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A B S T R A C T   

Conceptual hydrological models are practical tools for estimating the performance of green roofs. Such models 
require calibration to obtain parameter values, which limits their use when measured data are not available. One 
approach that has been thought to be useful is to transfer parameters from a gauged roof calibrated locally 
(single-site calibration) to a similar ungauged roof in a different location. This study tested this approach by 
transferring calibrated parameters of a conceptual hydrological model between sixteen extensive green roofs 
located in four Norwegian cities. The approach was compared with a multi-site calibration scheme that explores 
trade-offs of model performances between the sites. The results showed that single site calibration could yield 
optimal parameters for one site and perform poorly in other sites. In contrast, obtaining a common parameter set 
that yields satisfactory results (Kling Gupta Efficiency >0.5) for different sites, and roof properties could be 
achieved by multi-site calibration.   

1. Introduction 

In the last few decades, green roofs have emerged as a sustainable 
stormwater infrastructure option. Green roofs reduce the volume and 
intensity of stormwater runoff entering the sewer network, through 
retention and detention processes (Hamouz et al., 2018; Johannessen 
et al., 2018; Stovin et al., 2013). Furthermore, green roofs reduce the 
urban heat island effect (Susca et al., 2011); enhance urban biodiversity 
(Wooster et al., 2022); improve the visual amenity of urban catchments 
(Jungels et al., 2013); reduce the energy consumption of buildings 
(Bevilacqua, 2021; Bevilacqua et al., 2020). 

The hydrological benefits of green roofs are assessed by their 
retention (i.e. removal of stormwater via evapotranspiration) and 
detention (i.e. attenuation and delay of stormwater outflows) perfor-
mances. Green roofs were found to retain 11–59% of stormwater in wet 
and cold climates (Bengtsson et al., 2005; Johannessen et al., 2018; 
Stovin, 2010). Additionally, green roofs were reported to achieve high 
attenuation of stormwater outflows, ranging from 59 to 90% (Johan-
nessen et al., 2018; Palla et al., 2011; Stovin et al., 2012). Hydrological 
models are practical tools for quantifying the hydrological benefits of 
various design configurations of green roofs under different climatic 
conditions. Numerous hydrological models of green roofs have been 
developed and tested in the literature. These models can be classified 

into physically-based (Bouzouidja et al., 2018; Li et al., 2015; Palla et al., 
2009), conceptual (Palla et al., 2012; Vesuviano et al., 2014) and 
data-driven (Abdalla et al., 2021). The use of conceptual hydrological 
models has been favored by many studies due to their simplicity, ac-
curacy, and computational efficiency (Abdalla et al., 2022; Palla et al., 
2012). 

Conceptual hydrological models apply simplified equations to 
simulate the hydrological processes of green roofs. Due to the simplifi-
cation of these equations, they depend on empirical parameters that are 
not physically measurable. Therefore, calibration is required to obtain 
optimal values for these parameters. The high dependency on calibra-
tion limits the application of conceptual models in cases when measured 
data are not available for calibration. Several studies have attempted to 
obtain explicit relationships between conceptual model parameters and 
physically measurable characteristics of green roofs. For instance, a 
handful of studies concluded that conceptual model parameters repre-
senting internal green roof storages could be estimated from the field 
capacity of green roof substrates (Abdalla et al., 2022;Stovin et al., 
2013), which can be physically measured (Fassman and Simcock, 2012). 
Moreover, parameters controlling flow movements and dynamics within 
the green roof layers were found to be correlated with roof properties 
such as the depth of the substrate layer (Soulis et al., 2017; Yio et al., 
2013), the drainage layer type, and the slope of the roof (Vesuviano and 
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Stovin, 2013). However, no explicit formulas were obtained that could 
estimate flow parameters solely from the physical roof properties such as 
the roof geometries (e.g. area, slope, width, etc.) and the configuration 
and the properties of the green roof layers (i.e. vegetation, substrate, 
drainage layers). 

Few studies have attempted to transfer calibrated models amongst 
similar roofs located in different cities, with the premise of physical 
similarity, a common approach in predicting flows for ungauged basins 
(Oudin et al., 2008; Tsegaw et al., 2019). For example, Johannessen 
et al. (2019) tested the transferability of calibrated parameters of the 
SWMM model (Rossman, 2015) between similar green roofs located in 
four Norwegian cities with different climatic conditions. However, only 
calibrated models from wetter cities (higher amount of precipitation) 
showed to yield satisfactory modelling results for the green roofs of the 
drier cities, but not vice versa, indicating an influence of climatic inputs 
on model parameters. Abdalla et al. (2021) attempted to transfer trained 
machine learning models between the same set of similar green roofs 
located in four Norwegian cities. They found the transferred models to 
yield satisfactory results only between cities with similar rainfall events 
characteristics. 

Table 1 
Green roofs geometries and configurations.  

