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ABSTRACT

PV-microgrids are proposed as a solution for communities with good solar condi-
tions, but low access to energy infrastructure. A provider of these, Differ Com-
munity Power (DCP), wants to introduce an energy management system to their
microgrids to increase the life-time and satisfaction from their systems. This thesis
looks at an existing system supporting a medical facility in rural Malawi, analyses
its operations and proposes an energy management system. The system is tuned
to achieve goals developed in collaboration with DCP and the end-user. These
goals include a higher availability of critical loads and better battery health. The
proposed solution is compared to the existing system in a simulated environment,
showing an increase in critical load reliability of up to 2.86 percentage points and
a reduction in time in states damaging for the battery of up to 73% dependent on
the tuning. The proposed control system is also tested against the current control
system under decreasing amount of battery capacity installed. By a 53% reduction
of battery capacity, the proposed control has a higher critical load reliability of
7.1 percentage points compared to the current system.

PV drevne mikrogrids er en mulig løsning for elektrifisering av områder med gode
solforhold der kobling til annen energi-infrastruktur er kostbart eller krevende. Dif-
fer Community Power (DCP) er en utvikler av slike mikrogridanlegg. De ønsker
å ta i bruk kontrollsystemer for å bedre tilfredsheten og livstidene til systemene
deres. Denne oppgaven ser på et av disse anleggene i rurale Malawi og, etter å
ha analysert det, foreslår et nytt kontrollsystem. System er stilt til å tilfredstille
kriterier utvilket sammen med DCP og deres brukere. Dette inkluderer mål på
sikkerheten til kritisk last og batteri-levetid. Det foreslåtte systemet sammenlik-
nes med det eksiterende systemet i et simulert miljø, der det foreslåtte systemet
viser en forbedring på tilfredsstillende av kritisk last på 2.86 prosentpoeng og en
reduksjon i tiden batteriet er i skadelige tilstander på 73% avhengig av parameter-
settingen til systemet. Det foreslåtte kontrollsystemet er også testet mot det ek-
sisterende kontrollsystemet i simulering der installert batterikapasitet er redusert.
Med en 53% reduksjon i batterikapasitet, så viser det foreslåtte kontrollsystemet
en forbedring i tilfredstillese av kritisk last på 7.1 prosentpoeng sammanliknet med
eksisterende kontrollsystem.
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PREFACE

When I enrolled into a 5 year master degree in Engineering Cybernetics at NTNU
in the Fall of 2018 I came with a strong interest in robotics and industrial automa-
tion. I even choose my specialization within Robot Systems. So why is that I, 5
years later write my thesis on Control of Energy Systems? I attribute this to two
key events, the first of which being the Russian Invasion of Ukraine in February
2021 and the resulting shock to our Energy Systems. This event highlighted to
me how energy is not to be taken for granted. It made me aware of another con-
sideration to the Energy Transition: Energy Security. Energy Security means the
ability to access energy and the reliability and robustness of these sources. The
matter of Energy Security differs a lot between regions of the world. Which brings
me to my the second event that steered my academic trajectory into writing this
thesis.

In waiting to go on an exchange, I was fortunate to be employed at DCP. This
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be host country. The silver lining, I got to travel to Malawi and see the impact
of DCPs work. In rural Malawi, energy security and access to energy is no theo-
retical concern. It is a deep and enduring problem felt every day. When energy
is delivered to communities which previously have not had access, the appreci-
ation is deep and profound. At the health facilities, nurses told about how in
the past cesarean sections at night had to be done with a cell phone light or can-
dlestick in hand. The impact energy can have is literally a matter of life and death.

With these experiences in hand, I am very grateful to DCP for allowing me to
write my master degree on a topic close to my heart, and that can have real world
impact on underserved communities. I want to thank all DCP employees that
have through discussions and feedback helped me shape and express my ideas.

Last,but not least, I want to express my gratitude to my thesis advisor, Geir
Mathisen for diligently guiding me throughout the process.

ii



CONTENTS iii

Contents

Abstract i

Preface ii

Contents iv

List of Figures iv

List of Tables vii

Abbreviations viii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Works 5

3 Theory 9
3.1 Photovoltaic cells and Irradiance . . . . . . . . . . . . . . . . . . . 9
3.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Physical approach . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Error metrics for forecasting . . . . . . . . . . . . . . . . . . 14

3.3 Reliability and System Sizing . . . . . . . . . . . . . . . . . . . . . 15
3.4 Battery Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 System Overview 21
4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Measurement and Data logging . . . . . . . . . . . . . . . . 23
4.2 Control System currently in place . . . . . . . . . . . . . . . . . . . 25

4.2.1 Weaknesses with current control system . . . . . . . . . . . 26

5 Design 29
5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Load analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 User survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Load classification . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Load Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



5.3.1 Persistence Model . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 Forecast update . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Production analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Forecasting production . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Forecast update . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 System Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Implementation 85
6.1 Implementation overview . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Battery Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Load Forecaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Production Forecaster . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Controller current control system . . . . . . . . . . . . . . . . . . . 91
6.7 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Results 93
7.1 Test period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Simulation candidates . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.2 Unmet Demand . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.3 Battery Health . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.4 Flexible Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.5 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.6 Combined Results . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.7 Critical Load Reliability at different battery capacities . . . 97

8 Discussion 121

9 Conclusions 127

References 129

Appendices: 133

A - Github repository 134

B - User Survey Results 135

iv



LIST OF FIGURES v

List of Figures

3.1.1 PV-effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Critical Load Reliability Plot . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Battery Calendar Aging . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Battery Cycle Aging . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Microgrid Topology . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 PV-configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Current Battery charge control system FSM . . . . . . . . . . . . 26
4.2.2 Current Battery charge control system . . . . . . . . . . . . . . . 26
4.2.3 Current control system weakness 1 - Battery Depletion . . . . . . 27
4.2.4 Current control system weakness 2 - High SOC cycling . . . . . . 28

5.1.1 Control system components . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Daily consumption Chiwoza 20231023-1223 . . . . . . . . . . . . 33
5.2.2 Consumption Chiwoza October successive 48h-periods . . . . . . 34
5.2.3 Disaggregated Consumption Chiwoza 20230603-05 . . . . . . . . 35
5.2.4 ACF Daily consumption Chiwoza 20231023-1223 . . . . . . . . . 36
5.2.5 Medical Light consumption Chiwoza 20231023-1223 . . . . . . . 38
5.2.6 Medical Socket consumption Chiwoza 20231023-1223 . . . . . . . 39
5.2.7 Guardina Shelter Socket consumption Chiwoza 20231023-1223 . . 40
5.2.8 Guardian Shelter Light consumption Chiwoza 20231023-1223 . . 41
5.2.9 ACF Guardian shelter socket consumption Chiwoza 20231023-1223 42
5.2.10 ACF Medical Socket consumption Chiwoza 20231023-1223 . . . . 43
5.2.11 Fence Light consumption Chiwoza 20231023-1223 . . . . . . . . . 44
5.2.12 Staff Light consumption Chiwoza 20231023-1223 . . . . . . . . . 45
5.2.13 Staff Socket consumption Chiwoza 20231023-1223 . . . . . . . . 45
5.2.14 Staff consumption Chiwoza 20231023-1223 . . . . . . . . . . . . 45
5.2.15 User survey: Daytime priority . . . . . . . . . . . . . . . . . . . 47
5.2.16 User survey: Nighttime priority . . . . . . . . . . . . . . . . . . . 48
5.2.17 Water pump power/flow-curve . . . . . . . . . . . . . . . . . . . 51
5.3.1 MAE vs lookback-period Medical Light Chiwoza 20231128 . . . . 53
5.3.2 MAE vs look-back Medical light 202311 . . . . . . . . . . . . . . 53
5.3.3 Medical Light consumption Chiwoza 20231110-1125 . . . . . . . 55
5.3.4 ACF Medical Light consumption Chiwoza 20231110-1125 . . . . 55
5.3.5 ACF and PACF Medical light consumption 20231110 . . . . . . 57
5.3.6 ACF and PACF differentiated medical light consumption 20231110 58
5.3.7 ACF and PACF second order differentiated medical consumption

20231110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.8 MAE ARIMA candidates medical light demand Chiwoza . . . . 60
5.3.9 Actual vs Forecasted medical light demand . . . . . . . . . . . . 60



vi LIST OF FIGURES

5.3.10 Light consumption staff house 1 forecasting . . . . . . . . . . . . 62
5.3.11 Light consumption staff house 2 forecasting . . . . . . . . . . . . 63
5.3.12 Light consumption staff house 3 forecasting . . . . . . . . . . . . 64
5.3.13 Fence Light consumption forecasting . . . . . . . . . . . . . . . . 65
5.3.14 Guardian Shelter consumption forecasting . . . . . . . . . . . . . 66
5.3.15 Medical light socket forecasting . . . . . . . . . . . . . . . . . . . 67
5.3.16 Staff socket 3 consumption forecasting . . . . . . . . . . . . . . . 68
5.3.17 Guardian shelter socket consumption forecasting . . . . . . . . . 69
5.3.18 Hourly updated forecast Chiwoza medical light . . . . . . . . . . 70
5.4.1 Daily irradiance Chiwoza . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Monthly irradiance Chiwoza 2020 . . . . . . . . . . . . . . . . . 72
5.4.3 Yield vs irradiance September 2023 . . . . . . . . . . . . . . . . 73
5.5.1 Forecasted vs estimated potential production . . . . . . . . . . . 74
5.5.2 Forecasted vs estimated potential production hourly update . . . 75
5.6.1 Sketch J3 and J4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Control System architecture flowchart . . . . . . . . . . . . . . . 86
6.1.2 Proposed control system block chart . . . . . . . . . . . . . . . . 87
6.1.3 Current control system block chart . . . . . . . . . . . . . . . . . 88
6.2.1 Battery module block diagram . . . . . . . . . . . . . . . . . . . 88
6.3.1 Load forecaster block diagram . . . . . . . . . . . . . . . . . . . 89
6.4.1 Production forecaster block diagram . . . . . . . . . . . . . . . . 89

7.1.1 Total daily consumption Chiwoza 20231201-20240115 . . . . . . 94
7.1.2 Theoretical max production Chiwoza 20231207-2024015 . . . . . 95
7.3.1 Power flow current control system . . . . . . . . . . . . . . . . . 96
7.3.2 Power flow proposed control system 1 . . . . . . . . . . . . . . . 97
7.3.3 Power flow proposed control system 2 . . . . . . . . . . . . . . . 98
7.3.4 Power flow proposed control system 2 perfect demand estimation 99
7.3.5 Unmet demand current control system . . . . . . . . . . . . . . . 100
7.3.6 Unmet demand proposed control system 1 . . . . . . . . . . . . . 100
7.3.7 Unmet demand proposed control system 2 . . . . . . . . . . . . . 101
7.3.8 Unmet demand proposed control system 2 perfect R . . . . . . . 102
7.3.9 Unmet demand portion current control system . . . . . . . . . . 103
7.3.10 Unmet demand portion proposed control system 1 . . . . . . . . 104
7.3.11 Unmet demand portion proposed control system 2 . . . . . . . . 105
7.3.12 Unmet demand portion proposed control system 2 perfect R . . . 106
7.3.13 Battery results current control system . . . . . . . . . . . . . . . 107
7.3.14 Battery results proposed control system 1 . . . . . . . . . . . . . 108
7.3.15 Battery results proposed control system 2 . . . . . . . . . . . . . 109
7.3.16 Battery results proposed control system 2 perfect R . . . . . . . 110
7.3.17 Flexible load deviation current control system . . . . . . . . . . . 111
7.3.18 Flexible load deviation proposed control system 1 . . . . . . . . . 112
7.3.19 Flexible load deviation proposed control system 2 . . . . . . . . . 113
7.3.20 Flexible load deviation proposed control system 2 perfect R . . . 114
7.3.21 Potential and utilized production current control system . . . . . 115
7.3.22 Potential and utilized production proposed control system 1 . . . 116
7.3.23 Potential and utilized production proposed control system 2 . . . 117



7.3.24 Potential and utilized production proposed control system 2 per-
fect R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.25 Critical Load Reliability . . . . . . . . . . . . . . . . . . . . . . . 119

List of Tables

4.1.1 Chiwoza PV-parameters . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Chiwoza Charge Controller parameters . . . . . . . . . . . . . . . . 23
4.1.3 Chiwoza battery parameters . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Chiwoza inverter parameters . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 Loads at Chiwoza . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.6 Measurement devices . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Control System Specifications . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Connected loads control attributes . . . . . . . . . . . . . . . . . . 49
5.2.2 Circuits control attributes . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Flexible Loads energy characteristics . . . . . . . . . . . . . . . . . 50
5.3.1 Average MAE persistence models . . . . . . . . . . . . . . . . . . . 54
5.3.2 Dicker-Fuller test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.3 ARIMA candidates medical light demand Chiwoza . . . . . . . . . 56
5.3.4 Average MAE ARIMA candidates and persistence model medical

light demand Chiwoza . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.5 Chiwoza demand forecasting results . . . . . . . . . . . . . . . . . . 61

7.3.1 Simulation results - Load . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.2 Simulation results - Battery . . . . . . . . . . . . . . . . . . . . . . 98

B.1 User survey- Participating sites . . . . . . . . . . . . . . . . . . . . 135
B.2 User survey- overall system . . . . . . . . . . . . . . . . . . . . . . . 136
B.3 User survey- load Abbreviations . . . . . . . . . . . . . . . . . . . . 137
B.4 User survey- Connected loads . . . . . . . . . . . . . . . . . . . . . 138
B.5 User survey- Load prioritization daytime . . . . . . . . . . . . . . . 139
B.6 User survey- Load prioritization nighttime . . . . . . . . . . . . . . 140
B.7 User survey- Forced choice . . . . . . . . . . . . . . . . . . . . . . . 141
B.8 User survey- control acceptability and understanding . . . . . . . . 142

vii



ABBREVIATIONS

List of all abbreviations in alphabetic order:

• AC Alternating Current

• ACF Auto-Correlative Function

• ADF Augmented Dicker-Fuller

• ANN Artificial Neural Network

• ARIMA Auto Regressive

• ARIMA Auto Regressive Integrated Moving Average

• ASAI Average Service Availability Index

• CC Charge Controller

• DCP Direct Current

• DCP Differ Community Power

• DHI Direct Horizontal Irradiance

• DNI Direct Normal Irradiance

• DOD Depth of Discharge

• DSM Demand Side Management

• EMS Energy Management System

• EPC Engineering Procurement Construction

• FSM Finite State Machine

• GIS Geographic Information System

• GTI Global Tilted Irradiance

• Inv Inverter

• KPI Key Performance Indicator

viii



LIST OF TABLES ix

• LCOE Levelized Cost of Energy

• MA Moving Average

• MAE Mean Average Error

• MAPE Mean Average Percentage Error

• MPPT Maximum Power Point Tracking

• NCA Norwegian Church Aid

• NTNU Norwegian University of Science and Technology

• O&M Operation and Monitoring

• PACF Partial Auto-Correlative Function

• PAR Peak-to-Average Ratio

• PV Photovoltaic

• PVGIS Photovoltaic Geographic Information System

• RMSE Root Mean Square Error

• RTH Receding Time Horizon

• SAIFI System Average Interruption Duration Index

• SAIFI System Average Interruption Frequency Index

• SARIMA Seasonal Auto-Regressive Integrated Moving Average

• SDG Sustainable Development Goals

• SOC State of Charge

• STC Standard Testing Condition

• UN United Nations

• UNICEF United Nations International Children’s Emergency Fund

• USAID United States Agency for International Development

• WFP World Food Program





CHAPTER

ONE

INTRODUCTION

1.1 Background
In 2015, the United Nations (UN) proposed and adopted the 17 Sustainable De-
velopment Goals (SDG) in the 2030 Agenda for Sustainable Development[1] as a
succession to the former Millennium Development Goals. Of these, SDG number
7 is about the availability of affordable and clean energy for all [2]. While the de-
veloped world is looking to replace its current energy supply with cleaner sources,
energy, much less clean energy, remains unavailable for large parts of the develop-
ing world. This problem is especially acute in Africa. According to the UN report
on the SDGs from 2023, 675 million people live without access to electricity, most
of which in located in Sub-Saharan Africa.[3] Many of these live in rural commu-
nities where the regional electricity grid is either unreliable or unreachable. The
problem of electrifying these communities, powering and extending the reach of
vital services in both health and education, is known as last-mile-electrification.

Localised, small-scale grid networks using renewable resources have been pro-
posed and developed in several locations where a grid connection is techno-economically
infeasible. This is especially relevant in Africa with its abundant solar resources,
but lack of infrastructure.[4] These networks may range from the larger microgrids
to the smaller nanogrids depending on the size of the service it is providing. Com-
mon for all the solutions is that they provide a self-sustaining system, meaning it
can operate without being connected to the larger grid.

The company Differ Community Power (DCP) is a Norwegian private com-
pany looking to develop the technologies and business models to deploy micro-
grids across rural communities mostly located in rural Sub-Saharan Africa. DCP
already have more than 100 installations in operation across 8 different countries.
The installations are often mounted to support some social infrastructure like
health stations, vaccine dispensaries or schools with electricity. The installations
are largely funded by multilateral or bilateral organisations and foundations such
as UN, WFP, USAID etc. with the recipient government paying a smaller part.

In charity and development, it is generally known that it is easier to receive
grants to install systems than to operate systems. This is because operation

1
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requires larger overhead spending, something organisations and donors loathe.
After all, low overhead spending has been perceived as a key indicator of an
organisation’s effectiveness.[5] Companies can therefore be reluctant to provide
longer term operation of systems. This is unfortunate for several reasons. First,
the competence a company could gain from assessing and evaluating over a longer
period is lost. This competence could be used to better operations to offer better
products for both the end-user and the customer. Secondly, a longer contract
offers the end-user reliability and consistency over a longer period. Lastly, longer
contracts create a sense of ownership and facilitate mutual information sharing
between user and supplier. This incentivizes the training of the end-user to be
able to perform maintenance and repair of the installations. The downsides of the
neglect of operations and training have been clear to DCP when installing new
systems. Frequently they have arrived at sites with systems already installed, but
these are either broken or incomplete.

DCP offers a different approach with a complete package that includes both the
Engineering, Procurement and Construction (EPC) of the system and a long-term
Operation and Monitoring (O&M). Already in place at their sites are systems to
monitor the installations. What is lacking, and is of keen interest for DCP to
develop, is a framework to analyse and act on, i.e. control, the systems to achieve
improved operation on key indicators. This thesis delves into all these points: the
analytics of the systems, how they can be controlled for better operation, and
what those key indicators should be.

1.2 Motivation
There are several stake-holders connected to a site, such as end-users, customers
and the company DCP itself. Each of these are concerned with different parts of
the operation. In this thesis, a series of Key Performance Indicators (KPIs) are
developed to capture the different interests of the stakeholders. The motivation
behind the control system is then to improve the operation with regard to the
KPIs. This translates into higher system reliability and lifetime. Something that
is of keen interest to all stakeholders.

DCP wants to increase the amount of installations in its portfolio. The cost
and time required to perform O&M on the installations increase with the amount
of sites. Hence it becomes important to automatize as much as possible. An au-
tomated control system aims to fulfil 4 main motivations.

