
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Standalone, Descriptive, and Predictive Digital
Twin of an Onshore Wind Farm in Complex
Terrain
To cite this article: Florian Stadtmann et al 2023 J. Phys.: Conf. Ser. 2626 012030

 

View the article online for updates and enhancements.

You may also like
Digital twins for metrology; metrology for
digital twins
Louise Wright and Stuart Davidson

-

Digital Twin-driven approach towards
manufacturing processes support
Joanna Helman

-

The Application and challenge of Digital
Twin technology in Ship equipment
WU Wen-hao, Chen Guo-bing and Yang
Zi-chun

-

This content was downloaded from IP address 78.91.103.180 on 27/05/2024 at 15:27

https://doi.org/10.1088/1742-6596/2626/1/012030
https://iopscience.iop.org/article/10.1088/1361-6501/ad2050
https://iopscience.iop.org/article/10.1088/1361-6501/ad2050
https://iopscience.iop.org/article/10.1088/1742-6596/2198/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/2198/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/1939/1/012068
https://iopscience.iop.org/article/10.1088/1742-6596/1939/1/012068
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvEqYE3HFhZUVFriCLfi8ci94oh-FGcoHWWLTbZh35NgkSTSKH2i0P04EpNTco7-9JgtN7vGPmHmkPnnkeHR-BJvNV_SfBwd0vSc8aYRBkyuYnCJYDvmTHtfgMNoNN8zYtxbLsIA-2zi14cX1SrlhqfgGp2yCQey4sE9Uqlie1-ATykZr1sirXWPyZr8FVBN3KbiRwHCd650gUw_b89twsJUtSYpFvuYxWVPD6DSgRdHSNgBGVASklKoqU7f2F0WLZ0yh_I78ULVh-KWbc09D6Eorv9tOx-7Wo3lha1cwLWtcmP34xuMlWmij9Ot_FN2bqftQYymL7BEqt3Aw8X5S2r3rQ-lcSh&sig=Cg0ArKJSzAGvyz5mRiD8&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

EERA DeepWind conference 2023
Journal of Physics: Conference Series 2626 (2023) 012030

IOP Publishing
doi:10.1088/1742-6596/2626/1/012030

1

Standalone, Descriptive, and Predictive Digital Twin

of an Onshore Wind Farm in Complex Terrain

Florian Stadtmann1, Adil Rasheed1,2, Tore Rasmussen3

1 Department of Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway
2 Department of Mathematics and Cybernetics, SINTEF Digital, Trondheim, Norway
3 Aneo, Norway

E-mail: florian.stadtmann@ntnu.no

Abstract. In this work, a digital twin with standalone, descriptive, and predictive capabilities
is created for an existing onshore wind farm located in complex terrain. A standalone digital
twin is implemented with a virtual-reality-enabled 3D interface using openly available data on
the turbines and their environment. Real SCADA data from the wind farm are being used
to elevate the digital twin to the descriptive level. The data are complemented with weather
forecasts from a microscale model nested into Scandinavian meteorological forecasts, and wind
resources are visualized inside the human-machine interface. Finally, the weather data are used
to infer predictions on the hourly power production of each turbine and the whole wind farm
with a 61 hours forecasting horizon. The digital twin provides a data platform and interface for
power predictions with a visual explanation of the prediction, and it serves as a basis for future
work on digital twins.

1. Introduction
The importance of wind energy production efficiency cannot be overstated in the context of
combating climate change and achieving a net-zero emissions target by 2050 [1]. With the
proliferation of cheaper sensors and the growing trend of the Internet of Things, the potential
for extracting data from wind farms has increased significantly. However, it is not sufficient
to store collected information in data silos. Instead, real-time data analysis and visualization
can be leveraged to enable optimal control and informed decision-making and to unlock the full
potential of the data.

The concept of the digital twin has emerged as a promising solution to address these
challenges. A digital twin utilizes available data in real-time to monitor the current state of an
asset and its environment, predict future states, detect faults, perform what-if scenario analysis,
provide decision support, and ultimately enable autonomous control of the asset [2]. The use
of a suitable human-machine interface enhances the interpretation of analysis results and allows
for effective communication with stakeholders.

A survey conducted with industry partners of the Norwegian Research Centre on Wind
Energy “FME NorthWind” indicates that the wind industry is keenly interested in utilizing
digital twins to reduce the cost of wind energy [3]. However, several challenges must be addressed
before the full potential can be unlocked in wind energy applications. These challenges relate to
both the implementation and acceptance of digital twins within the industry [3]. Overcoming
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these challenges will be critical to advancing the development and adoption of digital twins in
the wind energy sector.

