracy of the point-
dipole model without significantly increasing computational complexity.
One such refinement is the dumbbell-dipole model, which represents each
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b)

a)

d)c)

Figure 3.4: Examples of parametrized geometries and large-scale simulations.
a) The geometries spanning from the typical square ASI to the
45◦-pinwheel structure, with intermediate element rotations. b-
d) Shows the magnetization of the relaxed states of some of the
systems, indicated by gray guides. Each pixel represents the sum of
the magnetization of eight magnets, highlighted in pink in a. The
circular color chart depicts the color representation of the summed
magnetization direction for each pixel.

magnetic moment not as a singular point but as two opposite charges
separated by a finite distance. This approach can better capture the spatial
extent of magnetic moments and their interactions[72]. It differs most
significantly in the near-field region, as illustrated in Figure 4 of Paper II.

The dumbbell-dipole model has been used in theoretical works of ASI where
the emergent magnetic monopoles are considered as magnetic charges[80].
In this picture, the dumbbell model is used to calculate the energy con-
tribution of a particular magnet’s state using the system’s Hamiltonian.
This calculation can be done by considering the net magnetic charge at
the system’s vertices and assigning the corresponding Coulomb interaction
energies.

As in the point-dipole approximation, the dumbbell dipole can represent a
single magnetic moment in which a magnetic state emits a corresponding
stray field. The field produced by a dumbbell dipole can be expressed as a
sum of the fields from two magnetic charges (monopoles), incorporating the
separation distance to account for the physical extent of the dipole. This
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dumbbell-dipole stray field can be expressed as

Hdumbbell(r) = Hmonopole(r − a) − Hmonopole(r + a),

= qm

4π

[
r − a

|r − a|3
− r + a

|r + a|3

]
, (3.3)

where r is the position vector relative to the center of the dumbbell-dipole,
qm is the monopole charge, and a = ddip · d̂dip/2 is the distance vector
from the center to the dumbbell-dipole ends. The quantity of the magnetic
monopole charge qm is determined using the magnetic dipole (as used in
Equation (3.2)) such that qm · ddip = |mdip|.

The two charges of the dumbbell-model and Equation (3.3) are hypothesized
magnetic charges and do not represent any fundamental physical magnetic
monopoles — these are still forbidden by the conservative magnetic field of
Maxwell’s electromagnetic formulation[12]. Still, it can be helpful to use
such theoretical measures as these models can better capture the fields of
real, fabricated nanomagnetic systems in physical experiments.
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4 Experimental realization and
characterization

4.1 Fabrication of nanomagnetic systems

Creating nanomagnetic structures requires precision and control at the
nanometer scale. One method to achieve such control is electron beam
lithography (EBL), a cornerstone technique in nanofabrication. EBL can
pattern extremely fine features down to a few nanometers and is widely used
to create bespoke nanostructures or the photolithography master masks of
the tremendously optimized CMOS industry.

The core concept of EBL is to use a focused beam of electrons that directly
writes designs onto a resist-covered substrate. Incident electrons change
the chemical structure of the resist. The resist is a polymer coating spin-
coated onto the substrate before exposure in the EBL. In the EBL, electrons
are emitted from a field emission gun and accelerated to high speeds by
acceleration voltages typically ranging from 20 keV to 100 keV[115]. At
the surface of the substrate, the focused electron beam interacts with the
resist, in a small interaction volume. Within this volume, the resist either
undergoes cross-linking, enhancing its resistance to a developer, or scission,
making it more soluble depending on the resist used[116]. Electrons that are
subsequently backscattered by the substrate will lead to overexposure in a
much larger region than the precise beam spot, which is termed the proximity
effect[117]. The proximity effect depends on details of the design pattern,
the electron beam, the resist and the substrate. This effect is typically
mitigated by sophisticated pre-processing and modeling to compensate for
the electron scattering[118]. This design correction process is known as
proximity effect correction.

After exposure, the substrate develops in a chemical bath to dissolve the
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most soluble, non-cross-linked resist, revealing a patterned resist layer. The
patterned resist is used as a template for transferring the design pattern in
further processing steps.

Following patterning with EBL and development, some material will either
be added to or removed from the substrate. In this thesis, the additive
process of lift-off was used. First, an electron beam evaporates a target
material, depositing thin layers on the substrate that precisely conform to
the developed resist pattern. The lift-off process then removes the resist
and the material deposited on the resist using a chemical bath with a strong
solvent. The solvent dissolves the remaining cross-linked resist, leaving
behind the desired structures. In order to create the nanomagnetic systems
in this work a magnetic nickel-iron alloy, Ni0.8Fe0.2, is used as the target
material during the electron beam evaporation. This alloy is also known as
Permalloy. Typically, a second material, such as aluminium, is deposited as
an oxidation barrier. The EBL and lift-off method ensures high fidelity of
the intended design and the final magnetic configuration. An overview of
the process is depicted in Figure 4.1

Scanning Electron Microscopy (SEM) characterization plays a critical role
in verifying the accuracy and quality of the fabricated structures. The
working principle is similar to the EBL’s but has a few differences. While
the EBL only exposes the sample to the electron beam in areas defined by
the design, the SEM raster scans or meander scans an extended field of view.
Measuring the rate of emitted electrons, such as secondary electrons, during
this scan provides a contrast mechanism for constructing a micrograph. SEM
provides high-resolution images that allow for the examination of pattern
fidelity, edge roughness, and the detection of any fabrication anomalies.
Additionally, it can be used to measure critical dimensions and distances
between nanomagnetic elements.

One key parameter in the design and fabrication of nanomagnetic systems
is the critical minimum distance between individual elements, which largely
determines the magnetic coupling strength. Controlling this distance is
crucial for engineering the desired magnetic interactions and behavior within
the system. Achieving uniformity and precision in the minimum dimension is
essential for the reproducibility and performance of nanomagnetic devices.
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substrate
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top view cross section

resist exposed resist

Permalloy freestanding
nanomagnets

d) e) f)

a) b) c)clean wafer

develop metallize lift-off

spin coat EBL expose

Figure 4.1: EBL and lift-off process. a) The process starts with a clean wafer.
b) Resist is applied through spin-coating. c) The resist is exposed in
the EBL. d) The pattern is developed by dissolving non-cross-linked
resist. e) Magnetic material is added through metallization. f) Excess
material is removed in the final lift-off step, leaving freestanding
nanomagnets.
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4.2 X-ray magnetic circular dichroism photoemission
electron microscopy

Understanding intricate behaviors and properties of nanomagnetic systems,
such as artificial spin ice, requires sophisticated imaging and analysis tech-
niques to capture and interpret the tiny magnetic fields and moments these
systems exhibit. Many experimental techniques can provide such charac-
terization, such as magnetic force microscopy (MFM), magneto-optic Kerr
effect (MOKE) microscopy, and vibrating-sample magnetometer (VSM)
measurements or superconducting quantum interference device (SQUID)
magnetometry. The experimental characterization presented in the papers
of this thesis is performed by probing nanomagnetic systems with x-rays.
The technique used in this thesis relies on x-ray magnetic circular dichroism
to provide a signal in a photoemission electron microscopy (XMCD-PEEM)
setup.

4.2.1 X-ray magnetic circular dichroism

Dichroism is the polarization dependent absorption of radiation in a material.
This effect can be exploited to probe important material properties, such
as a material’s magnetization. One specific example of dichroism is x-ray
magnetic circular dichroism (XMCD). A testament to the importance of
this technique is the experimental observation one year after its theoretical
prediction in the mid 1980s[119, 120], despite requiring significant resources.
The fundamental principle is the increased or decreased absorption of x-rays
with a defined circular polarization depending on the magnetization in the
material. An important concept is the optical helicity which is positive
for right-handed circular polarization along the propagation direction or
negative for left-handed circular polarization. The difference in absorption is
due to the selective x-ray excitation of a material’s core electrons depending
on the helicity of the x-rays and the magnetization of the material.

In the core electrons of a 3d transition metal, spin-orbit coupling leads to
a splitting of the 2p band: the j = 3/2 states (L3 edge, parallel coupling)
and the j = 1/2 states (L2 edge, antiparallel coupling). The electrons in
the split 2p bands can be excited by incoming x-rays. The probability of
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excitation will depend on the available spin-up or spin-down holes, which
are a function of the material magnetization. This selective excitation leads
to a net increase in absorption for x-rays with positive helicity at the L3
edge (and a net decrease at the L2 edge) for materials magnetized along the
direction of positive helicity. The x-ray absorption spectroscopy (XAS) for
circularly polarized x-rays is thus a function of the material magnetization
direction with respect to the polarization and propagation of the x-rays.
The x-ray magnetic circular dichroism (XMCD) signal is defined as the
difference between XAS for positive and negative circular polarization and
is directly related to the magnetization direction of a material[121].

XMCD requires circularly polarized x-rays, tuned to the specific energies of
the L3 or L2 edges in the material. This tunable energy, polarization, and
high radiation intensity require a highly specialized radiation source.

4.2.2 Synchrotron x-rays

Synchrotrons are the most advanced light sources we have. They are large
facilities that house electron accelerators capable of accelerating electrons
up to extremely high energies in the giga electron volt (GeV) range[122].
Synchrotron facilities are large premises housing an electron accelerator.
These consist of a large storage ring, and typically a linear accelerator
and at least one smaller accelerator ring. Along the storage ring there are
beamlines that use radiation produced by the ring for a plethora of different
experiments, from x-ray powder diffraction to x-ray nanoprobes[123].

The electrons are forced to follow the circular paths of the accelerator
ring using powerful bending magnets. At each turn, the electrons are
accelerated in order to change direction and this change in momentum emits
electromagnetic radiation, the original source of high spectral brightness
illumination in synchrotrons. Modern synchrotrons use so-called magnetic
insertion devices such as wigglers and undulators in strtaight sections of the
ring to produce radiation of even higher spectral brightness[124].

The radiation is thoroughly filtered at each beamline before reaching the
experimental end station. In a typical experiment, only a small part of
the broad emission spectrum is used; for example, only a narrow energy
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range is required for XMCD techniques. For good XMCD contrast in thin
films of the magnetic material NiFe, circularly polarized light of the Fe L3
edge around 707 eV is frequently used[125, 126]. These soft x-rays have a
shallow penetration depth and special techniques are used to measure the
local absorption.

4.2.3 Photoemission electron microscopy

When probing a nanomagnetic system using x-ray absorption, it is useful to
measure the local absorption with a spatial resolution at least down to the
magnet size. Because of the shallow penetration depth of the soft x-rays used
for XMCD, transmission techniques require preparation of thin samples,
typically on silicon nitride membranes of roughly 100 nm thickness[127].
Scanning transmission x-ray microscopy (STXM) allows superb time and
space resolution[128, 129], but requires sophisticated x-ray optics[130]].
Fortunately, x-ray absorption in a material also emits photoelectrons[131]
and scattered secondary electrons from the surface. These electrons can
be collected, accelerated, and projected onto a detector screen to form a
micrograph with XMCD contrast[132]. The electrons escape from a shallow
escape depth close to the material surface where there are incident x-rays
and thus provide a surface sensitive signal. The result is an absorption
signal which is highly selective for two reasons: selective absorption that
depends on the direction of magnetization and shallow electron escape
depths that provide a signal of this absorption only from the surface of the
imaged material. In other words, the signal provides information about the
microscopic magnetization of a material at its surface.

Photoemission electron microscopes collect the photoelectrons and secondary
electrons emitted from the sample which acts as a cathode placed close to an
electrostatic objective lens. The electrons are accelerated using a strong field
of about 10 kV to 30 kV between the sample and the objective lens, typically
within millimeters of each other. Further, the electrons are collimated and
guided by electron optics, such as electrostatic and magnetic lenses. They
pass through several apertures and energy filters to select the proper contrast
and focal planes. Finally, they reach a phosphor screen or a microchannel
plate, where the electrons are captured as a digital image. There are many
sources of aberrations and resolution loss, such as vibrations and inherent
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astigmatism, and higher-order aberrations in the electron lenses, which can
distort the image. The final result is a magnetic contrast image with a
spatial resolution down to 20 nm or even a few nanometers[132].

The magnetic contrast images available through XMCD-PEEM offer an
invaluable path to direct observation of experimentally fabricated nanomag-
netic systems, such as artificial spin ices, and has been extensively used in
this work.

4.2.4 Data analysis

Obtaining the XMCD-PEEM micrographs is one part of characterizing the
microstates of artificial spin ices, although a challenge remains: converting
the experimental data to a single-spin-resolved microstate. It is relatively
easy to observe the images by eye and make out the apparent states of the
ensembles (see Figure 2, Paper II), but with several thousand nanomagnets
per ensemble, manual decoding of the microstate is not practical. Machine
readout is complicated by non-linear aberrations in the electron optics of
the PEEM setup, and it is not possible to simply apply a mask and read
out the state of each magnet. In order to decode the experimental data, we
perform an extensive semi-automatic segmentation process. The following
section is a description of this process as it was performed for Paper II.

The data extraction process starts with a straightforward XMCD-PEEM
analysis using the x-ray absorption images of the two polarizations: drift
correction, averaging, and calculation of the normalized difference. This
processing yields a magnetic contrast image. Through a semi-automatic
process, the corners of the ensembles are extracted. Further, a homeographic
transformation is applied to square the four corners, correcting some of the
original image’s non-linearity. The images are cropped to the same size,
which includes the ensembles plus some surrounding padding. The dataset
is now a stack of 2D images containing a nanomagnetic structure whose
orientation and position are identified and can be mapped to the known
lithographic mask and the four corners of the nanomagnetic system.

The magnetic contrast image and the mapped nanomagnetic structure are
still insufficient for automatic microstate extraction. Despite our best efforts
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at regularization, each pixel is subject to noise and significant variations
in contrast across the picture. If we run an automatic extraction directly
on these pixels based on some fixed or dynamic threshold, we invariably
lose details or retrieve a completely useless extraction. The problem is now
reduced to a classification task, sorting pixels into categories of positive
magnetic contrast, negative magnetic contrast, or no magnetic contrast.
Such classification tasks are ideally suited for machine learning.

To perform machine learning on our images, we apply the ilastik frame-
work[133] originally intended for bioimage analysis. It helps researchers
perform a semi-automatic segmentation of microscopy images. In order
to classify a pixel in a manner more reliable than a simple threshold, we
need to account for the context in which it exists, i.e., its neighborhood.
The context is accounted for by associating each pixel with multiple values
resulting from filters of different types and strengths, e.g., gaussian blurs
with different standard deviations, which ilastik terms as pixel features. We
then label some pixels for each category, and ilastik trains on the labeled
data using standard machine learning algorithms to map features and com-
binations to different pixel categories. This process is repeated iteratively
across images to produce a trained classifier that can classify pixels with
high confidence.

By training an image classifier to recognize pixels associated with different
magnetic states, a high-confidence segmentation image can be produced
for each magnetic contrast image. The resulting segmented images can
be used to map the state of the nanomagnetic system with spin-perfect
resolution. The extracted microstates can be further analyzed in simulations
such as flatspin calculations of the configurational energies. This approach
might also be applicable to other imaging techniques, such as MOKE
imaging, enabling spin-perfect resolution through machine learning where
such data extraction would otherwise be too time-consuming. The method
has proven particularly useful where the sheer volume of data or the subtlety
of the features of interest would either overwhelm or be unavailable through
traditional analysis techniques.
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5.1 Summary of papers

Paper I
flatspin: a large-scale artificial spin ice simulator
Physical Review B

The article introduces flatspin, a simulator for large-scale ASI systems.
The simulator is based on a point-dipole representation of nanomagnets
with bistable spins. It is GPU-accelerated and can handle large systems
of two-dimensional configurations. The switching criteria are inherently
deterministic and build on the Stoner-Wohlfarth model but are generalized
to include the effects of non-elliptical nanomagnets. The switching curves
are based on micromagnetic simulations, which offer higher fidelity than the
traditional point-dipole picture. All modeled phenomena are encoded as
effective fields, such as the dipole field, the external field, and the effective
thermal field. The thermal field in flatspin is a novel implementation where
we convert a switching probability, based on a Poisson distribution of the
Arrhenius-Néel equation[134], to an effective magnetic field.

flatspin is validated against known analytical and micromagnetic results.
Additionally, it is compared to non-trivial experimental results such as
the formation of Dirac strings in Kagome ASI, the growth of magnetic
crystallites in square ASI, and ferromagnetic order in 45◦-pinwheel ASI.
The latter is shown to reproduce switching characteristics of the system
that have previously eluded modeling[135]. Furthermore, a property of the
square ASI is investigated: its robustness to dilution defects, i.e., removal
of random magnets. As dilution defects are introduced, the relaxed state of
the square ASI is surprisingly robust in terms of vertex type prevalences.
However, the typical domain sizes are significantly reduced.

41



5 Discussion

flatspin represents an advancement in ASI simulation, offering versatile,
efficient, and trustworthy simulations of millions of magnets. It facilitates
studies exploring large-scale and emergent behaviors in these nanomagnetic
systems.

Paper II
On the Antiferromagnetic–Ferromagnetic Phase Transition in
Pinwheel Artificial Spin Ice
in review

The article explores the phase transition from antiferromagnetic (AF) to
ferromagnetic (FM) ordering in square lattice artificial spin ices as the
magnetic elements are rotated into a pinwheel configuration. This transition
was experimentally observed using x-ray spectromicroscopy, revealing a
critical transition angle that depends on the separation between the nano-
magnets. This finding contrasts with previous studies that relied on the
point-dipole model. We also find significant coexistence of the AF and FM
phases through the continuous transition.

Further, the paper demonstrates that a more detailed dumbbell-dipole
model, which includes the effects of the nanomagnet’s extension, explains the
experimental data. Simulations using this model show that the critical angle
for the AF–FM transition varies with the separation of the nanomagnets.

The paper presents an intuitive demonstration of ordering phenomena in
a nanomagnetic system. Our main findings establish that the AF–FM
transition is continuous, supports coexisting phases, exhibits a coupling-
dependent transition angle, and requires an important change to theoretical
models. We conclude that minute details of the nanomagnet stray fields have
important implications for the magnetic ordering of ASI, which is relevant
to both fundamental physics and potential technological applications.
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Paper III
Clocked dynamics in artificial spin ice
Nature Communications

The article presents astroid clocking, a method to control artificial spin ice
dynamics. This technique uses the shape and orientation of the nanomagnet’s
critical switching curves for precise control over local ASI features using
global magnetic fields. The paper presents a general principle for field
protocols that allow athermal ASI dynamics to evolve with each applied
field pulse in a 45◦-pinwheel ASI. There is no state change between field
pulses — the dynamics are clocked. We explain the mechanism of the
method in detail through simulations and show that it relies on the inherent
dynamics of the ASI itself.

We show through experiments two different field protocols: unipolar clocking
and bipolar clocking. The experiments use a vector magnet in an XMCD-
PEEM setup to control the state of the fabricated nanomagnetic systems.
The unipolar clock protocol monotonically grows or shrinks domains of a
selected type at specific domain boundaries. The bipolar clock protocol
does not result in monotonic growth but a combination of selective growth
and reversal in each clock cycle. This combination of selective growth and
reversal leads to changes in domain morphology and net growth or net
shrinking. Contrary to intuition, the pulses of the bipolar clock protocol
are symmetric but still result in net growth or net reversal, depending on
the order in which they are applied.

