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Summary

Autonomous and unmanned operations at sea are becoming increasingly common.
However, as the operational goals increase in ambition, the existing methods
show their weaknesses. The maritime domain can be complex and unpredictable,
whereas the system demands in unmanned and autonomous operations are high.
One of the most important pieces needed for maritime autonomy is situational
awareness. Identifying targets and tracking their movements is a key component of
situational awareness. This thesis concerns target tracking, with a focus on maritime
applications.

The main contribution of this thesis is a methodology for the utilization of target-
provided information in target tracking. In many applications, targets may transmit
messages with valuable information regarding their identity, position, direction,
and more. At sea, the Automatic identification system (AIS) protocol specifies the
transmission of such messages and is mandatory for commercial ships and widely
used by other vessels. Target-provided information has played a role in situational
awareness since it became available, but often in cursory manners such as by plotting
the position of the transmitting vessel on a map. This thesis combines the usefulness
of target-provided information with advanced target tracking methods and explores
how they, together with exteroceptive sensor measurements, can be an invaluable
addition to the situational awareness of a vessel.

Another contribution is the development, testing, and evaluation of the advanced
trackers used to process the target-provided information together with exteroceptive
measurements. The thesis presents an extension of the joint integrated probabilistic
data association filter that includes support for multiple kinematic target models and
modeling of target visibility. Both with and without the addition of target-provided
measurements, the tracker is tested on maritime data and shown to be robust when
faced with challenging problems. Furthermore, the thesis presents a variant of the
Poisson multi-Bernoulli mixture filter with multiple kinematic models that includes
target-provided measurements, with applications to both point target and extended
object tracking. The results show that target-provided information such as position,
speed, course, and vessel dimension generally improve the tracking results, and in
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Summary

certain situations, performance improvements can be considerable.
The thesis also considers how to deploy such methods in real-life situations and

presents a method for validating AIS message information. Validating the messages
ensures their safe use when estimating the target states and enables their use in
other parts of a large system. Furthermore, the trackers are tested in several fully
autonomous collision avoidance scenarios, where the autonomous vessel has to
safely avoid other vessels. The results show that the methods enable the vessel to
make correct decisions and solve issues present with previous tracking methods used
in similar situations.

Lastly, some specific problems related to maritime target tracking are considered,
namely time inaccuracies in the received measurements and false alarms from the
wakes of targets. The presented solutions improve the tracking performance when
the problems are encountered.
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Chapter 1

Introduction

This thesis is written as part of the Autosit project at NTNU [110]. Short for
Autonomous ships, intentions and situational awareness, the project aims to develop
methods for improving autonomous navigation at sea. Autonomous and unmanned
maritime operations are becoming increasingly common, and the technology is
evolving rapidly. Above water, such operations involve autonomous surface vehicles
(ASVs) or unmanned surface vehicles (USVs). ASVs and USVs are relevant for many
different applications and are in the near future expected to operate in a multitude of
environments. Some examples include pedestrian ferries in urban environments [21],
cargo transport on inland waterways [127], and bulk carriers at sea [84]. Figure 1.1
shows three examples of ASVs and USVs that are already in use. The first are
the Mariner and Otter from Maritime Robotics, two multi-purpose drones. The
Otter has, among other things, been used for surveying and mapping purposes [34],
whereas the Mariner has been used for, for example, transport and surveying in
demanding environments [37,101]. The third example is the MF Estelle, a passenger
ferry from Torghatten and Zeabuz that operates in Stockholm [38]. However, for
such autonomous operations to be safe and efficient, the vessels must understand
and be aware of their surroundings.

1.1 Situational awareness in the maritime domain

In broad terms, situational awareness denotes the problem of understanding the
environment surrounding a vessel. For this purpose, the use of sensor technology is
useful, and sometimes strictly necessary. Whenever a ship is steered by a captain,
additional information from sensors can improve safety by, for example, warning
the captain of potential collisions. Nevertheless, the decision-making will mainly
rely on the captain’s ability to see and interpret their surroundings. Autonomous
vessels, however, should be able to make sense of their surroundings and act upon

1



1. Introduction

(a) A Mariner USV behind an Otter USV. Photo:
Maritime Robotics.

(b) MS Estelle, an autonomous passenger ferry.
Photo: Brødrene Aa.

Figure 1.1: Examples of unmanned and autonomous surface vessels.

them without human intuition. If we want to bridge the gap between the physical
and the digital world, a key problem is how to make the digital system understand
what is happening around it. An obvious approach to enable this understanding is to
use sensors to measure the physical world and then process the data received from
the sensors.

As part of a larger situational awareness framework, the target tracking system’s
contribution involves detecting and estimating the kinematic states of surrounding
targets based on sensor information. Above and below the surface, target tracking is
important when monitoring maritime activity. It helps to track the movements of ships
and other vessels, providing information to coastal authorities and enhancing safety
at sea. In subsea environments, target tracking is vital for monitoring submarines,
identifying and categorizing underwater objects, and keeping a watchful eye on
infrastructure [3, 81,124]. Furthermore, target tracking is used for monitoring the
airspace in the context of air traffic control [93], for tracking vehicles and people on
land [55, 56], and much more.

The methods in this thesis focus on the maritime domain, and maritime data
form the basis of the results. Because better autonomy at sea is the overarching goal
of the Autosit project, the most relevant use case is ASVs. Figure 1.2 shows an
example of an ASV system and outlines the role of target tracking in autonomous
navigation. Roughly, the system works as follows. From the path planning module,
the guidance and collision avoidance modules are informed of the next destination.
Given a clear path, the guidance module will inform the control module of the desired
speed and heading. However, if dynamic objects in the vicinity need consideration,
the ASV can not simply follow the path. The target tracking module informs the
collision avoidance module of the positions and velocities of the dynamic objects.
The collision avoidance module uses the information to determine the collision risk
and potential courses of action. If the ASV must make a maneuver, the collision
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1.2. Exteroceptive sensors and target-provided information

Figure 1.2: Overview of a system for autonomous navigation.

avoidance module tells the guidance module to change the desired speed and heading.

1.2 Exteroceptive sensors and target-provided information

When trying to establish an understanding of the dynamic objects inhabiting the area
surrounding a vessel, the perhaps most common approach is to use exteroceptive
sensors. Exteroceptive sensors placed on the vessel inform the system about what
happens outside of the system itself. Proprioceptive sensors, on the other hand,
measure internal states in the system. In maritime situational awareness applications,
widely used exteroceptive sensors are radar, LiDAR, and cameras [62]. Furthermore,
exteroceptive sensors can be either active or passive. Active sensors transmit signals
and retrieve information by how the environment reacts to these signals. Radars and
LiDARs are active sensors because they transmit radio and light waves, respectively.
Cameras are passive sensors, as they only receive information from their environment.
The methods in this thesis consider the use of active sensors, primarily radar and
LiDAR.

Radar, whose name comes from radio detection and ranging, was developed
and found its use throughout the first half of the 20th century [17]. Today, we find
maritime radars on most boats above a certain size, and radars can be seen on both
larger vessels pictured in Figure 1.1 in the form of white discs. Most maritime
radars rotate at some fixed frequency, where each revolution corresponds to a radar
scan. The radar output contains the range and bearing of the surfaces that reflect
the transmitted radio waves. Both the range and bearing are limited in resolution;
the resolution of the range decides the precision of the distance from the radar
to the detection, and the bearing resolution decides the precision of the angle of
the detection. The radar divides the surveillance area into several cells, in which
detections can occur. If their view is unobstructed, radars can detect targets several
tens of kilometers away. However, long ranges mean that the detections become less
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1. Introduction

precise. The detections are often clustered before they are used in the target trackers
to provide a single position measurement for each target. The clustering avoids that a
single target gives rise to several detections, depending on the number of sensor cells
a target inhabits. The above is just a simplified explanation, sufficient to understand
how target trackers use the measurements. Signal processing techniques such as
beamforming make the inner workings of a radar significantly more complex, see,
for example, [116].

Apart from operating with a different wave frequency, maritime LiDARs work
conceptually similar to radars, with detections that fall within cells decided by the
resolution in range and bearing. They also provide detections by sweeping the
area. Whereas radars typically have relatively low resolution and update frequency,
LiDARs have higher resolution and operate at a higher frequency. The trade-off
is that LiDARs have a limited range, typically around a hundred meters. Due to
their different strengths and weaknesses, LiDAR is well suited to complement radars.
When operating in environments with small distances but high precision demands,
LiDAR is a good choice. However, radar is a prerequisite in applications where
targets must be detected well in advance at long ranges.

At sea and in the air, the targets themselves can provide information through
standardized systems. In this thesis, such information is denoted as target-provided
information. Many ships transmit messages through the Automatic identification
system (AIS) [73]. The International Maritime Organization stipulates what has to
be transmitted and which ships must transmit messages [72]. The messages can
contain a wide range of information, such as position, speed, course, ship dimensions,
and rate of turn. In addition, the messages contain the ID of the target. Aircraft
provide similar information through the Automatic dependent surveillance-broadcast
(ADS-B) protocol [39]. In both cases, on-board equipment is usually the source of
the information.

The types of measurements, exteroceptive and target-provided, are inherently
very different. Because exteroceptive sensors are placed at some distance from the
targets, the precision of their measurements may vary. Furthermore, for LiDAR
and radar, the provided information is often limited to the position and possibly
speed of the reflecting surface. On the other hand, the system that utilizes the
measurements usually knows how well the sensor works at any given time. Target-
provided information is not dependent on the distance from the receiver to the
transmitter, except for limitations in transmission range. The possible information in
the messages is only limited to the messaging protocol, and what the target itself
can measure. However, the transmission of the messages can be infrequent, and the
receiver has no guarantee of the correctness of the messages. Furthermore, not all
targets transmit any information. As such, it is unwise to use only target-provided
information in situational awareness systems, but as a complement to exteroceptive
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1.3. Target tracking methods and concepts

sensors, it can give invaluable insight.

1.3 Target tracking methods and concepts

The above sections explain the role of target tracking in situational awareness and the
relevant sensors. However, making sense of the sensor information is not a trivial
problem and has been the focus of significant research efforts. The early methods
mainly considered filtering out the measurement noise, whereas later methods also
considered artifacts such as false alarms and missed detections.

1.3.1 Filtering

The detections provided by the sensors will have some degree of inaccuracy relative
to the true target positions. The inaccuracies, also called measurement noise, can
be mitigated with filtering. The filtering step aims to solve the Bayesian filtering
recursion given by the two equations

fk|k�1(xk|z1:k�1) =

Z
fx(xk|x̃)fk�1(x̃|z1:k�1)dx̃,

fk(xk|z1:k) =
fz(zk|xk)fk|k�1(xk|z1:k)R
fz(zk|x̃)fk�1(x̃|z1:k�1)dx̃

(1.1)

where the first is the Champman-Kolmogorov equation, and the second is the Bayes
update. The state the filter wants to estimate is x, and the subscript indicates the time
step of the state. For the densities f , the subscript k|k � 1 indicates that the density
is conditioned on the measurements up to the previous time step, and the subscript k
indicates that the density is conditioned on the measurements up to the current time
step. The measurements are denoted as z, where the subscripts indicate from which
time step the measurements originated. Furthermore, fx(·) is the state transition
density, and fz(·) is the measurement likelihood density. The state transition density
describes how the state evolves, and the measurement likelihood density describes
how likely a measurement is given the state. Equation (1.1) is the basis of most of
the methods presented in the following chapters.

Throughout this thesis, the Kalman filter [80] is the main tool used for filtering.
For linear Gaussian models, it is an optimal closed-form solution to (1.1). The
Kalman filter is a recursive method that estimates the state of a linear system based
on noisy measurements. It is optimal in the sense that it minimizes the mean squared
error of the estimates. The extended Kalman filter (EKF) is an extension of the
Kalman filter that supports non-linear models. The EKF linearizes the system around
the current estimate and then applies the Kalman filter to the linearized system. The
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1. Introduction

Figure 1.3: Use of a sensor to detect a target, and use of a target tracker to estimate
the target state.

error from the linearization means that it is no longer optimal, but it is nevertheless
a good option when the non-linearities are small. The unscented Kalman filter
(UKF) is another extension of the Kalman filter, which instead of linearizing the
system, uses a deterministic sampling approach to propagate the state distribution
through the non-linear system. This results in more accurate estimates than the EKF
can provide, especially for highly non-linear systems, but at a computational cost.
Particle filters are another popular way of handling non-linearities. They represent
the distributions as weighted particles, and the individual particles are propagated
according to the system model. This approach can provide good estimates for
highly non-linear systems, but the often large number of particles required for good
performance can make it computationally expensive. See, for example, [130], for a
more comprehensive description of the use of filters in target tracking.

Filtering solves the problem of noisy measurements but not the problem of
false alarms, missed detections, and ambiguous associations between targets and
measurements. The ability of target trackers to handle such problems is what
distinguishes them from what we consider regular filters.

1.3.2 Target tracking

Figure 1.3 shows an area covered by a sensor, then the detections from five scans, and
then an estimated trajectory of a hypothesized target from which the detections arose.
In such a situtation, it is relatively easy to see how the target and the measurements
correspond. The problem becomes more difficult when false alarms and missed
detections are present, such as in Figure 1.4, where the wake of a ship has caused
false alarms and the sensor is unable to detect the target for two out of the five
scans. In addition, several targets can be present, and the association between the
measurements and the targets may be ambiguous. To estimate the target states, the
tracker must associate the hypothesized targets with their measurements, a problem
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(a) Illustration of clustered radar detections with
false alarms created by the wake of a boat.

(b) The same situation as in Figure 1.3, but with
two missed detections.

Figure 1.4: False alarms and missed detections when tracking a boat.

known as data association. The fact that the number of targets is unknown, and may
change over time, introduces further complications. Only when the measurements
have been associated with a target can a filtering method such as the Kalman
filter be used to estimate the target state. In (1.1), this amounts to finding the
measurements in z1:k that belong to a specific target state xk. The joint estimation
of the number of targets and their states is denoted as multi-target tracking [130].
Several measurements can also originate from the same target, which requires
either measurement clustering or a method that allows multiple measurements to
be associated with the same target. The two approaches amount to what is known
as point target tracking and extended object tracking, respectively. This section
briefly explains common methods for point target tracking, whereas extended object
tracking is not considered further until Chapter 4.

The probabilistic data association (PDA) filter [9] is one of the early methods
made to solve the data association problem. It calculates the probability of association
between the measurements and the target by considering the predicted position of the
target, and comparing this to the received measurements while taking the uncertainty
of the prediction and the measurements into account. In this way, it can account for
the possibility of false alarms and missed detections.

Further development resulted in the joint PDA (JPDA) filter [41], which extended
the PDA filter to account for the existence of multiple targets and the possibility of
different measurements originating from different targets. Whereas the PDA filter
assumes that only a single target is present, the JPDA filter assumes that some known
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Estimates after
previous time

step

Measurements 
from time step 1 

Estimates after
time step 1

Estimates after 
time step 2 

Measurements
from time step 2

(a) A hypothesis structure
similar to how they appear
in PDA and its derived
methods. After calculating
the target estimate condi-
tioned on the associations,
the estimates are combined
into a single estimate.

(b) A hypothesis structure similar to those of MHT
and PMBM. A new target estimate is created for each
possible association hypothesis, and the estimates are
assigned a weight based on how likely the association
hypothesis is.

Figure 1.5: A situation where one target estimate (the uppermost orange dot) was
initialized at the previous time step. Two measurements are received (red dots) in
the next time step and one in the time step after that. At each time, the track is either
associated to one of the measurements or not associated to any measurement (the
gray dots). The opacity of the lines indicates how likely the different hypotheses are.
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number of targets are present. However, the actual number of targets is usually not
known, and several methods have been developed to initialize tracks based on the
received measurements [142]. One of the solutions is the integrated PDA (IPDA)
filter [106] and its multi-target version, the joint integrated PDA (JIPDA) filter [105].
Here, target existence is not assumed, and the existence probability is calculated
for each track that estimates a hypothesized target. Furthermore, the methods have
been extended to work with the Interacting multiple models (IMM) filter, which uses
several kinematic models for predicting the target state and switches between them
depending on the estimated behavior of the target [15, 108].

For each time step, the PDA filter and its derived methods estimate the current state
of a target based on the estimate from the previous time step and the measurements
from the current time step. If the methods receive several measurements, their
impact on the updated estimate depends on the association probability between
the measurement and the estimate. If one represents the estimates as Gaussian
distributions, this means that the updated estimate will be a Gaussian mixture
with components representing the estimate conditioned on different measurements.
Usually, this mixture is reduced to a single Gaussian before the next time step. This
approximation ensures that the target trackers are computationally tractable but
also means that temporal information is lost. Figure 1.5a shows an example of the
hypothesis structure of the PDA filter and its derived methods over two time steps.

Multiple hypothesis tracking (MHT) [115] is a different approach to the data
association problem. As in PDA, MHT considers all possible associations between
the measurements and the estimates. For each possible association, the estimate is
updated based on the measurement. However, the different combinations are used as
the basis for new associations the next time new measurements arrive, and no mixture
reduction takes place. This process results in a tree structure starting with the first
detection and branches to the possible successive detections. A track hypothesis in
the tree is a path from the root to one of the leaves, where said leaf is the estimated
target state at the current time. Such a tree structure can be seen in Figure 1.5b. This
way of solving the multi-target tracking problem is denoted as multi-scan tracking,
as opposed to the single-scan methods described above. However, the tree structure
grows exponentially and quickly becomes intractable to maintain. To mitigate this,
branches of the hypothesis are pruned to remove the most unlikely hypotheses.

The Poisson multi-Bernoulli mixture (PMBM) filter is another multi-scan
multi-target tracking method, that is based on the theory of Random finite sets
(RFSs). It models the potentially detected targets as Bernoulli RFSs, and the not yet
detected targets as a Poisson point process (PPP). As opposed to what is the case
for MHT, this allows for more mathematically rigorous procedures for initialization
and termination of tracks. Each time new measurements are received, all possible
associations between the new measurements and the Bernoullis from the previous
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time step give rise to new Bernoullis. Bernoullis representing potential new targets
are created based on incoming measurements with a basis in a Poisson point process
(PPP). As for the MHT algorithm, this results in an exponentially growing number
of Bernoullis, and this is mitigated by a combination of pruning and only keeping
a fixed number of possible global hypotheses. A global hypothesis is a set of
Bernoullis which together form a complete set of possible associations between the
measurements and the targets.

Furthermore, target trackers often utilize input from more than one sensor. When
conducting target tracking with input from different sensors, a fusion scheme is
needed to combine the information. One approach is to process the measurements
from each sensor separately and then fuse the resulting estimates. This method is
known as track-level fusion. By considering the individual sensors in isolation, the
problem only lies in the fusing of the estimates from the different sensors. This
task is complicated by the unknown correlation between estimates and the need for
associating the estimates from the different sensors with each other. Nevertheless,
methods such as covariance intersection [78] have proven robust when fusing
estimates, and the data association problem is usually relatively easy to solve if the
individual estimates are of high quality. However, the loss of information introduced
by the separate processing of the measurements is a theoretical limitation in any
track-level fusion scheme. Furthermore, when data from a sensor are received with
long intervals between updates, it can struggle to produce good estimates on its
own. This is often the reality for target-provided information. Another widely
applied approach is measurement-level fusion. In measurement-level fusion, the
tracker updates its estimates based on measurement data from different sensors.
This is, theoretically, an approach that allows for better estimates, but the different
measurements have to be carefully modeled. The methods must consider how to
handle differences in, for example, update frequencies, detection probabilities, and
false alarm rates.

1.3.3 Related work on the fusion of exteroceptive sensor measurements
and target-provided information

Several methods for measurement-level fusion of target-provided information and ex-
teroceptive measurements have been proposed in recent years. In [59], Habtemariam
et al. propose a measurement-level fusion method for combining AIS and radar mea-
surements in the context of the JPDA filter. The authors account for the transmitted
ID information and present a method for applying the IDs to targets using Bayesian
inference. Furthermore, they consider the physical nature of AIS messages, with their
infrequent transmission and absence of false alarms. The results show the benefit
of utilizing AIS messages and the increased performance of the measurement-level
fusion approach relative to track-level fusion approaches.
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A somewhat different approach is found in [44], where Gaglione et al. present
a tracker that utilizes belief propagation and a particle filter. The problem is
formulated as a factor graph, with calculations consisting of passing messages
between nodes in the graph. The work also considers the initialization of tracks
using both exteroceptive and target-provided measurements, in addition to the time
discrepancy between the different measurement types. The method estimates the ID
information probabilistically and allows for handling incorrect ID information.

Furthermore, MHT and the PMBM filter have previously been used together
with target-provided information. Liland describes an AIS-guided MHT in [94].
Here, the AIS information is modeled as if it was provided by another exteroceptive
sensor, with artificial models for false alarms and missed detections. The transmitted
IDs are assumed to always be correct, and any errors are presumed removed in the
pre-processing stage. The method improves the tracking performance relative to an
MHT without AIS information. In [102], Miao et al. present a method for using
AIS information in the PMBM filter. They take a similar approach to the MHT
variant and model the AIS information similarly to exteroceptive measurements.
Furthermore, the transmitted IDs are not explicitly considered in the calculations but
are used to label the tracks corresponding to AIS-transmitting targets.

1.4 Research objectives

The Autosit project is a continuation of the Autosea project [26], a previous research
project at NTNU that looked into autonomous operations at sea. As such, many of
the research objectives for this thesis are inspired by the findings of that project. That
includes specific problems encountered during the experimental testing in the project
and more general problems, such as the development of target tracking methods
that better utilize AIS information. The research objectives are condensed into the
following goals:

1. Provide solutions to problems encountered in the maritime domain regarding
occlusions, target maneuvering, wake clutter, and potential time offset effects.

2. Use of target-provided information in target tracking:

– Create a model that allows for the use of target-provided measurements
in target tracking.

– Develop methods that utilize target-provided measurements in target
tracking.

3. Use of the developed methods in real-life applications:

– Evaluate the demands for the safe use of AIS in maritime target tracking.
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– Validate the developed methods in field tests.

The goals are divided into three groups, where the first demands research into
more general problems encountered in the maritime domain for several different
sensors and platforms. The second group considers the inclusion of target-provided
measurements in target trackers. Both demand the development of robust target
trackers suitable for use in maritime environments. The third involves using the
methods in real-world experiments.

1.5 Contributions and outline

The thesis is built up of chapters corresponding to research papers, with a structure
that roughly follows the research objectives. There are three parts: The first considers
the development of target trackers for the maritime domains, with and without the
use of target-provided information. The second part expands upon how to use the
methods from the previous chapters in autonomous marine operations. The last part
catches up with some of the problems that can be encountered in maritime target
tracking when using exteroceptive sensors, that were not covered explicitly in the first
part. A summary of each chapter, with their respective publications listed, follows.

Part I: Including Target-Provided Measurements in Multi-Target Track-
ing

Chapter 2: Multi-Target Tracking With Multiple Models and Visibility

Publication:

[24] E. F. Brekke, A. G. Hem, and L.-C. N. Tokle. Multitarget Tracking With
Multiple Models and Visibility: Derivation and Verification on Maritime
Radar Data. IEEE Journal of Oceanic Engineering, 46(4):1272–1287, July
2021

We demonstrate how a variation of the joint integrated probabilistic data association
(JIPDA) filter with interacting multiple models (IMM) and a visibility state can be
derived as a special case of the Poisson multi-Bernouli mixture (PMBM) filter with
a hybrid state representation and standard approximations. The proposed method
is tested on two radar data sets which were recorded during maritime collision
avoidance experiments.
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Chapter 3: Variations of Joint Integrated Probabilistic Data Association
With Radar and Target-Provided Measurements

Publication:

[68] A. G. Hem and E. F. Brekke. Variations of joint integrated data association
with radar and target-provided measurements. Journal of Advances in
Information Fusion, 17(2):97–115, Dec. 2022

We present a multi-target tracking algorithm utilizing target-provided information
using the framework of joint integrated probabilistic data association (JIPDA). The
use case we consider is maritime target tracking using radar measurements combined
with messages from the Automatic identification system (AIS). The full details of the
tracking algorithm are presented, including implementation-specific considerations
to account for the different natures of the incoming measurements. We detail three
different methods of handling the target-provided measurements, one processing
them as they arrive, i.e., sequentially, and the others collecting and processing them
at fixed intervals. The results show that all improve over the pure radar tracking
algorithm.

Chapter 4: Poisson Multi-Bernoulli Mixture Filtering With Fusion of
Target-Provided and Exteroceptive Measurements

Publication:

[65] A. G. Hem, M. Baerveldt, and E. F. Brekke. PMBM Filtering With Fusion of
Target-Provided and Exteroceptive Measurements: Applications to Maritime
Point and Extended Object Tracking. To appear in IEEE Access. doi:
10.1109/ACCESS.2024.3389824

We present a method for including target-provided measurements in the Poisson
multi-Bernoulli mixture (PMBM) filter, both when using it to track extended objects
and point targets. We use messages from the Automatic identification system as
an example of target-provided measurements, and radar and LiDAR as examples
of exteroceptive sensors. In the point target case, we utilize several different
kinematic models in parallel through the interacting multiple models framework, and
compare the presented method to several common trackers and other PMBM filter
configurations. The results show that our method outperforms similar methods when
target-provided measurements are available. For the extended object tracking case,
we expand upon the Gaussian process PMBM filter. The extended object method
is evaluated on both simulated and experimental data, and is shown to improve the
tracking performance when including target-provided measurements in comparison
to when it only uses exteroceptive measurements.
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Part II: Use of AIS in Maritime Autonomy Applications

Chapter 5: Autonomous Marine Collision Avoidance with Sensor Fusion
of AIS and Radar

Publication:

[70] A. G. Hem, E. F. Brekke, G. D. K. M. Kufoalor, and I. H. Kingman.
Autonomous Marine Collision Avoidance With Sensor Fusion of AIS and
Radar. Submitted to the 15th IFAC Conference on Control Applications in
Marine Systems, Robotics and Vehicles (CAMS 2024)

We present the results of a series of autonomy experiments conducted in the
Trondheimsfjord, Norway, to evaluate novel target tracking methods that use both
exteroceptive sensors and messages from the Automatic identification system (AIS).
The experiments used a 6-meter-long autonomous surface vessel equipped with a
radar and an AIS antenna, in combination with two target vessels. The tracker output
was used to inform a collision avoidance method about the surrounding targets,
which allowed it to operate in the intended safe and regulation-abiding manner. The
results show that the tracker provided target estimates of high enough quality to be
used directly in the collision avoidance method without post-processing, and that the
surface vessel was able to navigate safely through the scenarios.

Chapter 6: Validation of AIS Information With Exteroceptive Sensor
Fusion in Autonomous Operations

Publication:

[66] A. G. Hem and E. F. Brekke. Validation of AIS Information With Exterocep-
tive Sensor Fusion in Autonomous Operations. To appear in IEEE Intelligent
Transportation Systems Magazine. doi: 10.1109/MITS.2024.3389869

The Automatic identification system (AIS) can improve situational awareness at sea,
but its protocol is simple and does not guarantee message integrity, authentication,
and proper use. The lack of safety measures creates problems when AIS messages
are used for, for example, tracking a target or predicting a target trajectory. We
present a methodology for validation of AIS messages, a prerequisite for their safe
use in maritime situational awareness applications. The validation method relies
on target trackers which fuse AIS data and exteroceptive sensor data, and detects
errors in position, speed and course, and rate of turn. By use of simulated data, we
show that the proposed methods effectively detect errors in the position and velocity
data received through AIS messages and is also able to detect errors in turn rate
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data. The effectiveness of the methods is demonstrated on a real-world dataset with
injected false AIS data.

Part III: Selected Topics in Target Tracking With Exteroceptive Sensors

Chapter 7: Compensating Radar Rotation in Target Tracking

Publication:

[67] A. G. Hem and E. F. Brekke. Compensating radar rotation in target
tracking. In Proc. Sensor Data Fusion: Trends, Solutions, Applications,
Bonn, Germany, Oct. 2022

For applications where the vessel carrying the radar is highly maneuverable, or the
radar rotation frequency is low, it may be unreasonable to approximate the radar
measurements as arriving simultaneously. This chapter identifies effects caused by
radar rotation and shows that these effects can degrade tracking performance. We
present methods for mitigating the undesirable effects and apply these to a joint
integrated probabilistic data association (JIPDA) tracker. Results on simulated data
show that the proposed methods give significant performance benefits in certain
situations.

Chapter 8: Target Tracking With Existence Modeling in the Presence of
Wakes

Publication:

[64] A. G. Hem, H.-G. Alvheim, and E. F. Brekke. WakeIPDA: Target Tracking
With Existence Modeling in the Presence of Wakes. In Proc. IEEE 26th
International Conference on Information Fusion, Charleston, SC, USA, June
2023

We present a novel target tracking algorithm, which is designed to track a target
in the presence of wake clutter. What distinguishes the method from previous
wake-compensating trackers is that it also models the existence of the target and
exploits the information provided by the wake measurements for this purpose. We
present two ways of modeling the wake, and we evaluate the algorithm’s performance
on simulated data. Results show that the method improves upon comparable target
tracking methods when wake measurements are present.