Roof 
type 

Roof 
ID 

Geometry Configuration 

Width 
(m) 

Length 
(m) 

Slope 
(%) 

Substrate Drainage 
mat 

Type 
A 

BERG1 1.6 4.9 16 VM (10 mm) TR (10 mm) 
OSL3 2 4 5.5 VM (10 mm) TR (10 mm) 
SAN1 1.6 5.3 27 VM (10 mm) TR (10 mm) 
TRD1 2 7.5 16 VM (10 mm) TR (10 mm) 

Type 
B 

BERG3 1.6 4.9 16 VM (10 
mm) + MW 
(50 mm) 

EPS (75 
mm) + TR 
(5 mm) 

OSL2 2 4 5.5 VM (10 
mm) + MW 
(50 mm) 

HDPE (40 
mm) + TR 
(5 mm) 

SAN2 1.6 5.3 27 VM (10 
mm) + MW 
(50 mm) 

EPS (75 
mm) + TR 
(5 mm) 

TRD3 2 7.5 16 VM (10 
mm) + MW 
(50 mm) 

HDPE (25 
mm) + TR 
(5 mm) 

Type 
C 

BERG2 1.6 4.9 16 VM (10 mm) L + B (50 
mm) 

SAN4 1.6 5.3 27 VM (10 mm) L + B (50 
mm) 

TRD2 2 7.5 16 VM (10 mm) L + B (50 
mm) 

Type 
D 

BERG4 1.6 4.9 16 VM (10 mm) TR (3 mm) 
SAN3 1.6 5.3 27 VM (10 mm) TR (3 mm) 

Type 
E 

BERG5 1.6 4.9 16 VM (10 
mm) +
Pumice (50 
mm) 

TR (3 mm) 

OSL1 2 4 5.5 VM (10 mm) HDPE (25 
mm) 

TRD4 2 7.5 16 VM (10 
mm) + MW 
(50 mm) 

PE (30 mm) 

VM: vegetation mats (sedum). 
MW: a mineral wool plate. 
TR: Textile retention fabric. 
L þ B: a mixture of Leca and bricks. 
PE: plastic drainage layers of polyethylene. 
EPS: plastic drainage layers of expanded polystyrene. 
HDPE: plastic drainage layers of high-density polyethylene. 

Fig. 1. Results of two hypothetical calibrations of two green roofs plotted in two-dimensional objective space. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Hypervolume criterion for selecting potential solutions. The orange 
solution is better than the green solution based on the method. The orange 
solution maximizes the hypervolume which is measured from the reference 
point. Modified from (Binois and Picheny, 2019). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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The effect of climatic variables on conceptual model parameters has 
not been thoroughly discussed in the context of green roof modelling. It 
is particularly important not only for transferring calibrated parameters 
of conceptual models amongst similar green roofs located in different 
locations but also for utilizing calibrated conceptual models of green 
roofs for evaluating climate change scenarios in which the climatic 
variables are significantly different from the ones used for model cali-
bration. Abdalla et al. (2022) tested and evaluated the performance of a 
conceptual green roof model for 16 green roofs located in the Norwegian 
cities. They discussed the effect of climatic data on the calibrated model 
parameters, in particular the flow parameters. They found high values of 
flow parameters for cities that receive rainfall events with higher 
amount and intensity and have shorter anticipant dry weather periods 
(ADWP), in comparison to cities with low precipitation amounts and 
longer ADWP. They acknowledged the difficulties of estimating flow 
parameters from climatic conditions. 

Many studies that conducted hydrological modelling of large basins 
found the performance of conceptual models to reduce significantly 
when validated using different climatic conditions compared to the 
calibration period. For instance, Hartmann and Bárdossy (2005) inves-
tigated the transferability of a hydrological model parameters between 
different climatic periods (e.g. cold and warm, wet and dry) for a large 
catchment (4000 km2) in Germany. They found that models that were 
calibrated on wet periods to overestimate the flow for dry periods. A 
similar finding was reported in the study of (Coron et al., 2012), in 
which the transferability of three hydrological models were tested on 
216 Australian catchments. 

Another group of researchers investigated the use of multi-objective 
optimization algorithms that explore tradeoffs of contrasting objective 
functions for the calibration of hydrological models of large catchments. 
For instance Confesor and Whittaker (2007) applied a multi-objective 
optimization algorithm to calibrate the Soil and Water Assessment 
Tool (SWAT) model for large watershed (963 km2) in the United States. 
They obtained non-dominated parameter sets that explores the tradeoff 
of model performance between high and low flow conditions. Fowler 
et al. (2016) discussed the effect of the calibration method on producing 
robust parameter sets that are applicable for contrasting climatic con-
ditions. They recommended a calibration strategy based on 
multi-objective optimization to explore trade-offs between model per-
formance in different climatic conditions. Similarly, Saavedra et al. 
(2022) found the hydrological models in their study to produce poor 
flow simulations in contrasting climatic conditions from calibration 
periods and proposed a model calibration strategy based on 
multi-objective optimizations for reducing the dependency of model 
parameters on climatic inputs. 

This research sought to investigate a multi-objective optimization 
scheme for multi-site calibrations of sixteen extensive green roofs 

located in four Norwegian cities with different climatic conditions. The 
primary aim of this study is to demonstrate the possible advantages of 
multi-site calibration over single-site calibration for conceptual hydro-
logical models of green roofs. Moreover, the study provides insights on 
the practical implication of multi-site optimization for urban stormwater 
management. 