Clocking the dynamics of ASIs enhances our ability to control them. Fur-
thermore, the precise manipulation of magnetic domains that depends on
the specifics of the domain boundaries represents an unprecedented local
control using global fields only. Astroid clocking’s practical availability and
effectiveness mark a significant step forward in the control and exploration
of emergent behaviors in nanomagnetic systems.
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5.2 Discussion of papers

The work in this thesis starts with the foundational simulator flatspin, which
the rest of the research builds on. flatspin is thoroughly validated in the
first paper. The simulator itself has been extensively used for the rest of
the work and has also been used in other research[89, 136, 137].

The effective thermal field implementation of flatspin is thorough and offers
a completely new approach to modeling the thermal dynamics of artificial
spins, although it is not where the simulator stands out. Numerous studies
of ASI involve Monte Carlo modeling of thermal dynamics and equilibria[70,
75, 78, 138, 139]. These typically express the system energies through the
formulation of a Hamiltonian, either using a vertex configuration model or
a dipolar coupling model, and standard Monte Carlo updates such as the
Metropolis-Hastings method. Monte Carlo modeling of this kind is perfect
for thermal equilibrium states or transition rates. This method differs from
the flatspin method, which does not accept or reject proposed states based on
their energies. Instead, flatspin adds stochastic fields based on a probability
distribution and immediately performs any transitions whose energy barriers
are surpassed. If several spins are flippable at any simulation step, the
transition that presumably occurred first, i.e., the nanomagnet with the
state energy furthest above its energy barrier is flipped first, and the total
state is reevaluated. In the case of no temperature, flatspin is deterministic,
and temperature adds the stochastic thermal field to the deterministic
process. We argue that the approach in flatspin reveals real dynamics
and state trajectories of a given system in any given state, not statistical
averages. Calculating the effective thermal field is computationally costly,
and the required fine-tuning of the dynamical time step is, unfortunately, a
significant drawback of the simulator. However, the strength of flatspin lies
in its athermal deterministic dynamics.

It is worth noting that micromagnetic modeling mumax also suffers a
performance loss when simulating thermal effects. We have been unable
to simulate even a single thermal spin flip in micromagnetic simulations
at any realistic time scale. To the author’s knowledge, this has yet to be
done, except for small magnets and fields close to the coercive field[140]. It
is an example of a rare event in a high-dimensional complex system where
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it is notoriously hard to bridge the gaps in time scale when simulating
phenomena of vastly different characteristic times[141].

The novelty and usefulness of flatspin lie in the increased fidelity offered by
the generalized Stoner-Wohlfarth switching model and its GPU-accelerated
efficiency. Because of these two unique properties, it bridges the gap
between micromagnetic models like mumax3 and higher abstraction models
like point-dipole models.

While the Stoner-Wohlfarth model is widely known, it is less ubiquitously
made use of in point-dipole models. Some point-dipole models instead apply
a simple projection of the total field onto the long axis of the magnet and
compare it to a coercive field strength to decide whether switching occurs.
It has previously been assumed that Stoner-Wohlfarth switching does not
provide any new dynamics in ASI systems of point dipoles compared to
this simple projection criteria[81]. With flatspin, we show that this is false.
The exact shape of the switching curve can have a tremendous effect on
the resulting emergent dynamics, and we exploit this fact in Paper III with
astroid clocking.

The characteristic switching curves implemented in flatspin are informed
by micromagnetic simulations and can, in theory, encompass the switching
characteristics of almost any magnet shape and size, given that they exhibit
a bistable single domain. Switching curves can be obtained by micromag-
netic simulations or by magnetic characterization of physically fabricated
nanomagnets. The switching field threshold for a nanomagnet is expressed
as, (

h∥
bhk

)2/γ

+
(

h⊥
chk

)2/β

= 1, (5.1)

where h∥ and h⊥ are the field components along the nanomagnet’s long and
short axes, respectively, and hk is the hard axis threshold. The parameters
b, c, β, and γ are free parameters that are used to fit the curve to the
observed critical switching fields for a particular nanomagnet shape. The
original Stoner-Wohlfarth model assumes a strict assumption of nanomag-
netic switching by coherent rotation. This assumption is unnecessary in the
generalized model as other switching mechanisms, such as domain nucleation
and propagation, can be included because the model only accounts for the
observed switching curve. While a considerable variation of nanomagnet
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switching behavior can be described, there are limits to what switching char-
acteristics Equation (5.1) can encompass. This limitation to flatspin could
be accommodated by replacing the generalized Stoner-Wohlfarth astroid
with any other parametrized curve to fit the bill.

There are other modifications that flatspin might accommodate for better
results, as we conclude in Paper II. This paper directly results from the
efficient simulations possible with flatspin, which allow quick parametrization
and searches for optimal properties. Based on the ferromagnetic properties
of the 45◦-pinwheel ASI first presented as an emergent spin ratchet by
Gliga et al.[142], we performed simulations of intermediate angle pinwheels
interpolating between the square ASI and the 45◦-pinwheel ASI. While the
conclusion in Paper II reflects the necessity of a dumbbell-dipole picture, the
unmodified flatspin simulator captured the essence of the phase transition
and the coexisting antiferromagnetic and ferromagnetic phases. This study
exemplifies how flatspin provides a foundation for further research and
identifying new nanomagnetic systems. The second paper was the first
attempt to reproduce new phenomena first seen in flatspin in real, fabricated
systems, a litmus test of the trustworthiness of the simulator.

The design of masks for EBL is a critical step in the nanofabrication pro-
cess. Mask design was aided by flatspin simulations, which helped define
parameters like inter-island distances and rotation, specifying the geometric
configurations of the ASIs. As in the parametrized simulation framework,
parametrized mask design enables sweeping vast spaces of geometric configu-
rations and establishes a direct pathway from simulation to fabrication. For
fabricating the structures of this thesis, the GDSII-based CAD tool PHIDL
has been extensively used[143]. This approach facilitates rapid prototyping,
enabling the exploration of nanomagnet element parameters — such as
size, spacing, and rotation — that impact the performance of nanomagnetic
systems in ways that can be characterized experimentally. One example
of such parametrization is the systems used in Paper II, which interpolates
the geometry between the square ASI and 45◦-pinwheel ASI. Besides this
programmatic approach to mask design, the fabrication process has followed
the standard procedures for patterning Permalloy with lift-off developed
by Digernes[144]. The fabrication process has focused on repeatability and
achieving precise minimum dimensions through rigorous lab work. However,
novel techniques have not been introduced, and details of the fabrication
process will not be discussed further.
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In any fabricated system, there will be imperfections that can introduce
disorder, i.e., quenched disorder. It can be challenging to implement new
material systems for computation when disorder is prevalent, but it can
also be beneficial and help reach a more significant number of unique states
of the ensembles[81]. In flatspin, disorder is modeled as a perturbation
of hk, effectively softening the distribution of the coercive fields of the
nanomagnets. While there are many types of disorder, such as disorder
in island positions or orientations, they have a similar effect and can be
characterized as an effective switching field disorder[145]. The samples in
this thesis, fabricated through lift-off, might be improved and contain fewer
defects if an etching process was used instead.

The disorder of the fabricated systems in Paper II did not affect the results.
flatspin passed its litmus test, and the predicted continuous transition,
coexistence, and tunability of the system were reproduced experimentally.
This is an example of the power of parametrization of the nanomagnetic
system, which allows for the search for unique properties.

While initial simulations of the system in Paper II were promising, we identi-
fied a slight change to the stray field representation through micromagnetic
simulations that enabled flatspin simulations to capture the full quantitative
and qualitative properties of the transition. The stray fields of flatspin
are given by the point-dipole model of Equation (3.2). Replacing these
fields with a dumbbell-dipole representation, as in Equation (3.3), is a
small change to the model, which gives qualitatively similar results and
incurs no performance penalty. By comparing the stray fields of the two
dipole approximations with a full micromagnetic simulation, it is clear that
the dumbbell-dipole matches the micromagnetic simulations more closely,
particularly in near-field regions where the point-dipole approximation is
known to break down[77]. We conclude in Paper II that the dumbbell-dipole
model also provides a closer match to the experimental observations.

Expanding on the dumbbell-dipole model by incorporating higher-order
magnetic multipoles, such as quadrupoles or octupoles, can further refine
the representation of magnetic interactions. These extensions allow for
a more detailed simulation of nanomagnetic systems informed by high-
fidelity tools like mumax3 as a benchmark for accuracy. Such higher-order
multipoles might be implemented as point multipoles like the point-dipole
model, sums of multipole moments with a physical extent like the two
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monopoles of the dumbbell-dipole model, or a combination. One example
could be a point dipole with two smaller point-dipole moments at the ends,
effectively encoding an s-state or a c-state[146]. Some higher multipole
representations were explored for Paper II. Although some quadrupole
moment contributions were identified, a simple monopole dumbbell-dipole
was sufficient to reproduce the necessary details and avoided unnecessary
free parameters. Introducing such complexity might benefit simulations
of other emergent behaviors of these nanomagnetic systems, but further
studies would be needed to map this out. By iteratively comparing simplified
models to ’ground truth’ simulations, it is possible to incrementally improve
the models while maintaining a balance between computational efficiency
and physical realism.

Introducing higher-order multipole moments to flatspin might address one
of the biggest arguments against the simulator: it ignores the internal
microstructure of a nanomagnet. ASI dynamics can be influenced by aber-
rations at the ends and even thermal fluctuations of the microstructure at
the ends[147]. Higher-order multipole moments can be included at almost
no extra cost, and can account for this effect. However, the increased com-
plexity required to keep track of all the new states and switching regimes
would be a significant disadvantage. As Paper II demonstrates, it can be
beneficial to use other models of the stray fields of the nanomagnets for
specific experiments.

In conclusion, while models like the point-dipole model offer a foundation
for understanding nanomagnetic systems, refinements such as the dumbbell-
dipole model (and even the incorporation of higher-order multipoles) can
provide a more accurate and nuanced understanding of magnetic interactions
through stray fields. These models serve as tools in the simulation and
design of nanomagnetic systems, bridging the gap between theoretical
exploration and micromagnetic fidelity, bringing the systems one step closer
to applications.

The discussion up until this point has focused on designing and modeling
artificial spin ice, and fabricating and characterizing new systems as a way
to tailor emergent properties, which can be useful for computation. However,
other issues, like the system’s input and output, must be addressed before
practical applications are possible. We show in Paper III that flatspin can
also help investigate how to interact with these systems.
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Interacting with nanomagnetic systems is essential for their use in applica-
tions. Various methods have been proposed to interact with these systems,
from highly localized to system-wide, or global, interactions. Local inter-
actions refer to the targeted influence on a subset of nanomagnets within
a system, allowing precise control. Notable methods for inducing local
interactions include using an MFM tip[148, 149] and local Ørsted fields
generated by small strip lines[150]. Additionally, spin-orbit torque (SOT)
and spin-transfer torque (STT) interactions represent advanced techniques
for influencing magnetic states[151, 152]. However, these methods are either
impractical or require significant on-sample infrastructure, such as electrical
circuits.

In contrast to the precision offered by local interactions, global fields affect
the entire nanomagnetic system uniformly — in principle. We demonstrate
in Paper III that astroid clocking, relying only on uniform field applications,
can achieve local control over nanomagnetic systems. By carefully choosing
the strength and orientation of applied field pulses, it is possible to reach
more states of the system than by conventional application of magnetic fields.
This shows that control at the local scale using a global input is possible.
There have been claims that sequences of global fields do not provide access
to a meaningful fraction of states and analytical proofs of the inaccessibility
of certain states, e.g., the ground state of Kagome or square ASI. We believe
these claims overlook the mechanism of the astroid clocking scheme[149, 153].
We show that the local magnetization state, or domain boundary structure,
can dominate the switching dynamics when suitable field protocols are used.
By exploiting the shape of the characteristic switching curves and their
relation to the local dipolar interactions, field-driven dynamics can access a
much larger fraction of states. Further, we hypothesize that many types of
dynamics are yet to be uncovered for different domain configurations, even
just in the 45◦-pinwheel ASI. The work of Paper III barely scratches the
surface, and more sophisticated clocking protocols should be explored in
the future.

One of the main motivations for this thesis is energy efficiency in information
processing. However, as presented in Paper III, astroid clocking relies
on magnetic fields generated by magnetic coils with significant resistive
losses. Other methods of generating these fields, such as non-resistive
superconducting coils, might eliminate this energy inefficiency. STT-induced
switching, can be envisaged, which will likely eliminate inductive loss as well.
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The power of astroid clocking comes from the parallelizability of the method,
which does not limit the size of systems or the number of nanomagnets
that can be addressed at once. Additionally, the concept of controlling the
emergent dynamics of ASI is the real breakthrough of astroid clocking.

Through astroid clocking, we show that athermal dynamics are useful and
open up a previously unexplored world of ASI dynamics. With efficient
modeling, parametrized design, and verification through experimental setups,
this technique can be a foundational step toward useful ASI-based devices.

5.3 Conclusion and outlook

This thesis has presented a novel simulator, how the simulator can be used
to design and predict properties of artificial spin ices, how these properties
can be sensitive to small variations in the nanomagnets’ stray fields, and an
experimental technique that enables unprecedented control of the athermal
dynamics of artificial spin ice systems.

The main goal of this thesis was to expand the framework for designing,
controlling, and analyzing metamaterial systems of ASI. Through the papers,
the work has provided valuable contributions to all three areas, with a
new design process available through flatspin, a new control mechanism
with astroid clocking, and the use of machine learning for experimental
data extraction. The subgoals of the thesis, listed in Section 1.3, have
been properly addressed: With flatspin, large-scale simulations enable
the study of material properties, such as the transition properties of the
antiferromagnetic–ferromagnetic transition in square lattice ASI (subgoal 1).
Integrating flatspin and PHIDL offers a versatile and practical method of
designing physical ASIs of any geometrical configuration (subgoal 2). Astroid
clocking offers control over the states and dynamics of ASIs, although not
complete control (subgoal 3). Using machine learning, we can enhance
the extracted data from advanced imaging techniques like XMCD-PEEM
(subgoal 4).

This thesis attempts to make the design and control of artificial spin ice-
based systems more practically available. It offers valuable insights into
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the modeling, sensitivities, and possible control mechanisms of artificial
spin ices, especially in the athermal regime. The work provides tools and
practices that enable further exploration, research, and applications of ASIs.
These applications of ASIs might be helpful in energy-efficient and scalable
computation.

While ASI research historically has focused on geometries that are either
found in nature, inspired by well-known geometric designs and symmetries,
or perturbations on these, the techniques presented in this thesis offer a
new strategy: In line with the Bitter lesson, which points out that human
attempts at encoding knowledge by design ultimately fail compared to
efficient search and learn algorithms, a strategy of property search might
be more fruitful. This strategy paves the way for an immense variation of
controllable emergent ASI behaviors, some of which will likely be useful for
the energy-efficient computing devices of the future.

There are many questions to be addressed before an ASI can be useful in
specialized computation hardware. What are the valuable features, and
what are their limits? How will these systems be robust to defects in the
fabricated materials? How do we read out the states with sufficient spatial
and temporal resolution in an energy-efficient manner compatible with a
practical device? What are the bottlenecks for energy-efficient computing
in ASI devices? How do the functional properties scale?

There is still a long way to go before we see ubiquitous ASI-based devices
performing energy-efficient computing and providing the world’s need for
raw computational power. Fortunately, researchers are eager and excited
to work with these systems, and there are many promising paths forward.
Who knows what we will learn in the future?

I might even learn how to do a backflip.
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flatspin: A large-scale artificial spin ice simulator
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We present flatspin, a novel simulator for systems of interacting mesoscopic spins on a lattice, also known as
artificial spin ice (ASI). A generalization of the Stoner-Wohlfarth model is introduced, and combined with a well-
defined switching protocol to capture realistic ASI dynamics using a point-dipole approximation. Temperature
is modelled as an effective thermal field, based on the Arrhenius-Néel equation. Through GPU acceleration,
flatspin can simulate the dynamics of millions of magnets within practical time frames, enabling exploration
of large-scale emergent phenomena at unprecedented speeds. We demonstrate flatspin’s versatility through the
reproduction of a diverse set of established experimental results from literature. In particular, the field-driven
magnetization reversal of “pinwheel” ASI is reproduced, for the first time, in a dipole model. Finally, we use
flatspin to explore aspects of “square” ASI by introducing dilution defects and measuring the effect on the
vertex population.

DOI: 10.1103/PhysRevB.106.064408

I. INTRODUCTION

An artificial spin ice (ASI) is an ensemble of nanomagnets
arranged on a lattice, coupled through magnetic dipole-
dipole interactions. The vast variety of emergent collective
behaviors found in these systems have generated consid-
erable research interest over the last decade [1,2]. Using
modern nanofabrication techniques, emergent phenomena can
be facilitated through direct control of the ASI geometry,
e.g., collective ferromagnetic/antiferromagnetic ordering [3],
Dirac strings [4], and phase transitions [5,6]. ASIs offer
a unique model system for exploring fundamental physics,
since magnetic microscopy enables direct observation of their
internal state. There is also a growing interest in ASIs as
building blocks for novel devices [7,8]. Computer simulations
have proven invaluable to gain insight into the rich behavior
of these coupled systems.

Micromagnetic simulations of ASI have been limited to a
handful of nanomagnets due to excessive computational cost.
Although physically accurate, such high fidelity simulations
are unable to capture large-scale emergent phenomena, such
as the size of magnetically ordered domains and long-range
order. To simulate large ASI systems, an established approach
is to sacrifice fidelity for speed by employing a dipole
model, i.e., treating each nanomagnet as a single macrospin

*These authors contributed equally to this work.
†Corresponding author: johannes.jensen@ntnu.no

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

approximated by a point dipole [9]. Conventionally, Monte
Carlo methods have been used in conjunction with the dipole
approximation to search for low energy configurations [10,11]
or to study statistical measures such as vertex populations [9].
However, Monte Carlo methods do not model the dynamical
pathway taking the system from an initial configuration
to the final low-energy configuration. They are inherently
stochastic and better suited for ensemble statistics rather than
dynamics [12].

Here we present flatspin, a point-dipole simulator for large
ASI systems that is capable of capturing realistic dynamics,
at long time scales. We introduce a generalization of the
Stoner-Wohlfarth model, that describes the switching charac-
teristics of numerous nanomagnet shapes. This generalized
model is combined with a novel, well-defined, switching
protocol, to capture the dynamics of large ASI systems.
All influences on the magnets are represented by magnetic
fields, including a stochastic thermal field derived from the
Arrhenius-Néel equation. These crucial aspects of flatspin,
combined with GPU acceleration, extends the possibilities of
ASI simulation. Using flatspin in place of micromagnetic sim-
ulations increases the possible simulation sizes from hundreds
to millions of magnets, enabling exploration of large-scale,
emergent phenomena in these intriguing systems.