To this end the current work attempts to realize the following:

• Introducing readers to the concept of digital twins within the context of wind energy
applications and providing a scale to rank digital twins based on their capabilities.

• Demonstrating a digital twin of an onshore wind farm with standalone, descriptive, and
predictive capabilities. This will provide a practical illustration of the potential benefits
of digital twins in wind energy applications, as well as offer insights into the challenges of
developing such models.

• Discussing the potential for further research on digital twins for wind farm applications.
By highlighting areas where additional research is needed, we hope to catalyze progress in
this field and drive innovation in the wind energy sector.

The article is structured as follows: First, the definition of the term digital twin used in this
work is clarified in section 2. The capability level scales are explained briefly. In section 3,
the implementation of the standalone digital twin is given with a focus on terrain and visual
interface. The onshore Bessakerfjellet wind farm is used as a demonstration site. It is operated
by Aneo and is located at (64°13’ N, 10°23’ E) on the Norwegian coastline. Section 4 explains
the integration and visualization of data measured at the turbines. Predictive capabilities are
added in section 5 by implementing weather forecasts and performing predictions of the wind
turbines’ power production. The work is discussed in section 6 and an outlook into future work
is given. Finally, the work is summarized in section 7.

Figure 1: Digital twin flowchart (adapted from [4])

2. Definition and Capability Levels
The term digital twin is being used for different concepts. Here, the digital twin is ”a virtual
representation of a physical asset or a process enabled through data and simulators for real-time
prediction, optimization, monitoring, control, and informed decision making” [2]. The concept
of a digital twin with all capabilities is shown in figure 1. Since this definition still leaves some
room, we use the capability level scale from [5] to specify the digital twin’s exact capabilities. As
such, a digital twin can be ranked on a scale from 0 to 5 as a standalone, descriptive, diagnostic,
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predictive, prescriptive, or autonomous digital twin as shown in figure 2. Here, a brief overview
of the capability level scale is given. A more detailed description can be found in [6] and [3].

• The standalone digital twin is a virtual representation of a wind farm that lacks a real-
time connection to the physical wind farm. It can be utilized in the design, planning, and
construction stages before the wind farm is operational.

• In the descriptive digital twin, measurements from the wind farm are being streamed
into the digital twin. The descriptive digital twin mirrors the state of the real wind farm
at each point in time and provides a platform on which data can be bundled, enhanced
(e.g. through virtual sensing), processed, and visualized to the human operators and other
stakeholders.

• The diagnostic digital twin uses the data gathered in the descriptive digital twin as input
for analysis such as condition-based maintenance. The condition of components is tracked
through e.g. vibration and temperature measurements, and anomalies are diagnosed. This
way, minor deficits can be detected early and resolved before they result in major faults
like turbine damage and unexpected downtime.

• A predictive digital twin does not only use current and historical data but also forecasts
parameters to predict future asset states. The predictive capabilities can be used for
predictive maintenance or through power forecasts for the energy market.

• In a prescriptive digital twin, recommendations are provided through what-if scenario
analysis and risk assessment. Such prescriptions can include a balancing of component
wear against power production based on current electricity prices and demand, or optimal
maintenance scheduling based on component wear, estimated remaining useful lifetime, data
anomalies, and weather forecasts.

• The autonomous digital twin acts on the prescriptions on its own. Autonomous digital
twin capabilities can range from farm-wide wake steering and component wear balancing
over inspection through the usage of autonomous drones to automated operation and
maintenance of the wind farm.

Figure 2: Capability level scale (adapted from [5])

3. Standalone Digital Twin
In this work, a standalone digital twin of the onshore wind farm has been implemented following
a similar approach as is explained in [6] for a floating offshore wind turbine, including a user
interface using virtual reality. In contrast to the single-turbine implementation in [6], a whole
wind farm is implemented here. Additionally, the local terrain around the wind farm is included.
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3.1. Terrain
As an input to the terrain generation, height maps of the local terrain are being downloaded
from [7] at a 1 m × 1 m resolution grid. Since the wind farm is located at a shoreline and
the LIDAR-based height measurements cannot penetrate the water surface, the height maps
are being complemented with information on ocean depth contour lines available from [8]. All
information on onshore and offshore terrain height is combined in a single terrain map. The
height is then binned into int16 and the map is split into equal chunks to improve computational
efficiency during rendering. Next, aerial images are downloaded from [9] with a 1 m × 1 m
resolution. The images are combined and split into chunks matching the chunks of the terrain
height. Terrain height and texture are then imported into the Unity game engine, where they are
combined. As evident from figure 3, a top-down view of the 3D terrain inside the game engine
(center) can only be distinguished from aerial images from [9](surrounding) by its improved
resolution, 3D terrain, animated water, and dynamic lighting. Note that the terrain is not
just implemented for visual realism while using the digital twin, it also contains information
on logistical access through roads and nearby villages, and information on terrain height, water
bodies, and forestation relevant for understanding wind flow.