2. Green roof data 

Sixteen extensive green roofs located in four Norwegian cities were 
used in this study. The cities are Bergen, Sandnes, Trondheim and Oslo. 
Bergen city receives the highest amount of annual precipitation of 3110 
mm, followed by Sandnes city which receives annual precipitation of 
around 1700 mm. Both Sandnes and Bergen are classified as temperate 
oceanic climate (Cfb), according to Köppen–Geiger climate classification 
(Kottek et al., 2006). Trondheim is the northmost city with annual 
precipitation of around 1100 mm and has a subpolar oceanic climate 
(Dfc). The driest city in the study is Oslo, receiving annual precipitation 
of 970 mm, with a temperate oceanic climate (Cfb). A comparison be-
tween the rainfall characteristics of the four cities can be found in 
Abdalla et al. (2021). 

The green roofs vary in geometries (i.e., width, length, and slope) 
among the four cities. According to similarities in configurations, they 
were categorized into five types, as shown in Table 1. Precipitation, 
outflow, and temperature were collected between 2015 and 2017 in 1- 
min resolution. The roofs in Oslo have a long record of data (from 
2011 to 2017). The reader is directed to Johannessen et al. (2018) for 
more details about field measurements, including the main features of 
the monitoring systems (i.e. type of sensors, accuracy and operation 
ranges) and the data processing. 

3. Materials and methods 

3.1. The rationale for multi-site calibration 

The performance of the calibration is typically assessed via objective 
functions such as the Nash Sutcliffe efficiency (Nash and Sutcliffe, 1970) 
and the Kling Gupta efficiency (KGE) (Gupta et al., 2009). A single site 
calibration yields solutions that are near-optimal for the specific site. 
Single-site calibration refers to the process of obtaining optimal values 
of model parameters for a single green roof, using a single objective 
optimization algorithm (SOO). Many optimization algorithms used in 
hydrological modelling are stochastic, such as the shuffled complex 
evolution (SCE-UA) (Duan et al., 1992), resulting in different solutions 
for the same site and calibration setup. When these solutions are applied 
at another site with contrasting climatic conditions, they might result in 
poor solutions reflected by low values of objective functions. This was 
reported by Johannessen et al. (2019), attempting to transfer unchanged 
model parameters between similar green roofs located in different lo-
cations. On the other hand, the multi-site calibration explores trade-offs 
between model performance in different climatic conditions. In this 
study, multi-site calibration refers to the process of estimating the Pareto 
front for two green roofs using a multi-objective optimization algorithm 
(MOO). Fig. 1 presents a hypothetical Pareto front for two green roofs 
with contrasting climatic conditions. According to Fig. 1, calibration 
solutions can be classified into one of five classes: i) theoretically 
possible that are neither acceptable for both green roofs, ii) theoretically 
impossible solutions, iii) solutions that are only acceptable for green roof 
1, iv) solutions that are only acceptable for green roof 2 and v) solutions 
that are acceptable for both green roofs. The latter class is desirable for 
yielding parameters that are applicable to different climatic conditions. 

3.2. Calibration methods 

3.2.1. Single-site calibration 
The differential evolution algorithm (DE) was used for single-site 

Fig. 3. The linear reservoir model.  
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calibration (Storn and Price, 1997). DE is a stochastic algorithm that 
belongs to a family of optimization methods, referred to as evolutionary 
algorithms. These methods are suitable for global optimization and do 
not require the optimized function to be differentiable or continuous. DE 
generates populations of candidate solutions iteratively until a certain 
stoppage criterion is met. Each solution contains a vector of model pa-
rameters, and each population evolves from the previous one in such a 
way that each solution is either improved or remained the same. The 
initial generation is formed through random sampling of parameters 
from the user-defined ranges. To generate the next population, the DE 
applies a differential mutation process for each member of the current 

generation. In this process, three solutions (x0, x1, and x2) are randomly 
selected from the current population to produce a population of mutant 
solutions (v) for each member of the population as follows: 

v= x0 + F . (x1 − x2) (1) 

F, called the mutation factor, is a positive scale value typically less 
than 1. After the mutation process is done for each member of the 
population, the DE applies the crossover process which controls the 
fraction of parameters that are copied from the mutant or the original 
solution. A trial solution (u) is formed for each member of the population 
as follows: 

Fig. 4. The comparison between two-site (MOO) and single-site (SOO) calibrations for similar green roofs located in different cities. Solutions that are close to the 1:1 
line are considered the best compromised solutions. The grey-shaded area represents solutions that are considered satisfactory for both sites (0.5 < KGE<0.75). The 
green-shaded area represents solutions that are considered good for both sites (KGE>0.75). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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uj,i,G+1 =

{
vj,i,G+1, if randj,i ≤ CR or j = Irand
xj,i,G, if randj,i > CR or j ∕= Irand

(2)  

Where randj,i is a random real value between (0,1), j is the index of the 
parameter in the solution vector, i is the index of the solution in the 
population, G is the index of the population, CR is the cross-over prob-
ability, and Irand is a random integer number between (1, D) where D is 
the number of solutions for each population. Irand ensure that ui,G+1 ∕=

xi,G. After the cross-over process, the DE applies the selection process, in 
which each solution from the current population is compared with its 
associated trial solutions from the cross-over process. The solution with 
the best objective value is selected for the next population. If the two 
objective functions are equal, the trial solution is selected for the next 
population. 

In this study, the DEopim library in R was used (Mullen et al., 2011), 
and the KGE of the simulated outflow was selected as an objective 
function. KGE was selected because it combines three statistical mea-
sures for assessing model performance: residual error, correlation, and 
the volumetric error, as KGE is determined using the following: 

KGE= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(3)  

r is the correlation coefficient between simulated and observed outflow, 
α is the measure of flow variability error (residual error) and β is the 
volumetric error (bias). 