In this paper, we present the motivation and design of
flatspin. The thermal model is verified against established
analytical and numerical models. We demonstrate good agree-
ment between flatspin and a variety of published experimental
results. We show that flatspin can capture dynamic behav-
iors observed experimentally, which have previously eluded
modeling [13]. Finally, we explore new aspects of square
ASI by removing individual elements of the lattice, and
measuring the effects on the type population under an
applied field.

2469-9950/2022/106(6)/064408(17) 064408-1 Published by the American Physical Society
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FIG. 1. The representation of nanomagnets as spins si and asso-
ciated quantities: position ri, angle θi, and distance to neighbor j,
ri j . Note that the magnetization of spin i is given by its spin si, and
orientation θi.

II. THE FLATSPIN MAGNETIC MODEL

In this section, we describe the dipole model and the under-
lying physical assumptions of flatspin. The model is designed
to simulate the ensemble state-by-state evolution, i.e., dynam-
ics, of two-dimensional ASI. In short, magnets are modeled as
point dipoles (Sec. II A), and each dipole can be affected by
three types of external influence: magnetic dipole-dipole cou-
pling (Sec. II C), an applied external magnetic field (Sec. II D),
and thermal fluctuations (Sec. II E). The switching of spins
is determined using a generalized Stoner-Wohlfarth model,
which takes the shape anisotropy of the simulated nanois-
lands into account (Sec. II F). Imperfections in the ASI are
introduced as different coercive fields, set per spin (Sec. II G).
Dynamics are modeled using a deterministic single spin flip
strategy (Sec. II H).

A. Magnets as dipoles

ASI systems are physically realized as elongated islands
of a ferromagnetic material, arranged on a two-dimensional
lattice. The magnets are made small enough to exhibit a single
ferromagnetic domain, i.e., coherent magnetization through-
out the magnet. The single domain state is stable as the energy
cost associated with domain walls exceeds the cost associated
with the demagnetization energy [14,15]. Since a magnet has
coherent magnetization, it can be approximated by a single
mesoscopic spin and the magnetic state can be represented by
a single vector m.

The shape anisotropy of the thin elongated islands will re-
strict their magnetization to two possible in-plane directions.
Hence, individual magnets can be approximated by classical
macrospins with a twofold degenerate ground state defined by
the elongated shape of the individual elements. Due to the two
degenerate ground-state configurations, we approximate each
magnet as a magnetic dipole with binary magnetization, i.e.,
a binary macrospin, si ∈ {−1,+1}.

As illustrated in Fig. 1, each magnetic dipole is modelled
with a position ri and rotation θi, which together define the
ASI geometry. Furthermore, each magnet is assigned a co-
ercive field, h(i)

c , describing its resistance to switching (see
Sec. II F). Using reduced units, the magnetization vector of
a single magnet can be expressed as

mi = sim̂i (1)

where m̂i = [cos θi, sin θi] is the unit vector along mi.

B. Magnetic fields and temperature

External fields and temperature are modeled as a combi-
nation of effective magnetic fields. The total field hi affecting
each magnet i is the sum of three components:

hi = h(i)
dip + h(i)

ext + h(i)
th , (2)

where h(i)
dip is the local magnetic field from neighboring mag-

nets (magnetic dipole-dipole interactions), h(i)
ext is a global

or local external field, and h(i)
th is a stochastic magnetic

field representing thermal fluctuations in each magnetic ele-
ment. Each of these field contributions are described in the
following sections.

C. Magnetic dipole-dipole interactions

The individual magnets, or spins, are coupled solely
through dipole-dipole interactions. Each spin i is subject to
a magnetic field from all neighboring spins, j �= i, given by

h(i)
dip = α

∑
j �=i

3ri j (m j · ri j )

|ri j |5 − m j

|ri j |3 , (3)

where ri j = ri − r j is the distance vector from spin i to j,
and α scales the dipolar coupling strength between spins. The
coupling strength α is given by α = μ0M

4πa3 , where a is the lattice
spacing, M is the net magnetic moment of a single magnet,
and μ0 is the vacuum permeability. The distance ri j is thus
given in reduced units of the lattice spacing.

The dipole field present at each spin’s location is calculated
by summing the dipole field contributions from spins in its
neighborhood. The size of the neighborhood is user config-
urable and defined in units of the lattice spacing. The required
neighborhood distance varies, subject to the system of study.
Care must be taken to include enough spins in the neighbor-
hood such that the observed behavior converges, especially
when considering systems exhibiting long-range effects. In
some geometries, such as square ASI, short range interactions
dominate the contributions to hdip [16,17], in which case the
neighborhood size can be relatively small, for a benefit of
increased efficiency. For geometries where long range inter-
actions are significant, a larger neighborhood is required, e.g.,
pinwheel ASI [18]. The flatspin documentation [19] provides
an example of how to choose an appropriate neighborhood
distance.

D. External field

Applying an external magnetic field is the primary mech-
anism for altering the state of an ASI in a controlled manner.
The external field can either be set locally on a per-spin basis
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(h(i)
ext), globally for the entire system (hext), or as a spatial

vector field (hext(r)).
Time-dependent external fields are supported, i.e., hext is

a discrete time series of either local, global, or spatial fields.
A variety of time-dependent external fields come predefined
with flatspin, including sinusoidal, sawtooth, and rotational
fields. More complex field protocols can be generated, e.g.,
for annealing purposes or probing dynamic response.

E. Thermal field

In flatspin, the thermal energy fluctuations of individual
magnets E (i)

th are represented by a corresponding stochastic
magnetic field h(i)

th . The following section describes how the
thermal field magnitude is derived.

In a physical ensemble of particles, there is a thermal
energy budget, on the scale of kBT , where kB and T denote
the Boltzmann constant and the temperature, respectively. For
bistable magnetic particles, the thermal energy causes ran-
dom switching events, at a characteristic rate given by the
Arrhenius-Néel equation [20],

f = f0 exp

(
− �E

kBT

)
, (4)

where f0 is the attempt frequency and �E is the particle’s
energy barrier for switching.

The energy barrier �E corresponds to the additional
Zeeman energy required for magnetization reversal. This ad-
ditional energy is a function of the smallest additional field
needed for switching �h. The Zeeman energy from �h is
given by �E = �hMth, where Mth is the thermal nucleation
moment. Note that Mth is typically smaller than the entire
magnetic moment M, since thermal nanomagnetic switching
is generally mediated by a smaller nucleation volume. The rel-
evant criterion for switching is the magnitude of the stochastic
thermal field compared to the minimum energy barrier.

The probability of thermal switching follows a Poisson
distribution Pr (k,�t, f ), where k is the number of switching
events in a time interval �t , and f is the characteristic switch-
ing rate given by Eq. (4). The probability of switching at least
once Pswitch is given by

Pswitch = Pr (k > 0),

= 1 − Pr (k = 0),

= 1 − exp(− f �t ),

= 1 − exp

(
�t f0 exp

(
−�hMth

kBT

))
. (5)

In our model, we use this expression to approximate the
probability that a magnet will switch once. For this to be
valid, �t must be sufficiently small so that multiple switch-
ing events are unlikely. In other words, it is assumed that
Pr (k > 1) � Pr (k = 1), so that magnets do not have time to
“switch back” during the time �t . This is relevant only for
weak bias fields, where the probability of switching is nearly
symmetrical. With any significant bias field, the probability of
“switching back” will be negligible.

It is important to note that flatspin does not account for
the temperature dependence of the material parameters. If
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FIG. 2. Probability density functions (PDF) for hth at differ-
ent temperatures T . The example plots are for a magnetic particle
with saturation magnetization MS = 860 kA m−1 and volume V =
220 nm × 80 nm × 3 nm, for a time interval �t = 1 ms.

these parameters are expected to vary significantly in the
temperature range of interest, e.g., Mth, this has to be explicitly
accounted for by the user.

As discussed in Sec. II B, all magnetic influences are in-
cluded as magnetic fields, and their sum is compared to the
switching condition to determine whether a magnet switches.
Within this framework, we now derive an expression for the
thermal field based on Pswitch.

Consider a stochastic field variable X from which a thermal
field hth is sampled. The probability of drawing a thermal field
hth larger than the minimum switching field �h equals the
switching probability for the same minimum switching field,

P(X > �h) = Pswitch(�h), (6)

1 − P(X � �h) = 1 − exp(− f �t ), (7)

P(X � �h) = exp(− f �t ). (8)

P(X � �h) is the cumulative density function (CDF) of
the distribution for hth that matches the Poisson distribution
in Eq. (5). Using inverse transform sampling, we use the
expression for the CDF to transform a uniformly distributed
random number u to a thermal magnetic field magnitude hth,

hth = −kBT

Mth
ln

(
ln(u)

−�t f0

)
. (9)

Figure 2 illustrates how temperature influences the prob-
ability density function for the stochastic thermal field. As
can be seen, both the expected value and the variance of hth

increases with temperature. In other words, the magnitude
and spread of the stochastic field hth increases, effectively
increasing the probability of thermal flips.
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FIG. 3. Top: Schematic showing hard and easy axes of (a) an elliptical magnet and (b) a rectangular stadium-shaped magnet, as well as the
total field acting on the magnet hi with its parallel and perpendicular components, h‖ and h⊥, respectively. Bottom: Switching astroid for (c) an
elliptical magnet and (d) a rectangular stadium-shaped magnet. Red dots show the coercive field obtained from micromagnetic simulations.
The blue line in (c) shows the Stoner-Wohlfarth astroid. The blue line in (d) shows the generalized Stoner-Wohlfarth astroid with parameters
b = 0.42, c = 1, β = 1.7, and γ = 3.4 in Eq. (11). The astroids have been normalized with respect to hk .

A stochastic thermal field magnitude drawn from hth is
converted to a vector field hth parallel to �h (the smallest
additional field for switching). When the thermal field is
added to the sum of fields for each magnet, the probability
of switching will follow the Poisson distribution in Eq. (5).
In this way, thermal fluctuations are modeled as an additional
local field h(i)

th applied to each magnet individually.

F. Switching

Magnetization reversal, or switching, may take place when
a magnet is subjected to a magnetic field or as a result of
thermal fluctuations. If the field is sufficiently strong and
directed against the magnetization mi, the magnetization will
switch direction.

The critical field strength for switching is referred to as the
coercive field hc. For elongated magnets, hc depends on the
angle between the applied field hi and mi. As illustrated in
Fig. 3(a), the easy axis, where the magnetization favors align-
ment, lies along the long axis of the magnet, whereas the hard
axis is perpendicular to the long axis. The external field can be
decomposed into two components, h‖ and h⊥, corresponding
to the field component parallel and perpendicular to the easy
axis, respectively. We denote the coercive field strength along
the hard axis as hk .

A switching astroid is a polar plot of hc at different angles,
with h⊥ on the horizontal axis and h‖ on the vertical axis. For
any applied field hi that is outside the switching astroid, the
magnet will switch as long as the field is directed against the
current magnetization.

Figure 3(c) shows the normalized switching astroid for an
elliptical magnet [Fig. 3(a)] as obtained from micromagnetic

simulations using MuMax3 [21]. Notice how hc is the smallest
at a 45◦ angle, indicating that a field directed at 45◦ to a
magnet’s principal axes will require the least field strength in
order to switch its magnetization.

The Stoner-Wohlfarth (SW) model captures the angle de-
pendent switching characteristic of single-domain elliptical
magnets [22]. The characteristic SW astroid is shown in
Fig. 3(c) (blue line) and is described by the equation

(
h‖
hk

)2/3

+
(

h⊥
hk

)2/3

= 1. (10)

In the SW model, switching may occur when the left-hand
side of Eq. (10) is greater than one.

The astroid obtained from micromagnetic simulations and
the SW astroid [Fig. 3(c)] are nearly identical. Despite its sim-
plicity, the SW model clearly captures the switching behavior
of elliptical nanomagnets.

However, the SW model is only accurate for elliptical
magnets. Other magnet shapes typically have quite different
switching characteristics. Figure 3(d) shows the switching
astroid for rectangular stadium-shaped magnets (red dots),
which is the shape commonly used in most fabricated ASIs
[Fig. 3(b)]. Notice how the astroid is asymmetric: Rectangular
magnets switch more easily with a field applied along the easy
axis than the hard axis.

To capture the asymmetric switching characteristics of
nonelliptical magnets, we have generalized the SW switching
model to allow an asymmetry between easy and hard axes.
Additionally, the model has been extended to allow for tuning
of the curvature of the extrema. In the generalized model, the
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switching threshold is given by
(

h‖
bhk

)2/γ

+
(

h⊥
chk

)2/β

= 1, (11)

where b, c, β, and γ are parameters, which adjust the shape
of the astroid: b and c define the height and width, respec-
tively, while β and γ adjust the curvature of the astroid at
the easy and hard axis, respectively. Introducing these new
parameters allows for tuning of the switching astroid to fit
with the shape of nanomagnets used in ASIs. With b = c = 1
and β = γ = 3, Eq. (11) reduces to Eq. (10), i.e., the clas-
sical Stoner-Wohlfarth astroid is obtained (valid for elliptical
magnets).

By tuning the parameters of the generalized SW model,
we can obtain the asymmetric switching astroid shown in
Fig. 3(d) (blue line). The astroid is in good agreement with
results obtained from micromagnetic simulations (red dots).

In flatspin, the generalized SW model is used as the switch-
ing criteria, i.e., a spin may flip if the left-hand side of Eq. (11)
is greater than one. Additionally, the projection of hi onto mi

must be in the opposite direction of mi,

hi · mi < 0. (12)

G. Imperfections and disorder

Due to manufacturing imperfections, there will always be
a degree of variation in the shape and edge roughness of
nanomagnets. This variation can be thought of as a disorder in
the magnets’ inherent properties. Rough edges and a slightly
distorted geometry can affect the magnets’ switching mech-
anisms, with defects pinning magnetization and altering the
coercive field for each magnet.

In flatspin we model this variation as disorder in the coer-
cive fields. The coercive field is defined individually for each
magnet, and a distribution of values can be used to introduce
variation. A user-defined parameter kdisorder defines the distri-
bution of coercive fields, i.e., h(i)

k is sampled from a normal
distribution N (hk, σ ), where σ = kdisorder · hk . Negative h(i)

k
values are disallowed.

H. Dynamics

Given the total magnetic field acting on each spin, hi,
flatspin employs deterministic single spin flip dynamics. At
each simulation step, we calculate hi, which will contain a
stochastic term in the case of nonzero temperature. Next, we
determine which spins may flip according to the switching
criteria Eqs. (11) and (12). Finally, we flip the spin where
hi is the furthest outside its switching astroid, i.e., where the
left-hand side of Eq. (11) is the greatest. Ties are broken
in a deterministic, arbitrary manner, although with nonzero
disorder such occurrences are rare. The dipolar fields are
recalculated after every spin flip, and the above process is
repeated until there are no more flippable spins.

This relaxation process is performed with constant exter-
nal and thermal fields. To advance the simulation, the fields
are updated and relaxation is performed again. Hence, a
simulation run consists of a sequence of field updates and
relaxation processes.

The dynamical process makes three main assumptions:
(1) The external field is quasistatic compared to the

timescale of magnet switching.
(2) Magnet switching is sequential.
(3) The magnet experiencing the highest effective field

compared to its switching threshold is the first to
switch.

Assumption 1 means the model holds for low frequency
external fields, i.e., where switching settles under a static field.
The switching mechanics of nanomagnets are typically in the
subnanosecond range [23,24], and experimental setups often
employ external magnetic fields, which can be considered
static at this timescale. At high applied field frequencies, more
complex physical phenomena such as spin waves will have
a non-negligible effect on switching dynamics. Such high-
frequency phenomena are not considered in flatspin.

Assumption 2 holds if the coercive fields h(i)
c , and total

field hi, of the magnets are sufficiently nonuniform, so that
there will always be a single magnet that will flip first. It is
assumed to be unlikely that two magnets will have a h(i)

c and
hi that bring them equally far outside the switching astroid.
However, in those rare cases where two magnets are equally
far outside, overlapping switching events may occur in a
physical system.

Assumption 3 relies on the fact that all changes in the
magnetic fields are effectively continuous, and the change is
unidirectional within a simulated time step, i.e., a quasistatic
field. Since evaluation happens in discrete time, there will be
cases where several magnets are above their corresponding
switching thresholds simultaneously. In those cases, the mag-
net furthest above its switching threshold will have been the
first to have crossed the threshold under a quasistatic field.
Furthermore, if the angle of the external field is constant,
the switching order is invariant to the time resolution of the
external field.

I. Geometries

The particular spatial arrangement of the magnets is re-
ferred to as the geometry. A wide range of ASI geometries
have been proposed in the literature. Figure 4 depicts the
geometries included in flatspin, which are the most com-
monly used ASI geometries: square [16], kagome [25,26],
pinwheel [13,18], and Ising [27]. Note that when we refer to
“pinwheel ASI” in this paper, we are referring explicitly to the
45 ◦ variant.

Geometries are often decomposed into two or more “sub-
lattices”, where the magnets within one sublattice are all
aligned, i.e., have the same rotation. In Fig. 4, the sublattice
a magnet belongs to is indicated by its color. As can be
seen, both square and pinwheel ASIs have two perpendicular
sublattices, whereas kagome has three sublattices.

flatspin can be used to model any two-dimensional ASI
comprised of identical elements. New geometries can easily
be added by extending the model with a new set of positions
ri and rotations θi.

J. Limitations of the model

The flatspin model makes several assumptions and approx-
imations, which means there are inherent limitations to what
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FIG. 4. flatspin includes the most common ASI geometries: (a) Square (closed edges), (b) square (open edges), (c) kagome, (d) pinwheel
“diamond”, (e) pinwheel “lucky-knot”, and (f) Ising.

physics flatspin can capture. In this section, we outline the
main limitations of the model.

All magnets in the model are approximated as binary
mesoscopic spins, i.e., the magnetization direction of a single
magnet is always parallel to the easy axis of the magnet. In
reality, the magnetization of nanomagnet islands may deviate
somewhat from the easy axis, which in turn would influence
the dipolar fields.

It is assumed that the size and shape of all magnets is
identical, as all magnets have the same net magnetic moment
M, and the same switching astroid. Magnet imperfections
are modelled solely as a disorder in the coercive fields, i.e.,
without any effect on the magnetic moment. Hybrid sys-
tems with magnets of different size and shape are therefore
not supported.

The point dipole approximation underestimates the cou-
pling coefficients for small lattice spacings. As the lateral
dimensions of the magnets are not taken into account, the
physical proximity of the magnets is underestimated. This can
be remedied by artificially increasing the coupling strength α

for highly coupled systems.
The dynamical model assumes switching to be instan-

taneous. In reality, magnetic switching takes finite time,
mediated by a rotation of the internal magnetization state.
Such transient states may affect ensemble dynamics in subtle
ways, which will not be captured in the instantaneous model.

Another limitation of the dynamical model is that switch-
ing is assumed to be sequential. While simultaneous switching
is possible in reality, it is not modeled in flatspin.

