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Introduction

The main topics of this thesis are how to analyze nonregular screening
designs and how to block both regular and nonregular two-level screening
designs. These are topics at the heart of the field Design of Experiments,
thus an introduction to the historical background and relevant terminol-
ogy will be given in Section 1. Selected examples of applications with
relevance for DNB will be given in Section 2.

1 Design of Experiments

The human mind is inclined to search for explanations. We observe and
analyze our surroundings continuously, and strive to rationalize, and
sometimes influence, our observations. The field of statistics provides
tools and frameworks for analyzing structured information. In many
cases we have little or no control of the observed process and are at
the mercy of shifting circumstances when the data is collected. But in
some lucky cases, the circumstances can be controlled, thus one may
ensure observing the desired conditions and results thereof. The field
of statistics concerned with planning and conducting controlled gath-
ering of data and its subsequent analysis is called Design of Experi-
ments (DoE). The godfather of DoE is Ronald Fisher, whose work at
the agricultural research institution Rothamstead Experimental Station
in the 1920’s inspired the development of methods for improving exper-
imentation (Bodmer, 2003). Sowing and harvesting are slow processes
that require large areas of land. Trying to improve the process requires
structured gathering of data to utilize the resources efficiently. The
approaches are however general, and his book ”The Design of Experi-
ments” (Fisher, 1935) is considered a cornerstone of DoE. The field has
found applications in a wide variety of settings in which data is costly
to collect, but the experimental settings can be controlled.
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A key problem in DoE for industrial applications is to plan exper-
iments for investigating an unknown response surface (Myers et al.,
2016). Given a response y and a set of potentially influential factors
x1, x2, ..., xk, the experimenter may wonder which factors affect the re-
sponse, how the nature of the process can be described and how the
response may be optimized. Consider for instance the process of baking
a cake without a predefined recipe. Then the response y may be the
amount of cake eaten by the guests, or in more professional settings,
the total score given by a tasting panel. Potentially influential factors
may be the amount of flour, sugar, eggs and other ingredients, as well
as temperature and baking time. One way to assess the impact of each
factor is by varying one factor at a time (OFAT). This is often a chosen
strategy as it ensures control of which factor affected the response and
how much, but it has some obvious drawbacks (Czitrom, 1999). First of
all, testing one factor at a time requires conducting a huge number of
experiments if there are more than just a few factors. Moreover, there
may be interaction effects between the factors that will not be discovered
when only varying one factor at a time.

1.1 Two-level screening designs

The starting point of an experimentation with many potentially influen-
tial factors is often a screening, in which the goal is to identify the factors
affecting the response, called the active factors, for further experimenta-
tion. One can then begin by conducting a two-level screening design and
analyze this under the assumption that the unknown response surface
can be coarsely approximated by a model consisting of main effects and
interactions, which is used to identify the active factors. These can then
be tested more thoroughly using more levels and thereby enabling more
advanced models, for instance including quadratic terms.

1.1.1 Regular designs

A typical starting point for screening is a two-level factorial design, in
which a high and a low level is chosen for each factor. The corresponding
values are coded as 1 and -1 in the matrix representing the experimental
design. Consider for instance the simple case of baking a four-ingredient
cake consisting of sugar, eggs, flour and milk (Lee, 2022). The six fac-
tors under consideration can then be the amount of sugar, the amount
of eggs, the amount of flour, the amount of milk, oven temperature and
baking time. The corresponding levels may be chosen as in Table 1.1.
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Table 1.1: High and low factor levels for the cake experiment.

Factor Factor name Unit of measurement Low level (-1) High level (1)

A Sugar g 100 200
B Eggs 2 6
C Flour g 50 150
D Milk dl 1 2
E Temperature degrees Celsius 150 200
F Baking time minutes 40 60

As the experiment includes k = 6 experimental factors with two levels
each, testing all possible combinations will require 26=64 experimental
runs. Then the experiment is called a full factorial experiment and
enables the estimation of all effects corresponding to the six factors.
The first eight runs of the resulting experiment can be seen in Table
1.2, where the combination in the first row represents baking a cake
consisting of 100 grams of sugar, 2 eggs, 50 grams of flour and 1 deciliter
of milk for 40 minutes at 150 degrees Celsius.

Table 1.2: The eight first rows of the 26 design.

Run A B C D E F

1 -1 -1 -1 -1 -1 -1
2 1 -1 -1 -1 -1 -1
3 - 1 1 -1 - 1 -1 -1
4 1 1 -1 - 1 -1 -1
5 -1 -1 1 -1 -1 -1
6 1 -1 1 -1 -1 -1
7 - 1 1 1 - 1 -1 -1
8 1 1 1 - 1 -1 -1

The resulting model is given as ŷ = Xβ̂, where X is a design matrix
with n = 64 rows and p = 64 columns if an intercept and all possible
effects are to be included in the model. The number of effects for such
a model is given by 1 +

(
k
1

)
+

(
k
2

)
+ ...+

(
k

k−1

)
+

(
k
k

)
. Interaction effects

are found by including the Hadamard product of the corresponding fac-
tor columns. The regression coefficients β̂ can then be calculated as
β̂ = (XTX)−1XTy. This is the usual way to find coefficients for linear
models. In DoE, it is common to use the term ”effect” to denote the
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change in response when a factor is changed from the low level to the
high level. The effect of A is therefore twice the regression coefficient
of A. For balanced designs, the effect of A can also be calculated as
the difference between the mean response for the runs where A is at the
high level and the mean response for the runs where A is at the low level.

It is common to assume that higher-order interactions are unlikely to
be active. In this case, one would for instance expect the two-factor-
interaction EF (temperature and baking time) to affect the results,
whereas the six-factor interaction between all the included factors is
much harder to interpret. If one is willing to ignore the higher-order in-
teractions, one can reduce the number of runs needed for the experiment
by allocating factors to higher-order interactions columns. For instance
assigning the factor E to the column given by ABC and F to the col-
umn BCD. Then the interaction effects ABC and BCD are impossible to
separate from the main effects E and F respectively, but if higher-order
effects are negligible, that is not a problem. Using two higher-order in-
teractions to define factor columns, the number of runs is reduced to
26−2, and the resulting design is a fraction of the original full factorial
design. It is therefore called a fractional factorial design. The eight first
rows of the design can be found in Table 1.3. Note how the signs in
columns E and F have changed compared to the 26 design in Table 1.2.

Table 1.3: The eight first rows of the 26−2 design.

Run A B C D E=ABC F=BCD

1 -1 -1 -1 -1 -1 -1
2 1 -1 -1 -1 1 -1
3 - 1 1 -1 - 1 1 1
4 1 1 -1 - 1 -1 1
5 -1 -1 1 -1 1 1
6 1 -1 1 -1 -1 1
7 - 1 1 1 - 1 -1 -1
8 1 1 1 - 1 1 -1

In general, a 2k−p design consists of a 1
2p fraction of the 2k design.

The interactions assigned to factor columns, in this case E=ABC and
F=BCD, are called generators for the design. The complete defining re-
lation consists of all terms that equal the identity column. In this case,
I=ABCE=BCDF=I2=ADEF, so I=ABCE=BCDF=ADEF is the com-
plete defining relation. The terms in the defining relation are referred
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to as words. The aliasing structure for an effect can then be found by
multiplying it with all terms in the defining relation. The resolution R
of a design equals the shortest word in the defining relation (Box et al.,
2005). If the shortest word is ABCE, the resolution is IV. Then two-
factor interactions are aliased with each other, and main effects with
three-factor interactions. The higher the resolution, the more lower-
order effects can be estimated, which is a desirable property.

A related property which is very useful when assessing the capabilities
of a screening design is projectivity, defined by Box and Tyssedal (1996)
as ”A design with n runs and k factors each at two levels is said to be
of projectivity P if the design contains a complete 2P factorial in every
possible subset of P out of the k factors, possibly with some points repli-
cated”. If for instance a design is of projectivity P = 3, all main effects
and interactions can be estimated for any combination of three active
factors. In some cases, not requiring the higher-order interactions to be
estimable can increase the number of active factors for which the lower-
order effects can be estimated. Evangelaras and Koukouvinos (2004)
therefore defined generalized projectivity as ”A design with n runs and
k factors each at two levels is said to be of generalized projectivity Pα if
for any selection of P columns from the design all factorial effects in-
cluding up to α-factor interactions are estimable”. Then using a P = 32
design, all main effects and two-factor-interactions can be estimated for
any combination of three active factors. For regular designs, the projec-
tivity is given by R− 1.

In both full factorial and fractional factorial designs, all design columns
are orthogonal to each other, so the effects can either be estimated in-
dependently of each other or are completely aliased. Designs with this
property are called regular designs. Being able to independently esti-
mate the effects eases the analysis. The drawback of regular designs is
that the run sizes are not very flexible, and the aliasing between effects
can yield poor projectivity properties.

1.1.2 Nonregular designs

To overcome the challenges faced by regular designs, one may consider
using nonregular designs, in which there might be partial aliasing be-
tween effects. Allowing aliasing between effects enables more flexible run
sizes and better projectivity properties, but the designs become harder
to analyze, as all methods used for regular designs are not valid for the
nonregular ones. There are several classes of nonregular designs, and
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the ones used in the papers will be introduced here.

Plackett-Burman designs

Plackett-Burman (PB) designs were introduced right after World War
II by Plackett and Burman (1946). They are efficient screening designs
which can be used to study up to n − 1 factors in n runs, n being a
multiple of 4 and less than or equal to 100. When n is a power of 2, they
coincide with fractional factorial designs, but for run sizes such as 12, 20
and 24, they are interesting alternatives. The main effects in the designs
are orthogonal to each other, but there may be complex aliasing between
main effects and two-factor interactions, and between other lower-order
effects. This can be a challenge when analyzing the designs. One option
is then to conduct the foldover runs as well, as will be explained in Sec-
tion 1.1.3.

Many Plackett-Burman designs can easily be constructed by rotating
a row vector one step for each run. Let + and - denote the levels 1
and -1. The row vector for the 12-run design can then be given by
[+,+,-,+,+,+,-,-,-,+,-]. This can be rotated by moving all elements one
step to the right and placing the rightmost element at the beginning of
the new vector. To construct the design, this must be done 10 times,
creating 11 different row vectors. The final row in the design is a vec-
tor consisting of only minus entries. The corresponding vectors for the
20-run and 24-run designs are [+,+,-,-,+,+,+,+,-,+,-,+,-,-,-,-,+,+,-] and
[+,+,+,+,+,-,+,-,+,+,-,-,+,+,-,-,+,-,+,-,-,-,-], respectively.

No-confounding designs

The no-confounding (NC) designs is another class of efficient two-level
screening designs, which have been found for 16, 20 and 24 runs. They
are orthogonal designs with no complete aliasing between main effects
and two-factor interactions. For all but the 9-14 factor 16-run designs,
they have the desirable property that no two-factor interactions are com-
pletely aliased with each other. Along with flexible sizes, this makes
them attractive alternatives to the regular designs with the same num-
ber of runs. The drawback of the NC designs is some partial alias-
ing between main effects and two-factor interactions. The class of de-
signs started with the NC16 designs with 6-8 runs introduced in Jones
and Montgomery (2010), which were found by choosing the subsets of
columns from the 16-run orthogonal arrays presented in Hall (1961) that
minimize the E(s2) and trace(AAT) criteria. This approach minimizes
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the sum of squared off-diagonal elements of XTX as well as the total
bias in the design, see Myers et al. (2016) for details. Subsequently, the
class of designs was expanded with NC16 designs with 9-14 factors in
Jones et al. (2015), 20-run NC designs with 6 to 12 factors in Stone
et al. (2017b), and 24-run NC designs with 7 to 12 factors in Stone et al.
(2017a).

Definitive screening designs

Another class of designs for which the main effects may be orthogonal is
the definitive screening designs (DSDs), which were introduced by Jones
and Nachtsheim (2011) and are thoroughly described in Myers et al.
(2016). As they consist of three-level factor columns with the values
-1, 0 and 1, they have the desirable property of being able to screen
for quadratic effects as well as main effects and two-factor interactions.
DSDs exist for all numbers of factors k ≥ 4, with a size of 2k+ nc runs,
where nc is the number of center runs. The 2k runs that are not center
runs form a foldover. Thus the main effects are not aliased with the two-
factor interactions or the quadratic effects, but for odd k there is a small
amount of partial aliasing between the main effects themselves. This
is not the case for even k, so using a design with the latter property
is recommended. A possibility for getting orthogonality for odd k at
the expense of two extra runs is to select the design which has one
more factor and drop the excess factor. Regardless of the orthogonality
properties of the main effects, the two-factor interactions are partially
aliased with each other. The quadratic effects are also partially aliased
with each other, and with the two-factor interactions.

OMARS designs

A recently introduced broad class of screening designs that also include
the orthogonal DSDs are the orthogonal minimally aliased response sur-
face (OMARS) designs introduced by Ares and Goos (2020). They are
three-level orthogonal designs with levels -1, 0 and 1, and can therefore
be used to screen for quadratic effects in addition to the usual main ef-
fects and interactions. The main effects in OMARS designs are required
to be orthogonal to other main effects and to all second-order effects.
The designs exist for a wide range of sizes, making them very flexible.
Most, but not all, OMARS designs have the foldover property described
in Section 1.1.3, with center runs added.
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1.1.3 Foldover property and mirror image pairs

Many efficient screening designs, for instance the PB designs, have par-
tial aliasing between effects that can complicate their analysis. If there
is ambiguity in the identification of active lower-order effects, one alter-
native is to conduct foldover runs and do a follow-up analysis. Let X
denote the original design matrix with n runs and k + 1 columns. The
foldover design is created by reversing the signs of all entries and adding
the resulting runs to the original design. Thus for each run in the origi-
nal design, a run with the opposite signs is included, and together, these
make up what is called a mirror image pair. In addition to this, a new
intercept column must be included to enable estimation of the constant

term. The resulting design matrix Xf is then given by Xf =

[
1 X
1 −X

]
.

This matrix has 2n rows and k + 2 columns, thus folding over enables
estimation of one more factor compared to the original design. For regu-
lar designs of odd resolution R, their foldovers will have resolution R+1
(Box and Wilson, 1951). A desirable property of all foldover designs is
that the main effects and two-factor interactions are orthogonal to each
other, making the effects easier to separate. More specifically, the odd
and even effects can be divided in two orthogonal subspaces, a property
that is utilized for proposing a new analysis method for foldover designs
in Paper 4. Another useful property of foldover designs is that the runs
form mirror image pairs. In Paper 1 and 2, this property is used to find
candidate blocks for blocking both regular and nonregular designs.

1.1.4 Blocking

When all runs of an experimental design cannot be performed under
homogeneous conditions, one should consider including block effects in
the design to account for the varying conditions. Recall the baking
example in Section 1.1.1. If there are two ovens in the kitchen, the chef
might want to use both to complete the experimentation faster. But
the ovens are not guaranteed to behave identically. To ensure that this
does not disturb the results, a block effect representing the ovens may be
included in the design. Note that it is common to assume that there are
no interactions between the block effect(s) and treatment effects of the
design. If that is the case, it may severely complicate the analysis (Myers
et al., 2016). Thus that assumption should be thoroughly discussed
before conducting the experiment.
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The recommended way of blocking regular designs has traditionally been
to assign the block defining contrast(s) to higher-order interaction(s).
This ensures orthogonality between the block effect(s) and the treat-
ment effects, but may severely worsen the projectivity properties of the
design. A combined word length pattern may also be used to rank block-
ings of regular two-level designs. This has been investigated for instance
by Sitter et al. (1997), Chen and Cheng (1999), Zhang and Park (2000)
and Zhao et al. (2013). It is common to require that the blocks effect(s)
are orthogonal to the main effects. Limiting the confounding between
the blocks effect(s) and the two-factor interactions is therefore a natural
focus. Two examples are Cheng and Mukerjee (2001) and Sun et al.
(1997). The first proposed a criterion based on minimizing the num-
ber of two-factor interactions that are confounded with block effect(s)
or aliased with main effects, while uniformly distributing these interac-
tions over the alias sets. The latter focused on the number of clear main
effects and two-factor interactions (that is, not confounded with other
main effects, two-factor interactions or block effects) as well as word
length patterns when suggesting blocks.

For nonregular designs, the focus has often been to limit the amount
of partial aliasing between block effects and lower-order effects by min-
imizing generalized minimum aberration criteria. The much-cited work
by Cheng et al. (2004) proposed a definition of word-length patterns for
nonregular designs, as well as two different minimum aberration criteria
for blocking nonregular designs. This resulted in four different opti-
mality criteria which were used to find blocking schemes for 12-, 16-
and 20-run orthogonal designs. Park et al. (2007) built upon that work
to suggest arrangements in three blocks. Ou et al. (2011) investigated
simultaneous employment of blocking and foldover, while Schoen et al.
(2013) considered five different criteria based on generalized word length
patterns to find blocks for orthogonal resolution III designs. Blocking
of three-level nonregular designs has also been researched, for instance
by Ares and Goos (2023), who used linear programming to find block
effect(s) for the OMARS designs that are orthogonal to the main effects
and limit the confounding with second-order effects.

Limiting the confounding between block effect(s) and second-order ef-
fects is a well-justified approach for finding candidate blocks for both
regular and nonregular designs. It might however result in candidate
blocks that negatively impact the projectivity properties of the design.
In particular for blocked screening designs, we believe that being able
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to estimate as many effects as possible for a subset of factors up to a
certain size is a desirable property. In Paper 1 and 2, we therefore in-
troduce new candidate blocks that preserve the projectivity of several
popular regular and nonregular screening designs as well as possible, and
compare the results with existing proposed ways of blocking. To achieve
the best projectivity possible, we allowed partial confounding between
block effects and interaction effects, and in some cases even between
block effects and main effects. This is often not accepted in previous
work on blocking, and the resulting impact on the standard deviations
of the effects is therefore included. To ensure that the effects are well-
estimated within the current projectivity, the block yielding the highest
minimum Ds-efficiency when considering all combinations of active fac-

tors was chosen. Ds-efficiency is defined as Ds,eff =
[ XtX

Xt
b
Xb

]
1
s

n , where X
is the entire blocked design (including interactions), Xb are the block
columns and s is the number of effects of interest. See the papers for
further details on the criterion.

1.1.5 Variable selection

When performing a screening experiment with a large number of exper-
imental factors, identifying the ones actually affecting the response is
important to limit the scope for further experimentation. For regular
designs, there are several methods based on utilizing the orthogonality
of the effects, such as the half-normal plot (Daniel, 1976) and Lenth’s
method (Lenth, 1989). These are not applicable for nonregular designs,
for which other methods must be chosen. To ease the analysis by re-
ducing the number of potential effects, one may start by considering
if heredity assumptions should be imposed. Assuming weak heredity,
an interaction will only be included in the model if at least one of the
corresponding main effects is present. A stricter assumption is strong
heredity, which requires all main effects involved with the interaction to
be present. Assuming heredity may be reasonable in some cases, but if
falsely assumed it can severely impact the result, as is demonstrated in
Paper 4.

There are two different main approaches for analyzing nonregular screen-
ing designs: Effect-based and factor-based searches. Effect-based searches
aim at identifying the correct active effects, that is, to determine the lin-
ear model that best approximates the response. To limit the search space
for the effects, heredity assumptions are often used for these methods,
for instance the stepwise regression procedure (Hamada and Wu, 1992),
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modified least angle regression (Yuan et al., 2007; Ming et al., 2007) and
simulating annealing model search (Wolters and Bingham, 2011). There
are also some effect-based methods for which heredity is not assumed,
examples being the non-convex penalized least squares first proposed by
Fan and Li (2001), and the Dantzig selector (Candes and Tao, 2007). If
the design has a foldover structure, this may be utilized when attempt-
ing to identify the active effects, as the odd and even effects can then
be arranged in two orthogonal subspaces. This was first proposed for
PB designs in Miller and Sitter (2001) and for non-orthogonal designs in
Miller and Sitter (2005). These methods inspired Jones and Nachtsheim
(2017) to suggest a similar approach for analyzing DSDs, while Hameed
et al. (2023) proposed a version for OMARS designs that only requires
orthogonality between main effects and second-order effects. Utilizing
the foldover structure for an effect-based search based on creating two
new responses is the topic of Paper 4.

Factor-based searches instead aim at identifying the active factors, which
should then be further investigated to find the best approximate model.
Some methods within that category are the Bayesian analysis proce-
dure proposed by Box and Meyer (1993) and the projection-based fac-
tor searches proposed by Tyssedal and Samset (1997), Kulachi and
Box (2003) and Tyssedal and Hussain (2016). The latter combined a
projection-based factor search with forward selection, an idea which is
further developed in Paper 3, using restrictions on the size of the model
instead of stopping criteria.

2 Potential applications in DNB

This thesis was partly funded by the largest bank in Norway, DNB, and
the observant reader may ask herself what the applications of screening
designs are within DNB. The author, Yngvild Hole Hamre, is employed
in DNB as a Data Scientist in Personal Banking (PB), working in a
department mainly focused on developing prediction models for person-
alizing the communication towards customers. A cornerstone in this
regard is a framework called (PM)2 for rapidly developing prediction
models by reusing relevant code. Originally, the scope of this project
was using screening for identification of important hyperparameters in
machine learning models and applying response surface methodology for
finding good settings for those. In the research phase of that work, we
discovered a new class of marketing models called uplift models, aimed
at identifying the customers that are most likely to be impacted by a
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marketing activity (for instance a phone call or an email). To enhance
the benefit of the project, we therefore decided to test hyperparame-
ter tuning for an uplift model, such that a new modelling framework
could be included in (PM)2. To be able to fit an uplift model, data was
collected from several campaigns. Unfortunately, the resulting models
were poor and neither suited for practical use nor inclusion in research
papers. Lots of lessons were learned in terms of planning collection of
structured data, and a summary of these were presented at the Math
Meets Industry conference in Trondheim in 2022.

While working on the uplift part of the project, departmental changes
along with the implementation of automated Bayesian optimization in
the (PM)2 framework led to a decreased need for alternative methods
for optimizing hyperparameters. It was therefore decided to focus on
theoretical parts of DoE for the remainder of the project period, which
is reflected in the included research papers. The wise words of R. Fisher
stating that ”the best time to plan an experiment is after you’ve done it”
(Box et al., 2005) certainly applies to planning a PhD-project as well.
We do however believe that DoE may find applications in many fields
relevant for DNB and will therefore give a brief overview of potential
use cases in this chapter. First, an introduction to XGBoost and dif-
ferent hyperparameter optimization approaches is given in Section 2.1.
Then online controlled experiments, online active learning and conjoint
analysis are discussed in Section 2.2, 2.3 and 2.4, respectively.