The hyperparameter of the optimizer were selected as follow: CR =
0.5, F = 0.8, D = 10 * number of model parameters. The stoppage cri-
terion was running the DE until the maximum number of populations (N 
= 200) was reached. Typically, the best solution in the last population is 
considered optimal in single-site calibration. In this study, however, the 
best solution for each population was considered a near-optimal solu-
tion. Hence, for each single site calibration, a group of 200 parameter 
sets was selected. Note that some solutions were duplicated since the 
best solution could remain the same in several populations. 

3.2.2. Multi-site calibration 
A multi-objective optimization aims at approximating a Pareto front 

that contains a set of optimal solutions. In early hydrological modelling 
studies using Pareto front, the Pareto front was estimated by aggregating 
objective functions into one scalar value and running a series of inde-
pendent optimization runs of the scalar value with varying weights of 
the objective functions (Madsen, 2000; 2003). The development of al-
gorithms that are customized for multi-objective problems, such as the 
nondominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) 
and the multi-objective Shuffled Complex Evolution Metropolis (Vrugt 
et al., 2003) allows for efficient estimation of Pareto front. In recent 
years, several multi-objective algorithms were developed and evaluated 
in hydrological modelling studies. Examples include the multi-objective 
Artificial Bee Colony optimization algorithm (Huo and Liu, 2019), the 
differential evolution with adaptive Cauchy mutation and Chaos 
searching (MODE-CMCS) (Liu et al., 2016), and the multi-objective 
Bayesian optimization (Emmerich et al., 2006). Some studies attemp-
ted to compare the performance of algorithms in the context of hydro-
logical modelling (Guo et al., 2014; Wang et al., 2010). 

In this study, the multi-objective Bayesian optimization (MBO) was 
selected. This algorithm requires a fewer number of model evaluations 
to approximate the Pareto front, in comparison to other multi-objective 
optimization methods (Binois and Picheny, 2019). The steps of the MBO 
are as follows:  

i. Select an initial population of candidate solutions based on 
random sampling from the pre-defined parameter limits and 
determined the value of the objective functions of each solution. 

ii. Apply the Pareto dominance test to extract non-dominance so-
lutions, forming an initial Pareto front. A solution x1 is said to 
dominate solution x2 if and only if i) solution x1 is not worse than 
x2 in all objective functions and ii) x1 is better than x2 in at least 
one objective function. Non-dominated solutions are solutions 
that are not dominated by any member of the solution set. 

Fig. 5. Calibration and validation performances of the selected parameter sets obtained by the multisite calibration algorithms. Parameter sets that produce 
satisfactory modelling results (KGE ≥ 0.5) were used to simulate validation periods. 
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iii. Build a surrogate model for each objective function from the 
candidate solutions. The Gaussian process was selected for 
building the surrogate model in this study (Binois and Picheny, 
2019; Snoek et al., 2012; Worland et al., 2018). The Gaussian 
process is a non-parametric Bayesian regression approach that 
used to map complex input-output relationships, using 
kernel-based probabilistic models (Schulz et al., 2018).  

iv. Select a new solution based on the surrogate models. The new 
solution is selected following a specific criterion that improves 
the Pareto front of the current iteration.  

v. The selected solution is evaluated in the hydrological model, and 
its objective functions are determined and used to update the 
surrogate models of the objective functions.  

vi. Repeat steps iii to v for N iteration (1000 in this study). 

This study applied a common criterion for selecting potential solu-
tions from surrogate models, termed the expected hypervolume 
improvement (Emmerich et al., 2011) which is presented in Fig. 2. 

The GPareto library in R (Binois and Picheny, 2019) was used for the 
multi-objective optimization in this study. The objective functions used 
were the KGE of simulated outflows for each green roof. 

3.3. The hydrological model (CRRM linear) 

The green roofs were modelled with a linear reservoir model (Fig. 3). 
The model was developed and tested by Abdalla et al. (2022). It applies 
several equations (Equation (3) - Equation (10)) to calculate infiltration 
(INF), drainage flow (Q), actual evapotranspiration (AET), soil moisture 
(SW), and drainage storage (DW). The potential evapotranspiration 
(PET) is determined using the Oudin formula (Oudin et al., 2005), which 
is suitable for cold climates and was found to be suitable by Johannessen 
et al. (2017) for cities in this study. The model contains five calibrated 
parameters; S1 (available storage of the soil layer), S2 (available storage 
of the drain layer), S11 (the threshold of soil water after which AET is 
equal to PET), k1 (flow parameter of the soil layer) and k2 (flow 
parameter of the drainage layer). 