1. Load prioritization - Some loads are critical to fulfilling the purpose of
the site. For instance, medical equipment is critical to fulfil the purpose of a
health site. These are generally deemed as more important by all stakehold-
ers. Currently, these loads are not prioritized, neither in their immediate
nor future demand. This means that nothing is stopping less important
load from occupying all inverter capacity, or draining the battery so that a
critical load cannot run. This is damaging for the end-users because vital
services can be unavailable and unreliable. It is damaging for DCP because
they cannot guarantee to deliver reliable operation of critical load. And it is
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damaging for the customer because they are not getting the value in terms
of human development for their investment.

2. Extend lifetime - As the current control system is not controlling the
operation effectively, the electrical system is running in a way which produces
unnecessary degradation to various components. Certain components, like
batteries, are expensive and prone to damage by unhealthy usage. If one
could extend the lifetime of the battery, by improving the operation with
regard to its health, it could mean a cost reduction for the long-term O&M-
contract.

3. Enabling additional loads - Because O&M is costly, DCP is exploring the
possibility of offsetting some of that cost by installing additional revenue-
generating loads. Examples of these can be rental portable batteries, a solar
maize mill or refrigerated storage. The goal of these loads is to provide more
streams of income for DCP so that the price of O&M can be lowered. A
control system is identified as a key enabler of such loads because the loads
cannot run at the cost of the loads supporting the primary purpose of the
installation. A control system could in theory decide to run loads only when
surplus power is available.

4. System sizing - Be gaining more insight and the ability to influence sys-
tem operation, the hope is that this could translate into a more tailored
installation size. (Mehra, V. et al., 2018) provides a function relating the
cost of system unavailability to the cost of various energy sources.[6] They
find that a control system that can reduce the unavailability of critical loads
can justify a lower installed battery and photovoltaic(PV)-capacity, reducing
the levelized cost of energy (LCOE). Most of DCPs sites are today oversized
with regards to production, meaning they most days consume far less energy
than the systems could theoretically produce. If one could reduce the system
size while keeping reliability and availability above an acceptable level, the
cost of the installation could be reduced for the customer. Alternatively, one
could provide more services for the end-users, enhancing the value provided
by the site.

The process of increasing the amount of loads is already happening, both from
the top-down, with the customer donating equipment to support the site’s pur-
pose, or from bottom-up, by end-users such as staff buying electronic devices for
their daily life. Increased access to energy creates a bigger energy demand. The
challenges listed above of system sizing, prioritization and lifetime are only going
to become more and more pressing. This thesis arrives at an opportune moment.

Provided here is an attempt to design a solution satisfying the issues outlined
in the motivation. Specifically this thesis will consider the site of Chiwoza, a small
rural health site located outside the Malawian capital of Lilongwe. The electrical
system supporting the operation at the site is studied an analysed. The electrical
consumption is analysed through a statistical study and by performing a user
survey. The production is studied through a physical model of its sole energy
source, a PV-module. The physical model relates the PV-module production
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with the solar irradiance expected at the site. Based on the analysis a statistical
forecasting method is designed to forecast the demand, while a physical model is
developed to forecast production. These are combined with a non-linear optimizer
to control the consumption and battery charging. The system is designed using a
set of historical data, and then tested by simulation using another, disjoint set of
historical data. The results from this simulation show an increase in reliability for
the critical load, together with better operation for battery health. This although
comes with the cost of a lower general reliability and lower system utilization
compared to the current control system.

1.3 Thesis structure
In the endeavour of creating a new control system, first, a survey of existing
research relevant to the problem is conducted. The literature survey includes
related works within Load analysis, Load Forecasting, Production Analysis, Pro-
duction forecasting and Energy Management Systems. The survey is found in
chapter 2. Some deductions and results are included in the proceeding chapter 3
to not congest the following chapters. The chapter contains theoretical results on
photovoltaic cells, forecasting and battery health used in the rest of the thesis.
The subsequent chapters concern the case at hand specifically. In chapter 4 the
current system is outlined, including both the electrical system and the current
control system. The following chapter 5 proposes a solution design, with the first
part giving the specifications for which the design is to be evaluated. This chapter
also includes the necessary analysis for the synthesis of the solution. In chap-
ter 6 the solution is implemented in a simulation environment using Matlab, with
chapter 7 showing the results of that simulation. These results, together with the
design are then evaluated in chapter 8. This chapter also contains suggestions for
future works related to the subject in this thesis. The final chapter 9 concludes
the work done for this thesis.

The main contributions of this thesis are:

• Propose a control system yielding improved operations for identified
KPIs, with the possibility to adjust the prioritization of the KPIs.

• A method for developing load forecasters using historic data.

• A proposed physical model for production forecasting.

• A system model and simulation allowing DCP to predict and evaluate
their operation.
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TWO

RELATED WORKS

The topic of microgrid control encompasses several related fields of research such
as energy control systems, load and production forecasting and system sizing. On
the specific topic of energy control systems for microgrids, studies vary in method-
ology, control level and in the systems considered. (Abhishek A. et al. 2020) out-
lines in a review paper how microgrid control is usually separated into a 3-layered
functionality-based hierarchy. The two initial levels, primary and secondary, work
within the microgrid itself to maintain voltage and power balances. The highest
level, tertiary, is used to optimize the operation of the grid based on cost, uti-
lization, prioritization etc. The term Energy Management System (EMS) is often
used interchangeably for the tertiary level. The implementation of the hierarchical
control into hardware can be both centralised and decentralised. This thesis will
consider tertiary control without concern for hardware implementation.[7]

The 2023 review paper by (Allwyn R.G. et al. 2023) explores different ap-
proaches to tertiary control based on the availability of grid connection and the
number of different energy sources connected. If multiple energy sources are con-
nected, such as a system consisting of both solar, wind, battery and grid con-
nection, the operation cost and characteristics of each source are important to
consider to achieve optimal operation. Although the site considered in this thesis
is only PV-powered, an optimal operation of several energy sources is still relevant
for the system considered in this thesis due to the operating cost of the battery.
The paper also explores the control from the demand side, known as demand side
management (DSM).[8]

DSM is the modification of consumption to improve the operation of the mi-
crogrid. In cases where the production sources are inflexible, such as the case
in this thesis, DSM is the only available method to shape operation. It is often
performed by implementing price mechanisms to incentivize consumers to shift
their consumption to periods more suitable for the microgrid operation[9] or by
introducing more energy efficient loads[10]. (Wang et al., 2021) however, argues
against the use of price control for DSM in impoverished communities because of
the lack of economic flexibility of the consumers. They propose a classification
algorithm to classify consumption based on severity and use targeted approaches
to guide consumers into more desirable behaviour. They do not, however, con-
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sider an automation of this guidance into a control system that could adjust load
depending on the system conditions.[4]

Of the DSM-methods found in the literature survey, most use a price mecha-
nism to influence behaviour, or the replacement of current loads with more energy-
efficient ones. Neither of these are relevant to this thesis which seeks to perform
active demand side management by controlling existing loads. The papers by (Ra-
jbhandari et al., 2022) and (Philipo et al., 2022) however, have a similar case as
in this thesis. (Rajbhandari et al., 2022) considers a rural microgrid in Nepal and
conducts a user survey to classify loads into three levels of priority for the user.
A function for user satisfaction based upon load allocation is then used both for
allocating energy the day ahead and in real-time. Their control system uses an
exhaustive search method to scan through all possible combinations of load and
the resulting value of the user satisfaction function. A rule-based method is used
to shed low-priority loads if their demand conflicts with the ability to provide for
higher-priority loads later and hence decrease user satisfaction. In their experi-
ence, the total amount of loads served is reduced, although the system can serve
more high-priority loads, leading to a higher user satisfaction score on their user
satisfaction function. The proposed control system solution illustrates an effective
and intuitive method to both control and analyse a system from the demand side.
However, there are issues with their design. An extensive search method across
all load combinations across the whole time-span will have a large and rapidly
increasing complexity. Furthermore, while their solution classifies loads based on
priority, other attributes, such as the ability to shift demand are not considered.
Loads, where the demand is flexible offer more control options. Neglecting this,
as done in their solution, might provide a sub-optimal solution.[11]

On the other hand, (Philipo et al., 2022) does include both the priority and
other key control characteristics in their load analysis of microgrids in East Africa.
The two key characteristics were defined to be the ability to shift demand in time,
(deferability), and interrupt a load after starting it, (interuptability). Their goal
was to perform load shifting and peak clipping to have the load curve fit better
the PV-production curve. This they achieved through an artificial neural net-
work algorithm that used the irradiance and expected demand curves as input
and produced a real-time updated scheduling of loads. The result was a decrease
in peak-demand and peak-to-average ratio (PAR) of 31.2% and 7.5% respectively.
The paper highlights the possible gains by classifying and controlling loads based
on more characteristics than just their priority. However, their solution did not
deal with a larger set of control objectives such as battery lifetime.[12]

When several energy sources are present, the problem of controlling these is
known in the literature as energy management. Common for microgrids, an EMS
is tasked with optimally combining a renewable and intermittent energy resource,
such as wind or solar, with a dispatchable resource such as a diesel generator or
grid. Both (Sadek SM. et al., 2020) and (Salazar A. et al., 2020) consider a micro-
grid system of this type in their papers, and aim to construct an EMS minimizing
fuel cost. In (Sadek SM. et al., 2020) a microgrid system consisting of both a
wind and PV-module together with a diesel generator is modelled based on both
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their active and reactive power. A non-linear optimization problem is constructed
aiming to minimize fuel cost, the cost of shedding loads and the cost of curtailing
renewable resources. They find an improvement in results when considering reac-
tive power as opposed to when not. While the non-linear optimisation problem
set-up is relevant, the scale and inclusion of reactive power is out of the scope of
this thesis.[13]

The paper by (Salazar A. et al., 2020) has a smaller system and range of ob-
jectives. They have also included a methodology for production forecasting. In
their study, they developed and compared the performance of a rule-based control
method with a non-linear optimization approach on a system with photovoltaic
power, batteries and a fuel-based generator to support a residential load. The con-
trol system combines an optimal energy management problem with a stochastic
formulation of the PV-production. The optimal energy problem is formulated as a
receding time horizon (RTH) non-linear optimization problem where the power to
and from the battery is the selection variable and fuel-based power generation is
minimized. The dynamic nature of PV-production is captured by a Markov model.
The optimization problem is solved by dynamic programming. Compared to the
rule-based control, the stochastic optimal energy management system managed to
decrease both generator usage and increase battery power availability.[14] Both
of these studies provide a relevant control method with their use of non-linear
optimization. The cases differ though from the one in this thesis, as both papers
include multiple sources of production.

Quite a few studies have looked at various methods for load forecasting in
microgrids. (Dutta et al., 2017) Used a simple persistence technique to forecast
both load and production in a microgrid. Their forecasts used the average of
several days prior as look-back time. In their experiment, they vary both the
look-back time and the forecast horizon. Their results showed a Mean Absolute
Percentage Error of 2.42% for the load forecasting with a look-back time of one
time-step. Their method was poor in responding to changing conditions, espe-
cially for weather-dependent power prediction.[15]

In a more complicated approach, (Zuleta-Elles et al, 2021) used and compared
a Auto Regressive Integrated Moving Average (ARIMA) model and a Artificial
Neural Network (ANN) model to forecast demand in a microgrid. They devel-
oped different ARIMA models for the various forecasting horizons, some also with
a seasonal component, turning it into a seasonal ARIMA (SARIMA) model. The
ANN model developed was a 3-layer model with 96 regressors, each representing
the load consumption within the past 24 hours, meaning 96 blocks of 15 minutes.
Over various forecast horizons, they compared the best ARIMA model to the ANN
model in terms of RMSE and MAE. Their results showed that the ANN model
outperformed the ARIMA on all prediction horizons except 12 hours ahead. [16]

There are several approaches to PV-production forecasting, including statisti-
cal, physical and machine learning. (Huang et al., 2021) did a comparative study
between a physical model and a neural net model that they developed. The phys-
ical consisted of an irradiance model based on the position of the sun, and the
solar panels modelled as a diode. They tested their model under both numerical
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weather predictions and with measured irradiance and temperature. When com-
paring the physical model to the neural net model, the physical model performed
worse when receiving just numerical weather predictions, but better when receiv-
ing irradiance- and temperature measurements.[17] Their method did however not
consider system losses, meaning energy lost within the system, which is a key
factor in reducing available production for PV-microgrids.

In the review paper from (Maghami et al., 2016) the authors identify several
loss factors including losses from shading, wiring and soiling. Of these, the authors
find that shading has the potential for the largest losses, ranging between 10-70%
in some studies. The problem of soiling is found to be dependent on the region,
where some regions, including sub-Saharan Africa, experience a high degree of
soiling due to high dust intensity. The effect of soiling on the production depends
on the angle and thickness of the dust layer, ranging from 1-26%.[18]

In the 2011 paper by (Chimtavee A. and Ketjoy, N, 2012) the authors perform
a case study on a PV-microgrid system in Thailand. Over a year, they measured
the irradiance and the energy produced by the PV-system. Their results showed
an average loss of 26.27% comparing the expected energy given measured irradi-
ance to the actual energy produced.[19]

From the literature study, the necessity of classifying loads both into their
importance and control characteristics, as done in (Philipo et al., 2022)[12], is
considered valuable input for the control system designed in this thesis. Similarly,
it builds upon the usage of a SARIMA-model as in (Zuleta-Elles et al, 2021)[16]
for load classification and the physical forecasting described by (Huang et al.,
2021)[17]. The physical model is modified based on the loss findings by (Chim-
tavee A. and Ketjoy, N, 2012)[19]. The receding time horizon optimization from
(Salazar A. et al., 2020)[14] is taken as inspiration for the optimizer in this thesis,
although the control objectives and options in their case differ from those in this
thesis.

The literature survey yielded no study on PV-microgrids without generators
or grid connection which combines load shaping and prioritization and battery
charge management. This thesis builds upon insight into load and production
analysis and forecasting, and energy management systems, and combines this into
a, to the best of the author’s knowledge, novel application.
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3.1 Photovoltaic cells and Irradiance
A photovoltaic (PV) cell is a component generating electricity from light by the
photovoltaic effect. A PV-cell, illustrated in figure 3.1.1 consists of two semi-
conductors, one with a surplus of electrons, the negative(N)-side, and one with a
deficit, the positive (P)-side. Between the two semi-conductors is an electric field.
Photons from sunlight energize the atoms on the N-side, freeing up an electron.
This electron then travels through the circuit to the P-side, creating an electric
current to be utilized by external loads.

The power produced by a PV-cell correlates with the power received from the
sunlight.[21] The power per area is known as irradiance and is measured in W/m2.
There are different types of solar irradiance including

• Global Tilted Irradiance(GTI) - The total irradiance received on a surface
with a given azimuth and slope.

• Direct Normal Irradiance(DNI) - The irradiance measured on a surface ele-
ment perpendicular to the sun’s direction. Excludes irradiance scattered by
the atmosphere. Dependent on weather and atmospheric conditions such as
cloud cover.

Figure 3.1.1: Illustration of the PV-effect. Figure from (Asdrubali, F. et al.
2019) [20]

9
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• Diffused Horizontal Irradiance(DHI) - The irradiance received on a surface
element from light scattered by the atmosphere. Just as DNI, dependent on
atmospheric conditions.

There are several methods for modelling the total irradiance(G) on a PV-panel
given the GTI, DNI, DHI and weather conditions. In the paper (Frederick, J. E.,
and H. D. Steele, 1995) the authors used the simple equation

G = f ⇤GDHI + (1� f) ⇤GGTI . (3.1)

Where f is the cloud cover, NDHI the DHI and NGTI the GTI at the time of
measurement.

3.2 Forecasting
Forecasting is the process of making future predictions based on present or past
information. Applied to microgrid control, this often means predicting the value
of future demand and production. To be able to make accurate forecasts for these
values is of crucial importance to effectively controlling the system.

There are several different approaches to time-series forecasting. Amongst
these are statistical and physical approaches.

3.2.1 Statistical approach

Statistical forecasting relies primarily on the historic values of a time-series to pre-
dict its future value. They assume an auto-regressive property, meaning that a
future value can partially be predicted based on past values.

A persistence model is the most direct implementation of this assumption. It
assumes that the current and historical conditions are similar to some future ones.
This is sometimes known as the naive approach and is mathematically expressed
in equation 3.2. The model can be extended into an average model by using the
average over the past number of days to estimate the future value, as done in
equation 3.3. For an average model, the key parameter to select is the look-back
period, meaning the amount of past terms to include in the calculation of the
future value. In equation 3.3 this is the k -parameter. Additionally, a weighting of
the different terms in the average model can be introduced to produce a weighted
persistence model. This, as shown in 3.4, will vary the impact of the different past
terms for the final forecast. While allowing more flexibility, this is significantly
more difficult to tune, as the weight vector will have equal length to the target
vector. It is possible to simplify this by defining the weight as a function.

x̂t+1 = xt (3.2)

x̂t+1 =
1

(t� k)

tX

i=k

xt, t > k > 0 (3.3)
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x̂t+1 =
1

(t� k)

tX

i=k

wixi, t > k > 0 (3.4)

An Auto-Regressive Integrated Moving Average (ARIMA) model is a more com-
plex statistical model and a commonly used framework for forecasting. It consists
of an Auto-Regressive model and a Moving-Average model, with an integrated
term.

An auto-regressive model predicts the future value of a variable from the histor-
ical values of the variable. It is the same as the weighted persistence model defined
above. It is often denoted as AR(p) where p represents the order of the model i.e.
how many past terms are included. Equation 3.5 expresses this mathematically.

A moving average model is most useful when a variable oscillates around some
average µ. It uses the average and the past deviation from the average to estimate
the variable. Similar to an AR-model, a moving average model can have different
orders and is denoted as MA(q) with a mathematical expression as seen in 3.6.

Lastly, the integrated term of the ARIMA is used if the original time-series
expression has non-stationary attributes. A stationary time-series has a time-
invariant mean and variance. There are different kinds of stationarity, such as
wide-sense stationarity, which allows for cyclic behaviour within a time-series as
long as the series is stationary across the period. Both the AR- and the MA model
require a stationary time-series to perform optimally. If the time-series itself is
not stationary, meaning that the mean or variance is time-variant, a differentiated
time-series with values expressed by equation 3.7 for either a 1. or 2. order
difference can be utilised to remove the non-stationary components. The order of
the differentiating term can be written as I(d). Together with the AR and MA
model, an ARIMA model of order p,d and q can be written as ARIMA(p,d,q).

xt =
pX

i=1

�ixt�i + ✏t (3.5)

xt = µ+
qX

i=1

✓i✏t�i + ✏t (3.6)

x0
t
= xt � xt�1(1.order)

x⇤
t
= x0

t
� x0

t�1(2.order) (3.7)

An ARIMA can be extended to account for seasonal components of a time-
series. Such a model is known as a seasonal ARIMA (SARIMA) model. In addition
p,d and q coefficients, the SARIMA has the additional P, D, Q and a seasonality
constant. Similarly to the coefficients for the regular ARIMA, these coefficients de-
fine how many terms are to be included for the AR, I and MA models respectively,
only that they are shifted backwards by the seasonality constant.