Co-authored papers

In addition to the papers listed above and included in this thesis, I have also
contributed to the following papers:
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[121] J. Å. Sagild, A. G. Hem, and E. F. Brekke. Counting technique versus single-
time test for track-to-track association. In Proc. IEEE 24th International
Conference on Information Fusion, Sun City, South Africa, Nov. 2021

[22] E. F. Brekke and A. G. Hem. A long simulation scenario for evaluation
of multi-target tracking methods. In Proc. 3rd International Conference
on Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), Tenerife, Canary Islands, Spain, July 2023

[5] M. Baerveldt, A. G. Hem, and E. F. Brekke. Comparing Multiple Extended
Object Tracking with Point Based Multi Object Tracking for LiDAR in a
Maritime Context. Journal of Physics: Conference Series, 2618(1):012011,
Oct. 2023

[43] D. Gaglione, P. Braca, G. Soldi, F. Meyer, A. G. Hem, E. F. Brekke, and
F. Hlawatsch. Comments on “Variations of Joint Integrated Data Association
with Radar and Target-Provided Measurements”. Journal of Advances in
Information Fusion, 18(2):93–101, Dec. 2023

[23] E. F. Brekke, A. G. Hem, and L.-C. N. Tokle. The VIMMJIPDA: Hybrid
state formulation and verification on maritime radar benchmark data. In
Proc. IEEE OCEANS, Virtual conference, Oct. 2020
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Measurements in Multi-Target
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Chapter 2

Multi-Target Tracking With
Multiple Models and Visibility

This chapter is based on the publication:

[24] E. F. Brekke, A. G. Hem, and L.-C. N. Tokle. Multitarget Tracking With
Multiple Models and Visibility: Derivation and Verification on Maritime
Radar Data. IEEE Journal of Oceanic Engineering, 46(4):1272–1287, July
2021

Changes from the original publication involve shortening of the introduction section.
My work in the chapter mainly involves implementation, result acquisition, analysis,
and the writing regarding these topics.

2.1 Introduction

Target tracking, including track initialization and track termination, for autonomous
ship situational awareness poses high requirements to both accuracy and reliability,
which straighforward joint probabilistic data association (JPDA) or multiple hypothe-
sis tracking (MHT) may not be capable of fulfilling. It is important to establish tracks
as fast as possible to enable early action in collision avoidance (COLAV) scenarios.
Furthermore, track-loss is highly undesirable, because it can take several seconds to
re-establish a track with typical off-the-shelf radars. Velocity and course estimates
are likely to suffer from significant uncertainties. When tracking a maneuvering
recreational boat, the root mean square error (RMSE) of the course estimate is likely
to reach values around 10�, and may occasionally hit 45� or even 90�, leading to
significant confusion in a COLAV system [35].

These challenges lead to three extensions of the basic JPDA formalism. First,
modeling of track existence can yield significantly faster and more reliable track
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initialization [142]. This leads to joint integrated probabilistic data association
(JIPDA). Second, using multiple motion models in parallel improves the accuracy of
velocity estimation. This leads to interacting multiple model JIPDA (IMMJIPDA)
[108]. IMM-JPDA techniques have previously been used in the COLAV system
reported in [123]. Third, including a model of target visibility in addition to the
existence model can make the tracker less susceptible to track-loss [141]. We refer
to the resulting tracking method as a VIMMJIPDA.

Modern theory of multi-target tracking is heavily influenced by finite set statistics
(FISST) and its key concepts such as random finite sets, set densities, probability
generating functionals (p.g.fl.’s) and the multi-target Bayes filter [98]. The structure
inherent in the multi-target Bayes filter can, under standard assumptions, be exploited
to derive a solution with finite computational requirements, which has become known
as the PMBM filter [138]. It was shown in [138] that the PMBM filter reduces to
a more refined version of the JIPDA when similar approximations are being made
(that is, merging of all association hypotheses after every estimation cycle). This
refined filter was termed track oriented multi Bernoulli/Poisson (TOMB/P) in [138]
and is in the broader class of Poisson multi-Bernoulli (PMB) filters.

The first contribution of the present chapter is to strengthen the PMBM-JIPDA
link by also establishing versions of IMMJIPDA with basis in the PMBM filter. This
is done by introducing a hybrid continuous-discrete state vector that accounts for
all discrete-natured uncertainty except for existence uncertainty, which on the other
hand is accounted for by the random finite set framework. This differs from how
existence and visibility were treated in the seminal IPDA paper [107], where both
were considered as different state values in a common Markov Chain.

A second contribution of the chapter is to publish two benchmark data sets for
maritime radar tracking which recently have been recorded as part of the Autosea
project [26], and to verify the proposed algorithm on these data sets. There is
in general a scarcity of publicly available data sets for verification of multi-target
tracking methods when compared to related fields such as simultaneous localization
and mapping (SLAM), where several established data sets are regularly used for
verification of new algorithms (see for exampleSection 5 in [79]). In particular, the
authors are not aware of any public benchmark data set for maritime radar tracking.
The closest would be the simulated benchmark data reported in [29]. In the future,
the Stone Soup framework aims to enable users to set up experiments with real-world
data [90] [12], but currently it does not contain any data set comparable to those we
present in this chapter.

Evaluation of tracking methods is typically focused on performance measures
such as variations of the Optimal sub-pattern assignment (OSPA) metric [122] [113] or
various measures of track quality (track lifetime, track fragmentation rate, etc.) [109].
Most of these measures rely on a ground truth, and report some kind of average
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behavior, which is hard to assess except through extensive Monte-Carlo simulations.
In contrast we take a more qualitative approach in this chapter. We study real data
with the purpose of gaining a better understanding of likely causes of trouble that
can arise in a multi-target tracking system used for maritime COLAV, rather than
conducting a systematic evaluation using standard performance measures.

The chapter is organized as follows. In Section 2.2 we present some minimal
background on p.g.fl. and FISST, and the notation that will be used. In Section
2.3 we present the hybrid state model as a special case of standard assumptions in
multi-target tracking. In Section 2.4 we derive the VIMMJIPDA. In Section 2.5 we
provide details on the implementation of the tracking method. Section 2.5.2 presents
the data sets used and tracking results. Finally, a conclusion follows in Section 2.6.

2.2 Notation and terminology

We will address the PMBM filter from the p.g.fl. perspective that was used in [138].
The reader is referred to [98] for a standard reference on p.g.fl.’s in multi-target
tracking. The main rationale for this approach is that it arguably leads to neater
mathematics than the alternative formulation in terms of set densities, which has
been used in for example [47]. The price to pay for this is a higher level of abstraction.
In general, a p.g.fl. G[h] is a machine that takes test functions h as arguments,
and returns a number for every test function. If f(x) is a function, we define the
corresponding linear functional by

f [h] =

Z
f(x̃)h(x̃) dx̃. (2.1)

This notation will frequently be used to describe inner products of functions. Also
notice that we consistently use a tilde notation for variables that are to be integrated
out as part of such an expression. These notations follow the general notational
framework laid out in [25].

Whenever x̃ is a hybrid continuous-discrete variable, the infinitesimal measure
dx̃ above is adopted to be the product measure between the Lebesgue measure and
counting measure1 [40] for the continuous and discrete parts, respectively. Integrals
with respect to the counting measure become summations, so that the above can
equivalently be written

f [h] =
X

x̃d

Z
f(x̃)h(x̃) dx̃c, (2.2)

1Measure is the mathematical term for function that takes a set and gives back its size, or “volume”
if you like, and which additionally obeys certain rules in order to be well behaved.
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where x
d and x

c refers to the discrete part and continuous parts, respectively. See
also Section II.B in [97].

This generalizes to functions of sets X = {x1, . . . ,xn}, with

G[h] =

Z
f(X̃)

Y

x̃2X̃

h(x̃) �X̃ (2.3)

=
1X

n=0

1

n!

Z
f({x̃1, . . . , x̃n})

nY

i=1

h(x̃i) dx̃1 · · · dx̃n (2.4)

where the set integral [98, §11.3.3] in the first line is naturally taken with respect
to the set measure written out and simplified to integrals on the state space in the
second line [131, §VII].

We will occasionally talk about intensities of Poisson processes. Such an
intensity is a function f(x) such that the expected number of objects found inside
a region S is given by

R
S f(x)dx, ie. a scaled pdf. A random finite set for which

this is true and the number of objects found within all pairwise disjoint regions
is independent, is a Poisson process. The number of objects in such a process is
Poisson distributed with their states independently identically distributed (i.i.d.). Its
p.g.fl. is of the form

Gppp[h] =exp(�[h� 1]) (2.5)

where �(x) is its intensity.
We will also talk about Bernoulli, multi-Bernoulli (MB) and MB mixtures

(MBM) p.g.fl.’s. The Bernoulli comes from a set that has a Bernoulli trial for being
either empty or singleton and no other outcomes possible on the number of elements.
The trial has probability r for being singleton, in which case the element has some
state pdf f . The MB comes from having N independent, not necessarily identical,
such sets, and the MBM from having a mixture of MB’s. The MBM p.g.fl. is

Gmbm[h] =
MX

j=1

pj
NY

i=1

(1� ri,j + ri,jf i,j [h]), (2.6)

where pj is the probability that some latent hypothesis j is correct, withPM
j=1 p

j = 1. Under hypothesis j, ri,j and f i,j are the singleton probabilities and
state pdf’s of the i’th Bernoulli in the MB, respectively. This reduces to an MB
whenever M = 1 and N > 1 (the summation disappears and p1 = 1, making the
superscript j unnecessary), and to a Bernoulli when N = 1 and M 2 N (the product
is removed, leaving a single factor that renders the superscript i unnecessary).

The random finite set framework hinges on the fundamental theorem of multi-
object calculus [98, p. 384] which states that the representation can be transformed
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back and forth between set densities and p.g.fl.’s by means of integration and
differentiation. The proof of this theorem can be found in [146] and relies on the
property that delta functions obey

R
�x0(x̃)f(x̃) dx̃ = f(x0). A combination of

Dirac’s and Kroenecker’s delta for the continuous and discrete parts, respectively,
satisfies this, and the fundamental theorem continues to hold for the hybrid spaces
considered here. More generally, the hybrid spaces considered here are locally
compact, Hausdorff, and second countable (LCHS), as required by standard FISST
theory [100].

Remark 2.1. What is a JIPDA and what is a PMB filter? The distinction is not
immediately clear because the main working principle for both is the approximation
of a MBM of the form (2.6) with a MB. One distinction between the two methods
is largely a matter of historical origin: Musicki’s term JIPDA was used in the
(non-FISST) literature until around 2015, when researchers building on Williams’
work started to talk about the PMB filter. A second distinction is that a PMB might
use other types of mixture reduction where the notion of a track identity in the JPDA
sense is lost, eg. [140].

To suggest a more precise terminology, we may call the method a variation
of JIPDA if it 1) does not have a dynamic Poisson component, 2) approximates
the joint distribution over the track to measurement association variables with its
(approximate) marginals, and 3) uses moment matching for mixture reduction of the
single target pdf’s to arrive at the MB form. Thus, we will refer to our method as a
variation of JIPDA.

In relation to this question one can also bring up the issue of track identities
and track labels: Most researchers familiar with JIPDA will probably think of the
tracks in a JIPDA as having distinct identities, while this is less clear for a PMB filter.
The reader may consult references such as [132], [57], [20] and [126] for different
viewpoints in this debate, which is beyond the scope of this chapter. Although
the derivations here are based on the PMBM filter with the track oriented MB
approximation, one can arrive at the same equations by adapting the IMM-JIPDA
of [108]. From this point of view, the reader can interpret identities as they do for
the JIPDA, if preferred. /

2.3 Model assumptions

The PMBM filter is a direct solution of the multi-target Bayes filter under the
assumption of no track-before-detect, no merged measurements and no extended
objects. This standard model of multitarget tracking can be summarized by the
following general assumptions:

M1 New targets are born according to a Poisson process with intensity b(y).
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2. Multi-Target Tracking With Multiple Models and Visibility

M2 Existing targets survive from time step k � 1 to k with probability PS(yk�1).

M3 The motion of a surviving target is given by fy(yk|yk�1).

M4 A target with state yk generates a measurement zk with probability PD(yk).

M5 Clutter measurements occur according to a Poisson process with intensity
�(z).

M6 The measurement of a detected target is related to the state according to
fz(zk|yk).

In addition, independence is assumed whenever it is not contradicted by M1-M6.
In this chapter, the state vector is of the form

yk =

2

4
xk

sk
vk

3

5 (2.7)

where xk is the kinematic state vector, sk is a discrete-valued random variable that
attains one of M possible models, and vk is a binary random variable that attains 1 if
the target is visible, and otherwise attains 0. Based on this, we re-write assumptions
M1-M6 in more elaborate terms taking the hybrid state into account.

M1: The Birth model

We assume the birth intensity to be stationary, and of the form

b(y) =BV⌦fb(x)µ
0so0v (2.8)

fb(x) =
1⌦(H(s)

x)

V⌦
N (H⇤(s)

x ; 0,P(s)
v ) (2.9)

where B is the single parameter quantifying the overall rate in terms of expected
number of objects per unit position volume entering per time step. The notation ⌦
denotes the surveillance region, while 1⌦(·) denotes the corresponding indicator
function, which is one everywhere in ⌦ and otherwise zero. This region has volume
V⌦. The prior probabilities µ0s and o0v are of the model state s and the visibility
state v, respectively. We use the notation ⌘0 = o01 to denote the a priori probability
that an unknown target is visible (see Assumption M4* and Section 2.4.2). The
matrix P

(s)
v is the tunable a priori velocity covariance, typically of the form I�2v .

The matrix H
(s) picks out the positional components of x, while H⇤(s) picks out all

other components of x.
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2.3. Model assumptions

M2: The survival probability

We use a constant survival probability PS.

M3: The single-target Markov model

Instead of the purely kinematic Markov model typically used in the tracking literature,
we use a more complex state evolution model of the form

fy(yk |yk�1) =f sk
x (xk |xk�1)⇡

sk�1sk!vk�1vk . (2.10)

Here ⇡sk�1sk and!vk�1vk are probabilities from the Markov chain transition matrices
of the model and visibility states, respectively. We assume that the kinematic Markov
model is given by a Gaussian

f sk
x (xk |xk�1) = N (xk ; f

(sk)(xk�1),Q
(sk)). (2.11)

For the sake of generality, the Gaussian assumption will only be explicitly invoked
when necessary.

M4: The detection probability

The detection probability is state dependent in accordance with

PD(y) =

⇢
PD if v = 1
0 if v = 0.

(2.12)

We say that the target is visible whenever v = 1, although such a target may still
have missed detections.

M5: The clutter intensity

Clutter is uniformly distributed according to a Poisson process with constant intensity
�. We remark that generalization to measurement-dependent clutter intensity is
straightforward.

M6: The kinematic likelihood

The likelihood of a measurement conditional on the target state can be written

fz(z |y) = f s
z(z |x) = N (z ;H(s)

x,R(s)). (2.13)

It is only defined when v = 1. It will never be used when v = 0 because in such
a case we will not have any detection according to M4 above. Notice that the
measurement matrix H

(s) is the same as the matrix used in (2.9).
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2. Multi-Target Tracking With Multiple Models and Visibility

2.4 From PMBM to VIMMJIPDA

The main result of [138] states that both the predicted and the posterior p.g.fl. can be
factorized into a Poisson p.g.fl. and an MBM p.g.fl. Omitting temporal subscripts,
this factorization can be written

G[h] = Gppp[h]Gmbm[h]. (2.14)

A key idea of the PMBM filter is that targets that exist, but have not been observed,
constitute a set of unknown targets whose random properties can be quantified by
the Poisson factor in (2.14) through a corresponding unknown target intensity [138].
In Section 2.4.1 we will see that it is reasonable to take this intensity as spatially
uniform and stationary in the VIMMJIPDA.

The MBM component Gmbm[h] is a mixture over a collection of association
hypotheses, and for every hypothesis it is a product of un-normalized Bernoulli
p.g.fl.’s given by hypothesis weight contributions, existence probabilities (possibly
zero) and state pdf’s (possibly left undefined for Bernoulli p.g.fl.’s with zero
probability of existence) for every hypothetical track. We postpone the detailed
exposition of this structure to Section 2.4.4. It was shown in [138] that the PMBM
form is closed under the Bayes recursion, although the number of hypotheses will
grow exponentially and the number of Bernoulli components will grow linearly with
time.

2.4.1 The unknown target intensity

From [138], we know that the Poisson component, that isunknown target intensity,
here denoted by the scaled pdfs uk(y) and uk|k�1(y), is measurement updated and
time predicted according to

uk(y) = (1� PD(y))uk|k�1(y) and (2.15)
uk|k�1(y) = b(y) + uk�1[fy(y | ỹ)PS(ỹ)] (2.16)

respectively.
We do not want the spatial parameterization of uk(y) to be any more complicated

than that of b(y). For this reason we make the approximation that (2.9) is not altered
by a prediction using the kinematic Markov model. This means that multiplying by
(2.11) and integrating does not change its form, so that

fb(x) ⇡ fb[f
s
x(x | x̃)] =

Z
f s
x(x | x̃)fb(ỹ) dx̃. (2.17)

For this assumption to be reasonable, two approximations must hold. 1) The velocity
uncertainty must not increase noticeably between the time a target arrived and
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2.4. From PMBM to VIMMJIPDA

the time it was first observed2, and 2) The effect of the kinematic Markov model
predicting objects to leave ⌦ is relatively small.

Proposition 2.1. For stationary birth and a Markov transition model where all states
have a positive (that is, non-zero) probability of reaching a region of the state space
where PD(y) > 0 and/or PS(y) < 1 in finite time, the intensity uk|k�1(y) will
converge, and furthermore under (2.17) and M1* – M4* to

u(y) = lim
k!1

uk|k�1(y) = UV⌦fu(x)µ
s
uo

v
u, (2.18)

with overall intensity

U = B + UPS(1� ⌘uPD) =
B

(1� PS(1� ⌘uPD))
, (2.19)

kinematic state pdf

fu(x) ⇡ fb(x) =
1⌦(H(s)

x)

V⌦
N (H⇤(s)

x ; 0,P(s)
v ), (2.20)

mode probabilities

µu =
B

U
µ0 + PS(1� PD⌘u)⇡

>µu, (2.21)

=
B

U
(I� PS(1� PD⌘u)⇡

>)�1µ0, (2.22)

and visibility state probabilities

o1u
o0u

�
=

B

U


o01

o00

�
+ PS


!11 !01

!10 !00

� 
1� PD 0

0 1

� 
o1u
o0u

�
(2.23)

=
B

U

✓
I�


PS!11(1� PD) PS!01

PS!10(1� PD) PS!00

�◆�1 
o01

o00

�
, (2.24)

where ⌘u = o1u is defined, and the mode and visibility state probability equations are
in matrix form. Here, µu and µ0 are the column vectors with µs

u and µ0s as its s’th
elements, respectively, and ⇡ is the matrix with ⇡s̃s at the s̃’th row and s’th column.

Proof. See Appendix 2.6.

VIMMJIPDA, therefore, directly specifies and uses the converged undetected
intensity instead of the birth intensity. This leaves the overall rate U , initial mode
probabilites µs

u, initial visibility probability ⌘u and the velocity covariance matrix
P

(s)
v as tuning parameters. From one point of view, µ0s and o0v should be set

to the limit values of their respective Markov chains. From another viewpoint

2Opposed to the prediction of many Markov models used in target tracking, we should expect an
unobserved target to have a limited stationary velocity covariance for all practical purposes, which
should describe our uncertainty upon target arrival, and P(s)

v should be designed accordingly.
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2. Multi-Target Tracking With Multiple Models and Visibility

the Markov chains are just approximations and some other values might be more
appropriate. The former will lead to µs

u = µ0s, whereas ovu 6= o0v due to the
detection dependency. We note that not all values for µs

u and ⌘u could come from
valid µ0s and ⌘0, respectively. Nevertheless, as the Markov chains are in reality
approximations, one might wish to ignore this in tuning for applications.

Remark 2.2. There can be potential performance gains in track initialization by
appropriate modeling of a dynamic and/or spatially varying undetected intensity [139],
not further investigated here.

The intensity is not a probability, so it is not a proper Markov chain. Its
convergence properties are probably best analysed when including visibility, and
therefore from the eigen-properties of the resulting matrix in (2.23). The convergence
is on the order of a few 10s of time steps for many realistic parameter sets, such as the
ones used in this chapter. The convergence transient can, however, be long, and as
VIMMJIPDA neglects the transient it will in those cases have more suboptimal track
initialization either initially or after convergence, depending on chosen parameters.

The equations above can provide insights into which birth intensity one is actually
using, or be a tool in parameter selection. For tuning purposes, it should be noted
from (2.19) that the unknown target intensity is always larger than the birth intensity
when PD < 1 or PS > 0, so it is slightly misleading to tune the unknown target
intensity in terms of how many objects that is expected to enter at a given time step.
/

2.4.2 The VIMMJIPDA prior

In a PMB filter the mixture over association hypotheses is approximated by a single
MB after every estimation cycle, so that the prior MBM component is of the form

Gmbm
k�1 [h] =

nk�1Y

t=1

(1� rtk�1 + rtk�1f
t
k�1[h]). (2.25)

This is the same as happens in the JIPDA, where the approximation is done by
approximating the joint track to measurement association probabilities by the product
of their marginals. Here, rtk�1 is the existence probability and, recalling our hybrid
state definition, the state densities in (2.25) are of the form

f t
k�1(y) = f ts

k�1(x)µ
ts
k�1o

tv
k�1 (2.26)

where f ts
k�1(x) is the prior kinematic density conditional on model s, µts

k�1 is the
prior probability of model s and otvk�1 is the prior probability of the visibility state
v. Reducing of the association hypotheses in this way, makes the form of (2.25)
attained after both prediction and update.
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2.4. From PMBM to VIMMJIPDA

We also introduce the notation ⌘t = ot1 to denote the probability that target t is
in visibility state 1, that is, the probability that it is visible. f ts

k�1(x) will typically
be approximated as Gaussian through moment matching in the prediction and the
update, as will be done in Section 2.5.

2.4.3 The VIMMJIPDA prediction

The PMBM prediction formulas from [138] state that the predicted MBM component
remains an MB of the same form as (2.25), with existence probabilities and state
densities given by

rtk|k�1 =rtk�1f
t
k�1[PS(ỹ)] (2.27)

f t
k|k�1(y) =

f t
k�1[fy(y|ỹ)PS(ỹ)]

f t
k�1[PS(ỹ)]

. (2.28)

Proposition 2.2. For any track t the predicted existence probability is

rtk|k�1 = rtk�1PS (2.29)

while the predicted model probabilities, visibility probabilities and kinematic pdfs
are given by

µts
k|k�1 =

P
s̃ ⇡

s̃sµts̃
k�1 (2.30)

⌘tk|k�1 =!
01(1� ⌘tk�1) + !11⌘tk�1 (2.31)

f ts
k|k�1(x) =

Z
fx(x|x̃)f ts,0

k�1(x̃)dx̃. (2.32)

where the mode-conditional prior is given by

f ts,0
k�1(x̃) =

1P
s̃ ⇡

s̃sµts̃
k�1

X

s̃

⇡s̃sµts̃
k�1f

ts̃
k�1(x̃). (2.33)

Proof. See Appendix 2.6.

Remark 2.3. The mode-conditional prior f ts,0
k�1(x̃) is in the IMM framework

approximated as a single Gaussian by means of moment-matching over the mixture
in (2.33). The details are well known, and can be found in, for example, [8]. Assuming
f ts,0
k�1(x̃) and fx(x|x̃) to be Gaussian-linear, it is straightforward to evaluate the

Chapman-Kolmogorov integral in (2.32). Linearization is typically used when mild
nonlinearities are present. /

To summarize, the predicted pdf of the hybrid state for any track t is given by

f t
k|k�1(y) = otvk|k�1µ

ts
k|k�1f

ts
k|k�1(x). (2.34)
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2. Multi-Target Tracking With Multiple Models and Visibility

2.4.4 The VIMMJIPDA posterior

The PMBM update formulas expand the MB given by (2.27) and (2.28) into an MBM.
In the standard PMBM formalism a track (also sometimes known as a potential
target [42] or single-target hypothesis [138]) is established for every measurement
ever observed, so that the number of tracks at time k is nk = mk+nk�1 =

Pk
l=1ml

where ml is the number of measurements at time l. In practice, several of these
tracks will be eliminated by pruning.

The MBM ranges over a collection Ak of the possible single-scan association
hypotheses. In this chapter, the notation atk denotes the measurement claimed by track
t according to the hypothesis ak at step k. Every hypothesis ak = (a1k, . . . , a

nk
k ) 2

Ak is a mapping from the set of tracks to the set of measurements in scan number
k, including the zeroth measurement (missed detection), under the restrictions that
non-zero measurements cannot be repeated and that all non-zero measurements must
be covered. That is

Ak = {ak 2 {0, . . . ,mk}nk such that

atk = j > 0 =) at
0
k 6= j for all t0 6= t,

and if atk 6= j > 0 for all t  nk�1 then a
nk�1+j
k = j}.

(2.35)

In the p.g.fl. formulation the MBM is of the form

Gmbm
k [h] /

X

a2Ak

nkY

t=1

w
tatk
k

⇣
1� r

tatk
k + r

tatk
k f

tatk
k [h]

⌘
. (2.36)

Here w
tatk
k is the weight contribution of track number t to the probability of the

hypothesis ak, rta
t
k

k is the existence probability of track t under the hypothesis a,
and f

tatk
k [h] is the linear functional corresponding to the state pdf of track t under

the hypothesis a. For bookkeeping purposes we define the linear index function
L(j; k) = j +

Pk�1
l=1 ml with inverse L�1(t; k) = t �

Pk�1
l=1 ml. What L does is

to give us the index of the track with origin in the measurement zjk, while its inverse
indicates that track twas created in an earlier time step ifL�1(t; k)  0, or a later

time step if L�1(t; k) > mk. Otherwise (that is, when L�1(t; k) 2 {1, . . . ,mk}),
it gives the identity/index of the measurement that track t was created from [25].

The expressions for weights, existence probabilities and state pdf’s vary between
4 cases: Empty track, new target, missed detection and detection. Below we
recapitulate the PMBM expressions from [138] for these cases.

Track t = L(j; k) is empty if measurement j is claimed by another track under
hypothesis ak, that is, when 9 t0 6= t such that at0k = j. In such a case w

tatk
k = 1,

r
tatk
k = 0 and f

tatk
k (y) is left undefined.
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2.4. From PMBM to VIMMJIPDA

We have a new target whenever atk > 0 and L�1(t; k) > 0, meaning that track
t originated in the current scan. In such a case

w
tatk
k =�+ u[fz(z

atk
k | ỹ)PD(ỹ)] (2.37)

r
tatk
k =

u[fz(z
atk
k | ỹ)PD(ỹ)]

�+ u[fz(z
atk
k | ỹ)PD(ỹ)]

(2.38)

f
tatk
k (y) =

fz(z
atk
k |y)PD(y)u(y)

u[fz(z
atk
k | ỹ)PD(ỹ)]

. (2.39)

We have a missed detection whenever atk = 0 and L�1(t; k)  0, meaning that
track t originated in an earlier scan. In such a case

w
tatk
k =1� rtk|k�1 + rtk|k�1f

t
k|k�1[1� PD(ỹ)] (2.40)

r
tatk
k =

rtk|k�1f
t
k|k�1[1� PD(ỹ)]

1� rtk|k�1 + rtk|k�1f
t
k|k�1[1� PD(ỹ)]

(2.41)

f
tatk
k (y) =

(1� PD(y))f t
k|k�1(y)

f t
k|k�1[1� PD(ỹ)]

. (2.42)

We have a detection whenever atk > 0 and L�1(t; k)  0. In such a case

w
tatk
k = rtk|k�1f

t
k|k�1[fz(z

atk
k | ỹ)PD(ỹ)] (2.43)

r
tatk
k =1 (2.44)

f
tatk
k (y) =

fz(z
atk
k |y)PD(y)f t

k|k�1(y)

f t
k|k�1[fz(z

atk
k | ỹ)PD(ỹ)]

. (2.45)

In the subsequent propositions we translate these hybrid-state expressions into
expressions for the existence probability, mode probability, visibility probability
and kinematic density for each of the 3 non-empty cases under the assumptions
M1*-M6*. Also after the measurement update it is possible to write the hybrid state
pdfs in the factorized form

f tj
k (y) = otvjk µtsj

k f tsj
k (x) (2.46)

for all state variables whose pdf or pmf is not identically zero.
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Proposition 2.3. In the new target case we have

wtj
k =�+ U⌘uPD (2.47)

rtjk =
U⌘uPD

�+ U⌘uPD
(2.48)

µtsj
k =µs

u (2.49)

⌘tjk =1 (2.50)

f tsj
k (x) ⇡N (x ; x̂s

0,P
s
0) (2.51)

where x̂
s
0 = H

(s)>
z
atk
k and P

s
0 = H

(s)>
R

s
H

(s) + H
⇤(s)>

PvH
⇤(s) are the new

target initial state mean and covariance, respectively.3

Proof. See Appendix 2.6.

Remark 2.4. Typically in a JIPDA implementation, one will only initialize tracks in
unclaimed measurements, that is, measurements that have not been gated to existing
tracks. This gives a formidable reduction in complexity compared to initializing
new tracks in all measurements. Furthermore, one will typically use a linkage-based
track clustering scheme, so that only tracks which share measurements are processed
together. With these simplifications, every new track will constitute a separate cluster,
containing only a single association hypothesis. The weight expression (2.47) will
then never be needed, but the other expressions from Proposition 2.3 remain relevant.
/

Proposition 2.4. In the missed detection case we have

wt0
k =1� rtk|k�1 + rtk|k�1(1� ⌘

t
k|k�1PD) (2.52)

rt0k =
rtk|k�1(1� ⌘

t
k|k�1PD)

1� rtk|k�1 + rtk|k�1(1� ⌘
t
k|k�1PD)

(2.53)

µts0
k =µts0

k|k�1 (2.54)

⌘t0k =
(1� PD)⌘tk|k�1

1� PD⌘tk|k�1

(2.55)

f ts0
k (x) =f ts

k|k�1(x) (2.56)

Proof. See Appendix 2.6.