2.1 XGBoost and tuning hyperparameters

XGBoost is a highly optimized machine learning algorithm introduced
by Chen and Guestrin (2016). It has become very popular due to the
ability to yield good results for large tabular data sets in a reasonable
time span, as it is optimized for performance. The ability to automati-
cally handle missing values is another valuable property of the algorithm.
For these reasons, it is the algorithm used in (PM)2.

XGBoost is a parallelized boosting framework most commonly using
regression trees as base learners. Regression trees being base learners
means that the model is an additive combination of regression trees, i.e.
ŷi =

∑K
k=1 fk(xi). In iteration t, ft(x) is decided by minimizing a loss

function Lt =
∑n

i=1 l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), where n is the number

of observations, l is a differentiable convex loss function, ft is a regres-
sion tree, and Ω(ft) = γT + 1

2λ||w||2 is a regularization term penalizing
complexity. T is the number of leaves in the trees, w is a vector of
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leaf weights, and γ and λ are regularization parameters. New trees are
added greedily, using gradient descent to minimize the loss function.

An important aspect of the algorithm is to choose hyperparameter set-
tings, both with regards to the loss function and to the tree fitting
procedure. The choice of hyperparameters has a large impact on the
structure of the model, and thereby on the results. This is the case also
for other machine learning methods, for instance neural nets, in which
the hyperparameters can be the number of hidden layers in the network,
the number of neurons in each layer, and so on. Unfortunately, as the
shape of the search space is unknown and very likely not convex, no
optimization procedure is guaranteed to find an optimum value. The
question then is how to find an acceptable value within a reasonable
period of time.

Historically, the most common tuning strategies have been grid search
and random search, where the latter has been improved in a procedure
called Hyperband. The conceptually more complex Bayesian optimiza-
tion procedure and the related Tree Parzen Estimator are also becoming
increasingly popular, as they use previously gathered data to select the
next settings to evaluate. One strategy which has not received much at-
tention is Response Surface Methodology, a well-known strategy within
the statistics community for exploring the unknown relationship between
possible explanatory variables and a response they might affect. Investi-
gating the potential for this strategy is therefore an interesting possibility
for utilizing DoE within machine learning. This will be elaborated after
a brief introduction to the different tuning strategies.

2.1.1 Grid search, random search and Hyperband

Grid search, the most intuitive tuning strategy, is a simple approach
where the user specifies a range of interesting values for each hyperpa-
rameter and proceeds by testing all combinations of these values. This
approach ensures that the area of interest is evenly covered, but does
not offer the opportunity to investigate the most promising parts of the
search space more closely than others. In addition, using a grid limits
the number of values which is tested for each hyperparameter, despite
requiring many runs to test all settings. Random search is an alterna-
tive method which can be used to limit the search and enable evaluation
of several distinct values for each hyperparameter. One may draw the
hyperparameters under consideration from different probability distri-
butions, or simply use a uniform distribution with the same range as
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would have been applied for the grid search. In Bergstra and Bengio
(2012), random search was shown to outperform grid search in most of
the cases tested.

The Hyperband-algorithm, introduced in Li et al. (2016), focuses on
speeding up random search by using early stopping when the settings
do not seem promising. It uses successive halving as a subroutine, in
which a budget (time, iterations, etc.) is allocated to the settings one
wishes to evaluate, and after spending some of the budget, the worst
half of the settings are eliminated. This process is repeated until there
is only one setting left. The Hyperband-strategy can also be applied
to other algorithms than random search. Falkner et al. (2018) used the
Tree Parzen Estimator (TPE), a special Bayesian optimization, in the
algorithm instead of random search. This was shown to outperform both
standard Bayesian optimization and Hyperband using random search in
a wide range of examples. The procedure is available in the HpBandSter
package in Python (Falkner, 2018).

2.1.2 Bayesian optimization

Bayesian optimization is a method designed to select the hyperparame-
ter setting to evaluate based on the previously evaluated settings, rather
than drawing settings randomly or exploring a grid. There have been
several studies showing that this strategy outperforms random search,
for instance Bergstra et al. (2011) and Turner et al. (2021). Thus
Bayesian optimization has grown increasingly popular, and is available
through several implementations in Python, for instance the BayesOpt
package introduced by Martinez-Cantin (2014). A comprehensive overview
of recent advantages and open problems in the field can be found in the
newly published work by Wang et al. (2023).

As described in the tutorial in Frazier (2018), Bayesian optimization
is a good choice when one wants to optimize a continuous, derivative-
free black-box function with respect to input with 20 or less dimensions,
and evaluation of the function is costly. This typically applies to tuning
of hyperparameters when using algorithms as XGBoost to model large
data sets. The idea of Bayesian optimization is to build a surrogate for
the objective function f(x). It is often performed assuming that the
response one wants to optimize was sampled from a Gaussian process.
A posterior distribution for this function is made and updated using
all previously tested settings, and the next setting to evaluate is found
for instance as the one that yields the highest value for an acquisition
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function (often expected improvement) according to the posterior. The
advantage of this approach is therefore that it uses all available infor-
mation, not just local approximations, to suggest new promising points
to evaluate.

Formally, as explained in Brochu et al. (2010), the problem can be for-
mulated as finding a global maximum of f = f(x). Here, noiseless obser-
vations are assumed for simplicity. Let the previously observed data be
denoted D1:t = (x1, y1)...(xt, yt) = {x1:t, f1:t}, where yi are values from
the objective function. Bayesian optimization assumes that y1, ..., yt are
drawn from a multivariate distribution, for instance assuming that f is
normally distributed with mean µ(x) and covariance function k(x,x′).
According to Bayes theorem, p(y|x) ∝ p(x|y)p(y), where p(y|x) is the
posterior distribution of y given x, and p(y) is the prior distribution of
y. The posterior at x is therefore given by p(f |D1:t) ∝ p(D1:t|f)p(f).
Using a Gaussian process prior with the squared exponential function as
the covariance function, the predictive distribution of ft+1(x) is given by
p(ft+1(x)|D1:t) = N(µt(x), σ

2
t (x)). Other priors may be used, but the

Gaussian process prior is popular as it yields a known Gaussian process
distribution to the posterior function.

Let the best observation so far be given by f(x+). The next point
to evaluate is then found by maximizing an acquisition function, for
instance the expected improvement compared to f(x+) using the pre-
dictive distribution p(ft+1(x)|D1:t). With xt+1 being the next point,
yt+1 can be found from the objective function, the predictive distribu-
tion is updated, and the procedure can continue. It is also possible to
use other acquisition functions for finding the next setting to evaluate,
for instance taking into account that one wants to balance maximizing
the expected improvement with exploring areas with high variance.

The Tree Parzen Estimator (TPE) introduced in Bergstra et al. (2011) is
another Bayesian optimization algorithm that utilizes a surrogate func-
tion to suggest new settings based on expected improvement. Instead
of utilizing a Gaussian process prior to model the posterior p(y|x), TPE
aims to model p(y|x) via p(x|y) and p(y), as p(y|x) = p(x|y)p(y)

p(x) . The al-
gorithm got the ”Tree”-part of the name from the fact that the algorithm
can handle a tree-structured search space. A popular package in which
this procedure is available is hyperopt, based on Bergstra et al. (2013).
A detailed description of the procedure and recommended settings can
be found in Watanabe (2023).
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2.1.3 Response surface methodology

As described in Myers et al. (2016),

Response surface methodology (RSM) is a collection of sta-
tistical and mathematical techniques useful for developing,
improving, and optimizing processes.

Response surface methodology was originally developed to find optimal
settings in industrial applications such as chemical investigations and in
agriculture, but has since found wide-spread use in a variety of areas
in which collection of data is expensive in terms of resources such as
time, money, materials or processing power. The goal is to optimize a
response surface of unknown shape, which is potentially influenced by
several input variables.

The optimizing procedure is often performed in a sequential manner.
First, the variables that actually influence the response are identified
through conducting a screening experiment and fitting a simple model.
The goal is to limit the search space before conducting more experiments.
In the second phase, the aim is to decide whether the investigated area is
close to the optimum. Then one will typically conduct one or more addi-
tional experiments, developed to fit first-order models, and use steepest
ascent/descent to move in the direction of possibly better results. When
the process is close to the optimum, the final phase starts. Then one
may want to fit a second-order model to determine the settings yielding
the optimum value, thus an experiment suited for fitting more complex
models must be conducted. An advantage of this approach compared
to other optimization strategies is that it yields possibly valuable infor-
mation about the relationships between the important hyperparameters
and the response, and how the hyperparameters interact with each other.

This approach has similarities with Bayesian optimization, as both meth-
ods are sequential and utilize previously gathered data to fit surrogate
functions and suggest new settings to evaluate. While Bayesian op-
timization uses all the previously gathered points and aims to find a
global optimum, RSM focuses on finding a local optimum, possibly only
using data gathered close to that area. There has been some previous
use of RSM for tuning, one of the early works being Staelin (2003), that
used a DOE-inspired method to tweak the boundaries and the resolution
of a grid search when tuning a support vector machine. This method-
ology was successfully applied for a least squares SVM classifier used
for credit evaluation by Yu et al. (2011). More recently, Lujan-Moreno
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et al. (2018) successfully tested using RSM for tuning the hyperparam-
eters of random forest, and Pannakkong et al. (2022) compared results
when using RSM and grid search to tune an artificial neural network,
a support vector machine and a deep belief network. The use of RSM
was shown to find equally good hyperparameter settings as grid search,
reducing the number of runs needed by 97.79%, 97.81%, and 80.69%, re-
spectively. Comparison with more efficient, state-of the art algorithms
is therefore an interesting path of further research.

RSM was developed in a time when computational resources were scarce,
thus the strategy relies heavily on a human experimenter choosing the ex-
perimental plan and deciding the next steps in each phase. This requires
more expert knowledge than using an automated procedure. A possible
starting point could be to first limit the number of hyperparameters us-
ing a screening experiment, thereafter perform Bayesian optimization on
the chosen hyperparameters. Choosing only a few hyperparameters for
Bayesian optimization is likely to reduce the computation time substan-
tially. Combining DoE, RSM and Bayesian optimization was tested in
Schau-Hansen (2022), where RSM and Bayesian optimization was first
applied separately, but also combined in two different ways. First using
a fractional factorial design as the starting point for selecting the hyper-
parameters to tune, then using RSM to find the area in which a central
composite design was placed and used as an initial grid for Bayesian
optimization, with the aim of possibly improving the exploitation. The
latter seemed to yield the most stable optimization. An interesting pa-
per in this regard is also Sunder et al. (2022), in which another hybrid
strategy between RSM and Bayesian optimization is proposed. They
use DSDs to sample the search space and perform a test to consider
the complexity of the black box-function. RSM is then used for opti-
mization if a second-order approximation seems appropriate, Bayesian
optimization otherwise.

2.2 Online controlled experiments

Choosing the best layout for the message you want to convey is im-
portant in any kind of visual communication. Online controlled experi-
ments, in its simplest form called A/B-testing, is a popular approach to
achieve this in areas such as webpage design and marketing. An A/B-
test can be considered a simple controlled experiment, assessing whether
alternative A or alternative B should be preferred, answered by allocat-
ing users randomly to one of the options and considering some summary
statistic after the experiment has ended. In DNB, A/B-tests are fre-
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quently conducted to improve the webpages. Then first a hypothesis is
made about what might affect the response, which is usually defined as
clicking an element. The hypothesis may for instance be that addressing
the customer directly (”book your appointment”) leads to more clicks
than a passive formulation (”book appointment”). The alternative text
is implemented as version B, which is then compared with the original,
version A. The duration of each test depends on the number of visitors
on the webpage, as the tests are usually run until 95% confidence about
the result is achieved or the estimated sample size is reached. To account
for different user behavior on different days, the tests are most often run
for at least a week.

Experiments with more than one factor are often referred to as mul-
tivariate testing. A famous example of such is the webpage experiment
conducted by the Obama campaign team, in which the use of a factorial
experiment to improve the webpage led to an estimated increase in do-
nations of about 60 million dollars (Siroker, 2010). Additional examples
where experimental design has boosted sales can be found in Almquist
and Wyner (2001). They point out that conducting a series of A/B-tests
is not very effective and encourage marketers to utilize design of experi-
ments to assess how the components of a marketing campaign influence
consumer behavior.

There are some concerns that differentiate online controlled experiments
from traditional experiments, as pointed out by Haizler and Steinberg
(2020): They are often real-time experiments with the goal of selling a
product or creating interest. Thus there is a cost related to testing the
sub-optimal alternative, often referred to as ”regret”, which will be de-
fined in Section 2.2.2. Sample sizes tend to be large, and the response is
often a summary statistic such as click-through-rate (CTR) or conversion
rate (CR). These rates are in many cases low, but a slight increase might
represent a substantial increase in earnings. Moreover, there might be
time trends, originating for instance from active users logging in more
often, or users living in different time zones. Examples of successful con-
trolled experiments and advice on how to conduct them are presented
in Kohavi et al. (2008), whose authors have extensive practical experi-
ence from experimentation at Amazon, Microsoft, Dupont and NASA.
Of special relevance for DNB is also the fractional factorial marketing
experiment described in Krutsick (2012), where the aim of the online
retailer was to construct the optimal email for reactivating customers
who had not purchased from the store the past 12 months.
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A challenge related to online controlled experiments is that they require
the establishment of a technical infrastructure as well as an experimental
culture within the organization. An overview of potential benefits, chal-
lenges and best practices when doing so is given in Bojinov and Gupta
(2022). Furthermore, an introduction to the most prominent issues in
the field can be found in Gupta et al. (2019), which summarizes the dis-
cussion from the first Practical Online Controlled Experiments Summit
(held in 2018). There, practitioners from 13 companies with extensive
use of large-scale online experiments, such as Netflix, LinkedIn, Google
and Microsoft, were gathered to share experiences. Some of the chal-
lenges they point out are estimating long-term effects of interventions
without running the experiment for an extensive period, and choosing
the overall evaluation criterion of a test and assessing its drawbacks.
Other discussed issues were evaluating interactions between experiments
as well as network effects, establishing an engineering culture that aids
trustworthy experimentation and ensuring good data quality.

2.2.1 Multi-platform testing

In marketing, one often communicates with the customers across differ-
ent platforms. DNB does for instance use SMS, email, the mobile app
and the home page for digital marketing. When creating a new message
to communicate, it may therefore be useful to adjust it to different plat-
forms. Either because the individual customers should get the message
in their preferred communication channel, or because it should be dis-
tributed in several channels simultaneously to increase visibility. Having
a similar layout across the platforms may make the message easier to
recognize and remember, but practical considerations such as screen size
and format of the web banner can put constraints on the layout. The
impact of different design elements may also differ based on the chan-
nel. The customer may for instance be more willing to read a longer
text after opening an email with a given topic stated in the header than
when visiting the mobile app primarily to pay a bill. Sadeghi et al.
(2019) has taken such considerations into account and propose using a
new class of experiments called ”sliced factorial designs”, which is suited
for multivariate, multi-platform experiments. One possible approach in
this setting could be to assign the different platforms to different blocks,
as described in Section 1.1.4. Traditional blocking methods do however
rely on the assumption that there are no interaction effects between the
block effects and the treatment effects. This assumption is likely to be
violated in a multi-platform setting, as in the example with email vs.
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mobile app. The sliced designs therefore take a different approach, aim-
ing to facilitate the estimation of treatment-platform interactions. The
concepts of resolution and minimum aberration are extended to sliced
designs and used to create algorithms to generate sliced designs with
good properties. The approach is demonstrated through an experimen-
tal study testing the layout of an email for two platforms (laptop and
phone/tablet), showing that analyzing the data while ignoring the slice
factor leads to not identifying any active effects, while when including
the slice factor, it is discovered that the optimal layouts differ for the
two platforms.

2.2.2 Multi-armed bandits

Traditional online controlled experiments consist of an initial exploration
stage gathering data from the different alternatives, followed by an ex-
ploitation stage where the best alternative is chosen. An alternative way
of exploring the difference between several opportunities when the ob-
servations are conducted in a sequential manner is to consider the exper-
imentation as a multi-armed bandit (MAB) problem, where a trade-off
between exploration and exploitation can be continuously made. Then
each option is considered one arm of the bandit, and for each observation,
which arm to pull is a decision based on the information gathered from
the previous observations. See for instance Burtini et al. (2015), a survey
paper in which the multi-armed bandit is motivated and described, and
a wide variety of algorithms compared. Strategies allocating observa-
tions to different arms often focus on minimizing the regret, that is, the
reduction in expected total reward induced by experimenting instead of
always choosing the best option (as it is not known). There are several
ways in which regret can be defined. In Haizler and Steinberg (2020),
it is given as RegretT =

∑T
t=1(µ − E(yt)), where T is the total num-

ber of observations, µ is the optimal reward and E(yt) is the expected
outcome for observation t (which typically changes over time, as more
information is gathered).

The drawback of minimizing regret is that it reduces the statistical power
to estimate the treatment effects corresponding to each arm, as discussed
in Simchi-Levi and Wang (2022), which give an overview of literature on
the topic and suggest a framework to create Pareto-optimal multi-armed
bandit experiments for a given level of the trade-off between minimizing
regret and maintaining statistical power. The trade-off was also investi-
gated by Haizler and Steinberg (2020), who suggest combining blocked
fractional factorial designs and Thompson sampling (a much-used sam-
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pling technique for MAB) to secure sufficient exploitation of all factors
while achieving a lower regret than when solely using a fractional fac-
torial design or a one-factor-at-a-time strategy. Their proposed method
also yields a lower negative bias in the estimated posterior probabilities
than when only using the Thompson sampling. In their simulations,
they focus on identifying main effects, and use the block generators for
regular designs recommended byWu and Hamada (2009). An interesting
approach for further work on the topic could be to include interactions
in the set of potentially active effects, and test the blocks recommended
in Paper 1 and 2.

2.3 Online active learning

One field of research which has become more important with the in-
creasing amounts of data available is online active learning, in which
the goal is to choose the most informative data point to label from a
stream of unlabeled data. This can be useful if the data is costly to
label, for instance if the labeling must be performed by manual inspec-
tion. The labeled data points can then for instance be used to model
the underlying process. A thorough survey of online active learning can
be found in Cacciarelli and Kulahci (2023). In Cacciarelli et al. (2022),
the D-optimality criterion commonly used to assess design matrices in
DoE is utilized in a new approach for performing online active learn-
ing with linear regression models. A version of the proposed algorithm
which is more robust to outliers is introduced in Cacciarelli et al. (2023).

In DNB, there are many streams of unlabeled data, for instance data
from the customers’ interactions with the chatbot and transaction data.
A setting where the stream of transactions is assessed is fraud detection.
Online active learning in a fraud detection setting has been discussed by
Carcillo et al. (2017) and Carcillo et al. (2018). An important property
of fraud detection is that labeling of the data cannot be done randomly,
but coincides with assessment of potentially fraudulent transactions. As-
sessing many transactions that are not likely to be fraudulent would be
very costly in terms of lost true positive cases. The accuracy of a fraud
detection system can therefore be measured as the precision over the
top k alerted transactions or credit cards, where k is the budget that
can be assessed during the time period under consideration. In Carcillo
et al. (2017), they present several online active learning techniques for
fraud detection and assess them using a real data set with 12 million
transactions from Wordline, a company specialized in transaction ser-
vices. They showed that the baseline method ”Highest Risk Querying”
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(choosing the transactions with the highest estimated probability of be-
ing fraudulent) could be improved by up to five percent by combining it
with Stochastic Semi-supervised learning, in which some of the transac-
tions are labeled as non-fraudulent (without manual inspection, either
using the model or drawn randomly), and the labeled data points (both
positives and negatives) are used to retrain the model. In Carcillo et al.
(2018), similar topics are investigated, along with visualizations of the
impact of active learning on the distribution of the training set.

2.4 Conjoint analysis

When developing new products or services, an important question is
how to assess the customers’ preferences in order to prioritize the right
properties. The preferences may be investigated using conjoint analysis
(note that some researchers strictly distinguish discrete choice experi-
ments from conjoint analysis (Louviere et al., 2010). For simplicity, a
distinction will not be made here). The general idea is to present several
carefully chosen concept profiles with different levels of the attributes un-
der consideration, and make the respondents either rank, rate or choose
between the profiles. A review of the field can be found in Agarwal
et al. (2015), in which they focus on three popular approaches. The first
is choice-based conjoint analysis, in which the participants repeatedly
choose between several concept profiles. This used to be analyzed using
a multinomial logit model, but in recent years, the Hierarchical Bayes
methodology has become increasingly popular, as it allows estimation of
a utility function for each respondent, enabling simulation of different
outcomes. The second approach is menu-based choice, in which the sub-
ject chooses several individually priced features from a list of options.
The third approach is best/worst conjoint analysis, in which the subjects
are asked to choose the best and worst attribute level for each concept
profile.

The experimental design, in terms of number of concept profiles and
the attribute levels used for each, is an important part of conducting a
conjoint analysis. As for traditional design of experiments, efficiencies
can be assessed to ensure achieving as much information as possible from
a given number of profiles. An interesting question regarding design ef-
ficiency within conjoint analysis is whether customers are able to make
choices that reflect their utility function properly when the alternatives
are very different from each other. It is easy to state whether you prefer
property A or property B given that all other properties are kept equal,
but when all properties are varied at the same time, one may choose
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to use a simpler mental decision model, such as always choosing the
cheapest option. This dilemma was investigated in Flynn et al. (2015),
in which an end-of-life survey was conducted using two designs with dif-
ferent efficiencies.