3.2.1.1 Model and parameter selection ARIMA

There are several methods for choosing the appropriate model and parameters for
an ARIMA model, one of the most common is the Box-Jenkings method. The
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Box-Jenkings method is a step-wise algorithm for choosing the best fit ARIMA-
model. The first step is model identification and selection. This means finding the
correct values for the ARIMA-parameters p,d,q,P,D,Q and s. A prerequisite for
selecting these parameters is to examine the seasonal and stationary behaviour of
the time-series.

The seasonal behaviour is often known a priori, but if not it can be inferred
through an ACF plot by examining the terms within a confidence interval. It is
the length of the period over which the pattern repeats itself. In our systems, we
know in advance that both demand and production follow a daily cyclic pattern.
This yields the seasonal parameter s.

Both the AR- and MA-model perform sub-optimally if the time-series exhibits
strong non-stationary behavior. If a series is wide-sense stationary, an ARMA
model is in theory sufficient for forecasting. Stationarity can be determined from
a time-series plot, but there are also tests developed. One of the test for station-
arity is the Augmented Dicker-Fuller -test (ADF-test).

The ADF-test test the null hypothesis that the unit root is part of the process’
characteristic equation. If the null hypothesis is accepted, it means that the unit
root is present, and the process is non-stationary. On the other hand, the null hy-
pothesis might be rejected. The test statistic DF obtained from the test indicates
how strongly the null hypothesis is rejected. If this is more negative than some
critical value, it indicates that the process is stationary. The result of this process
is the order of differentiating, the d -term. A key point regarding differentiating is
although it can achieve better stationarity, it may remove some of the information
from the time-series.

When the stationary and seasonal behaviour of the process is determined,
then the order of the AR and MA models can be obtained from the partial auto-
correlation function (PACF) and auto-correlation function respectively.[16]

The order of the auto-regressive model can be found in the partial auto-
correlation function. The PACF gives the direct correlation between a past term
xt�k and the target term xt removing any indirect effect through intermediate
terms xt�1, ..., xt�k+1. The order of the AR model only includes terms with a sta-
tistically significant direct effect on the target term. Its connection to the PACF
is therefore intuitive as the PACF will only show terms above a confidence interval
if they have a statistically significant effect on the target term. Hence its order
is equal to the amount of terms of the PACF before the PACF goes outside the
confidence interval. This will yield the p-term of the ARIMA-model.

The order of the moving average model, on the other hand, can be determined
from the auto-correlation function. The ACF gives the correlation between a past
term xt�k and the target term xt, including both the direct effect and the indirect
effect through intermediate terms. The connection between the ACF and the or-
der of the MA-model is less intuitive than that between the PACF and AR-model.
The following is an attempt to connect the two based on the method in [22]:
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Consider a MA(q) model as described by equation 3.6. Expanded, this will
look like

MA(q) : xt = µ+ ✓t�1✏t�1 + ...+ ✓t�q✏t�q + ✏t. (3.8)

The ACF gives the correlation between the target term and past terms. The
correlation between xt and xt�l can be written as

Corr[xt, xt�k] =
Cov[xt, xt�k]

�xt�xt�k

. (3.9)

Assuming a non-zero variance, the denominator of 3.9 will be some constant.
For selecting the order of the MA-model, we are interested in when the ACF is zero.
The denominator can therefore be neglected, and we are left with a proportional
equation as

Cov[xt, xt�k] = E[xtxt�k]� E[xt]E[xt�k]. (3.10)

The E[xt]-term can be expanded as

E[xt] = E[µ+ ✓t�1✏t�1 + . . .+ ✓t�q✏t�q + ✏t]

= E[µ] + ✓t�1E[✏t�1] + . . .+ ✓t�qE[✏t�q] + E[✏t]

= µ+ ✓t�1E[✏t�1] + . . .+ ✓t�qE[✏t�q] + E[✏t]. (3.11)

As the error of a stationary process is assumed to be unbiased, every term
involving E[✏] is therefore equal to zero. We are left with

E[xt] = µ. (3.12)

Equation 3.10 can therefor be written as

Cov[xt, xt�k] = E[xtxt�k]� µ2. (3.13)

The E[xtxt�k] is more complicated. Using the definition in 3.8, the product
xtxt�k can be written as

xtxt�k = (µ+ ✓t�1xt�1 + ...+ ✓t�qxt�q)(µ+ ✓t�kxt�k + ...+ ✓t�k�qxt�k�q)

= µ2 + µ(✓t�kxt�k + ...+ ✓t�k�qxt�k�q)

+ ✓t�1xt�1(µ+ ✓t�kxt�k + ...+ ✓t�k�qxt�k�q) + ...

+ ✓t�q�1xt�q�1(µ+ ✓t�kxt�k + ...+ ✓t�k�qxt�k�q). (3.14)

The µ2 from 3.13 and 3.14 will cancel each other out. From equation 3.14 we
are then left with three kinds of terms when inserted into 3.13: Either

I :µ✓t�rE[xt�r], r = 1, 2...q

II :✓t�r✓t�lE[xt�rxt�l], l 6= r

III :✓2
t�r

E[x2
t�r

]. (3.15)

Because the errors are independent of each other and unbiased, terms I and II
are equal to zero. The only terms that will not be equal to zero is the III terms,
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because that would imply zero variance. These terms will only appear if xt and
xt�k have overlapping terms. Going back to 3.13 we have that

Cov[xt, xt�k] 6= 0 () t� q  t� k =) k  q. (3.16)

This then means that from the ACF, the only way to get a non-zero value is
if the term is less than or equal to the order of the MA-model. Hence the q from
the MA-model may be determined from the ACF.

The terms for the seasonal component P,D and Q can by determined through
the same process as for the non-seasonal, but looking at the behaviour one period
back. The ACF and PACF will often have a spike at a lag of one period, this
may then be included as the order of the seasonal model. If the model is trending
between seasons, a seasonal differtiating term of order D may be included.

3.2.2 Physical approach
Physical models on the other hand are built on the physics of the system. The
forecast is therefore based on the system dynamics and external input. In this
thesis, a physical model is used to predict power production from the solar panels
based on solar irradiance. Therefore, an outline of the relationship between solar
irradiance and power is included here.

Irradiance is measured in power over area (W/m2). The irradiance cast onto
the panels depends on the location, orientation and angle of the panels, in addition
to the weather conditions. The amount of the irradiance that is converted to
electrical power is dependent on total panel size and efficiency, this is given by
3.17. The efficiency ⌘ is often found during the testing of the panels. It is expressed
in 3.18 where PSTC and GSTC represent the power and irradiance under standard
testing conditions (STC) respectively. Together, that gives the complete equation
for the power given by each panel seen in 3.19.

P = ⌘AG (3.17)

⌘ =
PSTC

AGSTC

(3.18)

P =
PSTC

GSTC

G (3.19)

Specifically for the case considered in this thesis, we want to obtain a predicted
time-series of the production for some time into the future.

3.2.3 Error metrics for forecasting
It is crucial to be able to evaluate a forecast, to assess the suitability of a forecaster.
This is in general done by comparing the forecasted time-series F to the actual
time-series A. The measurement error "i at time-step i is defined in equation 3.20.
One could find the error for all measurements and combine them into a vector.
This will yield an error vector equal in size to the A and F . It is common to
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reduce the errors for all samples into a single error statistic. The most common
of these are Root Mean Square Error (RMSE), Mean Average Error (MAE) and
Mean Average Percentage Error (MAPE). The difference between these in their
intuition and accuracy requires an informed decision about the choice of error
metrics.

"i = Ai � Fi (3.20)

MAPE, shown in equation 3.23, is perhaps the most intuitive, as the percent-
age error will follow the scale of the measurements. It has however a few major
drawbacks.[23] As discussed in (Makridakis, S., 1993), MAPE is poorly suited
to compare different models as it will systematically bias towards forecasts lower
than the actual time-series. This is because it punishes over-estimates harsher
than under-estimates. Consider a situation with an actual timeseries A and a
forecasted series F with A1 = 1, A2 = 3 and F1 = F2 = 2. The absolute percent-
age error between A1 and F1 is |A1�F1|

A1
⇤100% = 100%, between A2 and F2 however

it is |A2�F2|
A2
⇤100% = 33.3%[24]. This shows that the same absolute deviance from

the actual time-series receives a higher MAPE if the forecast is above, than if it is
below the actual value. There have been efforts to avoid this bias, however then
at the loss of the intuitive appeal of the method.

Both RMSE and MAE, shown in equation 3.21 and 3.22 respectively are better
suited because they avoid this bias. These methods are fairly similar to each other,
however, the MAE has some advantages making it more appropriate. First of all,
it is arguably more intuitive than the RMSE. Secondly, it varies proportionally
with the absolute error, while the RMSE does not as it also varies with the root
of the number of errors[25].

RMSE =

vuut 1

n

nX

i=1

("i)2 (3.21)

MAE =
1

n

nX

i=1

|"i| (3.22)

MAPE =
1

n

nX

i=1

����
"i
Ai

����⇥ 100 (3.23)

3.3 Reliability and System Sizing
Reliability describes the ability of a system to function under stated conditions.
There are several methods for measuring reliability over some period of time,
amongst these are:

• System Average Interruption Frequency Index (SAIFI) - The average number
of interruptions that occurred per system.

• System Average Interruption Duration Index (SAIDI) - The length of inter-
ruptions per system.
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• Average Service Availability Index (ASAI) - The average unavailability of
supply from a system, or parts of a system, compared to the total demand.

If the loads are stratified based on priority, the reliability can be subdivided
into reliability for types of loads such as critical reliability for critical loads, non-
critical reliability for non-critical loads and total reliability for all loads. In mi-
crogrid systems, the reliability is dependent on the relationship between energy
production, storage and consumption. In (Mehra, V. et al., 2018) the reliability
of a PV-microgrid system is described by a function of installed PV and Battery
capacity visualised as in Figure 3.3.1 where the function values are found through
simulation.[6].

Such a function allows for a structured approach to system sizing, for instance
through optimization. The authors in (Mehra, V. et al., 2018) propose an opti-
mization formulation minimizing the installation cost while preserving reliability
above a certain threshold. The optimization problem is shown in equation 3.24
where c, ck and cl are the total cost, cost of Battery capacity and PV-capacity re-
spectively. B is the battery capacity while PV is the PV is the PV-capacity. The
TR represents the total reliability and the CR the critical load reliability, here set
to be no less than 90% and 99% respectively.(Mehra, V. et al., 2018, p.81)[6]

Figure 3.3.1: Critical load reliability plot from (Mehra, V. et al., 2018 p.82)[6].
Reliability is expressed here as a function of PV and Battery Capacity, taking
values from 0 to 1.
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min
c

c = ck ⇤B + cl ⇤ PV

s.t. TR � 90%

CR � 99% (3.24)

3.4 Battery Health
Batteries are complex electrochemical components storing energy. The total charge
of a battery is described in 3.25 as how low one can drain the battery, i.e. Depth
of Discharge (DOD), multiplied by the number of cycles a battery is expected to
last. Batteries are therefore components with a natural lifetime, which will grad-
ually decline with usage. There are however additional effects that may accelerate
the deterioration more rapidly than the natural usage. As batteries are amongst
the most expensive equipment of a microgrid, it is of great value to control the
microgrid in such a way as to not decrease the expected lifetime beyond its natural
degradation.

Etot = DOD ⇤ ncycles (3.25)

Two terms important for understanding batteries are

• State of Charge (SOC) - SOC is a number usually represented by a
percentage from 0-100%. It shows how much capacity remains in the battery
as a portion of its capacity at full state of charge.

• Charge/Discharge-rate (C-rate) - The power passed to/from a battery is
dependent on the battery voltage and the current passed or drained to/from
the battery. As voltage should remain relatively stable, the charge/discharge
current specifies the charge/discharge rate. The discharge current is often
normalised against the battery capacity using C-rate.[26]. "The C-rate is a
measure of the rate at which a battery is discharged relative to its maximum
capacity" (MIT Electric Vehicle Team, 2008, p.1)[26] For instance, a battery
of capacity 10Ah will have a C-rate of 1 if 10Amps is being discharged. If
5Amps is being discharged, then the C-rate would be 0.5C. A fully charged
battery discharging at 0.2C would be fully discharged within 5 hours. The
battery voltage of the batteries in this thesis is stable. Hence the C-rate will
be used interchangeably with the rate of power charged/discharged from the
battery.

The effects leading to battery deterioration, or ageing, can be broadly classified
as relating to either

• Calendar ageing - The deterioration occurring under potentiostatic hold, i.e.
when low to no current is passing through the batteries. These effects are
independent of the cycling behavior of the batteries, but influenced by factors
such as the State of Charge and temperature during the potentiostatic hold.
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Figure 3.4.1: Battery Calendar Aging from (E. Sarasketa-Zabala et al., 2014
p.53)[28]. The y-axis shows the capacity loss Qloss as a percentage of the battery
capacity.

• Cycle ageing - The deterioration inflicted during the active usage of the
batteries. Depends on the Depth of Discharge, charge/discharge-rate. These
effects may be further influenced by external factors such as temperature.

In two papers, (E. Sarasketa-Zabala et al., 2014) and (M. Naumann et al.,2018),
lithium-ion batteries were stored under different combinations of temperature and
SOC. In an experimental setup with several batteries at constant temperatures
but different SOCs, their findings implied a stronger decrease in battery capac-
ity for the batteries stored at a high SOC. [27] In 3.4.1 the experimental results
from (E. Sarasketa-Zabala et al., 2014) plotted. As a function of time, the plot
shows that the capacity loss is greater when the battery is stored at a high SOC
compared to other batteries at the same temperature.[28] This indicates that cal-
endar ageing can be reduced by reducing the time a battery spends at a high SOC.

The same authors later published two papers considering cycle ageing. In a
similar setup, lithium-ion batteries were cycled at different DOD, charge/discharge
rates around different SOC points. All under varying temperatures. The results,
where the ones from (M. Naumann et al.,2020) is shown in 3.4.2 show that the
time-wise decrease in the discharge capacity is greater at high charge/discharge
rates when the other conditions are kept equal. The best result in terms of time-
wise degradation was in their results at 0.2C.[30][29].

The studies into battery cycle and calendar ageing therefore suggest that the
control system should aim to

• Keep charge/discharge low - Limit the current in and out of the battery to
limit cycle ageing. Preferably at no higher than 0.2C.

• Avoid potentiostatic hold at high SOC - When the battery is not used, it
should not rest at a high SOC because of the effect on calendar ageing.
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Figure 3.4.2: Battery Cycle Aging from (M. Naumann et al.,2020 p.6)[29].The
y-axis shows the relative discharge capacity Cdisch.
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CHAPTER

FOUR

SYSTEM OVERVIEW

4.1 System overview
DCP operates more than a hundred sites across the developing world. The sites
serve different needs and hence have different-sized equipment. Some of the sites
are islanded meaning that they do not have a grid connection, while others are
connected to a larger grid. Grid-connected sites could feasibly become candidates
for a control system in the future. The first pilot however, and hence this thesis,
will only consider islanded systems. Specifically, the solution and analysis of this
thesis will focus on Chiwoza which is a medium-scale system supporting a health
site in rural Malawi.

Chiwoza has a microgrid topology as shown in figure 4.1.1. The individual
components are

• PV-modules - The system’s only source of power production is through the
photovoltaic effect outlined in section 3.1. The core component of the mod-
ule is the PV-panel consisting of several smaller PV-cells. As shown in
equation 3.18, the PV-panel has an efficiency ⌘ based on its area A and test
conditions PSTC and GSTC . Several PV-panels may be connected in series as
in 4.1.2a adding their voltage and forming a PV-string. Several PV-strings
may form a parallel configuration known as a PV-array, shown in 4.1.2b,
adding together their current. Each PV-array has a charge controller con-
trolling the production. Lastly, several PV-arrays may again be connected
in parallel to form the PV-module shown in 4.1.1. The goal of the configura-
tion is to achieve the highest power without breaking the constraints set by
other equipment such as the charge controller. The PV-modules are ground
mounted at an angle, ⇢, with an orientation described by the azimuth, ↵,
determining the amount, type and timing of irradiance reflected onto the
modules. These, and the other relevant parameters for the PV-panels at
Chiwoza are listed in Table 4.1.1.

• Charge Controller - Between the PV-array and DC-bus there is the charge
controller. The DC-bus requires a certain voltage to charge the battery
and connect to the inverter. This may vary somewhat based on the in-
verter demand and battery state of charge. Furthermore, the power from

21
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the PV-array varies with the solar conditions. The charge controller needs
to convert the voltage from the PV-panels to the voltage of the DC-bus. A
simple charge controller force the PV-array to operate at the DC-bus volt-
age. As PV-panels have a rated power curve, this is inefficient and leads to
large losses of potential power. More modern Maximum Power Point Track-
ing (MPPT) controllers finds and set the optimum voltage for the PV-array,
allowing for the maximal power output. This is then converted into the
voltage required for the DC-bus.[31] The output from the charge controller
will be limited by the maximum allowed voltage on the DC-Bus,V MAX

D
C,

and the maximum current the charge controller can output IMAX

CC
. As men-

tioned earlier, if there are multiple charge controllers,nCC , the currents are
added together increasing the total power, PMAX

CC
, from the PV-module. The

parameters for the charge controllers at Chiwoza is listed in Table 4.1.2.

• Battery module - The battery module stores the power produced by the
PV-modules. The batteries used for DCPs systems are mostly lithium iron
phosphate (LiFePo4) batteries, with a few exceptions using lead-acid bat-
teries. Key parameters for the battery are the energy capacity, E, which
expresses how much charge a battery can store at full capacity, and the min
SOC which describes at which SOC level the battery is no longer supplying.
For this thesis, the maximum charge and discharge power,PB which tells how
much current can be continuously delivered at the nominal voltage is also of
interest and found for Chiwoza in Table 4.1.3.

• DC-Bus - The DC-bus connects the charge controller, the battery and the
inverter. Its voltage, shown as V MAX

DC
in Table 4.1.2 should remain stable.

• DC/AC inverter - The inverter separates the DC and AC sides of the mi-
crogrid. It converts the power from the DC side to supply the AC power
needed for the loads at the AC side. The inverter has a maximum power
limit, invmax, that constrains the amount of power the DC side can supply.
The inverter capacity and efficiency for Chiwoza are found in table 4.1.4.

• Load - The loads are all connected equipment and lighting consuming the
power. All loads are on the AC-side of the inverter. The various loads that
are connected at Chiwoza is found in Table 4.1.5. These were found through
the user survey described in subsection 5.2.2. There are loads supporting
the purpose of the site, these are known as Purpose loads, or in the case
of Chiwoza, Medical Loads. These include medical equipment, lighting etc.
Other loads provide services besides the site’s purpose for staff and visitors at
the site. These might be sockets open for phone charging, cooking appliances
etc. There are also other loads that support the site’s purpose indirectly.
The water pump and heater are examples of these.

The system installed at the site can be described as a hybrid, islanded microgrid
with AC-load. Hybrid because the PV- and battery module can be seen as a
hybrid power source. It is important to note that the parameters and models used
in this thesis are greatly simplified.
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Figure 4.1.1: Microgrid topology

PSTC [W ] GSTC [W/m2] npanels ⇢ ↵
375 1000 25 20 180

Table 4.1.1: Chiwoza PV-parameters

V MAX

DC
[V ] IMAX

CC
[Am] nCC PMAX

CC
[W ] Peak Efficiency

48 60 2 5760 96%

Table 4.1.2: Chiwoza Charge Controller parameters. The maximum power,
PMAX

CC
is for the two charge controllers combined.