3When the state vector consists of measured position coordinates first and non-measured velocity
states last this becomes x̂s

0 = [z
at
k

k ;0] and Ps
0 = diag(Rs,Pv).
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Figure 2.1: Impact of visibility model on existence probability for increasing number
of consecutive missed detections.

Figure 2.1 compares the impact of the formulas (2.53) and (2.55) with enforcing
unity visibility v = 1. The transition probabilities from Table 2.1 have been used.
For a target with a moderately high detection probability (for example, PD = 0.8),
the existence probabilities differ by more than a decade after only 5 consecutive
missed detections. Notice that the value of PD has very little impact when the
visibility model is used. In practice, the visibility probability can be seen as a
dynamic detection probability that is estimated from the data. A non-unity value of
PD can then be seen as an upper bound on this dynamic detection probability.

Proposition 2.5. In the detection case we have

wtj
k =PDr

t
k|k�1⌘

t
k|k�1

P
s̃ µ

ts̃
k|k�1l

ts̃j (2.57)

rtjk =1 (2.58)

µtsj
k =µts

k|k�1l
tsj/
P

s̃µ
ts̃
k|k�1l

ts̃j (2.59)

⌘tjk =1 (2.60)

f tsj
k (x) = f s

z(z
j
k |x)f

ts
k|k�1(x)/l

tsj
k (2.61)

where the track-to-measurement likelihood is given by

ltsjk =

Z
f s
z(z

j
k | x̃)f

ts
k|k�1(x̃)dx̃. (2.62)

Proof. See Appendix 2.6.
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2.4.5 Mixture reduction

The goal of the mixture reduction is to reduce the posterior MBM to an MB with
hybrid state pdfs of the form f t

k(y) = f ts
k (x)µts

k o
tv
k . Following along the lines of

a conventional JIPDA, and using W =
P

a2Ak

Qnk
t=1w

tat
k , the MBM p.g.fl. after

update is approximated as the MB

Gmbm
k [h] =

X

a2Ak

1

W

nkY

t=1

wtat
k

⇣
1� rta

t

k + rta
t

k f tat
k [h]

⌘
(2.63)

⇡
nkY

t=1

X

a2Ak

nkQ

t0=1

wt0at
0

k

W

⇣
1� rta

t

k + rta
t

k f tat
k [h]

⌘
. (2.64)

In other words, the joint is approximated by the product of its marginals. One can
identify the hypothesis probabilities

Pr(ak) =
1

W

nkY

t=1

w
tatk
k ak 2 Ak (2.65)

used to calculate the marginal association probabilities

ptjk =
X

ak2Ak
s.t. atk=j

Pr(ak), t 2 {1, . . . , nk} (2.66)

which again are used in moment-based mixture reduction [138].

Proposition 2.6. Enforcing independence between the visibility state and the other
states, the factors in the MB in (2.64) have marginal existence probability, visibility
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probability, mode probabilities and mode conditional kinematic pdf’s

rtk =
mkX

j=0

ptjk r
tj
k = 1� pt0k (1� rt0k ), (2.67)

⌘tk =
mkX

j=0

1

rtk
ptjk r

tj
k

| {z }
�tj
k

⌘tjk =
1� pt0k (1� ⌘t0k rt0k )

rtk
, (2.68)

µts
k =

mkX

j=0

1

rtk
ptjk r

tj
k

| {z }
�tj
k

µtsj
k , and (2.69)

f ts
k (x) =

mkX

j=0

1

rtkµ
ts
k

ptjk r
tj
k µ

tsj
k

| {z }
�tsj
k

f tsj
k (x), (2.70)

respectively. In the above, one can identify the existence conditional association
probabilities

�tjk =
ptjk r

tj
k

rtk
=

8
>>><

>>>:

ptjk
rtk

, j > 0 (that is, rtjk = 1)

rt0k pt0k
rtk
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(2.71)

and the existence and mode conditional association probabilities

�tsjk =
ptjk r

tj
k µ

tsj
k

rtkµ
ts
k

= �tjk
µtsj
k

µts
k

(2.72)

Proof. See Appendix 2.6.

Assuming that each f tsj
k (x) is Gaussian, we can approximate each f ts

k (x) by a
Gaussian using standard moment-matching techniques with weights �tsjk [8, §1.4.16].

Remark 2.5. None of the discrete variables are part of the data association problem
in (2.65) and (2.66), which is a natural consequence of treating them as part of the
state space. They still clearly influence the data association, but only through the
weights. To use a hybrid state space within the general PMBM framework to get
to these equations contrasts earlier approaches with the unnecessary computational
complexity of [28] and [14], and the rather lengthy derivations of [108]. When not
taking visibility into account and disregarding the fact that JIPDA neglects unknown
targets in the data association [138], the data association and mixture reduction
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2. Multi-Target Tracking With Multiple Models and Visibility

equations here are equivalent to [108, §V.B] We point out that augmenting with
other target state variables can be achieved in a similar manner, and without the need
to complicate the data association more than changing the weights.

Other parameters, such as clutter, unknown targets, detection probability etc.
also influence the association through the weights in (2.65), just as in JPDA [10] and
JIPDA [108]. /

Remark 2.6. The visibility v and the mode s are not a posteriori independent after
the mixture reduction has been performed. This is so because the mixture reduction is
equivalent to marginalization over a third variable, namely the association hypotheses.
Nevertheless, for convenience we approximate them as independent, given by their
respective marginals (2.68) and (2.69).

Maintenance of the full joint distribution would lead to greater complexity,
needing M additional mode probabilities and kinematic state distributions if both
are to be conditioned on the visibility.

It is possible to investigate the quality of this approximation using the forward
Kullback Leibler divergence between their true joint posterior and its M-projection
given by the marginals [103]. In the majority of test cases we have found that it is
quite small ( 0.02), although it can also reach large values (� 0.2) in other cases,
especially when the mode probabilities are very different for different association
hypotheses. /

2.4.6 Implementation

The tracking results reported in this chapter are obtained with an implementation of
the VIMMJIPDA that builds upon a real-time PDAF/IPDA implementation described
in [143] [26]. In particular, preprocessing of the radar data follows the pipeline
described in [143].

To mitigate complexity, validation gating with gate threshold g = 3.5 standard
deviations is used. The gating is performed for each kinematic model, and the
gated measurements become the union of the measurements gated by the individual
kinematic model validation gates. As such, the probability of gating a true measure-
ment under the given model is not constant, but we nevertheless assume that this
probability is close to unity and therefore negligible. See, for example, [136] for other
approaches to gating with multiple models. Only tracks that share measurements in
their validation gates are processed together. Thus, single-linkage track clustering
is used. For each track cluster, brute force hypothesis enumeration is performed if
there is less than 4 targets or less than 2 measurements in the cluster. Otherwise,
Murty’s method with maximally 8 hypotheses is used. To solve the 2D assignment
problems required by the Murty framework the auction method is used.
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2.4. From PMBM to VIMMJIPDA

Tracks are divided into preliminary and confirmed tracks. Preliminary tracks
are initialized using one-point initialization in all measurements that have not been
validated by confirmed or preliminary tracks. Both preliminary and confirmed tracks
are allowed to compete for the same measurements, although the implementation
also includes an option only allowing preliminary tracks to access measurements
not validated by confirmed tracks. Termination is done in the same manner as
described in [143]. The termination procedure consists of three steps; firstly, all
tracks with existence probability below an existence termination threshold Td are
terminated. Furthermore, tracks which are deemed to be identical through the
hypotheses test described in [143] are found, and the youngest of the the identical
tracks are terminated. Lastly, tracks which have not associated to any measurement
for more than six time steps are terminated.

Kinematic models

We use 3 kinematic models in the IMM framework: A low-noise constant velocity
(CV) model, a coordinated turn (CT) model, and a high-noise CV model. The CV
models have state vector x = [x, y, vx, vy]> (that isposition and velocity) and are of
the form xk = F

(s)
xk�1 + vk, vk ⇠ N (0,Q(s)) where

F
(s) =


I2 dtI2
0 I2

�
, Q

(s) =


dt3/3I2 dt2/2I2
dt2/2I2 dtI2

�
�2a,s

where s 2 {1, 2}. The CT model has state vector x = [x, y, vx, vy,!]> where ! is
the turn rate, and is of the form xk = F(xk�1)xk�1 + vk, vk ⇠ N (0,Q) where

F
(3)(x) =

2

66666664

1 0
sin dt!
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�1 + cos dt!

!
0

0 1
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!

sin dt!
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0

0 0 cos dt! � sin dt! 0
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3
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and

Q
(3) =


Qa,1 0

0 �2!

�
. (2.73)

The CT model is linearized in the standard manner [8, §11.7.2].

Remark 2.7. The turn rate of the CT model might at first glance seem to stay
forever independent of the other states. However, the linearization provides the
needed correlation between the turn rate and the other states through the Jacobian
F
(3) + [05⇥4, (@!F(3))x] used in the covariance prediction, allowing the filter to

estimate the turn rate. /
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2. Multi-Target Tracking With Multiple Models and Visibility

Measurement models

Measurements contain 2-dimensional positions converted to Cartesian coordinates:

zk = Hxk +wk, wk ⇠ N (0,R) (2.74)

where H = [I2,0] and the size of the zero matrix in H depends on the model. the
measurement noise matrix consists of a Cartesian component Rc = �2c I2 and a polar
component Rp = diag([�2r ,�

2
✓ ]) so that

R = Rc + JRpJ
> (2.75)

where J is the Jacobian of the polar-to-Cartesian mapping [10, §1.7.2].

2.5 Results on maritime radar data

We have implemented the VIMMJIPDA on two maritime radar data sets. In
both these experiments, a Simrad Navico 4G broadband radar was mounted on
top of the semi-autonomous surface craft Telemetron, which is an 8.45 m long
rigid inflatable boat (RIB). The files can be found at CodeOcean through the URL
https://doi.org/10.24433/CO.3351829.v1.

2.5.1 The Joyride data

In this data set, consisting of 238 radar scans, Telemetron was following a small
motorboat that performed several volatile maneuvers. The motorboat was equipped
with a smartphone GPS receiver, making ground truth available. The tracking
results when using the full VIMMJIPDA tracker can be seen in Figure 2.2a. When
the visibility state is removed, with no additional changes, the track following the
motorboat becomes fragmented at the end of the scenario, as can be seen in Figure
2.2b. This is due to six consecutive missed detections. Two challenges this data set
poses, namely course estimation and avoiding track loss, are discussed below.

To estimate the motorboat’s course angle is difficult due to its high maneuverabil-
ity. The course estimates for the motorboat can be seen in the top figure in Figure
2.5. Overall, the results are acceptable with regard to covariance consistency [8
§5.4]: The course RMSE was 16.6�, while the corresponding standard deviation
obtained by linearization from the posterior covariance matrices was 29.1�. Further
studies reveal that the course error exceeded 15�, 30� and 45� in respectively 37%,
16% and 6% of the time steps. In a of total 3 scans, the actual error was above 45�

while the standard deviation was estimated to be less than half of the error. These
can be identified with three different situations, which are shown in Figure 2.2c. The
first two (time steps 45 and 53) found place in sharp maneuvers. The last event (time
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2.5. Results on maritime radar data

Table 2.1: Tracking system parameters

Quantity Symbol Unit Value

Radar sample interval T [s] 2.5
Model 1 process noise �a,1 [m/s2] 0.1
Model 2 process noise �a,2 [m/s2] 1.5
Turn rate process noise �! [rad/s2] 0.02
Cartesian noise std. �c [m] 6.6
Polar range std. �r [m] 8.0
Polar bearing std. �✓ [�] 1.0
Detection probability PD [%] 92
Survival probability PS [%] 99.9
Initial visibility probability ⌘u [%] 90
Visibility Markov probability !ṽv [%] [ 90 10

52 48 ]
Gate size g [�] 3.5
Clutter intensity � [1/m2] 5⇥ 10�7

Unknown target rate U [1/m2] 10�7

Initial velocity std. �v [m/s] 10
Initial model probability µs

u [%] [ 80 10 10 ]
Existence confirmation threshold Tc [%] 99.9
Existence termination threshold Td [%] 1

IMM transition probability ⇡s̃s [%]
h
99 .5 .5
.5 99 .5
.5 .5 99

i

step 220) happened during re-acquisition after the target had been invisible for 6
scans, while executing two significant maneuvers. The speed estimates, which can
be seen in the bottom figure of Figure 2.5, also have an acceptable consistency. The
speed RMSE error was 1.77m/s, while the standard deviation was 5.34m/s.

The most obvious role of the visibility model is that of keeping the existence
probability from becoming unnaturally low. This helps with the challenge of avoiding
track loss. Without the visibility model, the existence probability drops to 2.5⇥10�5

during the 6 scans without detections, while it only drops to 0.75 with the visibility
model, which arguably is more in line with common sense. This is due to the effects
seen in Figure 2.1, and the existence and visibility probabilities for the situation with
the 6 scans can be seen in Figure 2.4.

It is perhaps natural to ask what practical ramifications a low existence probability
can have. Can one not simply set a very low termination threshold to remove the
fragmentation problem? A low termination threshold would be a solution to the
fragmentation problem, but data association in a JIPDA where the targets have very
low existence probability can behave in an undesirable manner. As the different �tsjk

39



2. Multi-Target Tracking With Multiple Models and Visibility

1.0 1.4 1.8 2.2 2.6 3.0 3.4
East [km]

4.3

4.7

5.1

5.5

5.9

6.3

6.7
N

or
th

 [k
m

]
D1 

D2 

D3 

(a) With visibility state.

Figure 2.2: Figure continues on next page.

are conditioned on the existence of track t, they can, if the existence probability is
small, be large for j > 0 even though the ptj for j > 0 are very low. This happens
when we have pt0rt0 ⌧ ptj ⌧ pt0, where the variables in the former inequality is
proportional to �t0 and �tj from (2.71), in which we see the clear dependence on
the existence probability.

The situation depicted in Figure 2.3 has been created to illustrate this. Here, the
measurements from time steps 212, 213 and 214 are removed, and the termination
threshold is reduced to 10�9. This leads to both tracks being invisible for 6
consecutive time steps without being terminated. When the visibility model is not
in use this gives both tracks a very low existence probability. Furthermore, when
the next measurement for the blue track arrives at time step 217, the blue track is
correctly assigned the measurement with high probability, and the orange track is
assigned the missed detection with high probability. The blue track is correctly
updated with the measurement to get an increased existence probability and corrected
state estimate, and the orange track correctly gets a reduced posterior existence
probability. However, under the missed detection hypothesis the orange track is most
likely to be non-existent, and its existence conditioned state estimate is therefore
updated with the measurement with a high weight. Thus, tracks with low existence
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Figure 2.2: Track trajectories for the Joyride data with (left) and without (right)
using the visibility model. Telemetron’s trajectory is in grey, and the tracker results
are in orange (motorboat) and blue (fishing vessel). The measurements are the
grayscale dots with darker signifying later measurements. The dotted rectangles are
data sections, numbered sequentially. Numbers within the data section plots are the
corresponding time step, placed next to the measurement arriving at that specific
time.

probability can start to follow other targets in the case of missed detection and
without modelling visibility.

Drawing from this, at the time step when a new measurement appears to a cluster
where the tracks have very low probability, the individual tracks in the cluster will
largely ignore the presence of other tracks with regards to the updating of their
kinematic pdfs. As such, the tracker output becomes similar to what one would
expect from a single-target tracker. The visibility model mitigates this problem by
ensuring a more realistic modeling of the existence probability.
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Figure 2.3: Above: Track jump as a result of low existence probabilities for both
tracks. Below: The same behavior is avoided when using the visibility model.
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Figure 2.4: Existence and visibility probabilities for the motorboat during the six
consecutive time steps without detection. The existence is shown both when using
the visibility model, and when assuming the target is always in a visible state.
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Figure 2.5: Course and speed estimates for the motorboat in the Joyride scenario.

2.5.2 The Autosea demonstration data

This data set, consisting of 1471 radar scans, stems from a COLAV experiment
conducted in Trondheimsfjorden as a final demonstration of the Autosea project [26].
The experiment involved Telemetron together with two mid-size ships, the research
vessel Gunnerus and the tugboat Munkholmen 2, which it had to avoid in autonomous
mode. However, as the experiment was conducted in open waters, occasional traffic
entered the experimental area. This included 3 high-speed RIBs with very different
maneuvering characteristics than the intended target ships. Drone images of this
scenario are shown in Figure 2.6. The tracking results for the scenario with the
three RIBs, when using the full VIMMJIPDA tracker, can be seen in Figure 2.8a.
The scenario consists of the data from the 314th to the 418th radar scans. Below
we discuss track initialization, and kinematic modeling of targets with different
maneuvering characteristics, two challenges that this data set poses for a multi-target
tracking system.
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2. Multi-Target Tracking With Multiple Models and Visibility

Figure 2.6: Drone video of the Autosea demonstration.Three high speed RIBs can
be seen entering to the left, and playing in Telemetron’s wake to the right. At the
bottom is Gunnerus which is on collision course with Telemetron. Telemetron is
supposed to discover and avoid Gunnerus autonomously.

Track initialization is a challenge because of the speed, maneuverability and
closeness of the RIBs. In Figure 2.7a we see the results from the VIMMJIPDA with
the default gate size g = 3.5. The first measurement of the green track arrives at
time step 333, while the first measurement of the orange track arrives at time step
338. The validation gates of the tracks at these time steps are shown, and the first
measurement originating from the RIBs are highlighted whenever they lead to the
initialization of a track. The course and speed estimates for for the westernmost RIB,
that isthe orange track in the left section of Figure 2.8a, can be seen in Figure 2.9.
The high speed (⇡ 18m/s ⇡ 65 km/h) makes it necessary to initialize the tracks with
high initial velocity standard deviations. This increases the susceptibility to false
tracks. The maneuverability means that a track initialized just before a maneuver
may turn into a lost track before it has the time to establish much confidence. This
tendency can be seen in the blue track in Figure 2.7b. Even though the blue track is
not ultimately lost, it misses its first measurement after initialization due to the too
small validation gate. The closeness tends to cause the two eastern RIBs to share
measurements between their validation gates, with the consequence that it may take
extra time to establish a track on the middle RIB if the validation gates are too large,
as the easternmost RIB tends to get its track established first. This can be seen in
Figure 2.7c. Here, the validation gates of the easternmost track blocks the middle
track from initializing until seven time steps after the first measurement from its
target arrived. Careful tuning is needed to handle this, as smaller validation gates
can lead to a track missing measurements due to them falling outside its validation
gate, while too large validation gates prevent proper initialization.

Closeness also leads to challenges with track-loss, swaps and coalescence,
depending on the tuning parameters. After having safely passed Telemetron, the
RIBs execute severe maneuvers similar to those seen in the Joyride data (for example,
accelerations of more than 3 m/s2 over a time of 10 s). The most exciting phase of
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Figure 2.7: Initialization of tracks on the RIBs with different validation gate sizes.
The validation gates for existing tracks are shown at the times of the appearance of
the first measurements from the other targets. The first measurements are highlighted
if an initialization has taken place. The time step of validation gates and highlighted
measurements are shown.
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Figure 2.8: Figure continues on next page.

the scenario happens during the time steps 352-377. The measurements originating
from the RIBs during these time steps can be seen in the upper halves of the plots in
Figure 2.8. The estimated changes in both course and speed for the leftmost RIB can
be seen in Figure 2.9. The closeness and high maneuverability of the RIBs and the
low maneuverability of Gunnerus highlights the usefulness of the IMM framework.
In Figure 2.8 the tracking results are shown when using the IMM framework, when
using a single CV model with � = 1.5, and when using a single CV model with
� = 0.5. Furthermore, the IMM model probabilities for Gunnerus and the leftmost
RIB can be seen in Figure 2.10. When only using a single CV model with � = 1.5,
as is shown in Figure 2.8b, the RIBs are tracked in a similar manner as when using
the IMM framework. The RIBs have a high maneuverability, and are well suited
for a kinematic model with high process noise. The track for Gunnerus, however,
becomes noisy compared to when using the IMM framework. The CV model with
high process noise does not fit the low maneuverability of the larger ship, and the
IMM framework assigns more than 90% of its probability mass to the low-noise
model. If one, when still using a single model, tries to amend this by reducing the
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Figure 2.8: Track trajectories for scenario with the three RIBs (radar scans 314-418),
when using the IMM framework, and when using only a single kinematic model.

process noise, a result as the one shown in Figure 2.8c is typical. Here, the track for
Gunnerus is less noisy, albeit more noisy than when using the IMM framework, but
the tracker is not able to properly follow the RIBs. Thus, in the presence of targets
with highly different maneuverability the kinematic modeling has to be more flexible
than what a single kinematic model with constant process noise can provide.

2.6 Chapter summary

We have presented a JIPDA-based algorithm for detection and tracking of multiple
maneuvering targets, and studied its performance on two real-world data sets recorded
by a low-cost maritime radar. We deem its performance satisfactory due to reasonable
consistency properties and avoidance of track-loss. The data sets exhibit several
challenges, and can be used as a benchmark test also for other tracking methods.

The most important challenge posed by these data is perhaps the difficulty of
obtaining accurate course estimates. The large course uncertainties imply that safety
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Figure 2.9: Course and speed estimates for the leftmost RIB in the Autosea
demonstration scenario. The RIB changes its course by ⇡ 90� within 12s, while
maintaining a speed of ⇡ 15m/s.

margins must be large when a maritime COLAV relies on radar tracking alone. The
uncertainties can probably be somewhat mitigated by models for wake clutter, such
as those proposed in [119] and [19]. One may also hope that more advanced multiple
model schemes than the standard IMM framework could improve performance.
However, the fundamental limitations of radar resolution and sampling rate can
ultimately only be beaten by additional measurements, such as Doppler and camera
measurements. Another direction of future research is fusion with AIS data, possible
along the lines of [42], which can improve the track quality for larger vessels with
AIS transponders [63].

Further future investigations also include more in-depth studies of different
independence approximations briefly remarked here, keeping Gaussian mixtures for
each track using [2, 30, 120], both homogeneous and heterogeneous multi sensor
scenarios [61], analysis of performance bounds from a parameter perspective, and
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Figure 2.10: IMM model probabilities for Gunnerus (above) and the leftmost RIB
(below). We see how the starboard turn of the RIB after k = 356 triggers a
redistribution of probability mass onto the high-noise model, while the track on
the larger Gunnerus vessel always prefers the low noise model. The CT model is
struggling to accrue probability mass, possibly because the maneuvers are too short
compared to the sampling time.
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comparisons to what could be termed VIMM-PMBM/GLMB/MHT, with the main
algorithm contributions already laid out in this chapter.
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Appendix I

In this appendix we prove Proposition 2.1, which describes the steady-state unknown
target intensity. The convergence to a steady-state intensity is due to two simple facts.
1) Birth is acting additive and death and observation are acting multiplicative; the
multiplicative decrease grows with the intensity, whereas the additive increase does
not, so the intensity must be bounded above when all states have a positive probability
of reaching a region of decrease in finite time. 2) Any oscillatory behavior present in
the Markov model must die out due to the stationary “fill in” from birth and “drain”
due to death and detection.

Except for the overall rate and visibility, the states are independent of each other
in birth, prediction and detection and will therefore be independent upon convergence.
The first equality in the equations for U , µs

u and ovu follow directly by marginalization
of the other variables after inserting uk|k�1(y) = uk�1|k�2(y) = u(y) in (2.16),
and the second by solving algebraically.

In order to find fu(x), we note that all states can reach a point where PD(y) < 1
or PS(y) < 1 in finite time, so any initial pdf will phase out and leave the impact
of the birth pdf under the Markov model. Hence, with the approximation (2.17),
fu(x) ⇡ fb(x).

Appendix II

In this appendix we prove Proposition 2.2, which describes the track-wise prediction
in the VIMMJIPDA. The result for the existence prediction follows from simply
noting that f t

k�1[PS(ỹ)] = PSf t
k�1[1] = PS since PS is constant and the linear

functional of a pdf evaluated at the unit function is unity. For the hybrid state, we
can decompose the prediction into a visibility part and a mode-kinematics part:

f t
k|k�1(y) =

 
X

ṽ

!ṽv⌘tṽk�1

!
ptk|k�1(x, s). (2.76)
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The sum inside the parentheses is equal to (2.31). The joint density of kinematic
state and mode is

ptk|k�1(x, s) =
X

s̃

⇡s̃sµts̃
k�1

Z
fx(x|x̃)f ts̃

k�1(x̃)dx̃

=

µts
k|k�1z }| {�P

s̃ ⇡
s̃sµts̃

k�1

� Z
fx(x|x̃)

1P
s̃ ⇡

s̃sµts̃
k�1

X

s̃

⇡s̃sµts̃
k�1f

ts̃
k�1(x̃)

| {z }
f ts,0
k�1(x̃)

dx̃.

(2.77)

The over- and underbraces in (2.77) illustrate how the predicted mode probability
and mode-conditional prior both are readily extracted from this joint density.

Appendix III

In this appendix we prove Propositions 2.3, 2.4 and 2.5, which describe the
measurement updates for the three cases of new target, missed detection and
detection, respectively.

For the new target case in Proposition 2.3, the key term that governs the new
target expressions is the product fz(z

atk
k |y)PD(y)u(y) in (2.37)-(2.39). Under the

assumptions M1*-M6* it is given by

PDUµs
u⌘u1⌦(H

(s)
x)N (z

atk
k ;H(s)

x,Rs))N (H⇤(s)
x;0,P(s)

v ) (2.78)

insofar as v = 1. Otherwise it is 0. Because the vertical stacking of H(s) and
H

⇤(s) is a permutation matrix, we can rest assured that the product of Gaussians
is proportional to the Gaussian N (x ; x̂s

0,P
s
0). If the region ⌦ is large enough,

then the term 1⌦(H(s)
x) has no significant impact on the product as a function

of x. Consequently, the integral over x that is latent in the weight and existence
expressions is approximated as 1. This leads to

u[fz(z
atk
k | ỹ)PD(ỹ)] ⇡ U⌘uPD (2.79)

and the expressions for wtj
k and rtjk follow from this. This also establishes (2.51). We

can furthermore see that the dependence on the model state s is encapsulated by µs
u.

For the visibility, the term ⌘u is canceled by a similar term from the normalization
integral in the denominator whenever v = 1, leading to unity probability of v = 1.
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For the missed detection case in Proposition 2.4, we start by noticing that the
inner product f t

k|k�1[1� PD(ỹ)] appears several places in (2.40)-(2.42). Under the
assumptions M1*-M6* it becomes

f t
k|k�1[1� PD(ỹ)]

=
X

v

X

s

Z
otvk|k�1µ

ts
k|k�1f

ts
k|k�1(x)(1� PD(v)) dx

=
X

v

otvk|k�1(1� PD(v))

= (1� ⌘tk|k�1) · 1 + ⌘tk|k�1(1� PD)

= 1� ⌘tk|k�1PD. (2.80)

Based on this, the expression for the hybrid state pdf in (2.42) becomes

f ts0
k (y) =

8
>>>><

>>>>:

f ts
k|k�1(x)µ

ts
k|k�1(1� ⌘

t
k|k�1)

1� ⌘tk|k�1PD
if v = 0

(1� PD)f ts
k|k�1(x)µ

ts
k|k�1⌘

t
k|k�1

1� ⌘tk|k�1PD
if v = 1

We can verify that the posterior mode probabilities are the same as the predicted
mode probabilities by marginalization over the kinematic state and the visibility:

µts0
k = µts

k[k�1

1� ⌘tk|k�1 + ⌘tk|k�1(1� PD)

1� ⌘tk|k�1PD
= µts

k[k�1. (2.81)

In the same manner we can show that the kinematic density remains the same. The
visibility probability is also found by marginalization over the other parts of the
hybrid state:

⌘t0k =
(1� PD)⌘tk|k�1

(1� ⌘tk|k�1) + ⌘tk|k�1(1� PD)
=

(1� PD)⌘tk|k�1

1� PD⌘tk|k�1

. (2.82)

Notice that the posterior mode and visibility are independent in this case.
For the detection case in Proposition 2.5, the existence probability is trivial.

The weight expression is a straightforward evaluation of the integral in (2.43). The
remaining entities are found by marginalization of the hybrid state pdf from (2.45),
which can be written

PD⌘tµts
k|k�1f

s
z(z

j
k |x)f ts

k|k�1(x)P
s PD⌘tkµ

ts
k|k�1l

tsj
k

=
µts
k l

tsj
kP

s µ
ts
k l

tsj
k| {z }

µtsj
k

f s
z(z

j
k |x)f ts

k|k�1(x)

ltsjkn| {z }
f tsj
k (x)

(2.83)
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in the case that v = 1, while it is zero when v = 0. Consequently, the posterior
visibility probability is unity, which corresponds well with our intuition.

Appendix IV

In this appendix we prove Proposition 2.6, which describes the mixture reduction
in the VIMMJIPDA. Using (2.66), the sums in the Bernoullis in the MB (2.64) is
reduced to a sum over atk 2 {0, . . . ,mk} and becomes

mkX

j=0

ptjk

⇣
1� rtjk + rtjk f

tj
k [h]

⌘
= 1� rtk + rtk

mkX

j=0

�tjk f tj
k [h], (2.84)

where
Pmk

j=0 p
tj
k = 1, (2.67) and (2.71) have been used. We now recognise

f t
k(y) =

Pmk
j=0 �

tj
k f tj

k (y).
To achieve the wanted conditioning we expand f tj

k , and multiply and divide
with the normalization constants of the kinematic-mode-visibility joint and the
mode-visibility joint, respectively, to get

mkX

j=0

�tjk f tj
k (y) =

mkX

j=0

�tjk f tsj
k (x)µtsj

k otvjk

=

mkP
j=0

�tjk f tsj
k (x)µtsj

k otvjk

mkP
j=0

�tjk µtsj
k otvjk

mkP
j=0

�tjk µtsj
k otvjk

mkP
j=0

�tjk otvjk

mkX

j=0

�tjk otvjk

⇡

f ts
kz }| {

mkX

j=0

f tsj
k (x)

�tjk µtsj
k

mkP
j=0

�tjk µtsj
k

| {z }
�tsj
k

mkX

j=0

�tjk µtsj
k

| {z }
µts
k

mkX

j=0

�tjk otvjk

| {z }
otvk

. (2.85)

The approximation in the last line enforces independence of the visibility and the
other states. The statement then follows with ⌘tk = ot1k .