Conjoint analysis is highly relevant for DNB, which delivers many dif-
ferent value propositions to the customers in which properties must be
prioritized. There are for instance several customer programs with dif-
ferent benefits offered to the relevant adult customers. Those between
18 and 28 years old qualify for membership in the program UNG (Young
Adults), which offers advantages such as discounts on popular festivals,
car rental services, legal advice and insurance (DNB, 2024). Similarly,
Pluss is for everyone, SAGA for those with high income and/or high net
worth, and Private Banking for those with the highest net worth. To
increase customer satisfaction and loyalty, it is important to ensure that
the advantages are attractive in the target group. When evaluating the
customer programs in 2021, a choice-based conjoint analysis was con-
ducted to assess the preferences of relevant customers. A total of 1011
customers were included in the study, and repeatedly asked to choose
between 4 concept profiles with combinations of properties from 8 dif-
ferent main categories. An example of two of the profiles can be found
in Table 2.1. Based on the survey, DNB could assess how attractive the
offers were for different customer groups, which supported prioritization
in the continued work on improving the programs.

Table 2.1: Example of concept profiles for the customer program analy-
sis.

Mortgage interest 0.03% discount 0.01% discount

Monthly offer 15% discount on Power
25% discount
on Home&Cottage

Special advantage ID security Customer service priority

Counselling Saving and investments Loan and daily economy

Product advantage
Mortgage: 50% discount
on Google Home

Boat insurance: Free
boat driving course

Customer service Self-service Self-service

Yearly price 295 NOK 495 NOK

Tickets/discounts
Free tickets
to sports events

None
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Another use case for conjoint analysis is understanding which aspects of
the bank that are most important to the customers. To assess this, a
yearly best/worst (also called MaxDiff) conjoint analysis is conducted,
in which the customers are repeatedly presented with 4 different features
(out of 21 in total), among which they must choose which they appreci-
ate the most and the least. This is then complimented with a quarterly
survey about bank satisfaction, where the customers rate their satis-
faction with the bank, as well as different statements about the bank
(for instance, how much they agree with the phrase ”My bank is easy
to get in touch with”). Customer satisfaction is then modelled as a
function of the different statements, yielding an importance to each of
them. Based on the best/worst conjoint analysis and the satisfaction
regression model, a combined analysis of the customers’ prioritizations
is conducted. This is a valuable tool in deciding what the bank should
focus on improving, for instance whether one should hire more customer
service agents for personal counseling or more engineers for chatbot de-
velopment. Regularly performing these analyses also enables assessing
trends over time, for instance highlighting how increased interest rates
makes the customers change their preferences.

3 Paper summaries

The main part of the thesis consists of four papers. Paper 1 and 2 are
focused on finding alternative ways to block regular and nonregular two-
level screening designs, respectively. Paper 3 and 4 are concerned with
analysis of nonregular two-level screening designs.

3.1 Paper 1

The first paper focuses on alternative ways of blocking regular two-level
fractional factorial designs. Traditionally, the proposed way to arrange
the designs in two blocks has been to use a higher-order interaction col-
umn (Wu and Hamada, 2009). This ensures orthogonality between the
block effect and the main effects, but often leads to a large decrease in
projectivity. We believe that projectivity properties are very important
in screening settings, as one is then guaranteed the possibility to estimate
(possibly up to some limit) the effects corresponding to the few active
factors. Alternative blocks were therefore tested for 16-, 32- and 64-
run designs with good projection properties. The blocks were required
to be orthogonal to the main effects and were assessed by considering
the resulting maximal minimum Ds-efficiencies considering all possible
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combinations of active factors within the highest possible projectivity.
In many cases, blocks resulting in better projectivity properties than
the traditionally preferred blocks were found, with high corresponding
Ds-efficiencies. To assess the impact of partial aliasing between blocks
and interactions effects, the change in standard deviations induced by
the blocking was also investigated.

The number of possible blockings rapidly increases with the number
of runs. We only considered arrangement in two, four and eight blocks
of equal size. Considering arrangement of a design with 2t runs into

two blocks, there are
(2tt )
2! block candidates. For 16 runs, there are 6435

candidates, while for 32 runs, there are 300540195 candidates. Clearly,
the combinatorial explosion makes it infeasible to test all blocking candi-
dates for large designs. Thus several alternative strategies for generating
reasonable candidate blocks were tested. The first one was based on al-
locating the runs belonging to a mirror image pair to the same block
(the MIP-strategy), a strategy enabled by the foldover structure of the
fractional factorial designs. This strategy was first proposed by Jacroux
(2009). The second strategy was based on constructing blocking schemes
by doubling a blocked design, and the third strategy on using columns
from Hadamard matrices containing the design under consideration. The
fourth and final strategy was to arrange an existing blocking into more
blocks, for instance utilizing an arrangement in two blocks to find an
arrangement in four blocks.

3.2 Paper 2

The second paper continues the work in Paper 1, focusing on finding
blocks that preserve the projection properties while obtaining high Ds-
efficiencies. First, some fractional factorial designs that were not in-
cluded in Paper 1 were considered in order to complete the results for
those designs. Then we shifted the focus to testing blocking arrange-
ments for nonregular two-level screening designs, in particular the 16-run
no-confounding (NC) designs and 12-, 20- and 24-run Plackett-Burman
(PB) designs and their foldovers. For the 16- to 24-run designs, all pos-
sible blocks were tested to ensure finding the best block. Results for
the 16- and 20-run designs were compared to the blocking arrangements
suggested by Cheng et al. (2004), a much-cited work on blocking nonreg-
ular designs that focused on achieving generalized minimum aberration
blocked designs. We showed that when prioritizing high projectivity,
better projectivity properties could often be obtained, especially for ar-
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rangements in more than two blocks if allowing a small degree of con-
founding between the block effect(s) and the main effects. This has often
not been done in the literature, as having clear main effects has been
considered a priority. Thus the experimenter should be cautious if con-
sidering using these blocks. To support an informed choice, we provide
information about the change in standard deviations for the main effects
resulting from the confounding.

For the foldover designs, the combinatorial explosion prohibited testing
all possible blocks except for the PB12+12 design. Strategies utilizing
mirror image pairs were therefore applied. As in Paper 1, the MIP-
strategy was tested. In this paper we also tested placing runs belonging
to a mirror image pair in different blocks, as proposed by Ou et al.
(2011). Moreover, testing placement of the original design in one block
and the foldover in another was tested, as well as using an unassigned
column if all columns from the design were not included. This often
yielded optimal or close to optimal blocks. For arranging foldover de-
signs in more than two blocks, the MIP-strategy was explored, as well
as using a blocking for the original design to arrange the foldover runs
in new blocks, and thereby expanding the number of blocks. Testing
different strategies enabled suggesting blocks for different blocking sce-
narios, such as folding over a blocked design and expanding a blocked
design with foldover runs which must be run in new blocks.

In Paper 1 and 2, we demonstrated that projection properties of blocked
designs could in many cases be improved by choosing other blocks than
the ones usually suggested, which tend to focus on minimum aberration.
There is a large potential for further work on blockings that focus on
projection properties and Ds-efficiencies. For instance, one could have
tested all different orthogonal arrays of different sizes, instead of focus-
ing on designs with good properties. Moreover, it would be very useful
to assess whether blocks can be found that are good all-round candi-
dates across different projectivities. Another interesting approach could
be to test restricting the amount of confounding between blocks and
interactions.

3.3 Paper 3

In the third paper, we propose a new method for analyzing nonregular
screening designs. Identifying the active factors for nonregular designs
can be challenging, especially if the design has few runs, there is a high
variance and interactions are active. Strategies for analyzing nonregular



3. PAPER SUMMARIES 29

designs can be divided into two main classes, effect-based and factor-
based searches. Effect-based approaches aim at identifying the correct
active effects, resulting in a final model that is a satisfying approxima-
tion of the underlying response surface. Factor-based approaches aim at
identifying the active factors, which can then be investigated in further
experimentation. Our proposed method belongs to the latter class.

One problem that may arise when testing many candidate models is
that several candidate sets of active factors may explain the variation in
the response equally well. The chance of this increases the more terms
that are included in the model. Our proposed method is therefore based
on utilizing projection models, but limiting the number of effects that
are included in the final candidate models. For each candidate set of
a given size, we fit the full projection (FP) model, that is, a model
with all main effects and interactions included, up to the limit given
by the projectivity of the design. Then the l terms with the largest
corresponding coefficient values are chosen from the FP model, and the
reduced model with only these terms included is fitted. The correspond-
ing MSE is stored for each reduced model, resulting in a candidate set
of models with the lowest MSE-values. The size of this candidate set
can be chosen beforehand, or for instance by inspecting the best models
and choosing the cutoff where a large increase in MSE occurs.

The method was also compared to the R2- and F-test-based methods
proposed in Tyssedal and Hussain (2016), which it outperformed in most
cases. An important feature was increased robustness in the presence
of large variance. The performance of the method was further assessed
in a simulation study, testing situations with 3 and 4 active factors for
the 16-run NC designs with 6-8 factors and the 12-run PB design. To
test the performance for a wide range of cases and reduce the risk of
linear dependence, we drew a new model of the specified format in each
iteration instead of using the common approach of assessing only a small
panel of models. The results made it clear that using 16 runs is recom-
mended whenever possible, as it increased the chance of including the
correct active factors among the final models substantially.

3.4 Paper 4

The fourth paper also considers the analysis of nonregular designs, but
this time with emphasis on designs with a foldover structure. A special
property of foldover designs is that their effects can be separated in two
orthogonal subspaces, for the odd and even effects, respectively. We
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introduce a new analysis method called the decoupling method, utilizing
the two subspaces to create two new responses which can be analyzed
separately of each other.

The idea of analyzing foldover designs in two steps was first proposed for
PB designs by Miller and Sitter (2001), which followed up with a similar
method suited for nonorthogonal designs in Miller and Sitter (2005). The
main idea is to estimate and select main effects in the first step, possi-
bly using unassigned columns to estimate the variance. Then two-factor
interactions are included in the second step, by applying an all-possible-
subsets procedure. This work inspired Jones and Nachtsheim (2017) to
introduce a related analysis method tailored for DSDs, in which fake fac-
tors are added to get a variance estimate in the first step, and an F-test
used to select second-order effects in the second step. A generalized ver-
sion of this was proposed in Hameed et al. (2023), utilizing properties of
the recently introduced OMARS designs (Ares and Goos, 2020). They
avoid the use of fake factors and are able to utilize additional degrees
of freedom in some cases. These methods perform well, but have some
drawbacks, for instance assuming that only main effects and two-factor
interactions are active. There is also a risk that the variance estimate
in the second step is affected by selecting the wrong main effects in the
first step. Furthermore, residuals cannot be assessed in the first step, as
they are possibly affected by active two-factor interactions.

These drawbacks are overcome by the decoupling method, which yields a
valid variance estimate in each step and enables assessment of residuals.
Moreover, it is possible to test for presence of higher-order interactions,
and we suggest a procedure for including those. After the new responses
have been created for each step, standard statistical methods can be ap-
plied, so the method is easily available for practitioners. The proposed
method is assessed and compared to existing ones in a simulation study,
where we also demonstrate the huge impact of heredity assumptions.
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Abstract
Nonregular two-level designs are attractive screening designs due to their good
projection properties and flexible run sizes. In particular, the 12-run Plackett–
Burman (PB) design has become quite popular. However, existing methods
struggle with the identification of active factors when the number of active fac-
tors exceeds the projectivity of the designs. This is especially the case when
interactions are present, the variance is high and the number of runs is small.
In this paper, we propose a method for analysing nonregular two-level designs
that particularly addresses the issues above. It exploits the projection proper-
ties of designs and is here applied on the 12-run PB design and the 16-run
no-confounding (NC) designs. In the construction of the method, the use of
test- and penalty-based procedures are avoided. Instead, the number of allowed
terms in a model is restricted. The effectiveness of the method and comparison
between designs are evaluated by simulations for different scenarios. Ways to
evaluate the reliability of the screening procedure are pointed out. An example
with real data is given to demonstrate how one might perform the analysis in
practice.

KEYWORDS
capture frequency, factor screening, nonregular designs, projection properties, variable
selection

1 INTRODUCTION

In the first stage of an experiment, a large number of factors may have to be considered as potentially active. At that
point, the main goal is to identify the ones that really influence the response. This is called factor screening. In most cases,
the subspace of active factors is considerably smaller than the space of all factors. Box and Meyer1 suggest 0.25 to be a
reasonable prior probability for a factor to be active. Factors not identified to have an impact on the response are normally
not considered afterwards. Good and reliablemethods for determiningwhich factors are influential are, therefore, crucial.
Whilst screening often is considered a part of physical experimentation, it has also found its way into machine learning
in order to reduce the dimension of the hyperparameter space (Lujan-Moreno et al.2).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd.
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The traditional choice of screening designs has been two-level fractional factorials, also called regular designs. They have
orthogonal columns and exist for 12𝑝 , 𝑝 = 1, 2, … 𝑘 − 1 fractions of 2𝑘 factorial designs, where 𝑘 is the number of factors
included in the design. The drawback of these designs is that effects may be fully aliased, making it difficult to separate the
active effects from the rest. Nonregular two-level designs, in particular those introduced by Plackett and Burman,3 have,
therefore, become increasingly popular. Compared to regular designs, they have two particularly desirable properties.
First, they project well onto lower dimensions.4–6 Second, they seem to exist for all 𝑛 that fulfil 𝑛 mod 4 = 0, 𝑛 ≥ 12,
thus they are far more flexible with regard to run sizes than regular designs. The alias structure may be complex, but
the aliasing is often partial, making it possible to separate effects from each other. However, the partial aliasing between
effects makes traditional analysis methods such as Lenth’s method and normal and half-normal plots fall short, as they
rely on the ability to totally separate contrasts from each other. Thus there is a need for other methods for factor screening
when using nonregular designs.
There are two main strategies for analysing nonregular designs, effect-based and factor-based searches. Effect-based

methods aim at identifying the significant effects. A linear model that can provide estimates of main effects and interac-
tions is assumed to be an adequate approximation of the response. Strong or weak heredity is often a precept for choosing
models, and also used to restrict the search. The strong heredity principle only allows a two-factor interaction in the
model if both the main effects associated with the interaction are included. Weak heredity relaxes this requirement by
only demanding that at least one of the main effects associated with the two-factor interaction is included. Examples
of effect-based methods are the stepwise regression procedure proposed by Hamada and Wu,7 the Bayesian stochastic
search variable selection,8 the modified least angle regression9 and the simulated annealing model search.10 The non-
convex penalized least square described in Jin and Li11 originally proposed by Fan and Li12 and the Dantzig selector13
represent effect-based methods that do not depend on the heredity principle.
A factor-based search aims at identifying the active factors, followed by an examination of the nature of the factor

activity. A factor-based search is less-dependent on model assumptions, heredity included. The disadvantage of doing
a factor-based search is a vulnerability for noise, as too much noise may lead to several candidate sets of active factors
explaining the variation in the response equally well. Different factor-based search approaches have been suggested. Box
andMeyer1 proposed a Bayesian analysis with prior probabilities on factors being active, while Tyssedal and Samset14 sug-
gested a projection-based factor search, see also Kulachi and Box15 and Tyssedal et al.16 Tyssedal and Hussain17 combined
a projection-based factor search with forward selection, testing out the Akaike’s Information criterion (AIC), the F-test
and a particular criterion based on the change in the coefficient of determination, Δ𝑅2.
Both effect- and factor-based search methods have shown good performances when applied to specific examples. How-

ever, the proposed methods are often not tested out on more than a few models, and more frequently for three active
factors than for four. Various success criteria have been used in simulations, among those the percentage of selected mod-
els being correct or partially correct. For a more complete list of such criteria, we refer to Tyssedal and Hussain.17 The
proposed procedure in this paper has similarities both to the one in Tyssedal and Hussain17 and the one in Wolters and
Bingham.10 Like in Tyssedal and Hussain,17 the objectives are to investigate how the amount of noise, the number of fac-
tors screened and the number of active factors affect the screening. But there are also important differences. Rather than
using a panel, we will try out our procedure on a much wider range of models, and we will also avoid the use of stopping
criteria. Instead, we will put restrictions on the number of allowed terms in the model, like Wolters and Bingham.10 For
comparison, their procedure is effect-based, our is factor-based. They use heredity to limit their search. We use projection
models (to be explained later). Common in our and the two other procedures is that instead of focusing on identifying
‘one correct model’, for which experience has shown a rather low success probability, we will rather suggest reducing the
number of possibly active candidate sets in several steps. An important feature of our procedure is that an evaluation of
its reliability can be performed. This will be discussed in Section 5.
The designs used in the simulation studies are the 12-run Plackett–Burman (PB) design and the 16-run no-confounding

(NC) designs for 6–8 factors introduced by Montgomery and Jones.18 These are all orthogonal nonregular two-level
designs having in common that only partial aliasing exists between main effects and interactions as well as between two-
factor interactions. Also, they have similar projection properties onto three and four factors and hence are competitive
alternatives to be considered for a screening when identifying up to four active factors is of interest.
We start this paper by introducing some concepts and the strategy for our factor-based search in Section 2. The proposed

screening algorithm will be described in Section 3 and applied to a model from Tyssedal and Hussain17 in Section 4. In
Section 5, we present the results of a simulation study over a wide range of models followed by an application on real data
in Section 6. Some concluding remarks are given in Section 7.
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HAMRE and TYSSEDAL 4101

2 IMPORTANT CONCEPTS AND STRATEGY

To ensure having a high chance of finding the correct active factors when only a few factors are assumed to be active, it is
important that the screening design projects well onto lower dimensions. This property can by described by the projectivity
of the design, as defined by Box and Tyssedal4:

A 𝑛 × 𝑘 design with 𝑛 runs and 𝑘 factors each at two levels is said to be of projectivity 𝑃 if the design contains
a complete 2𝑃 factorial in every possible subset of 𝑃 out of the 𝑘 factors, possibly with some points replicated.

If a design is of projectivity 3, all main effects and interactions corresponding to any choice of three factors can be esti-
mated without bias if the remaining factors are inactive. If it can be assumed that main effects and low-order interactions
can adequately model the response, estimating higher-order interactions may not be needed. A useful concept in such
cases is generalized projectivity,19 defined as:

A 𝑛 × 𝑘 designwith 𝑛 runs and 𝑘 factors each at two levels is said to be of generalized projectivity 𝑃𝛼, if for any
selection of 𝑃 columns of the design all factorial effects including up to 𝛼-factor interactions are estimable.

The 12-run PB design is a 𝑃 = 3 design, but Wang and Wu20 pointed out that it is possible to estimate the main effects
and their two-factor interactions for any four factors, hence it is also a 𝑃 = 42 design. By sacrificing the opportunity to fit
the three-factor interaction, an additional factor is allowed to be included. The 16-run NC designs for six to eight factors
share the same projectivity properties. A model including all main effects and interactions up to its projectivity either 𝑃
or 𝑃𝛼 will be called a full projection model, or FP-model for short. In the case of fitting a full projection model for the PB12
design assuming four active factors, the design will contain an intercept, four main effects and 6 two-factor interactions.
Nearly all degrees of freedom are spent when fitting the full model, making it hard to assess the model fit and significance
of each term. Having a procedure for selecting the subset of terms that should be included in the model without relying
on significance tests would, therefore, be useful.
The term candidate set is used to denote a set of factors that potentially may be active. If, for instance, 11 experimental

factors are included in the screening design, but only three are assumed to be active, there are
(113 ) = 165 candidate sets of

active factors before the screening. If the number of candidate sets can be reduced to 5 or 10 with the correct set of active
factors included, standard regression techniques can be used to reduce the number further. In this process, the experi-
menter may look for the most parsimonious representation, use subject matter knowledge and the heredity principle. If
there is still ambiguity, follow up runs can be added.
For a successful screening, it is important that when the number of candidate sets is reduced to a number 𝑟, the correct

set of active factors is among those. The set consisting of 𝑟 candidate sets of factors with the purpose of containing the
correct set of active factorswill be called the capture set of size 𝑟. To have ameasure of howoften this happens, we introduce
the concept capture frequency 𝐶𝐹𝑟(𝑖), defined as the number of simulations out of 𝑖 in which the correct candidate set of
factors is found in a capture set of size 𝑟 selected by some criterion, see also Tyssedal and Hussain.17 With the response
values 𝑦𝑖, 𝑖 = 1, … , 𝑛, we have used the mean square error MSE= ∑𝑛𝑖=1(𝑦𝑖−𝑦𝑖)2𝑛−𝑝 , where 𝑦𝑖 is the 𝑖th fitted response value and𝑝 is the number of terms in the model, intercept included. In this paper, a rate of 95% will be considered acceptable.
One of the most common strategies for doing variable selection is forward selection. The method starts with a minimal

model, and a new term is added if it is the best among all candidates for which a test statistic exceeds a given threshold, or
according to a chosen criterion. One challenge, in particular when using a F-test, is that in the beginning, the variation in
the response caused by important terms that are not yet included will enlarge the error variance. The large error variance
may hinder the inclusion of important effects, and in some cases, this might cause the algorithm to stop at an early stage.
Wolters21 reports on problems with criterion-based methods, among these is overfitting, see also Miller and Sitter22 for
a discussion about finding the appropriate penalty for such criteria. Another challenge is that spurious effects may be
chosen to enter the model due to nonorthogonal effect columns.
Having too few terms or wrong termswill make theMSE a biased estimate of the response variance, and toomany terms

in a model may lead to some of the wrong candidate sets being able to explain the variation in the response equally well
as the correct one. The method proposed in this paper tries to avoid these problems by using a selection strategy where
for each estimated FP-model, one selects a predefined number of the effects with the largest coefficients in absolute value
to be in a model that is then refitted to the data. Then all terms have an equal chance of entering the model, as they are
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4102 HAMRE and TYSSEDAL

chosen simultaneously. This predefined number of effects, 𝑙, should be large enough for the reduced model to include all
active effects in the candidate set with the correct active factors. The correct value for 𝑙 is of course not known in advance.
However, several values can be tried, and inherent in the procedure is a form of self-correction in that every candidate set
in the capture set can be checked for their number of active terms. We think that the best way of doing this is to start with
a low value of 𝑙 and then gradually increase it by one in each step. This will be illustrated on a real example in Section 6.
It is difficult to see how any test based or penalty-based procedure can offer the same opportunity. Another advantage is
that the procedure is scale invariant. If all the response values are multiplied by a constant 𝑐 all the estimated coefficients
and the estimated 𝜎 will also be multiplied by 𝑐. Any ranking between coefficients and the MSEs of the candidate sets
will be unchanged. No assumption about heredity is taken into account in this procedure. The heredity principle is not
guaranteed to be valid, and we think it is better to see which candidate sets that are able to explain the variation in the
response before we eventually discard some. The algorithm will be described in detail in Section 3.