3.2. Turbines
Since no CAD model of the turbines was available at the start of the project, a model was
created in Blender. Tower height and rotor diameter are based on data sheets, while the nacelle
and blades are based on pictures of the Enercon E70-4. The 3D CAD model of the turbine is
shown in figure 4. The horizontal position of each turbine is known, while the vertical position
is inferred from the terrain height.

Figure 3: Comparison of terrain between top-
down view within the digital twin interface
(inside) to a picture from [9] (outside)

Figure 4: 3D CAD Model of the
Enercon E70-4 turbine

4. Descriptive Digital Twin
The digital twin is enhanced with descriptive capabilities by including SCADA data from each
wind turbine. At this stage, the digital twin mirrors the state of the physical wind turbine.
Only minor changes were made to the implementation in [6]. Namely, the data structure
gained an additional hierarchical level to advance from turbine to farm-level and the interactable
components of the turbine were adjusted to the new turbine type. Additionally, the data input
format changed, which required rebuilding the data reading module. Finally, two visualization
methods were added to depict the current power production, as it cannot be directly seen on
the turbine models.
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4.1. Data
The available data consist of wind speed, wind direction, nacelle direction, and active power
from each turbine. The measurement intervals vary from 3 to 10 minutes. Since the data are
non-equidistant in time, an updating function is constantly checking for new measurements. For
real-time operation, the persistence method is used to bridge time spans without measurements.
If instead the digital twin is used to inspect historic data, they are interpolated between
measurements. The feasibility of real-time data streaming is demonstrated as explained in
section 5.

4.2. Visualization
The yaw angle of each turbine is directly visible from the orientation of the turbine model. The
active power can be shown in text above each turbine, or alternatively through gauges with dial
and color indications as shown in figure 5.

Figure 5: Descriptive digital twin with text and gauges showing active power
of each turbine.

5. Predictive Digital Twin
First predictive capabilities are added to the digital twin by streaming publicly available weather
forecast data. These external forecasts are then used to predict the theoretical power production
at the turbine- and farm-levels.

5.1. Wind Field
A vector field for wind speed and direction is implemented by streaming weather forecasts
from the Norwegian Meteorological Institute’s Thredds service [10] in real-time. The MetCoOp
Ensemble Prediction System (MEPS) [11] provides forecasts every 6 h up to 61 h ahead with
a frequency of 1 h. Parameters of interest are wind speed, wind direction, air pressure, air
temperature, and relative air humidity. However, the MEPS model has a resolution of only
2.5 km. For this reason, the SIMRA microscale model nested into the HARMONIE mesoscale
model is used around the wind farm to increase the lateral and vertical resolution of the
forecast and include effects induced through the complex terrain. More information on the
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HARMONIE and SIMRA models can be found in [12]. The SIMRA model evaluated around
the Bessakerfjellet wind farm is available at [10]. It includes wind speed, wind direction, air
pressure, and air temperature in 1 h intervals for 6 h to 18 h ahead and has been evaluated
every 12 h for this particular data set. There is no technical reason preventing the SIMRA
model from being evaluated more frequently and with a longer forecasting horizon apart from
saving on computational resources. The wind is visualized in the digital twin through wind
trails moving through the vector field, or by showing parts of the vector field directly as can be
seen in figure 6. Vector direction matches wind direction, vector length represents wind speed,
and color indicates the turbulence index.

Figure 6: Vector field and profile of wind with wind speed (length), wind
direction (orientation), and turbulence (color) for any forecast horizon.

5.2. Physics-based power prediction
In the next step, the weather forecast is used to estimate the power production at each turbine.
In [13], weather forecasts such as the MEPS forecast were used with support vector machines,
clustering methods, and random forest algorithms to map from wind to power production in flat
terrain. Here, the weather forecast is used as input, but the mapping from weather to produced
power is done through physics-based models (PBMs) only to circumvent the black-box problem
of data-driven methods (DDMs). A data sheet for the turbine type is used that contains the
direct mapping from wind speed to power production, as well as the power coefficient as a
function of wind speed, with 1 m

s intervals. The power coefficient can be used in the well-known
relation

P (v) =
1

2
ρCP (v)Av

3 (1)

where v is the wind speed, P (v) is the produced power, ρ is the density of the air, CP (v) is the
turbine-specific power coefficient, and A is the area swept by the blades. The blade sweeping
area A is known to be 3959 m2. In the first approach, the air density ρ is assumed to be constant
with ρs = 1.225 kg

m3 . However, air density depends on temperature and pressure. Treating air
as an ideal gas, the pressure of dry air ρ(T, p) can be calculated as