For the last equalities in (2.67) and (2.68), notice that rtjk = ⌘tjk = 1 for all j > 0

and
Pmk

j=1 p
tj
k = 1� pt0k . So

Pmk
j=0 p

tj
k r

tj
k =

Pmk
j=1 p

tj
k + pt0k r

t0
k = 1� pt0k + pt0k r

t0
k ,

and exactly the same for ⌘tk with ⌘t0k rt0k inserted for rt0k .
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Chapter 3

Variations of Joint Integrated
Probabilistic Data Association
With Radar and Target-Provided
Measurements

This chapter is based on the publication:

[68] A. G. Hem and E. F. Brekke. Variations of joint integrated data association
with radar and target-provided measurements. Journal of Advances in
Information Fusion, 17(2):97–115, Dec. 2022

Changes from the original publication involve shortening of the introduction section,
and a restructuring of the results section reflecting the insight from [43].

3.1 Introduction

There are two established approaches to the fusion of sensor signals: track-to-track
fusion and track-to-measurement fusion [7]. Here track-to-measurement fusion is
examined, and a model suitable for incorporating target-provided measurements,
and a tracking algorithm utilizing this model, is presented. The tracking algorithm
presented here differs from previous work in some significant ways. We use a hybrid
state framework based on Chapter 2, which can include motion and visibility models
in addition to target IDs. Furthermore, building upon Chapter 2, we derive the
tracking algorithm as a special case of the Poisson Multi-Bernoulli Mixture (PMBM)
filter originally proposed in [138]. An important technical detail to enable this is to
model the birth model as a marked Poisson point process (PPP), where the target
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IDs take the role of the marks. The resulting algorithm can be seen as a generalized
version of Joint Integrated Probabilistic Data Association [105].

This leads to the contributions of this chapter. It derives a framework that
includes target-provided measurements based on a PMBM formulation of the JIPDA.
The resulting target tracker includes both a visibility state and multiple kinematic
models. Furthermore, the chapter details a sequential way of handling the incoming
target-provided measurements, a method more similar to the one described in [44],
and a method similar to how radar measurements are processed. Lastly, we present
some implementation-specific considerations to make when handling target-provided
measurements in a tracker.

The chapter is organized as follows. We detail the problem formulation in
Section 3.3. In Section 3.4, we explain the structure of the hybrid state that
facilitates the inclusion of target-provided information. We present the mathematical
expressions needed for calculations in Section 3.5. In Section 3.6, three different
methods for handling the incoming measurements are detailed. Section 3.7 presents
the implementation choices, together with considerations to make to accommodate
the target-provided measurements. Lastly, Section 3.8 presents the results. We
compare the performance of the different measurement handling methods and how
they compare to using only radar and the method from [44].

3.2 Background

This work builds upon the multi-target tracking method presented in Chapter 2 and can
be considered an extension of the framework described there. The tracking algorithm,
denoted as Visibility interacting multiple models joint integrated probabilistic data
association (VIMMJIPDA), combines interacting multiple models (IMM) and a
visibility state with the well-established JIPDA framework. The tracking method was
derived with a basis in the Poisson multi-Bernoulli mixture (PMBM) filter [138].

Darko Musicki and Rob Evans introduced the JIPDA in [105], where the concept
of visibility is mentioned and indicates whether the tracked target is visible to
the sensor or not. Later, for example, [141] has explored visibility in connection
with the problem of estimating target detectability. The JIPDA is an extension
of the Joint Probabilistic Data Association (JPDA) method developed by Yaakov
Bar-Shalom [41], which again is an extension of Bar-Shalom’s probabilistic data
association (PDA) method [9]. These methods are well established in the target
tracking community and have been used for a range of different purposes, such as
collision avoidance for marine vessels [123], autonomous navigation [33], and air
traffic control [93]. Henk A. P. Blom and Yaakov Bar-Shalom introduced the IMM
method [15], and it has been used for several decades in,for example, air traffic
control. Furthermore, Musicki and Suvorova presented an IMM-JIPDA algorithm
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in [108].
The PMBM filter and subsequent tracking algorithms [57] utilize the PMBM

density, which is the union between a Poisson point process (PPP) and a multi-
Bernoulli mixture. The PPP represents unknown targets, that is, undetected targets
hypothesized to exist, and the multi-Bernoulli mixture represents already detected
targets. Links between PMBM and JIPDA have been established in [138] (single
kinematic model, loopy belief propagation as an alternative to hypothesis enumera-
tion) and in Chapter 2 (multiple kinematic models, standard hypothesis enumeration
and mixture reduction).

Here, a multi-sensor network for maritime surveillance is described, utilizing
several sensors, including radar and AIS. More recently, research has been conducted
into the track-to-track association of radar- and AIS-tracks [121].

3.3 Problem formulation

The modeling assumptions used throughout this chapter are presented below.

M1

The unknown target intensity u(y) describes the not yet discovered targets present
in the surveillance area. We model the unknown targets as a Marked PPP, which
is equivalent to a PPP on the Cartesian product of the space R

nx and the discrete
spaces the discrete hybrid states can take values from [125, p. 205]. In its general
form, this process is

b(y) = f(v)f(⌧ |v)p(s|v, ⌧)f�(x|s, v, ⌧). (3.1)

where f�(x|s, v, ⌧) is an intensity function on the the space R
nx , and f(·) are

distributions over the discrete states. Rather than using the birth intensity directly,
we use Proposition 1 from Chapter 2 to get the converged unknown target intensity

u(y) = Uovu⇠
⌧
uµ

s
ufu(x). (3.2)

Here, U is the overall unknown target and in this case the rate of new targets, ovu is
the probability of visibility state v, ⇠⌧u is the probability of ID ⌧ , µ⌧u is the probability
of the kinematic mode s, and fu(x) is the distribution of the kinematic state. The
subscript u indicates that the individual expressions are part of the unknown target
intensity. Equation (3.2) does not contain the initial values of new targets, as it is a
function of the birth intensity and the transition probability matrices. However, for
simplicity, the unknown target values are tuned directly and can be viewed as initial
values.
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Remark 3.1. This method of modeling the target IDs through a Marked PPP implies
that two targets can have the same ID. The probability of two targets having the same
ID in a surveillance area with relatively few targets is minuscule, but it is nevertheless
a possibility [31]. We also note how the modeling of actual, observable IDs here
deviates from theoretically assigned IDs. The labels in labeled Random finite sets
(RFSs), introduced in [132], are unobservable and analogous to the identifying tags
in [50], which ensure the uniqueness of the elements of a RFS. The IDs described
here, however, serve no such purpose and can be assumed non-unique without
breaking the underlying mathematical assumptions of RFSs. /

M2

We model the survival probability as a function of time since the last update. A
constant parameter PSc denotes the probability of survival after one second. Thus,
the survival probability of an interval between times tk�1 and tk, denoted as dt,
becomes

PS(dt) = P dt
Sc
. (3.3)

M3

The ID numbers ⌧ are assumed to be static, in line with the physical reality of the
AIS protocol. The IDs are manually set at the installation of the AIS system. We
assume that the ID numbers of the unknown targets are distributed according to

⇠⌧u =

8
<

:

⇠0u if ⌧ = 0
1� ⇠0u
|V|� 1

if ⌧ > 0
(3.4)

where ⇠0u is some parameter denoting the belief that the target has no ID, and |V|
is the number of all possible ID numbers in addition to 0. Not all targets have an
ID, and we represent this non-ID by the value ⌧ = 0. If ⌧ = 0, the target does not
transmit measurements.

M4

From time step k � 1 to k, the evolution of a target is given by

fy(yk|yk�1) = f s⌧
x (xk|xk�1)⇡

sk�1skwvk�1vk . (3.5)

The ⇡-matrix contains the Markov chain probabilities of changing between different
kinematic models. The matrix w contains the Markov chain probabilities of the
target switching between the visible state v = 1 and invisible state v = 0. The ID
numbers are assumed static and therefore do not change during a prediction.
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M5

For radar measurements, the detection probability PD(yk) varies based on the
visibility state v and we define it as

PD(yk) =

(
PD if v = 1
0 if v = 0

(3.6)

where PD is a constant describing the probability of a target being detected by the
radar at a given time step.

For target-provided measurements, which are assumed to give no missed detec-
tions, we have that

PD(yk) =

(
1 if a target-provided measurement is received
0 otherwise

(3.7)

independent of the visibility state. Thus, no conclusions about a target are made
from the absence of target-provided measurements. Trying to keep track of when
a vessel should transmit measurements is a difficult problem, which, for example,
would be subject to intentional randomness from the protocol [16].

M6

Radar clutter measurements are assumed to follow a Poisson process with intensity
�. The target-provided measurements do not contain clutter, the same as if it is
following a Poisson process with intensity 0.

M7

The radar measurements are assumed to be synchronized and to arrive simultaneously
at a fixed frequency. The synchronicity means that when radar measurements arrive
at time step k, the set of radar measurements contains measurements from all detected
targets at time step k, in addition to clutter measurements. The radar measurement
likelihood is denoted as fR

z (zk|yk).

M8

The target-provided measurements can arrive whenever and are not synchronized.
Thus, a transmitted measurement can be received at any time from any target. We
do not assume that targets transmit measurements simultaneously, contrary to what
we do for radar measurements. Whenever a target-provided measurement arrives,
however, the time of arrival is assumed to be known. The measurement likelihood
for the target-provided measurements is
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fA
z (zk|yk) = fp(pk|yk)f⌧ (⌧

zk |⌧) (3.8)

where zk is the whole measurement and pk only contains the kinematic data of the
measurement. Furthermore

f⌧ (⌧
zk |⌧) =

8
>>><

>>>:

PC if ⌧k = ⌧zkk
1� PC

|V|� 1
if ⌧k 6= ⌧zkk and ⌧ > 0

0 if ⌧ = 0

(3.9)

where PC is a fixed parameter describing the confidence in the ID number not
being corrupted, denoted as the confidence probability. The reasoning behind the
above equation comes from the observation that the likelihood of a transmitted
measurement coming from a target without an ID is zero. Furthermore, the chance
of a transmitted ID being erroneous makes it a possibility, albeit small, that any ID
can be the correct one.

3.4 Hybrid states and the PMBM

As formulated in [8, p. 441], a hybrid state is a state where the state space contains
both discrete and continuous states or uncertainties. This structure is useful as the
kinematic state will be continuous, while, for example, the choice of kinematic
model for the target will be discrete.

A PMBM filter represents the posterior multi-target density for discovered targets
as a weighted sum of multi-Bernoulli densities. These involve weights for each of the
multi-Bernoullis, and kinematic densities and existence probabilities for each of the
Bernoullis. The PMB filter, which essentially is the same as a JIPDA, approximates
the sum of multi-Bernoullis by a single multi-Bernoulli at the end of each estimation
cycle.

Using the equations from [138], one can get general expressions for the weight,
existence, and states irrespective of the sensor type assuming the sensors generate
measurements adhering to the assumptions made in Assumption 2 in [138]. The
assumptions hold for both target-provided and radar measurements. The inclusion of
IDs in the target-provided measurements is contained in the measurement likelihood
function, and they do not breach any independence assumptions. The goal of this
section is to extract expressions for the probabilistic properties of the individual
hybrid state elements.

From [138], we have that the weight w, existence probability r and distribution
f(y) of a single Bernoulli in general can be written as
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w = g(y) + h[1] (3.10)

r =
h[1]

g(y) + h[1]
(3.11)

f(y) =
h(y)

h[1]
. (3.12)

for some functions g and h of the state y. The notation [·] indicates a linear functional,
defined as

g[h] =

Z
g(x)h(x)dx. (3.13)

These are useful tools for compactly writing normalization constants and likelihoods.
For later use, it is convenient to find general expressions for the individual states in
the hybrid state y. Using the approximation from [24, Remark 6] that the visibility
is independent on the other states, we can write h(y) = h(v)h(⌧)h(s|⌧)h(x|⌧, s).
We get the individual states by using the rule of conditional probability. Starting
with the kinematic state x, it can be acquired by

f t(x|s, ⌧, v) = f(x, s, ⌧, v)R
f(x̃, s, ⌧, v)dx̃

=

h(x, s, ⌧, v)

h[1]R
h(x̃, s, ⌧, v)dx̃

h[1]

=
h(x, s, ⌧, v)R
h(x, s, ⌧, v)dx

=
h(v)h(x, s, ⌧)

h(v)
R
h(x̃, s, ⌧, v)dx̃

=
h(x, s, ⌧)

h(s, ⌧)
(3.14)

where we have omitted the time indices for brevity. The (̃·) notation is used for
latent variables which disappear by marginalization. Furthermore, the absence of
the visibility state v in the final expression means that f t(x|s, ⌧, v) = f t(x|s, ⌧).
Similarly, the mode probabilities are

f t(s|⌧) = µt⌧s =
h(s, ⌧)

h(⌧)
, (3.15)
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the ID probabilities are

f t(⌧) = ⇠t⌧ =
h(⌧)

h[1]
. (3.16)

and the visibility probabilities are

f t(v) = otv =
h(v)

h[1]
. (3.17)

Note that
P

⌧̃

P
s̃

R
h(x̃, s̃, ⌧̃)dx̃ = h[1], which essentially acts as a normalization

constant. Independencies between the states will make it possible to reduce the
needed amount of marginalization, as they will appear both in the numerator and the
denominator. The independencies will depend on the model choices and are written
here according to the assumptions in Section 3.3.

3.5 Including target-provided measurements in the
VIMMJIPDA

Table 3.1: Expressions for creating, updating, and predicting the Bernoulli compo-
nents.

g = �
New targets: h[1] = u[PD(ỹ)fz(z|ỹ)]

h(y) = u(y)PD(y)fz(z|y)

g = 1� rtk|k�1

Missed detection: h[1] = rtk|k�1f [1� PD(ỹ)]

h(y) = rtk|k�1fk|k�1(y)(1� PD(y))

g = 0
Detection: h[1] = rtk|k�1f [PD(ỹ)fz(z|ỹ)]

h(y) = rtk|k�1f
t
k|k�1(y)PD(y)fz(z|y)

g = 1� rtk�1f [PS(ỹ)]
Prediction h[1] = rtk�1f [PS(ỹ)]

h(y) = rtk�1

R
f t
k|k�1(y|ỹ)PS(ỹ)fk�1(ỹ)dỹ

In the VIMMJIPDA, the unknown target intensity u(y) is assumed stationary and
is left unchanged during the prediction and updating of the estimates. We make the
same assumption here. This assumption means that only the Bernoulli components
have to be considered, and is further simplified by following the JIPDA method
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of performing mixture reduction. That is, we merge all Bernoullis originating in
the same measurement into a single Bernoulli after each update. Thus, we can
omit the weights of the association hypotheses of previous time steps can due
to marginalization. Table 3.1 shows the expressions for updating and predicting
the Bernoulli components from [138]. These are adapted to simplify insertion
in (3.10)-(3.12) and (3.14)-(3.17). Furthermore, they are simplified to reflect the
stationary unknown target intensity and the marginalization over the weights during
mixture reduction. As the measurement model assumptions made in [138] hold
with regards to both radar and target-provided measurements, both fR

z (z|y) and
fA
z (z|y) can be considered special cases of the more general fz(z|y) in the table.

The expressions for predicting and updating the Bernoulli estimates based on the
potential information acquired by the sensor updates follow.

3.5.1 Prior

For a single track, which in the context of this chapter is analogous to a Bernoulli,
we write the hybrid state prior distribution as

f t
k�1(y) = f t

k�1(x|⌧, s)⇠t⌧k�1µ
t⌧s
k�1o

tv
k�1 (3.18)

while the prior existence probability is rtk�1. As mentioned above, we merge all
the hypotheses of the previous time step, giving wt

k�1 = 1. The prior is a joint
distribution over the continuous kinematic state and the discrete potential IDs,
kinematic modes, and visibility states. In the following propositions, only the
probability of the target being in the visible state is presented, that is, ot1, which
we denote as ⌘t. The prior is decomposed into several states conditioned on the
different discrete states. An example of the structure of a prior with two possible
IDs and two possible kinematic modes is shown in Figure 3.1. The expressions in
the square boxes are not calculated themselves but can be constructed from the other
expressions.

3.5.2 Prediction

All tracks are predicted from the previous time step k � 1 to the current time step k.
The predicted probabilities and densities are denoted by the subscript (·)k|k�1.

Proposition 3.1. The prediction for the existence probability rt, the visibility
probability ⌘t, the ID probabilities ⇠t⌧ , the mode probabilities µt⌧s and the kinematic
density f t(x|⌧, s) are done as
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Figure 3.1: The structure of the distribution of a hybrid state with two kinematic
modes and two possible IDs.

rtk|k�1 = rtk�1PS(dt) (3.19)

⌘tk|k�1 = (1� ⌘tk�1)w
01 + ⌘tk�1w

11 (3.20)

⇠t⌧k|k�1 = ⇠t⌧k�1 (3.21)

µt⌧s
k|k�1 =

X

s̃

µt⌧ s̃
k�1⇡

s̃s(dt) (3.22)

f t
k|k�1(x|⌧, s) =

R
fy(x|⌧, s, x̃)f t

k�1(x̃|⌧, s)dx̃ (3.23)

where

f t
k�1(x̃|⌧, s) =

X

s̃

µt⌧ s̃
k�1⇡

s̃sf t
k�1(x̃|⌧, s̃)P

s̃ µ
t⌧ s̃
k�1⇡

s̃s(dt)
(3.24)

.

Proof. The proof builds upon Chapter 2, but is modified to also account for the
inclusion of the IDs in the state vector. It should be noted that the survival probability
is only dependent on the times of the measurements’ arrival, which are independent
of the state. Because the IDs are assumed static the transition model for the IDs
becomes a Kronecker delta �⌧ ⌧̃ . It is defined as

�⌧ ⌧̃ =

(
1 if ⌧ = ⌧̃

0 if ⌧ 6= ⌧̃
. (3.25)
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First we write out h(y) from Table 3.1:

h(y) = rtk�1

Z
f t
k|k�1(y|ỹ)PS(ỹ)fk�1(ỹ)dỹ

= rtk�1PS(dt)
⇣X

ṽ

f(ṽ)f(v|ṽ)
⌘X

⌧̃

fk�1(⌧̃)�⌧ ⌧̃⇥

X

s̃

fk�1(s̃|⌧̃)f t
k|k�1(s|s̃)

Z
f t
k|k�1(x|s, ⌧, x̃)fk�1(x̃|s̃, ⌧̃)dx̃

= rtk�1PS(dt)
⇣X

ṽ

f(ṽ)f(v|ṽ)
⌘
fk�1(⌧)⇥

⇥
X

s̃

fk�1(s̃|⌧)f t
k|k�1(s|s̃)

Z
f t
k|k�1(x|s, ⌧, x̃)⇥ fk�1(x̃|s̃, ⌧)dx̃

= rtk�1PS(dt)
⇣X

ṽ

otṽk�1w
ṽv
⌘
⇠t⌧k�1

X

s̃

µ⌧sk�1⇡
s̃s(dt)⇥

Z
f t⌧s
k|k�1(x|s, ⌧, x̃)fk�1(x̃|s̃, ⌧)dx̃ (3.26)

which uses the fact that only the conditioning on the most recent variable is relevant.
Marginalizing this, one gets

h(s, ⌧) = rtk�1

Z X

v

h(x, s, ⌧, v)dx

= rtk�1PS(dt)⇠
t⌧
k�1

X

s̃

µt⌧ s̃
k�1⇡

s̃s(dt), (3.27)

h(⌧) = rtk�1

X

s

h(s, ⌧) = PS(dt)⇠
t⌧
k�1, (3.28)

h(v) = rtk�1

Z X

⌧

X

s

h(x, s, ⌧, v)dx

= rtk�1PS(dt)
⇣X

ṽ

otṽk�1w
ṽv
⌘

(3.29)

h[1] = rtk�1

X

⌧

h(⌧) = rtk�1PS(dt). (3.30)

Inserting this in (3.14)-(3.17) provides the expressions for the hybrid states. Note
that the expression for the visibility probability ⌘tk|k�1 follows from the fact that
ot0k�1 = 1� ot1k�1 = 1� ⌘tk�1. The expression for the existence probability rtk|k�1

is found by inserting g(y) = rtk�1PS(dt) from Table 3.1 and h[1] into (3.11).
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3.5.3 Posterior

The individual posterior distributions, conditioned on either a detection or a missed
detection, are calculated after the prediction. The four possibilities for a track when
new measurements arrive are

• The previously unknown track is detected for the first time.

• The previously detected track is detected again.

• The previously detected track is not detected.

• The previously unknown track is not detected.

Any tracks covered by the fourth alternative will be represented by the un-
known target density, and do not need to be considered specifically. The posterior
distributions for the three first possibilities are presented in the following propositions.

Proposition 3.2. Initialization of a new track on a measurement indexed by j is
done as

wtj
k =

(
�+ cUPD⌘0 for radar
cU
P

⌧̃ ⇠
⌧̃
uf⌧ (⌧

j |⌧̃) for target-provided
(3.31)

rtjk =

8
<

:

UPD⌘0

�+ UPD⌘0
for radar

1 for target-provided
(3.32)

⌘tjk =

(
1 for radar
⌘u for target-provided

(3.33)

⇠t⌧jk =

(
⇠⌧u for radar
f⌧ (⌧z|⌧) for target-provided

(3.34)

µt⌧sj
k = µs

u (3.35)

f tj
k (x|s, ⌧) = fz(z|x, s, ⌧)fu(x)/c (3.36)

where c =
R
fz(z|x, s, ⌧)fu(x)dx is a constant.

Proof. Firstly, for radar measurements, we have that

h(y) = UPD(v)o
v
u⇠
⌧
uµ

⌧s
u fu(x)fz(z|x, s, ⌧) (3.37)

which follows from (3.2) and Table 3.1. Furthermore
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h(s, ⌧, v) = cUPD(v)o
v
u⇠
⌧
uµ

⌧s
u (3.38)

h(⌧, v) = cUPD(v)o
v
u⇠
⌧
u (3.39)

h(v) = cUPD(v)o
v
u (3.40)

h[1] = cUPD⌘
0 (3.41)

where c is a constant resulting from the marginalization over x. For target-provided
measurements we have that

fz(z|x, s, ⌧) = fp(p|x, s, ⌧)f⌧ (⌧z|⌧) (3.42)

which means that

h(y) = Uovu⇠
⌧
uµ

⌧s
u f⌧ (⌧

z|⌧)fu(x)fz(p|x, s, ⌧). (3.43)

The probability of detection is omitted here, as it is defined as 1 whenever a
target-provided measurement has been received. Furthermore

h(s, ⌧, v) = cUovu⇠
⌧
uµ

⌧s
u f⌧ (⌧

z|⌧) (3.44)
h(⌧) = cU⇠⌧uf⌧ (⌧

z|⌧) (3.45)
h(v) = cUovu

P
⌧̃ ⇠

⌧̃
uf⌧ (⌧

z|⌧̃) (3.46)
h[1] = cU

P
⌧̃ ⇠

⌧̃
uf⌧ (⌧

z|⌧̃) (3.47)

where c again is a constant.
Inserting these expressions in (3.14)-(3.17) gives (3.33)-(3.36), that isthe dis-

tributions of the individual hybrid states of a new target. Furthermore, we have
from Table 3.1 that g is the clutter density, which is � for radar measurements, and 0
for target-provided measurements. We insert g and h[1] in (3.10) and (3.11) to get
(3.31) and (3.32). The expression for the ID probability in the event of initialization
on a transmitted measurement requires some further explanation. Keeping in mind
the prior distribution for the IDs (3.4), we have that
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⇠t⌧jk =
h(⌧)

h[1]

=
⇠⌧uf⌧ (⌧

z|⌧)P
⌧̃ ⇠

⌧̃
uf⌧ (⌧

z|⌧̃)

=

8
><

>:

f⌧ (⌧z|⌧)(1� ⇠0u)/|V � 1|P
⌧̃ f⌧ (⌧

z|⌧̃)(1� ⇠0u)/|V � 1|
if ⌧ > 0

0 if ⌧ = 0

=

8
<

:

f⌧ (⌧z|⌧)P
⌧̃ f⌧ (⌧

z|⌧̃) if ⌧ > 0

0 if ⌧ = 0

=

(
f⌧ (⌧z|⌧) if ⌧ > 0

0 if ⌧ = 0
= f⌧ (⌧

z|⌧) (3.48)

where we have used that
P

⌧̃ f⌧ (⌧
z|⌧̃) = 1. If a different prior distribution than

(3.4) is used for the IDs, it can be accommodated by replacing the final expression
with the one in the second line of the above expression.

Proposition 3.3. Updating based on a missed detection is done as

wt0
k =

(
1� rtk|k�1⌘

t
k|k�1PD for radar

1 for target-provided
(3.49)

rt0k =

8
><

>:

rtk|k�1(1� ⌘
t
k|k�1PD)

1� rtk|k�1⌘
t
k|k�1PD

for radar

rtk|k�1 for target-provided
(3.50)

⌘t0k =

8
><

>:

(1� PD)⌘tk|k�1

1� PD⌘tk|k�1

for radar

⌘tk|k�1 for target-provided
(3.51)

⇠t⌧0k = f t
k|k�1(⌧) (3.52)

µt⌧s0
k = f t

k|k�1(s|⌧) (3.53)

f t0
k (x|⌧, s) = f t

k|k�1(x|⌧, s) (3.54)

Remark 3.2. The inclusion of target-provided measurement types in the case of
a missed detection is somewhat artificial. The expressions are the same as for the
prediction, as the absence of target-provided measurements gives no additional
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information to the tracking algorithm. This follows from the definition of the detection
probability in Section 3.3, that isthat PD = 0 for target-provided measurements
when they have not been received. For later use, the expressions are nevertheless
written out here. /

Proof. We have that

h(y) = rtk|k�1(1� PD(v))o
tv
k|k�1⇠

t⌧
k|k�1µ

t⌧s
k|k�1fk|k�1(x|s, ⌧) (3.55)

where the corresponding expression from Table 3.1 has been written out. Similarly
as to what was done previously, we find through marginalization that:

h(s, ⌧, v) = rtk|k�1(1� PD(v))o
tv
k|k�1⇠

t⌧
k|k�1µ

t⌧s
k|k�1

h(⌧, v) = rtk|k�1(1� PD(v))o
tv
k|k�1⇠

t⌧
k|k�1

h(v) = rtk|k�1(1� PD(v))o
tv
k|k�1

(3.56)

Again, the different detection probabilities have to be taken into account when
summing over the visibility states, giving

h[1] = rtk|k�1((1� PD)⌘
t
k|k�1 + (1� ⌘tk|k�1))

= rtk|k�1(1� PD⌘
t
k|k�1) (3.57)

for radar updates, and h[1] = 1 for AIS updates. Inserting this in (3.14)-(3.17) gives
the wanted expressions for the hybrid states. Furthermore, we get from Table 3.1
that g is given by 1� rtk|k�1, which together with h[1] gives us (3.49) and (3.50) by
using (3.10) and (3.11).

Proposition 3.4. Updating based on a detection is done as

wtj
k =

(
PD⌘tk|k�1r

t
k|k�1

P
⌧̃ ⇠

t⌧̃
k|k�1

P
s̃ µ

t⌧̃ s̃
k|k�1l

t⌧̃ s̃j for radar
rtk|k�1

P
⌧̃ ⇠

t⌧̃
k|k�1

P
s̃ µ

t⌧̃ s̃
k|k�1l

t⌧̃ s̃j for target-provided
(3.58)

rtjk = 1 (3.59)
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⌘tjk =

(
1 for radar
⌘tk|k�1 for target-provided

(3.60)

⇠t⌧jk =
⇠t⌧k|k�1

P
s̃ l

t⌧ s̃j

P
⌧̃ ⇠

t̃⌧
k|k�1

P
s̃ l

t⌧̃ s̃j
(3.61)

µt⌧sj
k =

µt⌧s
k|k�1l

t⌧sj

P
s̃ µ

t⌧ s̃
k|k�1l

t⌧ s̃j
(3.62)

f tj
k (x|⌧, s) =

fz(z|x, ⌧, s)f t
k|k�1(x|⌧, s)

lt⌧sj
(3.63)

where

lt⌧sj = f⌧ (⌧
j |⌧)

Z
fz(z

j
k|x̃)f

t⌧s
k|k�1(x̃)dx̃. (3.64)

for target-provided measurements, and

lt⌧sj =

Z
fz(z

j
k|x̃)f

t⌧s
k|k�1(x̃)dx̃. (3.65)

for radar measurements.