INFt = k1 × max(SWt − S1, 0) (4)  

Qt = k2 × max(DWt − S2, 0) (5)  

SWt =max (SWt− 1 +Pt − AET1t − S1, 0) (6)  

DWt =max (DWt− 1 + INFt − AET2t − S2, 0) (7)  

Fig. 6. The comparison between two-site (MOO) and single-site (SOO) calibrations for different green roof types located at the same site (Bergen). The grey-shaded 
area represents solutions that are considered satisfactory for both sites (0.5 < KGE<0.75). The green-shaded area represents solutions that are considered good for 
both sites (KGE>0.75). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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PET
[
mm
day

]

=

⎧
⎨

⎩

0 if Tmean ≤ 5◦C
Ra
λρ × 0.01 × (Tmean + 5) if Tmean > 5◦C

(8)  

ft =min
(

1,
SWt− 1

S11

)

(9)  

AET1t = ft × PETt (10)  

AET2t =min (DWt− 1,PETt − AET1t) (11)  

3.4. Study experiments 

To investigate the performance of the multi-objective optimization, 
three experiments were conducted as follows:  

• Experiment one: calibration of two similar green roofs configurations 
in different sites 

• Experiment two: calibration of two different green roofs configura-
tions in the same site 

• Experiment three: calibration of four similar green roofs configura-
tions in different sites 

In all experiments, the Pareto optimal solutions were compared with 
the results of single-site calibrations. Based on the value of KGE, the 
model results were classified as: 

Fig. 7. The performance of parameter sets obtained from single-site calibration in similar roofs located in other cities.  

Table 2 
The performance of the best compromised parameter set from the four site- 
calibration on the 16 green roofs.  

GR KGE (Calibration periods) KGE (validation periods) 

BERG1 0.77 0.82 
BERG2 0.86 0.86 
BERG3 0.6 0.67 
BERG4 0.66 0.68 
BERG5 0.89 0.89 
OSL1 0.59 0.65 
OSL2 0.58 0.63 
OSL3 0.63 0.67 
SAN1 0.89 0.78 
SAN2 0.76 0.61 
SAN3 0.68 0.86 
SAN4 0.82 0.84 
TRD1 0.62 0.6 
TRD2 0.68 0.79 
TRD3 0.51 0.77 
TRD4 0.68 0.86  
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- Poor (KGE<0.5)  
- Satisfactory (0.5 < KGE<0.75)  
- Good (KGE>0.75) 

The classification followed the recommendation of Thiemig et al. 
(2013). It should be emphasized that such classification is based on the 
consensus of what is considered “good” or “poor” modelling results in 
the literature. 

Measurements from 2017 were selected for model calibration while 
2016 data were used for model validation. Snow periods (i.e., October to 
March) were excluded since the model does not simulate snow accu-
mulation and melting. A 5 min time-step was used for the modelling. 
Hence, data were aggregated accordingly. 

4. Results and discussion 

4.1. Two-site calibration (similar roofs configurations on different sites) 

The optimal solutions for the two-site and the single-site calibration 
schemes were plotted and compared. Fig. 4 presents the comparisons for 
type A and type B roofs. Some solutions were found by the single-site 
calibration to yield poor model results when transferred to different 
sites. For instance, all parameter sets of OSL3 yielded KGE values below 
0.1 for the TRD1 roof. In contrast, multi-site calibration yielded solu-
tions that were satisfactory for both OSL3 and TRD1 roofs. In some cases, 
single-site calibration yielded satisfactory to good results for other roofs 
than the one used for calibration. For instance, all solutions of OSL3 roof 
yielded good to satisfactory results for BERG1, and vice versa. However, 
solutions found by the multi-site calibration for the two roofs were closer 

to the 1:1 line (i.e., best compromised solutions). The optimal parameter 
sets of the multi-site calibration algorithm that yielded satisfactory 
modelling results (KGE ≥ 0.5) for each two sites were used to simulate 
outflow for the validation periods for model validation, as shown in 
Fig. 5. It can be noted that parameter sets that yielded satisfactory 
modelling results for the calibration also produced satisfactory results 
for the validation period. 

For some roofs, different parameter sets gave the same results for the 
same site, indicating equifinality (Beven, 1993). These solutions, how-
ever, yielded different results when transferred to different sites. For 
instance, optimal solutions that produced the same model performance 
at BERG3 yielded poor to satisfactory results for the OSL2 roof. This 
shows that single-site calibration could potentially miss promising so-
lutions which produce satisfactory results in different locations. A 
similar conclusion was drawn in a study by Fowler et al. (2016), where 
they assessed the transferability of model parameters between dry and 
wet conditions. 

4.2. Two-site calibration (different roofs configurations on the same site) 

The comparison between the two calibration schemes (single vs 
multi-sites) is presented in Fig. 6 for Bergen roofs. Almost all parameter 
sets found by the single-site calibration could yield satisfactory to good 
results in the other roofs with different configurations. Only a few pa-
rameters set of BERG2 roofs yielded poor results for BERG3. On the other 
hand, results from the two-site calibration yielded better compromised 
results (closer to the 1:1 line). 

It can be noted that climatic variables (i.e., location) could have a 
greater influence on model parameters than the roof’s physical 

Fig. 8. The performance of the best compromised parameter set on the validation periods of the four roofs.  
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characteristics, as shown in Fig. 6 as opposed to Fig. 4. Similarly, 
Abdalla et al. (2021) found that ML trained in one location could yield 
satisfactory model performance for the different roof properties that are 
located in the same location. 

4.3. Four site calibration (similar roofs in different cities) 

The solutions of the single site calibration were used to simulate 
outflows for the green roofs in the other cities in the study. Fig. 7 pre-
sents the performance of these simulations for type A and type B roofs. 
The result showed that transferring single site calibration results into 
different locations could yield poor modelling results. A similar finding 
was reported in the study of Johannessen et al. (2019) in which cali-
brated SWMM models were found to yield poor results when validated in 
multiple locations. As shown in Fig. 7, transferability could yield satis-
factory results between some cities (for instance, Bergen and Oslo). 
However, obtaining one parameter set from single-site calibration that 
produces satisfactory results in the four cities is very difficult, if not 
impossible. On the other hand, multi-site calibration resulted in a set of 
non-dominated solutions that allowed for exploring trade-offs of model 
performance amongst cities. 