E[kWh] PB,Max[kW ] Min SOC
7.5 7.5 5%

Table 4.1.3: Chiwoza battery parameters.

PMAX [kV A] Peak Efficiency
5 99%

Table 4.1.4: Chiwoza inverter parameters.

4.1.1 Measurement and Data logging
Production and consumption measurements are critical for the effective control
and operation of all power systems, including microgrids. All of DCP sites are
equipped with several measurement and data logging devices. These may be
grouped as in table 4.1.6, which shows what each device measures, and what that
measurement is used for to estimate internally in the device.

The measurement from the inverter gives a broad overview of the power flow
in the system. On the demand side, this can be further examined by the meters,
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(a) PV-panels connected in serial forming a PV-string with increased voltage. VTOT = V1 +
V2 + V3

(b) PV-strings connected in parallel forming a PV-array with increased current. iTOT = i1 + i2

Figure 4.1.2: PV-configurations

which are mounted on every circuit. A meter measures the consumption of a load
within a time frame. However, as already mentioned, several loads may be con-
nected to the same circuit. The power measurement is only from the circuit, so
it is not immediately possible to identify which loads are running based on the
consumption measured.

Data has been gathered from the site starting from the installation date of the
systems. As the installation date varies between the systems, there are different
amounts of historical data for each system. Furthermore, data gathering and
operations in developing countries are prone to connectivity issues and tampering
with equipment. This has in some instances yielded large gaps or improbable
data. There have also been cases of mislabeling of meters, so that meters record
consumption for another circuit than the one it is actually to. These issues may
be grouped as data integrity issues. Low data integrity complicates the analytics
and control. Circuits with no recent data in the last 3 months are assumed to be
disconnected and hence disregarded in this thesis. This includes Staff Sockets 1
and Staff Sockets 2.
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Load Name Circuit(s) Group Abbreviation
Light (Medical) Medical Light P1
Phone/Laptop Charging
(Medical)

Staff Socket 3 P2

Oxygen Concentrator Medical Socket P3
HIV diagnosis equipment Medical Socket P3
Sterilizer Medical Socket P3
Microscope Medical Socket P3
Refrigerator(Medical) Medical Socket P5
Light (Staff) Staff Light 1-3, Guardian

Shelter Light, Fence Light
S1

Phone/Laptop Charging Staff Socket 3, Guardian
Shelter Socket

S2

Entertainment (TV,Radio) Staff Socket 3, Guardian
Shelter Socket

S3

Refrigeration (Staff) Staff Socket 3 S4
Cooking appliances Staff Socket 3 S5
Water Heater Water Heater W1
Water Pump Water Pump W2
Rental Batteries⇤ Rental Battery H1
Solar Maize Mill⇤ Solar Mill H2

Table 4.1.5: Connected Loads Chiwoza with their circuit and grouping based on
Table B.3. The loads marked by ⇤ are not connected, but planned to be connected
as additional revenue-generating loads

Where Measurement Estimates Sample resolution
Battery Voltage SOC minutes

Smart Meter Power Consumption 15 minutes - 1 hour
Inverter Power Production minutes

Table 4.1.6: Measurement devices at the sites

4.2 Control System currently in place
As the performance of the proposed solution will be compared against the current
control system, an outline of the current control measures is a prerequisite. From
the hardware manufacturer, two key control features are included to avoid damage
to the hardware. These are

• Inverter overload protection - An inverter have a max power capacity. This
can be exceeded for a limited amount of time, but if it is exceeded for a
prolonged duration, the inverter will shut down to avoid damage.

• Battery discharge protection - As batteries might be damaged by a complete
discharge due to a high voltage drop, the battery will stop supplying power
once it reaches about 5% State of Charge

In addition to this, a battery health measure is implemented by DCP to avoid
calendar degradation by prolonged periods at a high state of charge. The control
measure, shown as a Finite State Machine (FSM) in figure 4.2.1, blocks charging
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above 90% SOC early in the day before allowing it to fully charge up during the
afternoon. The benefits of this control are consistent with the theory from 3.4.
The effects of this are shown in figure 4.2.2.

This control measure does not consider future solar production or demand but
is purely a function of the time of day. Similarly, certain high-power loads, such
as the water pump and water heater are given specific time slots to run, which are
all placed during the day when there is normal PV-production. This is however
also a purely rule-based control based solely on the time of day.

Figure 4.2.1: Battery charge control measure currently in place as a FSM.

Figure 4.2.2: Battery charge control measure currently in place. The picture
is taken from DCPs monitoring system showing the operation on December 25th
2023.

4.2.1 Weaknesses with current control system
The two control actions taken by DCP regarding battery charging and time-control
of high-power loads are reasonable during normal conditions. The inflexibility
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Figure 4.2.3: Screenshot taken from DCPs monitoring platform. The yellow
columns show the production and the red the consumption during each hour. The
battery SOC is the blue line.

concerning production and demand conditions, however, makes the current control
system ill-equipped for days with poor production or high demand. Figure 4.2.3
highlights this issue. The battery charge control policy described earlier curtails
the charging of the battery after reaching 90% early in the day, in expectation
of being able to charge to remaining part during the afternoon. However, poor
production during the afternoon inhibits the charging of the battery. As the
battery does not reach its maximum state of charge, it is emptied early during the
night.

At sites with low demand, there is an opposite problem. In section 3.4 it was
described how cycling the battery at a high state of charge was damaging to the
battery. Some sites do not consume more than about 10% of the battery capacity
during nighttime. With the current control system, this will result in a battery
cycle between 90-100% SOC. In figure 4.2.4, this pattern is shown for the site of
Chisuwi, which has a low daily consumption. A more ideal charge cycle would
either cycle between two lower values every day, or only charge a few times a
week. The two weaknesses of the current control system can be summarized as an
inability to adapt to changing conditions and different sites.
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Figure 4.2.4: Screenshot taken from DCPs monitoring platform. The yellow
columns show the production and the red the consumption during each hour. The
battery SOC is the blue line.
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5.1 Specification

The goal of the thesis is to design, propose and evaluate a new control system for
the site of Chiwoza. The goal of this section is to specify the stakeholders and
criteria of evaluation for such a control system.

The control system performance is evaluated on a set of key performance indi-
cators (KPIs). The scoring of the control system on these is compared against the
current control system. This will form the quantitative basis for the evaluation of
the control system.

The KPIs were developed through a thorough process considering all of the
stakeholders connected to a system. These stakeholders, listed in table 5.1.1, have
different interests and considerations, this is reflected in the KPIs shown in table
5.1.2.

Stakeholder Description Examples Main interests
End-users The final users of the appli-

ances powered by the solar
systems

Staff, fam-
ily of staff,
patients
etc.

The availability of load on
demand

Customer The contract partner pay-
ing for the installation and
monitoring of the systems

UNICEF,
USAID,
NCA,
WFP

The impact per investment
of the systems

Provider-
company

The contract partner deliv-
ering and monitoring the
systems

DCP The lifetime of the compo-
nents and the parameters
agreed upon in the contract

Table 5.1.1: Stakeholders and their main interests

The designed control system should also satisfy the set of specifications listed
in table 5.1.3. These do not assert the control system performance but offer a
basis to qualitatively evaluate the proposed system.

29



30 CHAPTER 5. DESIGN

# KPI Description Motivation Value Main
Stake-
holder

I Battery
Charge/dis-
charge rate

The rate of
charge and dis-
charge amount
from/to the
battery

The charge/discharge
rate is inversely pro-
portional to the bat-
tery life

Should not
exceed 0.2C

Provider-
company

II Battery SOC The energy
stored in the
battery

A high SOC for a
prolonged period can
damage the battery
lifetime

Should not
exceed 90%
SOC

Provider-
company

III User satisfac-
tion

The ability to
satisfy a load de-
mand weighted
by the user im-
portance of the
load.

The end-users have
placed different im-
portance to the vari-
ous loads.

R+ End-user

IV Utilization The ratio be-
tween utilized
and potential
solar production

The Customer would
like to see that the sys-
tems they have pro-
cured is used

0-100% Customer

V Critical Load
Reliability

Reliability for
critical loads
as described in
section 3.3.

To showcase the abil-
ity to supply power for
the site’s purpose

0-100% Customer

Table 5.1.2: KPIs developed to quantitatively evaluate the system. The value
column for I and II includes values the system should avoid, while for III-IV the
column includes the range of values the KPI could take.

To suit the specifications, a control system with the components as shown in
figure 5.1.1 should be constructed. The individual roles of the components are:

• Forecaster - Make use of historical data and measurements to provide a
load and production forecast to the optimizer. Must be able to update its
forecasts based on new measurements.

• Optimizer - Make use of the forecast data to provide an optimal plan to the
controller.

• Controller - Using the plan from the optimizer, allow or disallow the running
of loads and provide charge to the battery.

The design of these components will be detailed in the subsequent sub-chapters
while the implementation in a simulated environment is found in the following
chapter.
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Item Description
1 Make use of historic data - As DCP is gathering data from

all sites, the control system should use the historic data to guide
future behaviour. To not use the available historical data would be
to waste an available resource. The current control system uses no
historical data, a new control system that performs worse than the
current control system, while using historical data, is therefore to
be deemed unsuccessful.

2 Continuously control while receiving data sporadically -
The data is gathered at a slower pace than the inherent dynamics
of the system. The control system must be able to handle this.

3 Adjustable to changing goal prioritization - The system must
be able to adjust to different prioritizations of goals. The ability to
do so should be visible in the results.

4 Adaptive to changing conditions - Conditions such as produc-
tion and demand might change a lot during the system operation.
Sometimes there will be no forecast warning of this. The control
system should then quickly react and adapt.

5 Be applicable across multiple sites - As DCP runs several sites,
the control system cannot be only tailored to an individual site but
needs to be modifiable to serve several similar ones.

Table 5.1.3: Control System Specifications

Figure 5.1.1: Control system components

5.2 Load analysis
Chiwoza is, as shown in figure 4.1.1, solely powered by a hybrid source consisting of
a battery and PV-module. As solar power is an intermittent and non-dispatchable
resource, the only control levers are the power to and from the battery and the
enabling/disabling of loads. To control a system by adjusting the load is known
as demand-side-management(DSM). For a DSM-control system to be effective, a
thorough and accurate understanding of the connected loads is necessary. This
is gained through load analysis. There are 3 main goals to be achieved from this
process:

1. Understand consumption pattern - The total consumption varies both
in how much power is demanded, and when it is demanded. This is also
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true on the disaggregated level for the consumption for each load. This
creates a consumption pattern across time. When attempting to control the
consumption, the goal is to predict the pattern into the future. This will is
the subject of the next section 5.3 on load forecasting. A prerequisite for
the work in that section is an understanding of the historical consumption
pattern.

2. Understand load value - As loads vary in their purpose, the end users will
value the available loads differently. This valuation is unlikely to be static
but will vary based on circumstances such as the time of day. The control
system will prioritize certain loads over others. This prioritization should
be partly based on how the end-users value the loads present at the site.
The information about valuation is gained through a user survey described
in section 5.2.2.

3. Classifying types of loads - Loads also differ in other aspects, such as
the flexibility of demand. Certain loads need to satisfy an immediate goal,
while others are more flexible in when demand can be met. Understanding
this difference between the loads is fundamental for identifying the available
control options. This work is done in section 5.2.3.

For this thesis, the load analysis was performed through the gathering of trans-
mitted data and user queries. The available data from the monitoring system
detailed in subsection 4.1.1. The most important being the time-series showing
the disaggregated-by-meter and total consumption.

5.2.1 Statistical analysis
The statistical load analysis attempts to draw conclusion based on historic data.
Starting out by considering the total daily consumption, plotted from October
23rd to December 23rd 2023 in figure 5.2.1 seems to vary around a mean. At the
the 20th of December, there seems to be a significant drop in consumption. This
could reflect an actual lower consumption, a problem with the data or a failure of
the system.

It is also possible to examine consumption at a higher time-resolution, down
to the hourly level. Figure 5.2.2 shows the consumption in October 2023 plotted
as successive 48-hour periods. Each gray line represents a 48-hour period. These
are mostly centred around the average, shown in blue. It is clear that for total
consumption, the variance within a day is much larger than the variance between
days. There are certain spikes indicating a sudden large, but short-lasting con-
sumption during the daytime. The section 4.2 on current control measures states
that certain high power loads are set to run only at specific time intervals during
the day. This pattern is likely a cause of that.

The total consumption of a site may be split into the consumption measured
by the meters mounted at the various circuits. This yields a disaggregated view
of the consumption based on the specific usage. As outlined in section 4.1.1, this



CHAPTER 5. DESIGN 33

Figure 5.2.1: The total daily consumption of Chiwoza from October 23rd to
December 23rd 2023. Included with the 5 day average. Weekends are shaded in
grey.
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Figure 5.2.2: The total consumption of Chiwoza for successive 48-hour periods
starting at midnight over the month of October 2023. The average across the
month is highlighted in blue, and the start and end of normal daylight time is
indicated by the doted lines for the two days respectively. The spikes in the
pattern is due to time-regulated usage of a heavy use water pump.
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is the highest level of resolution on which to analyse historical consumption data.
In figure 5.2.3 the consumption of Chiwoza over a 48 hour period in June 2023
is disaggregated based on meter. This plot supports the proposal in the previous
paragraph, that the spikes in consumption were caused by time controlled high-
powered loads. The fact that these loads are already controlled, suggests that
these are flexible. This means that their past pattern is less interesting, because
the pattern can be adjusted as need be. For the other loads, the pattern is impor-
tant as it is inflexible. Neglecting the flexible loads, the consumption seems to be
dominated by the Medical Light and Staff Socket consumption. For the Medical
Light not surprisingly there is an increase in consumption during nighttime. This
creates a repeating pattern each day. Repeating patterns over a period is known
as periodicity, which is a key characteristic to identify for a load. We can be con-
fident that most loads will have periodicity within a day. In addition, some loads
might exhibit patterns between days. Identifying these will greatly improve the
foundation for forecasting.

Figure 5.2.3: The disaggregated consumption of Chiwoza over a 48 hour period
starting from midnight 2023-06-03. As opposed to the rest of the thesis, the date
was selected so far back because afterwards a communication problem with the
meter on the water heater occurred. In later analysis, loads such as Staff Sockets
1 and 2 have recorded no consumption.

5.2.1.1 Patterns between days

A natural first assumption is that some loads will show a difference in consump-
tion between workdays and weekends. Despite being a health site, where medical
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emergencies might suddenly require attention, Chiwoza follows a regular Malaw-
ian workweek from Monday to Friday. Looking first at the total consumption, the
weekends are shaded grey in figure 5.2.1 showing the total consumption. From
the plot alone, there is no clear difference between weekdays and weekends for
the total consumption. The ACF can also be used to indicate a pattern. If the
consumption was largely different between weekdays and weekends, this would
have shown up in the ACF as high values at lags corresponding to the current
day of the week. The ACF across the entire period, shown in 5.2.4, shows no such
pattern. There are no public holidays in Malawi during this period either, so that
is no factor. The analysis does therefore not show enough to support a claim that
the day of the week influences the total consumption significantly. However, there
might be such a pattern for certain loads.

Figure 5.2.4: ACF of the total daily consumption at Chiwoza. Lags represent
the amount of days back from December 23rd 2023.

The same kind of analysis as performed above can be done on individual loads.
The medical light consumption, shown in figure 5.2.5 has no clear pattern between
days. Neither does staff consumption, as seen in figure 5.2.14. The two loads Med-
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ical Sockets and Guardian Shelter Socket, shown in Figure 5.2.6 and Figure 5.2.7
respectively does however indicate some difference in consumption between week-
days and weekends. The pattern at the Guardian Shelter Socket especially, shows
a clear difference, with its consumption happening almost exclusively on week-
days. The ACF across the period for the Guardian shelter supports this as, shown
in figure 5.2.9, the lag representing 7 days back from December 23rd, a Saturday,
is significant. The ACF for the consumption from the Medical Socket, in figure
5.2.10 is less clear, with no significant daily lags. This indicates that the difference
in consumption between weekdays and weekends is larger for the Sockets at the
Guardian Shelter than for the Medical Building. There is also not the same pat-
tern for the light consumption at the guardian shelter, seen in 5.3.14a, suggesting
that the lights are on independently of the day of the week. The last load, the
fence light shown in figure 5.2.11, have no clear pattern either. The consumption
here is also so small, averaging to less than 25Wh a day, so small deviations have
a large effect.

In summary, the load analysis has identified that apart from the flexible loads,
the consumption is dominated by staff and medical usage. These have a clear
periodic pattern within a day, but for most of them, no obvious between days.
The two exceptions, The Medical Sockets and especially the Guardian Shelter
Socket, have a clear enough difference in consumption between the weekdays and
weekends to warrant extra consideration for the forecasting.

5.2.2 User survey
A user survey was developed for this thesis in collaboration with DCP. It was
performed through phone calls by a local representative to staff members to staff
members at the site. A total of 19 sites participated in the survey, all listed in
B.1. These vary in size, purpose and location. The goal of the survey was:

• Map out connected loads - Finding which loads are connected to the various
sites.

• Discover load prioritization - Examining how the users value and use the
different loads at various times during the day.

• Determining the acceptability for control - Determining how able the users
are to understand and accept an automatic control system.

In this section, the results relating to loads are discussed. The full results from
the questionnaire are included in appendix 9.

Table B.4 shows the loads reported to be currently connected at the queried
sites. When asked to prioritize amongst loads during daytime and nighttime, figure
5.2.15 and 5.2.16 shows a clear pattern. The users appear on average to value loads
related to the purpose of the site higher than loads related to the leisure of the
staff members. This pattern is stronger during the daytime, but even during the
night, the first priority is clearly to keep the lights on at the facilities. This is
supported by the results in section 9, where most respondents answer that they
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Figure 5.2.5: Light consumption in the medical buildings at Chiwoza from Oc-
tober 23rd to December 23rd 2023. 5-day average as a dotted line. Weekends are
shaded in grey.
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Figure 5.2.6: Consumption from the sockets at the medical building at Chiwoza
from October 23rd to December 23rd 2023. 5-day average as a dotted line. Week-
ends are shaded in grey.
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Figure 5.2.7: Consumption from the sockets at the Guardian Shelter at Chi-
woza from October 23rd to December 23rd 2023. 5-day average as a dotted line.
Weekends are shaded in grey.
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Figure 5.2.8: Consumption from the Lights at the Guardian Shelter at Chiwoza
from October 23rd to December 23rd 2023. 5-day average as a dotted line. Week-
ends are shaded in grey.
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Figure 5.2.9: Auto correlation of consumption measured from the sockets at the
Guardian Shelter at Chiwoza between October 23rd to December 23rd 2023. Blue
dotted lines represent a 95% confidence interval.
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Figure 5.2.10: Auto correlation of consumption measured from the sockets at
the Medical Building at Chiwoza between October 23rd to December 23rd 2023.
Blue dotted lines represent a 95% confidence interval.
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Figure 5.2.11: Fence light consumption at Chiwoza from October 23rd to De-
cember 23rd 2023. 5-day average as a dotted line. Weekends are shaded in grey.
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Figure 5.2.12: Daily light consumption in the staff
buildings at Chiwoza between October 23rd to Decem-
ber 23rd 2023. Weekends are shaded in grey.