3 THE PROPOSED SCREENING ALGORITHM

The basic idea of the screening algorithm is to first do a rough selection of terms, utilizing the assumption that most
often, only a small number of terms is needed to explain the response. The proposed screening algorithm is given by the
following steps:

1. Given a set of 𝑛𝑡 experimental factors, assume that 𝑛𝑎 are active. Find all possible sets of 𝑛𝑎 active factors, in total𝑘 = (𝑛𝑡𝑛𝑎).
2. For all 𝑘 sets, fit the full projection model given the current design and 𝑛𝑎. The intercept is also included in the model.
3. Select the 𝑙 terms corresponding to the largest coefficients in absolute value in the FP-model.
4. Refit the model with the selected terms and the intercept only. The refitted model will be referred to as the reduced

model.
5. Store the MSE = ∑𝑛𝑖=1(𝑦𝑖−𝑦𝑖)2𝑛−𝑙−1 for each reduced model.
6. Find the sets of active factors corresponding to the 𝑟 smallest MSE.
As a result, the original 𝑘 candidate sets of 𝑛𝑎 active factors are reduced to 𝑟. To consider a set, a candidate set for 𝑛𝑎 active
factors is not affected by how many factors that are included in the reduced model. In practice, one will likely inspect the
selected models to see which factors were actually chosen. As the algorithm assumes that the coefficients with the largest
absolute value are the most important, it will from now on be referred to as the ‘size-based method’. The emphasis will be
to investigate for which values of 𝑟 the active factors are among the final candidates in at least 95% of the cases.
It is our belief that starting with a coarse sorting in the beginning and proceeding with fine-tuning of the model is a

rational approach, as reducing the number of candidate models makes it easier to compare and select a final model.

4 AMOTIVATIONAL EXAMPLE

To have some impression of how well the algorithm suggested in Section 3 performs, it was first tested out on a model
given by 𝑌 = 2𝑥1 + 4𝑥3 + 2𝑥2𝑥3 + 2𝑥3𝑥4 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2). This is a commonly used test model for screening procedures,
see for example Hamada andWu7 orWolters and Bingham.10 It is also thoroughly investigated in Tyssedal and Hussain,17
as their model 8 in the panel. The model has four active factors and four terms and obeys the weak heredity principle.
Tables 1 and 2 show the capture frequencies for the active factors when using the new size-based method, choosing the

number of terms 𝑙 = 4, 6 and 7, respectively. This is in line withWolters and Bingham,10 who suggest that 𝑛3 is a reasonable
estimate for the number of effects in the model, and that between 𝑛3 + 2 and 𝑛3 + 4 effects should be chosen in order to
ensure finding the correct effects. Tables 1 and 2 showCF𝑟(1000) for 𝑟 =1, 5 and 10. The choice of 𝑖 = 1000mimics Tyssedal
and Hussain.17 The results were found by using the design in Table 3, creating the responses based on themodel, and then
adding normally distributed noise with different variances. The proposed size-based method was used to test all possible
candidate sets of four active factors having 𝑛𝑡 experimental factors. The design used consists of the 𝑛𝑡 first columns of the
PB12 design in Table 3.
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HAMRE and TYSSEDAL 4103

TABLE 1 CF𝑟(1000) obtained from model 8 in Tyssedal and Hussain17 varying 𝜎2, the size of the capture set, 𝑟, and the number of
experimental factors, 𝑛𝑡 , using 𝑙 = 4 number of terms 𝝈𝟐𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l = 4, 𝑛𝑡 = 7
1 1000 1000 1000 1000 999 999 993 991 976 971 951
5 1000 1000 1000 1000 1000 1000 1000 1000 998 997 998
10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

l = 4, 𝑛𝑡 = 9
1 1000 1000 1000 999 998 996 986 973 945 911 888
5 1000 1000 1000 1000 1000 1000 1000 997 998 991 988
10 1000 1000 1000 1000 1000 1000 1000 999 1000 998 999

l = 4, 𝑛𝑡 = 11
1 1000 1000 1000 998 999 993 980 952 903 884 850
5 1000 1000 1000 1000 1000 1000 999 996 992 989 974
10 1000 1000 1000 1000 1000 1000 1000 1000 998 996 991

TABLE 2 CF𝑟(1000) obtained from model 8 in Tyssedal and Hussain17 varying 𝜎2, the size of the capture set, 𝑟, the number of
experimental factors, 𝑛𝑡 , and the number of terms, 𝑙 𝝈𝟐𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l = 6, 𝑛𝑡= 7
1 1000 648 675 630 639 658 646 593 614 592 582
5 1000 1000 1000 1000 1000 998 999 992 989 986 970
10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999

l = 6, 𝑛𝑡 = 9
1 1000 658 656 641 670 604 632 568 541 551 468
5 1000 1000 1000 1000 998 992 989 973 951 943 905
10 1000 1000 1000 1000 1000 999 999 997 988 991 972

l = 6, 𝑛𝑡 = 11
1 1000 528 529 526 527 487 470 486 425 398 403
5 1000 1000 1000 996 990 978 949 915 891 856 835
10 1000 1000 1000 1000 1000 997 982 972 953 947 932

l = 7, 𝑛𝑡 = 7
1 0 531 542 534 522 500 500 516 512 463 455
5 1000 1000 1000 1000 1000 993 994 985 978 968 948
10 1000 1000 1000 1000 1000 1000 1000 1000 998 995 991

l = 7, 𝑛𝑡 = 9
1 0 400 382 417 380 361 352 367 358 335 290
5 1000 897 877 886 851 854 830 829 806 793 748
10 1000 1000 1000 1000 998 988 978 964 944 928 917

l = 7, 𝑛𝑡 = 11
1 0 238 271 242 250 248 228 220 222 193 214
5 0 657 693 651 716 671 660 645 619 579 578
10 0 884 908 891 913 872 871 846 831 788 791
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4104 HAMRE and TYSSEDAL

TABLE 3 The 12-run PB design with 11 factors
A B C D E F G H I J K
1 1 −1 1 1 1 −1 −1 −1 1 −1−1 1 1 −1 1 1 1 −1 −1 −1 1
1 −1 1 1 −1 1 1 1 −1 −1 −1−1 1 −1 1 1 −1 1 1 1 −1 −1−1 −1 1 −1 1 1 −1 1 1 1 −1−1 −1 −1 1 −1 1 1 −1 1 1 1
1 −1 −1 −1 1 −1 1 1 −1 1 1
1 1 −1 −1 −1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1 1 1 −1−1 1 1 1 −1 −1 −1 1 −1 1 1
1 −1 1 1 1 −1 −1 −1 1 −1 1−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

F IGURE 1 Plots of 𝐶𝐹10(1000) against variance for comparison of the proposed size-based method and the methods from Tyssedal and
Hussain,17 for different numbers of experimental factors, 𝑛𝑡 , and number of terms, 𝑙. The y-axis is different for each plot, but the black dashed
lines show the 95% limit in all cases. (A) Seven factors in the design, (B) nine factors in the design, (C) 11 factors in the design

What is apparent from Tables 1 and 2 is that, at least for this model, our procedure may perform extremely well when𝑙 = 4 and also for 𝑙 = 6 and 𝑟 = 10. For 𝑙 = 4, we obtained higher capture frequencies using 𝑟 = 1 than Tyssedal and
Hussain17 obtained with 𝑟 = 10. As expected, the number of experimental factors affects the performance. Even for 𝑙 = 6
and 𝑟 = 5, the results are good for quite high variances. For 𝑙 = 7, the performance declines remarkably. In Figure 1,𝐶𝐹10(1000) is plotted against variance for comparing the size-based procedure with different 𝑙-values with the results
obtained in Tyssedal and Hussain17 with the Δ𝑅2-method and the F-test. It is easily seen that our proposed procedure
outperforms the Δ𝑅2-method and the F-test method in all cases when 𝑙 = 4 and 6. However, when 𝑙 = 7, the Δ𝑅2-method
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HAMRE and TYSSEDAL 4105

TABLE 4 The 16-run NC design with six factors
A B C D E F−1 −1 −1 −1 1 −1
1 −1 −1 −1 −1 −1−1 1 −1 −1 −1 1
1 1 −1 −1 1 −1−1 −1 1 −1 −1 1
1 −1 1 −1 1 1−1 1 1 −1 1 1
1 1 1 −1 −1 −1−1 −1 −1 1 −1 1
1 −1 −1 1 1 1−1 1 −1 1 1 −1
1 1 −1 1 −1 1−1 −1 1 1 1 −1
1 −1 1 1 −1 −1−1 1 1 1 −1 −1
1 1 1 1 1 1

and the F-test have slightly higher capture frequencies for small values of 𝜎2. What is also apparent is that our procedure
is more robust to increasing the variance than the Δ𝑅2-method and the F-test. As expected, the number of experimental
factors affects the performance. The more experimental factors, the higher 𝑟 should be used.
One problem appeared when choosing seven terms in the case of zero variance. The model with the correct factors was

never the best, and when considering 11 experimental factors, it was not even among the 10 best. But the MSEs of the
top 20 models were very similar, indicating that several sets of factors can explain this response equally well. Equivalent
models sometimes occur when using the PB12 design due to the complex alias structure, making it more likely that some
linear combinations are equivalent to the true model the more terms that are included. Therefore, only testing a small
panel of models is not advisable, as the results may be strongly affected when such equivalent cases exist.

5 A SIMULATION STUDY OF THE OVERALL PERFORMANCE

To assess the overall performance of our procedure, we have tried it out on a wide range of models. The designs used are
six or more design columns from the 12-run PB design and the three 16-run NC designs given in Tables 4–6. For designs
with 12 runs and 𝑛𝑡 experimental factors, the 𝑛𝑡 first columns from Table 3 will always be used. Note that the 12-run PB
design has two different projections onto 5 and 6 dimensions. Table 3 is written in a form that contains the one preferred
by Wang and Wu20 in the first six columns. For all other dimensions, the projections are isomorphic.
The 16-run designs were chosen to examine how much gain in capture frequency that is obtained by using four more

experimental runs. Also, their performance in a screening situation is, to our knowledge, not well tested out. The three
NC designs presented in Tables 4–6 are for each number of factors just one out of several options. For six experimental
factors, the designwith the highest numbers of full 24 projections was chosen. It ismade up of a 25−1 designwith generator
E = ABCD and an additional factor column F generated as F = 12 (AD+ABD−CD+BCD), and can be found in Table 4.
For seven and eight experimental factors, we use designs that are isomorphic to the ones proposed by Montgomery and
Jones.18 They can be found in Tables 5 and 6.

5.1 A general procedure for testing the size-based method

The procedure was tested out through simulations for cases with both three and four active factors, using several model
formats and various levels of noise. The models selected were submodels of the FP-models. Given the format and the

 10991638, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3188 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [11/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

119



4106 HAMRE and TYSSEDAL

TABLE 5 The 16-run NC design with seven factors
A B C D E F G−1 −1 −1 −1 1 −1 −1
1 −1 −1 −1 −1 −1 1−1 1 −1 −1 −1 1 1
1 1 −1 −1 1 −1 −1−1 −1 1 −1 −1 1 −1
1 −1 1 −1 1 1 1−1 1 1 −1 1 1 −1
1 1 1 −1 −1 −1 1−1 −1 −1 1 −1 1 1
1 −1 −1 1 1 1 −1−1 1 −1 1 1 −1 1
1 1 −1 1 −1 1 −1−1 −1 1 1 1 −1 1
1 −1 1 1 −1 −1 −1−1 1 1 1 −1 −1 −1
1 1 1 1 1 1 1

TABLE 6 The 16-run NC design with eight factors
A B C D E F G H−1 −1 −1 −1 −1 1 1 1
1 −1 −1 −1 1 1 −1 1−1 1 −1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1−1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 1 −1−1 1 1 −1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1−1 −1 −1 1 1 1 −1 −1
1 −1 −1 1 1 −1 1 −1−1 1 −1 1 −1 −1 −1 1
1 1 −1 1 −1 1 −1 −1−1 −1 1 1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1−1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

noise level, active factors and effects were drawn randomly, and the size of the effects drawn uniformly within specified
intervals in each of 10,000 simulations. The full description of the procedure for testing the size-based method proposed
in Section 3 is as follows:

1. Specify the format of the model: Number of active factors, 𝑛𝑎, number of candidate effects, 𝑛𝑒, number of main effects,𝑛𝑚, minimum absolute value of the coefficients, 𝑏𝑚𝑖𝑛, maximum absolute value of the coefficients, 𝑏𝑚𝑎𝑥.
2. Specify the variance of the noise added to the response, 𝜎2.
3. Specify number of terms in the reduced model, 𝑙.
4. Draw the active factors, randomly distribute their effects between main effects and two-factor interactions. Draw the

corresponding coefficients from a uniform distribution on the interval [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥], multiply with −1 or 1, drawn
randomly with equal probability.
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HAMRE and TYSSEDAL 4107

F IGURE 2 The number of possible candidate sets for three and four active factors as a function of the number of experimental factors

TABLE 7 CF1(10, 000) for the 16-run NC-designs varying 𝜎2 in the case of three active factors. The simulated models have three main
effects and three interaction effects and an absolute effect size between 1 and 3. All terms in the FP-model were chosen for the reduced models.

CF𝟏(𝟏𝟎, 𝟎𝟎𝟎) for the 16-run designs𝝈𝟐𝒏𝒕 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6 10,000 9982 9968 9979 9964 9948 9940 9920 9912 9915 9899
7 10,000 9979 9968 9939 9955 9919 9898 9871 9857 9831 9840
8 10,000 9963 9931 9901 9855 9819 9803 9749 9698 9678 9651

5. Using the design considered, simulate responses adding error terms drawn from a normal distribution with mean zero
and variance 𝜎2.

6. Apply the proposed algorithm and check if the correct set of active factors were used to construct any of the 𝑟 reduced
models with the smallest MSE.

In all cases, the CF𝑟(10, 000) for 𝑟 = 1, 5, 10 and 15 was recorded. When CF𝑟(10, 000) = 10, 000 for all levels of 𝜎2, it
is not presented in the result tables. Checking the performance for several levels of 𝜎2 is useful to give an indication of
the most suitable size of the capture set. It is important to be aware of that the number of possible sets of active factors
rapidly increases when the number of factors in the design increases. Figure 2 shows the number of sets as a function of
the number of factors. For instance, when considering six factors in the design, there are only 20 possible sets of three
factors, while if there are 11 factors in the design, there are 165. Thus being able to reduce the candidate set to 5, 10 or 15 is
relatively more useful for designs with many experimental factors.
An important point to note about the simulations is that 𝑏𝑚𝑖𝑛 was chosen as the value of the largest variance tested,

while 𝑏𝑚𝑎𝑥 was three times the value of the largest variance. If the response variance is much larger than the coefficients,
it is believed to be very hard to find the correct model when using as few runs as 12 or 16.

5.2 Identifying three active factors

First, the simplest case of three active factors was considered. As there are only seven terms in the full projection model, 𝑙
was set to 7 and the mean square errors of the full projection models were compared. The simulated models were chosen
to have three main effects and three interaction effects, all with coefficients with an absolute value between 1 and 3.
The results were very good for both the 12- and 16-run designs. For the 16-run NC designs, the capture frequencies were
almost always 10,000 when using 𝑟 = 5, 10 and 15. The only exception was in the case of eight factors in the design and
a variance of 1 when choosing the five best factors. Then the capture frequency was 9997. The results when choosing the
very best model were also highly satisfactory, as shown in Table 7. When having a 95% chance of finding the correct model
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4108 HAMRE and TYSSEDAL

TABLE 8 CF𝑟(10000) for the PB12 design varying 𝜎2, the size of the capture set, 𝑟, and the number of experimental factors, 𝑛𝑡 , in the case
of three active factors. The simulated models have three main effects and three interaction effects and an absolute effect size between 1 and 3.
All terms in the FP-model were chosen for the reduced models. 𝝈𝟐𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0𝑛𝑡 = 6
1 10,000 9886 9770 9684 9577 9485 9391 9250 9120 9031 8897
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9997𝑛𝑡 = 7
1 10,000 9822 9659 9430 9293 9144 8912 8763 8626 8453 8277
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9997 9996 9992 9992𝑛𝑡 = 8
1 10,000 9655 9387 9048 8767 8588 8285 7981 7763 7599 7296
5 10,000 10,000 10,000 10,000 9999 9997 9994 9989 9983 9970 9939
10 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9999 9998𝑛𝑡 = 9
1 10,000 9522 9077 8652 8301 7953 7591 7306 6937 6670 6454
5 10,000 10,000 10,000 9997 9995 9988 9979 9947 9937 9915 9863
10 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9998 10,000 9990 9988
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9997 9999𝑛𝑡 = 10
1 10,000 9370 8820 8271 7856 7407 7005 6629 6339 5967 5705
5 10,000 9997 9990 9993 9980 9961 9917 9886 9821 9730 9709
10 10,000 10,000 10,000 10,000 10,000 10,000 9998 9988 9987 9971 9969
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9998 9997 9991 9993𝑛𝑡 = 11
1 10,000 9271 8606 8020 7448 6901 6599 6093 5749 5447 5101
5 10,000 9998 9980 9964 9930 9889 9805 9720 9639 9543 9408
10 10,000 10,000 10,000 10,000 10,000 9991 9994 9974 9956 9948 9924
15 10,000 10,000 10,000 10,000 10,000 9998 10,000 9995 9987 9988 9973

is considered good enough, selecting the best model in a search for three active factors is an acceptable strategy when
using a 16-run design.
The 12-run PB design did, naturally, not perform as well as the 16-run designs, but when using 𝑟 = 5, themodel with the

correct factors was almost always found in at least 95% of the cases. Thus being able to reduce the number of candidate sets
down to five, using the proposed size-based method, is likely for the 12-run PB design even with 11 experimental factors.
The results can be found in Table 8. To ease the comparison, the results corresponding to using 𝑟 = 1 and 𝑟 = 5 are plotted
in Figure 3, for all the cases tested. It is easily seen that the 16-run designs perform better than the PB12 design for the
same number of factors, and that the capture frequencies decrease with increasing number of experimental factors, as one
would expect. Note that as 16-run designs with more than eight factors were not tested, only designs with six, seven and
eight experimental factors can be fairly compared for 12 and 16 runs.

5.3 Identifying four active factors

Besides some examples and the work of Tyssedal and Hussain,17 there is to our knowledge limited information of how
well the PB12 design performs when four factors are active. However, the above-mentioned work indicates that it is sub-
stantially more difficult to identify the right active factors when four are active compared to when three are. The first
simulated models were specified to have four main effects and 2 two-factor interaction effects, all with coefficients with
absolute values between 1 and 3. The reduced models included 𝑙 = 6 terms. Results using the 16-run NC designs are pre-
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HAMRE and TYSSEDAL 4109

F IGURE 3 Plot of CF𝑟(10, 000) against variance varying the size of the capture set, 𝑟, and the number of experimental factors, 𝑛𝑡 , for
both 12- and 16-run designs having three active factors. The simulated models have three main effects and three interaction effects, and an
absolute effect size between 1 and 3. All terms in the FP-model were chosen for the reduced models. R denotes the number of rows in the
design, and F the number of factors. Note that the y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases.
(A) CF𝑟(10, 000) when 𝑟 = 1, (B) CF𝑟(10, 000) when 𝑟 = 5
TABLE 9 CF𝑟(10, 000) for the 16-run designs in the case of four active factors, varying 𝜎2 and the capture set size, 𝑟. The simulated
models have four main effects and 2 two-factor interaction effects and an absolute effect size between 1 and 3. The number of terms in the
reduced model is 𝑙 = 6. 𝝈𝟐𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0𝑛𝑡 = 6
1 10,000 9862 9809 9776 9731 9673 9644 9567 9555 9496 9466𝑛𝑡 = 7
1 10,000 9788 9645 9606 9535 9437 9319 9290 9219 9138 8993
5 10,000 9999 9999 10,000 9999 10,000 9997 9995 9996 9994 9992𝑛𝑡 = 8
1 10,000 9616 9367 9085 9020 8828 8720 8496 8338 8180 8003
5 10,000 9995 9985 9962 9976 9952 9944 9918 9913 9883 9859
10 10,000 10,000 10,000 10,000 9999 9997 9997 9996 9994 9989 9991
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9999 10,000 9999

sented in Table 9. The capture frequencies when considering 𝑟 = 1 decline quickly when the number of factors in the
design is increased. This is reasonable, given that there exists 15 ways to choose four active factors among six candidate
factors, and 70 ways to choose four active factors among eight candidate factors. Despite this, using 𝑟 = 5 is sufficient for
having a capture frequency well above 95% for all design sizes.
The results for the 12-run PB design with different numbers of factors in the design can be found in Table 10. In this

case, using 𝑟 = 1 for finding the active factors is not advisable, as the capture frequencies are then quite low. However,
for reducing the number of candidate sets, the method yields satisfactory results in many cases. Including up to eight
experimental factors in the design, using 𝑟 = 10 yields a capture frequency above 95% in all but two cases. For more than
eight factors in the design, 𝑟 = 10 yields satisfactory results for low levels of noise.When suspecting a rather high variance,
one may use 𝑟 = 15 to improve the chances that the correct active factors are included in the capture set. For instance,
when there are nine factors in the design, choosing 𝑟 = 15 instead of 𝑟 = 10 increases themaximal 𝜎2 for which the success
probability is above 95% from 0.5 to 0.7.
To compare the general difference in performance for the 12- and 16-run designs, the results were plotted for the case

of selecting the best and the five best models in Figure 4. When selecting the 10 best models, the results were very close to
10,000 for the 16-run designs, hence only results for the 12-run design were plotted in Figure 5. The plots leave little doubt
that using 16-run designs are recommendable whenever possible, but using the 12-run designs with the same number of
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4110 HAMRE and TYSSEDAL

TABLE 10 CF𝑟(10, 000) for the PB12 design in the case of four active factors with varying 𝜎2, capture set size 𝑟 and number of
experimental factors 𝑛𝑡 . The simulated models have four main effects and 2 two-factor interaction effects and an absolute effect size between 1
and 3. The number of terms in the reduced model is 𝑙 = 6. 𝝈𝟐𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0𝑛𝑡 = 6
1 10,000 9214 8771 8344 7875 7626 7267 6919 6639 6387 6117
5 10,000 9996 9984 9985 9968 9950 9943 9913 9878 9829 9773
10 10,000 10,000 9999 10,000 10,000 9999 10,000 9999 9996 9991 9993𝑛𝑡 = 7
1 10,000 8624 8053 7417 6920 6477 5873 5606 5168 4891 4594
5 10,000 9968 9930 9868 9825 9714 9622 9462 9302 9179 8989
10 10,000 9999 9999 9995 9985 9964 9957 9943 9904 9855 9822
15 10,000 10,000 10,000 10,000 10,000 9996 9996 9988 9982 9973 9970𝑛𝑡 = 8
1 10,000 8246 7338 6644 5953 5398 4834 4529 4093 3700 3554
5 10,000 9897 9786 9608 9412 9194 8921 8706 8433 8097 7862
10 10,000 9989 9968 9928 9884 9820 9749 9620 9535 9362 9224
15 10,000 9996 9992 9984 9959 9943 9912 9851 9814 9762 9656𝑛𝑡 = 9
1 10,000 7849 6738 5800 5106 4559 3986 3553 3233 2774 2609
5 10,000 9834 9594 9313 8977 8632 8206 7840 7434 6883 6644
10 10,000 9964 9889 9819 9658 9542 9320 9089 8856 8540 8313
15 10,000 9994 9971 9944 9886 9826 9706 9596 9436 9248 9064𝑛𝑡 = 10
1 10,000 7489 6220 5169 4458 3835 3371 2952 2524 2224 1986
5 10,000 9748 9414 8975 8507 7960 7562 7058 6532 6043 5634
10 10,000 9927 9798 9613 9410 9114 8842 8433 8098 7692 7372
15 10,000 9971 9921 9814 9688 9560 9375 9080 8851 8568 8372𝑛𝑡 = 11
1 10,000 7119 5665 4555 3883 3284 2736 2370 2024 1746 1564
5 10,000 9608 9147 8526 7925 7267 6803 6136 5685 5161 4731
10 10,000 9866 9663 9344 8967 8561 8235 7748 7287 6833 6441
15 10,000 9942 9817 9664 9426 9149 8882 8529 8129 7773 7442

factors can also yield good results if one selects several candidate sets of active factors for further investigation and the
variance is not too high.