Proof. Writing out the expression for a detection in Table 3.1, we have that

h(y) = rtk|k�1PD(v)o
tv
k|k�1⇠

t⌧
k|k�1µ

t⌧s
k|k�1f

t⌧s
k|k�1(x)fz(z|x, s, ⌧) (3.66)

which we marginalize to obtain

h(s, ⌧, v) = rtk|k�1PD(v)o
tv
k|k�1⇠

t⌧
k|k�1µ

t⌧s
k|k�1l

t⌧sj

h(⌧, v) = rtk|k�1PD(v)o
tv
k|k�1⇠

t⌧
k|k�1

X

s

µt⌧s
k|k�1l

t⌧sj

h(v) = rtk|k�1PD(v)o
tv
k|k�1

X

⌧

⇠t⌧k|k�1

X

s

µt⌧s
k|k�1l

t⌧sj . (3.67)

For radar, we have that PD(v = 1) = PD and 0 otherwise, and for AIS PD(v) =
PD = 1 if a measurement has been received. Using this we get

h[1] = PD⌘
t
k|k�1r

t
k|k�1

X

⌧

⇠t⌧k|k�1

X

s

µt⌧s
k|k�1l

t⌧sj (3.68)
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for radar updates, and

h[1] = rtk|k�1

X

⌧

⇠t⌧k|k�1

X

s

µt⌧s
k|k�1l

t⌧sj (3.69)

for AIS updates. The expressions for the hybrid states result from inserting this in
(3.14)-(3.17). We see from Table 3.1 that g = 0, and using this, together with h[1]
we get (3.58) and (3.59) from (3.10) and (3.11).

3.5.4 Mixture reduction

The mixture reduction is done similarly to what is done in the JIPDA. That is, all
the association hypotheses for each track are merged. An association hypothesis
ak from the set of all possible association hypotheses Ak contains individual track-
to-measurement associations at. The probabilities for the individual association
hypotheses are

Pr(ak) /
Y

t s.t at=0

wtat
k

Y

t s.t at>0

wtat
k /� (3.70)

where � is the Poisson intensity for the false alarms, and the fact that

X

ak2Ak

Pr(ak) = 1 (3.71)

is used to normalize the probabilities. This in turn provides the marginal probabilities
for the associations as

ptjk =
X

ak s.t. at=j

Pr(ak). (3.72)

The mixture reduction remains the same irrespective of the type of measurement,
as all differences are handled during the calculation of the individual posterior
distributions.

Proposition 3.5. We have that
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rtk =
mkX

j=0

rtjk p
tj (3.73)

⌘tk =
mkX

j=0

1

rtk
rtjk p

tj
k

| {z }
�tj
k

⌘tjk (3.74)

⇠t⌧k =
mkX

j=0

1

rtk
rtjk p

tj
k

| {z }
�tj
k

⇠t⌧jk (3.75)

µt⌧s
k =

mkX

j=0

1

⇠t⌧k rtk
⇠t⌧jk rtjk p

tj
k

| {z }
�t⌧j
k

µt⌧sj
k (3.76)

f t⌧s
k (x) =

mX

j=0

µt⌧sj
k ⇠t⌧jk rtjk p

tj
k

µt⌧s
k ⇠t⌧k rtk| {z }
�t⌧sj

f t⌧sj
ki

(x) (3.77)

where

�tjk =
rtjk p

tj
k

rtk
=

8
>><

>>:

ptjk
rtk

, j > 0

r0kp
t0
k

rtk
, j = 0

(3.78)

�t⌧jk =
⇠t⌧jk rtjk p

tj
k

⇠t⌧k rtk
= �tjk

⇠t⌧jk

⇠t⌧k
(3.79)

�t⌧sjk =
µt⌧sj
k ⇠t⌧jk rtjk p

tj
k

µt⌧s
k ⇠t⌧k rtk

= �t⌧jk

µt⌧sj
k

µt⌧s
k

(3.80)

Using the individual f t⌧sj
k (x), the combined state f t⌧s

k (x) can be approximated by
use of moment matching techniques.

Proof. The Multi-Bernoulli Mixture (MBM) containing the posterior track estimates,
weights, and existence probabilities can be approximated as a Multi-Bernoulli. A
thorough proof of this, and more context regarding the MBM, can be found in [138].
Drawing from the aforementioned proof, in combination with the proof in [24,
Appendix D], we have that the posterior distribution over y can be approximated as
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f t
k(y) ⇡

mkX

j=1

�tjk f tj
k (y) (3.81)

(3.82)

where

�tjk =
rtjk p

tj
k

rtk
(3.83)

and

f tj
k (y) = otvjk ⇠t⌧jk µt⌧sj

k f ts⌧j
k (x). (3.84)

Using this, together with the approximation that the visibility is independent of the
other states, we can write

mkX

j=1

�tjk f tj
k (y) ⇡

mkX

j=1

�tjk ⇠
t⌧j
k µt⌧sj

k f ts⌧j
k (x)

mkX

j=1

�tjk otvjk

=

Pmk
j=1 �

tj
k ⇠

t⌧j
k µt⌧sj

k f ts⌧j
k (x)

Pmk
j=1 �

tj
k ⇠

t⌧j
k µt⌧sj

k

Pmk
j=1 �

tj
k ⇠

t⌧j
k µt⌧sj

kPmk
j=1 �

tj
k ⇠

t⌧j
k

mkX

j=1

�tjk ⇠
t⌧j
k

mkX

j=1

�tjk otvjk

=
mkX

j=1

�tjk ⇠
t⌧j
k µt⌧sj

kPmk
j=1 �

tj
k ⇠

t⌧j
k µt⌧sj

k

f ts⌧j
k (x)

mkX

j=1

�tjk ⇠
t⌧j
kPmk

j=1 �
tj
k ⇠

t⌧j
k

µt⌧sj
k

mkX

j=1

�tjk ⇠
t⌧j
k

mkX

j=1

�tjk otvjk

=
mkX

j=1

�t⌧sjk f ts⌧j
k (x)

| {z }
f ts⌧
k (x)

mkX

j=1

�t⌧jk µt⌧sj
k

| {z }
µt⌧s
k

mkX

j=1

�tjk ⇠
t⌧j
k

| {z }
⇠t⌧k

mkX

j=1

�tjk otvjk

| {z }
otvk

(3.85)

Keeping in mind that rtjk = 1 8 j > 0 and that ot1jk = ⌘tjk = 1 8 j > 0 we get the
wanted expressions. Lastly, we get the expression for the existence probability rtk
directly from Chapter 2.

3.6 Target-provided measurement handling

The method shown in the previous section does not specify how the target-provided
measurements are grouped before being sent to the tracker. In this section, we
present three different ways of considering the target-provided measurements.
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3.6.1 Method A: Sequential measurement processing

The first method for handling the incoming target-provided measurements is to
process them, and perform the data association, as they arrive. This would mean
that the predicting and updating of tracks is performed for each target-provided
measurement, which can arrive at any time between radar measurement batches.
This approach demands no further extensions to what is described above. The
method is shown in Algorithm 1.

Algorithm 1 Method A: Sequential measurement processing
Require: target-provided measurements ZA = {z1A, . . . , zmA }, radar measurements
ZR = {z1R, . . . , zmR}, tracks from previous time step X = {x1, . . . ,xn}
for target-provided measurement zjA 2 ZA do

X  �������(X, tjA) . predict tracks to time of zjA
X  ������(X, zjA)

end for
X  �������(X, tR) . predict tracks to time of ZR

X  ������(X, ZR)

3.6.2 Method B: Precise batch measurement processing

The second method performs the data association for the target-provided measure-
ments at the times when radar measurements arrive. The method considers all the
target-provided measurements that have arrived between the previous and current
time steps as a batch of measurements. This method is conceptually similar to what
is done in [44] and [59]. The method is shown in Algorithm 2. The target-provided
measurements with the same ID are clustered together, and the data association
is performed based on these clusters. The clustering means that the measurement
likelihood has to be calculated for each cluster rather than for each measurement.
The measurement likelihood for Im measurements with the same ID is

fz(z|x) = fz(z
1, . . . , zIm |x) =

ImY

i=1

fz(z
i|zi�1, . . . , z1,x) (3.86)

where

fz(z
i|zi�1, . . . , z1,x) =

Z
fz(z

i|xi)fx(x
i|zi�1, . . . , z1,x)dxi. (3.87)

This has to be calculated for each measurement that has arrived between the radar
updates. The measurements are sorted according to their time stamp, with z

Im being
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the most recent measurement. This expression effectively replaces the integral in
(3.64). The individual kinematic states are calculated as

f t⌧sj
k (x|zi, zi�1, . . . , z1,x) =

fz(zi|xi)fx(xi|zi�1, . . . , z1,x)R
fz(zi|xi)fx(xi|zi�1, . . . , z1,x)dxi

(3.88)

This expression can be calculated using, for example, a Kalman filter. A thorough
explanation of this recursive measurement likelihood calculation can be found in
the supplementary material of [44]. With these expressions established, the other
calculations and expressions are identical to Method A.

Algorithm 2 Method B: Precise batch measurement processing
Require: target-provided measurement clusters ZA = {z1A, . . . , zmA }, radar

measurements ZR = {z1R, . . . , zmR}, tracks from previous time step X =
{x1, . . . ,xn}
for track x

t 2 X do
for target-provided measurement cluster zjA 2 ZA do

x
t,j  ����(xt)

for target-provided measurement zi 2 z
j
A do

x
t,j  �������(xt, tj,iA )

x
t,j  ������(xj , tj,iA )

end for
lt,j  �����������L���������(xt,j , zjA)
x
t,j  �������(xt,j , tR)

end for
Xt,j

new  x
t,j

end for
X  �������R��������(Xnew, l)
X  ������(X, ZR)

3.6.3 Method C: Batch measurement processing with added noise

In Section 3.3 it is assumed that the radar measurements of a single measurement
batch are synchronized, that is, they all arrive at the same time. We do not make
the same assumption for the target-provided measurements. However, making
this assumption would allow us to simplify the handling of the measurements and
remove some of the computational complexity of the above methods. Such an
approach would be well suited when the radar frequency is high, as the timing errors
would be small. Algorithm 3 describes the approach. Furthermore, only the most
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recent measurement is considered when a target has transmitted more than one
measurement between radar updates. In addition, this method should be used with a
higher measurement noise level to account for the synchronization errors.

Algorithm 3 Method C: Batch measurement processing with added noise
Require: target-provided measurements ZA = {z1A, . . . , zmA }, radar measurements
ZR = {z1R, . . . , zmR}, tracks from previous time step X = {x1, . . . ,xn}
X  �������(X, tR) . predict tracks to time of ZR, ZA

X  ������(X, ZA)
X  ������(X, ZR)

Remark 3.3. When grouping the same-ID target-provided measurements, one has to
keep in mind the assumption of only one measurement arising from each target. If a
target transmits two target-provided measurements between radar updates, and one of
the measurements has a corrupted ID number, this would breach the assumption. The
most obvious way to amend this is to discard target-provided measurements whenever
there are more measurements than tracks present. This will, however, interfere
with initializing new tracks on the target-provided measurements. It should also be
noted that if the radar frequency is higher than the target-provided measurement
transmission frequency, a cluster will always only contain a single measurement.
This would avoid the aforementioned problem, and simplify calculations. /

Remark 3.4. When using (3.86), the discrete hybrid states will take their most likely
value as a mean over the information from the measurements in the cluster. This
is as opposed to obtaining the most likely value at the most recent target-provided
measurement. This could theoretically impact the estimation of the discrete states.
For exampleif two measurements in a cluster indicate two different kinematic models
this disparity will not be captured when using the batch processing methods. /

3.7 Implementation

3.7.1 Utilization of Gaussian-linearity

To make the implementation tractable, we model the individual kinematic states and
the measurement likelihoods as Gaussian distributions. This allows us to use an
Extended Kalman Filter when predicting and updating the kinematic estimates. The
measurement likelihoods are defined as

fR
z (zk|yk) = N (zk|HRx,RR) (3.89)

for radar measurements, and as
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fp(pk|yk) = N (pk|HAx,RA), (3.90)

for the positional part of the AIS measurements. Furthermore, the kinematic
transition density f s⌧

x (xk|xk�1) is assumed to be in the form of a Gaussian

f s⌧
x (xk|xk�1) = N (xk|f (s)(xk�1),Q

(s)). (3.91)

The transition model is linearized when needed to enable EKF prediction and
Gaussian moment matching for mixture reduction.

The kinematic unknown target density from (3.2) is defined as

fu(x) = 1⌦(H
(s)

x)N (H⇤(s)
x;0,Pv). (3.92)

where 1⌦(·) is an indicator function which is 1 when the unknown target is within
the surveillance area, and H

⇤(s) is the permutation matrix corresponding to the
non-positional states of the state vector x. Using this we have that

fz(z|x, s, ⌧)fu(x) = 1⌦(H
(s)

x)N (za
t

k |H(s)
x,Rs)N (H⇤(s)

x|0,P(s)
v ) (3.93)

In the case of a large enough surveillance area ⌦, and under the assumption of
Gaussian-linearity, this can be approximated as N (x|x̂s

0,P
s
0). Furthermore, this

means that the constant c in Proposition 3.2 becomes

c =

Z
fz(z|x, s, ⌧)fu(x)dx ⇡

Z
N (x|x̂s

0,P
s
0)dx = 1. (3.94)

A more thorough proof regarding the unknown target density can be found in
Appendix C of Chapter 2.

3.7.2 Gating

Because the target-provided measurements can arrive at any time, the number of
times we have to perform gating increases considerably. The main computational
cost of this is the number of predictions. Thus, we should consider this when creating
the gating procedure.

Several different gating methods are presented in [136]. The first method relies
on gating for each kinematic model, and it uses all measurements that have been
gated by any of the models. A different method is a centralized gating procedure
which makes an approximation across all models using a single gate. We use a
somewhat more refined method, the Two-step Model Probability Weighted Gating
(TS-MPWG) method. TS-MPWG was also presented in [136]. The first step in the
method is a centralized gating procedure
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f t
k|k�1(x) =

X

⌧̃

⇠t⌧̃k|k�1

X

s̃

µt⌧̃ s̃
k|k�1f

t⌧̃ s̃
k|k�1(x) (3.95)

where f t
k|k�1(x) = N (x|x̂k|k�1, P̂k|k�1) provides the gate center x̂k|k�1 and the

predicted covariance P̂k|k�1. Furthermore, the innovation covariance becomes

S = HP̂k|k�1H
> +Rk. (3.96)

If no measurements are gated during the first step, the next step is initiated. Here,
the gate is determined by the largest possible model error and should encompass any
measurements generated by the target even if the chosen kinematic model is wrong.
Thus, the TS-MPWG method can exploit the more computationally effective nature
of the central gating method while compensating for eventual model errors. Adapting
the expressions in [136] to this model, the gate in the second step is determined in
by the maximal difference between x̂k|k�1 and the individual x̂t⌧s

k|k�1. This error is

Kmax = argmax
⌧,s

kHx̂k|k�1 �Hx̂
t⌧s
k|k�1k

2. (3.97)

Using this, we calculate the gate volume as

Sd = S+Kmax (3.98)

where

Kmax = diag[
nz }| {

Kmax, . . . ,Kmax] (3.99)

for a measurement space of dimension n.
Furthermore, it would be beneficial to have the possibility of gating target-

provided measurements between two radar time steps without having to predict the
state of all tracks. We can achieve this by utilizing one of the methods described
in [142]. The method involves expanding the gate size according to a fixed presumed
maximum velocity. That is, rather than predicting the track from time tk�1 to tk, the
gate accounts for movement in all directions at a very high speed. This method gives
very large validation gates, and we only use it as a preliminary step before using the
TS-MPWG method. Here, the radius of the gate is decided by

rk = 2rk0 + (tk � tk�1)vmax (3.100)

where vmax is a parameter representing the largest possible speed for a target, and
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rk0 =
p
g ⇥ eig(R)max. (3.101)

Here, g is the gate size, and eig(R)max is the largest eigenvalue of the measurement
covariance matrix.

3.7.3 Initialization and termination

Due to target-provided measurements never being clutter measurements, care should
be taken when choosing the initialization scheme. In JIPDA tracking algorithms,
new tracks are usually only initialized on so-called free measurements, that is,
measurements that have not been gated by any tracks at the current time step. When
using this scheme, a target-provided measurement belonging to an uninitialized
target, which falls within the validation gate of a previously initialized target, would
most likely assign the measurement to the previously initialized target. However, a
scheme that initiates tracks on all measurements will avoid this problem.

Initializing a new track on every measurement is computationally expensive
and requires measures to mitigate computational complexity. For this purpose, we
classify the tracks as newborn, adolescent, and ordinary. Newborn tracks are tracks
that have been initialized at the current time step, adolescent tracks are tracks that
were initialized at the previous time step, and ordinary tracks are all other tracks.
The adolescent tracks are not allowed to compete for measurements in the same way
as the ordinary tracks. The restriction comes into play when an adolescent track
i and an ordinary track t have gated measurement j at the current time step, and
they have both gated the same measurement at the previous time step. Then, the
adolescent track i is only allowed to compete for the measurement if it has a larger
weight relative to the measurement than the other track

max
t,j

wtj
k < TBw

ij
k . (3.102)

where TB is a threshold parameter. Otherwise, the adolescent track is not allowed to
compete for measurement j, which is enforced by setting wij

k = 0.
Termination is done as described in [143]. First, any tracks with an existence

probability under a predetermined threshold Td are removed. Furthermore, any
two tracks deemed to be identical are identified by the use of the hypothesis test
in [7, p. 447]. The most recently initialized of these are then terminated. Lastly, any
tracks that have not been associated with a measurement for NT radar intervals are
terminated.
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3.7.4 Kinematic models

The implementation uses two different kinematic models: the Constant Velocity
(CV) model and the Coordinated Turn (CT) model. Due to the varying prediction
intervals, we use the discretized continuous formulation of the models. The CV
model has the kinematic state x = [x, y, vx, vy]> where v denotes the velocity, and
the state evolves according to xk = F

(s)(dt)xk�1 + vk, vk ⇠ N (0,Q(s)) where

F
(s) =


I2 dtI2
0 I2

�
, Q(s) =

"
(dt)3/3I2 (dt)2/2I2
(dt)2/2I2 dtI2

#
q. (3.103)

Here, I is the identity matrix, dt is the prediction interval, and q is the process noise
intensity [8, p. 270] of the process noise. The CT model has an additional state !,
which is the turn rate. It evolves as xk = F

(s)(xk�1)xk�1 + vk, vk ⇠ N (0,Q(s))
where

F
(s)(x) =

2

666666664

1 0
sin dt!

!

�1 + cos dt!

!
0

0 1
1� cos dt!

!

sin dt!

!
0

0 0 cos dt! � sin dt! 0
0 0 sin dt! cos dt! 0
0 0 0 0 1

3

777777775

(3.104)

and

Q
(s) =


Q

(1)
0

0 dtq!

�
(3.105)

where Q(1) is a CV model covariance matrix, and q! is the intensity of the turn rate
process noise. In the implementation, the CT model is linearized as in [8, §11.7.2].

Remark 3.5. In most IMM applications, the transition matrix is constant. Thus, an
aspect that has to be considered when the measurements do not arrive at a fixed
frequency, is how to design the time-varying transition matrix ⇡(dt). A solution is
to use the theory of Continuous Markov Chains to get an approximation for ⇡(dt)
from the time-independent transition matrix ⇡. As described in [58], this can be
done by use of a generator matrix G. The generator matrix is closely related to the
time-independent transition matrix ⇡ and is formulated as

a) no transition takes place in the time intervaldtwith probability 1+giidt+o(dt)

b) a transition takes place in the time interval dt with probability gijdt + o(dt).
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where gij are the individual elements of G, and o(dt) indicates some small additional
term which is ignored. This approximation is reasonable for relatively small dt.
Thus, the generator matrix G for M number of states can be written as

G =

2

64
⇡11 � 1 . . . ⇡1M

... . . . ...
⇡M1 . . . ⇡MM � 1

3

75 (3.106)

where ⇡ij are the individual elements of ⇡. Furthermore we have from [58] that

⇡ij(dt) ⇡ gijdt if i 6= j and ⇡ii(dt) ⇡ 1 + giidt. (3.107)

Using this we get

⇡(dt) ⇡

2

64
1 + (⇡11 � 1)dt . . . ⇡1Mdt

... . . . ...
⇡M1dt . . . 1 + (⇡MM � 1)dt

3

75 (3.108)

. /

3.7.5 Measurement models

Radar measurements

The radar measurements only contain positional data, and the measurements can be
written as

zk = Hxk +wk, wk ⇠ N (0,RR) (3.109)

The noise matrix has both a Cartesian and polar element, to account both for errors
in range and bearing, and clustering errors. The measurement noise matrix for the
radar measurement becomes

RR = Rc +Rp (3.110)

HereRc is the Cartesian noise component, whileRp is the polar noise component
converted to Cartesian coordinates. The conversion is done by using the unbiased
conversion equations from [95].

Target-provided measurements

The target-provided measurements can contain both positional and velocity data.
The kinematic part of the measurements can be written as
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pk = Hxk +H
vel
xk +wk, wk ⇠ N (0,RA) (3.111)

where H and H
vel are the position and velocity measurement matrices, respectively.

The position is usually derived from GPS information, while the velocity is derived
either from a combination of speed and heading data [16]. Due to the nature of the
data, we approximate the positional errors as Cartesian noise, while we approximate
the velocity errors as polar noise. The measurement noise matrix for the AIS
measurement becomes

RA = HRc,A +H
vel
Rp,A (3.112)

where Rc,A is the Cartesian noise component, while Rp,A is the polar noise
component converted to Cartesian coordinates, again by using [95].

3.8 Results

3.8.1 Simulation environment

We created the simulated data in line with the assumptions in Section 3.3. The
ownship is situated at the origin and is stationary. The surveillance area is circular
with a radius of 500m. We track five targets, all appearing at the edge of the
area. Three of the targets appear at time t = 0 s, while the last two appear at time
t = 10 s. The data consists of true target positions, radar, and AIS measurements.
The movement of the targets follows a CV model with process noise intensity
q = 0.12 m2/s3, with occasional maneuvers according to a CT model. Furthermore,
all targets are guided towards the center of the surveillance area until they are within
50m of it. The measurements are created according to the measurement models in
Section 3.7.5.

The tracking parameters were tuned to achieve good performance on experimental
data and are similar to the ones in Chapter 2. We list the parameters in Table 3.2.
These are also the parameters used for creating the simulated data. The AIS
measurement noise was also chosen according to the experimental data and would
correspond to the measurements providing high location accuracy. Furthermore, in
practical applications, the precision of the AIS location data can be dynamically
adjusted according to a position accuracy flag in the AIS protocol [112].

To evaluate the results we used five different performance measures : the Optimal
subpattern assignment (OSPA) metric [122], the track localization error (TLE), track
fragmentation rate (TFR), track false alarm rate (TFAR) and track probability of
detection (TPD). The last four evaluation methods are described in [109]. The
OSPA metric provides an overall performance assessment, while the other measures
provide information about specific aspects of the methods.
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Table 3.2: Tracking system parameters

Quantity Symbol Unit Value

Radar sample interval T [s] 2.5
Model 1 process noise intensity qa,1 [m2/s3] 0.12

Model 2 process noise intensity qa,2 [m2/s3] 1.52

Turn rate process noise intensity q! [rad2/s3] 0.022

Cartesian noise std. radar �cR [m] 6.6
Cartesian noise std. AIS �cA [m] 3.0
Polar range std. �r [m] 8.0
Polar bearing std. �✓ [�] 1.0
Detection probability PD [%] 92
Survival probability PS [%] 99.9
Non-corrupted ID probability PC [%] 99
Initial visibility probability ⌘u [%] 90
Visibility Markov probability !ṽv [%] [ 90 10

52 48 ]
Gate size g [�] 3.5
Clutter intensity � [1/m2] 5⇥ 10�7

Unknown target rate U [1/m2] 5⇥ 10�8

Initial velocity std. �v [m/s] 10
Initial model probability µs

u [%] [ 80 10 10 ]
Unknown target no ID probability ⇠0u [�] 0.5
Existence confirmation threshold Tc [%] 99.9
Existence termination threshold Td [%] 1

IMM transition probability ⇡s̃s [%]
h
99 .5 .5
.5 99 .5
.5 .5 99

i

We tested four different methods: the three methods described in Section 3.6,
and a method using only the radar measurements.. The code implementing Method
A from Section 3.6 is available at [69].

3.8.2 Simulated data

We tested the methods on 100 simulated data sets over a range of different detection
probabilities. The results are seen in Figure 3.2, Figure 3.3, and Figure 3.4. Not
surprisingly, the pure radar tracking method performs worse than the AIS-aided
tracking methods from Section 3.6 when the PD is low. The difference becomes
smaller as PD approaches 1, but is still significant.

Furthermore, we see that the three methods from Section 3.6 perform similarly.
As expected, the batch processing method using added noise gives slightly less
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Figure 3.2: Comparison of the different methods, using the OSPA metric. The
above figure shows the average OSPA values of each method for different detection
probabilities. The below figure shows the average OSPA value for each time step,
with PD = 0.9. Here, we only consider the sequential measurement processing
method. Both figures contain results from the same 100 scenarios. The OSPA values
are calculated using p = 2 and c = 200. The purpose of the two parameters is
described in [122].
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Figure 3.3: TPD and TLE for the four different methods, for different detection
probabilities. The values were calculated by running the methods on the same 100
scenarios as above.
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Figure 3.4: TFAR and TFR for the four different methods, for different detection
probabilities. The values were calculated by running the methods on the same 100
scenarios as above.
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precise estimates. While we see some differences between the methods for TFR and
TFAR, the errors are of an overall small magnitude. However, the pure radar tracker
is more prone to track fragmentation than the other methods.

The computational complexity of the methods also warrants a comparison. The
pure radar tracker is the least computationally demanding, as all the other methods
add functionality in addition to performing the calculations of the pure radar tracker.
The precise batch processing method is the most demanding of the target-provided
measurement handling methods. This is because it requires predictions and updates
of each track for each measurement. The least demanding of the three is the batch
processing method with added noise, as it does not need to perform more predictions
than the pure radar methods. Nevertheless, the three methods generally do not
introduce a prohibiting amount of complexity and can all be implemented using a
Kalman filter.

3.8.3 Experimental data

In addition to the simulated data, the sequential measurement handling method
and the pure radar tracker were tested on experimental data collected as part of the
Autosea project at NTNU [26]. The data set is the same set used in Chapter 2. We
consider two scenarios, which include three different ships using AIS, of which two
provide frequent measurements. The transmission frequency for the two ships is
higher than what is mandated by IMO [112], but the data set is nevertheless helpful
for demonstrating the functionality and usefulness of the tracking method. Due to
the AIS data previously being used as ground truth for the AIS-equipped vessels,
the AIS data has been interpolated to increase the number of measurements. This
interpolation was undone prior to using the data, that is, we removed any artificially
added measurements.

Figure 3.5 shows the results from the first scenario. The scenario contains
three fast-moving and maneuvering targets and a single slow-moving target. The
slow-moving target is a large vessel with an AIS transmitter, while the three fast-
moving targets are small, rigid inflatable boats (RIBs). Only one of the RIBs has
an AIS transmitter, and it only transmits a single AIS measurement. The large
vessel, however, provides high-quality AIS measurements. As can be seen, both
the sequential measurement handling method and the pure radar method can track
the scenario well. The two methods have flexibility in their use of IMM, and they
can thus use different kinematic models for the RIBs and the large ship. When
combining target-provided measurements with IMM the tracker is also better able
to select the correct kinematic model for each target. Furthermore, the sequential
measurement handling method can use the AIS measurements when tracking the
large vessel, improving upon the track from the pure radar method. It also correctly
associates the single AIS measurement transmitted by the RIB.
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(a) Results when tracking the scenario using only
radar.
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(b) Results when tracking the scenario using
Method A: Sequential measurement processing.

Figure 3.5: A scenario showing four targets. The ownship is the gray line, moving
southwards, while the targets all move northwards. The gray dots are radar
measurements, and the green crosses are AIS measurements. The measurements
become more transparent as time passes, that is, the darker ones have arrived closer
to the end of the scenario. The transparency of the tracks is decided by the existence
probability, with the more transparent having a lower probability of existence. The
target originating furthest to the right is a large vessel with an AIS transmitter, while
the three other targets are small, fast-moving rigid inflatable boats (RIBs). Of the
RIBs, only the orange has an AIS transmitter, which transmits a single measurement
during the scenario. The RIBs make several maneuvers before moving beyond the
radar range.
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(a) Results when tracking the scenario using only
radar.
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(b) Results when tracking the scenario using
Method A: Sequential measurement processing.

Figure 3.6: A scenario showing two large vessels with AIS transmitters (with tracks
shown as blue and orange lines), in addition to an ownship (gray line). We depict
the measurements and tracks as in Figure 3.5. Initially, the orange target moves
north, while the blue target moves east. After some time, the orange target makes a
u-turn, while the blue target makes a turn towards south-west. The ownship moves
in a clockwise motion. The orange and blue dots represent the track positions at the
end of the scenario.
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(a) A target making a clockwise turn, while being
tracked using AIS and radar.
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(b) A target making a clockwise turn, while being
tracked using only radar.

Figure 3.7: A closer look at the northernmost turn for the orange track in the scenario
in Figure 3.6. A single large vessel makes a clockwise turn, resulting in significant
amounts of radar clutter.
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Figure 3.8: Course estimate for the turn depicted in Figure 3.7 using both radar and
AIS (top) and using only radar (bottom).

90



3.8. Results

The second scenario can be seen in Figure 3.6. The plots show the two vessels
with frequent AIS transmissions and the ownship. Figure 3.7 displays a close-up of
the northernmost turn, with and without AIS measurements. The second scenario
highlights some advantages of utilizing the AIS measurements when available.
The main event occurs during the turn depicted in Figure 3.7, where the radar
measurements are poor due to the large vessel making a maneuver and generating
numerous clutter measurements. A similar effect also occurs on the straight leading
up to the turn. Both these effects cause the purely radar-guided tracking method to
veer off track, while the sequential measurement handling method can utilize the
AIS measurements to avoid this. Figure 3.8 shows the estimated course of the target
during the turn, in addition to the standard deviation of the estimates. The poor
radar measurements make the course estimates unreliable when not also utilizing the
AIS measurements. When using the AIS measurements standard deviation of the
course estimates during the turn is significant, but they are still considerably smaller
than when the tracker uses only radar measurements. Furthermore, the track avoids
sudden course changes. In this scenario, the inclusion of AIS measurements causes
no unwanted consequences, opening the possibility of utilizing all the potential
enhancements information given by the messages can bring.