ρ(T, p) =
pMd

RT
(2)
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where T is the air temperature, p is the pressure of the air, Md = 0.0289652 kg
mol is the molar

mass of dry air, and R = 8.31446 J
K mol is the universal gas constant. Furthermore, humidity

can be included through

ρ(T, p, ϕ) =
(p− ϕpsat)Md + ϕpsatMv

RT
(3)

with Mv = 0.018016 kg
mol as the molar mass of water vapour, ϕ as the relative humidity, and

psat = 6.11 hPa ∗ 10
7.5(T+273.15 K

T+510.45 K (4)

as the saturation pressure, calculated with the Tetens equation as done in [14]. The air density
can be used to modify the power curve by

P (v, T, p, ϕ) = P (v)
ρ(T, p, ϕ)

ρs
(5)

The quality of the power prediction is calculated on a one-year training set with an hourly
resolution for each combination of

• wind speed, air temperature, and air pressure v based on the MEPS or SIMRA model,

• air density ρ constant, dry air, or humid air (for SIMRA-based models only),

• calculation from the power curve or through the power coefficient from the turbine
manufacturer and equation 1,

• interpolation of power curve or power coefficient with linear or cubic,

• with or without imposing an upper limit on power output according to turbine specifications.

5.3. Data-Driven Predictions
Purely data-driven predictions using dense neural networks (DNN) and long-short-term-memory
(LSTM) neural networks are implemented for measurement-based time series prediction and
compared with the results from the PBMs. In the DDMs, two years of data are being used to
train the neural networks (NNs), where 10% are split off for validation. The NNs are being
trained for one-step-ahead prediction of the power production, and are evaluated iteratively on
their output to obtain a forecast with the full 61 h forecasting horizon. Therefore, the NN
output is of size 1. The architecture of the NNs is kept simple with three layers with 5, 3,
and 1 units respectively. The input lag is chosen to be 4 h for the DNN based on the partial
autocorrelation. In contrast, the cells of the LSTM keep information from previous evaluations
in memory. Therefore, only one input is given at a time but the NN is evaluated on a sequence
of previous data points. The NNs are trained with the Adam optimizer with a default learning
rate, a batch size of 64, and the mean squared error as the loss metric. A validation-loss-based
early stopping is used to avoid overfitting. Since the partial autocorrelation suggests that the
last measured hour has by far the most substantial contribution to the short-term prediction,
the NNs are compared to the persistence model, which always predicts the last measured value.

5.4. Results
The PBMs and DDMs are compared against the measured power production for every single
turbine and for the whole farm production by using the normalized root mean squared error
(NRMSE) for 3 years of available data. The best-performing model in each category is
determined. The NRMSE across turbines is shown in figure 7, and the NRMSE on farm-
level prediction in figure 8. Note that the farm-level predictions are more accurate as prediction
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errors of different turbines can cancel each other. The DDMs perform best for small forecast
horizons, but their accuracy decays quickly. For one-hour-ahead forecasts, the DNN performs
marginally better than the LSTM and persistence model with <0.2% NRMSE. The SIMRA
models outperform the DNN after 2 h on the farm-level and after 5 h on the turbine level. All
predictions using the SIMRA model as input achieve similar accuracy, but a dynamic air density
does improve the forecast by 0.4% NRMSE. The improvement from dry to humid air density
and differences between the interpolation method, the cap on maximum power production, and
the difference between using the calculated power curve or power coefficient as input are much
smaller with <0.1% NRMSE. The best-performing SIMRA-based model uses the turbine’s power
curve with cubic interpolation, a limit on the maximum power production as the rated power,
and a correction for air density that accounts for humid air. The micro-scale SIMRA model gives
significantly better results than the MEPS model. Here the SIMRA model was only available
up to 18 h ahead, but it is expected that the SIMRA-based models will keep outperforming the
MEPS-based models also for longer forecasting horizons as the decay of accuracy with increasing
prediction horizon is slow. Differences within the MEPS models are small <0.12% NRMSE. Like
the SIMRA-based models, the best-performing MEPS-based model uses the power curve directly
with cubic interpolation.