In spite of these limitations, the flatspin model is able
to capture a range of real-world phenomena, as we will see
in Sec. V.

While flatspin is specifically designed for artificial spin
ice consisting of ferromagnetic macrospins, the model could
be modified to accommodate other forms of artificial spin
systems with bi-stable elements. Some examples include col-
loidal spin ice [28,29], macroscopic magnets [30], interacting
skyrmions [31], and superconducting vortices [32]. Simulat-
ing such systems would require three main changes to the
flatspin magnetic model. First, the magnetic dipole-dipole in-
teractions (Sec. II C) would need to be replaced with a suitable
interaction field along with the interaction modifier α. Second,
the thermal field (Sec. II E) should be modified to include any
other effects of temperature in the relevant system. Finally, a
suitable switching mechanism (Sec. II F) must be devised to
capture the switching barriers as a function of the total fields.

K. A note on units

The physical unit of the h field in flatspin is Tesla [T].
While the H field is typically described in units of [A m−1],
the fields in flatspin are exclusively external to the magnets. In
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ASI model

Input encoder

Runner Dataset

Analysis tools

FIG. 5. Overview of the flatspin architecture, with arrows indi-
cating data flow.

other words, the h field is equivalent to a B field in the absence
of material magnetization, i.e., h = μ0H. Correspondingly,
the magnetic moments M and Mth have units [A m2].

III. SIMULATION FRAMEWORK

In addition to a magnetic model, flatspin provides a flex-
ible framework for running simulations, storing results, and
performing analysis.

Figure 5 illustrates the overall architecture of flatspin. The
ASI model has been described in detail in Sec. II. Conceptu-
ally, the ASI model describes the physical system under study.
The rest of the components are tools used by the researcher to
interact with the ASI and observe the results. In this section,
we briefly describe each of these components.

The input encoder translates a set of input values to a
series of external fields. Encoders provide a flexible way to
define field protocols. A range of encoders are included, e.g.,
sinusoidal, sawtooth, and rotational fields.

The responsibility of the runner component is to perturb
the ASI model according to the field protocol, and save the
results. The model, which is fully parametric, receives param-
eters from the runner, enabling automated parameter sweeps.
In addition, there is support for distributed running of simula-
tions on a computing cluster.

Results are stored in a well-defined dataset format, which
makes the analysis of a large number of simulations straight-
forward. A suite of analysis tools are included, e.g., for
plotting results, visualizing ensemble dynamics, and analysis
of vertex populations.

flatspin is written in Python and utilizes OpenCL to ac-
celerate calculations on the GPU. OpenCL is supported by
most GPU vendors, hence flatspin can run accelerated on a
wide variety of platforms. The simulator may also run en-
tirely on CPUs in case GPUs are not available, albeit at a
reduced speed.

flatspin is open-source software and released under a GNU
GPL license. For more information, see the website [19].

IV. VERIFICATION OF FLATSPIN

The flatspin software has been verified through an exten-
sive suite of unit tests, where computed results are compared
to theoretical values. We do not go into detail about the unit
tests here, but the test suite is packaged with the flatspin
software, and available from the website [19].

While the unit tests verify the software implementation, a
verification of the temperature model itself (Sec. II E) is nec-
essary. In the next section, we compare flatspin simulations to
experiments where the results are known analytically.

Stochastic thermal field

To verify the temperature model in flatspin, we consider the
effect of temperature on a system of noninteracting spins at
equilibrium. In particular, we investigate the relationship be-
tween the temperature scale and the thermal fields, described
in Sec. II E. In the following, the magnetization behavior
of magnets subjected to an external field and temperature,
M(H,T ), is simulated and compared to results of other es-
tablished techniques, both analytical and numerical.

Two different scenarios are considered:
(1) The coercive fields are small compared to the external

field, and switching is mostly an effect of the external
field competing with temperature.

(2) The switching threshold is comparable to the external
field and switching is also influenced by the energy
landscape of the magnet, as captured by the shape of
the switching astroid.

For scenario (1) we use a switching threshold of hk =
1 mT, and for scenario (2) we use hk = 20 mT. For both
scenarios, we use the unaltered Stoner-Wohlfarth astroid (b =
c = 1, β = γ = 3).

Ensembles of noninteracting spins (α = 0 in flatspin) are
subjected to a rising, quasistatic magnetic field aligned with
their easy axis, which is held at each field value until equilib-
rium. Here, equilibrium is defined by the convergence of the
mean magnetization over time.

The time intervals were set short enough to avoid a sig-
nificant probability of multiple flips of one magnet within
one interval, and long enough to reach equilibrium within
reasonable simulation time. For the low coercivity scenario
(1), �t = 1 × 10−10 s, and for the high coercivity scenario
(2), �t = 1 × 10−9 s. Other parameters include the attempt
frequency, f0 = 1 × 109 Hz and no disorder.

For the low coercivity scenario, the M(H ) curve should
match the analytical two-state model described by the
Brillouin function for spin- 1

2 systems [33]. The average mag-
netization of such a system under an applied field μ0H is
described by the analytical expression

〈mx〉 = tanh(Aμ0H ), (13)

where A = MSV /kBT , i.e., Aμ0H is the ratio of the Zeeman
energy to thermal energy.

For the high coercivity scenario, the energy barriers and the
shape of the astroid becomes significant, and the analytical
model breaks down. In this case, we compare results with
micromagnetic simulations using MuMax3 [21]. The micro-
magnetic simulations are set up to capture the M(H ) curves
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FIG. 6. M(H) curves of ensembles of noninteracting magnets at different temperatures, simulated with different approaches, and for
different coercivities. Also indicated is the analytical tanh(Aμ0H ) where A = MSV/kBT . Note that the MuMax3 results are for binned cell
magnetization.

of single cell magnets in a rising magnetic field. To isolate the
cells in the MuMax3 simulation, the EnableDemag property
is set to False and the exchange stiffness to zero (Aex =
0 J m−1). One period of a 500 Hz stepped ramping field is ap-
plied, starting at μ0Hext = −100 mT and ending at μ0Hext =
100 mT. This field protocol subjects the magnets to a constant
field value for 2 μs before increasing the field by an additional
0.2 mT, which is sufficient to reach thermal equilibrium. The
coercivity of hc = 20 mT was reproduced with a material
uniaxial anisotropy and Ku1 = hc · MS/2 = 8600 J m−3. Other
parameters include a world size of 16 × 16 cells and a cell size
of V = 10 nm3 × 10 nm3 × 10 nm3.

Unlike in flatspin, where spins are binary, the cells in the
micromagnetic simulations are allowed to exhibit any mag-
netization direction. To compare the results from flatspin and
micromagnetic simulations, the magnetization of micromag-
netic cells is binned into spin states of si = ±1, before they are
averaged. Note that this binning only approximates the same
average magnetization as a system with significant anisotropy,
such as in the high coercivity scenario.

For all simulations, we use the parameters MS =
860 kA m−1, and V = 10 nm × 10 nm × 10 nm.

Figure 6 presents the results of the flatspin simulations, the
micromagnetic simulations, as well as the analytical two-state
model of Eq. (13). For the low coercivity scenario (hc =
1.0 mT), the M(H ) curves produced by flatspin agree well
with the analytical two-state model. For the high coerciv-
ity scenario (hc = 20.0 mT), there is a significant deviation
between flatspin and the two-state model, but excellent agree-
ment between flatspin and micromagnetic simulations.

For the low coercivity scenario, the agreement between
flatspin and the analytical two-state model shows that
flatspin’s thermal field scales correctly compared to the
absolute temperature.

As mentioned, for the high coercivity scenario, the analyt-
ical model breaks down, and both flatspin and micromagnetic
results deviate significantly from the analytical two-state
model. However, there is excellent agreement between the
results from flatspin and micromagnetic simulations. Both
of these models take the effects of a significant coercivity
(significant uniaxial anisotropy) into account. Thus, flatspin
is shown to reproduce correct thermal activity also with sig-
nificant coercivity.

The results presented here are all from systems of nonin-
teracting magnets, where the only influences are the external
field and the thermal field. However, since interactions be-
tween magnets are mediated by dipolar magnetic fields, the
results are also valid for systems of dipolar coupled magnets.
The additional dipolar fields can be seen as simple additions
to the total field at each magnet, and thus does not alter the
validity of the temperature model.

In conclusion, our results show excellent agreement be-
tween flatspin and the expected thermal activity for both high
and low coercivity scenarios, at equilibrium. For the low co-
ercitvity scenario, the influence of the switching astroid is
negligible and flatspin matches the analytical two-state model.
For the high coercivity scenario, where the energy barriers
are significant, flatspin shows excellent agreement with micro-
magnetic simulations. These results thereby validate the scal-
ing of temperature in the thermal model of flatspin (Sec. II E).
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FIG. 7. Left: Snapshots of the evolution of a kagome ASI at selected field values. the images have been cropped to show the middle 80%
of the total ASI to improve clarity. Right: Comparison of the hysteresis curve of the simulated ensemble (blue line) against a sketch of the
hysteresis curve from the experimental results of Mengotti et al. [34] (red-dashed line). The labeled points indicate the points at which the
snapshots are sampled from.

V. VALIDATION OF FLATSPIN

To evaluate the suitability of the simulator, flatspin simula-
tions were compared to established experimental results from
literature, as well as micromagnetic simulations. In particular,
we investigate phenomena such as Dirac strings in kagome
ASI [34], the size of crystallite domains in square ASI [10],
and superferromagnetism in pinwheel ASI [13]. Finally, we
compare the switching order from flatspin simulations with
that of micromagnetic simulations, and investigate the effect
of varying lattice spacings.

A. Dirac strings in kagome ASI

To assess the ability of flatspin to reproduce fine-scale
patterns, we consider the emergence of Dirac strings in
a kagome ASI [Fig. 4(c)]. Applying a reversal field to a
polarized kagome ASI results in the formation of monopole-
antimonopole pairs [34]. These pairs are joined by a “string”
of nanomagnets, which have flipped due to the reversal field.

As the strength of the reversal field increases, the strings
elongate until they fill the array.

We closely follow the methodology set out in an ex-
perimental study of Dirac strings in kagome ASI [34], in
which a room temperature kagome ASI undergoes magne-
tization reversal. We start with an array of 2638 magnets
(29 × 29 hexagons) polarized to the left and apply a reversal
field H to the right with a slight, downward offset of 3.6◦. This
offset breaks the symmetry, such that one of the sublattices
is now least aligned with the field, resulting in an increased
coercive field on this “unfavored” sublattice.

Micromagnetic simulations of magnets of size
470 nm × 160 nm × 20 nm yield the following estimation of
flatspin parameters: α = 0.00103, hk = 0.216, β = 2.5, γ =
3, b = 0.212, c = 1. The ensemble was simulated at constant
room temperature (300 K) with time interval �t = 1 s, and
with 5% disorder.

The time evolution snapshots of Fig. 7 demonstrate
a strong, qualitative similarity to the results of Mengotti
et al. [34]. We see Dirac strings developing with a preference
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to lie along the two sublattices most aligned with the field
angle. Furthermore, in the final image, we see the vast ma-
jority of unflipped magnets are on the unfavored sublattice, in
accordance with both experimental and simulated results from
the literature.

Also in Fig. 7, we see the hysteresis of the simulated
ensemble (solid line) is similar to that of Mengotti et al. [34]
(dashed line) in some sections, but differs near the extrema.
The hysteresis can be understood in two stages. The first stage,
at roughly M/MS ∈ [−0.6, 0.6], is dominated by the lengthen-
ing of the Dirac strings, with almost no activity occurring on
the unfavored sublattice. At M/MS < −0.6 and M/MS > 0.6,
the ensemble enters a second stage in which the Dirac strings
have fully covered the array, and the change in magnetization
is dominated by switching on the unfavored sublattice. Clearly
we see good agreement, within stage one, between our sim-
ulated hysteresis and the experimental results. Furthermore,
there is a clear transition (characterized by a sharp decrease
in gradient) in our hysteresis very close to the transition in
the experimental hysteresis. Notably, however, although the
transitions occur at similar field values, the change in gradient
is less pronounced in our simulated hysteresis. This disparity
indicates that, in the second stage, the magnets on the unfa-
vored sublattice flip more easily in our simulation than in the
experimental data.

As discussed in Sec. II J, the accuracy of the point dipole
approximation is known to suffer when considering kagome
ASI. Specifically, it has been shown to underestimate the cou-
pling coefficient of the nearest neighbors by approximately a
factor of 5 [35], which may contribute to the disparity noted
above. Despite this, we observe flatspin accurately reproduces
snapshots of the time evolution behavior, while also capturing
salient features of the ensemble hysteresis curve.

B. Domain size in square ASI

In order to demonstrate simulation of large-scale behavior,
we have reproduced the emergence of large domains of mag-
netic order in square ASI, similar to experimental results of
Zhang et al. [10]. One of the main advantages of flatspin over
typical alternatives is the scalability and high throughput of
large systems with many magnets. Some emergent ASI phe-
nomena require large systems in order to be fully quantified
and studied with high fidelity, such as the domain size of
magnetic charge crystallites. For ASIs with strongly coupled
magnets, typical domain sizes can become too large for direct
experimental observation. Thus, an accurate estimate of the
domain size for ASIs with a small lattice spacing is, in part,
limited by the number of directly observable magnets.

For a given range of lattice spacings covering both strongly
coupled ASIs and weakly coupled ASIs, a corresponding
range of large to small magnetic order coherence lengths is
expected. In this study, we consider square ASI [closed edges,
Fig. 4(a)] with different lattice spacings, a, ranging from
320 nm to 880 nm.

Square ASIs of size 50 × 50 were annealed in flatspin
with a linearly decreasing temperature, starting at T = 800 K
and decreasing by 1 K until no magnets were active. Each
temperature was simulated over 50 simulation steps. The time
interval �t of each simulation step was chosen so that the

probability of multiple switching events in any single mag-
net was small, Pr (k > 1) < 0.001, or until the total time per
temperature value reached 1 min. At high temperatures (T �
720 K), the requirement Pr < 0.001 causes the total time per
temperature value to be less than 1 min. This is a trade off
between the number of simulation steps allowed and the like-
lihood of multiple switching events.

The nucleation moment Mth was chosen to match the
blocking temperature of the 25-nm-thick magnets reported by
Zhang et al. [36], where moments are stable below ∼670 K. A
switching astroid for 220 nm × 80 nm × 25 nm was obtained
through micromagnetic simulations, described by generalized
astroid parameters b = 0.38, c = 1.0, β = 1.3, and γ = 3.6.
Additionally, hk = 0.20, kdisorder = 0.05, and a neighbor dis-
tance of 10a were used. The temperature dependence of the
saturation magnetization was accounted for by adjusting Mth

according to data reported by Zhang et al. [36]. The tempera-
ture dependence of hk was scaled by the same factor. Details
of the specific time intervals, temperature and temperature
dependent parameter values can be found in flatspin’s docu-
mentation [19].

In the annealed state, the spin-spin correlation as a function
of their lateral separation was calculated across the ensembles.
Analysis of the average correlation of annealed states provides
insight about the typical coherence length of magnetic order,
i.e., magnetic charge crystallite size, or domain size. Here, the
correlation of two spins is defined as +1 (–1) if their dipole
interaction is minimized (maximized). Averaging correlation
across distinct types of spin pairs, in the annealed ASI, gives a
measure of how coherent the ASI is at that particular neighbor
separation. How quickly the average correlation decreases as
a function of separation can be used to estimate the char-
acteristic domain size. In particular, it can be argued that
the separation where the correlation falls below 1/e is the
characteristic domain radius [10,37].

Typical domain structures and correlation results can be
seen in Fig. 8. The domains shown in Fig. 8(a) and the
correlation curves in Fig. 8(b) are in good agreement with
experimental results [10]. A qualitative comparison of the do-
main sizes and structures in Fig. 8 shows that the domains tend
to be larger, with smoother domain boundaries, for smaller
a. The analysis of coherence as a function of separation also
shows similar trends and values, where an increase in a leads
to low correlation, even between nearest neighbors.

The discrepancy for a = 320 nm is not completely unex-
pected, as the point-dipole approximation is known to under-
estimate nearest-neighbor interaction for magnets placed very
close together [35]. In strongly coupled systems, each spin
flip results in a greater change in dipole energy, compared to
systems that are less coupled. This makes a gradual descent
towards the ground state by random spin flips (the thermal
fluctuations as modeled by flatspin) harder to achieve. These
issues may be addressed by increasing the coupling parameter
α for nearest neighbor spins, and by a longer and slower
annealing protocol. A longer and slower annealing proto-
col will inevitably come at the cost of longer computation
times.

These results show that flatspin provides sufficient flexi-
bility, fidelity and performance required to reproduce experi-
mentally observed large-scale emergent behavior in ASIs.
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FIG. 8. (a) Maps showing the net magnetization of the ASI vertices, for an annealed 50 × 50 square ASI with the given lattice spacing a.
The white regions have zero net magnetization, and thus correspond to a coherent domain of type I vertices. Colored regions have a nonzero net
magnetization, direction indicated by the color wheel, and correspond to type II or III vertices. (b) The absolute value of spin-spin correlation
at a given separation for square ASIs of different lattice spacings, a. Dashed curves show exponential best fits for data from the original
paper [10]. Also indicated is a 1/e threshold of correlation.

C. Superferromagnetism in pinwheel ASI

In this section, we use flatspin to reproduce the dynamic
behavior of pinwheel ASI, which had yet to be demonstrated
with a dipole model [13]. We find that our switching criteria
plays a key role in replicating magnetization details during the
field-driven array reversal.

Pinwheel ASI is obtained by rotating each island in square
ASI some angle about its center. A rotation of 45 degrees
results in a transition from antiferromagnetic to ferromagnetic
order [18]. The dynamics of pinwheel ASI in many ways re-
semble continuous ferromagnetic thin films, with mesoscopic
domain growth originating from nucleation sites, followed
by coherent domain propagation and complete magnetization
reversal [13].

Here, we demonstrate that flatspin is able to replicate the
experimental reversal processes presented in Li et al. [13],
where pinwheel “diamond” ASI [Fig. 4(d)] is subject to an
external field at different angles. A key result is that the
angle θ of the external field controls the nature of the reversal
process. When θ is small (equally aligned to both sublattices),
reversal happens in a single avalanche, whereas when θ is
large (more aligned to one sublattice), reversal happens in a
two-step process where one sublattice switches completely
before the other. Previous attempts at capturing this behavior
in a dipole model have proven difficult [13].

To replicate this process in flatspin, an asymmetric switch-
ing astroid is required, i.e., the threshold along the parallel
component is reduced by setting b < 1 in Eq. (11). From
micromagnetic simulations of a single 470 × 170 × 10 nm

magnet, we obtain the following characteristic switching pa-
rameters: b = 0.28, c = 1.0, β = 4.8, and γ = 3.0. Other
simulation parameters include α ≈ 0.00033, hk = 0.098,
kdisorder = 0.05, and a neighbor distance of 10a. Full simula-
tion details are available in the flatspin documentation [19].