3.8.4 Comparison with the particle based method of Gaglione et al.

In [43], a thorough comparison between the method from [44] and the sequential
measurement processing method in Algorithm 1 is presented. The method from [44]
uses a particle filter and loopy belief propagation and is implementation-wise very
different from the one described in this chapter. We denote the method from [44] as
the Belief propagation, particle filter (BP-PF) method.

Figure 3.9 show the mean generalized OSPA (GOSPA) [113] values for the
VIMMJIPDA with and without AIS input, and the BP-PF for different detection
probabilities. The results are based on the scenario described in Section 3.8.1,
across 100 simulations. The BP-PF implementation uses a single CV model with
process noise intensity q = 0.82 m2/s3, and the same parameters as in Table 3.2
where applicable. The GOSPA metric is a generalization of the OSPA metric and
penalizes localization errors, missed detections, and false alarms. The additional
penalties for missed detections and false alarms explains the differences in the values
between Figure 3.9 and Figure 3.2. The results show that the two methods that use
AIS input performs similarily, and that both outperform the pure radar tracker. This
is, as in Figure 3.2, most evident when the detection probability is low, as this is
where the proportional advantage of using AIS together with radar, in comparison to
using only radar, is largest.

In Figure 3.10, a comparison is made between the BP-PF method and the
VIMMJIPDA with AIS on a different data set. The scenario in question is the
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Figure 3.9: Comparison of the different methods for the same scenario as in Figure 3.2
across 100 simulations, using the GOSPA metric. From [43].
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one used in [44], which involves eight targets. The targets start their trajectories
4 kilometers from the center of the area, before moving towards and eventually
meeting at the center. When there, all targets turn 60 degrees before continuing for 4
additional kilometers. The radar used to track the targets is placed 15 kilometers
from the area center, which results is large amounts of measurement noise. Both
trackers use a single CV model with q = 0.152 m2/s3, and model the measurement
noise with a range standard deviation of 250 m and bearing standard deviation of
2.56�. Furthermore, the clutter density is 1.7⇥ 10�9 1/m2 and the unknown target
density for the VIMMJIPDA with AIS is set to 10�10 1/m2. The trajectory-GOSPA
metric [46] is used to evaluate the results. It differs from the regular GOSPA-metric
in that it also penalizes track switches, and calculates the error based on trajectories
rather than single target estimates. It is computed as an average of 100 simulation
runs, and plotted for each time step in the scenario. The results show that the methods
perform similarly overall, with the BP-PF method performing slightly worse in the
early stages of the scenario, and slightly better in the later stages. The behavior of
the VIMMJIPDA with AIS can be explained by the difficult situation at the mid
point of the scenario, where the targets are closely spaced. There, it may struggle
to keep track of the targets, leading to termination of tracks, and subsequently a
struggle to reinitialze them. The BP-PF method, with its use of belief propagation,
may be better able to compute correct association probabilities when the number
of possible associations are very large. A comparison can be drawn to the results
in [138], and the performance of the Track-oriented marginal MeMBer/Poisson filter.
The filter is very similar to the VIMMJIPDA, albeit without multiple models and
visibility modeling, and exhibits similar behavior on a scenario that also includes
closely spaced targets at its mid point.

Lastly, the BP-PF method is tested on the same experimental data as in Figure 3.5,
see Figure 3.11. The results are similar to that of the AIS capable tracker in
Figure 3.5b, but the use of only a single kinematic model with high process noise
results in some additional noise in the estimates for Gunnerus. This is consistent
with the analysis made regarding the use of a single model in the VIMMJIPDA, see
Section 2.5.2. Furthermore, a false alarm is created in the upper right corner of the
area.

3.9 Chapter summary

In this chapter, we have presented a framework for including target-provided
measurements in a JIPDA-based tracking algorithm. We use AIS measurements as
an example of such measurements. It is seen that the inclusion of such measurements
can help a pure radar tracking method and improve performance greatly when
the radar measurements are of low quality. In addition to the pure performance
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Figure 3.11: The same scenario as in Figure 3.5 when using the BP-PF method,
from [43].

improvements, target-provided measurements can facilitate the identification of
targets, which can be useful for, e.g., a collision avoidance system. Furthermore,
we have presented and compared three different methods of handling the target-
provided measurements: One method where the tracker processes the target-provided
measurements when they arrive and two methods where the tracker processes them
at the time of the radar update.

Acknowledgment

The radar data were recorded by Erik Wilthil, Andreas Flåten, Bjørn-Olav Eriksen and
Giorgio D. K. M. Kufoalor, with assistance from Maritime Robotics and Kongsberg.

94



Chapter 4

Poisson Multi-Bernoulli Mixture
Filtering With Fusion of
Target-Provided and
Exteroceptive Measurements

This chapter is based on the publication:

[65] A. G. Hem, M. Baerveldt, and E. F. Brekke. PMBM Filtering With Fusion of
Target-Provided and Exteroceptive Measurements: Applications to Maritime
Point and Extended Object Tracking. To appear in IEEE Access. doi:
10.1109/ACCESS.2024.3389824

Changes from the submitted publication involve shortening and editing of the
introduction and background sections.

4.1 Introduction

In the last decades, many new multi-target tracking methods have been developed.
The one used in this chapter is the Poisson multi-Bernoulli mixture (PMBM)
filter [138]. The PMBM filter is based on Random Finite Sets (RFS), specifically a
potentially detected target is modelled as a Bernoulli RFS and the set of undetected
targets is modelled as a Poisson point process (PPP). The PMBM filter has been
shown to be among the state-of-the-art methods in target tracking [22, 57, 138],
and has also been used for extended object tracking [6, 52,145]. Furthermore, the
interacting multiple model (IMM) filter [15] can be used to provide more flexibility
in the modeling of the target behavior. The IMM filter uses a set of motion models,
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and switches between these depending on the current behavior of the target. The
method has been used together with many tracking methods, including the PMBM
filter [91].

This chapter combines many of the recent innovations regarding the PMBM
filter and the use of target-provided information in target tracking. We present
a method for including such information in the IMM-PMBM filter, using the
model assumptions from Chapter 3. Furthermore, we show how to use target-
provided information together with an extended object tracking method, a PMBM
with a Gaussian process extent model (GP-PMBM) [6]. The extended object
tracker and the point measurement tracker are evaluated using both simulated
and experimental data. Additionally, the point measurement tracker is used in a
closed-loop collision avoidance experiment that demonstrates its feasibility for use
in real-world applications, which is further detailed in Chapter 5.

The chapter is organized as follows. Section 4.2 provides a brief explanation of
relevant target tracking methods and concepts, together with an overview of previous
work on use of target-provided data. In Section 4.3 we present the general model
used to describe the targets and measurements. A general PMBM filter for use with
target-provided measurements is described in Section 4.4, and it is specified for the
point target and the extended object cases in Section 4.5. The test setups and results
for the point target case are presented in Section 4.6, and for the extended object
case in Section 4.7. Lastly, we conclude the chapter in Section 4.8.

4.2 Background

For the Probabilistic data association (PDA) filter and its derived methods, each
estimate is first found as a mixture of the estimate conditioned on different measure-
ments. The mixture is then combined into a single estimate. If the estimates are
Gaussian, this is done by use of moment matching. The mixture reduction avoids
most problems with computational complexity, as the number of estimates will be
relatively limited. However, temporal information is lost in the process, and as such
the approach is called single-scan target tracking because the mixture reduction
discards information from previous time steps.

4.2.1 Multi-scan target tracking

The PMBM filter is a multi-scan method. In broad terms, what distinguishes
multi-scan methods from single-scan methods is that the latter performs a mixture
reduction of the estimates after each time step, whereas the former does not. Instead,
each measurement-conditioned estimate is propagated to the next time step. Multiple
hypothesis tracking (MHT) [115] is an early and widely used multi-scan method.
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MHT constructs a tree structure of possible associations between the measurements
and the estimates. Each time new measurements are received, the tree is updated by
adding new branches representing new track hypotheses, with a path from the root to
a leaf representing a single track hypothesis. MHT weights the single measurement-
conditioned estimates according to the likelihood of the association between the
track and the measurement, which allows the method to find the most likely global
hypothesis. A global hypothesis is a valid combination of all possible associations
between tracks and measurements. The PMBM filter works in a conceptually
similar way, but it initializes the new potential targets from the PPP representing the
undetected targets, whereas the different potential target hypotheses are represented
as a multi-Bernoulli mixture. This structure ensures conjugacy in the Bayesian
recursion and allows for more mathematically rigorous procedures when initializing
the new potential tracks. Both MHT and the PMBM filter produce an exponentially
increasing number of hypotheses. They mitigate this by removing the most unlikely
hypotheses, a process called pruning. The exponentially growing tree of hypotheses
does, however, demand more care in managing computational complexity.

4.2.2 Extended object tracking

Most early works on multi-target tracking assumes that objects only generate a single
measurement, the so-called point target assumption. Relaxing this assumption to
allow targets to generate a varying number of measurements leads to the problem of
extended object tracking [51]. The manner in which an extended object generates
measurements is most commonly modelled as an inhomogeneous PPP. The Poisson
rate governs the expected number of measurements, and a specific spatial distribution
indicates how these measurements are spatially distributed across the target [49].
This spatial distribution allows us to estimate the shape and size of an object, which
is referred to as object extent. Initial approaches used elliptical shapes as priors for
the spatial distribution, this is commonly referred to as the random matrix model [83].
The extent of the object is then modelled by a symmetric and positive definite
d⇥ d matrix called the shape matrix, where d is the dimension of the object. The
elements of this matrix are then estimated according to the spatial distribution of the
measurements. This model is very popular because it is a linear model. Another
approach instead models the extent as a generic star-convex shape by parametrizing
the shape contour. This enables the modelling of more complex shapes, but it should
be noted that the estimation problem then becomes non-linear [11]. This method is
well suited to modeling contour generated measurements, such as those generated
by LiDARs. The shape contour is parametrized by a radius function which can be
estimated by a variety of techniques, the seminal paper used Fourier series, but today
the most common method is to use Gaussian processes [134]. The Gaussian process
method also allows the use of specific symmetry properties of the tracked objects
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when estimating their extent.

4.2.3 Multiple extended object tracking

When tracking multiple extended objects, the data association becomes harder
because each target can generate an unknown number of measurements. The first
theoretical framework for a multiple extended object tracker was derived from
the probability hypothesis density (PHD) filter by using the above-mentioned PPP
model [99]. This filter was then implemented using the random matrix model, and
an inverse Wishart distribution was used for estimation of the shape matrix [54].
This approach was augmented by estimating the Poisson rate governing the expected
number of generated measurements for each target using a gamma distribution [53].
Combining them resulted in the gamma Gaussian inverse Wishart (GGIW) model [96].
Later developments explored extended object formulations of other types of filters,
such as the PMBM filter [52]. Initially it was presented with the GGIW model, but
the same formulation has been used to implement a PMBM filter using the Gaussian
process model augmented with a gamma distribution [6]. This filter has also been
demonstrated on maritime LiDAR data.

4.2.4 Relation to previous work

Much of the mathematical framework used in this chapter is based on the work
in Chapter 3. This is possible because the tracker in Chapter 3, even though it
ultimately is a JIPDA-type tracker, can be seen as a special case of the PMBM filter.
It is an extension of the IMM-JIPDA tracker with visibility modeling presented
in Chapter 2, where the steps needed to go from the PMBM filter to a JIPDA-type filter
are thoroughly presented. The link between the two filters can be explained by using
the track-oriented marginal multiple target multi-Bernoulli/Poisson (TOMB/P) filter
as an intermediate step. Williams notes in [138, Sec. IV-A] that the TOMB/P filter
results from forcing the individual track hypotheses in a global PMBM hypothesis
to be independent. This approximation results in tracks formed by the marginal
track-to-measurement association probabilities, as is done in the JPDA and JIPDA
filters. By assuming that new targets are born according to a stationary birth density,
and by neglecting the influence of unknown targets when calculating the association
probabilities, the TOMB/P filter becomes identical to a JIPDA filter. Despite these
differences, the formulations in Chapter 3 and Chapter 2 are similar enough to make
the transition from an IMM-JIPDA filter which utilizes target-provided information
to an IMM-PMBM filter relatively straightforward. Note that a visibility state is
present in both Chapter 2 and Chapter 3, which models the possibility of a target
being occluded. This state is omitted in this chapter but is possible to include without
much effort.
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4.3 Model

The model used to describe the targets and measurements is similar to the one
presented in Chapter 3, which itself is based in the model underlying the PMBM
filter. The model describes how the targets are represented, how they are created,
and how they evolve over time. Furthermore, it describes how the measurements
and the information they contain relate to the targets. Thus, the model forms the
framework we use to later describe how to estimate the target states based on the
measurements.

4.3.1 The Poisson multi-Bernoulli mixture

In general, the PMBM filter models the targets as the union of undetected targets
and detected targets. The undetected targets are represented as a PPP, whereas the
hypothesized detected targets are modeled as a multi-Bernoulli mixture (MBM).
The combination of a PPP and an MBM ensures a conjugate prior in the context of
recursive Bayesian estimation. We write the multi-target density as

f(X) =
X

Y ]W=X

fppp(Y )fmbm(W ) (4.1)

where X is the set of all targets, Y is the set of undetected targets, W is the set of
detected targets, ] denotes the disjoint union, fppp(·) is the PPP, and fmbm(·) is the
MBM. The PPP is defined as

fppp(X) = exp(�
R
µ(x̃)dx̃)

Q
x2X µ(x) (4.2)

where µ(x̃) is the intensity function and the notation ·̃ indicates marginalization over
a variable. Boldface notation is used for vectors. Furthermore, the MBM is defined
as

fmbm(X) /
X

j

X

X1]...]Xn=X

nY

i=1

wj,if j,i(Xi). (4.3)

The first sum accounts for all global hypotheses, and the second for all hypothesized
targets within the global hypothesis. wj,i is the weight and distribution of potentially
detected target i in global hypothesis j. The distribution f j,i(Xi), a Bernoulli RFS,
is defined as

f j,i(Xi) =

8
><

>:

1� rj,i if Xi = ;
rj,if j,i(x) if Xi = {x}
0 otherwise

(4.4)

where rj,i is the existence probability, and f j,i(x) is the state density.
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4.3.2 The hybrid state space

The full state y of a target can contain both discrete and continuous states. Such a
combination is often denoted as a hybrid state [8, p. 411]. The continuous part of the
state is denoted as x, and typically contains information such as position, velocity,
or target extent. The discrete states can contain information such as target ID, what
kinematic model the target is following, or if the target is occluded. In this section
and the next, the exact information contained in the states is not important, but rather
how they relate to each other, and how they evolve.

Nevertheless, we select two discrete states to illustrate the concepts, which are
also useful later, namely the ID ⌧ and the kinematic model s. The distribution of the
hybrid state can be written as

f(x, ⌧, s) = f(x|⌧, s)f(s|⌧)f(⌧). (4.5)

Furthermore, the actual ID of a target is assumed to not change over time, whereas
the kinematic model a target moves according to can change. For any discrete state
with the same properties as either the ID or the kinematic model, the following can
also be used to describe how to incorporate that state into the model.

4.3.3 New targets

We assume that new targets are born according to a PPP with intensity b(y). A birth
intensity with Nb components is defined as

b(y) =
NbX

i=1

wb,if b,i(⌧)f b,i(s|⌧)f b,i(x|s, ⌧). (4.6)

Here, f b,i(⌧) is the distribution of the IDs ⌧ , f b,i(s|⌧) is the distribution of the
kinematic models s, and f b,i(x|s, ⌧) is the distribution of the state x. As the hybrid
state includes both discrete and continuous states, the PPP is what is denoted as a
marked PPP, equivalent to a PPP on the Cartesian product of the continuous space
of the kinematic density and the discrete spaces of the other states. Under the
assumption that the distributions of all states are independent of other elements
in the marked PPP, it nevertheless inherits the properties of a PPP, and can be
used interchangeably in the PMBM. This means that a restriction of unique IDs
across targets can not be enforced, as it would break the independence assumption
underlying the PPP.

We assume that the IDs of unknown targets are independent and identically
distributed (i.i.d.) with an initial prior distribution

f b,i(⌧) =

8
<

:

⇠b,0 if ⌧ = 0
1� ⇠b,0

|V|� 1
if ⌧ > 0

. (4.7)
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Here, ⇠b,0 denotes the initial probability of a specific ID, whereas |V| is the number
of possible IDs and ⌧ 2 V . The first case accounts for the probability of a target
not having an ID, whereas the second case accounts for the probability of a target
having an ID. For the latter case, the probability is uniformly distributed among all
possible IDs. Furthermore, the kinematic models s are assumed to be i.i.d. with an
initial distribution µ0

s .

4.3.4 Target evolution

For the different variables, we use the subscript k to indicate that we are considering
their value at the current time step, and with k� 1 we indicate the previous time step.

Each target is assumed to survive a duration of T with probability

PS(T ) = P dt
Sc

(4.8)

where Sc is the survival probability per time unit, usually seconds.
The target IDs do not change over time, whereas the kinematic model can change

between time steps as part of a Markov chain. The transition matrix ⇡ contains the
Markov chain probabilities of a change occurring, whereas the target ID transition is
modeled as a Kronecker delta �. The kinematic transition density depends on the
kinematic model, and we can write the prediction of a target as

fy(yk|yk�1) = fx(xk|xk�1, ⌧k, sk)⇡
sk�1sk�⌧k�1⌧k . (4.9)

This transition is that of a target with ID ⌧k�1 and kinematic model sk�1 at the
previous time step, and target ID ⌧k and kinematic model sk at the current time step.

4.3.5 Measurements

The detection probability of a target by way of exteroceptive sensors is assumed
constant in both time and space and is denoted as PD(y) = PD. For the target-
provided measurements, the detection probability is designed to more precisely
reflect their physical reality. This is done by setting the detection probability to 1 if
a target-provided measurement is received, and 0 otherwise. We express this as

PD(y) =

(
1 if a measurement is received
0 otherwise

. (4.10)

Only the exteroceptive sensors are assumed to provide false alarms, referred to
as clutter, and the clutter is modeled as a PPP with intensity �(Z). The intensity
can depend on measurement position but is assumed to not change over time. For
the target-provided measurements, the absence of clutter is modeled by using a PPP
with intensity 0.
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We assume that the exteroceptive measurements are synchronized, and all
detections in each individual scan come from time step k. This is, for most sensors,
an approximation. If needed, the time disparity between detections in a scan can
be accounted for by relatively simple means Chapter 7. The likelihood for a set of
exteroceptive measurements is f ex

z (Zk|yk), where Zk is a set of measurements. For
point target tracking, the set is either empty, or contains a single measurement. For
extended object tracking, the set can contain several measurements. The information
provided by the exteroceptive measurements is assumed to only contain the position
of the detections, or potentially also the speed of the reflecting surface.

The target-provided measurements are not assumed to be synchronized. They can
arrive at any time, and furthermore, they arrive at different times for different targets.
The likelihood is denoted as f tp

z (Zk|yk). We assume that a set of target-provided
measurements will contain at most a single measurement. As opposed to the case
for the exteroceptive measurements zk can now also contain additional information,
such as ID and target dimensions. We assume that, when conditioned on the target
state, the information in the measurements is independent of other information
contained in the measurement. Furthermore, we keep in mind that the detection
probability is 1 if a measurement is received. This means that the likelihood of a set
with a measurement containing, for example, kinematic information p, ID ⌧ , length
zL, and width zW can be decomposed as

f tp
z (Zk|yk) = f tp

p (pk|yk)f
tp
⌧ (⌧k|yk)f

tp
L (zL|yk)f

tp
W (zW |yk) (4.11)

whereas a set without a measurement has a likelihood of 1 because the detection
probability is 0 when no measurement is received.

4.4 Method

From the previous time step k�1, we assume that the Poisson component representing
an unknown target is given by

uk�1(yk�1) =
NX

i=1

wu,i
k�1f

u,i
k�1(⌧k�1)f

u,i
k�1(sk�1)f

u,i
k�1(xk�1|sk�1, ⌧k�1). (4.12)

which is a sum of mixture components, where wu,i
k�1 is the weight of component i.

A potentially detected target i in a global hypothesis j at the previous time step is
represented by a Bernoulli with existence probability rj,ik�1, weight wj,i

k�1 and state
density

f j,i
k�1(yk�1) = f j,i

k�1(xk�1|⌧k�1, sk�1)⇥ f j,i
k�1(sk�1|⌧k�1)f

j,i
k�1(⌧k�1). (4.13)

For ease of notation, we henceforth write f ·,i
k�1(⌧k�1) as ⇠·,i⌧k�1 and f ·,i

k�1(sk�1|⌧k�1)

as µ·,is⌧
k�1 .
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4.4.1 Prediction

We find the expressions for the prediction by use of the expressions from Section 3.5
and [47, Sec. V]. For the Poisson component, we get that the predicted intensity is

uk|k�1(yk) = bk(yk) + PS(dt)
NX

i=1

wu,iµu,is⌧
k|k�1⇠

u,i⌧
k|k�1f

u,i
k|k�1(xk|sk, ⌧k) (4.14)

whereas the predicted Bernoulli components are

f j,i
k|k�1(yk) = µj,is⌧

k|k�1⇠
j,i⌧
k|k�1f

j,i
k|k�1(xk|sk, ⌧k). (4.15)

Furthermore, we predict the existence probability and discrete states in the hybrid
state as

r·,ik|k�1 = r·,ik�1PS(dt) (4.16)

⇠·,i⌧k|k�1 = ⇠·,i⌧k�1 (4.17)

µ·,is⌧
k|k�1 =

X

s̃

µ·,is̃⌧
k�1⇡

s̃s(dt). (4.18)

where · denotes that the expressions are valid for both unknown and potentially
detected targets. The kinematic density is predicted as

f ·,i
k|k�1(xk|⌧k, sk) =

Z
fx(xk|⌧k, sk, x̃)f ·,i

k�1(x̃|⌧k, sk)dx̃ (4.19)

where

f ·,i
k�1(x̃|⌧k, sk) =

X

s̃

µ·,i⌧ s̃
k�1⇡

s̃s(dt)f ·,i
k�1(x̃|⌧k, sk, s̃)P

s̃ µ
·,i⌧ s̃
k�1⇡

s̃s(dt)
. (4.20)

4.4.2 Update

The posterior is also found by use of Section 3.5 in combination with [47, Sec. V].
Three different types of updates must be considered:

• Update of undetected targets.

• Update of new potentially detected targets.

• Update of previously potentially detected targets.
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The update of undetected targets only involves updating the weight. For convenience,
the unknown target intensity is rewritten as

uk(yk) =
NuX

i=1

wu,i
k|k�1f

u,i
k|k�1(yk). (4.21)

We update the weights by multiplying them with the probability of a missed detection

wu,i
k = wu,i

k|k�1(1� PD). (4.22)

Update of new potentially detected targets

When a potential new target is detected, a new Bernoulli is initialized. We need to
find the Bernoulli’s existence probability rj,ik (Zk), state density f j,i

k (yk|Zk), and
weight wj,i(Zk). This is done by updating the unknown target intensity with some
non-empty subset Zk of all the received detections. We have from [47, Sec. V] that

rj,ik (Zk) =
e(Zk)

⇢(Zk)
(4.23)

f j,i
k (yk|Zk) =

NuX

iu=1

wiu(Zk)f
u,iu
k (yk|Zk) (4.24)

where

e(Zk) =
NuX

iu=1

wu,iufu,iu
z (Zk|yk)

⇢(Zk) = e(Zk) + �(Zk)

wiu(Zk) / wu,iu
k|k�1f

u,iu
x (Zk|yk). (4.25)

The weight wj,i
k of the new Bernoulli in a global hypothesis j has value ⇢(Zk) if

the global hypothesis includes the new target, and otherwise the weight is set to 1
with the existence probability set to 0. Furthermore, we need to find expressions for
fu,iu
k (yk|Zk) and fu,iu

x (Zk|yk). We provide these on a general form that holds for
exteroceptive measurements and target-provided information in both point target
and extended object tracking, and from Section 3.5 we get that

f ·,i
k (yk|Zk) = f ·,i

k|k�1(xk|⌧k, sk, Zk)µ
·,is⌧
k ⇠·,i⌧k (4.26)

where

f ·,i
k (xk|⌧k, sk, Zk) =

f ·,i
z (Zk|⌧k, sk,xk)f

·,i
k|k�1(xk|⌧k, sk)

l·,i⌧s
(4.27)
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and

µ·,is⌧
k =

µ·,i⌧s
k|k�1l

·,i⌧s

P
s̃ µ

·,i⌧ s̃
k|k�1l

·,i⌧ s̃
(4.28)

⇠·,i⌧k =
⇠·,i⌧k|k�1

P
s̃ µ

·,i⌧ s̃
k|k�1l

·,i⌧ s̃

P
⌧̃ ⇠

·,i⌧̃
k|k�1

P
s̃ µ

·,i⌧̃ s̃
k|k�1l

·,i⌧̃ s̃
. (4.29)

Furthermore, we have that

l·,i⌧s =

Z
f ·,i
z (Zk|⌧k, sk, x̃)f ·,i

k|k�1(x̃|⌧k, sk)dx̃. (4.30)

Update of previously potentially detected targets

A potentially detected target can either be updated based on a detection or a missed
detection. First, we define the combined likelihood of a measurement set across all
discrete states as

Lj,i =
X

⌧̃

⇠j,i⌧̃k|k�1

X

s̃

µj,i⌧̃ s̃
k|k�1l

j,i⌧̃ s̃. (4.31)

Note that a missed detection would mean that the likelihood (4.30) is that of an
empty set of measurements. From Section 3.5, we have that for the missed detection
case

wj,i
k =

8
>><

>>:

wj,i
k|k�1(1� rj,ik|k�1 + rj,ik|k�1L

j,i)

for exteroceptive
wj,i
k|k�1 for target-provided

(4.32)

rj,ik =

8
>><

>>:

rj,ik|k�1L
j,i

1� rj,ik|k�1 + rj,ik|k�1L
j,i

for exteroceptive

rj,ik|k�1 for target-provided
(4.33)

whereas the state density remains unchanged from the prediction, a consequence
of the model choice of state-independent detection probability. We distinguish
between the two measurement types to highlight how the absence of target-provided
information does not impact the weight and existence probability, as it does for the
exteroceptive measurements. This is due to how the detection probability (4.10) is
defined. Updating the weights based on a detection is done as

wj,i
k = wj,i

k|k�1(r
j,i
k|k�1L

j,i). (4.34)

The updated existence probability rj,ik is 1, and the state density is updated by use of
(4.26)-(4.29).
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4.4.3 Global hypotheses

With the updated Bernoulli components we now need to form global hypotheses and
calculate their weights. This is done as described in [47, Sec. C.3], from which we
give a summary. For each previous global hypothesis j, we must assign each new
measurement to either an existing track or a new track. One such set of assignments
amounts to a new global hypothesis. Its weight wj

k is calculated as the product of
the weights of the individual Bernoulli components in the hypothesis. The number
of global hypotheses can quickly become untenable, so rather than considering all
possible assignments, we only consider the most likely assignments. These can, for
example, be found by use of Murty’s method [104] or stochastic optimization [55].

4.5 Application to point target tracking and extended object
tracking

We want closed form recursions for the AIS-IMM-PMBM filter and the AIS-GP-
PMBM filter. For that purpose, we specify the state spaces, kinematic models, and
measurement models for the two filters. We show how the resulting expressions
relate to those in Section 4.4, and that they allow us to perform the calculations by
use of Kalman filtering. Furthermore, we show how to estimate the states we want
to output to the surrounding system.

4.5.1 The AIS-IMM-PMBM filter for point target tracking

For the AIS-IMM-PMBM point target tracker, the hybrid state is

y =
⇥
x ⌧ s

⇤> (4.35)

in which the kinematic state x is

x =
⇥
x vx y vy !

⇤>
. (4.36)

Here, x and y is the position, vx and vy are the velocities, and ! is the angular
velocity. We have omitted the time index, the global hypothesis index j, and the
track index i for brevity. We model the estimated kinematic states, the kinematic
state transition, and the measurements as Gaussians distributions. That is, we have
that the state density (4.13) is given by

f(y) = N (x; x̂s⌧ ,Ps⌧ )µs⌧⇠⌧ (4.37)

where x̂s⌧ and P
s⌧ are the estimated mean and covariance conditioned on kinematic

model s and ID ⌧ , µs⌧ is the probability of kinematic model s conditioned on ID ⌧ ,
and ⇠⌧ is the probability of ID ⌧ .
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We use two constant velocity (CV) models and one coordinated turn (CT)
model to model the movement of the point targets. The CV models model linear,
straight-line motion, whereas the CT model in addition models the possibility of a
target turning. In general, the state evolves according to

xk = F
s(xk�1)xk�1 + vk, vk ⇠ N (0,Qs). (4.38)

The CV models are defined as

F
CV =


1 dt
0 1

�
⌦ I2, (4.39)

Q
CV =

"
(dt)3/3 (dt)2/2
(dt)2/2 dt

#
⌦

qa 0
0 qa

�
. (4.40)

and the CT model is defined as

F
CT (xk) =

2

66666664

1 0 sin dt!/! �1+cos dt!/! 0

0 1 1�cos dt!/! sin dt!/! 0

0 0 cos dt! � sin dt! 0
0 0 sin dt! cos dt! 0
0 0 0 0 1

3

77777775

, (4.41)

Q
CT =


Q

CV
0

0 dtq!