Figure 5.2.13: Daily consumption measured from the
sockets at the staff buildings at Chiwoza between October
23rd to December 23rd 2023. Weekends are shaded in
grey.

Figure 5.2.14: Daily consumption at staff buildings in November 2023.
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are willing to forgo some days of staff consumption to ensure the availability of
critical loads.

5.2.3 Load classification
As seen in the previous section, there are several different kinds of loads installed
at the various sites. These vary in their importance for the operation at the site,
their electrical characteristics and the characteristics important for controlling the
system. Using the classification from [12], the classifying control characteristics
are

• Deferable - The ability to defer a load to a different time without a penalty.
This is only possible if a demand does not need to be instantaneously met.
For instance, if the demand for light, TV or Microscope is not met imme-
diately when demanded, it is noticed by the user. Other loads, such as the
water pump, do not have this requirement. Although the demand for water
is non-deferable, the pump itself supplies water to a tank, hence as long as
the tank has water there is no penalty for deferring the running of the water
pump.

• Dimable - A dimable load can run on various power levels

• Interuptable - An interruptable load can be interrupted after being started
without any additional penalty.

In addition to these, loads are also assigned a priority, which translates into
a penalty for not being allowed to run when demanded. As seen from the user
survey, the end-users value different loads higher at different times. The priority
is therefore not static, but may change during the day. The various loads found
to be connected during the user survey are classified in table 5.2.1

As mentioned in section 4.1.1, loads are not measured individually, but based
on the circuit they are connected to. While there could potentially be a method
of identifying a specific load through the consumption measured from the circuit,
this has not been attempted in this thesis. As a result, the resolution of classi-
fication decreases to the circuit level. Mapping the control characteristics from
Table 5.2.1 to the circuits in Table 4.1.5 yields the circuit level control character-
istics in Table 5.2.2. For the rest of the design, this will be the level of resolution,
the term load is therefore broadened to include all individual loads connected to
a circuit.

5.2.3.1 Flexible Loads definition and analysis

From a control perspective, the last 4 loads of table 5.2.2 are the most interesting.
Because their demand is flexible, they offer the prime control option to be utilized.
These flexible loads are characterized by the following:

• Energy Demand - Within a day, these loads demand to be run enough to
perform some task. For the water pump, this will be to fill the tank with
enough water to satisfy a day’s demand, if the tank is large enough to support
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(a) Reported 1st priority amongst loads during daytime

(b) Reported 2nd priority amongst loads during daytime.

Figure 5.2.15: Reported 1st and 2nd priority amongst loads during daytime.
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(a) Reported 1st priority amongst loads during nighttime

(b) Reported 2nd priority amongst loads during nighttime.

Figure 5.2.16: Reported 1st and 2nd priority amongst loads during nighttime.
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Load Deferable Dimable Interuptable
Lights
(Medical/School)

NO NO NO

Phone/Laptop
Charging (Medical)

YES YES YES

Oxygen Concentrator NO NO NO
HIV diagnosis
equipment

NO NO NO

Sterilizer NO NO YES
Microscope NO NO NO
Refrigerator (Medical) NO NO NO
Light (Staff) NO NO NO
Phone/Laptop
Charging (Staff)

YES YES YES

Entertainment NO NO NO
Refrigerator (Staff) NO NO NO
Cooking appliances NO NO NO
Water pump YES YES YES
Water heater YES YES YES

Table 5.2.1: Loads connected to the systems with their control attributes

Circuit Deferable Dimable Interuptable
Medical Light NO NO NO
Medical Socket NO NO NO
Staff Light 1-3 NO NO NO
Staff Socket 3 NO NO NO
Guardian Shelter Light NO NO NO
Guardian Shelter
Socket

NO NO NO

Fence Light NO NO NO
Water pump YES YES YES
Water heater YES YES YES
Solar Maize Mill YES YES YES
Rental Batteries YES YES YES

Table 5.2.2: Circuits connected to the systems with their control attributes
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Load Min Power (W) Max Power (W) Energy Demand Daily (Wh)
Water Pump 400 1100 2750
Water Heater 200 350 1400

Rental Batteries 10.8 270 540
Maize Mill 800 3000 9750

Table 5.2.3: Flexible Loads energy characteristics

that. For the water heater, this will be to heat enough water to last some
hours in the future. The key is that the energy demand does not have to be
satisfied immediately, but within some time window.

• Power Demand - If the flexible load is running, it requires a certain amount
of power to be able to run. This is the power demand.

• Operation Window - The operation window specifies within which time win-
dow a flexible load can run. For instance, the solar Maize mill should be
running during the day, because that is when the farmers can deliver and
collect their goods.

As these loads are more clearly defined, the values can be found from datasheets[32][33][34].
The water pump at Chiwoza is a SQF5-70 from Grundfos. These are powered by
a universal motor. A universal motor can be controlled by regulating the current
supplied to the motor. Figure 5.2.17 from the datasheet provided by the manu-
facturer relates the power to water depth and flow. Similarly, the figures for the
power rating for the other flexible loads are found in the datasheets and included
in 5.2.3. The daily energy demand for the water pump and heater is determined
as the average historical daily consumption. For the two loads that have not been
connected, the maize mill and rental batteries, their daily demand is determined
through internal economic calculations by DCP on how often they need to run to
be economically feasible for DCP to install at the sites.

It is evident that most loads can neither be deferred, dimmed or interrupted
without a penalty. These loads are inflexible, their demand cannot be shifted or
reduced, it either has to be met or not met. For these loads, it becomes important
to predict the demand, so that one can adjust accordingly. The forecasting of
inflexible loads is the key idea of the following chapter.

5.3 Load Forecasting
Instantaneous consumption is measured by the system. Knowing how demand
will behave in the future enables informed decision-making on how to allocate
produced power between loads and the battery for the optimal operation within a
determined time-window. As demand is neither known fully in advance nor fully
deterministic on past and current conditions, the process of making predictions
about future demand is non-trivial. For this application, several persistence and
ARIMA models were developed and implemented to better the accuracy of fore-
casted future demand.
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Figure 5.2.17: Power-flow curve for the water pump installed at Chiwoza. Along
the y-axis is the flow measured in [m2/h] while along the x-axis is the power in
kW. The blue lines show the depth of the well.
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The process for load forecasting in this thesis consists of the following steps:

• Develop Persistence model

– Find suitable look-back period candidates by forecasting over a small
time frame

– Find the best candidate by testing candidates over a larger time frame

• Develop ARIMA model

– Identify inter-day periodicity, meaning patterns between days. Use this
to find suitable periodic coefficients.

– Identify intra-day periodicity, meaning patterns within a day. Differen-
tiate until stationary within a day.

– For each level of differentiation, find suitable candidates by looking at
the ACF and PACF.

• Compare ARIMA candidates against each other and the best per-
sistence model by testing over a longer time-frame

The process has to be performed for every circuit connected to the system.
However, within this section, the process in its entirety will only be illustrated
for one specific meter - The medical light at Chiwoza. The other meters will be
included at the end of this section with their starting point and the resulting best
model found from the analysis.

5.3.1 Persistence Model
As outlined in section 3.2.1, a persistence model is amongst the simplest and most
intuitive models for forecasting. It serves as a baseline against which to compare
the more advanced models.

Based on the analysis in 5.2.1.1, past consumption is expected to contain in-
formation about future demand. Hence a unweighted average persistence model
was developed to forecast the demand of each meter. The model is a compromise
between the accuracy and complexity of tuning.

The models were tested by a range of look-back periods estimating the demand
of all hours of a single day. The MAE between the forecasted and actual consump-
tion was used to compare the models. This yielded a daily plot like 5.3.1. From
this, a few candidates could be picked for testing over a longer period. This was
done in figure 5.3.2. The difference between the plots can be difficult to assert from
the plot. Considering the average MAE across the whole month, shown in 5.3.1,
a model with a look-back period of 32 days yields the lowest value. An average
MAE of 0.052 means that an error of 52W is expected. In the plot in figure 5.3.2
a look-back period of 3 days yields the lowest maximum MAE of about 90W. The
choice of model depends on the intended usage. Because the persistence model
will in this design be used as a baseline to compare the ARIMA, the model with
the best average MAE will be chosen.
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Figure 5.3.1: MAE vs Look-back period for medical light demand at Chiwoza
2023-11-28.

Figure 5.3.2: MAE vs Look-back period for medical light demand at Chiwoza
during the whole of November 2023. Using four persistence models with different
look-back periods k. (green:k=3, purple:k=6, red:k=10), turquoise:k=32)



54 CHAPTER 5. DESIGN

Look-back period (days) Average MAE (W)
3 56
6 54
10 55
32 52

Table 5.3.1: Caption

5.3.2 ARIMA Model
The second model used for load forecasting is the ARIMA-model. The model was
selected because it is purely statistical without the need for a priori data. As
mentioned in 3.2.1, an ARIMA model is a statistical forecasting model combining
an auto-regressive and moving average model with a differentiating term. Through
the analysis both intra- and inter-day periodicity was discovered for several of the
meters, hence a SARIMA model is appropriate. To design a SARIMA model for
each meter to be forecasted, the following terms must be determined

• p - The order of the auto-regressive model.

• d - The differentiating order.

• q - The order of the moving average model.

• P - The order of the auto-regressive model shifted back one period.

• D - The amount of terms one period back shifted to include directly.

• Q - The order of the moving average model shifted back one period.

• s - The period of the time-series.

Of these, only the time-series period, s, is known in advance. From the anal-
ysis, it is known that the demand follows a daily cycle. The period is therefore
equal to the number of samples within a day, which if done on an hourly basis
equals 24.

The other parameters are to be obtained through a statistical analysis of the
time-series for each meter. The first step of this process is to examine the original
time-series for a given meter. Figure 5.3.3 showcasing the consumption of medi-
cal lights at Chiwoza is a seemingly stationary time-series. The series oscillates,
but there is no evident trend. This suggests stationarity. Further evidence can
be found by using the augmented dicker-fuller test, where the results are shown
in 5.3.2 strongly reject the null hypothesis of non-stationarity between the days.
Figure 5.3.4 confirms this, as the ACF decreases to zero after a few lags. This
means that the auto-regressive and moving average model can be utilized with-
out differentiating the time-series first. Although it is still possible that one can
achieve better results by a differentiated time-series.

Within a day, we know that there is a seasonal pattern. Looking at figure
5.3.5a this means that the ACF does not decay, and an MA-model cannot be uti-
lized. The PACF however, shown in figure 5.3.5b shows clear contributions from
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Figure 5.3.3: Consumption medical light Chiwoza as a time-series between 2023-
11-10 and 2023-11-25.

Figure 5.3.4: ACF of the hourly consumption of the medical lights at Chiwoza
between 2023-11-10 and 2023-11-25.
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Meter DF p-value time range
Medical Lights Chiwoza -9.0046 <0.01 2023-11-10 - 2023-11-25

Table 5.3.2: The results of the Augmented-Dicker-Fuller test

# model
I ARIMA(2,0,0)(1,1,1)
II ARIMA(1,1,2)(1,1,1)
III ARIMA(1,2,2)(1,1,1)

Table 5.3.3: ARIMA model candidates for medical light demand Chiwoza

certain terms. A pure auto-regressive model combined with some seasonal terms
is therefore a candidate. Differentiating the time-series and finding the ACF and
PACF within a day produces the plots shown in figure 5.3.6. Here the ACF plot
decays faster, meaning that a candidate with a differential term can be included.

Section 3.2.1.1 outlines the process of finding the p and q values of the model
using the partial auto-correlation function (PACF) and the auto-correlation func-
tion(ACF) respectively. From figure 5.3.6 we see that ARIMA(1,1,2)(1,1,1) can
be a candidate. There is however still seasonality apparent in figure 5.3.6a. Differ-
entiating the time-series again removes all intra-day seasonality, as seen in figure
5.3.7a by the complete decay of the ACF besides the full lag. Combined with
the PACF plot in figure 5.3.7b we see that ARIMA(1,2,2)(1,1,1) could be another
candidate.

The three candidates listed in table 5.3.3 can be implemented and tested over
a wider time period. Model III looks clearly worse from the plot, but it is difficult
separating I and II. From table 5.3.4 we see that model II performed slightly better
on average MAE over the month of November. It also has a lower maximum
MAE than model I. Of the ARIMA models, only I and II managed to beat the
baseline set by the persistence model. Looking at the forecasted time-series for
November from model II versus the actual time-series in figure 5.3.9 , the model
has acceptable performance.

As mentioned earlier in this section, this process of selecting ARIMA can-
didates, comparing them against each other and a persistence model has to be
repeated for all the loads connected to a system that is to be forecasted. The
result of this is shown in 5.3.5. In section 5.2.1.1, some loads, like the Guardian

# average MAE (W)
I 49
II 49
III 52

persistence32 52

Table 5.3.4: ARIMA model candidates’ MAE for medical light demand estima-
tion over the month of November at Chiwoza. Included is the average MAE of a
persistence model with look-back period of 32 days.



CHAPTER 5. DESIGN 57

(a) ACF of hourly medical light consumption Chiwoza at 2023-11-10.

(b) PACF of hourly medical light consumption Chiwoza at 2023-11-10.

Figure 5.3.5: ACF and PACF of hourly medical light consumption Chiwoza at
2023-11-10.
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(a) ACF of differentiated hourly medical light consumption Chiwoza at 2023-11-10.

(b) PACF of differentiated hourly medical light consumption Chiwoza at 2023-11-10.

Figure 5.3.6: ACF and PACF of differentiated hourly medical light consumption
Chiwoza at 2023-11-10.
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(a) ACF of second order differentiated hourly medical light consumption Chiwoza at 2023-11-10.

(b) PACF of second order differentiated hourly medical light consumption Chiwoza at 2023-11-
10.

Figure 5.3.7: ACF and PACF of second order differentiated hourly medical light
consumption Chiwoza at 2023-11-10.
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Figure 5.3.8: MAE of the 3 ARIMA models listed in 5.3.3 over the month of
November 2023.Included is also the MAE of a persistence model with look-back
period of 32 days

Figure 5.3.9: The actual hourly consumption vs the forecasted demand from the
ARIMA model II in 5.3.3 for medical light consumption Chiwoza November 2023.
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Load Forecasting model Average MAE (W) Average (W) Plot
Medical Light ARIMA(1,1,2)(1,1,1) 49 113 5.3.9
Medical Socket ARIMA(2,1,1)(0,1,1) 10 11 5.3.15
Staff Light 1 ARIMA(1,0,0)(1,1,2) 26 46 5.3.10
Staff Light 2 ARIMA(1,0,0)(1,1,1) 3 6 5.3.11
Staff Light 3 ARIMA(1,0,0)(1,1,0) 18 33 5.3.12
Staff Socket 3 ARIMA(2,0,0)(2,1,0) 28 199 5.3.16
Fence Light ARIMA(1,0,1)(2,1,0) 1.7 2.4 5.3.13

Guardian Shelter Light ARIMA(6,1,1)(0,1,1) 3 12 5.3.14
Guardian Shelter Socket ARIMA(1,0,1)(0,1,2) 1.4 1.8 5.3.17

Table 5.3.5: Loads at Chiwoza with their deduced forecast model.

shelter Socket were found to have a strong weekday pattern. To accommodate for
this, the ARIMA was modified to include this behavior. The algorithm, shown
in 1, runs a different ARIMA model for weekdays and weekends. Furthermore,
when gathering historic data for its forecast, it discards days it has been asked to
ignore. In 5.3.17 this is seen as a model which is able to handle the shape of high
consumption during the week and none during the weekend.

Algorithm 1 ARIMA forecaster weekday periodic (Pseudocode)
dow = dayOfWeek(date)
if dow == Sat|dow == Sun then

ignoreDays = (Mon, Tue,Wed, Thu, Fri)
model  arimaWeekendParam

else
ignoreDays = (Sat, Sun)
model  arimaWeekdayParam

end if
historicData getHistoricData(ignoreDays)
forecast arimaForecast(model, historicData)

The forecasting yields large errors, especially when forecasting loads with large
spikes in consumption, such as the Chiwoza medical socket seen in figure 5.3.15.
Here the forecast has the correct shape, but misses the timing. Sudden and high
spikes in consumption are expected to be hard to forecast from statistical data
alone.

5.3.3 Forecast update

In the results from the previous section, demand has been forecasted once every
day, and compared to the actual. Instead in the proposed control system, a new
forecast will be made every time there is a new measurement. This is done by
including the measurement in the historic data used to make the forecast. This
frequency of updated forecasts will increase accuracy. In figure 5.3.18 the forecast
for medical light demand at Chiwoza on the 25th of November 2023 is updated
each hour. In this forecast, the MAE is reduced by about 84%, from 49 to 7.8,
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(a) Light consumption at staff house 1 Chiwoza during November.

(b) The actual vs the forecasted hourly light consumption for Chiwoza Staff house 1.

Figure 5.3.10: Starting point and result load forecasting for light consumption
for Chiwoza Staff house 1.
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(a) Light consumption at staff house 2 Chiwoza during November.

(b) The actual vs the forecasted hourly light consumption for Chiwoza Staff house 2.

Figure 5.3.11: Starting point and result load forecasting for light consumption
for Chiwoza Staff house 2.
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(a) Light consumption at staff house 3 Chiwoza during November.

(b) The actual vs the forecasted hourly light consumption for Chiwoza Staff house 3.

Figure 5.3.12: Starting point and result load forecasting for light consumption
for Chiwoza Staff house 3.
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(a) Hourly consumption for the Chiwoza Fence light during October 2023.

(b) The actual vs the forecasted hourly consumption for the Chiwoza Fence light.

Figure 5.3.13: Starting point and result load forecasting for hourly consumption
for the Chiwoza Fence light.
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(a) Hourly consumption for the Chiwoza Guardian Shelter light during November 2023.

(b) The actual vs the forecasted hourly consumption for the Chiwoza Guardian Shelter light.

Figure 5.3.14: Starting point and result load forecasting for hourly consumption
for the Chiwoza Guardian Shelter light.
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(a) Hourly consumption for the Chiwoza medical socket during November 2023.

(b) The actual vs the forecasted hourly consumption for the Chiwoza medical socket.

Figure 5.3.15: Starting point and result load forecasting for hourly consumption
for the Chiwoza Medical socket.
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(a) Hourly consumption for the Chiwoza staff socket 3 during November 2023.

(b) The actual vs the forecasted hourly consumption for the Chiwoza staff socket 3.

Figure 5.3.16: Starting point and result load forecasting for hourly consumption
for the Chiwoza staff socket 3.
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(a) Hourly consumption for the Chiwoza guardian shelter socket 3 from November 19th to
December 16th 2023.

(b) The actual vs the forecasted hourly consumption for the Chiwoza guardian shelter socket 3
from November 19th to December 16th 2023.

Figure 5.3.17: Starting point and result load forecasting for hourly consumption
for the Chiwoza guardian shelter socket 3 from November 19th to December 16th
2023.
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Figure 5.3.18: Hourly updated forecast for medical light demand at Chiwoza for
November 25th 2023. MAE = 7.8W

compared to the average MAE for the daily forecasts between October 23rd- De-
cember 23rd 2023.