5.4 Testing different model specifications

Having demonstrated that the method works well for a given format for four active factors, it is interesting to see if the
results are impacted by using different specifications for the simulatedmodels. Themodels used in the previous section all
had four main effects and 2 two-factor interactions. To check how the number and type of active effects affect the result,
a panel of model types with four active factors and different specifications was tested:

1. Six active effects (four main effects, two two-factor interactions)
2. Six active effects (three main effects, three two-factor interactions)
3. Six active effects (two main effects, four two-factor interactions)
4. Four active effects (two main effects, two two-factor interactions)
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HAMRE and TYSSEDAL 4111

F IGURE 4 Plot of CF𝑟(10, 000) against variance for the 12- and 16-run designs with different numbers of factors in the design, using
capture set size 𝑟 = 1 and 5, respectively. The simulated models have four main effects and 2 two-factor interaction effects, and an absolute
effect size between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. R denotes the number of rows in the design, and F the number
of factors. The y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases. (A) CF𝑟(10, 000) when 𝑟 = 1, (B)
CF𝑟(10, 000) when 𝑟 = 5

F IGURE 5 Plot of CF𝑟(10, 000) against variance for the 12-run PB design with different numbers of factors in the design, using capture
set size 𝑟 = 10 and 𝑟 = 15, respectively. The simulated models have four main effects and 2 two-factor interaction effects, and an absolute
effect size between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. R denotes the number of rows in the design, and F the number
of factors. The y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases. (aA) CF𝑟(10, 000) when 𝑟 = 10, (B)
CF𝑟(10, 000) when 𝑟 = 15
The first specification is the one used in the previous section. The third is motivated from machine learning. When

design of experiments is used for tuning of hyperparameters in algorithms like random forests, experience has shown that
many two-factor interactionsmay appear in the screening phase, see Vatnedal.23 All specificationswere tested for different
numbers of factors in the design, choosing 𝑙 = 6 terms for the reduced models. The results for the 12-run designs can be
found in Figure 6. In the plots, results are shown when choosing 𝑟 = 1, and when choosing the 𝑟 one would typically use
for that model size (either 5, 10 or 15, depending on the capture frequency). The results seem to vary more when using𝑟 = 1 than when 𝑟 = 5, 10 or 15. This is reassuring, as one would typically not choose only the best model. In general, the
smallest model with only four active effects yields slightly better results than the models with six active effects, suggesting
that sparse models make the active factors easier to find than large models. For the models with six active effects, the
results are slightly worse for the models with three main effects and three two-factor interactions than the others.
The same panel of specifications was also tested for the 16-run nonregular NC design, using 𝑙 = 6 in the reducedmodels,

and the results can be seen in Figure 7. In this case, the sparsestmodels with only four active effects gave poor results when
choosing 𝑟 = 1. This might seem strange as this specification performed well in the 12-run case, and now it did not even
yield a capture frequency above the 95% limit when the variance was zero. This is due to the aliasing pattern of the 16-run
design. For the six and seven factor design both E = ABCD and F = 12 (AD+ABD−CD+BCD) are generators. When only
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4112 HAMRE and TYSSEDAL

F IGURE 6 Plot of CF𝑟(10, 000) against variance for different model specifications using a PB12 design. 2M2IBest does for instance
denote two main effects, 2 two-factor interactions and 𝑟 = 1. In all cases, there were four active factors, and the absolute effect size was
between 1 and 3. The number of terms in the reduced models is 𝑙 = 6. (A) Six factors in the design, (B) seven factors in the design, (C) eight
factors in the design, (D) nine factors in the design, (E) 10 factors in the design, (F) 11 factors in the design

four effects are active, but more effects are chosen for the reduced models, it is possible to construct alternative models,
which are linearly equivalent to the true model.
For instance, if the true model has the active effects C, D, BC and DF. Then a linearly equivalent model can be con-

structed using the effects A, C, D, BC and AB. This is because DF = 12 (A+AB−C+BC). But the plots also show that the
correct model is found among the five best models almost equally often when there are four active effects as when there
are six active effects. This effectively demonstrates that one should always consider choosing a candidate set of models for
further investigation when using nonregular designs. Then one may proceed the analysis by testing reduced models with
different values of 𝑙. If a small model has only a slightly higher MSE than a larger one with different active factors, it could
indicate that the larger model is just another representation of the small one.
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F IGURE 7 Plot of CF𝑟(10, 000) against variance for the 16-run design using different model specifications. 2M2IBest does for instance
denote two main effects, 2 two-factor interactions and 𝑟 = 1. In all cases, there were four active factors, and the absolute effect size was
between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. (A) Six factors in the design, (B) seven factors in the design, (C) eight
factors in the design

TABLE 11 Factors and levels for investigating the possible size of error variance in order to have a capture frequency of 95%
Symbol Factor Levels
A Size of capture set, 𝑟 5, 10, 15
B Number of excess terms in reduced model, 𝑙 − 𝑛𝑒 0, 1, 2
C Number of experimental factors, 𝑛𝑡 7, 9, 11
D Number of terms in the model, 𝑛𝑒 4, 5, 6

5.5 Evaluating the screening performance

From what is observed, factors like the size of the capture set, 𝑟, the number of terms in the reduced model, 𝑙, the number
of experimental factors, 𝑛𝑡, and the number of terms in the truemodel, 𝑛𝑒, will affect the outcome of a screening. To inves-
tigate the effect of these factors for the 12 run PB design, a 34 experiment was conducted using the largest error variance for
which a capture frequency above 95% can be obtained, from now on called the capture variance, as the response. Factors
and levels are given in Table 11.
Capture frequencies based on 1000 simulations were used in the experiment. The models had four active factors and

the number of terms, 𝑛𝑒, in the models was chosen to be 4, 5 and 6, always including 2 two-factor interactions. The
data were analysed using the alternative analysis method given in Wu and Hamada,24 page 287. Linear and quadratic
effects were estimated by setting low, medium and high levels to (−1, 0, 1) and (1, −2, 1), respectively. No scaling to unit
length was performed. A logarithmic transformation is often employed for variance modelling. However, in this case, the
square root gave residuals better approximated to a normal distribution. Following the notation in Wu and Hamada,24
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TABLE 1 2 Values of estimated capture standard deviations varying the size of the capture set, 𝑟, and the number of experimental
factors, 𝑛𝑡 . 𝑙 = 𝑛𝑒 = 4. The models have four active factors.𝒓∖𝒏𝒕 7 9 11
5 1.02 0.73 0.60
10 1.43 0.92 0.72
15 1.85 1.11 0.85

the following model was estimated for the capture standard deviation with all terms being significant at a 5% level: 𝜎̂ =0.766 + 0.263𝐴𝑙 − 0.114𝐵𝑙 − 0.366𝐶𝑙 − 0.134𝐷𝑙 + 0.055𝐶𝑞 + 0.012𝐷𝑞 + 0.018𝐴𝐵𝑙𝑙 − 0.147𝐴𝐶𝑙𝑙 − 0.023𝐶𝐷𝑙𝑙 + 0.022𝐴𝐶𝑙𝑞 .
The subscripts 𝑙, 𝑞, 𝑙𝑙 and 𝑙𝑞 are used to denote linear, quadratic, linear-by-linear and linear-by-quadratic effects, respec-

tively. The linear effects dominate together with the linear by linear interaction AC and the quadratic effect of C. As
expected, the capture standard deviation is higher if 𝑟 is high and if we have few experimental factors. It is an advantage
that 𝑙 is equal to 𝑛𝑒, and that the model has few terms. The linear-by-linear AC interaction has as a consequence that the
effect of increasing 𝑟 will decline when 𝑛𝑡 increases. Table 12 gives capture standard deviation for different values of 𝑟 and𝑛𝑡 with 𝑙 = 𝑛𝑒 = 4. Since the effect of increasing 𝑙 − 𝑛𝑒 and 𝑛𝑒 is mainly linear, it is rather easy to adjust for other values
of these parameters.
We notice that the negative effect on the capture standard deviation of increasing 𝑛𝑡 decreases when 𝑛𝑡 increases. Over-

all, the results show that for the 12-run PB design, even with 𝑛𝑡 = 11 and four active factors, it is in many cases possible to
reduce the number of candidate sets down to 5. Only 𝑛𝑡 is known in the beginning of the screening, but once performed,
one will have values for 𝑙, and estimates for 𝑛𝑒 and 𝜎. The suitability of 𝑙 can be checked against the models in the cap-
ture set. Since the procedure is scale invariant as pointed out in Section 2, the value of 𝜎̂̂𝑏𝑚𝑖𝑛 can be used to check against
the numbers in Table 12 and should, together with the model for 𝜎̂, provide useful information about what 𝑟 to use in
order to have a reasonable certainty that the ‘correct’ candidate set is captured. In this way, the reliability of the screening
performance can be evaluated even if several important parameters are unknown from the beginning.
However, all the calculation are performed under the assumption that 𝑏𝑚𝑎𝑥𝑏𝑚𝑖𝑛 = 3. It is meant to constitute a normal situa-

tion, but obviously this is not always true. In Figure 8, the capture frequencies are plotted for 𝑏𝑚𝑎𝑥𝑏𝑚𝑖𝑛 = 𝑣 for 𝑣 = 1.5, 2.0, … , 4
in steps of 0.5, and for two models with four active factors. One of the models has four active effects and one has six. We
notice that the capture frequency is decreasingwith increasing 𝜎2 and 𝑛𝑡. For 𝑣 = 2, the reduction in the estimated capture
standard deviation compared to when 𝑣 = 3 will be about 20%–30% for the model with four terms and 30%–40% for the
model with six terms. For 𝑣 = 1.5 these intervals are about 30-40% and 45%–70%. However, when running simulations
with a given 𝑣, the ratio between the largest and smallest coefficient will most likely be smaller than 𝑣 in absolute value.
Therefore, numbers like the ones above and in Table 12 are a little pessimistic. We notice that for up to eight experimental
factors, the method performs reasonably well even for quite high variances.
Figure 9 explains why the problem of identifying active factors is much harder when the effect range is small. Response

values are simulated from a model with four active factors and six terms. No noise is added. Our procedure is then used
to find the MSE of all the 126 candidate sets for nine experimental factors. The average of the nine candidate sets with a
MSE closest to zero is plotted against 𝑣. The smaller the 𝑣 the smaller the average, making it easier for other candidate sets
than the correct one to be in the capture set. Increasing 𝑙 − 𝑛𝑒 makes the problem of identifying the active factors harder.

6 AN EXAMPLEWITH REAL DATA

Phoa et al.25 reanalysed three real chemical experiments where the PB12 design was used, in order to demonstrate
shortcomings of the traditional analysis approach. Here, their third example, an experiment regarding chemical char-
acterization of grapes originally taken from Dopico-Garcia et al.,26 will be considered. The response was the extraction of
phenolic compounds, measured in area divided by amount of sample (see the original paper for details). Table 13 shows
the factors and levels considered in the experiment, while Table 14 shows the experimental design and the corresponding
responses. Note that the columns in the PB12 design in Table 14 are written in a different manner than the ones in Table 3.
Phoa et al.25 found that the active factors were A, C and D. They proposed the following model: Ŷ= 5.51+ 1.11C− 1.03D+ 1.73AD. Using the size-based method, assuming four active factors and including four, five and six terms in the reduced

models yielded the same active factors, and factor F in addition. Using three terms in the reduced models was also tested,
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F IGURE 8 Plots of capture frequencies when testing different effect ranges. The minimum effect size was always 1, while the upper (U)
was varied from 1.5 to 4. F is the number of factors in the design, while A is the number of active effects. There were always two active
two-factor interactions. 𝑙 = 𝑛𝑒 and 𝑟 = 10. Note that the scale of the y-axis is different for each row. (A) Seven factors in the design, (B) eight
factors in the design, (C) nine factors in the design, (D) 10 factors in the design, (E) 11 factors in the design

in which case the factors A, C and D were included in all candidate sets in accordance with the model chosen in Phoa
et al.25
The active factors and the MSE for the five best reduced models when assuming three and four active factors can be

found in Tables 15 and 16. Assuming three active factors, the factors A, C and D were always chosen. Note that for models
with four, five and six terms, theMSE of the supposedly correct model is about half the size or less than the next best MSE.
In the case of selecting three terms and assuming four active factors, the factors A, C and D are always included in the
candidate sets, and all models yield the same MSE. It seems like a model with the same three factors is always chosen,
despite the possibility of including an additional factor as long as there are only three terms. To consider whether there
are three or four active factors, the models should be more thoroughly investigated.
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F IGURE 9 The average MSE of the nine best candidate models for different effect ranges. The values are based on 1000 iterations, using
a design with nine factors, a minimum effect size of 1, and 0 variance. The simulated models had three active main effects and three active
two-factor interactions.

TABLE 13 Factors and levels in the compound extraction experiment from Dopico-Garcia et al.26

Symbol Factor Unit Low factor level (−) High factor level (+)
A Extraction solvent Acid water MeOH
B Extraction volume ml 50 250
C Extraction time min 5 20
D Temperature ◦C 40 50
E Extraction type Ultrasonic Stirring
F Sorbent type EC NEC
G Elution solvent EtOH MeOH
H Elution volume ml 20 150

TABLE 14 Design matrix and responses for the real data from Dopico-Garcia et al.26

Run A B C D E F G H Response Y
1 1 −1 1 −1 −1 −1 1 1 6.98
2 1 1 −1 1 −1 −1 −1 1 5.31
3 −1 1 1 −1 1 −1 −1 −1 9.67
4 1 −1 1 1 −1 1 −1 −1 6.45
5 1 1 −1 1 1 −1 1 −1 5.23
6 1 1 1 −1 1 1 −1 1 5.34
7 −1 1 1 1 −1 1 1 −1 4.03
8 −1 −1 1 1 1 −1 1 1 3.76
9 −1 −1 −1 1 1 1 −1 1 2.10
10 1 −1 −1 −1 1 1 1 −1 2.65
11 −1 1 −1 −1 −1 1 1 1 7.40
12 −1 −1 −1 −1 −1 −1 −1 −1 7.14

Different models assuming three and four active factors are given in Table 17, along with a list of terms having a p-
value above 0.01, and the adjusted AIC, AIC𝑎 = 𝑛 ln SSE𝑛 + 2𝑝(𝑛+1)𝑛−𝑝 . Here the sum of squared errors, SSE, is given by SSE=
∑𝑛𝑖=1(𝑦𝑖 − 𝑦𝑖)2. The difference between AIC and the AIC𝑎 is that AIC𝑎 punishes the addition of new terms more heavily
than the AIC, for which the penalty is only 2𝑝. AIC𝑎 is in particular considered suited for small sample sizes. In the case
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TABLE 15 The active factors and their corresponding MSE for the five best models, when assuming three active factors and choosing 3,
4, 5 and 6 terms in the reduced models, respectively

(a) 𝒍 = 𝟑 (b) 𝒍 = 𝟒
Rank Factors MSE Rank Factors MSE
1 A C D 0.314364 1 A C D 0.243252
2 B C F 0.838144 2 B C F 0.553700
3 A D E 0.937919 3 A D E 0.599666
4 A D F 1.100919 4 E G H 0.817199
5 D E H 1.126051 5 A D F 0.894516

(c) 𝒍 = 𝟓 (d) 𝒍 = 𝟔
Rank Factors MSE Rank Factors MSE
1 A C D 0.162919 1 A C D 0.121591
2 A D E 0.523941 2 A D E 0.492138
3 B C F 0.531299 3 B C F 0.521731
4 E G H 0.560616 4 E G H 0.523125
5 A D F 0.723891 5 C E H 0.543581

TABLE 16 The active factors and their corresponding MSE for the five best models, when assuming four active factors and choosing 3,
4, 5 and 6 terms ion the reduced models, respectively

(a) 𝒍 = 𝟑 (b) 𝒍 = 𝟒
Rank Factors MSE Rank Factors MSE
1 ABCD 0.314 1 ACDF 0.123
2 ACDH 0.314 2 ACDG 0.243
3 ACDF 0.314 3 ACDE 0.243
4 ACDE 0.314 4 ABCD 0.283
5 ACDG 0.314 5 ACDH 0.283

(c) 𝒍 = 𝟓 (d) 𝒍 = 𝟔
Rank Factors MSE Rank Factors MSE
1 ACDF 0.055 1 ACDF 0.023
2 ABCD 0.163 2 ACDG 0.061
3 ACDH 0.163 3 ACDE 0.082
4 ACDE 0.177 4 DEGH 0.090
5 ABCF 0.190 5 ABCD 0.115

TABLE 17 Evaluation of different models with three and four active factors for the grapes data from Dopico-Garcia et al.26 The intercept
is not counted in the number of terms (T), as it is always included.
F T Model AIC𝒂 p-value > 0.01
3 3 5.51+1.11C−1.03D+1.73AD 33.88 None
3 4 5.51+1.11C−1.03D+1.73AD−0.27CD 37.09 CD(0.20)
3 5 5.51−0.30A+1.11C−1.03D+1.73AD−0.37CD 41.08 A(0.14),CD(0.08)
3 6 5.43−0.30A+1.11C−1.03D+1.73AD−0.37CD−0.22ACD 50.77 ACD(0.25), A(0.13),CD(0.08)
4 3 5.51+1.11C−1.03D+1.73AD 33.88 None
4 4 5.51+1.30C−1.19D+1.79AD−0.50AF 28.95 AF (0.01)
4 5 5.51+1.26C−1.19D−0.28F+1.69AD−0.48AF 27.95 F (0.03)
4 6 5.51−0.18A+1.26C−1.19D−0.28F+1.69AD−0.48AF 30.66 A(0.05), F(0.01)
4 7 5.51−0.18A+1.24C−1.14D−0.33F+0.13AC+1.67AD−0.46AF 43.52 A(0.03), AC(0.10)
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F IGURE 10 (A) An added variable Pareto plot for extending the model given in Phoa et al.25 by one factor. (B) An added variable plot
for the two-factor interaction AF. (A) All effects, (B) AF

of three active factors, AIC𝑎 has a minimum for the original model, thus it seems like the best choice in that case. When
allowing four active factors, AIC𝑎 has a minimum for the model with five terms in the model. This is rather surprising, as
it was not the model chosen by Phoa et al.25 The difference from the originally chosen model is that the factor F is added
through the main effect F and the interaction effect AF. Both effects are significant at a 5% level. In fact, the factor F is
present in one or several terms in all models with four active factors andmore than three terms. As shown in this example,
the proposed screeningmethod can be an effective start for performingmodel selection, as the candidate models are fitted
as a part of the procedure.
From Table 15, it is clear that the analysis of these data very well might have ended concluding that the three factors

A, C and D are the active ones. As a useful method for considering if additional factors should be added, we will now
introduce the added variable Pareto plot (AVPP). Assume our current model is described by the linear model 𝒀 = 𝑿𝜷 + 𝝐 ,
with corresponding hat matrix𝑯. Adding one regressor variable, 𝑢, with corresponding design column 𝒖, the newmodel
becomes 𝒀 = 𝑿𝜷+𝒖𝛽𝑢 + 𝝐 . The least squares estimator for 𝛽𝑢 is then given by 𝛽𝑢=𝒖′(𝑰−𝑯)𝒀𝒖′(𝑰−𝑯)𝒖 . Estimating 𝛽𝑢 for all terms 𝑢
that extend the number of active factors by 1may informus if it is worth looking formore active factors. The corresponding
estimated 𝛽𝑢s may be ranked according to their absolute values and plotted in a Pareto plot to see what terms (or factors)
thatmost likely should be added. Such anAVPP is shown in Figure 10A, where we have let 𝑢 in turn be all main effects and
two-factor interactions that extend the number of active factors by 1. The largest term in absolute value is the two-factor
interaction AF, telling us that F may be the most important factor to add to A, C and D.
Figure 10B shows an added variable plot, as described in Abraham and Ledolter.27 It works as follows: The residu-

als from the fitted model 𝒀 = 𝑿𝜷 + 𝝐 are given by 𝒆 = (𝑰 − 𝑯)𝒚. Fitting 𝒖 on 𝑿 gives the residuals 𝒆𝒖 = (𝑰 − 𝑯)𝒖. The
added variable plot is obtained by displaying 𝒆 on the y-axis and 𝒆𝒖 on the x-axis. A trend in the residuals would indi-
cate that the variable should be added to the model. It can be shown that the slope in the scatterplot of the residuals
is equal to the coefficient estimate of 𝛽𝑢 when including 𝑢 in the model, see Abraham and Ledolter27 chapter 6.2.2
for more details. In this case, it is very clear that the two-factor interaction AF is a candidate to consider for enter-
ing the model. An AVPP could of course have been constructed using all possible candidate regressors, but the main
point here is to illustrate a useful tool for knowing if all the important variables have been identified in a screening
procedure.