Figures 9(a)–9(d) show hysteresis loops and array snap-
shots when the field is aligned with the array (θ = 0◦ and
θ = −6◦). As can be seen, the results from flatspin [Figs. 9(b)
and 9(d)] are qualitatively very similar to experimental results
[Figs. 9(a) and 9(c)]. In all cases, the ASI undergoes reversal
in a single avalanche. Reversal begins at a few nucleation
points close to the edge, followed by domain growth and
domain wall movement perpendicular to the direction of the
field. The simulated system appears to have an anisotropy
axis of 0◦ as opposed to −6◦ observed experimentally. Hence,
Fig. 9(b) is most similar to Fig. 9(c) and Fig. 9(d) is most
similar to Fig. 9(a). It should be noted that the tilted anisotropy
axis found experimentally has not yet been explained.

Figures 9(e) and 9(f) show the hysteresis loops and ar-
ray snapshots when the field is misaligned with the array
(θ = 30◦). Again, flatspin simulations [Fig. 9(f)] replicate key
features observed experimentally [Fig. 9(e)]. Reversal now
happens in two steps: the sublattice whose magnets have their
easy axis most aligned with the field will switch first, followed
later by the other sublattice. This two-step reversal process
results in an emergent rotation of the collective magnetization.
The magnetization is constrained to follow the orientation of
the magnets, resulting in reversal via stripe patterns at 45◦.

Li et al. [13] report they were unable to replicate the mag-
netization details using a point-dipole Monte Carlo model.
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FIG. 9. Hysteresis loop and snapshots of the pinwheel units for various angles θ of the applied field. Figures (a), (c), and (e) show
experimental results, adapted from Li et al. [13], Copyright ©2018 American Chemical Society, CC-BY-4.0 . Figures (b), (d), and (f) show
results from flatspin simulation.
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One crucial difference between flatspin and their dipole model
is the switching criteria. They use the simpler criteria hi ·
mi < h(i)

k , which considers only the parallel field component
and will be largely inaccurate for fields that are not aligned
with the magnet’s easy axis. Indeed, we find that the general-
ized Stoner-Wohlfarth model (Sec. II F) is crucial to reproduce
the reversal process and magnetization details.

D. Comparison to micromagnetic single-spin switching order

Micromagnetic simulations, e.g., MuMax3 [21,38], are
taken as the gold standard and generally agree with exper-
imental results, due to the high simulation fidelity of the
micromagnetic model. In this section, we compare how well
flatspin agrees with MuMax3 at the level of detail expressed
in flatspin.

Here we evaluate the switching strategy outlined in
Sec. II H, by comparing the switching orders obtained in flat-
spin and MuMax3, of a square ASI as it undergoes reversal
by an external field. Switching order refers to the sequence
in which individual magnets switch their magnetization state.
As a similarity measure, Spearman’s rank correlation co-
efficient ρ [39] is used, where a value of 1 indicates
perfect correlation and 0 indicates no correlation between
switching orders.

In the weakly coupled regime, the switching order is dom-
inated by the coercivity of each individual magnet, i.e., low
coercivity magnets switch first, and high coercivity magnets
switch last. In flatspin, the coercive field can be set di-
rectly by modifying h(i)

k . In MuMax3, we control the coercive
field implicitly, by varying the first-order, uniaxial, magne-
tocrystalline anisotropy, K (i)

U1 of each magnet. Given a set of
randomly drawn K (i)

U1 values, the corresponding h(i)
k values

were obtained by a linear map. In this way, the distribution
of magnet coercivities in the two models match.

The system we considered was a 4 × 4 square (closed)
ASI, each magnet measuring 220 nm × 80 nm × 25 nm. flat-
spin was run with parameters b = 0.38, c = 1, β = 1.5, and
γ = 3.2. In both simulators, we applied a gradually increasing
reversal field at θ = 44◦.

As the lattice spacing is decreased, the dipolar interactions
begin contributing to the switching order. To verify that flat-
spin captures switching dynamics, we perform a comparison
of the switching orders for all pairs of lattice spacings in
both simulators.

Figure 10(a) shows the correlations for each pair of lattice
spacings as an average over 32 different square ASIs. We
observe a clear linear relationship between the two simulators,
with higher lattice spacings exhibiting higher correlation. The
nonzero y-intercept in the heatmap indicates that, as expected,
the coupling strength is slightly underestimated by the dipole
approximation employed in flatspin, in particular for lower
lattice spacings. For example, flatspin with 300 nm lattice
spacing is most similar to MuMax3 with 380 nm.

The red line in Fig. 10(b) traces the ridge in the heatmap,
i.e., the highest ρ, for each flatspin lattice spacing. As can
be seen, a near-perfect agreement between the simulators is
found in the weakly coupled regime (high lattice spacing). As
lattice spacings decrease, the magnets start to interact through
dipolar coupling. Below 450 nm, the correlation drops. Since
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FIG. 10. (a) Spearman’s rank correlation coefficients ρ averaged
over 32 different square ASIs, evaluated for different lattice spac-
ings in flatspin and MuMax3. The red line shows the approximate
maximum ridge line through the heatmap. (b) The red line shows
the true maximum ρ for the lattice spacing pairs. The blue and
violet lines show projections of the top row and rightmost column
of (a), respectively.

flatspin does not account for the micromagnetic state, com-
plete correlation is not expected.

The particular selection of h(i)
k values of flatspin, and the

corresponding KU1 values of MuMax3, introduces an inher-
ent bias in the switching order. One might expect that this
quenched disorder dominates the switching order, leading to
an inflated correlation between flatspin and MuMax3, regard-
less of dipole interactions.

The violet line of Fig. 10(b) [plotting the rightmost
column from Fig. 10(a)], shows the correlation between Mu-
Max3 and the uncoupled flatspin system (lattice spacing of
1000 nm). If the quenched disorder completely dominated the
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FIG. 11. The throughput (number of field calculations per sec-
ond) as a function of number of spins. Throughput is averaged over
100 simulations of each size. The test was performed on an NVIDIA
Tesla V100 GPU with 32 GB of RAM. Note the logarithmic scale of
the axes.

switching order, one would expect this to be a flat line, as
increasing the dipole coupling (by reducing lattice spacing)
would have no effect. The blue line of Fig. 10(b) [top row
from Fig. 10(a)] show the corresponding curve comparing
flatspin to the uncoupled MuMax3 system. In both cases,
the correlation rapidly declines with lattice spacing, con-
firming that the switching order is not dominated by the
inherent bias for highly coupled systems. Furthermore, the
red line clearly shows a stronger agreement when the lattice
spacing of MuMax3 and flatspin are both varied proportion-
ally. We conclude that flatspin and MuMax3 capture similar
switching dynamics.

VI. PERFORMANCE

Although the total simulation time will depend on many
factors, it is of interest to measure how simulation time scales
with the number of spins. As the number of spins are in-
creased, simulation time will be largely dominated by the
calculation of the effective field, hi, acting on each of the N
spins in the lattice. Computing time for h(i)

dip depends on the
number of neighbors around spin i, which is typically constant
for all spins except the ones at the edges of the geometry.
For large N , the number of edge magnets is negligible (in
the common ASI geometries). Computing hi for all spins will
take O(N ) time, i.e., computation time grows no faster than
linear in N .

Figure 11 shows the throughput (number of field calcula-
tions per second) as a function of the number of spins. Here
a field calculation is defined as the computation of hi for a
single spin i, hence for N spins there will be N such field
calculations. The geometry used was square ASI (open edges)
using a standard 8 spin neighborhood for calculating h(i)

dip. The
throughput was averaged over 100 simulations of each size.
The test was performed on an NVIDIA Tesla V100 GPU with
32 GB of RAM.

At around 200 000 spins, the throughput saturates at 108

field calculations per second. On our test setup, computing

FIG. 12. A snapshot from flatspin simulations of a pinwheel ASI
system with more than one million magnets, as it undergoes reversal
by an external field. The angle of the external field is θ = 0◦.

hi for one million spins takes approximately 10 ms. Above
200 000 spins, we are able to fully utilize the GPU resources.

To simulate the reversal of an ASI by a gradually increasing
external field, at least one field calculation per spin flip is
required, i.e., at least N field calculations. If the external field
gradually changes with a resolution of K values, the worst
case will be when all spins flip during a single field value.
In this case the number of field calculations required will be
N + K − 1 since there will be K − 1 field calculations that
results in no spin flips.

The total simulation time depends largely on the particular
experimental setup, parameters and other system characteris-
tics. Time will be spent on things other than field calculations,
e.g., organizing and writing results to storage. Hence, the total
simulation time will be longer than predicted by field calcula-
tions alone. As an example, the simulations from Sec. V C of
25 × 25 pinwheel ASI with 1250 magnets took approximately
6 seconds with K = 2500, for one reversal.

Figure 12 shows a snapshot from flatspin simulations of
a large pinwheel ASI system as it undergoes reversal by an
external field. With more than one million magnets, the simu-
lation of array reversal took several days to complete. A video
of the full reversal is available as Supplemental Material [40].

The ability to simulate such large systems allows a re-
searcher to explore phenomena at much larger scales than
can be directly observed experimentally. The imaging window
of experimental techniques with single spin resolution, such
as magnetic force microscopy (MFM), is typically limited to
about 50 μm × 50 μm. However, much smaller imaging win-
dows are frequently used due to other practical considerations.
For instance, the square ASI investigated by [10] is a typical
example, where 5000 magnets are imaged.

VII. SQUARE ASI ROBUSTNESS TO DILUTION DEFECTS

In the following, we will make use of the unique
framework provided by flatspin to explore new aspects of
ASI behavior.
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FIG. 13. (a) Average complete vertex fraction, by type, as a function of dilution by removal of spins in a 50 × 50 square ASI. Only
complete vertices are included. The averages are taken over 10 different instances for each dilution fraction. (b) Example end states of square
ASI of different dilutions. Each pixel correspond to the net magnetization of 4 spins (vertices), as in Fig. 8(a). Note that white pixels correspond
to vertices of no net magnetization (type I vertices if the vertices are complete, as there are no type IV vertices).

While square ASI is perhaps one of the most investi-
gated ASI systems, mainly due to its display of magnetically
charged defects with associated Coulombic interactions and
string tension [1,41], the robustness of this system with re-
spect to lattice defects is largely unexplored. For the kagome
ASI it has, however, been recognized that significant removal
of elements in the lattice will cause the phase transition of
the system (from spin ice I state to the ordered spin ice II
state) to disappear [42]. Related work on particle-based ice
of the square geometry has revealed an apparent ice rule
fragility with respect to similar dilution [43,44]. Here, we
use flatspin to investigate the effect of dilution defects, i.e.,
random removal of lattice elements, on square vertex popula-
tion and domain size in the ASI after a field demagnetization
protocol.

Large ASI systems are needed to observe large-scale phe-
nomena such as domain formation and the effects of sparse
random dilution. Random defects result in stochastic behav-
ior, as the results will depend on the exact configuration of
the defects. Hence, to provide sufficient statistics of these
phenomena, the experiments must be repeated for different
random configurations. Furthermore, this is combined with
long field protocols, which are required to relax each system
to a lower energy configuration.

The two-fold degenerate ground state configurations in
square ASI consist of antiferromagnetic ordering on the verti-
cal and horizontal sublattices [10]. Reaching this ground-state
configuration experimentally has proven difficult. Relaxation
through thermal annealing or field protocols will typically
result in domains of charge neutral type I vertices separated by
domain walls comprised of mostly type II vertices with a net
magnetization (and no net magnetic charge). These domain
walls, strings of type II vertices, are necessarily terminated
by type III (or less frequently: type IV) vertices of opposite

net magnetic charge, or at incomplete vertices, such as at the
edges of the ensemble.

Diluting the ASI lattice by removal of elements intro-
duces more vertices with uncompensated magnetic charge.
Here, we use flatspin to explore how such doping with fixed
magnetic charges affects the magnetic vertex population of a
square ASI.

A 50 × 50 square ASI is initialized uniformly and sub-
jected to a rotating magnetic field with decreasing amplitude.
The initial amplitude is slightly larger than a saturating field,
and is decreased linearly over 1000 periods. The final peri-
ods do not alter the state of the ASI. Individual spins are
assigned a hk = 0.2 with 5% disorder, and the field amplitude,
directed at 45 ◦, starts at h = 0.080 and ends at h = 0.072.
Each spin is again modeled as a rectangular magnet, with
astroid parameters b = 0.38, c = 1.0, β = 1.3, γ = 3.6, and
α = 30272, with a lattice spacing a = 300 nm. A neighbor
distance of 3a is used in the simulations. Larger neighbor
distances (up to 50a) were sampled for the undiluted system
and revealed no discrepancy from a neighbor distance of 3a.
Spins in the lattice are removed randomly, until the desired
dilution fraction is achieved. Ten different instances of this
random removal were performed for each level of dilution.

After the field protocol described above, the complete
(undiluted) vertices of the final state were counted and clas-
sified according to their vertex type. The resulting vertex
fraction count of complete vertices can be seen in Fig. 13(a).

Somewhat surprisingly, the fraction of each vertex type at
the end of the field protocol is almost constant through dilu-
tion. We also note that a large fraction of the complete vertices
(>0.70) obey the ice rules (type I or type II), indicating that
the system is strongly coupled.

Another apparent effect of dilution is a dramatic reduction
in domain size, see Fig. 13(b). It is interesting to note that,
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despite the change of domain size, which should include
more domain boundaries and more magnetized vertices, the
type population fraction stays constant through dilution. Our
findings indicate that the fixed magnetic charges introduced
through dilution comes in addition to the mobile magnetic
charges. While the domain walls in systems with low dilution
are comprised of ordinary type II vertices, the fixed incom-
plete vertices add up with complete type II vertices to form
more domain walls for the systems with higher dilution and,
thus, smaller domains.

The presented simulation study demonstrates that the type
population in square ASI is robust towards dilution. How-
ever, the sizes of ground-state domains reduce considerably
as an increasing number of magnetic islands are removed
at random, as seen in [10]. This preliminary study into the
effect of dilution defects in square ASI demonstrates how
flatspin can be used as an efficient tool to explore new physical
phenomena in ASI systems, which in turn can be verified
by experiments.

VIII. CONCLUSION

flatspin is a highly effective simulator for ASI systems. At
its heart lies a robust magnetic model based on dipole-dipole
interactions, with a switching criteria based on a generalized
Stoner-Wohlfarth model, and thermal fluctuations based on
the Arrhenius-Néel equation. Accompanying the model is a
toolbox of useful input encoders and analysis tools. The model
includes several common ASI geometries, and there are no
inherent limits to the range of possible geometries.

The flatspin ASI model has been verified against estab-
lished theory and micromagnetic simulations, and validated

against experimental results from the literature. Emergent
fine-scale patterns in kagome ASI were replicated suc-
cessfully, where the formation of Dirac strings matched
experimental results. Large-scale domain sizes in square
ASI were reproduced, and good agreement was found be-
tween flatspin and experimental results. Using flatspin, the
experimental magnetization reversal of pinwheel ASI was
reproduced for the first time in a dipole model. On a
detailed level, we found good agreement between micromag-
netic simulations and flatspin in terms of magnet switching
order.

Finally, we shed light on the effects of dilution defects in
square ASI. Our investigation revealed a surprisingly robust
vertex type population, as random magnets were removed
from the lattice.

Through GPU acceleration, flatspin scales to large ASI
systems with millions of magnets. High speed, parallel com-
putation allows for many ASI simulations to be executed,
enabling quick exploration of parameters and novel geome-
tries. The flexibility and performance offered by flatspin open
for exciting new possibilities in ASI research.
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Nanopatterned magnetic thin films offer a platform for exploration of tailored magnetic prop-
erties such as emergent long-range order. A prominent example is artificial spin ice (ASI), where
an arrangement of nanoscale magnetic elements, acting as macrospins, interact via their dipolar
fields. In this study, we discuss the transition from antiferromagnetic (AF) to ferromagnetic (FM)
long-range order in a square lattice ASI, as the magnetic elements are gradually rotated through
45◦ to a “pinwheel” configuration. The AF–FM transition is observed experimentally using syn-
chrotron radiation x-ray spectromicroscopy and occurs for a critical rotation angle of the nanomag-
nets, contingent upon the dipolar coupling determined by their separation in the lattice. Large-scale
magnetic dipole simulations show that the point-dipole approximation fails to capture the correct
AF–FM transition angle. However, excellent agreement with experimental data is obtained using
a dumbbell-dipole model which better reflects the actual dipolar fields of the magnets. This model
explains the coupling-dependence of the transition angle, another feature not captured by the point-
dipole model. Our findings resolve a discrepancy between measurement and theory in previous work
on “pinwheel” ASIs. Control of the AF–FM transition and this revised model open for improved
design of magnetic order in nanostructured systems.

Artificial spin ice (ASI) systems[1] composed of single-
domain nanomagnets, acting as macrospins, exhibit a
wide range of exotic behaviors[2–5]. Recent work sug-
gests that these systems are key to emergent device tech-
nologies such as physical reservoir computing[6, 7]. The
interaction between the macrospins in an ASI is mediated
by the stray fields of the individual magnets, creating a
complex energy landscape sensitive to the exact shape
of the elements and the geometric arrangement of the
ensemble[3, 8]. With precise nanofabrication, this sensi-
tivity enables effective tuning of magnetic order. Ac-
curate modeling of the magnetic interactions in these
dipolar-coupled metamaterials is essential to the anal-
ysis of emergent behavior, such as long-range magnetic
order.

Previous research has established the predominance
of long-range ferromagnetic (FM) order in a 45◦ “pin-
wheel” ASI[9], in contrast to the antiferromagneti-
cally (AF) ordered ground state of the square ASI
[1]. The FM-ordered pinwheel ASI is a metamaterial
with several exotic emergent properties such as dy-
namic chirality[10], unique domain-wall topologies[11],
and Heisenberg pseudo-exchange[12].

In this Letter, we investigate the AF to FM order-
ing transition we observe when going from a square to
a pinwheel ASI. Specifically, we examine modifications
of the square ASI by gradually rotating each nanomag-
net on the square lattice from θ = 0◦ to θ = 45◦, see
fig. 1. We observe the long-range magnetic order of
these metamaterials using x-ray magnetic circular dichro-
ism (XMCD) spectromicroscopy at the Advanced Light
Source (ALS). A predominance of FM order is seen for
the ASIs with a θ close to the 45◦ pinwheel configura-

θ

(c)

(b)

(a)

Figure 1. Geometric configuration of square-to-pinwheel
structures. (a) Rotation of elements from the square θ = 0◦

ASI (top left) to the typical θ = 45◦ pinwheel ASI (bottom
right). (b) The same series as in (a), but with the lattice com-
pressed to compensate for decoupling. (c) Schematic showing
the geometric parameters of the systems.

tion. We find a critical angle for the AF–FM transition
dependent on the separation of the nanomagnetic ele-
ments, at odds with previous reports relying on a simple
point-dipole model[9, 13]. For a more accurate represen-
tation of the stray fields, we invoke a dumbbell-dipole
model, which is found to accurately capture the depen-
dence of the AF–FM transition angle on the nanomagnet
separation.