One parameter set that yielded the highest minimum KGE between 
the four locations was selected (S1 = 6.794, S11 = 8.378, k1 = 0.435, k2 
= 0.031, S2 = 3.989). The selected set yielded KGE values ranging be-
tween 0.62 and 0.89 for the calibration periods and 0.6–0.82 for the 
validation periods, as shown in Table 2, for the four roofs which are 
considered satisfactory to good results. Fig. 8 illustrates the simulated 

and observed outflows of type A roofs for the validation periods. The 
simulated outflows matched well with observation, although some of 
the peak values were underestimated. 

The selected parameter set was used to simulate outflows from the 
sixteen roofs in the study. Table 2 presents the performance of these 
simulations, as measured by KGE. All simulations yielded KGE values 
that were higher than 0.5 and some scored KGE above 0.75, indicating 
satisfactory to good results. Therefore, in contrast to single-site cali-
bration, it is possible to obtain a common parameter set that yields 
satisfactory model results for different locations, by evaluating Pareto 
optimal solutions from multi-site calibration. 

It could be noted that the variation of KGE values between locations 
and modelling period was slightly higher than between the different roof 
properties. For instance, the common set scored KGE values that ranged 
only between 0.58 and 0.63 for Oslo roofs (calibration periods), and 
only between 0.67 and 0.89 for Bergen roofs (validation periods). This 
further strengthens the conclusion that the influence of climatic vari-
ables on conceptual model parameters is higher than the influence of the 
roof properties. 

4.4. Implications for stormwater management 

Single-site calibration was found to yield optimal parameters for one 
location which performed poorly in the other sites, due to the different 
climatic conditions. In the future, climatic variables are expected to 
change significantly due to climate change (Sun et al., 2006). Therefore, 
a conceptual model calibrated with the current climate variables using a 

Fig. 9. a) observed outflows of BERG1 roof compared by simulated outflows from the best parameter set (best fit) and the four-site calibration (Regional) for the 
selected period. b) Observed flow duration curve (FDC) of BERG1 compared by the simulated FDC obtained from the parameter set that produces the best fit at 
BERG1 (single site) and from the best compromised parameter set from the four-site calibration (Regional). 
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single-site scheme is likely to yield poorer simulations for the future. 
Nevertheless, this argument has rarely been discussed in the context of 
modelling sustainable stormwater measures, such as green roofs. It is a 
common practice in sustainable stormwater modelling studies to 
investigate climate change scenarios using a model calibrated with the 
current conditions. Therefore, caution should be exercised when inter-
preting the results of a model that is calibrated in contrasting climatic 
conditions from those used in model scenarios. In future studies, it is 
therefore recommended to apply multi-objective optimization for robust 
calibration of green roof hydrological models to simulate future climatic 

conditions. 
The results of this study are in-line with the common consensus in 

catchment modelling studies, in which hydrological models were found 
to score poor simulation results when evaluated on contracting climatic 
compared to those used for model calibration (Coron et al., 2012; 
Hartmann and Bárdossy, 2005). A solution which has been suggested by 
some scholars, is to calibrate models on climatic conditions similar to 
those used in model scenarios (Li et al., 2012). For instance, if the model 
is intended to simulate wet conditions it must be calibrated on a wet 
condition period from the historical data. However, as argued by Fowler 

Fig. 10. Observed flow duration curve (FDC) of the sixteen green roofs compared by the simulated FDC obtained from the parameter set that produces the best fit at 
each site (single site calibration) and from the best compromised parameter set from the four-site calibration (Regional). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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et al. (2016), this limits the applicability of calibrated model beyond the 
climatic conditions available in the historic periods. In green roof 
studies, observations are even more scarce than in large catchments 
which further limits the applicability of such an approach. 

The results of this study show that obtaining a common parameter set 
that fit “reasonably well” for different locations and roof properties 
could be achieved by multi-site calibration. This is valuable for storm-
water management, as it provides a fast and reliable tool for quantifying 
the hydrological impact of green roofs in different locations and climate 
change scenarios. It should be noted, however, that such a common 
parameter set typically will yield lower performance for one roof than 
the best parameter set from the single site calibration of that roof. A 
question is whether this decrease in performance affects the usefulness 
of the model for stormwater management. 

Before answering this question, it is useful to discuss the common 
metrics used to quantify the hydrological benefits of green roofs. Typi-
cally, green roof performance is measured by assessing retention and 
detention. The former is the measure of how much water is retained (i.e., 
removed) via roof evapotranspiration. In the literature on green roof 
modelling, simple water balance models with hourly or daily time steps 
and suitable evapotranspiration equations were found to be sufficient 
for estimating retention (Abdalla et al., 2021; Bengtsson et al., 2005; 
Stovin et al., 2013). On the other hand, green roof detention refers to the 
reduction and delay of outflows due to the temporal storage of water in 
the green roof. Estimating detention requires calibrated models and 
short time steps (sub-hourly). Typically, detention is measured by 
event-based metrics, such as peak reduction, peak delay, etc. However, 
recent studies discussed issues of event-based metrics and suggested 
alternative approaches based on long term-simulations (Stovin et al., 
2017). Among these alternatives, flow duration curves (FDCs) were 
found to provide an unambiguous estimation of green roof detention 
(Hernes et al., 2020). Hence, it was adopted in the study. 