7 CONCLUDING REMARKS

In this paper, a new size-based approach for performing a factor-based search is proposed. The method is based on fitting
the largest FP-model possible, then selecting the terms corresponding to the largest coefficients in absolute value and
fitting a reduced model only including those. Then the subsets of factors in the reduced models yielding the 𝑟 smallest
MSE values are selected as candidate sets for being active. Using simulatedmodels, where model coefficients were chosen
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at random, themethodwas demonstrated to work well for the 12-run PB design and the 16-runNC designs assuming three
and four active factors. The proposed method has the advantage of not relying on significance tests or a chosen criterion.
However, an important parameter to decide upon and preferably vary is the number of terms chosen for the reduced
model. An appropriate value for 𝑟 can to some extent be chosen afterwards. Identifying four active factors turned out to
be considerable harder than identifying three, but depending on the error variance, number of experimental factors and
number of runs, a considerable reduction in all the possible candidate sets of factors being active was possible to obtain.
Selecting the 10models with the smallest MSE, the probability that the true set of active factors was included among these
was found to be above 95% in most cases, except when using the 12-run PB design for a large number of factors and high
levels of noise. Also, the problem of identifying active factors is considerable harder when the range of the coefficients
values is small than when it is large.
Admittedly our method also relies on the assumption of factor sparsity and good projection properties of the design

used. Being of both 𝑃 = 3 and 𝑃 = 42, the designs utilized in this paper guarantee the estimation of all main effects and
interactions for any set of three factors and all main effects and two-factor interactions for any set of four. Srivastava28
with his search designs also pointed out the necessity for a design to be able to discriminate among the estimated models
and in the noiseless case the discrimination should be perfect. This is a strict requirement. A factor-based search already
makes some restrictions on which models that can be fitted. However, any design found by choosing six columns from a
12-run PB design cannot guarantee the discrimination among models with three active factors having three main effects
and three two-factor interactions, since at least 13 runs will be needed (see Cheng29 and Morgan et al.30). Examples with
six and seven factor NC designs where two different models with four active factors gave identical fit in the noiseless
case is given in Section 5.4. This supports the arguments for reducing the number of possible active factors in several steps
when designs like the ones in this paper are used. In practice, one would typically review theMSE of the candidatemodels
after selecting the 𝑟 best models. If there is a large gap in the MSE at some point, it might indicate that the correct factors
can be found in a model, which is included in the subset of models corresponding to the smallest MSE values. These
models can then be chosen for further analysis or review of alias patterns. As a help to check if additional factors should
be considered active, we also suggested a method, the AVPP. An example with real data was included to demonstrate how
to use the method and the AVPP in practice.
The proposed method can also be used for three level designs. As the number of different types of effects that may be

included in the model then increases, one should consider carefully, which effects that are desirable to investigate and
thereby also which designs to use. Designs like definitive screenings designs introduced by Jones and Nachtsheim31 and
orthogonal minimally aliased response surface designs proposed by Ares and Goos32 allow the estimation of quadratic
effects in addition to main effects and two-factor interactions. If a model with these terms included is estimable for all
subset of factors of a given size, the method is straight forward applicable, see for instance Tyssedal and Chaudry33 where
several situations are simulated and the screening performance compared to two-level designs of similar size. For more
on three level designs and projections properties, we refer to Xu et al.34 and Alomair et al.35
Finally, we point out that when analysing nonregular two-level designs, it is always wise to use several methods in

companion. For that purpose, we will in particular point to the graphical method proposed in Tyssedal and Niemi.36 It
can also be used to verify if our final proposed model is reasonable. It does not put any restriction on the number of active
factors, though it works best on models with relatively few terms.
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Abstract

Foldover designs often have attractive properties. Among these is that the effects can be
divided into two orthogonal subspaces, one for odd effects and one for even effects. In
this paper, we introduce a new method for analyzing foldover designs called the decoupling
method that exploits this trait. Utilizing mirror image pair runs, two new responses are
created, where each of them is only affected by effects in one of the orthogonal subspaces.
Thereby the analysis of odd and even effects can be performed in two independent steps,
enabling use of standard statistical procedures and formal testing of the presence of higher-
order interactions. The method is demonstrated on real data from a foldover of a 12-run
Plackett-Burman (PB) design, and further evaluated through a simulation study, in which
the decoupling method is compared to existing analysis methods. To get a thorough
understanding of the properties, both a PB design and an OMARS design are used, and
different design sizes and heredity scenarios considered. The method is especially suited
for screening, as it yields high power for detecting the active effects.

1 Introduction

Folding over is a strategy that can be used to create designs with desirable properties. In
particular, it ensures de-aliasing of certain effects. In this article, a foldover design denotes
a design where the signs of all entries in the original design have been reversed, forming
runs that are mirror images of the original ones, and then added to the original design’s run.
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Now let X be a n × p design matrix for k two-level factors with levels -1 and 1 with
an intercept column included and p = k + 1. The foldover design matrix Xf is then

constructed as Xf =

[
1 X

1 −X

]
, where a new intercept column must be included, as the

original intercept column from X now is a 2n × 1 column where the first n and last n

entries are 1 and -1, respectively. The original intercept column may therefore be used to
include an additional factor. The foldover design Xf has k + 2 columns and 2n rows. For
a regular two-level design of odd resolution R, the foldover design will be of resolution
R+1 (Box and Wilson, 1951). In general, a design is of resolution R if no p-factor effect is
aliased with an effect with less than R − p factors (Box et al., 1978). The properties of
non-regular designs may better be described by their projection properties than by their
resolution. A design of projectivity P can estimate all main effects and interactions for all
sets of P factors (Box and Tyssedal, 1996), while a design of generalized projectivity Pα can
estimate all main effects and interactions up to order α for all sets of P factors (Evangelaras
and Koukouvinos, 2004). Non-regular two-level designs in which all factor columns are
orthogonal to each other are called orthogonal. Examples of two-level orthogonal screening
designs are the non-regular Plackett-Burman (PB) designs (Plackett and Burman, 1946),
whose complex alias patterns make them candidates for folding over. When designs are
folded over, the main effects and two-factor interactions can be estimated independently of
each other, and the projectivity properties may improve. In his articles, Cheng (1995, 1998)
showed that if the number of runs, n, is not a multiple of 8, the foldover of an orthogonal
projectivity P = 3 two-level design with n runs is of projectivity P = 4 and generalized
projectivity P = 52.

Defining the mirror image of the factor setting 0 to be 0 in runs having at least one
other level, there are also three-level screening designs that have the foldover property. One
example is the class of definitive screening designs (DSDs) (Jones and Nachtsheim, 2011),
which are foldover designs with center runs added. They are popular screening designs, as
they require a small number of runs while yielding the possibility to estimate quadratic
effects. The DSDs with an even number of factors are orthogonal by design, and they can
be made orthogonal for an odd number of factors as well by choosing a DSD with one
more factor and two more rows and then omitting one of the factor columns. The recently
introduced class of orthogonal minimally aliased response surface (OMARS) designs (Ares
and Goos, 2020) include the orthogonal DSDs, as well as Box-Behnken designs (BBDs)
and central composite designs (CCDs). As implicated by their name, the OMARS designs
have orthogonal factor columns. The majority of them have the foldover property, and
they exist for a wider range of sizes than the DSDs. Orthogonal factor columns along
with a foldover structure eases the identification of active main effects. Foldover designs
can however be constructed from non-orthogonal designs as well, for instance many of the
minimum run resolution IV designs (Webb, 1968).

In this paper, we will focus on the analysis of foldover designs, possibly with center
runs added. Based on the possibility of dividing odd and even effects into two orthogonal
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subspaces, Miller and Sitter (2001) proposed a two-step procedure for finding active main
effects and two-factor interactions in foldovers of PB designs. The procedure may also be
used for other orthogonal designs with orthogonality between main effects and two-factor
interactions. It will hereafter be referred to as the MS method and can be summarized as
follows: In step 1, all the main effects are estimated, and standard methods are used to
select significant effects. If columns for which no factor is assigned are available, hereafter
denoted unassigned columns, a model independent variance for the effects is obtainable by
calculating an assumed main effect for each of these, squaring them and averaging. This
works due to orthogonal main effect columns and under the assumption of no odd effects of
order three or higher. In step 2, the significant main effects from step 1 are included in the
model together with the two-factor interactions under consideration (weak heredity may
be imposed). An all-possible-subsets procedure with the main effects from step 1 forced
into the model is suggested to find the active two-factor interactions. With some slight
altering, Miller and Sitter (2005) demonstrated that the method could also be applied to
designs with non-orthogonal main effects.

Inspired by the MS method, Jones and Nachtsheim (2017) developed a two-step pro-
cedure tailored for DSDs with fake factors added. This procedure will be referred to as the
JN method. In the first step, they fit a main effects model to the data and identify the
active main effects using a variance estimate based on the fake factors and eventual center
runs. Then the variance estimate is updated using the inactive main effects and utilized in
an F-test for selecting second-order effects (two-factor interactions and quadratic effects)
in the second step, where the response is the residuals from the main effects model.

To accommodate analysis of OMARS designs, Hameed et al. (2023) introduced a generalized
version of the JN method in which fake factors are not needed, and in some cases, more
degrees of freedom are available for the variance estimate. This is because they use residuals
from the full second-order model to estimate the variance in the first step, and they find
the degrees of freedom using the rank of the corresponding design matrix. This method
will be referred to as the HAG method. They point out that their method does not require
a foldover structure, as it is applicable for any design with main effects that are orthogonal
to the second-order effects. This also holds for the MS and JN methods. As Hameed et al.
(2023) demonstrated that the HAG method is overall more powerful than the JN method,
and they share a lot of the same features, the JN method will not be further considered in
this paper.

The before-mentioned procedures have been demonstrated to work well, especially when
the coefficient sizes are large compared to their standard deviations, but there are some
drawbacks:

1. They all assume that only main effects and second-order effects are active. There is
no suggested way of testing this assumption.

2. The MS method requires unassigned main effect columns in order to evaluate the
significance of main effects in the presence of interactions.
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3. For the MS and HAG method, undiscovered active main effects in step 1 will affect
the estimated error variance in step 2.

4. For the MS and HAG method, the residuals in step 1 will be affected by active
second-order interactions, making it impossible to assess them properly. The analysis
in step 2 will be affected by any undiscovered active main effects.

5. For the MS method, if the foldover of a design is non-orthogonal, only R2 or a
modification thereof is recommended to use for model selection in step 1.

6. For the HAG method, an F-test is conducted in step 2. This requires selecting a
significance level to decide when to stop. Adjusting this value may affect the results
substantially, as demonstrated in Tyssedal and Hussain (2016).

To overcome these drawbacks, we introduce a different approach for analyzing foldover
designs, called the decoupling method, or the DC method for short. The method is applicable
to foldovers of both orthogonal and non-orthogonal designs (also for estimating quadratic
effects, depending on the design). It is based on creating two new responses, YO and YE ,
where YO is only affected by odd effects and YE only by even effects. The analyses of these
responses can be performed in any order, and choosing the wrong effects in one step will
not affect the results found in the other step. However, following the hierarchy principle,
it will be natural to start with YO. This will enable assumption of heredity, if desirable.
When assuming weak heredity, any interaction must contain at least one active main effect,
while when assuming strong heredity, a higher-order interaction is only considered if all
the corresponding main effects are active. Either of the assumptions will introduce a
dependency between the steps.

The theory behind the DC method is presented in Section 2, where we also explain
how the drawbacks given above are avoided. Examples of designs with a foldover structure
are given in Section 3. An example of applying the method to real data from a foldover
PB design is given in Section 4, followed by results from an extensive simulation study
assessing the performance on both a foldover PB design and an OMARS design in different
heredity scenarios in Section 5. Finally, concluding remarks are given in Section 6.

2 Decoupling of models and methodology

2.1 Decoupling of models

From the n first runs in the matrix Xf , let a model matrix be constructed as Xm =[
XO XE

]
, where XO contains the columns that correspond to the odd effects of interest,

and XE the columns corresponding to the even effects of interest, including the intercept.
As the n last runs in a foldover design matrix are obtained by reversing the signs for main
effect columns, these will have opposite signs for odd effects. Even effects, on the other
hand, will have the same signs, as reversing the signs of factors included in a multiplication
with an even number of terms leaves the corresponding column unchanged. Thus, the
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model matrix for the foldover design may be written as

Xfm =

[
XO XE

−XO XE

]
.

Furthermore, let βT =
[
βO βE

]
be the corresponding regression coefficients, which, except

for the intercept, are half the corresponding effect sizes. Then the 2n× 1 response vector
Y for the full model can be written as

Y =

[
Y1

Y2

]
=

[
XO

−XO

]
βO +

[
XE

XE

]
βE + ϵ, (1)

where ϵ is assumed to be N(0, σ2I2n×2n). Y1 and Y2 are n×1 vectors containing the n first

and the n last response variables, respectively. Similarly, let ϵ =

[
ϵ1

ϵ2

]
, where ϵ1 and ϵ2 are

defined the same way. Then Y1 = XOβO +XEβE + ϵ1 and Y2 = −XOβO +XEβE + ϵ2.
Define two new response vectors YO and YE as follows:

YO =
Y1 −Y2

2

YE =
Y1 +Y2

2

and let ϵO = ϵ1−ϵ2
2 and ϵE = ϵ1+ϵ2

2 . Then obviously

YO = XOβO + ϵO (2)

and
YE = XEβE + ϵE . (3)

Further ϵO ∼ N(0, σ
2

2 In×n), ϵE ∼ N(0, σ
2

2 In×n) and Cov(YO,YE)= E[ϵOϵE
T ] = 0n×n.

This follows since E[ϵOiϵEj ] = 0, i ̸= j and E[ϵOiϵEi]= E[ ϵ
2
i−ϵ2i+n

4 ] = 0, i = 1, 2, ..., n.
Hence, assuming independent and identically normally distributed errors, YO and YE are
independent random vectors, and model (2) and model (3) can be used to identify the
odd and even effects independently of each other. Given which odd and even effects that
are under consideration, estimators for βO and βE are β̂O = (XO

TXO)
−1XO

TYO and
β̂E =(XE

TXE)
−1XE

TYE, assuming that the inverses exist. The covariance matrices are
σ2

2 (XO
TXO)−1 and σ2

2 (XE
TXE)

−1, respectively.

Alternatively, these estimators could have been obtained from the foldover design with
model matrix Xfm , as

β̂ =

[
β̂O

β̂E

]
= (Xfm

TXfm)−1Xfm
TY =

[
(XO

TXO)−1XO
T (Y1−Y2)

2

(XE
TXE)

−1XE
T (Y1+Y2)

2

]

and hence [
β̂O

β̂E

]
=

[
(XO

TXO)−1XO
TYO

(XE
TXE)

−1XE
TYE

]
,

with the corresponding covariance matrix for the coefficient estimators given by

Cov(β̂) = σ2(Xfm
TXfm)−1 =

σ2

2

[
(XO

TXO)−1 0

0 (XE
TXE)

−1

]
.
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For the same model the coefficient estimates will be identical whether we use the full
foldover design or base our analysis on model (2) and model (3) separately, and with
known residual variance the inference would be identical. It is important to note that
no assumption about orthogonal design columns is necessary for the above results to be true.

There are, however, differences in the identification of active factors depending on whether
the full foldover design is used or the decoupled models (2) and (3). Let a linear model be
written as

Y = X1β1 +X2β2 + ϵ,

where X1 is a n× r1 matrix, X2 is a n× r2 matrix, β1 and β2 are the respective coefficient
vectors and ϵ a vector of uncorrelated and identically distributed errors. Then we know
that if only the model

Y = X1β1 + ϵ∗

is fitted, the least squares estimator for β1 will be biased by an amount Aβ2, where A =
(X1

TX1)
−1X1

TX2 is the alias matrix. For the least squares estimator for the variance,
σ̂∗2, we have

E(σ̂∗2) = σ2 +
β2

T (X2 −X1A)T (X2 −X1A)β2

n− r1
,

see for instance Draper and Smith (1998), page 239.

If there are po odd effects of interest and we fit the model Y =

[
XO

−XO

]
βO + ϵ∗, such

that X1 =

[
XO

−XO

]
, β1 = βO, X2 =

[
XE

XE

]
and β2 = βE, we have for the least squares

estimator of the variance, σ̂2
o , that

E(σ̂2
o) = σ2 +

βE
T (2XE

TXE)βE

n− po
,

since the alias matrix in this case will be a matrix of zeros. Hence, if there are active even
effects, the estimated error variance will be inflated and affect statistical procedures used
for variable selection and model checking, including penalty-based methods, p-values and
residual plots. This also affects step 1 of the procedures in Miller and Sitter (2001, 2005).
If only main effects and two-factor interactions are active and the design is orthogonal,
one way to get an unbiased estimate of the error variance is to use unassigned columns if
such exist. This was the approach suggested by Miller and Sitter (2001). If there are not
enough unassigned columns for variance estimation, they suggest using normal plots and
Lenth’s method as the general procedure for selecting effects. If the factor columns are
non-orthogonal or if odd effects of order greater than 1 exist, none of these methods will
work properly. Moreover, unidentified main effects in step 1 will inflate the error variance
and affect step 2 of the procedures in Miller and Sitter (2001, 2005) in the same way as
described for step 1. Unidentified main effects will also affect step 2 in Hameed et al. (2023),
as they use a variance estimate in which the inactive main effects are included.
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2.1.1 Choice of selection criterion

In a best subset selection, several criteria, including penalty-based ones, are often evaluated
to decide upon the best or best few models. Typical such criteria are R2

adj , AIC, BIC

and AICc. R2
adj is defined as 1− (1−R2)n−1

n−p , where R2 = 1−
∑

i(yi−ŷi)
2

∑
i(yi−ȳ)2

. Here ŷi is the
fitted value for yi and, as before, n is the number of runs and p the number of parameters
(variance excluded) in the model. AIC is defined as 2p∗ − 2ln(L̂), where L̂ is the maximum
of the likelihood function and p∗ = p + 1. BIC is given by p∗ln(n) − 2ln(L̂). For small
sample sizes, Burnham and Anderson (2004) recommend using AICc = AIC + 2p∗2+2p∗

n−p∗−1 .
Note that for linear regression, the error variance is also counted as a parameter when
using both AIC, AICc and BIC, therefore p∗ = p+ 1.

For linear regression with normally distributed errors, AIC, BIC and AICc can be rewritten
as follows when constant terms are removed from the expressions (as in Banks and Joyner
(2017)):
AIC = n[ln(σ̂2

e) +
2p∗
n − ln( n

n−p∗+1)] = n[ln(σ̂2
e) + fAIC(n, p

∗)]

AICc = n[ln(σ̂2
e) +

2p∗
n−p∗−1 − ln( n

n−p∗+1)] = n[ln(σ̂2
e) + fAICc(n, p

∗)]

BIC = n[ln(σ̂2
e) +

p∗ ln(n)
n − ln( n

n−p∗+1)] = n[ln(σ̂2
e) + fBIC(n, p

∗)].

Since maximizing R2
adj is equivalent to minimizing ln(σ̂2

e), where σ̂2
e is given by σ̂2

e =
∑

i(yi−ŷ)2

n−p , fAIC, fAICc and fBIC show how the respective criteria penalize the addition of
parameters compared to R2

adj . As illustrated in Figure 1, AICc penalizes the number of
parameters much more than AIC and BIC for n = 12. For n = 24, the behavior of the
criteria is different when considering the same number of parameters. Since all criteria
depend on the number of observations, the decision about adding parameters may therefore
differ depending on the method used.

(a) n = 12 (b) n = 24

Figure 1: The scaled penalty terms for AIC, BIC and AICc for n = 12 and n = 24.

Furthermore, applying these criteria may be suboptimal for the MS method, as it can face
problems with inflated variances and the penalty being dependent on the number of main
effects chosen to be included from step 1. For folded over non-orthogonal designs, Miller
and Sitter (2005) suggested using the coefficient of determination, R2, or a modification
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thereof, the proportion of the total sum of squares that is explainable by the odd effects,
in step 1. R2 is a criterion recommended to be used with caution (Montgomery and Peck
(1982), page 33, Walpole et al. (2012), page 408) since it will always increase when factors
are added. We think most practitioners will prefer to base best subset selection on more
than just one criterion. If the DC method is used, all standard statistical procedures for
variable selection and model checking in linear regression models are available.

2.1.2 F-test for detecting interactions of order greater than two

The two decoupled models (2) and (3) provide us with independent estimates of the same
error variance which are unbiased if the correct active effects are included in both. These
estimates can be pooled to get more degrees of freedom and thereby obtain better inference.
The pooled estimate is given by nf1σ̂

2
1+nf2σ̂

2
2

nf1+nf2
, where σ̂2

r is the variance estimate in step
r, r = 1, 2, and nfr is the corresponding number of degrees of freedom. However, the
variance estimates can also be used in another way. Suppose model (2) is used to identify
po main effects, but some three-factor interactions are active too. The estimated error
variance will then be inflated. Therefore, if the estimated error variance from model (2)
is much larger than the one from model (3), it is an indication that odd effects of order
greater than one are active. Let σ̂2

o be the least squares variance estimator from model (2)
and let σ̂2

e be the least squares variance estimator from model (3). A formal test can be
performed using the test statistic

F =
σ̂2
o

σ̂2
e

.

Under the assumption of independent and identically normally distributed errors, the two
estimators are independent, hence F will be Fisher distributed with n − po and n − pe

degrees of freedom. Here po and pe are the number of odd and even effects. If, on the other
hand, the variance estimate from model (3) is much larger than the one we get from model
(2), higher-order even effects may be present.