For this study, ensembles of 25×25 nanomagnets with
lateral dimensions l×w = 220 nm× 80 nm and thickness
t = 3nm were patterned using electron beam lithography
(EBL) and lift-off. Each sample featured arrays with a
range of different element rotations, θ, corresponding to
the schematics in fig. 1. The magnetic material was de-
posited by e-beam evaporation of permalloy (Ni80Fe20),
followed by a 2 nm Al layer serving as an oxidation bar-
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Figure 2. Relaxed states of a square (θ = 0◦) and pinwheel (θ = 45◦) ASI. (a) and (b) XMCD-PEEM images, with top left
corner insets of a SEM image showing the rotation and shape of the nanomagnets. (c) and (d) Analyzed magnetization maps.
Gray areas indicate the two possible phases of antiferromagnetically ordered regions. Colored regions are ferromagnetically
ordered with a net magnetization as depicted in the legend. On the right, the relation between nanomagnet states and cell
magnetization is illustrated. The length of the cell arrows correspond to the magnitude of the cell magnetization.

rier. The thickness of the magnetic film was chosen so
that the ensembles could be easily thermalized in situ.

Rotation of the elements in this ASI system (see
fig. 1(a)) alters the effective coupling between the nano-
magnets due to the concentrated stray fields at their
ends. Increasing the rotation angle θ on a fixed lattice
will effectively decouple the elements. In this study, we
reduce the lattice constant with increasing rotation an-
gle θ, in order to retain a strong interisland coupling, see
fig. 1(b). We keep the parameter d, shown in fig. 1(c),
fixed for all element rotations.

Modeling the AF–FM transition of a full array presents
a computational challenge because of the large differ-
ences in scale between the internal magnetization of a
single nanomagnet to the macroscopic scale of the nano-
magnet array. In order to establish an accurate ana-
lytical stray-field model, the stray field of an isolated
single nanomagnet is calculated using a micromagnetic
simulator[14–16]. However, this micromagnetic approach
is not feasible for the interactions of the full ensemble,
due to the high computational cost, and an analytical

representation of the stray field for a single nanomag-
net is required. We use the micromagnetic framework
mumax3[14, 15] for the micromagnetic calculations and
the Ubermag package[16] for comparison with analyti-
cally expressed fields. The relaxed magnetization in the
absence of an external field was computed using micro-
magnetic simulation, and the stray field was calculated
from the resulting magnetization texture. Each nano-
magnet was modeled as a 220 nm× 80 nm rectangle with
rounded corners and a thickness of 3 nm. The satura-
tion magnetization was set at MS = 860 kAm−1 and the
exchange stiffness at Aex = 1.3×10−11 Jm−1[17]. A sim-
ulation mesh of 512× 512 cells was adopted, where each
cell had a side length of 2 nm, well below the exchange
length lex =

√
2Aex/µ0M2

S ≈ 5 nm.

X-ray magnetic circular dichroism photoemission elec-
tron microscopy (XMCD-PEEM) was carried out on the
PEEM3 beamline at ALS and was used to image the mag-
netic state of the ensembles. Prior to imaging at room
temperature, the samples were brought to T = 385K to
thermalize the system, so as to avoid quenched, meta-
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Figure 3. Measured fraction of antiferromagnetic Voronoi cells for the experimental ensembles. Five different separations d,
kept constant across the rotation series from 0◦ to 45◦, were investiaged. XMCD-PEEM images (top panel) show the PEEM
images and graphical representation of the relaxed states for the d = 185 nm series.

stable, high-energy states. Complete thermalization was
confirmed from the XMCD-PEEM images, showing no
magnetic contrast, thus indicating full superparamag-
netic behavior on the time scale of imaging. After ther-
malization, the sample was gradually cooled to room tem-
perature, resulting in a relaxed state governed by the in-
trinsic dipolar interactions

Magnetic contrast images of the θ = 0◦ and θ = 45◦

ASIs are shown in fig. 2(a) and (b) with the typical AF
and FM order, respectively. The magnetization of each
nanomagnet is identified from the XMCD-PEEM images,
with the help of machine learning, to create a graph-
ical representation of the ensemble state. In fig. 2(c)
and (d), we divide the ASI into so-called Voronoi cells
(VCs), where each cell is assigned the net magnetization
of four nearest neigbor nanomagnets. The θ = 0◦ ASI in
fig. 2(c) shows extended regions with zero net magnetic
moment, AF-ordered domains divided by domain walls of
finite magnetic moment. In contrast, the θ = 45◦ ASI in
fig. 2(d) displays numerous smaller FM-ordered regions
with a net magnetic moment, mimicking the domains of
a conventional ferromagnetic material. As these square
and pinwheel ASI ensembles show distinct AF and FM
order, respectively, this finding suggests successful relax-
ation of the arrays and sufficient dipolar magnetic cou-
pling, to study their long-range order.

The main results of the measurement series, where the
element rotation θ is gradually increased while d is kept
constant, are shown in fig. 3. (A complete overview of the
XMCD-PEEM images discussed in this study is shown
in the Supplemental Material[18].) The AF-ordered VCs
dominate for all rotation angles below 30◦ irrespective
of separation d, except for the decoupled d > 200 nm
system. The transition to FM ordering starts at around

θ = 39◦ for the ASI with d = 195 nm. The strongest
coupled system, with d = 170 nm, exhibits the transi-
tion at θ = 43◦. The transition angle, θt, is seen to
decrease monotonically with reduced magnetic coupling.
We note that the observed transition angles differ signifi-
cantly from the θt ≈ 35◦ reported in previous work[9, 13]
where a simple point-dipole model was used.

An aberration from the expected complete AF ordering
is found for θ = 0◦. For this element rotation, we find a
multidomain AF ordering with FM ordered domain walls,
which may be explained by reduced coupling across the
nanomagnet corners.

In the AF-ordered square ASI, the next nearest paral-
lel oriented nanomagnets feature antiparallel spin align-
ment. The change in long-range order from AF to FM
with θ increasing from 0◦ → 45◦, implies that for θ > θt
no neighbors align antiparallel. Specifically, the antipar-
allel magnetization alignment of the next nearest neigh-
bors (a defining feature of AF order in the square ASI)
will flip when their stray-field interaction energy favors
parallel spin alignment. With this assumption, we can
estimate the transition angle of an ensemble θt based on
an analytical expression for the stray field.

With the ASI nanomagnets represented by point
dipoles, the stray field is described by,

H⃗point dipole(r⃗) =
1

4π

[
3(m⃗dip · r⃗)r⃗

r5
− m⃗dip

r3

]
. (1)

where m⃗dip is the magnetic moment of a single nanomag-
net and r⃗ is the distance vector from the point dipole.
By calculating the angle at which the point-dipole in-
teraction energy for the parallel neighbors changes sign,
favoring parallel alignment, we determine a transition at
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Figure 4. Ensemble state energies and nanomagnet stray-fields. Two example states are chosen when calculating the energies,
a 100% AF-ordered state and a polarized state, i.e., a 100% FM-ordered state. (a) energies for the polarized and AF states,
as calculated by the point-dipole model. (b) energies for the polarized, AF, and experimental states, as calculated by the
dumbbell-dipole model. (c), (d), and (e) show the calculated stray fields for a single 220 nm×80 nm×3 nm nanomagnet (white
rectangle), for the point-dipole model, the micromagnetic simulation, and the dumbbell-dipole model, respectively. The field
strength color bar is truncated at 5mT.

θt = arctan(1/
√
2) ≈ 35.3◦, commonly referred to as the

‘magic angle’, θmagic[19, 20].

When modeling the full ensembles in the point-dipole
approximation, the AF–FM transition takes place at
θ ≈ 35.1◦, coinciding with θmagic, independent of the
interisland coupling distance d. At this angle, the nature
of the interaction energy for parallel neighbors changes.
The minimum energy state shifts from “two aligned–two
anti-aligned” to “all aligned” macrospins, as a result of
the asymmetry between the x and y components of the
point-dipole field (eq. (1)). This angle was cast as the
critical angle for the transition between AF and FM or-
der in previous work relying on Monte-Carlo simulations
within the point-dipole model[9, 13]. However, the point-
dipole approximation misses key features of the actual
stray-field coupling as it fails to capture the observed
variation in transition angle θt with nanomagnet separa-
tion.

The stray-fields of the point-dipole model and the mi-
cromagnetic simulation are shown in fig. 4(c) and (d), re-
spectively. By comparison with the micromagnetic stray
field, we find that a dumbbell-dipole model[21] captures
the characteristics of the nanomagnet stray field better
than the point-dipole model (see fig. 4(e)).

The dumbbell model emulates two magnetic charges,
±qm, separated by a distance ddip on the long-axis of the
magnet. The magnitude of the total magnetic moment
of a nanomagnet, |m⃗dip|, is given by MS · V , where MS

represents the saturation magnetization of the magnetic
material comprising the nanomagnet and V is the nano-
magnet volume. The effective stray field of the single
magnet at a position r⃗ relative to its center in this model
is given by

H⃗dumbbell(r⃗) = H⃗monopole(r⃗ − a⃗)− H⃗monopole(r⃗ + a⃗),

=
qm
4π

[
r⃗ − a⃗

|r⃗ − a⃗|3
− r⃗ + a⃗

|r⃗ + a⃗|3

]
, (2)

where a⃗ = ddip · d̂dip/2 is the distance vector separating
the center of the magnet from its positive end. For the
systems considered in this letter, we find that a naive,
unoptimized dumbbell model of monopoles with ddip = l
and qm · ddip = |m⃗dip| is sufficient to match the experi-
mental data.
The magnetic long-range order is evaluated by con-

sidering the total energies for the investigated ASI ro-
tation angles θ = 0◦ → 45◦ within the scope of the
dumbbell-dipole model. We find AF and FM long-range
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d (nm) EAF = Epol 50% AF
point dipole dumbbell measured

170 35.1◦ 43.5◦ 43.0◦

175 35.1◦ 43.3◦ 42.1◦

185 35.1◦ 42.7◦ 40.7◦

195 35.1◦ 42.0◦ 39.1◦

205 35.1◦ 41.4◦ N/A

Table I. Transition angles θt, where the calculated energies of
the antiferromagnetic state (EAF) is equal to the energy of the
polarized state (Epol), for point-dipole and dumbbell-dipole
models at different d values. Also included: experimental
transition angle taken to be the angle where the measured
fraction of AF Voronoi cells is 50% (by interpolation).

order for angles close to 0◦ and 45◦, respectively. Tak-
ing the transition angle θt as the pinwheel rotation angle
where the total energy of a FM state drops below the
energy of the AF state, the energies of the ensemble for
the point-dipole and dumbbell-dipole stray-field models,
respectively, are shown in fig. 4a-b. The state energy is
calculated by summation over all interactions for each of
the experimentally observed states (circular data points),
as well as for the fully polarized and AF-ordered states.
The estimated transition angles from simulations and ex-
perimental results are compared in table I, with the sim-
ulated transition angles based on the FM and AF energy
calculations. The measured angles are those where the
AF fraction is interpolated at 50%.

From the stray-field maps in fig. 4(c-e), it is clear that
the dumbbell model better captures the characteristic
anisotropy and magnitude of the calculated stray fields
of the micromagnetically modeled nanomagnet, in par-
ticular in the near-field region depicted here. Moreover,
dumbbell-dipole model accurately captures the experi-
mental observations with a transition angle θt depen-
dent on the intermagnet coupling. The AF–FM tran-
sition is observed for angles ranging from 39◦ to 43◦,
while simulations using this model indicate an AF–FM
energy crossover for angles from 41.5◦ to 43.3◦. This
close correspondence underscores the advantage of using
the dumbbell-dipole model for an accurate representation
of the physical behavior of the system.

A notable exception to the AF order, observed at small
angles θ, is found for the d = 205 nm-series in fig. 3, where
no experimental transition is found. The ensembles with
this nanomagnet separation are all nearly polarized in
the same direction. This finding suggests that dipolar
coupling in this particular ensemble is too small to drive
long-range order. The observed polarization may be due
to a small stray field present during annealing inside the
PEEM-3 microscope.

In conclusion, this study shows a transition from dis-
tinct AF order to pronounced FM order in a square-
to-pinwheel artificial spin ice system. We find that the
critical transition angle is dependent on the interisland
coupling, a behavior not captured by the conventional

point-dipole approximation. By introducing a dumbbell-
dipole model, we achieve excellent agreement with exper-
imental observations and micromagnetic simulations of
the near-field interactions. We maintain that this model
offers a suitable framework for simulation of a variety
of nanomagnet shapes and textures. Our approach im-
proves modeling of magnetic ordering in ASIs, which is
key to fundamental research as well as technological ap-
plications.
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rows, S. McVitie, and R. L. Stamps, ACS Nano 13, 2213



6

(2019).
[12] G. W. Paterson, G. M. Macauley, Y. Li, R. Macêdo,
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FIG. S1. XMCD-PEEM images of the ASI systems in their relaxed state. All separations d and rotation angles θ included in
this paper are displayed.
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FIG. S2. Analyzed magnetization maps of the ASI systems in their relaxed state. All separations d and rotation angles θ
included in this paper are displayed. Gray domains indicate antiferromagnetically ordered regions, where each shade of gray
indicates one of two possible antiferromagnetic phases. Colored regions are ferromagnetically ordered with a net magnetization
as in the main paper.
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Clocked dynamics in artificial spin ice

Johannes H. Jensen 1,4 , Anders Strømberg 2,4 , Ida Breivik 2,
Arthur Penty 1, Miguel Angel Niño 3, Muhammad Waqas Khaliq3,
Michael Foerster 3, Gunnar Tufte 1 & Erik Folven 2

Artificial spin ice (ASI) are nanomagnetic metamaterials with a wide range of
emergent properties. Through local interactions, the magnetization of the
nanomagnets self-organize into extended magnetic domains. However, con-
trolling when, where and how domains change has proven difficult, yet is
crucial for technological applications. Here, we introduce astroid clocking,
which offers significant control of ASI dynamics in both time and space.
Astroid clocking unlocks a discrete, step-wise and gradual dynamical process
within the metamaterial. Notably, our method employs global fields to selec-
tively manipulate local features within the ASI. Sequences of these clock fields
drive domain dynamics. We demonstrate, experimentally and in simulations,
how astroid clocking of pinwheel ASI enables ferromagnetic domains to be
gradually grown or reversed at will. Richer dynamics arise when the clock
protocol allows both growth and reversal to occur simultaneously. With
astroid clocking, complex spatio-temporal behaviors of magnetic metama-
terials become easily controllable with high fidelity.

Artificial spin ice (ASI) are systems of coupled nanomagnets arranged
on a two-dimensional lattice. The nanomagnets are elongated, giving
them two stable magnetization directions, thus behaving as artificial
spins. Dipolar interactions give rise to a rich variety of emergent
behavior, as determined by the ASI geometry1–3, such as domains of
long-range order. As this behavior can be probed directly, ASIs have
attracted considerable interest as model systems for the study of
fundamental physics4,5. More recently, ASIs have shown promise for
device applications, such as substrates for computation6–12.

Controlling when, where and how ASIs change state is instru-
mental to both fundamental research and applications. Control of the
state evolutionwouldenable anexperimenter to access a richer variety
of emergent ASI phenomena. Furthermore, such control will be key in
applications such as neuromorphic computing, where the function-
ality is derived directly from the evolving magnetic state of the ASI.
However, external control of emergent ASI dynamics has so far proven
difficult.

External fields are the primary method used to perturb ASIs in a
controlledmanner. Various global field protocols have been employed.

For example, a cycled in-plane field is often used to characterize
magnetization reversal1,13–21. Another approach is to use a rotating field
with slowly decreasing amplitude to effectively anneal the ASI to a low
energy state22–29. While there are variations of these simple field pro-
tocols, more complex protocols are largely unexplored.

These approaches use field strength to modulate ASI behavior,
which will typically result in uncontrolled avalanches of activity30. An
in-plane field will advance ASI state primarily when the strength of the
field is increased beyond the coercivity of the array, and is highly
dependent on field resolution19,25,29. Consequently, the discrete spin
flip dynamics in the ASI are sudden and hard to control.

In this work, we introduce a field protocol scheme called astroid
clocking, which produces fundamentally different spin flip dynamics.
In contrast to previous approaches, astroid clocking unlocks a dis-
crete, step-wise and gradual evolution of spin states. The method
offers significant control and understanding of the dynamical process
in both time and space. Key to the method is exploiting the shape and
orientation of the nanomagnet switching astroids, together with their
dipolar coupling. Specific field angles can then be established to
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selectively address emergent local features within the ensemble, such
as domain boundaries. A clock protocol which pulses fields in an
alternate fashion at these angles, is then used for driving the intrinsic
dynamics of the ASI. Distinctively, the clockpulsesmaintain a constant
field amplitude.

In the context of nanomagnetic logic, Nomura et al.31 demon-
strated how the shape of two overlapping Stoner-Wohlfarth astroids
can be exploited to preferentially switch nanomagnets in a 1D shift
register. Astroid clocking extends and generalizes this concept to 2D
nanomagnet arrays, and non-elliptical nanomagnets with different
astroid shapes. We show how astroid clocking reveals the intrinsic
dynamics of coupled nanomagnetic systems.

In this study we consider the pinwheel ASI system, but stress that
astroid clocking is readily applicable to other coupled nanomagnetic
systems aswell.We have, for instance, obtained promising results with
both square and kagomeASI in simulations. Here, we demonstrate and
analyse how ferromagnetic domains in pinwheel ASI can be gradually
grown and reversed at will using astroid clocking. Different clock
protocols are explored, giving rise to distinct properties of the spin flip
dynamics.

Results
Astroid clocking
Pinwheel ASI2,19,32 consists of nanomagnets arranged on two inter-
leaved square sublattices, as shown inFig. 1a. In this study, themagnets
in the two sublattices La and Lb are rotated +45° and −45° with respect
to the array edges. The sublattice and magnetization of the magnets
are indicated by their color: magnets in sublattice La are orange or
blue, while magnets in sublattice Lb are pink or green. For brevity, we
will refer to magnet state by these four colors.

Pinwheel ASI favors a ferromagnetic ordering, with emergent
domains of coherent magnetization. Figure 1a shows the four possible
domain directions: rightwards (orange/pink), leftwards (blue/green)
and so on. The ferromagnetic domains are separated by domain walls,
which are slightly less energetically favorable32.

The switching threshold of a nanomagnet depends on the field
angle, and can be approximated by the Stoner-Wohlfarth astroid.
Figure 1b shows the switching astroids for the two orientations of
stadium-shaped magnets in pinwheel ASI33. A magnet will switch state
if the total field acting on it lies outside the astroid boundary, and the
field is directed against the current magnetization. Note that we use
the term switching astroid to refer to any angle-dependent threshold
curve, also when its shape deviates significantly from the ideal geo-
metric astroid shape. The compound shape in Fig. 1b resembles an
ideal astroid, but is in fact two overlapping, highly distorted astroids
(solid and dashed outlines).