5.4 Production analysis
The sole production module in the systems is the PV-modules. An outline of its
dynamics and connection to irradiance is given in section 3.1. As mentioned in
that section, irradiance can be classified into different types. Each of these has its
effect on PV production and is measured individually with the right measurement
devices.

There are no measurement devices for irradiance at the sites, but there exists
geographic information systems (GIS)-tools such as the European PVGIS[35] that
give average daily values each month based upon large weather databases. Figure
5.4.1 displays the downloaded average daily irradiance downloaded from PVGIS
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Figure 5.4.1: Average daily irradiance Chiwoza for December. Figure down-
loaded from PVGIS[35]

at the Chiwoza during December.

The daily average irradiance will have a seasonal trend, given the changing
position between the Sun and the Earth. Figure 5.4.2 shows how the irradiance
varies throughout the year. It is therefore important to gather the daily average
corresponding to the correct month.

There is a strong connection between weather and PV production, seen from
for instance equation 3.1. However, there are no weather measurement devices
at the sites due to the cost of such equipment. Information about the weather
is gained through the online databases of the Norwegian Meteorological Agency.
Both weather forecasts and weather measurements are fetched. Both of these have
an inherent quite large uncertainty.

Besides the lack of measurements, another complicating factor for production
analysis is the underutilization at the sites. The sites cannot deliver more power
than consumed by the loads, stored in the battery or lost in the system. Hence, as
load consumption, in general, is low, the production is far below its full potential.
This can be seen in figure 5.4.3. The figure shows the average, maximum and
minimum recorded production for each hour of the day in September 2023. This
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Figure 5.4.2: Total monthly irradiance Chiwoza 2020. Figure downloaded from
PVGIS[35]

is plotted against the GHI fetched from PVGIS[35]. While the scale between
irradiance and production is different, the important thing is the shape of the
irradiance curve versus the production curves. While the points of the GHI show
a quadratic curve, the production peaks early in the day, and then tapers off
quickly. This is because the system uses a lot of power early in the day, to charge
the battery, but once the battery is charged up to 90% the production drops
sharply, only supplying the low amount of load connected during the day. The
peak toward the end of the day is because of the charging algorithm of the batteries
outlined in section 4.2. If the load was not a limiting factor, so that all available
power was utilized, one would expect a production curve with a similar curve to
the irradiance curve due to their tight relationship.

5.5 Forecasting production

The systems are dependent on the PV-production to satisfy load demand. Know-
ing the timing and magnitude of the production is critical to make informed deci-
sions on the operation of the systems. As mentioned in the analysis, the production
is limited by the load consumption. As the goal of the thesis is to find how load
can be moved, added and controlled, the current production is therefore far less
interesting than the potential production.

Similarly as for the load forecasting, one would expect an auto-regressive fea-
ture to the production. This would suggest that a statistical forecasting algorithm,
such as the ARIMA used for load forecasting, could be appropriate. However,
given the discussion on underutilization from the previous section, measured pro-
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Figure 5.4.3: Average, max and min yield vs GHI Chiwoza September 2023

duction is poorly suited to estimate the maximum potential production. Assuming
unlimited production during the early morning hours, when the battery is charg-
ing, one could find the relationship between the production during those hours,
and the irradiance curve, and use that ratio to predict future potential production.
However, as this varies a lot with the weather conditions in the early morning hours
and usage, this approach is prone to over-fitting and errors. Statistical forecasting
of production is therefore sub-optimal as long as no non-load-limited production
measurements are done at the sites.

Luckily, it is far easier to deduce a physical model of production than for load,
given the unpredictable nature of load consumption. A physical model removes
the need for past data for forecasting.

The physical model is based on the approach in section 3.2.2, with especially
equation 3.19 showing the relationship between irradiance and power. The irradi-
ance is modified by equation 3.1 to include the effect of the cloud cover. In total,
the physical model for the PV-production from a PV-module with npanels PV-
panels is defined in 5.1. The inputs to these models are the parameters relating to
the panels, global- and diffuse irradiance and cloud cover. The panel parameters
such as PSTC , GSTC and npanels are known, while the GGHI and GDHI do not
change from day to day within a month. The only factor modifying the model to
give a variable daily estimate is the cloud cover. This is gathered from weather
forecasts.

PPV =
PSTC

GSTC

(GGHI(1� f) +GDHIf)npanels (5.1)
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Figure 5.5.1: The production estimate based on actual weather measurement
versus the forecasted production based on the weather forecast for Chiwoza De-
cember 1st 2023. Included is also the cumulative difference between the two. MAE
= 626W

As mentioned in section 5.4, actual measured production at the site is a poor
comparison to estimated potential production because it is limited by consump-
tion. This makes it difficult to test the model. However, if one assumes the model
is reasonable, the model would given accurate weather measurements give an ac-
curate estimate of potential production. It is then possible to test the model with
weather measurements against the model using weather forecasts. In figure 5.5.1
the model is tested with a weather forecast from the start of the period plotted
against a weather measurement taken at each hour during the day. The weather
measurement, gathered from satellite data[36], is the best available measurement
of the weather for each hour. Hence, the model based on the measurement repre-
sents the best available estimate of the potential production given actual weather
data and not limited by consumption. The figure shows that during the first few
hours, the forecast is identical to the actual estimate. Later on, the difference
between the two varies in both directions. The cumulative difference indicates
that the forecast estimates a lower potential production for this day.

5.5.1 Forecast update
Similarly, as for load forecasting, the production forecast is updated every time
there is a new weather or production measurement. This is shown for December
1st 2023 in figure 5.5.2 where an hourly updated forecast leads to more halving of
MAE compared to the forecast over the same period in figure 5.5.1.

5.5.2 System Loss
The model in 5.1 neglects energy lost within the system. There are plenty of factors
leading to a reduction in the energy available. While we know that the inverter
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Figure 5.5.2: The production estimate based on actual weather measurement
versus the forecasted production based on the weather forecast for Chiwoza De-
cember 1st 2023. The forecast is updated every hour. MAE = 263W
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has a peak efficiency of 96% and the solar charger has a peak efficiency of 99%
from the datasheet, the wiring and panel losses are unknown. There is therefore
not enough information available to accurately estimate the system losses in the
current system. In (Chimtavee A. and Ketjoy, N,2012), the authors found an
average loss of 26.27% over a whole year.[19] Modifying the production forecast in
5.1 by a constant loss factor h, yields model shown in equation 5.2.

PPV =
PSTC

GSTC

(GGHI(1� f) +GDHIf)npanels ⇤ (1� h) (5.2)

5.6 Optimization

As shown in 5.1.1, the optimizer is fed the load and production forecast from
the forecasters. While the production and demand in the system are naturally
continuous variables the forecasts are discrete vectors giving the value for every
time-step within the prediction horizon. The optimizer is tasked with finding the
optimal plan for each time-step within the prediction horizon, based on the KPIs
shown in 5.1.2. There are several ways to design an optimizer algorithm, includ-
ing rule-based approaches, machine-learning, continuous optimization and integer
programming.

The current control system is rule-based. A natural design choice would be to
modify the current control system to address some of the weaknesses described
in section 4.2.1. The weaknesses however, especially the one about the inability
to adapt to changing conditions would be difficult to address without including
forecasting and load prioritization as part of the algorithm. Because this is a
core functionality, doing so would amount to an almost complete re-design of the
current control system.

A rule-based control system divides the state space into distinct sections and
attributes a set of actions to each section. This can be illustrated by a Finite State
Machine as done for the current charge control shown in figure 4.2.1. An issue
with rule-based control is that their complexity and rigidity increase quickly with
the amount of possible distinct states and transitions between states.[37] Hence
another approach outside the rule-based paradigm is proposed in this thesis.

While machine learning has been proposed by several papers for energy man-
agement systems, as in (Philipo GH. et al., 2022),[12] it was not chosen for this
thesis because of the tuning of such a system can be oblique. Therefore, an opti-
misation approach was chosen, inspired by the works of (Salazar A. et al.,2020)
and (Sadek SM. et al., 2020) found in the literature survey. Both continuous
and discrete optimisation (Integer Programming) was attempted, however with
the latter there was an issue of solution stability. Hence the optimizer is designed
based on continuous optimization.

A non-linear optimization problem is defined as
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min
x

J(x) s.t.

2

66664

c(x)  0
c(x) = 0
Ax  b

Aeqx = beq
lb  x  ub

3

77775
. (5.3)

To construct the optimizer problem an objective function, selection variable
and constraints need to be defined. The selection variable should be based on the
control options of the control system. These are

• Allocating power to load - The control system can allocate a certain amount
of power to a load.

• Charge/discharge the battery - The control system can allow a certain amount
of power to be discharged or charged to/from the battery over a period of
time.

From this the selection variable x is defined as

x =


pb

L

�
, (5.4)

where pb is a vector giving the charge/discharge allowed from the battery at
every time-step within the prediction horizon. If the prediction horizon is defined
as N where N 2 Z+, then pb is defined as

pb =
⇥
pb1 pb2 ... pbk ... pbN

⇤
, (5.5)

where pbk is the power charged/discharged at time-step k.

The matrix L represents the power allocated to the various loads for all time-
steps within the prediction horizon. If there are a total of S loads connected to
the system, then the L matrix is defined as

L =

2

6666664

l(1)

l(2)

:
l(i)

:
l(S)

3

7777775

=

2

66666664

l(1)1 l(1)2 . . . l(1)
k

. . . l(1)
N

l(2)1 l(2)2 . . . l(2)
k

. . . l(2)
N

: : . . . : . . . :

l(i)1 l(i)2 . . . l(i)
k

. . . l(i)
N

: : . . . : . . . :

l(S)1 l(S)2 . . . l(S)
k

. . . l(S)
N

3

77777775

, (5.6)

where l(i)
k

is the power allocated to load i at time-step k.
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The selection variable will be optimally found every time the optimizer is run-
ning. The other components of the optimizer; the objective function and con-
straints can be deduced once the selection variable x is defined.

5.6.1 Objective function
In optimization, an objective function J is chosen as a function of the selection
variables to be minimized. Because J is to be minimized, it should either in-
clude the punishment for missing some objective or the negative of the reward of
managing one.

KPI III, user satisfaction, is described as the ability to satisfy demand weighted
by the importance attributed to the demand for that load. Alternatively, if de-
scribed as a punishment, one can define the unmet demand as the difference be-
tween the demand, R and the load allocated L, and attribute a cost C for unmet
demand. The cost matrix, C will be a SxN matrix attributing a cost for unmet
demand for every load in S for all k in N. The first term of J is therefore

J1 = C(R� L). (5.7)

KPI IV is about maximizing the utilization of the system. While utilization
is the ratio between utilized and available energy, in the objective function it is
enough to reward high usage. This can be done by multiplying the total consump-
tion within the prediction horizon with some negative constant k2 .

J2 = k2
X

L = k2

NX

t=1

SX

i=1

l(i)t (5.8)

The KPIs I and II are both related to the health of the battery. From section
3.4, on battery health, it is suggested that the charge/discharge-rate of the battery
should be kept under a certain level. For the objective function, that means
punishing high values of pb. There are several ways to do this. One is to punish
proportional to pb by multiplying it with some constant. This would preserve
linearity in the objective function, but there is no theoretical basis to punish
small pb. Another method is to only punish high pb above a certain threshold.
This creates a non-linear objective function, but allows pb to move freely outside
the punishment threshold. This approach was chosen for this optimizer. If the
threshold for the charge/discharge-rate is m, and punishment when exceeded the
threshold is linearly with a constant k1, then the contribution to the objective
function from KPI I can be written as

J3 =
NX

t=1

k⇤
1,t|pbt| (5.9)

k⇤
1,t =

(
k1, |pbt| > m

0, else.

The battery state of charge is important for several reasons. First of all,
from the discussion in 3.4, it was determined that a high SOC might damage the
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battery. The SOC of the battery is therefore included as a KPI. The objective
function should hence punish high SOC. Furthermore, a lower buffer is included
as a security to prevent the battery SOC from going low. Hence, just as for the
charge/discharge-rate, the battery SOC has a lower and upper band where the
objective function increases.

Finally, as the battery SOC is not a selection variable but is indirectly set, it
has to be estimated. This is done by taking the initial battery SOC, b0 and adding
the pb up to that time-step. This can be expressed as a function like

bk = b(k) = b0 +
kX

t=0

pbt. (5.10)

The battery SOC is included in the objective function similarly to the charge/discharge-
rate pb. With a constant k3 for exceeding some bupper and a constant k4 for going
below some blower the contribution to the objective function becomes

J4 =
NX

t=0

(k⇤
3,t + k⇤

4,t)bt (5.11)

k⇤
3,t =

(
k3, bt > bupper
0, else

k⇤
4,t =

(
k4, bt < blower

0, else.
The last term included in the objective function is the one for the flexible

loads. As noted in section 5.2.3.1, these are classified by having a power and
energy demand, but where the demand does not have to be satisfied immediately
but within some period. In the objective function, these therefore has to be
treated differently than the non-flexible load, where the failure to satisfy immediate
demand is punished as in equation 5.7. The flexible loads D are included in the
objective function as a deviation from their energy demand, dwh, within a period
from t to t+s. This is shown in 5.12 with a cost vector K5 containing the cost of
deviation for each flexible load. The s is to be chosen to be the time between the
end of production one day to the start of production the next.

J5 = K5 ⇤ |dwh �
t+sX

t=1

Dt| (5.12)

The different contributions to the objective function are combined into one as
in

J = J1 + J2 + J3 + J4 + J5

= C(R� L) + k2
X

L+
NX

t=1

k⇤
1,t|pbt|+

NX

t=0

(k⇤
3,t + k⇤

4,t)bt (5.13)

+K5 ⇤ |dwh �
t+sX

t=1

Dt| (5.14)
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k⇤
1,t =

(
k1, |pbt| > m

0, else

k⇤
3,t =

(
k3, bt > bupper
0, else

k⇤
4,t =

(
k4, bt < blower

0, else,

where

k1, k3, k4, |C| � 0

k2  0.

Both J1 and J2 are, by virtue of being linear functions, convex and differentiable
functions over the convex set S : L 2 [0,R]. J3, J4 and J5 are however non-
differentiable, due to the conditionality of the k1, k3 and k4 and the absolute value
in J3 and J5. Regarding convexity, the absolute value of a variable is convex,
making J5 convex. The convexity of J3 and J4 can be studied graphically. In
figure 5.6.1 the two functions are sketched. As seen, they have a similar shape
of linear functions separated by a region where the function value is zero. The
secant between any two points along the graph lies only in its epigraph. Because
of this, the functions are convex. This makes the overall objective function convex
and non-differentiable. The non-differentiability excludes solvers dependent on
analytically finding the gradient or hessian of the objective function.

This amounts to a non-linear objective function which together with the con-
straints deduced in the next section forms the optimization problem.

5.6.2 Constraints
The constraints are an integral part of the optimization problem, as they make the
algorithm conform to the conditions and bounds set by the system. Constraints
can reflect constraints on the actual dynamics of the physical system, but they
can also be used to achieve a better performance within the physical bounds.

The law of conservation of energy states that the total energy within a closed
system can only be changed by energy either entering or leaving the system. Tak-
ing the microgrid as a closed system, energy can only enter from the PV-module
and exit the system either as energy consumed or lost through the internal system
resistance. Energy from the PV-module can be stored in the battery and dis-
charged to supply load. Within a time-step k, this relationship can be described
as

SX

i=0

l(i)
k
 ppv � ppb. (5.15)

Here positive ppb is defined as charging the battery, while negative ppb is defined
as discharging the battery to supply the loads. The power from the solar module
is here ppv.
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(a) Sketch of J3.

(b) Sketch of J4.

Figure 5.6.1: Sketch J3 and J4.
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On the battery dynamics, there are additional constraints. The power charging
of the battery at time-step k cannot exceed some pb,max and the discharge cannot
go below pb,min. Similarly, the battery SOC at time-step k, bk cannot exceed the
maximum capacity bmax and not go below minimum bmin.

bk  bmax (5.16)
bmin  bk (5.17)

pbk  pb,max (5.18)
pb,min  pbk (5.19)
8k 2 N

However, as pb is part of the selection variable x, it can be included in the
lower and upper bound on x. The other part of x, the allocation to the loads L
also has and lower and upper bound. Naturally, the energy allocated to a load
cannot be less than zero. As a non-physical limit, but to achieve better results,
an upper bound on the allocation to loads L is set so that it cannot exceed the
demand R.

0  L  R (5.20)

For some loads, however, this constraint can be modified. Some loads can be set
to have a guaranteed availability. This can be done by adding their consumption
to the lower and upper bound of the constraint. For instance, if load l(1) is a
refrigerator with rated consumption e1 is to be guaranteed availability, the bound
can look like

e1  l(1)  R(1) + e1

0  L(2:S)  R(2:S). (5.21)

5.6.3 Tuning
The outcome of an optimization is dependent on the weight attributed to the
different parts of the objective function. The process of selecting appropriate
parameters becomes important to achieve acceptable performance. In the opti-
mization problem defined in this section, the parameters to be determined are the
weights k1, k2, k3, k4, K5 and the cost matrix C.

All of the parameters are connected to a quantifiable, objective from the spec-
ification. Their values will therefore depend on how the different objectives are
prioritized. Some of the parameters are or have the potential to be working against
each other. For instance, will a high k2 incentivize high consumption, while a large,
negative k1 will decrease battery utilization. The key to these conflicting param-
eters is to achieve a tuning with the right relation between the parameters.

The cost matrix C contains the cost for unmet demand for every load at every
time-step. An initial guide for the individual costs can be found in the answer
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to the user survey mentioned in section 5.2.2. From the answer regarding load
prioritization, it is evident that demand from either medical sockets or medical
equipment should be highly prioritized during the day, while medical lighting
should be especially prioritized during nighttime. It therefore makes sense to have
a cost matrix that separates between cost at night and daytime.

The other parameters can be tuned by a trial and failure approach, seeing spe-
cific tuning results in an outcome over a number of days. To make the outcome
more in line with the objectives specified in section 5.1, the parameters corre-
sponding to an objective can be modified.

5.6.4 Post-processing
From the optimization problem specified in the previous section, an amount of
power between 0 and Ri is allocated to a certain load i. However, this assumes
that the load is dimable. For most of the circuits, this is not true. The allocation
from the optimizer therefore has to be translated into a sorted priority where the
controller specified in the next section can choose to satisfy the full demand or
no demand from a given load. To perform this translation. The allocation from
each load is divided by its demand, multiplied by its cost and sorted in decreasing
order. Furthermore, loads allocated less than some threshold, are removed from
the priority list.

For the flexible loads, the load can run on a lower power than its minimum
requirement. Hence the supply has to either be 0 or above the minimum power
requirement. This is not implemented in the optimizer, hence the allocation from
the optimizer has to be processed before being passed to the flexible loads. After
the optimizer algorithm, a loop is included which loops through the allocation
to the flexible loads and checks whether it is below the minimum. If it is, the
allocation is set to zero.