�
. (4.42)

This is a non-linear model, so for use in an extended Kalman filter it is linearized as
it is done in [8, Ch. 11.72]. The kinematic state transition density is given by

fx(xk|xk�1, ⌧k, sk) = N (xk;F
sk⌧ (xk�1),Q

sk⌧ ). (4.43)

Here, Fsk⌧ (xk�1) is the state transition matrix for kinematic model sk conditioned
on ID ⌧ , and Q

sk,⌧ is the process noise covariance matrix. By using (4.37) and
(4.43) in (4.19), we get the predicted kinematic states. The Gaussian mixture in
(4.20) can be approximated by use of moment matching.

Update with radar measurements

The radar measurements are modeled as

z = HRx+w, w ⇠ N (0,RR) (4.44)

where HR is the measurement matrix, RR is the measurement noise matrix, and w

is the measurement noise. We model the measurement noise as a combination of
Cartesian and polar noise

RR = Rc +Rp (4.45)
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where RC is the Cartesian measurement noise and Rp is the polar measurement
noise, which is converted to Cartesian coordinates with the method from [95]. The
Cartesian noise is meant to account for errors from clustering and sensor noise, and
the polar noise is meant to account for errors in the range and bearing.

We assume that a set Z of radar measurements contains either one or zero
measurements. The measurement likelihood for a single radar measurement is given
by

fz(z|x, ⌧, s) = N (z;HRx,RR) (4.46)

and the likelihood for a set of radar measurements is given by

fz(Z|x, ⌧, s) =
(
PDfz(z|x, ⌧, s) Z = {z}
1� PD Z = ;

(4.47)

which is used in (4.27) and (4.30) to get a closed-form solution. Note that the case
with the empty measurement set is only relevant for previous potentially detected
targets. Furthermore, the radar clutter measurements are modeled as a PPP with
constant intensity �(Z) = Nc/⇡R2. Here Nc is the expected number of clutter
measurements and R is the radius of the surveillance area.

Update with AIS measurements

The position and velocity part of the AIS messages are defined as

z = HAx+w, w ⇠ N (0,RA) (4.48)

where HA is the measurement matrix and RA is the measurement noise matrix.
As for the radar measurements, the noise matrix is a combination of Cartesian and
polar noise, but here the Cartesian noise models the error in the position and the
polar noise models the error in the velocity. This is because the positional errors are
independent on the distance, and derived from GPS data, whereas the velocity is
transmitted as a speed and course. The measurement noise matrix is given by

RA = HRc,A +H
vel
Rp,A (4.49)

where H and H
vel are measurement matrices for the position and velocity parts of

the state, respectively. We use the same method as above when we convert the polar
noise matrix to Cartesian coordinates.

For the position- and velocity-information in the AIS messages, the measurement
likelihood f tp

p (p|y) in (4.11) is given by

f tp
p (p|y) = N (z;HAx,RA). (4.50)
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Furthermore, we utilize the ID information in the AIS messages. We account for the
small possibility of the ID provided by the measurement is incorrect, relative to the
actual ID of the target, by use of a probability PC representing our confidence in
the ID provided by the measurement being correct. The likelihood of the ID only
depends on the ID of the target. We formulate f tp

⌧ (⌧z|yk) as

f⌧ (⌧
z|⌧) =

8
>>><

>>>:

PC if ⌧ = ⌧z

1� PC

|V|� 1
if ⌧ 6= ⌧z and ⌧ > 0

0 if ⌧ = 0

(4.51)

where ⌧z is the ID provided by the measurement. A zero-valued ID ⌧ is used
to represent a target that does not transmit any information, and as such has no
observable ID. We combine (4.50) and (4.51) in (4.11), and disregard the length- and
width-related terms in the latter equation. This provides a closed form solution to
the integral in (4.30), and furthermore allows us to calculate the updated kinematic
states in (4.27) by use of the Kalman filter equations.

4.5.2 The AIS-GP-PMBM filter for extended object tracking

The hybrid state in the AIS-GP-PMBM filter is

y =
⇥
x ⌧ ↵ �

⇤> (4.52)

and includes the ID ⌧ and two gamma distribution shape parameters ↵ and �. The
gamma distribution is used to estimate the expected number of detections from a
target. Furthermore, x is given by

x =
⇥
x vx y vy � ! x

f
⇤>

. (4.53)

Here, � is the target heading, ! is the angular velocity, and x
f is a vector which

parametrizes the contour of the target extent, specifically it contains the values of a
radius function f at equidistant angles. The single state estimates are represented as
gamma-Gaussian distributions on the form

f(y) = N (x; x̂⌧ ,P⌧ )G(↵,�)⇠⌧ . (4.54)

where we again have omitted the time index, the track index i, and the global
hypothesis index j for brevity. For the augmented state in the AIS-GP-PMBM filter,
we combine the CV model with a process model for the extent. In addition to linear
velocity, the CV model also models the heading and angular velocity, and is defined
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as

F
CV =


1 dt
0 1

�
⌦ I3 (4.55)

Q
CV =

"
(dt)3/3 (dt)2/2
(dt)2/2 dt

#
⌦

2

4
qa 0 0
0 qa 0
0 0 q✓

3

5 . (4.56)

We have that F = diag(FCV ,Ff ) and Q = diag(QCV ,Qf ) where

F
f = exp(��t⌘�)I,

Q
f = (1� exp(�2�t⌘�))K(⇥f ,⇥f ). (4.57)

K(⇥f ,⇥f ) is the covariance matrix of the Gaussian process, and ⇥f contains the
angles of the points which define the extent. For further details, we refer to [134] for
the derivation of the Gaussian process model, or to [6] for a shorter summary.

When predicting and updating the single state estimates, conditioned on their
IDs, we separate the gamma and Gaussian parts of the distributions. This allows us to
use the Kalman filter equations to calculate the predicted and updated Gaussian parts
the same way as in Section 4.5.1, whereas the variables in the gamma distribution
are predicted as

↵k|k�1 = ↵k�1/⌘� , �k|k�1 = �k�1/⌘� (4.58)

and updated as
↵k = ↵k|k�1 + |Z|, �k = �k|k�1 + 1. (4.59)

Here, ⌘� is called the forgetting factor and is a parameter that controls how quickly
the measurements received in the past should be forgotten by the gamma distribution
parameters.

Update with LiDAR measurements

A generic measurement equation for one contour generated measurement with the
target contour parametrized by a radial function f can be written as

z
l = x

c + p(✓l)f(✓l) +w
l

p(✓l) =


cos ✓l

sin ✓l

� (4.60)

where z
l
k is measurement l and ✓l is the corresponding angle of the origin of the

measurement of the target contour. ✓l can be expressed both in a global frame ✓l(G)
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and the local target body frame ✓l(B) as

✓l
(B)

(xc,�) = ✓l
(G)

(xc)� �

✓l
(G)

(xc) = \
⇣
z
l � x

c
⌘ (4.61)

The value of f(✓l) can be found by calculating the value of the matrix H
(f) for the

specific angle using Gaussian process regression and multiplying it with the vector
parametrizing the extent xf . Therefore, the measurement equation can be written as

z
l = x

c + p
l(✓l

(G)
(xc))H(f)

⇣
✓l

(B)
(xc,�)

⌘
x
f +w

l

= hl(x) +w
l, w

l ⇠ N (0,Rl).
(4.62)

The measurement equation is therefore dependent on the state space components
x
c, � and x

f , of which the two former are non-linear terms in the measurement
equation. It should be noted that this is an implicit equation, due to the dependency
of ✓l(G) on z

l. Similarly, the estimated error of the Gaussian process regression can
be calculated by calculating a matrix R

f and by projecting this into 2D we get

R
l = p

l(xc)Rf
⇣
✓l

(B)
(xc,�)

⌘
p
l(xc)T +RC . (4.63)

We use an iterated extended Kalman filter to deal with the non-linearities that are
introduced by the LiDAR measurement model.

A global association hypothesis in extended object tracking does not assign each
measurement to a single potential target, but rather assigns sets of measurements to
potential targets. The measurement likelihood for a single measurement can thus be
written as

fz(z
l|x) = N(Hl

x,Rl). (4.64)

Each potential target i is associated to a specific measurement cell C and the
measurements in such a cell is denoted ZC . The measurement set likelihood is given
by the following inhomogeneous PPP [52]

fz(ZC |x) = exp(��m)�|ZC |
m

Y

zl2ZC

fz(z
l|x) (4.65)

here �m is the Poisson rate governing the expected number of measurements, which
is estimated by the gamma distribution, i.e. �m ⇠ G(↵,�). Given this, the predictive
likelihood can be calculated as in (4.30), which results in

l⌧ = PD
�(↵+ |ZC |)�↵

�(↵)(� + 1)(↵+|ZC |)|ZC |!
Y

zl2ZC

N (zl;Hl
x̂
⌧,l,S⌧,l) (4.66)
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where S⌧,l is the innovation covariance matrix for measurement l conditioned on ID
⌧ . If the measurement cell is empty, the predictive likelihood is instead given by the
effective probability of missed detection defined by

l⌧ = 1� PD + PD exp(�m) (4.67)

which represents the fact that we can have a missed detection either due to the
probability of detection or the probability that the target is detected but generates
zero measurements. Lastly, as for the radar measurements, we assume that the
clutter intensity is uniform over the surveillance area. Furthermore, the intensity
also reflects the result that a cell with more than one measurement never is a false
alarm. This means that

�(ZC) =

(
Nc/⇡R2 |ZC | = 1

0 |ZC | > 1
. (4.68)

Further details regarding the Gaussian process PMBM filter can be found in [6].

Update with AIS measurements

The incoming target-provided measurements are handled in a similar manner as
for the point target tracking case, as they uphold the assumption of each target
only providing a single measurement. The difference is that we now include the
dimensions of the target in the measurement vector. The dimension is modeled by
considering length and width separately. The measurement model matrix can be
found using Gaussian process regression, in this case by using fixed angles which
correspond to the length

zL = H
(f)(0)xf +H

(f)(⇡)xf + wL, wL ⇠ N (0,�2z,L) (4.69)

and width

zW = H
(f)
⇣⇡
2

⌘
x
f +H

(f)

✓
3⇡

2

◆
x
f + wW , wW ⇠ N (0,�2z,W ). (4.70)

The estimated measurement noise covariance has a component for Gaussian process
regression, and is given by

�2L = R
(f)(0) +R

(f)(⇡) + �2z,L

�2W = R
(f)
⇣⇡
2

⌘
+R

(f)

✓
3⇡

2

◆
+ �2z,W .

(4.71)
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Using this, we get that the AIS measurement likelihood (4.11) becomes

fz(Z|y) = f⌧ (⌧
z|⌧)N (p;Hx

c,Rc)⇥
N (zL;H(f) (0)xf +H

(f) (⇡)xf ,�2L)⇥

N (zW ;H(f)
⇣⇡
2

⌘
x
f +H

(f)

✓
3⇡

2

◆
x
f ,�2W ) (4.72)

when Z = {z = [p, ⌧, zL, zW ]}. This is used in (4.27) and (4.30). The gamma
distribution is only concerned with the exteroceptive measurements and is as such
not updated when target-provided measurements are received because no new
information is received. It is also ignored when calculating the target-provided
measurement likelihoods.

Remark 4.1. Note that we do not use multiple models in the extended object AIS-
GP-PMBM. This is equivalent to having a single model with constant probability
1, and the simplified expressions are easily derived from the ones in Sections 4.4.1
and 4.4.2. /

4.5.3 State estimation and complexity management

The implementation for the point target tracker largely follows [47], whereas the
extended object tracker is based on [52]. The way we perform state estimation and
manage the computational complexity is, however, conceptually the same. After
each update step we have several global hypotheses, each containing Bernoulli
components with potentially detected targets. In [47] three estimation methods
are presented, which allows us to choose which of the large number of possible
target states we decide are the most likely. For both point targets and extended
objects, we use the first of the three methods, which simply decides upon the global
hypothesis with the highest weight. Of the Bernoulli components in the chosen
global hypothesis, all with an existence probability larger than some threshold Tr

are selected as the output. Furthermore, each state estimate is a Gaussian mixture
with weights corresponding to the probabilities of the discrete states, such as IDs. A
single Gaussian is extracted by use of moment matching.

Even when limiting the amount of new global hypotheses, with Murty’s algorithm
for point targets and stochastic optimization for extended objects, the number of
Bernoulli components can become very large. Thus, to avoid an unmanageable
number of possible target states some approximations are made. First, we limit the
amount of Bernoulli components created at each time step by way of gating the
measurements. This is done by only considering the measurements less than pg
standard deviations from a given prediction. Thus, new potential targets are only
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created for measurements close enough to an unknown target, and already potentially
detected targets are only updated based on the measurements within its gate area.

Furthermore, we do not propagate all Bernoulli components from each time
step to the next. We follow the strategy from [47], and only keep the Nhyp global
hypotheses with highest weights. In addition, we remove all Bernoulli components
with existence probability lower than some threshold Tb and those not present in any
of the kept global hypotheses. Furthermore, we only keep the Poisson densities with
weight higher than Tp. A brief description covering one iteration of the AIS-PMBM
is given in Algorithm 4.

Algorithm 4 An iteration of the AIS-PMBM
Input: Previous unknown target densities µ(y), potentially detected target densities

pi,j(y), global hypotheses, and new measurements Z
Output: Updated unknown target densitiesµ(y), potentially detected target densities

pi,j(y), global hypotheses
1: Predict unknown target densities with (4.14) and perform gating.
2: Initialize new potentially detected targets on the gated measurements with the

expressions from Section 4.4.2.
3: Predict potentially detected targets with (4.16)-(4.19) and perform gating.
4: Initialize new Bernoulli components for the previously potentially detected

targets with the expressions from Section 4.4.2.
5: Find new global hypotheses based on the previous global hypotheses and the

new Bernoulli components as described in Section 4.4.3.
6: Output the Bernoulli components in the best global hypothesis with existence

probability higher than Tr.
7: Remove all but the Nhyp best global hypotheses, prune Bernoulli components

with low existence probability, and prune Poisson densities with low weight.

4.6 Results for point target tracking

To evaluate the performance of the trackers we use the GOSPA metric for trajectories,
presented in [46]. The metric works on sets of trajectories, and penalizes track
switches in addition to localization errors, false alarms, and missed detections. It
also allows us to look at the different error sources in isolation, highlighting the
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advantages and shortcomings of different methods. The metric is defined as

d(c,�)p (X,Y ) , min
ak2

QX,Y

k=1,...,T

 
TX

k=1

dX,Y
k (X,Y, ak)

p) +
T�1X

k=1

sX,Y (ak, ak+1)
p

! 1
p

(4.73)
where the first sum penalizes localization errors and cardinality errors, and the
second sum the track switch error. ak is one of the possible associations at time k
between the sets of trajectories X and Y . In our case, the sets of trajectories are the
true trajectories and the target states estimated as described in Section 4.5.3. The
continuity of the estimated target states is based on their originating measurement.
The parameters of the metric are the order p, the cutoff c, and the switch penalty �.
The cutoff decides the point where the distance between two tracks is too large to be
considered a feasible association. We have that

dX,Y
k (X,Y, ak)

p ,
X

(i,j)2✓k(ak)

d(xi
k,y

j
k)

p

+
cp

2
(|⌧k(X)|+ |⌧k(Y )|� 2|✓k(ak)|). (4.74)

Here, d(·, ·) is the distance function, ✓k(·) is the set of feasible associations in the
kth time step, and ⌧k(·) is the set of elements in a set of trajectories at time step k.
The track switch error is defined as

sX,Y (ak, ak+1)
p , �p

nXX

i=1

s(aik, a
i
k+1) (4.75)

where s(·, ·) is 0 if the association between the trajectories is unchanged, 1 if the
association is changed to a different trajectory, and 1/2 if the association is changed
and the trajectory is now unassigned, or was previously unassigned. We use the
implementation available at [45] to perform the computations, and only compute
errors at the time steps where exteroceptive measurements have been received.

4.6.1 Simulated data

We test seven different trackers and tracker configurations. These are

1. The MHT algorithm with AIS from [94].

2. The PMBM with AIS of Miao et al. [102].

3. The AIS-VIMMJIPDA from Chapter 3.
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Table 4.1: Table continues on next page.

Quantity Symbol Unit Value (1st, 2nd)

Common parameters

Survival probability PS [�] 0.999
Gate size g [�] 20
Max. number of hypotheses Nmax [�] 400
Area radius R [m] 1000, 100
Clutter intensity � [1/m2] 4/(⇡R2)
Initial velocity std. �v [m/s] 10
Existence confirmation threshold Tc [�] 0.99

Radar measurements

Cartesian noise std. �cR [m] 1.0
Polar range std. �r [m] 2.0
Polar bearing std. �✓ [�] 2
Detection probability PD [�] 0.9

AIS measurements

Cartesian noise std. �cR [m] 1.0
Polar range std. �r [m] 2.0
Polar bearing std. �✓ [�] 2
Confidence probability PC [�] 0.999
Unknown target no ID probability ⇠0u [�] 0.9

PMBM parameters

Poisson pruning threshold TPp [�] 1.0⇥ 10�5

Bernoulli pruning threshold TBp [�] 1.0⇥ 10�6

Birth weight U [1/m2] 1⇥ 10�3

CV model 1 process noise intensity qa,1 [m2/s3] 0.22

CV model 2 process noise intensity qa,2 [m2/s3] 22

Turn rate process noise intensity q! [rad2/s3] 0.0022

Single model process noise intensity qa,1 [m2/s3] 0.82

Initial model probability µs
u [%] [ 25 25 50 ]

IMM transition probability ⇡s̃s [%]
h
99 .5 .5
.5 99 .5
.5 .5 99

i
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Table 4.1: Tuning parameters for the point target scenarios. If the parameters differ
between the two scenarios, they are listed with the parameter for the first scenario
first, and for the second scenario last.

Quantity Symbol Unit Value (1st, 2nd)

JIPDA parameters

Existence termination threshold Td [�] 1.0⇥ 10�5

CV model 1 process noise intensity qa,1 [m2/s3] 0.12

CV model 2 process noise intensity qa,2 [m2/s3] 1.52

Turn rate process noise intensity q! [rad2/s3] 0.152

Initial existence probability ru [-] 0.18
Initial visibility probability ⌘u [-] 0.9
Visibility transition probability ⇡s̃s [%] [ 48 52

10 90 ]
Initial model probability µs

u [%] [ 80 10 10 ]

MHT parameters

Number of tailed time steps N [�] 5
Initialization window size NM [�] 5
Measurements needed for initialization M [�] 2
Birth rate U [1/m2] 1⇥ 10�3

Cartesian noise std. �cR [m] 4.0
Process noise intensity q [m2/s3] 1.02

Initial velocity std. �v [m/s] 20
Similar track prune threshold TSTP [�] 0

4. The PMBM operating only on the radar measurements.

5. The IMM-PMBM operating only on the radar measurements.

6. The AIS-PMBM.

7. The AIS-IMM-PMBM.

The trackers are tested on two different types of simulated data sets. The first of
these is a data set configuration described in [138]. The data sets consider several
targets that are all situated approximately at the origin of the area halfway through
the simulation. The scenario is created by first choosing the points where the targets
are to meet, and then stepping backwards and forwards with some kinematic model
to create their trajectories. For the purposes of our simulations, we consider ten
targets, whose midpoint positions and velocities are drawn from N (0, 0.25 ⇥ I),
the same as for Case 2 in [138]. The radar and AIS measurements are generated
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according to the measurement models described in Section 4.5, with the frequency
of the AIS measurements decided by the requirements set by the protocol [73].

Furthermore, the different PMBM variants are tested on the Ravens data set
detailed in [22]. The data set is designed to pose a challenge to the trackers and
consists of eight targets and one ownship. During a span of 23 minutes, the targets
and the ownship move in formation, making maneuvers underway. For the data to be
suitable for testing of fusion between radar and AIS, additional AIS measurements
are created for six of the eight targets.

The tuning parameters are shown in Table 4.1 for all the trackers. For the
AIS-PMBM from Miao et al., we calculate the AIS detection probability directly
from the total number of AIS messages received, together with the number of
targets present in the area and their life span. Furthermore, the Cartesian noise
component in the AIS measurement noise is increased to 102 to account for the time
difference between transmission and processing of the measurements. Also note
that the MHT algorithm does not implement the measurement noise with a polar
component, and thus only uses Cartesian measurement noise. The process noise and
initial model probabilities of the PMBM and JIPDA trackers differ, in the case of
the initial mode probabilities significantly. During simulations, it became evident
that the PMBM trackers needed more process noise than the JIPDA tracker to follow
the targets successfully. This can be due to the step where the JIPDA combines
the track-to-measurement associations, which has the observed effect of somewhat
averaging the individual target movements across closely spaced targets.

Results

Results for the first data sets, with targets that meet in the middle of the surveillance
area, are shown in Figure 4.1 and Table 4.2. Overall, the plots show that the most
difficult parts of the scenario are at the very start, the middle, and at the very end.
Most trackers perform best in the intervening periods. That the trackers struggle at
the midpoint is no surprise, as all targets are closely spaced. Furthermore, as the
targets are initialized with relatively low velocities and evolve from the midpoint,
they usually have higher velocities at the start and end points. This means that
they are harder to track correctly, and errors caused by delays in initialization and
termination of tracks also contribute to the observed effect.

Next, we look at the performance of the different trackers relative to each other. It
is evident that the MHT algorithm struggles more than the other trackers, especially
with initializing tracks on all targets. Furthermore, the AIS-VIMMJIPDA performs
well in many aspects but struggles in the middle of the scenario. These struggles
manifest themselves in both false alarms, and missed detections which are present
almost to the end of the scenario. Its IMM capabilities does, however, result in a low
localization error, perhaps helped by the fact that the most troublesome targets are not
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Table 4.2: GOSPA-T values for the different tracker configurations when tested
on the data set configuration from [138], corresponding to the averaged values in
Figure 4.2. The best result for each error source is highlighted in bold.
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MHT

Total GOSPA 10.424 9.964 8.809 8.465 10.111 13.211 27.013
Localization 9.107 8.718 7.943 7.520 8.702 9.341 12.300

Missed detection 1.013 0.739 0.511 0.482 1.185 4.649 15.852
Missed detection 1.013 0.739 0.511 0.482 1.185 4.649 15.852

False alarm 0.238 0.328 0.262 0.344 0.206 0.482 4.961
Track switch 1.055 1.140 0.732 0.755 0.962 0.670 1.513

tracked. For the different PMBM variants, the results show that both IMM and use of
AIS measurements reduce the GOSPA value. The pure PMBM tracker outperforms
the two previously mentioned trackers, albeit with regards to the AIS-VIMMJIPDA
tracker by only a slight margin. Furthermore, all its augmentations perform even
better. When including the AIS measurements, the general trend across the different
trackers is an improvement in all error sources except for the false alarms. Because
tracks initialized on AIS measurements get a higher weight than those initialized
on radar measurements, this is somewhat expected. On the other hand, the use of
AIS noticeably decreases the number of missed detections. Regarding the PMBM
variant from [102], its performance lands between that of the regular PMBM and
the AIS-PMBM presented here. This can be explained by the fact that the AIS
messages are limited by a low PD, thus giving them reduced influence on the results
in comparison to the AIS-PMBM presented here. Increasing the PD, however, could
result in premature terminations when AIS messages are not available. Furthermore,
we see that use of IMM improves performance noticeably for all error sources except
the false alarms, where we see a slight increase.

For the Ravens data set we only consider the four different PMBM variants.
The results are shown in Figure 4.2 and Table 4.3, and show the same trend as we
saw in the previous data with more advanced methods performing better overall.
There are, however, some interesting idiosyncrasies. The trackers with IMM provide
better localization estimates than their counterparts before the midway point but
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Figure 4.1: Figure with legend continues on next page.
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Figure 4.1: GOSPA-T values for the different trackers and configurations, where
we see how the different trackers perform for different error sources evolve for the
duration of the scenarios. We use the GOSPA parameters p = 2, c = 40, and � = 5.
Shown, from the top, is the combined GOSPA-T, the localization error, the missed
detection error, the false alarm error, and the track switch penalty. For visual clarity
the values are plotted as the moving average over 10 time steps.
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Figure 4.2: Figure with legend continues on next page.
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Figure 4.2: GOSPA-T values for the different PMBM tracker configurations. We
use the GOSPA parameters p = 2, c = 20, and � = 5. Shown, from the top, is the
combined GOSPA-T, the missed detection error, the false alarm error, the localization
error, and the track switch error. The values are from the whole duration of the
Ravens data set, and for visual clarity plotted values are the moving average over
100 time steps.
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Table 4.3: GOSPA-T values for the different PMBM configurations when tested on
the Ravens data set, corresponding to the averaged values in Figure 4.2. The best
result for each error source is highlighted in bold.

PMBM AIS-PMBM IMM-PMBM AIS-IMM-PMBM

Total GOSPA 10.149 8.859 8.151 6.845
Localization 6.956 6.145 7.280 6.274

Missed detection 3.853 3.556 0.861 0.670
False alarm 0.555 0.279 0.292 0.123

Track switch 0.446 0.175 0.687 0.246

worse after. At the very end of the scenario this can be explained with the non-IMM
trackers losing track of their targets, and thus the localization error of the more
difficult targets is not included. This does not, however, explain why this also occurs
before the track losses happen. An explanation can be that we experience a trade-off
between precise estimation of individual targets and being able to track all targets.
That is, to be able to handle large changes in acceleration the added covariance
in the prediction is often too large when the targets do not perform challenging
maneuvers. Even though the IMM framework should be able to account for this,
it may struggle to estimate the mode probabilities correctly due to the challenging
scenario. Nevertheless, the differences between methods are not large, and the IMM
methods perform better by the total GOPSA metric. Furthermore, this indicates that
looking only at single components of the GOSPA metric will not give a complete
picture of the performance of the trackers.

4.6.2 Experimental validation in a closed-loop experiment

The AIS-IMM-PMBM was also used during the testing of an autonomous surface
vehicle (ASV) in the Trondheimsfjord in October 2023. A more extensive description
of the testing and additional scenarios is available at [70]. In the context of this
chapter, the purpose of using the AIS-IMM-PMBM method in the experiment was
to demonstrate the feasibility of using an advanced tracker in a larger system with
higher demands regarding latency, and to show that it works together with a collision
avoidance system. The ASV was equipped with a radar and an AIS receiver. The
collision avoidance algorithm, a scenario-based model predictive control method
described in [86], was responsible for maneuvering the ASV to avoid collisions with
the targets based on input from the AIS-IMM-PMBM.

The scenario involves the ownship, a Mariner from Maritime Robotics, and
Juggernaut, a motorboat. The boats are shown in Figure 4.3. The motorboat was
operated by a human operator, and the ownship was tasked with avoiding collisions
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with the target while maintaining a course towards a waypoint. The scenario was
designed to challenge the collision avoidance algorithm, and for it to properly respond
to the movements of the target it needed accurate target estimates. What amounts
to accurate estimates in this use case is somewhat different from what is usually
considered when evaluating target trackers. The course and speed estimates are very
important as they are used to predict the future positions of the targets. The position
of the target, however, is not as important because the collision avoidance algorithm
does not mainly act based on the current target position, but rather on the predicted
future positions. An inaccurate course estimate will then have a larger impact than
an inaccurate position estimate.

(a) (b)

Figure 4.3: The two ships used in the experimental validation: Mariner (a) and
Juggernaut (b). Photos: Maritime Robotics.

Results

The scenario is depicted in Figure 4.4. The Mariner was tasked with moving on a
north-eastern course while the motorboat made several maneuvers that demanded
action from the Mariner. The target deliberately acted counter to collision avoidance
guidelines, so that the collision avoidance algorithm was forced to make evasive
maneuvers. Nevertheless, the AIS-IMM-PMBM tracker was able to provide accurate
estimates of the target, and the collision avoidance algorithm was able to respond to
the maneuvers. The course and speed estimates are stable and with relatively low
uncertainty. Jittery and uncertain estimates would demand greater caution on the
part of the collision avoidance algorithm, and it could create situations where the
ownship path would have to be recalculated at a higher frequency than necessary.
Furthermore, any false alarms were avoided, partly helped by the low clutter density.

The data collected during the scenario was also input to an IPDA tracker, see
Figure 4.5. This was the tracker used in [85], and whereas it is able to track the target
its course and speed estimates are considerably noisier than for the AIS-IMM-PMBM.
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Figure 4.4: A scenario with a target conducting sharp and unpredictable maneuvers,
showing how the tracker is able to successfully estimate the target state in a real-world
setting. The ownship is shown as the dotted blue line in (a) and tries to move in a
northeastern direction while upholding collision avoidance regulations. The target is
shown as a solid orange line and tries to make maneuvers which hinder the Mariner
in its objective. The radar measurements are shown as black dots which fade to grey
as time passes, the AIS measurements are shown as green crosses which also fade as
time passes, and the reported GPS position of the target is shown as a solid black
line. (b) shows the evolution of the course estimates as a solid red line, together with
one standard deviation in each direction as solid cyan lines. The speed estimates
are shown in (c) in the same way, with the estimate as a red line and the standard
deviations in cyan.
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Figure 4.5: The same scenario as in Figure 4.4, but now an IPDA is used for tracking.
an overview of the scenario is shown in (a), the estimated course is shown in (b),
and the estimated speed is shown in (c). The tracker is able to follow the target, but
the course and speed estimates are not as precise.
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The standard deviations are also larger: for the IPDA the standard deviations are
0.36 knots for the speed and 34.45 degrees for the course, whereas they are 0.25
knots and 15.63 degrees for the speed and course estimated by the PMBM. Because
the IPDA uses only a single kinematic model, and furthermore does not use the AIS
messages, this is to be expected. However, as the collision avoidance method was not
used together with the IPDA, it is difficult to say how this would impact operations.
Previous work on use of PDA in radar-based maritime collision avoidance [36]
indicates that additional filtering of the speed and course estimates is needed for
successful operation. Furthermore, the IPDA is well suited for such a single-target
scenario but lacks the flexibility of a more advanced method regarding multiple
targets with different movement characteristics.