Nanomagnet shape largely determines the shape of the astroid.
Stadium-shaped nanomagnets, commonly used in ASI, have a switch-
ing astroid with 2-fold rotational symmetry33. This is in contrast to
classical Stoner-Wohlfarth astroids that display 4-fold rotational sym-
metry derived for elliptical nanomagnets34.

Switching astroids that break the 4-fold rotational symmetry, can
be exploited to selectively address nanomagnets that are rotated 90°
with respect to each other. If the total field lies within the shaded
regions in Fig. 1b, only the nanomagnets in the corresponding sub-
lattice will be able to switch. A field in the orange/blue shaded regions
will address only the magnets in sublattice La, while a field in the pink/
green regions will address only magnets in Lb. Furthermore, each
region promotes a specific magnet state within each sublattice, e.g., a
field in the blue shaded region promotes blue magnets by switching
orange magnets.

In this study, we define two bipolar clocks A and B along the +22°
and −22° axes, respectively. As shown in Fig. 1b, each clock consists of a
positive and negative clock field of magnitude H along the clock axis.
The four arrows in Fig. 1b are colored according to the magnet states
they promote, e.g., the HA field only promotes orange magnets.

The dipolar fields hdip from neighboring magnets may either
promote or prevent switching. If the dipolar fields are directed out of
(into) the astroid, they effectively promote (prevent) switching. A
clock field can thus selectively address a subset of a sublattice,

Fig. 1 | Astroid clocking of pinwheel ASI. a a small 4 × 4 pinwheel ASI, formed by
two interleaved sublattices La (solid outline) and Lb (dashed outline) with magnets
oriented at +45° and −45°, respectively. Colors correspond to magnetization
direction as indicated by the white center arrows. The magnetic state shows the
four possible ferromagnetic domains of pinwheel ASI, where the netmagnetization
forms a counter-clockwise magnetic flux closure pattern. b The two switching

astroids for the magnets in sublattice La (solid lines) and Lb (dashed lines), along
with the four clock fields, HA, HB, Ha, and Hb. The astroid edges are colored
according to the magnet state which is promoted when fields cross the edge.
Similarly, the colored regions correspond to fields that exclusively promote a
magnet state within a sublattice. Astroid axes are normalized with respect to the
hard axis switching threshold, hk.

Article https://doi.org/10.1038/s41467-024-45319-7

Nature Communications |          (2024) 15:964 2



depending on the state of the ensemble. The clock angles ±22° are
selected to allow the dipolar fields to have a large influence on
switching, using a field strength H close to the switching threshold.
However, a precise angle is not crucial and themethod tolerates awide
range of clock angles. Our system tolerates clock angles in the range
10° to 35°, and field strengths accurate to within 3mT to 4mT. Other
clock angles, such as ±45°, would appear to allow for similar switching
selectivity. However, aswe shall see later, the influence of dipolarfields
renders these angles unsuitable.

Figure 2 illustrates astroid clocking, where a clock pulse is defined
as ramping a clock field from zero to H and down to zero again. The
ramping speed is much slower than the timescale of nanomagnetic
switching. A clock protocol is a specific sequence of clock pulses. For
example,AB clocking consists of repeated alternating clockpulses ofA
andB.Wedefine a clock cycle as a single sequenceof the clockpulses in
aprotocol, e.g., anaAbB clockcycle is the sequenceof four pulses (a,A,

b, B). A unipolar clock protocol exclusively employs one polarity of
each clock, while a bipolar clock protocol employs both polarities.

Unipolar clocking
First, weexplore the spinflipdynamicsof pinwheelASIwhen subject to
theunipolar clockprotocolsABandab. The 50× 50pinwheelASI (5100
magnets) is initialized with a small rightwards (orange/pink) domain in
the center of an otherwise leftwards polarized (blue/green) array.
Figure 3 (1) shows a closeup of the initial state.

Figure 3 (2–8) shows the state evolution of the array subject to AB
clocking, obtained from flatspin simulations (see Methods). As
expected, the A pulse selectively switches magnets in sublattice La
from blue to orange, while the B pulse selectively switches magnets in
sublattice Lb from green to pink.

Interestingly, the particular magnets that switch are the ones
along the domain wall. As a result, the inner (leftwards) domain grows

Fig. 2 | Clock diagram of astroid clocking. Clock protocols are defined by sequences of clock pulses. The clock diagram shows AB clocking (alternating pulses of the
positive clock fields HA and HB) followed by ab clocking (alternating pulses of the negative clock fields Ha and Hb).

Fig. 3 | Simulation of unipolar astroid clocking of pinwheel ASI in flatspin. Each
snapshot shows a zoomed-in view of the 50× 50 nanomagnet system, at different
points during a clock protocol. (1) shows the initial state, a small orange/pink
(rightwards) domain in the center of an otherwise polarized blue/green (leftwards)

array. (2–8) show the state during AB clocking, resulting in gradual domain growth.
(9–12) show the subsequent states during ab clocking, resulting in gradual domain
reversal. Magnets that change state between snapshots are highlighted with a solid
black outline.
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gradually over time, with only a thin layer of the domain advancing
after each clock pulse. The growth is monotonic and step-wise, driven
by the clock pulses.

A curious property is that the domain grows mainly in the hor-
izontal direction. In Fig. 3 (2–8), themagnets along the vertical domain
walls are the only ones to switch. If the growing domain reaches the
edges of the array, the direction of growth changes and becomes
vertical, eventually filling the entire array (Fig. 5).

Inverting the clock pulses (ab clocking), will instead grow the
outer (blue/green) domain and consequently shrink (reverse) the inner
(orange/pink) domain. As can be seen in Fig. 3 (9–12), domain reversal
from (8) proceeds in both vertical and horizontal directions, resulting
in reversal of the inner domain in fewer clock cycles compared to
growth. Hence there is an apparent asymmetry in the direction of
domain growth and reversal.

Growth and reversal mechanism
To understand the mechanism behind the domain growth and rever-
sal, we consider the larger domain shown in Fig. 4c, subject to HA. In
Fig. 4a, we plot the relative locations of all the magnets within their
respective switching astroids. Each dot represents the total field
hi =HA +h

ðiÞ
dip experienced by a magnet i in its local frame of reference.

There are four clusters of dots within the astroids, corresponding to
the four magnet colors, where only the blue magnets are close to
switching.

The internal structure of each astroid cluster is a result of the
nanomagnet dipolar coupling, and a direct consequence of the ASI
geometry. In the absence of dipolar fields, each cluster collapses into a
single point. The dipolar fields add complex structure to the clusters,
with sub-groups corresponding to different subsets of magnets within
the ASI. For a detailed analysis of neighbor contributions, see Supple-
mentary Discussion.

The inset shown in Fig. 4b reveals the structure of the blue cluster.
Notice there are a few blue dots that lie outside the astroid, corre-
sponding to magnets that are eligible for switching, which are

highlighted in Fig. 4c. Evidently, the switchable magnets all lie along
the vertical and +45° domain walls.

When a magnet switches, its location within the astroid jumps to
the cluster of opposite spin, e.g., a bluemagnet switches to the orange
state. In addition, neighboringmagnets will see a change in the dipolar
fields, causing movement within their respective clusters. In this way,
the switching of a magnet may enable future switching in neighboring
magnets, either during the current or a future clock pulse. As can be
seen in Fig. 4b, themechanismhinges on both the internal structure of
the astroid clusters, and at what angle the cluster approaches the
astroid edge. Clock angles around 22° work because they allow only
magnets along certain domainwalls to switch.Other clock angles, such
as ±45°, are unsuitable since large parts of the astroid cluster will lie
close to the astroid edge (at h⊥ = 0), resulting in avalanches of
switching within a sublattice.

The observed horizontal domain growth can now be explained
from the internal structure of the astroid clusters. We have seen that
magnets along certain types of domain walls can be selectively swit-
ched under an applied clock field. Switching the blue (highlighted in
Fig. 4c)magnets along these domainwalls reverses their dipolar fields,
which affects the structure of the green cluster. Consequently, green
magnets that are part of the domain walls will approach the switching
astroid. When the HB field is subsequently applied, these magnets will
be outside the astroid and hence switch. As this cycle repeats, the
result is an apparent horizontal domain growth emerging from the
dipolar interactions and clock fields.

During domain reversal, both horizontal and vertical domainwalls
takepart in the process. As a result, reversal requires fewer clock cycles
compared to growth. During reversal, the switchablemagnets lie along
both the horizontal, vertical and −45° domain walls (Supplemen-
tary Fig. 1).

We find that the horizontal domain wall movement, particular to
reversal, is dependent on the curvature of the reversing domain. If
the horizontal domain wall is surrounded by a blue/green domain on
three sides, there is a stronger dipolar “push” towards the astroid

Fig. 4 | Astroid clusters showing relative locations of all the magnets within
their respective switching astroids. The plots show clusters and astroid (black
curve) for the pinwheel system shown in (c), when subject to the clock field HA.
a astroid cluster plot where each dot represents the total field hi =HA +h

ðiÞ
dip

experienced by a magnet i, projected onto its parallel (h∥) and perpendicular (h⊥)
axis. Note that the positive direction of the parallel component is with respect to
the magnetization direction of each nanomagnet. The colors in the plot

correspond to magnet state. Note that the astroid plot shows location relative
to each magnet’s own switching threshold, e.g., orange magnets are far from
switching as they are aligned with HA. b closeup of the blue cluster, revealing a
sub-group of blue magnets that lie outside the switching astroid and are
eligible for switching. These magnets are highlighted in c, and are all found to lie
along the vertical and +45° domain walls. The data is obtained from flatspin
simulations.
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edge. As such, domain shape plays a crucial role in the reversal
process.

When a domain grows to reach the edges of the array, there is an
apparent transition from horizontal to vertical growth (Fig. 5). We find
that vertical growth proceeds by avalanches along the domain wall,
starting at the bottom-left and top-right corners of the domain, close
to the array edges.

Experimental growth and reversal
Next, wedemonstrate astroid clocking of pinwheel ASI experimentally.
Samples are imaged with x-ray magnetic circular dichroism photo-
emission electron microscopy (XMCD-PEEM), with an in-situ vector
magnet to perform astroid clocking. See Methods for details.

After polarizing all magnets in the leftwards direction (bright
contrast), we perform steps of AB clocking, imaging in-between each
clock cycle. Figure 6a shows total magnetization of the ensemble,
obtained from the XMCD-PEEM images, which increases in a stable,
monotonic fashion. Selected experiment snapshots are shown in
Fig. 6b. Snapshots (1–3) show that domains nucleate at the vertical
edges then predominantly expand horizontally.

Domain formation at the vertical array edges can be explained by
the dipolar field-driven mechanism behind AB clocking. While domain
nucleation along horizontal edges is possible, continued growth pri-
marily occurs in the horizontal direction, preventing further expansion
of horizontal edge nucleated domains. Spatial control of nucleation
could be achieved, e.g., by changing the edge geometry, introducing
internal edges or reducing the coercivity of selected magnets.

In anyphysical ASI system, thenanomagnetswill exhibit a rangeof
intrinsic switching thresholds, a disorder, due to imperfections and
microscopic variations of material composition. Disorder affects both
domain shape and growth dynamics, as evident in our experimental
results. Compared to the idealized simulations, domains appear more
organic, with distinct features such as jagged edges, slanted domain
walls, and sporadic holes. In terms of dynamics, some domain borders

get stuck for several clock cycles, while others advancemore than one
step during a single cycle (see Fig. 7).

By introducing disorder to the simulations (see Methods), we
obtain results that more closely resemble the experiment. The mag-
netization curve and snapshots from simulations with disorder are
included in Fig. 6. Notice how the simulated snapshots show organic-
looking domains that resemble the domains of the experiment.

After growth, we apply the reversal clock protocol, ab clocking.
For each ab clock cycle, the magnetization reduces sharply, with
domains shrinking more rapidly compared to the increase during
growth. Comparing snapshot (3) and (4) of Fig. 6b, it is clear that the
domains shrink in both vertical and horizontal directions.

Next, we conduct a control experiment to verify that simply
repeating a clock pulse A or B does not result in domain growth. After
re-initializing the system, we apply several pulses of A, then several
pulses of B, imaging after each pulse. As seen in the last part of Fig. 6a,
only the first application of A or B results in growth (see also Supple-
mentary Fig. 2). Growth progresses onlywhen the type of clock pulse is
changed, which confirms that the alternating pattern ofA and B is what
drives the observed domain growth.

These experiments affirm the viability of astroid clocking in the
face of experimental sensitivities (as low as < 1 mT from Fig. 4) and
potential impediments such as fabrication imperfections, temperature
effects, and material degradation. While unstable individual magnets
and inaccuracies in the image analysis induce some noise, it is negli-
gible compared to the effect of astroid clocking. Experimental astroid
clocking is surprisingly robust, demonstrating that it is possible to
precisely control the spin flip dynamics of ASIs using global fields.

Bipolar clocking
In bipolar clocking, each clock may be pulsed in both polarities. We
consider two clock protocols illustrated in Fig. 8, namely aAbB and its
inverse, AaBb clocking. In contrast to unipolar clocking, the magnetic
fields in these bipolar clock protocols are balanced, i.e., the sum of all

Fig. 5 | Unipolar AB clocking of an orange/pink (rightwards) domain as it
reaches the edge of the array. There is an apparent transition from horizontal to
vertical domain growth (5–6). Vertical growth proceeds by avalanches of spin flips,

starting at the bottom-left and top-right corners of the domain at the array edge.
Magnets that change state between snapshots are highlighted by a solid black
outline.

Article https://doi.org/10.1038/s41467-024-45319-7

Nature Communications |          (2024) 15:964 5



clockfields is zero. Onemight then expect that this results in a net zero
magnetization change.

On the contrary, bipolar clocking also results in domain growth
and reversal, and a net change in magnetization. Figure 9a plots the
totalmagnetization of pinwheel ASI subject to bipolar clocking. As can
be seen, aAbB clocking results in net domain growth, while AaBb
clocking results in domain reversal.

In contrast to unipolar clocking, bipolar clocking can also induce
morphological changes to the growing domains. As a result of the
bipolarity of the clock pulses, domains are now able to both grow and
shrink within the same clock cycle. In the experiment snapshots of
Fig. 9b,weobserve growth from (1) to (2), followedby a clear change in
domainmorphology from (2) to (3), and further growth between (3) to
(4). In simulations, we can observe the step-wise details of simulta-
neous growth and morphology changes, as shown in the zoomed in
snapshots. Inverting the clock protocol (AaBb clocking) results in
domain reversal.

Thedeciding factor for growthor reversal is thepolarity of the last
clock pulse at the transition between the two clocks. Each clock in

aAbB clocking, for example, ends on the positive polarity at the tran-
sition (aA and bB), resulting in growth of the rightwards (orange/pink)
domains.

Within a bipolar clock cycle, there is an apparent competition
between growth and reversal. Some domain wall configurations result
in net domain growth (others in net reversal), in a “one step back, two
steps forward” process (see Supplementary Discussion). In this way, a
domain may grow horizontally and reverse vertically, thereby gradu-
ally changing shape over time (see Fig. 10). While the balance between
growth and reversal can be delicate, there is a clear trend for the clock
protocols explored here, namely growth for aAbB, and reversal
for AaBb.

Compared to unipolar clocking, the dynamics in bipolar clocked
pinwheel ASIs are more varied and complex. While there is a gradual
net domain growth, the activity can intermittently spike and linger,
depending on the particular state of the ensemble (see Supplementary
Movies 3 and 4). Bipolar clocking hence unlocks a wide variety of
complex dynamic behavior in pinwheel ASI, while at the same time
offering considerable control by choice of clock protocol.

Fig. 6 | Results of growth and reversal with unipolar clock protocols, and
control experiment. a total magnetization of the ensembles subject to the dif-
ferent clock protocols. The timeline indicates clock time, labeled by the clock
protocol. During AB clocking, the ensembles undergo growth and hence an
increase in magnetization. The second phase, ab clocking, quickly reverses
domains and totalmagnetization. The control experiment, consisting of separate A
and B clock sequences, show no development of the domains. b magnetic image

snapshots (experiemental XMCD-PEEM images and flatspin simulated XMCD-PEEM
contrast images) of the ensembles at the specified points in time. The depicted
ensembles are approximately 12.5 μm× 12.5μm (50 × 50 pinwheel ASI, 5100 mag-
nets). All XMCD-PEEM images are available in Fig. 7 and Supplementary Fig. 2.
Videos of the experiment and simulation are provided in Supplementary Movies 1
and 2.
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Discussion
We have introduced astroid clocking, a scheme for field-driven evo-
lution in nanomagneticmetamaterials. Themethod exploits the shape
and orientation of the nanomagnet switching astroids, combined with
local dipolar coupling, to selectively address subsets of the nano-
magnets. Importantly, astroid clocking only requires global fields, yet

offers a remarkable degree of control at themicroscopic scale. Pulsing
specific fields in sequence results in clocked dynamics that are both
gradual and discrete in time. Furthermore, considerable control of the
dynamics is available through choice of clock protocol.

This work demonstrates how astroid clocking can be used to con-
trol the growth and reversal of ferromagnetic domains in pinwheel ASI.

Fig. 7 | XMCD-PEEM images of all steps from the relevant unipolar clock pro-
tocol series. Time starts at t =0, and is incremented by 1 for each clock step, with
clock pulses indicated by the labels. The black (rightwards) domains grow with
application of AB clocking, and quickly reverses with ab clocking. Red circle high-
lights: The short, vertical domain wall terminating the black domain in the center

region of snapshot t = 20 exemplifies both avalanching domain growth and a stuck
domain wall. In snapshot t = 21 the top part of the domain wall has progressed in an
avalanche to form a finger extension of the domain, while the bottom part of the
domain wall remains as before.
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Fig. 8 | Clock diagram of bipolar aAbB clocking followed by its inverse, AaBb clocking. Bipolar clocking employs both positive and negative clock pulses.

Fig. 9 | Results of growth and reversal with bipolar clocking, and control
experiment. a total magnetization of the ensembles subject to the different
bipolar clock protocols. The timeline indicates clock time, labeled by the clock
protocol. During the first phase, AaBb clocking, the ensembles undergo
domain growth and increase in magnetization. The controls, aA clocking and
bB clocking, show no net growth. Further growth (aAbB clocking) and reversal

(AaBb clocking) occur after the controls. b magnetic image snapshots of the
experimental ensemble, and zoomed in views of the flatspin simulated
ensemble, at the specified points in time. The growing domains change mor-
phology during the clock protocol. All XMCD-PEEM images are available in
Supplementary Fig. 3. Videos of the experiment and simulation are provided
in Supplementary Movies 3 and 4.
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In this system, unipolar clocking results inmonotonic domain growth or
reversal, while bipolar clocking adds more complex dynamics that
include changes to domainmorphology. The level of control far exceeds
what is possible with conventional ferromagnetic materials, and what
has previously been achieved in magnetic metamaterials.