We investigated the accuracy of simulated FDCs from the common 
parameter set in Table 2 (regional set) and whether these FDCs are 
comparable with those derived from the best parameter set from the 
single-site calibration setup (best fit). Fig. 9 presents the observed 
outflow and FDC of the BERG1 roof compared with the simulated results 
from the best fit, and the regional parameter sets. Both parameters sets 
underestimated the high flows. However, the best fit set produced better 
estimates of the high flows than the regional set. This represents the part 
of the FDC with low durations (e.g., less than 5 h). For medium and low 
parts of the FDC (duration >5 h), the regional set produced slightly 
better estimates for medium and low values. Fig. 10 presents the simu-
lated and observed FDCs for the sixteen roofs in the study. For visuali-
zation purposes, the log-log scale was used. The regional parameter set 
produced FDCs that were comparable to those derived by the best fit sets 
for each roof. For cities with high and intense precipitation, such as 
Bergen, the best-fit parameters produced better estimates of high values 
while the regional set slightly produce better simulations for medium 
and low values. On the other hand, for Trondheim city, which receives 
lower precipitation amount and intensity, the regional set overestimated 
low values and provided a better estimate for high values. 

It can be concluded that multi-objective optimization yields robust 
calibration results for green roof hydrological models, which can be used 
to transfer model parameters between location and between different 
climatic condition (e.g. for evaluating future conditions). However, this 
approach requires high amount of data that are monitored under 
different climatic conditions, which is a particular challenge for green 
roof studies, as data are scare. This can be alleviated through sharing 
green roof data amongst researchers for optimal evaluation of green 
roofs under different climatic conditions. 

5. Summary and conclusions 

The current study aimed to evaluate the potential of multi-site cali-
bration for conceptual hydrological models of green roofs. Additionally, 

the study provided insights on the practical implication of multi-site 
calibration, concerning stormwater management. Based on the results 
of the study, the following conclusions can be drawn:  

• Single site calibration obtains optimal parameters for one site that 
perform poorly for other locations and climate conditions.  

• The variation of model performance due to climatic variables is 
greater than due to roof properties.  

• Obtaining a common parameter set that yields satisfactory results 
(Kling Gupta Efficiency >0.5) for different locations and roof prop-
erties can be achieved by multi-site calibration. Such a parameter set 
provides flow durations curves that are comparable in accuracy to 
those derived from the best parameter sets from single-site 
calibration  

• The multi-site calibration scheme is recommended not only for 
transferability among roofs in different cities but also when applying 
conceptual models for evaluating climate change scenarios for which 
the climatic variables are significantly different from the ones used 
for calibration. 
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Stovin, Poë, Berretta, 2013. A modelling study of long term green roof retention 
performance. J. Environ. Manag. 131, 206–215. https://doi.org/10.1016/j. 
jenvman.2013.09.026. 

Stovin, Vesuviano, De-Ville, 2017. Defining green roof detention performance. Urban 
Water J. 14 (6), 574–588. https://doi.org/10.1080/1573062X.2015.1049279. 

Stovin, Vesuviano, Kasmin, 2012. The hydrological performance of a green roof test bed 
under UK climatic conditions. J. Hydrol. 414 (415), 148–161. https://doi.org/ 
10.1016/j.jhydrol.2011.10.022. 

Sun, Solomon, Dai, Portmann, 2006. How often does it rain? J. Climate. https://doi.org/ 
10.1175/JCLI3672.1. 

Susca, Gaffin, Dell’Osso, 2011. Positive effects of vegetation: urban heat island and green 
roofs. Environ. Pollut. 159, 2119–2126. https://doi.org/10.1016/j. 
envpol.2011.03.007, 8–9, SI.  

Thiemig, Rojas, Zambrano-Bigiarini, De Roo, 2013. Hydrological evaluation of satellite- 
based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. https://doi. 
org/10.1016/j.jhydrol.2013.07.012. 

Tsegaw, Alfredsen, Skaugen, Muthanna, 2019. Predicting hourly flows at ungauged small 
rural catchments using a parsimonious hydrological model. J. Hydrol. 573 (March), 
855–871. https://doi.org/10.1016/j.jhydrol.2019.03.090. 

Vesuviano, Stovin, 2013. A generic hydrological model for a green roof drainage layer. 
Water Sci. Technol. https://doi.org/10.2166/wst.2013.294. 

Vesuviano, Sonnenwald, Stovin, 2014. A two-stage storage routing model for green roof 
runoff detention. Water Sci. Technol. 69 (6), 1191–1197. https://doi.org/10.2166/ 
wst.2013.808. 

Vrugt, Gupta, Bastidas, Bouten, Sorooshian, 2003. Effective and efficient algorithm for 
multiobjective optimization of hydrologic models. Water Resour. Res. 39 (8), 1–19. 
https://doi.org/10.1029/2002WR001746. 

Wang, Lei, Jiang, Wang, 2010. Performance comparison of three multi-objective 
optimization algorithms on calibration of hydrological model. In: Proceedings - 2010 
6th International Conference on Natural Computation, ICNC 2010, pp. 2798–2803. 
https://doi.org/10.1109/ICNC.2010.5583573, 6(Icnc).  