5.7 Control
The controller is needed to bridge the gap between the optimizer, which runs
at set intervals based on the sampling rate of measurements, and the electrical
system, where demand and production are instantaneous. The controller can op-
erate in real-time. It is tasked with implementing the plan from the optimizer for
each time-step. Its inputs are the actual demand, production and battery level.
The additional input is the plan from the optimizer, which includes the priority
given to non-flexible loads, the allocation to the flexible loads and the allowed
charge/discharge from the battery.

The algorithm of the controller is simple, fulfilling the following task:

1. Calculate available power to be allocated - The available power to
allocate to the loads is dependent on available production, and the allocation
of power to/from the battery.
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2. Allocate power to non-flexible loads based on priority - For as long
as there is power available, allocate it to the non-flexible loads based on their
priority from the optimizer.

3. Allocate power to flexible loads based on planned allocation - For as
long as there is power available, allocate the demanded power to the flexible
loads based on the allocation from the optimizer.



CHAPTER

SIX

IMPLEMENTATION

6.1 Implementation overview
The control system outlined in 5 was implemented and simulated in Matlab R2023b[38].
The implementation consists of both Matlab scripts and a Simulink model. The
scripts define initial values and fetch all the data the Simulink model requires to
run. The interaction is highlighted in6.1.1.

To create the simulation the following models had to be implemented in Simulink:

• Load Forecaster

• Production Forecaster

• Battery Module

• Optimizer

• Controller

• Controller Current Control System

The interaction between the modules is shown in 6.1.2.
In the implementation, consumption data was collected with a 15-minute

resolution, however, as production and weather data is in 1-hour resolution, and
to increase simulation speed, the optimizer is set to run only at every hour.

6.2 Battery Module
The battery itself is simply modelled by an integrator integrating a saturated
signal. The signal is saturated so that it cannot exceed the maximum charge/dis-
charge rate of the battery. The integrator is also saturated to not exceed the max
or minimum capacity of the battery. In addition, as the controller has a 15-min
resolution, a block is added to convert this to hourly resolution because the battery
capacity is defined in watts per hour (W/h).

85
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Figure 6.1.1: Flowchart of the control system architecture.
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Figure 6.1.2: Chart showing the main components and signals of the imple-
mented solution in simulation. (p - production at ts, r - demand at ts, R̂ - demand
forecast for the whole prediction horizon. P̂ - production forecast for the whole
prediction horizon. pb - power to/from battery, b - battery capacity at ts, Priority
NFL - The internal priority of the non-flexible loads, Alloc FL - The power allo-
cated to the flexible loads, Alloc pb - allocated power to/from the battery.)

6.3 Load Forecaster

The load forecaster consists of the forecast block implementing the load forecasting
algorithm outlined in section 5.3. This is wrapped in a feedback loop using a PID
controller. A new forecast is made using the forecasting algorithm once every
hour, the consumption is however measured every 15 minutes. In between the
forecasts, the PID controller reduces the error between demand and the forecast
until a new forecast is made. The algorithm shown in 2 shows the internal of the
forecast block. The forecaster yields a forecast over the whole prediction horizon.
The first element of this forecast is extracted out and used in the feed-back loop.

Algorithm 2 Load forecaster algorithm (Pseudocode)
if simulationTime==wholeHour then . Only forecast every hour

historicData [historicData, rt�1]
forecastData arimaForecast(historicData, coefficients, predictionHorizon)

end if

R̂t = forecastData+ ut

r̂t = R̂t(:, 1) . Extract first estimate
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Figure 6.1.3: Chart showing the main components and signals of the current
control system in simulation. p - production at ts, r - demand at ts, b - battery
capacity at ts, pb - power to/from the battery, chargeON - control signal to shut
down battery charging. The chargeON mechanism is highlighted in the battery
control system shown in figure 4.2.1. The loop with ALLOC FL* and ALLOC
FL through the integrator is to prevent the allocation to the flexible loads from
exceeding daily demand.

Figure 6.2.1: Block diagram for the battery module. pb - power to/from the
battery during the 15 min interval, pb0

h1 - power to/from the battery converted to
hourly resolution, pbh1 - is the same as pb0

h1 only saturated by the max charge/dis-
charge rate.
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Figure 6.3.1: Block diagram for the load forecaster. rt - demand at time t, r̂t
- forecasted demand at time t, et - estimation error at time t, et�1 - estimation
error at time t-1, ut - forecast input at time t, R̂t - forecasted demand over the
whole prediction horizon at time t.

Figure 6.4.1: Block diagram for the production forecaster. pt - demand at time
t, p̂t - forecasted demand at time t, et - estimation error at time t, et�1 - estimation
error at time t-1, ut - forecast input at time t, P̂t - forecasted production over the
whole prediction horizon at time t.

6.4 Production Forecaster
The production forecaster has an identical internal layout to the forecast block.
Also here the forecast algorithm from section 5.5 is wrapped in a feedback loop
with a PID control to minimize error until the next forecast is made. Algorithm 3
shows the internal of the forecast block of the production forecaster module. The
forecaster yields a forecast over the whole prediction horizon. The first element of
this forecast is extracted out and used in the feed-back loop.

6.5 Optimizer
The optimizer implements the design from 5.6. The optimizer algorithm including
the non-linear optimization and post-processing is outlined in algorithm 4. The
non-linear optimization is performed using Matlabs fmincon with the ’interior-
point’ algorithm. the output from the optimizer is the priority given to non-flexible
loads, Priority NFL, the allocation to flexible loads, Alloc FL, and the allocation
to/from the battery, Alloc pb
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Algorithm 3 Production forecaster algorithm (Pseudocode)
if simulationTime==wholeHour then . Only forecast every hour

historicData [historicData, pt�1]
forecastData modelForecast(historicData, coefficients, predictionHorizon)

end if

P̂t = forecastData+ ut

r̂t = P̂t(:, 1) . Extract first estimate

Algorithm 4 Optimizer algorithm (Pseudocode)

R̂, P̂ , b R̂t, P̂t, bt . Get signals
C,K  C,K . Get constants

if simulationTime==wholeHour then . Only optimize every hour
constraints constraints(P̂ , b) . Set constraint function
objectiveFunction objectiveFunction(R̂, C, b,K) . Set objective
L, pb0 = optimize(objectiveFunction, constraints)
allocNFL, allocFL splitF lexAndNonF lexLoads(L)

priorityNFL sort(allocNFL÷ R̂(1)) . Find priority NFL

for flexLoad in (allocFL) do . Find allocation FL
if flexLoad � flexLoadMinW then

allocFL(flexLoad) = flexLoad
else

allocFL(flexLoad) = 0
end if

end for

Alloc pb pb0(1) . Extract first battery allocation

Out priorityNFL, allocFL,Alloc pb
end if
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6.6 Controller current control system
The controller for the current control system includes both the controller itself and
the integrator in figure 6.1.3. The integrator is included to stop the flexible loads
from exceeding their demand. The current control system algorithm is shown in
algorithm 5.

Algorithm 5 Current Control Algorithm (Pseudocode)
p0
b
 min([pb_max, (b� b_min)])

p_load p+ p0
b

p_load min([inv_max, p_load]) . Calculate available power

for demandLoad in r do . Add load if available power
if (p_load� demandLoad) > 0 then

loadON  demandLoad
p_load (p_load� demandLoad) . Reduce available power

end if
end for

for f in flexibleLoads do
if simulationTime 2 f_run_interval then . Check if load set to run

if (p_load� f) > 0 then
loadON f . Add load if available power
p_load (p_load� f) . Reduce available power

end if
end if

end for

pb  (p_load - loadON)

if b � b_max⇥ 0.9 and simulationTime < 15 then
chargeON 0 . Stop charge ref. 4.2.1

end if

Out  loadON , pb, chargeON

6.7 Controller
In the simulation, the controller implements the plan from the optimizer contin-
uously until a new plan is received. The algorithm is shown in algorithm 6. In
addition to the steps outlined in section 5.7, an additional step is added for the
simulation to reduce the draining of the battery to be no larger than the power
consumed by the loads.

Algorithm 6 shows the controller algorithm. Its inputs are the instantaneous
demand, production, battery SOC, the priority of non-flexible loads, the allocation
to flexible loads and allocation to/from the battery. In the simulation, its outputs
are the allocated power to the loads and charged/discharged from the battery.
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Algorithm 6 Controller algorithm (Pseudocode)
p0
b
 min(Alloc pb, b)

pavailable  min(p - p0
b
, invmax) . Calculate available power

for demand in priorityNFL do
if totalLoad+ demand  pavailable then

totalLoad = totalLoad+ demandload
loadON  priorityNFL(demand) . Allow load to run

end if
end for

for demand in AllocFL do
if totalLoad+ demand  pavailable then

totalLoad = totalLoad+ demandload
loadON  AllocFL(demand) . Allow load to run at allocated power

end if
end for

if pb < 0 then
pb  max(p0

b
, -totalLoad)

else
pb  p0

b

end if

Out  pb, loadON
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SEVEN

RESULTS

7.1 Test period
To evaluate the proposed solution against the current control system, both are
simulated with the same historical data for both consumption and weather for a
range of days. It is important to test the control system performance on a period
not included in the design of the control system. Hence, the week from 2023-12-
24 00:00 to 2024-01-01 00:00 was chosen because it contains no data used
in the control system design. Furthermore, as seen in figure 7.1.1 the daily
consumption is relatively normal, avoiding the days before December 24th 2023
used in the development of the models, and the large abnormal drop in measured
consumption on January 2nd 2024. The maximum theoretical production, based
on weather measurements and the model in equation 5.1 suggest somewhat varying
conditions for production as shown in figure 7.1.2, yielding an interesting case for
the control system.

7.2 Simulation candidates
Results from 4 different simulations using currently installed equipment are in-
cluded. All simulating with the same data and conditions. The candidates are:

• Current control system

• Proposed control system with tuning 1 - Tuned for critical load relia-
bility.

• Proposed control system with tuning 2 - Tuned for battery health

• Proposed control system with tuning 2 using perfect demand fore-
casts - Unrealistic case of the control system knowing all demand perfectly
in advance.

Over the same data, the current control system and proposed control system
with tuning 2 are also simulated with three different levels of installed battery
capacity.
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Figure 7.1.1: Total daily consumption Chiwoza from December 1st 2023 to
January 15th 2024. The shaded area represents the dates from December 24th
2023 to January 1st 2024 used as the testing period for the control system.

7.3 Simulation results

7.3.1 Power Flow
The power flow shows the high-level flow of power in the system. The consumption
and production are plotted as a time-series against the primary y-axis, while the
State of charge is plotted against the secondary y-axis. A higher production than
consumption indicates the charging of the battery, while a higher consumption
than production indicates battery discharge. The plots for the current control
system, tuning 1 and tuning 2 is found in figure 7.3.1, 7.3.2 and 7.3.3 respectively.

7.3.2 Unmet Demand
Unmet demand is when a load has requested a certain amount of power, but has
not been supplied it. In figure 7.3.5, 7.3.6 and 7.3.7 the unmet demand is plotted
with its magnitude and time of occurrence for the current control system, tuning
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Figure 7.1.2: Maximum theoretical production based at Chiwoza from December
7th 2023 to January 15th 2024 based on the model in equation 5.1. The shaded
area represents the dates from December 24th 2023 to January 1st 2024 used as
the testing period for the control system.

1 and tuning 2 respectively. In figure 7.3.9, 7.3.10 and 7.3.11 the amount of times
a load has its demand unmet as a ratio to the total length of the simulation is
graphed.

7.3.3 Battery Health

The battery health with regards to how often the State of Charge is at the
minimum capacity, below the buffer or above the threshold for battery degra-
dation. This is shown in figure 7.3.13, 7.3.14 and 7.3.15 for the current control
system, tuning1 and tuning2. Included is also how often the absolute value of the
charge/discharge-rate is above the healthy level.
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Figure 7.3.1: Production, consumption and SOC for the current control system.
The horizontal red stapled lines are thresholds for the battery.

7.3.4 Flexible Loads

Flexible loads have a requested energy demand within the day. Figure 7.3.17,
7.3.18 and 7.3.18 shows deviation from that demand. A positive value indicates
an oversupply meaning that more than the daily energy demand is supplied to
the load, while a negative value indicates an undersupply meaning that less than
requested is supplied. Values at zero, as in figure 7.3.17 tell that the flexible load
demand is matched exactly.

7.3.5 Production

Figure 7.3.21, 7.3.22 and 7.3.23 shows the relation between the potential and
utilized production over time.

7.3.6 Combined Results

Table 7.3.1 shows the combined results for the simulations concerning load and
utilization. Table 7.3.2 shows the results concerning the battery health. The total
load reliability expresses the reliability of combined reliability of all loads, while
the critical expresses the reliability of medical loads. The reliability is measured
using SAIDI from section 3.3.
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Figure 7.3.2: Production, consumption and SOC for the proposed control system
with tuning 1. The horizontal red stapled lines are thresholds for the battery.

7.3.7 Critical Load Reliability at different battery capaci-
ties

Figure 7.3.25 shows the results regarding critical load reliability, for the current
control system and proposed control system with tuning 2. The reliability is
measured using SAIDI as described in section 3.3.
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Figure 7.3.3: Production, consumption and SOC for the proposed control system
with tuning 2. The horizontal red stapled lines are thresholds for the battery.

Candidate Total relia-
bility (%)

Critical load
reliability (%)

Flexible Load
Deviation
(%)

Utilization
(%)

Current control
system

96.86 97.14 0 91

Tuning1 95.74 100 -30.39 68
Tuning2 95.84 99.80 112.24 70
Tuning2 perfect
forecast

98.14 99.74 -79.72 62

Table 7.3.1: The combined simulation results relating to load.

Candidate b=5% (%) b<20%
(%)

b>90%
(%)

|pb|>0.2C%
(%)

Current control
system

5.33 17.30 18.86 9.88

Tuning1 0 5.46 7.02 3.64
Tuning2 0 2.86 2.47 2.60
Tuning2 perfect
forecast

0.91 10.53 15.73 4.68

Table 7.3.2: The combined simulation results relating to battery health. In the
table, b is the SOC while pb is the charge/discharge-rate.
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Figure 7.3.4: Production, consumption and SOC for the proposed control system
with tuning 2 using perfect demand estimation. The horizontal red stapled lines
are thresholds for the battery.
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Figure 7.3.5: Unmet demand across the period for the current control system.

Figure 7.3.6: Unmet demand across the period for the proposed control system
with tuning 1.
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Figure 7.3.7: Unmet demand across the period for the proposed control system
with tuning 2.
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Figure 7.3.8: Unmet demand across the period for the proposed control system
with tuning 2 using perfect demand estimation.
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Figure 7.3.9: Number of times demand was unmet as a percentage of the whole
period for the current control system.



104 CHAPTER 7. RESULTS

Figure 7.3.10: Number of times demand was unmet as a percentage of the whole
period for the proposed control system with tuning 1.
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Figure 7.3.11: Number of times demand was unmet as a percentage of the whole
period for the proposed control system with tuning 2.
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Figure 7.3.12: Number of times demand was unmet as a percentage of the
whole period for the proposed control system with tuning 2 using perfect demand
estimation.
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Figure 7.3.13: Number of times battery was in unhealthy states as a percentage
of the whole period for the current control system.
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Figure 7.3.14: Number of times battery was in unhealthy states as a percentage
of the whole period for the proposed control system with tuning 1.
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Figure 7.3.15: Number of times battery was in unhealthy states as a percentage
of the whole period for the proposed control system with tuning 2.
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Figure 7.3.16: Number of times battery was in unhealthy states as a percentage
of the whole period for the proposed control system with tuning2 using perfect
demand estimation.
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Figure 7.3.17: The deviation from flexible load energy demand each day for the
current control system. This plot indicates no deviation from flexible load demand
by supply.
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Figure 7.3.18: The deviation from flexible load energy demand each day for the
proposed control system with tuning 1.
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Figure 7.3.19: The deviation from flexible load energy demand each day for the
proposed control system with tuning 2.
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Figure 7.3.20: The deviation from flexible load energy demand each day for the
proposed control system with tuning 2 using perfect demand estimation.
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Figure 7.3.21: Potential and utilized production for each day for the current
control system.
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Figure 7.3.22: Potential and utilized production for each day for the proposed
control system with tuning 1.



CHAPTER 7. RESULTS 117

Figure 7.3.23: Potential and utilized production for each day for the proposed
control system with tuning 2.
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Figure 7.3.24: Potential and utilized production for each day for the proposed
control system with tuning 2 using perfect demand estimation.
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Figure 7.3.25: Critical load reliability at different battery capacities. Comparing
the current control system (blue) and the proposed control system with tuning 2
(yellow).
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CHAPTER

EIGHT

DISCUSSION

The evaluation criteria outlined in table 5.1.2 form the baseline of the quantitative
evaluation of the study. Looking at the results in table 7.3.1, an increase of 2.86
and 2.66 percentage points for the critical load reliability is found between the
current control system and the proposed control system with tuning 1 and tuning
2 respectively. Relating this to KPI V in table 5.1.2 this indicates an improvement
in the ability of the proposed control system compared to the current control
system to support loads critical to the functioning of the site. The critical load
reliability from the proposed control system is also better than the current when
decreasing battery capacity, as seen in figure 7.3.25. In the figure, the reduction
in critical load reliability of the proposed control system is only 1.6 percentage
points when going from 7.5kWh to 3.5kWh battery capacity. This is superior to
the current control system, in which critical load reliability drops by 7 percentage
points over the same decrease in battery capacity.

Given that the user survey in section 5.2.2 found that purpose loads were given
the highest priority of the end-user and that most users would prefer securing crit-
ical loads at the expense of non-critical loads as seen by the answer given in table
B.7, the increased critical load reliability indicates a potential increase in KPI III
- User Satisfaction. The picture here is less clear however due to the decrease in
total reliability of a little more than 1 percentage point for the proposed control
system compared to the current control system. This decrease in total reliability
is also evident in the reduction in utilization of the proposed control system com-
pared to the current control system. With regards to the KPI IV , Utilization, the
proposed control system is therefore inferior.

Using KPI I and II to evaluate the results with regards to battery health, ta-
ble 7.3.2 shows that both the proposed control system has a reduction in both the
amount of time the battery is above 90% of its capacity and when the charge/dis-
charge rate exceeds the optimal threshold of 0.2C. The proposed control system
is therefore successful in achieving better battery health than the current control
system when measured on the KPIs in table 5.1.2. The results for the proposed
control system with tuning 2, shown in figure 7.3.15, have a larger reduction than
the proposed control system with tuning 1, shown in figure 7.3.14. As tuning 2
was tuned to achieve better battery health than tuning 1, the lower values show
that the tuning did achieve that.
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The degree to which the proposed control system fulfils its specifications, found
in table 5.1.3, is to be evaluated qualitatively. Two of these, numbers 1 and
2 are fulfilled by design. The proposed control system uses historical data and
runs at a slower frequency than the sampling of demand and production. The
improvement along some of the KPIs indicates that the proposed control system
operates successfully while satisfying these two specifications.

Another of the qualitative evaluation criteria of the control system is number
3, the ability to adjust to a change in the prioritization of goals. Tuning 1 was
tuned to achieve high critical load reliability. Comparing tuning 1 and 2 in table
7.3.1 shows that tuning 1 achieved higher critical load reliability than tuning 2.
On the other hand, tuning 2 which was tuned for better battery health, did achieve
better battery health results in table 7.3.2. Because the two tunings did manage
to achieve better performance than the other on the specific goal it was tuned for,
this indicates that the proposed control system is adjustable to a change in goal
prioritization.