The principles of astroid clocking are not limited to pinwheel ASI,
and are pertinent to a range of coupled nanomagnetic systems. Pre-
liminary simulation results of both square and kagome ASI strongly
suggest the method is widely applicable. However, further work is
needed to establish the most suitable protocols for these geometries.
Exploring the clocked dynamics of established and future nanomag-
netic metamaterials is an exciting research direction. Notably, with a
large variety of possible clock protocols, the method opens for the
exploration of new and exotic metamaterial states.

Astroid clocking offers significant control of ASI dynamics in both
time and space, enabling the full richness of emergent behavior to be
explored and exploited. Themethod enables entirely newdirections in
both fundamental and applied metamaterial research, and is key for
the development of nanomagnetic technology.

Methods
Sample fabrication details
The samples are arrays of permalloy nanomagnets fabricated in pin-
wheel ASI geometries on a silicon substrate. The resist mixture, 1:2
CSAR 62:anisole, is spin-coated onto the substrate at 4000 rpm,
achieving a thickness of ~100 nm. Following coating, samples are soft
baked at 150 °C for 1min. The desired patterns, arrays of 220nm×
80nm stadium shaped nanomagnets in 30 × 30 and 50 × 50 pinwheel
geometries, with lattice spacing 255nm and 248nm, respectively, are
then exposed using the Elionix ELS-G100 EBL system. Samples are
post-exposure baked at 150 °C for 1min. The patterned resist is
developed using AR600-546 for 1min, rinsed with isopropanol, and
nitrogen dried. Permalloy (Ni0.79Fe0.21) is deposited to a thickness of

25 nm via electron beam evaporation using a Pfeiffer Vacuum Classic
500 system, and capped with a 2 nm aluminium layer. Finally, the
samples undergoultrasound-assisted lift-off using adedicated stripper
(AR600-71), leaving behind the patterned permalloy nanomagnets.
Post-fabrication, the precision and quality of the fabricated nano-
magnet arrays are inspected using scanning electron microscopy
(SEM). This SEM inspection confirmed that the permalloy nano-
magnets are properly formed, free-standing, and without significant
defects.

XMCD-PEEM and clocking procedure
Experimentally realized clocking of fabricated ASIs is carried out
under magnetic microscopy inspection. We use a photoemission
electron microscope with x-ray magnetic circular dichroism
(XMCD-PEEM) for magnetic contrast to observe single magnet
states of the ASI ensembles35. An in-plane, bi-axial quadrupole
magnet with two pairs of coils and a split 2D-yoke provides astroid
clocking fields36. The signal at the Fe L3 edge is exploited for fer-
romagnetic XMCD contrast.

The orientation of the ASI ensembles, applied magnetic fields,
and XMCD contrast is carefully selected. Samples are mounted with
top and bottom ensemble edges parallel to the synchrotron light,
with each nanomagnetic element oriented ±45° to the light. This
orientation guarantees balanced magnetic contrast for nano-
magnets of both sublattices La and Lb. The in-plane field direction is
given relative to the incoming x-ray illumination, with angle values
increasing counter-clockwise. Consequently, the field directions
and ensemble orientation align with the illustration in Fig. 1, with an
added light axis (providing magnetic contrast) parallel to the
hx-axis.

The general experimental procedure is to initialize theASI system,
then apply clock protocols interspersed with magnetic imaging. We
initialize the system by applying a strong, polarizing magnetic field

Fig. 10 | Bipolar aAbB clocking of pinwheel ASI. Each snapshot shows a zoomed-
in viewof a 50 × 50 system, at different points during a clockprotocol. (1) shows the
initial state, an orange/pink (rightwards) domain in the center of an otherwise
polarized blue/green (leftwards) array. (2–12) show the state during aAbB clocking,

with simultaneous domain growth (horizontally) and reversal (vertically). As a
result the domain gradually changes morphology over time. Magnets that change
state between snapshots are highlighted by a solid black outline.

Article https://doi.org/10.1038/s41467-024-45319-7

Nature Communications |          (2024) 15:964 9



(72mT along 180°), followedby two smaller fields, (18mT along0° and
3.5mT along 180°) to demagnetize the yoke. For the bipolar clocking,
however, the polarizing field strength is 82mT. The difference in field
strength is due to observed differences in the ensemble coercivity.
Successful initialization is confirmed by imaging a fully polarized
ensemble (fully bright contrast (leftwards), as in snapshot t = 0 of
Fig. 7) and the absence of remaining image translation in the PEEM
(indicating a demagnetized yoke).

After initialization, we perform steps of the clock protocols by
alternating the application of clock pulses A, B, a or b. Each step of a
clock protocol comprises at least one clock pulse (ramping the applied
field to Hi, holding the max field value, ramping down to zero applied
field), and a magnetic contrast image acquisition. The value of H that
defines the Hi magnitudes is 62 mT for the unipolar clocking, and
75mT for the bipolar clocking. After applying the first cycle of a clock
protocol, before imaging, we shift the image, using the electron
microscope optics, to re-center the ensemble, compensating for a
small remanent magnetization in the yoke. We carry out multiple
cycles, each consisting of applying clock pulses and capturing an
image, while maintaining the same image shift throughout.

In addition to the growth and reversal protocols, we conduct a
control experiment by applying repeated clock pulses of A and B
separately.

flatspin simulations
Numerical simulations were done using flatspin, a large-scale ASI
simulator33. flatspin approximates each nanomagnet as a point dipole
with position ri and orientation θi. Each dipole then has two possible
magnetization directions along θi, i.e., a binary macrospin si∈ {−1, +1}.

Each spin i is influenced by a total field hi =h
ðiÞ
dip +h

ðiÞ
ext +h

ðiÞ
th, where

hðiÞ
dip is the total dipolar field from neighboringmagnets, hðiÞ

ext is a global
or local external field, and hðiÞ

th is a stochastic magnetic field repre-
senting thermal fluctuations in each magnetic element. The total
dipolar field is given by the magnetic dipole-dipole interaction,

hðiÞ
dip =α

X

j≠i

3rijðmj � rijÞ
jrijj5

� mj

jrijj3
, ð1Þ

where rij = ri − rj is the distance vector from spin i to j, and α scales the
dipolar coupling strength between spins. The coupling strength α is
given by α = μ0M

4πa3, where a is the lattice spacing, M is the net magnetic
moment of a single magnet, and μ0 is the vacuum permeability.

Nanomagnet switching (magnetization reversal) occurs if the total
field is directed against the currentmagnetizationmi and themagnitude
of the field exceeds the coercive field hc. flatspin employs a generalized
Stoner-Wohlfarth model, where hc depends on the angle of the total
field hi with respect to the magnet orientation. Associated with each
magnet is a switching astroid, which describes hc in terms of the parallel
(easy axis) and perpendicular (hard axis) component of the total field,h∥

and h⊥. The shape of the switching astroid is described by the equation

hk
bhk

� �2=γ

+
h?
chk

� �2=β

= 1, ð2Þ

where hk denotes the coercive field along the hard axis. The para-
meters b, c, β, and γ adjust the shape of the astroid: b and c define the
height andwidth, respectively, while β and γ adjust the curvature of the
astroid at the easy and hard axis, respectively. Astroid parameters are
typically tuned to obtain a shape that agrees with results from
micromagnetic simulations.

Fabrication imperfections are modelled as variation in the coer-
cive fields hðiÞ

k , which are sampled from a normal distributionN ðhk ,σÞ,
where σ = kdisorder ⋅ hk and kdisorder is a user-defined parameter.

Dynamics are modeled using a deterministic single spin flip
strategy. At each simulation step, the total magnetic field hi is

calculated. Next, we obtain a list of spins thatmayflip, according to the
switching astroid. Finally, the spin which is furthest outside its
switching astroid is flipped. The dipolar fields are recalculated after
every spin flip, and the above process is repeated until there are no
more flippable spins. This relaxation process is performed with con-
stant external and thermal fields.

In this work, a global external field is used (hðiÞ
ext =hext), and ther-

mal fluctuations are assumed to be negligible (hðiÞ
th =0).

The coupling strength α =0.0013 was estimated to match the
experimental results from the 50 × 50 fabricated pinwheel sample. The
value of α =0.0013 is lower than predicted by theory (α ≈0.0025),
which is likely due to demagnetizing oxidation of the permalloy. A
partially oxidized nanomagnet will have a reduced magnetic moment
and a smaller effective size as the surface layer is no longer ferro-
magnetic. The smaller 30 × 30 sample used in Fig. 9 had a slightly
larger magnet spacing and α = 0.0012 was used in this case.

For the simulation studies, a field strength H = 76.5mT and no
disorder was used. Simulations accompanying the experimental
results used a slightly lower field strength of H = 75.8mT for Fig. 6 and
H = 75.9mT for Fig. 9.

Switching parameters were estimated from micromagnetic
simulations of a 220nm×80 nm×25 nm stadium magnet using
mumax37, namely hk =0.2 T, b =0.38, c = 1, β = 1.3, and γ = 3.6. Other
parameters include kdisorder = 4% and a neighbor distance of 10.

Data availability
The XMCD-PEEM data, XAS data, and simulation results generated in
this study have been deposited in the Zenodo database under acces-
sion code 10044134 at https://zenodo.org/doi/10.5281/zenodo.
10044133.

Code availability
Numerical simulations were performed using the open-source flatspin
simulator (https://flatspin.gitlab.io/). Simulation details are included as
part of the dataset (see above).
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1 Supplementary Figures
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Fig. 1 Astroid clusters showing relative locations of all the magnets within their respective switching
astroids. The plots show a-b, astroid clusters during reversal, when the pinwheel system shown in c is

subject to the negative clock field Hb. Each dot represents the total field hi = Hb+h
(i)
dip experienced

by a magnet i, projected onto its parallel (h∥) and perpendicular (h⊥) axis. Note that the positive
direction of the parallel component is with respect to the magnetization direction of each nanomagnet.
b, astroid clusters during reversal have a different structure compared to growth. Switchable magnets
outside the astroid are highlighted in c. During reversal, the switchable magnets are along both the
horizontal, vertical and −45° domain walls. Switchable magnets along the horizontal domain wall is
attributed to the curvature of the inner domain.
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re-init state, t = 51 t = 52, A t = 53, A t = 54, A t = 55, A t = 56, A

t = 57, B t = 58, B t = 59, B t = 60, B t = 61, B

10 m

Fig. 2 XMCD-PEEM images of the control experiment. The system is reinitialized at t = 51 (fol-
lowing from Fig. 7 in the main text), and t is incremented by 1 for each clock step, with clock pulses
indicated by the labels. The first A clock pulse promotes dark (rightwards) magnets, equivalent to
half a clock cycle, while subsequent applications of A incurs no further change. When the clock pulse
is changed to B, dark (rightwards) magnets are again promoted, equivalent to the second half of an
AB clock cycle. Furthermore, additional B clock pulses incurs no change in the state.
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t = 0, aA t = 1, bB t = 2, aA t = 3, bB t = 4, aA t = 5, bB t = 6, aA

t = 7, bB t = 8, aA t = 9, bB t = 10, aA t = 11, bB t = 12, aA t = 13, bB

t = 14, aA t = 15, bB t = 16, aA t = 17, bB t = 18, aA t = 19, bB t = 20, aA

t = 21, bB t = 22, aA t = 23, bB t = 24, aA t = 25, bB t = 26, aA t = 27, aA

t = 28, aA t = 29, aA t = 30, bB t = 31, bB t = 32, bB t = 33, bB t = 34, bB

t = 35, aA t = 36, bB t = 37, aA t = 38, bB t = 39, a t = 40, A t = 41, b

t = 42, B t = 43, bA t = 44, aB t = 45, bA t = 46, aB t = 47, bA t = 48, aB

5 m

Fig. 3 XMCD-PEEM images of all steps from the bipolar clock protocol series. The time starts at
t = 0, and is incremented by 1 for each image, with clock pulses indicated by the labels. The black
(rightwards) domains grow and change shape as the aAbB protocol is applied. There are two control
series where aA and bB are applied, where no change occurs. Note that there is missing data for
t = 33, but the ensemble was still subjected to the clock pulses. At t = 39 we image after each single
clock pulse. From t = 42 the reverse protocol BbAa is applied, and the black (rightwards) domains
shrink. Note that during the reversal protocol we still image after a final A or B pulse, in order to
keep a constant image shift.
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Fig. 4 Minimum distance to the astroid edge as the neighborhood is increased, for the highlighted
blue magnet in the center of each scenario in c. Each scenario is color-coded according to the circles
in c. In all cases, the clock field HA is applied, as defined in Fig. 1 in the main text. a, distance to
the astroid for the highlighted magnet, as the neighborhood is increased when calculating the dipolar
fields. For each nearest neighbor degree N , the dipolar fields include all magnets within a radius of
the Nth nearest neighbor. b, trace of the position within the astroid as the nearest neighbor degree
N is increased. Each dot represents the total field projected onto the parallel (h∥) and perpendicular
(h⊥) axis of the blue center magnet. The positive direction of the parallel component is with respect
to the magnetization direction of the nanomagnet. Note that the scenarios all start at the same point
(no neighbors), then diverge.

2 Supplementary Discussion

2.1 Neighborhood interactions

Here we analyse what type of neighbor interactions causes switching to occur selec-
tively along the vertical and +45° domain walls. We consider five different prototype
cases shown in Fig. 4c: a uniform blue/green (leftwards) domain, and two domains
separated by horizontal, vertical, and ±45° domain walls (DWs). Within each pro-
totype case, the subject of study is the highlighted blue magnet in the center. The
circled insets in the figure show only a limited neighborhood in the center of a larger
50× 50 system which is initialized according to each prototype case.

Fig. 4a plots the distance to the astroid for the center magnet, as the number of
neighbors are increased when calculating the dipolar fields. For each nearest neighbor
degree N , the dipolar fields include all magnets within a radius of the Nth nearest
neighbor (NN). After adding the total dipolar field to the external clock field HA, the
shortest distance to the astroid is calculated. We define astroid distance as positive
outside the astroid and negative inside.

Astroid distance is plotted for each of the five prototype cases in Fig. 4c. With zero
neighbors, and hence no dipolar fields, all five cases start at the same point outside the
astroid. As the first NNs are included, the cases split into four: the uniform domain
and the −45° domain wall enter the astroid. In other words, the dipolar fields from the
first NNs stabilize and prevent switching in these two cases. Including also the second
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Uniform domain -45° DW Horizontal DW Vertical DW +45° DW

Fig. 5 Neighborhood influence with respect to center magnet, for nearest neighbor degree 1-4.
Each scenario depicts the magnetization state (top) and the corresponding influence of the neighbors
(bottom). In all cases, the clock field HA is applied, as defined in Fig. 1 in the main text. Stronger red
signifies that the magnet is biasing the center magnet towards switching, and stronger blue signifies
that the magnet is biasing the center magnet away from switching.

NNs causes the horizontal domain wall to enter the astroid. Horizontal domain walls
are hence stabilized by 2nd NN interactions. For the horizontal and −45° domain walls,
astroid distance does not change significantly as the neighborhood is increased further.
For the uniform domain, however, astroid distance increases further as the number of
NNs are increased, with significant stabilizing interactions also beyond 9NNs.

Next, we consider the two cases where switching does occur, namely the vertical
and +45° domain walls. Somewhat curious, the astroid distance for the vertical domain
wall appears to stay nearly constant across all NNs. The +45° domain walls travel
further outside the astroid due to 1st NN interactions, then the 3rd NN interactions
bring it closer to the astroid again, after which it remains at a near-constant distance.

Fig. 4b shows a trace of the location within the astroid as the NNs are increased.
For the vertical domain wall (red line), there is indeed movement due to dipolar
interactions, but the movement is exclusively parallel to the astroid edge. Hence, the
astroid distance in this case remains constant. For the +45° domain wall (purple line),
the movement is purely in the perpendicular (h⊥) direction for the 1st NN interactions,
then purely parallel (h∥) from the 3rd NN fields.

An even more detailed picture is provided in Fig. 5, where each neighbor magnet
is colored according to the contribution of its dipolar field. Specifically, a magnet is
colored red (blue) if its dipolar field pushes the center magnet further out of (into)
the astroid. The shade of red (blue) represents how much the dipolar field contributes
to promote (prevent) switching of the center magnet. A magnet is colored white if its
dipolar field has no contribution on the resulting astroid distance.

As can be seen in Fig. 5, the neighborhood in the uniform domain is dominated
by magnets that prevent switching (colored blue), with the highest contribution from
the first NNs along the hard axis of the center magnet. The same subset of the NNs
are also the primary stabilizing force of the −45° DW. For the horizontal DW case,
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the dipolar fields from the first NNs cancel out, and it is the second NNs that prevent
switching.

For the vertial DW, there is an apparent symmetry between neighbors that prevent
and promote switching. As a result the vertical DW is not stabilized and hence easily
switched. We saw earlier how this is because the dipolar fields are directed parallel to
the astroid edge. The +45° DW is the least stable, where 3/4 of the first NNs promote
switching (colored red).

2.2 Growth and reversal in bipolar clocking

During bipolar clocking, domain growth and reversal in a single clock cycle can be
observed for several domain wall configurations. Fig. 6 shows the time evolution of
different types of domain walls, subject to aAbB clocking. A straightforward example
of simultaneous growth and reversal can be seen in Fig. 6d, which shows a +45° domain
wall. Notice that the first clock pulse a moves the domain wall one step towards the
left, and hence a reversal of the orange/pink domain. However, the subsequent A pulse
immediately undoes this change and moves the domain wall another step towards the
right, advancing the domain wall a total of two layers of the sublattice La (orange
magnets). Next, the b pulse has no effect, since the pink magnets along the domain
wall are stabilized by the dipolar fields from their neighbors. Finally, the B pulse
moves the domain another step towards the right, flipping the next layer of magnets
from sublattice Lb (from green to pink). As can be seen, the result is an apparent
growth of the orange/pink domain by a single layer along the domain wall. The other
domain wall cases in Fig. 6 also show simultaneous growth and reversal, but are not
discussed in further detail.
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Fig. 6 Bipolar aAbB clocking of four types of domain walls in pinwheel ASI: a, horizontal DW, b,
vertical DW, c, −45° DW and d, +45° DW. Each domain wall is initialized to fill the whole 50× 50
system from edge to edge. Each snapshot shows a zoomed-in view of the system, at different points
during a clock protocol. (1) shows the initial state. (2-12) show the state during aAbB clocking.
Magnets that change state between snapshots are highlighted by a solid black outline.

There is an apparent competition between growth and reversal. For the +45°
domain wall discussed earlier, the competition seems to favor growth. However, the
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situation strongly depends on the particular shape of the domain. Fig. 10 in the main
text shows the time evolution of a hexagonal domain subject to aAbB clocking. As can
be seen, the domain both grows horizontally and reverses vertically, and hence gradu-
ally changes shape over time. Since vertical domain reversal depends on the curvature
of the domain, the process will stop when the domain grows too wide. The domain
will continue to grow horizontally, as horizontal domain growth is not dependent on
curvature. As a result, domain growth seems to out-compete reversal in this case. The
end result is an apparent tendency towards horizontally elongated domains.
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