2.2 Adding center runs to foldover designs

Center runs may be added to foldover designs for various reasons, like testing for lack
of fit, obtaining a model free estimate of the error variance, or, as for DSDs, to improve
the estimation efficiency if quadratic effects are present. Using the notation introduced
in Section 2.1, adding nc center runs [XC X∗

C] with corresponding response YC, the
(2n+ nc)× 1 vector Y for the full model can be written as:

Y =



Y1

Y2

YC


 =




XO XE

−XO XE

XC X∗
C



[
βO

βE

]
+ ϵ,

where ϵ is assumed to be N(0, σ2I(2n+nc)×(2n+nc)). Then XC is a nc × po matrix of zeroes,
while X∗

C is a nc × pe matrix with a column of 1’s for the estimation of the intercept and
zeroes otherwise. Hence
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[
β̂O

β̂E

]
=


 (XO

TXO)−1XO
TYO[

XE
TXE +

(X∗
C)TX∗

C
2

]−1 [
XE

TYE +
(X∗

C)TYC

2

]

 ,

Thus odd and even effects can still be estimated separately, and center runs belong to the
even effects. The (n+ nc)× 1 response vector for step 2 in the DC method then becomes

[
YE

YC

]
=

[
XE

X∗
C

]
βE + ϵ. (4)

where ϵ is a (n+ nc)× 1 vector. Since the variance for the variables in YE and YC differ,
weighted least squares regression, as described in Fahrmeir et al. (2013), should be used for
estimating the coefficients. The covariance matrix is given by

Cov

[
YE

YC

]
= σ2W−1 = σ2

[
WE 0

0 WC

]−1

,

where WE is a (n × n) diagonal matrix with wE = 2 along the diagonal, and WC is a
(nc × nc) diagonal matrix with wC = 1 along the diagonal. The corresponding weighted
least squares estimator for βE is given by

β̂E =

[[
XE

T (X∗
C)

T
]
W

[
XE

XC

]]−1 [
XE

T (X∗
C)

T
]
W

[
YE

YC

]
=

[
XE

TXE +
(X∗

C)TX∗
C

2

]−1 [
XE

TYE +
(X∗

C)TYC

2

]

Using weighted least squares to find the even effects, the selection criteria must be ad-
justed accordingly. Then, according to Banks and Joyner (2017), AICcWLS = (n +

nc) ln[
∑n+nc

i=1 wi(yi−ŷi)
2

n+nc
] + 2(pe+1)(n+nc)

(n+nc−pe−2) , where pe+1 is the number of estimated parameters,
including the error variance (note that constants were removed from the expression).

An alternative for an even number c of center runs is to consider them as c
2 mirror

image pair runs and treat them as described in Section 2.1. Their c degrees of freedom will
then be equally shared between odd and even effects.

2.3 The decoupling method

The basic idea of the screening algorithm is to first use the original response to create
two new response vectors for which the expected values rely on the odd and even effects,
respectively. Then these effects can be found separately of each other, while obtaining
variance estimates that are not inflated by effects in the other subspace.

When using a foldover design of size 2n, the algorithm is given by the following actions:

1. Order the foldover design matrix and corresponding response values such that the
mirror image pairs are indexed by i and i+ n respectively, i = 1, 2, ..., n.

2. From the response values y, create the response vectors yO and yE, with elements
given by yO,i =

yi−yi+n

2 and yE,i =
yi+yi+n

2 , i = 1, 2, ..., n.

9

147



3. Step 1: If computationally feasible, use best subset selection to select main effects,
using model (2). Select the number of parameters for the final model based on
R2

adj ,AICc or another suitable criteria. If one desires to investigate three-factor
interactions as well, one can proceed by forcing the selected main effects into the
model and use best subset selection to consider three-factor interactions.

4. Step 2: Use best subset selection to select even effects (intercept, two-factor interac-
tions, quadratic effects and if needed higher order even effects) accommodated by the
design , using model (3), or model (4) in the presence of center runs.

5. Combine the effects selected in step 3 and 4 into a final model and use the whole
data set when fitting it. This will yield the same coefficient estimates as found in
Step 1 and Step 2, but a new variance estimate with more degrees of freedom, thus
one may consider performing further assessment of the model.

Notes on the selection procedure

Due to best subset selection being computationally demanding, alternative strategies may
be useful when analyzing very large designs. When the factor columns are orthogonal and
there are no available degrees of freedom, normal or half-normal plots (Daniel, 1959) can
be used for a coarse initial sorting. Having selected a candidate subset of effects, forward
selection may be applied to check if additional main effects should be added. Backward
elimination can be applied to see if any of the initially added effects should be removed.
When there are available degrees of freedom when fitting the initial model, one may apply
backward elimination directly instead of using half-normal plots. This is the approach
used in Section 5. An interesting line of research using integer programming optimization
techniques for best subset selection (Bertsimas et al., 2016; Vazquez et al., 2020) has shown
impressing abilities compared to the common brute force approach. Thus considerations
regarding large designs are likely to be reduced as such methods become more widespread.

2.4 The decoupling method with F-test

An alternative option inspired by Jones and Nachtsheim (2017) and Hameed et al. (2023)
is to use an F-test to decide which even effects should be included. In step 1, selecting the
main effects, two different variance estimates can be found. If there are degrees of freedom
available, one may start by fitting the full main effects model and use the corresponding
MSE for the variance estimate σ̂2

ind, which is independent of the choice of main effects. If
one will allow for dependence, one may replace this estimate with the variance estimate
from the model with only the main effects found active, which will be called σ̂2

dep. The
resulting algorithm is as given in 2.3, except for step 2, which is modified as follows:

Use an F-test to select second-order effects. Start by using the F-statistic F0 = RSS0/(n−1)
σ̂2∗

to assess whether any second-order interactions should be added. Here σ̂2
∗ is given by

either σ̂2
ind or σ̂2

dep. RSS0 is the RSS from the intercept-only model. The critical value is
then Fα,n−1,df∗ , where df∗ is n− nf if σ̂2

ind is used, n− nf + nin if σ̂2
dep is used. Here nf

denotes the number of experimental factors and nin the number of inactive main effects.

10

148



If F0 > Fα,n,df∗ , proceed by fitting all models with one second-order effect, and choose
the model with the lowest RSS, denoted RSS1. The F-statistic is then F1 = RSS1/df1

σ̂2∗
,

where df1=n− 2 (as an intercept is included), with corresponding critical value Fα,df1,df∗ .
If F1 > Fα,df1,df∗ , proceed to test the best model with two second-order effects, and so on.
Let Fi and RSSi denote the F-statistic and RSS corresponding to the best model with i

second-order effects. If Fi < Fα,dfi,df∗ , the procedure should be ended and the currently
considered second-order effects chosen.

Checking for three-factor interactions and higher order odd and even effects as described
in Section 2.1.2 will not be possible using the DC method with an F-test since the variance
estimates are then already used for detecting second-order effects. An alternative option
can be to consider for instance residuals plots and QQ plots after each step.

3 Foldover of non-regular designs

Orthogonal non-regular designs

Having an orthogonal design matrix X eases the identification of main effects, as their
estimates are then independent of each other. Orthogonality between the main effects is
therefore often prioritized when considering which design to use. Important orthogonal
designs are the two-level PB designs and the three-level OMARS designs. The main
focus in this paper is foldovers of PB designs and OMARS designs with a foldover struc-
ture, but the proposed method is also directly applicable for non-orthogonal foldover designs.

The Plackett-Burman designs are popular screening designs, as they can accommodate
up to n− 1 factors in n runs, n being a multiple of 4 and ≤ 100. If n = 2k, k = 2, 3, ..., 6,
they coincide with the regular fractional factorial two-level designs, otherwise they are
non-regular. Orthogonal non-regular two-level designs normally have very good projection
properties (Tyssedal, 2008), but their alias patterns may be rather complex. A computer
search conducted by Tyssedal and Samset (1999) showed that all non-regular PB designs
can be folded over to become P = 4 designs, except when n=40, 56, 88 and 96.

One of the most used non-regular two-level designs is the 12-run PB (PB12) design.
It is a P = 3 design, but each main effect is aliased with all two-factor interactions for
which it is not involved, which complicates the analysis of the design. Using its foldover,
from now on referred to as PB12+12, following the notation in Miller and Sitter (2001), this
problem is resolved. The design is presented in Table 1. Since it is of projectivity P = 4

and Pα = 52, it is clearly more flexible than the PB12 design regarding estimating models
including 4 or 5 active factors. In total, the PB12+12 design allows for 12 orthogonal factor
columns with 12 degrees of freedom, from which 66 two-factor interaction columns can be
constructed. There are 11 degrees of freedom available for two-factor interactions. All main
effects can be estimated independently of each other. Two-factor interaction columns are
orthogonal if they share a common factor. If not, they are partially aliased by an amount of
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1
3 in absolute value. The main effect columns are orthogonal to all even effect columns, but
they may be aliased with higher-order odd effect columns. Active three-factor interactions
may therefore affect the estimates of the main effects. More specifically, any three-factor
interaction 2βxyz introduces a bias of ±2

3 βxyz on all main effects which are not x, y or z.

Table 1: The PB12+12 design.

Run A B C D E F G H I J K L

1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1
2 1 -1 1 1 1 -1 -1 -1 1 -1 1 1
3 -1 1 1 1 -1 -1 -1 1 -1 1 1 1
4 1 1 1 -1 -1 -1 1 -1 1 1 -1 1
5 1 1 -1 -1 -1 1 -1 1 1 -1 1 1
6 1 -1 -1 -1 1 -1 1 1 -1 1 1 1
7 -1 -1 -1 1 -1 1 1 -1 1 1 1 1
8 -1 -1 1 -1 1 1 -1 1 1 1 -1 1
9 -1 1 -1 1 1 -1 1 1 1 -1 -1 1
10 1 -1 1 1 -1 1 1 1 -1 -1 -1 1
11 -1 1 1 -1 1 1 1 -1 -1 -1 1 1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
13 -1 -1 1 -1 -1 -1 1 1 1 -1 1 -1
14 -1 1 -1 -1 -1 1 1 1 -1 1 -1 -1
15 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1
16 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1
17 -1 -1 1 1 1 -1 1 -1 -1 1 -1 -1
18 -1 1 1 1 -1 1 -1 -1 1 -1 -1 -1
19 1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1
20 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1
21 1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1
22 -1 1 -1 -1 1 -1 -1 -1 1 1 1 -1
23 1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1
24 1 1 1 1 1 1 1 1 1 1 1 -1

The orthogonal minimally aliased response surface (OMARS) designs (Ares and Goos,
2020) constitute another class of orthogonal designs. These are three-level designs and
can therefore be used to screen for quadratic effects as well as main effects and two-factor
interactions. Main effect columns are required to be orthogonal to each other and to the
second-order effect columns. The orthogonal DSDs are also OMARS design, but unlike the
DSDs, the OMARS designs may have main effect columns which contain more than 2 zeros
in addition to the ones in the center runs. The OMARS designs are also more flexible with
regards to run size than the DSDs. The vast majority of the OMARS designs consists of a
foldover design and possibly center runs, and for these the DC method can be applied. A
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27-run OMARS design which will later be used in the simulation study can be found in
Table 2.

Run A B C D E F G H

1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 1 1 0 0
3 -1 -1 1 -1 0 0 1 1
4 -1 1 -1 0 0 1 1 0
5 -1 1 0 -1 0 1 0 -1
6 -1 1 0 0 -1 0 -1 1
7 -1 0 1 1 1 0 -1 0
8 -1 0 1 0 1 -1 0 -1
9 -1 0 0 1 -1 -1 1 1
10 0 -1 -1 -1 1 0 0 1
11 0 -1 1 0 -1 1 1 -1
12 0 -1 0 1 -1 1 -1 0
13 0 0 -1 1 0 -1 1 -1
14 1 1 1 1 1 1 1 1

Run A B C D E F G H

15 1 1 1 -1 -1 -1 0 0
16 1 1 -1 1 0 0 -1 -1
17 1 -1 1 0 0 -1 -1 0
18 1 -1 0 1 0 -1 0 1
19 1 -1 0 0 1 0 1 -1
20 1 0 -1 -1 -1 0 1 0
21 1 0 -1 0 -1 1 0 1
22 1 0 0 -1 1 1 -1 -1
23 0 1 1 1 -1 0 0 -1
24 0 1 -1 0 1 -1 -1 1
25 0 1 0 -1 1 -1 1 0
26 0 0 1 -1 0 1 -1 1
27 0 0 0 0 0 0 0 0

Table 2: The 8-factor 27-run foldover OMARS design.

Non-orthogonal designs

When the primary goal of a screening experiment is to identify the active main effects with
a secondary goal of assessing a small number of two-factor interactions, Miller and Sitter
(2005) pointed out that a foldover of a non-orthogonal design matrix can be advantageous
compared to an orthogonal resolution III design. Such foldover designs do not have
orthogonal main effect columns, but they may have very flexible run sizes without a large
efficiency loss in estimating effects. The decoupling method is applicable for non-orthogonal
designs as well. This is an advantage compared to the methods proposed by Miller and
Sitter, who suggest different approaches for orthogonal and non-orthogonal designs. When
using the decoupling method for non-orthogonal designs, the only concern is that the
standard analysis methods based on orthogonality assumptions such as Lenth’s method
and normal plots must be avoided. But for instance residual plots can still be assessed,
and tests for higher-order interactions applied.
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4 An example with a PB12+12 design

As pointed out in Section 3, active three-factor interactions introduce a bias in estimated
main effects when a PB design is used. An advantage of the DC method is the possibility
to assess residuals after selecting main effects. One may also perform an F-test for the
presence of higher-order interactions. To illustrate how the analysis can be conducted
and to compare it with other analysis methods, a real example where active three-factor
interactions were found in the original analysis will now be presented.

In Mønnes (2012), data from a metal cutting experiment originally performed by Garzon
(2000) was analyzed. The goal of the experiment was to identify the effects that affect the
surface finish of the metal, using a full-factorial experiment with 6 factors and 64 runs,
where each combination of factors was repeated 8 times. Choosing only a subset of the
runs, it is possible to get 6 factors from a PB12+12 design with corresponding responses.
There exist two different projections of the PB12 design onto 6 factors and thereby also
of its foldover. The rows were chosen to match the projection without a mirror image
pair run as preferred by Wang and Wu (1995), and the data can be found in Table 4 in
Appendix 7. The response for each combination is the mean of the inverted response for
the eight repetitions, as used in Mønnes (2012), where also several other transformations
of the response were tested and compared. In that paper, they identified the effects D,
E, F, CD, CE, CF, DE, DF, EF, ADF, BCD, CDE and DEF as active (significant on a
5% level) when fitting a model with all main effects, two-factor interactions and three-
factor interactions to the transformed data, using all higher order interactions to estimate
the noise. They point out that the significance might be affected by multiple testing.
These were the same effects that were used as target values in Mønnes et al. (2007) when
analyzing the original data, and correspond to in total 6 active factors, A, B, C, D, E and F.

In the next sections, the data will be analyzed using the DC method (with and without
an F-test in step 2), the MS method and the HAG method, to illustrate the use of each
method and compare results. The MS method is performed as described in Miller and
Sitter (2001), assuming that interactions of an order greater than two are not present, while
the DC method is performed as suggested in Section 2.3. The HAG method is performed
as described in Hameed et al. (2023). A summary of the resulting models is given in Table
3 in Section 4.4.

4.1 Analysis using the DC method

As the data set is small, enabling computationally demanding methods, best subset se-
lection was used to find the best model of each size. The selection criteria chosen were
R2

adj and AICc, as AICc penalizes having many parameters the most when n = 12, while
R2

adj penalizes the least, as shown in Section 2.1.1. When these two criteria are in close
agreement, it will increase our confidence in the number of parameters suggested. Note that
the p-values found in this analysis are conditional on the chosen models and must therefore
be interpreted with caution. We mainly comment on them if they are of a magnitude
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indicating that the corresponding effect may be inert.

Plots showing AICc and R2
adj for best subset selection in step 1 are given in Figure

2. AICc has its minimum for a model with 3 predictors, namely D, E and F. R2
adj is in close

agreement with AICc and quite high. The chosen predictors are the same as in the original
analysis for the full 26 design. In Figure 3, the corresponding residual plot and QQ plot are
presented. Neither the residuals, being mainly positive, nor the QQ plot indicate that this
model for the odd effects is satisfactory. One possibility is that three-factor interactions
are present in the true model.

(a) AICc (b) R2
adj

Figure 2: Performance criteria for the best main effects models of different sizes when analyzing
the metal cutting data using the DC method.

(a) Residual plot (b) QQ plot

Figure 3: Residual plot and QQ plot for evaluating the residuals for the chosen main effects
model when analyzing the metal cutting data using the DC method.

In step 2, best subset selection was used to identify two-factor interactions. No assumptions
about heredity were made. The corresponding graphs can be seen in Figure 4. The
pattern is less clear than for the main effects, but AICc has its minimum for 3 two-factor
interactions. These are AD, DE and DF. Comparing with the original 26 experiment, DE
and DF are included, while CD, CE, CF and EF are left out. The residual plot and QQ
plot (not shown) indicate no severe lack of fit and are in reasonable agreement with the
assumption of normally distributed data.
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R2
adj , however, achieves its maximum when the number of predictors is 8 and is rather small

when only 3 are considered, indicating a more complex model. The chosen interactions
then become AB, AD, BC, BE, CD, CF, DE and DF, all with p-values less than 0.05. We
observe that 4 of them are considered active in the original paper and 4 are not. The
corresponding residual plot and QQ plot (not shown) look acceptable. As can be seen
in Figure 4, the AICc is extremely high in this case, so there is a risk that the model
with 8 two-factor interactions is overfitted. One way to proceed could then be to consider
coefficient sizes and p-values together with system knowledge to choose which terms to
keep. In case of ambiguity, follow-up runs could be considered.

(a) AICc (b) R2
adj

Figure 4: Performance criteria for the best two-factor interaction effects models of different sizes
when analyzing the metal cutting data using the DC method. Note that the intercept is not
included in the number of predictors.

The variance estimates from the odd effects model and the sparse even effects model were in
this case of the same size, 0.00504 and 0.00483 respectively, and an F-test would not indicate
the presence of three-factor interactions. Using the model with 8 two-factor interactions
suggested by R2

adj , the F-statistic becomes 32.1 with a one-sided p-value of 0.0079 for a
null hypothesis of equal variances. Thus the sparse two-factor interaction model may be
missing some parameters, enlarging the variance. This underlines the importance of having
several tools available for model checking.

Based on the residual plots for the main effects model, best subset selection was used
to look for three-factor interactions. The chosen main effects were forced to be in the
model. The corresponding plots can be seen in Figure 5. AICc reaches its minimum when
2 three-factor interactions are included, and the R2

adj is high and has a breaking point for 2
three-factor interactions. The chosen interactions are ADF and DEF, both included in the
original model from the full factorial (together with BCD and CDE). The residual plot
and QQ plot are shown in Figure 6. They are clearly improved compared to the ones in
Figure 3 for the main effects only model.
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(a) AICc (b) R2
adj

Figure 5: Performance criteria for the best three-factor interaction effects models of different
sizes when analyzing the metal cutting data using the DC method. Note that the main effects
forced into the model are not included in the number of predictors.

(a) Residual plot (b) QQ plot

Figure 6: Residual plot and QQ plot for the model with odd effects and the chosen three-factor
interactions included when analyzing the metal cutting data using the DC method.

The results deviate slightly from the analysis in Mønnes (2012), the largest difference being
that considering AICc, the DC method suggested a sparser model with 3 less two-factor
interactions and 2 less three-factor interactions as an acceptable alternative. As a subset
of the original data set was used for the analysis, the original model chosen by Mønnes
(2012) is not necessarily the best fit. It is therefore interesting to assess the performance
of the original model when using the reduced data set. When fitting the model with the
effects found to be significant in the original analysis to the reduced data set, the AICc was
-12.01 and R2

adj 0.985, and the three-factor interactions BCD and CDE had large p-values,
0.849 and 0.234, respectively. Neither the residual plot nor the QQ plot for this model (not
shown) indicated a severe lack of fit.

Using an F-test in step 2

As suggested in Section 2.4, F-tests may be used to select second-order interactions. Testing
this approach (with α = 0.2, as used in Hameed et al. (2023)) resulted in the selection of
DE when using σ̂2

ind in the denominator, and DE and DF when using σ̂2
dep. Thus using an
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F-test results in a sparser final model. Note that an F-test cannot be used to assess the
need for three-factor interactions in this case, so the residual plot and QQ plot for step
1 (Figure 3) would have to be evaluated when considering if three-factor interactions are
missing. Plots for assessing residuals of the final models are not included here.

4.2 Analysis using the MS method

The first step of the MS method is to estimate all the main effects. As there were only 6
experimental factors, but the design has 12 columns, 6 unassigned columns were available
for variance estimation. These were also included in the design matrix, so that 12 main
effects were fitted. The variance is given by σ̂2

coeff =
∑

i∈U β̂2
i

nu
, where U is the set of

unassigned columns, and nu is the number of elements in U . Using standard t-tests, the
main effects D, E and F were found to be significant. These were the same effects as were
chosen in the original article and by the DC method. Plots for assessing the residuals are
shown in Figure 7. Both plots show a strange behavior and underline the difficulties with
model checking when errors are strongly affected by active effects that are not included. In
addition, it is difficult to know which effects that might cause the problem.

(a) Residual plot (b) QQ plot

Figure 7: Residual plot and QQ plot for evaluating the residuals for the chosen main effects
model when analyzing the metal cutting data using the MS method.

In the second step, best subset selection with an intercept and the chosen main effects
D, E and F forced into the model was used to find the final model. No assumptions
about heredity were made, so all two-factor interactions were assessed as long as the
resulting model matrix had full rank. Plots showing the AICc and R2

adj for the best models
of different sizes can be seen in Figure 8. The model with the lowest AICc includes 4
two-factor interactions, CE, CF, DE and DF. The resulting AICc and R2

adj are -25.66 and
0.936, respectively. The residual and QQ plot can be found in Figure 9. In this case,
the residual plot still shows sign of a curved trend, while the QQ plot does not indicate
deviation from normality.
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(a) AICc (b) R2
adj

Figure 8: Performance criteria for the best two-factor interaction effects models of different sizes
when analyzing the metal cutting data using the MS method. Note that the intercept is not
included in the number of predictors.