The different models can be combined in a simple hybrid analysis and modeling (HAM)
approach for optimal wind farm power prediction on all forecasting horizons by using the DNN
for 1 h to 2 h ahead predictions, the SIMRA-based model for 3 h to 18 h ahead predictions,
and the MEPs-based model for 19 h to 61 h ahead predictions. Deriving the farm-level power
forecast from the turbine level forecasts makes it possible to assess the impact of each turbine
on the farm power production separately inside the virtual-reality-enabled interface and visually
trace reasons for fluctuations between turbines back to wind speed, direction, and turbulence,
as well as to terrain geometry and surface roughness. Therefore, the digital twin can be used to
explain the farm-level power forecast.

Figure 7: Turbine level NRMSE of the best
model in each category across 61 h forecasting
horizon. Solid: median turbine, transparent:
1. & 3. quantile and extrema.

Figure 8: Farm-level NRMSE of the best
model in each category

6. Discussion and Future Work
In this work, a functional digital twin of a wind farm was presented with standalone, descriptive,
and predictive capabilities. There is much room for further research and demonstration on all
capability levels. Hence, this section discusses potential improvements and future work.
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6.1. Standalone
The modular nature of the implementation allowed upscaling the standalone digital twin from
the turbine level presented in [6] to the farm-level without any difficulties, but a terrain had
to be added for the onshore wind farm. In this work, the aerial images were directly mapped
onto the terrain, resulting in 81 big textures with 1 m resolution and ca. 1 km2 area. This
did not compromise the real-time execution of the digital twin, but it may be advantageous
to use one smaller, high-resolution texture per land cover class (grass/moss/rock/forest/etc.)
instead. In future work, their placement can be automated by compiling the color channels of
the aerial images into arrays with texture information. The software could be extended to include
automated placing of forestation and houses. This way, the detail in the visual component of
the digital twin can be increased, and the project size can be reduced.

6.2. Descriptive
The upgrade to the farm-level required an additional level in the data hierarchy. A new
visualization method was included in the digital twin to ease the assessment of data such as
power production across the whole wind park. The different data formats required a new
interface between the raw data and the digital twin. Standardization will play an important
role in the commercialization of digital twins, and more efforts are needed to establish common
standards throughout the whole wind energy industry. Both wind turbine operators and original
equipment manufacturers are already collaborating on standardization efforts [15, 16]

6.3. Predictive
For predictions in this work, three models have been combined in a pipeline where the best model
is used depending on the time to be predicted ahead. More sophisticated HAM approaches could
potentially improve the predictions further by combining information from measured data and
numerical weather models. In the broader context of digital twins for wind energy, PBMs,
DDMs, and HAMs have been discussed in [3]. In the context of wind power predictions, an
example of a HAM approach includes a data-driven regression from mesoscale weather forecasts
to power production, as has been evaluated for flat and open terrain in [13]. The microscale
weather model could be replaced by a resolution-enhancing generative adversarial network, as
has been attempted in [17], but the results were criticized in [18]. Finally, ensemble methods
with secondary models for combining DDM and PBM outputs may extract additional value
from measurements and numerical models. This approach will be investigated in future work
with a more thorough investigation of different DDMs.

6.4. Diagnostic, Prescriptive, and Autonomous
In addition to the standalone, descriptive, and predictive capabilities explored here, diagnostic
modules could be evaluated on the measured data for condition monitoring and component
wear tracking including weather effects and turbine load. Prescriptive modules could include
weather- and power-aware maintenance scheduling. Finally, the turbine state could be used for
autonomous farm optimization and control to balance power production and turbine wear [19].

7. Conclusion
In this work, a digital twin of an onshore wind farm in complex terrain with standalone,
descriptive, and predictive capabilities was built. The standalone digital twin was implemented
into a game engine by creating a 3D CAD model of the turbines and combining it with height
maps and aerial images of the surrounding terrain. It includes a human-machine interface
capable of interaction through virtual reality and simultaneously contains meta-data about the
wind turbines, the farm layout, and the environment. The digital twin was elevated to the
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descriptive level by including SCADA data measured at each of the wind turbines. Some data
were visualized directly on the 3D CADmodel, while other information was shown with animated
gauges and text. Predictive capabilities were implemented to forecast the power production of
each turbine in the wind farm and the results were visualized in the interface. The predictions
were performed by combining existing weather forecasts and physics-based models. They were
made intuitively understandable by showing wind as vector fields and trails on the terrain.
Finally, the results were discussed, and an outlook on future work was given. On top of the
continuation of current research, the digital twin can be extended with additional modules
to cover more aspects and evolve throughout the whole life-cycle of a wind farm. Such full-
fledged digital twins will have the potential to substantially contribute towards cheaper and
more sustainable wind energy for a greener future.
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