Wooster, Fleck, Torpy, Ramp, Irga, 2022. Urban green roofs promote metropolitan 
biodiversity: a comparative case study. Build. Environ. 207 (A) https://doi.org/ 
10.1016/j.buildenv.2021.108458. 

Worland, Farmer, Kiang, 2018. Improving predictions of hydrological low-flow indices in 
ungaged basins using machine learning. Environ. Modell. Softw. https://doi.org/ 
10.1016/j.envsoft.2017.12.021. 

Yio, Stovin, Werdin, Vesuviano, 2013. Experimental analysis of green roof substrate 
detention characteristics. Water Sci. Technol. 68 (7), 1477–1486. https://doi.org/ 
10.2166/wst.2013.381. 

E.M.H. Abdalla et al.                                                                                                                                                                                                                          

https://doi.org/10.1111/j.1752-1688.2007.00080.x
https://doi.org/10.1029/2011WR011721
https://doi.org/10.1029/2011WR011721
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1029/91WR02985
https://doi.org/10.1029/91WR02985
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/CEC.2011.5949880
https://doi.org/10.1109/CEC.2011.5949880
https://doi.org/10.1061/(asce)ee.1943-7870.0000532
https://doi.org/10.1061/(asce)ee.1943-7870.0000532
https://doi.org/10.1002/2015WR018068
https://doi.org/10.1016/j.jhydrol.2014.01.047
https://doi.org/10.1016/j.jhydrol.2014.01.047
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.3390/w10030263
https://doi.org/10.3390/w10030263
https://doi.org/10.5194/adgeo-5-83-2005
https://doi.org/10.5194/adgeo-5-83-2005
https://doi.org/10.2166/nh.2020.070
https://doi.org/10.1007/s00521-018-3483-4
https://doi.org/10.3390/w10060671
https://doi.org/10.3390/w10060671
https://doi.org/10.1016/j.ecoleng.2017.06.011
https://doi.org/10.1016/j.ecoleng.2017.06.011
https://doi.org/10.1016/j.jhydrol.2019.01.004
https://doi.org/10.1016/j.landurbplan.2013.04.013
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000976
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000976
https://doi.org/10.5194/hess-16-1239-2012
https://doi.org/10.1155/2016/8215308
https://doi.org/10.1016/S0022-1694(00)00279-1
https://doi.org/10.1016/S0022-1694(00)00279-1
https://doi.org/10.1016/S0309-1708(02)00092-1
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.jhydrol.2004.08.026
https://doi.org/10.1016/j.jhydrol.2004.08.026
https://doi.org/10.1029/2007WR006240
https://doi.org/10.1016/j.jhydrol.2009.10.008
https://doi.org/10.2166/wst.2011.171
https://doi.org/10.2166/wst.2011.171
https://doi.org/10.1002/hyp.8112
mailto:http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT
mailto:http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT
https://doi.org/10.1002/hyp.14446
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1016/j.jmp.2018.03.001
http://refhub.elsevier.com/S0301-4797(22)02289-7/sref43
http://refhub.elsevier.com/S0301-4797(22)02289-7/sref43
https://doi.org/10.1016/j.jenvman.2017.06.012
https://doi.org/10.1016/j.jenvman.2017.06.012
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1111/j.1747-6593.2009.00174.x
https://doi.org/10.1016/j.jenvman.2013.09.026
https://doi.org/10.1016/j.jenvman.2013.09.026
https://doi.org/10.1080/1573062X.2015.1049279
https://doi.org/10.1016/j.jhydrol.2011.10.022
https://doi.org/10.1016/j.jhydrol.2011.10.022
https://doi.org/10.1175/JCLI3672.1
https://doi.org/10.1175/JCLI3672.1
https://doi.org/10.1016/j.envpol.2011.03.007
https://doi.org/10.1016/j.envpol.2011.03.007
https://doi.org/10.1016/j.jhydrol.2013.07.012
https://doi.org/10.1016/j.jhydrol.2013.07.012
https://doi.org/10.1016/j.jhydrol.2019.03.090
https://doi.org/10.2166/wst.2013.294
https://doi.org/10.2166/wst.2013.808
https://doi.org/10.2166/wst.2013.808
https://doi.org/10.1029/2002WR001746
https://doi.org/10.1109/ICNC.2010.5583573
https://doi.org/10.1016/j.buildenv.2021.108458
https://doi.org/10.1016/j.buildenv.2021.108458
https://doi.org/10.1016/j.envsoft.2017.12.021
https://doi.org/10.1016/j.envsoft.2017.12.021
https://doi.org/10.2166/wst.2013.381
https://doi.org/10.2166/wst.2013.381

	On the use of multi-objective optimization for multi-site calibration of extensive green roofs
	1 Introduction
	2 Green roof data
	3 Materials and methods
	3.1 The rationale for multi-site calibration
	3.2 Calibration methods
	3.2.1 Single-site calibration
	3.2.2 Multi-site calibration

	3.3 The hydrological model (CRRM linear)
	3.4 Study experiments

	4 Results and discussion
	4.1 Two-site calibration (similar roofs configurations on different sites)
	4.2 Two-site calibration (different roofs configurations on the same site)
	4.3 Four site calibration (similar roofs in different cities)
	4.4 Implications for stormwater management

	5 Summary and conclusions
	Credit author statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