(a) Residual plot (b) QQ plot

Figure 9: Residual plot and QQ plot for the model with main effects and the 4 chosen two-factor
interactions when analyzing the metal cutting data using the MS method.

Had 6 interactions been chosen, as indicated by R2
adj , they would have been the same ones

as in Mønnes (2012). Among them, only CD gets a large p-value (0.216). The AICc is -19.83
and R2

adj is 0.946. As the procedure is based on assuming that all three-factor interactions
and higher-order interactions are negligible, these are the final candidate models. The R2

adj

and AICc values are slightly inferior compared to the results from the models chosen using
the DC method.

4.3 Analysis using the HAG method

For the PB12+12 design, the value of the estimated variance in step 1 of MS and HAG is
equal. The same main effects are therefore chosen using both methods, and as the same
data is used, the residual plots are equal. In step 2, an F-test was conducted to find the
active two-factor interactions. The resulting interactions were DE and DF. Those were
the interactions with the highest estimated absolute values when using the MS method.
The corresponding AICc and R2

adj values are -23.08 and 0.904. The residual plot and QQ
plot for the final model, shown in Figure 10, have some large positive residuals indicating
possible lack of fit.
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(a) Residual plot (b) QQ plot

Figure 10: Residual plot and QQ plot for the model with main effects and the 2 chosen two-factor
interactions when analyzing the metal cutting data using the HAG method.

4.4 Summary for the final models

A summary of the results for all tested methods is given in Table 3. The lowest AICc-value
is obtained by the sparse DC model, followed by the MS model. The highest R2

adj-values
were obtained by the largest models, which is to be expected, as R2

adj favors large models
more than AICc, as discussed in Section 2.1.1. The sparse DC model balances a low AICc

with a rather high R2
adj and may therefore be a viable choice in this situation. This example

was made to highlight the differences between the suggested methods, in a real life setting
all models could of course have been investigated in even more detail.

Table 3: Results from the PB12+12-example.

Method ME 2FI 3FI Factors AICc R2
adj

Original D,E,F
CD,CE,CF
DE,DF,EF

ADF,BCD
CDE,DEF

6 -12.01 0.985

DC large D,E,F
AB, AD, BC, BE
CD, CF, DE, DF

ADF,DEF 6 -15.86 0.987

DC sparse D,E,F AD, DE, DF ADF,DEF 4 -28.14 0.952
DC indep F D,E,F DE ADF, DEF 4 -18.62 0.899
DC dep F D,E,F DE, DF ADF, DEF 4 -22.94 0.928

MS D,E,F CE, CF, DE, DF Not assessible 4 -25.66 0.936
HAG D,E,F DE,DF Not assessible 3 -23.08 0.904
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5 A simulation study

To verify the proposed method and compare it to the alternative analysis strategies, we
conducted a simulation study using the 24-run PB12+12 design in Table 1 and the 27-run
OMARS design in Table 2. As the performance of the methods may be dependent on the
size of the design, the number of experimental factors used was 6 or 8, assigned to the first
6 or 8 columns of the designs. The DC method, the DC method with an independent and
dependent F-test, the HAG method and the MS method were all used to find the active
effects, except when using the 8-factor OMARS design. Then the MS method could not be
applied due to lack of unassigned columns. There are multiple other analysis strategies
that could have been applied, but Hameed et al. (2023) already demonstrated that the
HAG method was as good as or better than popular methods such as stepwise model
selection, hierNet (Bien et al., 2013) and the Dantzig selector (Candes and Tao, 2007).
Projection-based methods, like the ones proposed in Tyssedal and Samset (1997), Kulachi
and Box (2003), Tyssedal (2008), Tyssedal and Hussain (2016) and Hamre and Tyssedal
(2022), are not feasible when a large number of factors may be active, as in the simulated
models. The MS method was included in the comparison as it was not assessed by neither
Jones and Nachtsheim (2017) nor Hameed et al. (2023), and being the originally proposed
method, it may serve as a benchmark. For all methods, power and type 1 error were used
to assess the results. Power is the average proportion of active effects that were identified,
while type 1 error is the average proportion of inactive effects that were chosen.

To assess the impact of weak heredity, four scenarios were used in the simulation study:
1) No heredity used in the drawn models, no heredity assumed in the analysis of models.
2) Weak heredity used in the drawn models, no heredity assumed in the analysis of models.
3) No heredity used in the drawn models, weak heredity assumed in the analysis of models.
4) Weak heredity used in the drawn models, weak heredity assumed in the analysis of models.

For all scenarios, the models had 6 active factors, distributed between 4 main effects
and 2 two-factor interactions, all of which were randomly chosen (possibly imposing hered-
ity on the interactions, depending on the scenario). The constant had an absolute value of
2, while the absolute value for each of the other coefficients was randomly drawn from a
standard exponential distribution and added to a constant value, referred to as "baseline",
of either 0.5 or 1. The sign of each coefficient and the intercept was randomly drawn as
well. This is a strategy inspired by Hameed et al. (2023). Noise from a standard normal
distribution was added to the corresponding responses. The baselines of 0.5 and 1 were
chosen to ensure that failures in identifying correct main effects and two-factor interactions
should occur. This enables highlighting the differences in performance and the impact of
heredity assumptions. Each combination of design, size, baseline and heredity scenario was
tested using 1000 iterations. The MS and HAG methods were performed as described in
Miller and Sitter (2001) and Hameed et al. (2023), respectively.

Note that two-factor interactions were the only second-order effects used when draw-
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ing and assessing models in the first part of the simulation study. This choice enables
comparison of the performance across the designs, but when using the OMARS design,
quadratic effects could have been included as well. To demonstrate the ability to select
quadratic effects, an extension of the simulation study in which quadratic effects were
included will be presented in Section 5.4.

The DC method was performed as follows:

1. The two decoupled response vectors, yO and yE, were constructed. Model (2) was
used to find the significant main effects using backward elimination with significance
level 0.05. Backward elimination was used instead of best subset selection to reduce
computation time.

2. Model (3) was used to search for two-factor interactions, using best subset selection
with AICc (the same criterion as for the MS method), always including an intercept.

The procedure for the DC method with F-test was:

1. The two decoupled response vectors, yO and yE, were constructed. Model (2) was
used to find the significant main effects using backward elimination, with significance
level 0.05. The MSE from the full main effects model was used to estimate the
variance σ̂2

ind. Thereafter σ̂2
dep was estimated using the MSE from the model with

only active main effects.
2. Model (3) was used to search for two-factor interactions, using best subset selection

with RSS as the selection criterion, always including an intercept. In each step, an
F-test was used to decide whether a larger model should be evaluated or not, as
described in Section 2.4. As in Hameed et al. (2023) the significance level was α = 0.2.
Both σ̂2

ind and σ̂2
dep was used, to see the effect of dependence between the steps.

When the 27-run OMARS design was used, the DC procedures were altered as prescribed
in Section 2.2 to take the center run into account. Since best subset was used to select
the interactions both in the MS and DC method, the number of second-order effects that
could be chosen was limited to 4 for all methods. Had more interactions been allowed, the
powers and type 1 errors could have been higher.

5.1 Results for main effects

The results for the selection of main effects can be found in Figure 11. As the identification
of main effects is not affected by heredity assumptions, the values in Figure 11 were found
by averaging across the heredity scenarios. The variance estimates in the first step of the
HAG and MS methods were equal when using the PB12+12 design with 6 and 8 factors. In
that case, there were 6 and 4 unassigned columns, respectively, used by the MS method
for variance estimation, while when using 6 factors from the 27-run OMARS design, there
were only 2 unassigned columns. This seems to have severely affected the power of the
MS method. In general, the first step of the DC method consistently performs better
than the first step of the MS and HAG methods, so using backward elimination where the
variance estimate is updated in each step improves the power. We observe that the type
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1 errors of the DC method are in some cases higher than for the others. However, in a
screening situation, unidentified factors are often not considered for further investigation.
It is therefore important that the set of active identified effects include the correct ones,
and power will be the most informative measure.

(a) Power (b) Type 1 error

Figure 11: Power and type 1 error for selecting main effects using the DC, HAG and MS
methods. Note that for the PB12+12 design, HAG and MS yielded the same results. DC 0.5
means that a baseline of 0.5 was used when drawing the coefficients. The bars are ordered
following the order of the legend items, from left to right and from top to bottom.

5.2 Results for two-factor interactions, using a PB12+12 design

Plots with results for selecting two-factor interactions when using the foldover PB design
can be found in Figure 12 and 13. When a baseline of 1 was used, the results were quite
similar for all methods. Thus the 0.5 baseline case is more interesting, as the active effects
are then harder to identify, making the differences between the methods more evident.
With 6 experimental factors in the design, the MS and DC methods yielded very similar
powers, substantially higher than the F-test based methods. These methods clearly select
fewer interactions, as they result in a lower type 1 error, unless weak heredity is falsely
assumed. In that case, the F-test based methods tend to select the maximum number
of allowed interactions more often, resulting in high type 1 errors. The MS method also
yielded a high type 1 error in that scenario. This might be because the added penalty term
of the AICc is lower for higher n, as shown in Figure 1. When the correct interactions are
not available for selection, there may be no model with a substantially lower σ̂2

e than the
others, and then model size penalization becomes relatively more important, making the
MS method likely to choose more effects than the DC method.
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(a) Power, using a baseline of 0.5. (b) Type 1 error, using a baseline of 0.5.

(c) Power, using a baseline of 1. (d) Type 1 error, using a baseline of 1.

Figure 12: Power and type 1 error for selecting two-factor interactions when a PB12+12 design
with 6 factors was used and 2 two-factor interactions were active.

An interesting observation regarding the heredity assumptions is the similar performance
of the methods for the two scenarios "weak heredity neither used nor assumed" ("Neither"
in the plots) and "Used, not assumed". When weak heredity is both used and assumed,
on the other hand, the power is substantially reduced for all methods when a baseline of
0.5 is used. This is logical, as in that case, the correct main effects are not always chosen,
and thus the true 2FI are not always available for selection. When falsely assuming weak
heredity, the correct interactions may not be possible to choose even when the correct
main effects are chosen, making the results even worse. It is clearly risky to assume weak
heredity even when it seems very reasonable. If one has a strong belief that heredity is
present, an alternative is to avoid heredity assumptions when fitting interactions, and
rather include the main effects corresponding to the chosen interactions in the full model
and do further evaluation to consider reducing it. Another option when applying the DC
method is to consider the residuals for the second-order effects to evaluate whether heredity
may have been falsely assumed. If the residuals have a strange pattern, it might be due
to lack of correct second-order effects, and one can test including effects not fulfilling the
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heredity assumption and see whether the residuals improve. This is less straight-forward
for the MS and HAG method, for which patterns in the residuals from the model including
second-order effects can also be caused by unidentified odd effects.

(a) Power, using a baseline of 0.5. (b) Type 1 error, using a baseline of 0.5.

(c) Power, using a baseline of 1. (d) Type 1 error, using a baseline of 1.

Figure 13: Power and type 1 error for selecting two-factor interactions when a PB12+12 design
with 8 factors was used and 2 two-factor interactions were active.

Comparing the plots for the PB12+12 design when using 6 and 8 factors respectively,
the patterns are similar, but the powers are larger when there are only 6 factors in the
design. When having 8 factors instead of 6, the number of two-factor interaction candidates
increases from 15 to 28, making it harder to select the correct ones. Note that type 1 error
is relative to the number of available 2FIs, thus for a given number of inactive 2FI chosen,
the type 1 error will be smaller in the 8-factor case. An interesting observation is that for
6 factors, the DC method with a dependent F-test performs very similarly to HAG, but in
the 8-factor case, the total results seem slightly better as the achieved powers are higher
and type 1 errors rather equal or lower.
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5.3 Results for two-factor interactions, using an OMARS
design

(a) Power, using a baseline of 0.5. (b) Type 1 error, using a baseline of 0.5.

(c) Power, using a baseline of 1. (d) Type 1 error, using a baseline of 1.

Figure 14: Power and type 1 error for selecting two-factor interactions when a 27-run OMARS
design with 6 factors was used and 2 two-factor interactions were active.

For the OMARS design, plots with results for the second-order effects can be found in
Figure 14 and 15. For this design, the DC method performed better than all the other
methods with regards to power. The MS method clearly suffers from often failing to select
the correct main effects, which is especially severe when weak heredity is assumed. The
HAG method gets a slight increase in power compared to the DC methods with F-tests
when using the OMARS design. Also in this case, using the DC method results in a higher
type 1 error than F-test based methods. The DC method with a dependent F-test and
the HAG method yielded very similar results, while the DC method with an independent
F-test combines low power and low type 1 error, seeming like an inferior alternative.
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(a) Power, using a baseline of 0.5. (b) Type 1 error, using a baseline of 0.5.

(c) Power, using a baseline of 1. (d) Type 1 error, using a baseline of 1.

Figure 15: Power and type 1 error for selecting two-factor interactions when a 27-run OMARS
design with 8 factors was used and 2 two-factor interactions were active.

5.4 Results for quadratic effects, using an OMARS designs

The above simulations only included two-factor interactions as second-order effects, fa-
cilitating comparison between the PB12+12 design and the 27-run OMARS design. To
demonstrate the methods’ ability to detect quadratic effects, complementary simulations
were conducted. Unlike the intercept column and the two-factor interaction columns, the
intercept column and the quadratic effect columns are not orthogonal. Using the DC
method, the intercept, two-factor interactions and quadratic effects are handled together
in step 2. The procedure was therefore conducted as before, always searching for models
where the intercept is included. Using the HAG method, the non-orthogonality was handled
by centering the second-order columns, as suggested in Jones and Nachtsheim (2017).

To enable comparison of all methods, the design used was the 6 first factor columns
of the 27-run OMARS design. The drawn models now had 1 two-factor interaction and 1
or 2 quadratic effects, and quadratic effects were included among the second-order effect
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candidates when searching for the correct model. To still be able to assess different heredity
scenarios, the number of active factors was reduced from 6 to 5. Except for that, the
same settings were used as in the previous sections, applying a baseline of 1 when draw-
ing the coefficients and including 4 active main effects. The results can be found in Figure 16.

When not assuming heredity for the candidate models, the power for identifying two-
factor interactions was slightly lower than the power achieved for two-factor interactions in
the corresponding scenarios when quadratic effects were not present (shown in Figure 14).
This can be due to the larger number of candidate effects. When heredity was assumed for
the candidate models, but not explicitly required in the drawn models, the results were in
this case better, since the two-factor interactions had to fulfill the heredity assumptions in
all cases (if not, there would have been 6 active factors). Only the MS method yielded
substantially worse results when heredity was assumed than when not assuming heredity,
as it is the only method that does not identify the correct active main effects in nearly
all cases when the baseline is 1, as shown in Figure 11. For the quadratic effects, the
power was notably lower when heredity was falsely assumed, as it was possible to include a
quadratic effect not fulfilling the heredity assumption, but still have 5 active factors. The
power for detecting quadratic effects was clearly lower than for two-factor interactions,
but the behavior of the methods was similar, with the DC method always yielding the
highest power for detecting the correct effects. In fact, the difference in power for the DC
method and the other methods was larger for the quadratic effects than for the two-factor
interactions. As before, the DC method with a dependent F-test and the HAG method
behaved very similarly.

The powers were in most cases slightly lower if 2 quadratic effects were included in
the true models instead of 1. The type 1 errors can however not be compared for the two
scenarios, as the maximum number of included second-order effects was 4, thus the type
1 error is likely to be lower the more active effects the true model contains. Therefore,
only type 1 error for the situation with 1 two-factor interaction and 1 quadratic effect is
included, as it can be compared to the type 1 error in Figure 14. Note that the number of
inactive two-factor interactions are used in the denominator for the type 1 error for the
two-factor interactions, and likewise for the quadratic effects. As before, the high power
for the DC method is achieved at the cost of a higher type 1 error than the other methods.
For all methods, the type 1 error for the two-factor interactions was of similar magnitude
as when quadratic effects were not included, and although heredity was always fulfilled,
the type 1 error was higher when heredity was falsely assumed. The increase in type 1
error from falsely assuming heredity was paradoxically more prominent for the two-factor
interactions than for the quadratic effects, although only the quadratic effects could fail to
fulfill the heredity assumption. This indicates that the methods are more prone to include
two-factor interactions than quadratic effects to compensate when the correct effect(s)
cannot be chosen due to heredity assumptions. As before, the type 1 errors of the F-test
based methods are more strongly affected by false heredity assumptions than the type 1
errors of the DC method and the MS method.
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(a) Power for two-factor interactions when including
1 quadratic effect and 1 two-factor interaction in
the drawn models.

(b) Power for quadratic effects when including 1
quadratic effect and 1 two-factor interaction in the
drawn models.

(c) Power for two-factor interactions when including
2 quadratic effects and 1 two-factor interaction in
the drawn models.

(d) Power for quadratic effects when including 2
quadratic effects and 1 two-factor interaction in
the drawn models.

(e) Type 1 error for two-factor interactions when
including 1 quadratic effect and 1 two-factor inter-
action in the drawn models.

(f) Type 1 error for quadratic effects when including
1 quadratic effect and 1 two-factor interaction in
the drawn models.

Figure 16: Power and type 1 error for selecting second-order effects when a 27-run OMARS
design with 6 factors was used. There were 5 active factors, distributed between 4 main effects,
1 two-factor interaction and 1 or 2 quadratic effects. A baseline of 1 was used for all drawn
models. 29
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5.5 Summary of simulation results

The DC method demonstrates a strong ability to select the correct active effects in a
variety of situations. It achieves a higher power than the F-test based methods in all cases
and outperforms the MS method when there are few unassigned columns available for
variance estimation. It performs particularly well compared to the other methods when
weak heredity was a precept when drawing models or assumed when assessing second-order
effects. However, assuming weak heredity when analyzing the designs yielded inferior
results for all methods even if the drawn models obeyed the principle.

The DC method in most cases yield a higher type 1 error compared to the F-test based
methods. This may not be considered a problem when the design is used for screening. If
one for some reason wishes to reduce the type 1 error but keep the possibility of assessing
the main effects model (for instance inspect the residuals), an alternative is to use the
DC method with an F-test in step 2. The DC method with a dependent F-test and the
HAG method seem to yield similar results. Note that for some OMARS designs, the HAG
method can utilize more degrees of freedom for the variance estimate than the other methods.

To ease the comparison, the simulation study only covered models which were compatible
with all analysis methods. Had three-factor interactions been included, the DC method is
the only method with a formal way of testing for presence and a procedure for including
them. To enable comparison of results for the PB12+12 design and the OMARS design,
the main focus was on models including main effects and two-factor interactions only,
but complementary simulations with quadratic effects included in the drawn models were
conducted to demonstrate the methods’ ability to detect those when using an OMARS
design. The results showed that quadratic effects are harder to detect than two-factor
interactions. The difference in power for the DC method and the other methods is even
larger for quadratic effects than for two-factor interactions, and in addition it is less affected
by false heredity assumptions. When falsely assuming weak heredity in the presence of
quadratic effects, all methods seem to be prone to compensate by including more two-factor
interactions rather than quadratic effects. As the results are dependent on the structure
of the drawn models, assessing the performance of the methods for more combinations of
model structures would be an interesting path of further work.

6 Concluding remarks

The new proposed DC method for analyzing foldover designs is based on decoupling the
response values into two parts, one part for finding odd effects and one part for finding
even effects. Unlike the methods proposed in Miller and Sitter (2001, 2005), Jones and
Nachtsheim (2017) and Hameed et al. (2023), it yields the opportunity to search for odd
and even effects separately in a two-step procedure, in which choices made in one step do
not affect the results in the other. In addition, common procedures for variable selection
and model checking can be used in each step, rather than just for the final model. This
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makes the method less prone to error. Furthermore, it is possible to assess whether effects
of an order greater than two should be included.

The performance of the method was assessed using real data from a foldover of a 12-
run PB design, and further investigated and compared to the methods in Miller and
Sitter (2001) and Hameed et al. (2023) in a simulation study where first only main effects
and two-factor interactions were active (using a PB12+12 design and an OMARS design),
followed by simulations where also quadratic effects were included (using an OMARS
design). The DC method showed an overall superior performance in identifying both
main effects and second-order effects. It performed well also when weak heredity was as-
sumed, but we do not recommend using that assumption unless there are very good reasons
to do so. Higher power is attained without the weak heredity assumption, even if it is correct.

Despite its good and stable performance compared to other methods, we believe that
the greatest advantage of the DC method is the possibility to use standard statistical
procedures for variable selection and model assessment, and that these can be performed
in steps which are unaffected of each other. Using several criteria and model assessment
methods to check whether the models seem reasonable is a benefit in real life settings to
obtain trust in the models. The independent steps make it easier to find the cause of an
eventual lack of fit.
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7 Appendix: Data for example

Table 4: A PB12+12 design for 6 factors, data from Mønnes (2012).

Run A B C D E F y

1 -1 -1 1 -1 -1 -1 0.358355
2 -1 1 1 1 -1 -1 1.102892
3 -1 -1 -1 1 -1 1 1.095865
4 -1 -1 -1 -1 -1 -1 0.644945
5 -1 1 1 1 -1 1 1.151139
6 -1 1 -1 -1 -1 1 0.203328
7 -1 -1 1 1 1 -1 1.023245
8 1 -1 1 1 -1 1 1.285193
9 -1 1 1 -1 1 1 0.963643
10 1 1 1 -1 -1 -1 0.417663
11 1 1 -1 1 -1 -1 1.188810
12 -1 1 -1 1 1 -1 0.958609
13 1 1 -1 1 1 1 0.904882
14 1 -1 -1 -1 1 1 0.762895
15 1 1 1 -1 1 -1 0.962983
16 1 1 1 1 1 1 1.055025
17 1 -1 -1 -1 1 -1 1.066483
18 1 -1 1 1 1 -1 0.926640
19 1 1 -1 -1 -1 1 0.073068
20 -1 1 -1 -1 1 -1 0.962608
21 1 -1 -1 1 -1 -1 1.159382
22 -1 -1 -1 1 1 1 0.888587
23 -1 -1 1 -1 1 1 1.057513
24 1 -1 1 -1 -1 1 0.048384
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