Another qualitative criterion is the adaptability to changing conditions, shown
as number 4 in table 5.1.3. The current control system is by design not adaptive to
changing conditions because the only behavior change is time-controlled. Forecasts
do not feature as an input, leading to some of the weaknesses discussed in section
4.2, such as the inability to fully charge the battery on days with poor production.
As the solar conditions change yielding lower production, as shown in figure 7.1.2,
it is expected that the current control system will struggle to support demand for
those days. The plot for the errors, shown in figure 7.3.5, is as expected because
the errors follow immediately after the days of low solar production. The current
control system does not reduce the consumption, as shown by the satisfaction of
flexible loads in 7.3.17, which produces a low state of charge, leading to the system
reaching battery minimum during the night before charging commences.

In contrast, the proposed control system has both production and demand
forecasts as inputs. This enables it to predict and respond to diminishing solar
yield by lowering the supply to the flexible loads. This effect is shown in figure
7.3.18 and 7.3.19 for tuning 1 and 2 respectively by the higher negative devia-
tion from flexible load demand for day 4 and 6. As these are the two days with
lower production, reducing flexible loads allows the system to charge up to a high
enough SOC to support critical loads until the next day. Compared to the current
control system, the proposed control system is therefore considerably more effec-
tive in responding to changing conditions, fulfilling specification 4 from table 5.1.3.

As the proposed control system has only been applied to one site, the spec-
ification 5 of applicability across sites cannot be fully answered for the specific
derived solution itself. However, the process outlined, starting with building the
forecaster and then the optimizer contains no steps unique to the case considered
in this thesis. Repeating the process for another site of the same topology, i.e. a
PV-powered islanded system, will therefore lead to a solution. The effort required
to do so will depend on how similar the conditions are. However, considering the
results from the user survey on connected loads shown in table B.4, the similarity
in terms of loads connected and the priority of the loads are large between the
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various sites, suggesting that much of the process can be replicated. One of the
weaknesses of the current control system was the inability to adjust to the condi-
tions at the site, noticeable in how some sites charged above the battery health
threshold even when not required. The proposed solution would punish exceeding
the threshold regardless of which site it is installed at.

Furthermore, as seen in figure 7.3.25, the proposed control system performed
far better regarding critical load reliability than the current control system when
the battery capacity was reduced. This indicates that the control system could
perform well at sites with lower battery capacity. In all, there is a high likelihood
of the proposed control system being more applicable than the current across dif-
ferent sites.

The proposed control system has three weaknesses visible in the result: 1)the
decrease in total reliability, 2) the oversupply to flexible load and 3) the decrease
in utilization. The decrease in total reliability is visible as the increase of about
1 percentage point in total reliability in table 7.3.1. Considering the errors for
the proposed control system, shown in figure 7.3.6 and figure 7.3.7 these errors
are more frequent than the errors for the current control system, shown in figure
7.3.5. Relating it to the power flow plots in figure 7.3.2 and 7.3.3, the errors are
occurring during times of battery discharge. This indicates two related weaknesses
in the design of the proposed control system. The first of which is the relatively
high error from the forecasting for both the production and forecast. As the op-
timizer during times of battery discharge allocates an amount of power from the
battery to exactly support the demand at that time-step, any error from the fore-
caster will lead to the optimizer allocating the wrong amount of power. Hence,
the lowest priority loads will be shed if the demand exceeds the allocation. To
shed low priority load is the control mechanism of the control system, and to be
expected. The sub-optimal situation that does arise however is when the control
system allocates too little power from the battery to the load because of a faulty
forecast and hence shedding it when it could have been supplied. Evidence for
this happening is seen by the increase in total reliability of 2.3 percentage points
from the proposed control system with tuning 2 with perfect forecast compared
to the proposed control system with tuning 2 with imperfect forecast.

The oversupply of flexible loads points to another weakness of the proposed
control system. This is evident in both figure 7.3.18 and 7.3.19 where flexible loads
are frequently supplied far more than demand. While not in itself a problem, it is
sub-optimal as energy over-allocated to one load could instead have been used to
supply another load. These results were at first surprising, because the objective
function in 5.14 does not reward, but punishes supply exceeding demand for flex-
ible loads. Some of the over-supply can be attributed to inaccurate forecasting.
However, even with perfect demand forecasting, the results shown in 7.3.20 have a
persistent oversupply. This suggests imperfect forecasting is not the only reason.
The objective function is non-linear, The non-linearity of the optimizer can fail to
yield a global minima, but instead be stuck in a local one. This yields sub-optimal
results.

The post-processing of the optimizer solution is also unfortunate, because it
hides details away from the optimizer, creating a distance between its dynam-
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ics and the system dynamics. This includes the fact that, with the exception of
flexible loads, a load’s demand either has to be fully met or not. This is hidden
for the optimizer, which delegates an amount of power to each load between 0
and its forecasted demand r. An integer programming approach was attempted,
where the allocation would be binary 0 or r, but this failed. These two problems,
together with the errors in forecasting, yield a non-optimal solution.

The decrease in utilization is a weakness of the solution, as this was indeed one
of the KPIs from 5.1.2. The decrease is visible in table 7.3.1 where both tunings of
the proposed control system have a decrease in utilization of about 20 percentage
points. Looking at the figures, comparing the plot of the utilized and potential
production in figure 7.3.21 to the same plot for tuning 1 of the proposed con-
trol system in figure 7.3.22, we see that the difference between the potential and
utilized production is larger. This means that more of the potential production
remains unutilized. A decreased utilization compared to the current control sys-
tem is however expected, as the current control system has a very high utilization
because it never limits loads. The lower utilization of the proposed control system
suggests an area of improvement where additional loads could be run.

Comparing the results to the literature, the improvement in some objectives
in this thesis mirrors the improvement (Salazar A. et al., 2020) achieved by their
optimization approach compared to the rule-based approach. Their optimization
methods are similar to the ones used in this thesis, however, their control objectives
were far different. The results are similar to the ones achieved by (Rajbhandari
et al., 2022) for their case study on implementing a rule-based control system to
increase user satisfaction in a rural microgrid. Their results showed an increase
in the energy supplied to high-priority loads, while a decrease in the total supply.
This is the same result as in this thesis. The user satisfaction function defined by
the authors through interaction with the community nevertheless yields a higher
user satisfaction score to the proposed control system than the present control
system. Because no user satisfaction function was created for this thesis, a similar
conclusion cannot be drawn. However, this thesis is able to reproduce the same ef-
fect of higher achievement on pre-defined goals, also at a broader set of goals than
considered in that paper. The results also reflect the proposition from (Mehra, V.
et al., 2018), that a controlled system can achieve higher critical load reliability
than an uncontrolled one, even when having less battery capacity available.

The significance of this study is that it provides a process to create an adapt-
able control system shown through simulation to be able to respond to a wide
and varying set of goals. While it fails to provide an optimal solution, it makes
DCP able to improve part of its operation at sites. It therefore allows DCP to
engage in further dialogue with its stakeholders as to how to prioritize between
certain goals. This dialogue is a crucial part of the process, given the hesitation
some end-users expressed in the user survey shown in table B.8 to the prospect of
having an automatic control system implemented at their sites.

The proposed control system allows DCP to run their systems to conserve bat-
tery health and prioritize important loads. From an economic standpoint, a gain
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in battery health could translate into less need for battery replacement, reducing
costs. Furthermore, figure 7.3.25 showed that the proposed control system man-
aged to keep a high critical load reliability even with less installed battery capacity.
This gives DCP the option to reduce their system size while still being confident
that prioritized loads can be supported. Referring back to the work by (Mehra,
V. et al., 2018) on system sizing and control, this can be turned into a lower
Levelized Cost of Energy, which again lowers the capital requirement for installing
microgrids and providing energy access. The study therefore has significance for
the UN Sustainable Development Goal 7[2].

Furthermore, the study opens several lines of further work to improve the pro-
posed solution. First of all the solution is limited by the accuracy of the forecasts.
For the production, this could be improved by adding measurement devices at the
site allowing the measurement of unattenuated production. Because the current
production measurement is limited by the load, its value for the estimation of total
potential production is reduced. A possible solution could be a small stand-alone
PV-module, consisting of a single panel, connected to a load consuming all the
produced power. This would give insight into the actual production conditions at
the site.

The load forecast was shown to be inaccurate for several loads. Most of the load
forecasts consisted of a pure statistical analysis. The loads with sudden and rare
spikes in their consumption proved difficult to forecast. To augment the statistical
analysis, a study of the sites and their load usage could yield insight. This would
be akin, but more in-depth than what was done in the user survey presented in
this thesis, which mostly focused on prioritization between loads.

Furthermore, the optimizer exhibited several instances of non-optimal be-
haviour. Before implementing at sites, DCP should aim to further explore and
develop to fill these shortcomings. This could be by attempting to define the opti-
mization problem discretely, as a mixed integer programming problem. This would
address the issue of the optimizer allocating less than demanded to certain loads.
The optimizer would also benefit from being defined using a differentiable objec-
tive function because that would increase the likelihood of achieving the global
optimum.

Lastly, there are several more steps before such a control system can be re-
alised in practice. This includes hardware design and selection, designing a good
human-machine interaction and communicate with all stakeholders. This is a
multi-disciplinary effort that would require several diverse viewpoints and skill
sets. By pointing out some possible solutions, and possible gains, this thesis is an
initial step of that effort.
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NINE

CONCLUSIONS

This thesis was tasked with the specific goal of developing a control system yielding
an improved operation in some important aspects of DCPs microgrids. Through
dialogue with both DCP and the end-users at the site, a set of Key Performance
Indicators was developed, enabling the evaluation of a proposed control system
compared to the current one. These include increased reliability for loads critical
to the function of the site and the improved health of the battery installed in
the microgrid. A proposed solution was developed based on analytics of the cur-
rent operation at the specific site of Chiwoza. Simulating this solution over novel
historical data yielded improved results on some of the pre-defined quantitative
metrics, relating to battery life-time and critical load satisfaction, compared to the
current control system. However, the proposed control system performed worse
at other KPIs such as the utilization and total load reliability. The solution also
satisfied a set of qualitative specifications, such as the adaptability to changing
conditions and changing prioritization of objectives, the utilization of historical
data and the ability to operate at a lower time frequency than the electrical sys-
tem. The specification of applicability across various sites was not shown to be
met in the simulation, however, a larger cross-site applicability than the current
control system was indicated.

The proposed solution was developed based on an analysis of the present oper-
ation. This included a statistical study of the consumption, which yielded insight
into different consumption patterns for different loads, and a classification of loads
based on their control characteristics. A user survey was developed and conducted
to gain more insight into consumption, specifically about how the end-users pri-
oritize amongst loads. Due to the weaknesses of the historical production data,
the production was instead analysed from a physical perspective. Together, these
two analytical studies yielded a demand and production forecaster, using a sta-
tistical and physical model respectively. A non-linear optimization controller was
developed which, based on the forecasts and measurements of battery conditions,
developed and implemented a plan for load allocation and battery charge/dis-
charge. This control system was implemented and simulated in Matlab[38].

The work provides DCP with a methodology to control their operation for
specific goals. It allows DCP to gain insight into their consumption and produc-
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tion, and forecast that into the future. It can reduce their cost of equipment and
maintenance, while providing them with more of a basis to guarantee certain per-
formance levels to potential customers. For the end-users at the site, the work
can, if implemented, allow them to have more predictability and assurance for the
operation of loads critical to the site.

In a larger sense, the work performed in this thesis is aligned with the UNs
Sustainable Development Goal 7[2], which opened this thesis. The proposed con-
trol system provides a pathway towards more reliable and affordable renewable
energy for a specific site, which constitutes a small portion of the

"ENSURE ACCESS TO AFFORDABLE. RELIABLE. SUSTAINABLE
AND MODERN ENERGY FOR ALL" (UN DESA, 2023, p.13-14)[3]
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A - GITHUB REPOSITORY

All latex-files used in this document are included in the Github repository linked
below. Code is not included due to intellectual property, but may be requested
from the author. Further explanations are given in the readme-file.

Github repository link
• https://github.com/Martinakraft99/master-thesis.git
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B - USER SURVEY RESULTS

B1 - Survey participants

Name Type District

Chiwoza Health Lilongwe
Chimwamkango Health Lilongwe
Mitondo Health Ntchisi
Chinyama Health Kasungu
Emsizini Health Mzuzu
Livwezi Health Kasungu
Choma Health Mzuzu
Luwawa Health Mzimba
Matuli Health Mzuzu
Namiyasi School Mangochi
Nsanje Health Dowa
Lemwe Health Lilongwe
Katewe School Dedza
Mteneza School Mangochi
Mndinda Health Ntchisi
Chikuluma Health Machinga
Mangochi Health Mangochi

Table B.1: All sites surveyed.
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B2 - System overview

Q1: Is the solar power system at your facility working?

Q2: How satisfied(1-5) are you with the solar power system at your facility?

Q3: Are staff houses powered?

Name Q1 Q2 Q3

Chiwoza Yes 5 Yes
Chimwamkango Yes 5 Yes
Mitondo Yes 5 Yes
Chinyama Yes 5 Yes
Emsizini Yes 4 Yes
Livwezi Yes 4 Yes
Choma Yes 4 No
Luwawa Yes 5 Yes
Matuli Yes 4 Yes
Namiyasi Yes 4 Yes
Nsanje Yes 5 Yes
Lemwe Yes 5 Yes
Katewe Yes 4 No
Mteneza Yes 4 Yes
Mndinda Yes 5 Yes
Chikuluma Yes 5 Yes
Mangochi Yes 5 No

Table B.2: Survey results for questions on the overall system.
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B2a - Load abbreviations

Name Abbreviation

Light (Purpose) P1
Device charging (Purpose) P2
Medical equipment P3
Sterilizer P4
Refrigerators P5
Computers P6
Light (Staff) S1
Device charging (Staff) S2
Entertainment devices S3
Refrigerators S4
Appliances S5
Water pump W1
Water heater W2

Table B.3: Abbreviations used in the load table.

137



B2b - Connected loads

Name P1 P2 P3 P4 P5 P6 S1 S2 S3 S4 S4 W1 W2

Chiwoza 1 1 1 1 1 0 1 1 1 1 1 1 1
Chimwamkango 1 1 0 0 1 0 1 1 1 1 1 0 0
Mitondo 1 1 1 0 1 0 0 0 0 0 1 0 0
Chinyama 1 0 0 0 0 0 1 1 0 1 1 0 0
Emsizini 0 1 0 0 1 1 1 1 1 1 1 0 0
Livwezi 1 1 1 1 1 0 1 1 1 1 0 1 1
Choma 1 1 0 1 0 0 1 1 1 1 1 0 0
Luwawa 1 1 0 0 1 1 1 1 1 1 1 0 0
Matuli 1 1 0 1 1 1 1 1 1 1 1 0 0
Namiyasi 1 1 0 1 1 1 1 1 1 1 1 0 0
Nsanje 1 1 1 0 1 1 0 0 0 0 0 0 0
Lemwe 1 1 0 0 1 0 1 1 1 0 1 1 1
Katewe 1 1 0 0 0 1 0 0 0 0 0 0 0
Mteneza 1 1 0 0 0 0 1 1 1 0 1 1 1
Mndinda 1 1 1 1 1 1 1 1 1 1 1 0 0
Chikuluma 1 0 0 0 1 0 1 1 1 1 0 0 0
Mangochi 1 1 1 1 1 1 0 0 0 0 0 1 1

Table B.4: Connected loads reported through the user survey. Using the abbre-
viations in B.3
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B3 - Load prioritization Day

Q: Amongst the loads, how would you prioritize them during daytime?

Load 1st 2nd 3rd 4th

Chiwoza P5 P3 W1 P4
Chimwamkango P5 P2 S2 S1
Mitondo P4 P5 S5 P2
Chinyama P1 P2 S1 -
Emsizini P5 P6 S5 S1
Livwezi W1 P5 P4 S2
Choma P1 P5 S1 P2
Luwawa P4 S2 S5 P6
Matuli P5 P4 S5 P2
Namiyasi P5 P4 S1 P2
Nsanje P3 P5 P6 S2
Lemwe P5 S2 W2 P2
Katewe P6 P2 W2 -
Mteneza W1 S2 P2 P3
Mndinda P4 P3 P6 S2
Chikuluma P5 P2 - -
Mangochi P3 P2 P4 -

Table B.5: Survey results for load prioritization during daytime.
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B4 - Load prioritization Night

Q: Amongst the loads, how would you prioritize them during nighttime?

Load 1st 2nd 3rd 4th

Chiwoza P1 P3 P4 P2
Chimwamkango P1 P2 S1 S2
Mitondo P1 P5 S2 P2
Chinyama S1 P2 S5 S3
Emsizini P1 P5 P2 P2
Livwezi P1 P3 P5 S1
Choma P1 S1 P5 S2
Luwawa P1 P5 S1 P2
Matuli P1 S5 P5 S1
Namiyasi P1 S1 S3 P2
Nsanje P5 P6 P3 -
Lemwe P1 P5 W2 W1
Katewe - - - -
Mteneza P1 S3 S1 P2
Mndinda P1 P5 P4 S1
Chikuluma P5 P2 - -
Mangochi P1 P5 P3 -

Table B.6: Survey results for load prioritization during nighttime.
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B5 - Forced choice

Q1: Would you rather have...?

A1 : Staff houses powered during evening, high risk of other high power de-
vices such as water pump, water heater or medical equipment being unable to run
during night.

B1 : Staff houses not powered during evening, low risk of other high power
devices such as water pump, water heater or medical equipment being unable to
run during night.

Q2: Which of these is more acceptable?

A2 : Staff houses powered during evening all days of the week, high power
devices such as water pump, water heater or medical equipment being unable to
run during nighttime once or twice a week.

B2 : Staff houses not powered during evening once or twice a week, high power
devices such as water pump, water heater or medical equipment being able to run
during nighttime all days of the week.

Name Q1 Q2

Chiwoza B1 B2
Chimwamkango A1 A2
Mitondo B1 B2
Chinyama A1 A2
Emsizini B1 B2
Livwezi B1 B2
Choma B1 B2
Luwawa B1 B2
Matuli B1 B2
Namiyasi B1 B2
Nsanje B1 B2
Lemwe B1 B2
Katewe B1 B2
Mteneza A1 A2
Mndinda B1 B2
Chikuluma B1 B2
Mangochi B1 B2

Table B.7: Forced choice between loads.
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B6 - Control system acceptability

Q1: If the system was automatically controlled based on the prioritization you
have given, would that be acceptable?

Q2: If, given such a control system, you suddenly were not able to run a load you
had not prioritized, would you understand why?

Name Q1 Q2

Chiwoza YES YES
Chimwamkango YES YES
Mitondo YES YES
Chinyama NO YES
Emsizini YES NO
Livwezi YES YES
Choma NO YES
Luwawa YES YES
Matuli NO YES
Namiyasi YES YES
Nsanje NO YES
Lemwe NO NO
Katewe NO NO
Mteneza NO NO
Mndinda NO YES
Chikuluma NO NO
Mangochi YES YES

Table B.8: Acceptability and understanding of an eventual control system.
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