4.7 Results for extended object tracking

For the AIS-GP-PMBM we also use GOSPA for trajectories to evaluate the perfor-
mance with regards to the position and velocities of the target estimates. Additionally,
we need a method to evaluate the extent estimates. For this purpose, we use the
intersection-over-union (IOU) between the estimated and true extents of the targets.
IOU is found by taking the true extent of the target as the area E and the estimated
extent as the area Ê , which we then use to calculate

IOU =
E \ Ê
E [ Ê

. (4.76)

To pair the correct estimate with the correct ground truth, we use the same
assignment procedure that is used when calculating the GOSPA metric. We consider
two scenarios that highlight two key challenges that make estimation based on
exteroceptive measurements difficult: occlusion and clutter measurements. To
properly handle occluded targets is difficult, and the lack of measurements will in
most cases result in reduced estimate quality. The clutter model we use is quite
simple and assumes that the clutter measurements are uniformly distributed among
the sensor cells. As the experimental data demonstrates, this is not necessarily the
case, and especially target-dependent clutter, such as that originating from wakes, is
difficult to handle. Both these problems are in some ways mitigated when performing
point target tracking, as the sensor detections are clustered before they are input to
the tracker. This means that partial occlusions will not necessarily result in loss of
measurements, and that target-dependent clutter can be clustered together with target
detections. For extended object tracking, however, we do not have these advantages.

The tuning parameters for both scenarios are shown in Table 4.4.
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Table 4.4: Tuning parameters for the extended object scenarios. If the parameters
differ between the two scenarios, they are listed with the parameter for the first
scenario first, and for the second scenario last. Any parameters not listed here are
identical to ones found in [6].

Quantity Symbol Unit Value

Survival probability PS [�] 0.999
Gate size g [�] 20
Max. number of hypotheses Nmax [�] 20
Poisson pruning threshold TPp [�] 1.0⇥ 10�5,

1.0⇥ 10�2

Bernoulli pruning threshold TBp [�] 1.0⇥ 10�5,
1.0⇥ 10�2

Area radius R [m] 100, 60
Clutter rate Nc [�] 16, 80
Initial velocity std. �v [m/s] 3
Initial heading std. � [�] 180
Initial ang. vel. std. �! [�/s] 45
Existence confirmation threshold Tc [�] 0.99
Motion noise intensity qa [m2/s3] 0.22

Heading noise intensity q✓ [�] 0.12, 0.32
Number of birth components Nb [�] 36
Birth weight U [1/m2] 1/36
Forgetting factor ⌘� [�] 0.99
Gamma distribution shape
parameters

↵, � [�] [ 1000 100 ], [ 500 100 ]

Lidar measurements

Detection probability PD [�] 0.9
Cartesian noise std. �r [m] 0.1, 0.5

AIS measurements

Cartesian noise std. �cR [m] 1.0
Polar range std. �r [m] 1.0
Polar bearing std. �✓ [�] 10
Confidence probability PC [�] 0.999
Unknown target no ID probability ⇠0u [�] 0.9
Length and width std. �l,w [m] 0.5
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Table 4.5: Values for the performance metrics in Figure 4.6 and Figure 4.7. The
values are averaged over the whole duration of the scenarios, and the best values for
each metric are highlighted in bold.

Simulated data Experimental data

GP-PMBM AIS-GP-PMBM GP-PMBM AIS-GP-PMBM

Total GOSPA 2.564 1.420 8.684 4.789
Localization 2.154 1.091 4.577 3.693

IOU 0.600 0.765 0.192 0.263

4.7.1 Simulated data

The simulated data used to evaluate the EOT methods is the same as that used in [6].
It consists of four targets, with a LiDAR located at the center of a surveillance area
with a 100-meter radius. As for the Ravens data set, AIS measurements were created
for the targets. Here, all targets transmit AIS messages, which also include their
width and length. All the targets are 6.63 meters long and 2.4 meters wide, the
scenario lasts for 240 seconds, and the LiDAR measurements generate scans of the
area at 1 Hz.

Results

Figure 4.6 and Table 4.5 show the results. The targets enter and depart the surveillance
area at different times, as can be seen by short spikes in the GOSPA values. These
spikes correspond to missed detections when they arrive and false alarms when they
leave, due to latency in the initialization and termination of tracks. Regardless, for
most of the scenario the trackers are able to both track and estimate the extents of
the targets quite successfully, with low localization error and high IOU. Use of AIS
measurements both decreases the localization error and increases the IOU. This is
shown throughout the whole scenario but is most evident before the 150 second
mark. Here, occlusion effects result in low LiDAR measurement quality, which in
turn makes it difficult to estimate the target states. AIS measurements, however, are
not impacted by occlusion and allows the tracker to recuperate after the intermediate
LiDAR scans. This effect becomes more evident because the AIS messages are
transmitted at approximately the same time, resulting in noticeable spikes in the
performance metrics also when averaging across all targets.
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4.7.2 Experimental data

The experimental data used to test the AIS-GP-PMBM were collected in the
Trondheim channel as part of the Autoferry project at NTNU, and was published
in [62] as scenario 13. It is also discussed in the context of the GP-PMBM in [6].
The data were collected using a LiDAR mounted on the Milliampere ferry, which
was stationary, with a range of approximately 60 meters. Furthermore, the scenario
contains two targets, both 7 meters long and 3 meters wide motorboats. They travel
across the length of the canal in opposing directions, passing each other approximately
when closest to Milliampere. The targets did not transmit AIS messages, but GPS
positions are available, which we used to create AIS measurements in the same
manner as previously.

Results

The results can be seen in Figure 4.7 and Table 4.5. The overall performance is
not as good as for the simulated data set. Because we are no longer dealing with
simulated measurements that adhere to our modeling assumptions, this is to be
expected. The ground truth also contains a bias which skews the results somewhat,
but it is nevertheless useful for comparison purposes. Furthermore, the data set
contains a lot of clutter, both from the ship wakes and other sources. The clutter
model may struggle especially when encountering wake clutter. When evaluating
the measurements in an association hypothesis, wake clutter will often be included
and given a high weight. This leads to the extent estimate growing larger than it
should, and the kinematic estimate being pulled towards the wake. Closely spaced
targets which generate wake clutter can exacerbate performance degradation further
by associating the wake clutter from one target with the other, and the tracker will
figuratively try pulling the extent estimate apart. Some variation of this effect is seen
in this data set, with the tracker struggling at the midpoint of the scenario when the
targets are closest to each other.

Initially, both variations of the GP-PMBM are able to track the targets well,
albeit with some false alarms for the pure LiDAR tracker. As the targets get closer
to each other and the LiDAR, the performance degrades. The AIS-GP-PMBM is
able to handle the situation better, helped by the AIS messages that both provide
good kinematic information and the dimensions of the ship. In a situation where the
LiDAR measurements cause the extent estimate to blow up, the AIS measurements
help reduce its size. The pure LiDAR tracker, however, struggles to maintain a good
extent estimate. This is seen clearly in the plots of the width and length, and in
Figure 4.8. Furthermore, we see that the oversized extent of the non-AIS variant
creates an offset in the position estimate, and that the direction of the estimate is
flipped. At the displayed time step this is avoided when including AIS information,
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Figure 4.6: Figure with legend continues on next page.
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Figure 4.6: Comparison between the GP-PMBM and the AIS-GP-PMBM for the
simulated data set. We use the GOSPA parameters p = 2, c = 10, and � = 5. From
top to bottom, the plots show the total GOSPA-T, the localization error, the IOU, the
averaged estimated lengths, and the averaged estimated widths.
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Figure 4.7: Figure with legend continues on next page.
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Figure 4.7: Comparison between the GP-PMBM and the AIS-GP-PMBM for the
experimental data set. We use the GOSPA parameters p = 2, c = 10, and � = 5.
From top to bottom, the plots show the total GOSPA-T, the localization error, the
IOU, the averaged estimated lengths, and the averaged estimated widths.
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���

(a)

���

(b)

Figure 4.8: A snapshot of the extent of one of the targets 30 seconds into the scenario,
at time step 283. The output from the AIS-GP-PMBM is shown in (a), and that of
the GP-PMBM in (b). The estimated extent is shown in orange, and the ground
truth in blue. Additional elements are explained in Figure 4.4. When not using AIS
information, the extent estimate is both blown up and flipped orientation-wise.

even though the heading is not directly updated with AIS information. Furthermore,
false alarms are present for both trackers. For the pure LiDAR, tracker the false
alarms are persistent throughout the whole scenario, whereas they arrive later in
the scenario for the AIS-GP-PMBM. With a lot of clutter, and especially with wake
clutter, this is difficult to mitigate without more advanced clutter models.

4.8 Chapter summary

We have presented a method for including target-provided information in PMBM
trackers, with AIS messages as an example of such information. We do this for
PMBM and its IMM-PMBM extension for point target tracking, and the GP-PMBM
for extended objects. Through simulations and experiments we have shown that the
AIS-PMBM and AIS-IMM-PMBM trackers perform better than their counterparts
which do not use AIS measurements. Furthermore, we have compared the presented
methods to other trackers which utilize AIS messages and shown that they perform
well in comparison.

Because one of our use cases for the AIS-IMM-PMBM tracker is to provide
target estimates for a collision avoidance system, we have also tested them in a
closed-loop experiment. The results show that the AIS-IMM-PMBM tracker is able
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to provide good estimates and enables the collision avoidance method to respond to
the target movements. The experiments also show the feasibility of using PMBM in
applications which demand real-time performance.

Furthermore, we show how use of target-provided information in extended object
tracking can mitigate some of the persistent problems when using only exteroceptive
sensors. We use AIS, together with LiDAR, and use information regarding the
ship dimensions to help estimate the extent. By updating the extent with the ship
dimensions, we avoid that the extent changes its size when the LiDAR measurement
quality is poor. We show that this can improve performance when a lot of clutter
measurements are present, and that it helps the tracker recover from occlusion effects.

There are some potential lines of future research. Firstly, AIS messages can be
utilized more extensively to improve target estimates. For example, they contain
information about course, heading, and antenna placement, which can be useful
in several ways. Furthermore, better wake clutter modeling can solve some of
the problems encountered in Section 4.7.2. Several works present more general
clutter models [48,133], and also target-dependent clutter models for wake clutter
mitigation [19,64]. Such models could be utilized to improve the performance of
the AIS-GP-PMBM in the presence of wake clutter.
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Chapter 5

Autonomous Marine Collision
Avoidance With Sensor Fusion of
AIS and Radar

This chapter is based on the publication:

[70] A. G. Hem, E. F. Brekke, G. D. K. M. Kufoalor, and I. H. Kingman.
Autonomous Marine Collision Avoidance With Sensor Fusion of AIS and
Radar. Submitted to the 15th IFAC Conference on Control Applications in
Marine Systems, Robotics and Vehicles (CAMS 2024)

Changes from the submitted publication involve shortening of the introduction 
section.
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Chapter 6

Validation of AIS Information
With Exteroceptive Sensor Fusion
in Autonomous Operations

This chapter is based on the publication:

[66] A. G. Hem and E. F. Brekke. Validation of AIS Information With Exterocep-
tive Sensor Fusion in Autonomous Operations. To appear in IEEE Intelligent
Transportation Systems Magazine. doi: 10.1109/MITS.2024.3389869

Changes from the submitted publication involve shortening of the introduction
section.

6.1 Introduction

To use wrong, or even deliberately falsified, information in an autonomous system is
obviously problematic. It can cause degraded situational awareness, which could lead
to wrong decisions and dangerous situations. Thus, it is important to be able to detect
and handle errors in the incoming Automatic identification system (AIS) messages.
The assumption that the vessel receiving the AIS messages is also equipped with
additional sensors, provides us with the possibility of using a solution that utilizes
exteroceptive sensor data to check the AIS information. The unreliable nature of AIS
has led to the development of many methods for detecting and handling errors. A
recent survey [144] considers different methods for detecting anomalies in AIS tracks.
As we want to allow for the use of AIS messages in combination with exteroceptive
sensors, the methods most relevant for our case are the ones that rely on such sensors.
Bloisi et al. [13] considers fusing of camera data and AIS information for situations
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where radar is unavailable. We, however, are concerned with situations where we
can use radar. Katsilieris et al. [82] and d’Afflisio et al. [32], for example, detect false
AIS messages using radar data. These methods use statistical hypothesis testing
and are useable regardless of the availability of historical data. Their objective is to
check if AIS messages provide incorrect positional information to detect spoofing.
However, [82] and [32] only consider single targets and focus on classifying the
spoofing scenario. This differs from our use case, where we want to validate correct
data from multiple targets and discard wrong data without considering it further.
We also need methods that consider errors in additional AIS message fields such as
speed and course.

This leads to the contributions of this chapter. We present a methodology for
validating AIS information for use together with exteroceptive sensors in maritime
autonomy applications. The validation method relies on trackers which fuse AIS
data and exteroceptive sensor data. We present methods for detecting errors in the
transmitted position, speed, course, and rate of turn. This allows for use of AIS
messages in target tracking, long-term prediction, and collision avoidance without
risking consequences from erroneous messages. We use simulated data to determine
the efficiency of the detector and demonstrate the method on a real-world dataset
where false AIS data has been injected.

This chapter is structured as follows. Section 6.2 presents relevant details
regarding AIS. That is, what parts of the available information we need to consider,
target tracking methods that use AIS, and reliability concerns. Section 6.3 presents
the statistical tests used to detect any errors in the relevant AIS message fields.
Section 6.4 presents methods for validating AIS messages and outlines how these
can be used with a target tracker. Section 6.5 presents the test setup and results,
before Section 6.6 concludes.

6.2 Background

6.2.1 The Automatic Identification System (AIS)

In 2004, the International Maritime Organization (IMO) mandated the use of AIS to
increase situational awareness for maritime vessels and improve their exchange of
information. Vessels using AIS are categorized either as Class A or Class B vessels.
Class A mainly applies to commercial ships, whereas most other vessels are class B.

There are many different AIS messages, but we are concerned with those
providing dynamic information. These are the AIS messages with ID numbers 1,
2, or 3 for Class A vessels, and ID 18 for Class B vessels. The messages contain
roughly the same information, except that the Class B dynamic messages omit the
turn rate and are not required to transmit course information. Furthermore, in this
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Figure 6.1: A general target tracker structure.

work, we are only interested in position, MMSI number, speed, course over ground,
and rate of turn. A thorough technical description of the AIS messages, and the
system as a whole, is found in [73].

6.2.2 A brief introduction to target tracking

To explain some of the concepts used in the following sections, we will briefly
introduce a generic target tracker. Figure 6.1 shows a block diagram of a tracker
structure.

We initialize new tracks on the incoming sensor measurements in the first block
in Figure 6.1. The new tracks represent the hypothesis that the measurements come
from previously undetected targets. Furthermore, the already existing tracks are
predicted to the point in time when the measurements arrive. This prediction is
usually performed with some filtering method, such as a Kalman filter or a particle
filter, together with a kinematic model. Furthermore, a kinematic model is used to
predict the state of the new tracks. Two widely used models are the constant velocity
(CV) [8, p. 274] model, and the coordinated turn (CT) [8, p. 467] model.

The second block receives the new and predicted tracks from the first block.
Here we perform gating, and then clustering, on the predicted tracks to reduce
computational loads. Gating is a method where all measurements unlikely to be
associated with a given track are ignored, by only considering measurements in the
vicinity of the track. We also calculate the measurement likelihood for each track
and measurement pair within the clusters.

Next, we perform data association by using the measurement likelihoods. The
specific method depends on the tracker. If a probabilistic data association (PDA)
filter [9] is used, each possible association between a track and a measurement
is assigned a weight used when updating the track. The track-to-measurement
weight decides how much each measurement contributes to the update when the
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different hypotheses are merged into a single estimate. Other methods, such as
multiple hypothesis tracking (MHT) [115], calculate weights to decide the most
likely track-to-measurement associations.

Lastly, we estimate the target states. Here the most likely state of each track is
calculated for use in other parts of the system. Furthermore, some methods estimate
the existence probabilities of each track. The existence probability quantifies
whether the potential targets the individual tracks follow are likely to exist or not.
Termination or confirmation of tracks is done by, for example, evaluating the existence
probabilities.

For the problem of multi-sensor target tracking, we can divide the solutions
into track-to-measurement and track-to-track methods. The track-to-measurement
methods fuse the data on a measurement level, whereas the track-to-track methods
establish tracks on measurements from individual sensors before fusing the estimates.

Recently, several target tracking methods which incorporate AIS messages
have been developed. Both [44] and Chapter 3 present trackers which fuse radar
measurements and AIS messages on a measurement level. [44] uses loopy belief
propagation with a particle filter, and Chapter 3 uses a joint integrated probabilistic
data association (JIPDA) [105] tracker and interacting multiple models (IMM) [15]
with an extended Kalman filter. IMM allows us to use more than one kinematic
model to describe the movement of the targets. The tracker in Chapter 3 is the one
we use to test the methods presented in this chapter.

6.2.3 Reliability of AIS messages

The AIS protocol detects errors from bit flips during transmission with cyclic
redundancy checks and drops erroneous messages. Other errors, however, are hard
to catch. Thus, the problem of potentially erroneous AIS messages has been the
subject of significant research efforts. In [60], Harati-Mokhtari et al. investigate both
static and dynamic information transmitted in AIS messages and conclude that the
AIS messages, in general, can not be fully trusted. Ray et al. [114] present the risks
associated with the AIS protocol and establish a methodology with which to develop
error-mitigating techniques. In [75], Iphar et al. build upon the work in [114] and
investigate the reliability issues in AIS. They perform a risk analysis and identify
and classify several problems which can arise with falsified AIS data.

A more general analysis of cybersecurity challenges at sea is presented in [1].
Here, in addition to the potential for manipulated AIS messages, the problem of
the global navigation satellite system (GNSS) being spoofed or jammed is pointed
out. As the AIS system relies on GNSS for positioning, GNSS spoofing would
also affect the transmitted AIS messages. These limitations have made the prospect
of an improved AIS protocol tempting. The new VHF Data Exchange System
(VDES) [71], supported by IMO, is thought to serve as a second-generation AIS.
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It addresses many of the problems with the current AIS protocol but is not widely
adopted yet.

6.3 Detection of AIS message errors

The fields in the AIS message have a limited range of correct values. Thus, it
is possible to check if the received data lie outside the permitted intervals before
performing more sophisticated tests. Table 6.1 summarizes the possible values for
the relevant fields, and we discard any outside of these ranges as a preliminary step.

Table 6.1: Intervals for the AIS message fields providing useable data, from [73],
and information regarding conversion from the bit values to usable values.

AIS message field Interval Conversion

MMSI number See [74] Becomes a nine-digit decimal number

Longitude 000000016-
66FF30016

An additional bit allows for using two’s com-
plement, with west being positive and east
negative. Each step is 1/10000 minute.

Latitude 000000016-
337F98016

An additional bit allows for using two’s com-
plement, with north being positive and south
negative. Each step is 1/10000 minute.

Course over ground 0 - 3599 Each step is 0.1 degrees
Speed over ground 0 - 1022 Each step is 0.1 knots
Rate of turn 0 - 256 The field value is calculated as 4.733

p
|!| for

turn rate !. A value between 0 and +126 or 0
and �126 indicates that the vessel is turning
right or left, respectively. Similarly, a value
of +127 or �127 indicates that the vessel is
turning right or left at more than 5° per 30
seconds.

6.3.1 Error causes

We identify the undesirable events relevant to our use case from [75, Table 5] and
summarize them in Table 6.2. These are the events that can feed the system incorrect
information or the ones that remove part of the system input. Of these two options,
the first is the most problematic. Whereas many errors can result in AIS messages
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Table 6.2: The relevant events from [75, Table 5].

Problem Consequence

Dynamic data from a target are false. The system can be fed incorrect
information, or messages can be
dropped.

AIS data reception is not reliable.

Dynamic data from a target are not
available.

The system must operate using only
exteroceptive sensors.

AIS data reception is not working.

not being received, such as faulty antennas or bit flips leading to dropped messages,
these situations are only a minor concern. If the tracker misses part of the AIS input,
it can still rely on the exteroceptive sensors. However, if the tracker uses false AIS
information in computations, this will likely degrade the estimates found using the
exteroceptive sensors.

6.3.2 Error types

Before designing the error detection methods, we classify the types of errors we can
expect to encounter. There are five fields in which errors can occur, and we assume
that the speed and course is converted to a velocity vector before its use in a tracker.
Because of this, we consider errors in velocity instead of course and speed separately.
Furthermore, we also distinguish between what we denote as the primary and the
additional information provided by the AIS messages. The primary information
provided by AIS messages is the position and the MMSI number, whereas the
additional information is the velocity and rate of turn.

The primary information is used for data association and is generally not easily
discarded, as opposed to the additional information. Position errors in the AIS
messages can lead to false tracks, and consecutive errors are likely to result in a false
track. Figure 6.2b shows this, with a new track initialized on a sequence of false AIS
messages. Furthermore, we assume that the underlying target tracker is designed to
process the MMSI numbers probabilistically, so any errors in the MMSI information
will be within the intended design of the tracker. This is the case for the trackers
described in both [44] and Chapter 3.

Additional information is used mainly to improve the target estimates.
Errors in the course and speed can result in wrong velocity estimates, and

errors in the turn rate can result in wrong angular velocity estimates. This can
give inaccurate predictions, and in the worst case, track loss. Both sporadic and
consecutive errors can result in these problems, with consecutive errors posing the
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larger threat. Figure 6.2c shows an example of a scenario where consecutive errors
in the course and speed result in track loss.

������

(a) A track which follows a target with correct
AIS messages originating from an actual target.

������

(b) A track established on AIS messages not
corresponding to an actual target.

������

(c) A track being initialized on AIS messages
reporting zero-valued speed, before losing the
target and having to be re-established.

Figure 6.2: Tracking of a single target using the tracker from Chapter 3. The tracker
input contains AIS messages (green crosses) and radar measurements (gray circles).
The targets are black lines, with the dot signifying the end position. The tracks
are colored lines ending in a dot, with their opacity corresponding to the estimated
existence probability. As can be seen, erroneous AIS messages can make the tracker
output false tracks or degrade the tracking performance.

6.3.3 Hypothesis test for validating velocity and rate of turn information

We use a hypothesis test to validate the velocity information in the AIS messages.
The two hypotheses are as follows:
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• H0: The velocity measurement comes from the distribution N (x̂v, P̂v) where
x̂v is the estimated velocity mean and P̂v is the estimated velocity covariance
from the target submitting the AIS message.

• H1: The velocity measurement does not come from the above distribution.

Furthermore, we use a test statistic describing the available data to evaluate the above
hypotheses. We define it as

⇣tjv = (zv � x̂v)
>
P̂

�1
v (zv � x̂v) (6.1)

which is the squared Mahalanobis distance between the measurement zv and the
estimate x̂v. ⇣tjv is distributed according to a �2 distribution with the degrees of
freedom equal to the velocity dimension. We do not necessarily know which target
that has transmitted the AIS message. Thus, we must perform data association
to evaluate the hypothesis. The data association can be done in several ways, for
example, by using the measurement likelihoods as weights. We use the normalized
product of the measurement likelihoods ltj and the existence probabilities rt as
weights, which in JIPDA-style trackers are readily available. The weights become

wtj =
ltjrtP
t l

tjrt
. (6.2)

Using this, we find the final test statistic as a weighted average over the distances
between the measurement and the tracks as

⇤j =
X

t

wtj⇣tjv (6.3)

When we have found the test statistic ⇤j , we can evaluate the hypothesis using the
�2 distribution. Using a chosen significance level ↵, we can reject the hypothesis if

⇤j > �2
↵,⌫ (6.4)

where ⌫ is the degrees of freedom for the �2-distribution.
To evaluate the turn rate information from the AIS messages, we formulate

hypotheses similar to the ones used for the velocity information:

• H0: The angular velocity measurement comes from the distributionN (x̂!, �̂2!)
where x̂! is the estimated angular velocity mean, and �̂2! is the estimated
angular velocity variance from the target submitting the AIS message.

• H1: The angular velocity measurement does not come from the above
distribution.
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To perform the test, we need an estimate of the angular velocity of the targets from
the tracker. We can obtain this with, for example, a CT model in an IMM framework
or extended object tracking. The tracker we use, from Chapter 3, uses IMM with a
CT model. As seen in Table 6.1, a target can either transmit a turn rate or only an
indicator that the vessel is turning right or left at a rate larger than 5� per 30 seconds.
For the case where the rate is transmitted with measurement z!, we calculate the test
statistic as

⇣tj! =
(z! � x̂!)2

�̂2!
. (6.5)

In the second case, we calculate the test statistic by applying the cumulative
distribution function of the standard normal distribution �(·) as

⇣tj! =

(
1� �(Z) if z! = 5� per 30 seconds
�(Z) if z! = -5� per 30 seconds

(6.6)

where
Z =

z! � x̂!
�̂!

. (6.7)

For the case where the precise rate of turn is transmitted, the test statistic (6.3) is
again �2-distributed with some significance level ↵ and 1 degree of freedom. When
only a turn indication is transmitted, we accept the hypothesis if ⇤j  ↵.

Remark 6.1. If the exteroceptive measurements and the AIS messages are fused
based on track-to-track fusion, we can, for example, update the AIS tracks with the
AIS message first, before validating the information in the message with the radar
track estimates. In that case, we replace the measurement likelihoods ltj with the
track-to-track association probabilities. /

6.3.4 Likelihood ratio test for detecting false AIS tracks

To detect wrong positional information, we formulate the following hypotheses:

• H0: The position reported by the AIS message corresponds to the position
of a target that is detectable by exteroceptive sensors. PD(xt

k|H0) = PD(x).
Here, PD(xt

k) is the probability of detection of the target xt
k at time step k.

• H1: The position reported by the AIS message does not correspond to
the position of a target that is detectable by exteroceptive sensors. Thus,
any exteroceptive detections would have to be the result of clutter, and
PD(xt

k|H1) = �(xt
k). Here, �(xt

k) is the probability of a false alarm where
the target xt

k is located.
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The likelihood ratio test considers the likelihood of the data output from the tracker,
conditioned on the hypotheses H0 or H1. First, we have that

l(xt
k|Hi) =

X

ak

l(xt
k, ak|Hi)

=
X

ak

l(xt
k|ak, Hi)p(ak). (6.8)

Here, p(ak) is the probability of association hypothesis ak, that is, the probability
that some specific measurement j originates from the target that track t estimates.
The likelihood l(xt

k|ak, Hi) is concerned with whether the data is reasonable with
regards to the association between target and measurement in ak and the hypothesis
Hi. We formulate the likelihood for a single association as

l(xt
k|ak, Hi) =

(
PD(xt

k|Hi) if atk > 0

(1� PD(xt
k|Hi)) if atk = 0

(6.9)

With an application such as target tracking, where we receive more information
over time, it is natural to use a sequential likelihood ratio test (SLRT) to test for false
AIS messages. Wald first presented the SLRT in [135], which in our case is defined
as

Lt
k =

kY

i=k0

l(xt
i|H0)

l(xt
i|H1)

(6.10)

where k0 is the time step when the track was initialized. By setting thresholds for
when to decide on H0 or H1, the test ensures decision-making with a fixed maximum
false alarm rate PFA and a fixed minimum error detection probability PED. The
thresholds decide how many samples are needed to make a decision, as the test only
stops when either threshold is reached. From [135], the thresholds are

T1 
PED

PFA
, T0 �

1� PFA

1� PED
. (6.11)

Remark 6.2. When using track-to-track fusion, we can replace the association
probabilities in (6.8) with the association probabilities between the radar tracks and
the AIS track to perform a similar test. /

6.4 Design of a safe target tracker using AIS

With the methods from Section 6.3, we design a target tracker that safely utilizes AIS
information. First, we define some concepts to help us better describe the methods.
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Definition 6.1. Quarantined AIS tracks are deemed to originate from false AIS
messages. It will not be allowed to associate with exteroceptive sensor measurements
and will be marked as quarantined until terminated. We do not immediately terminate
quarantined tracks, so they can continue to associate with future false AIS messages.

Definition 6.2. Validated AIS tracks are tracks where the AIS messages are deemed
not to be false. It will be allowed to associate with exteroceptive sensor measurements
and marked as validated until terminated.

Definition 6.3. Preliminary AIS tracks are neither validated nor quarantined. These
are tracks that have not provided enough information for the system to make a
decision.

We divide the AIS validation framework into two parts: validation of individual
AIS message fields and validation of AIS messages. A tracker structure that includes
the two additional parts is shown in Figure 6.3.

6.4.1 Individual AIS message field validation

For the individual fields in the AIS message, we first check if they are within the
allowed intervals in Table 6.1 before we use the tests in Section 6.3.3. The tests are
performed on the velocity and turn rate, and they use the estimated velocities and
angular velocities of the tracks associated with the incoming AIS message. New
tracks initialized on AIS data should only use the positional data, as there is no way
to validate the additional information without a previous estimate. Algorithm 5
shows how to perform the tests when an AIS message is received.

6.4.2 AIS track validation

For the validation and quarantining of AIS tracks we no longer only look at individual
AIS messages, and use the SLRT described in Section 6.3.4. After some time,
the AIS tracks are either validated or quarantined based on the result from the
SLRT. Note that we also assume that the underlying target trackers use validation
gating, which will remove any AIS messages with very large positional errors as a
preliminary step. Thus, these need not be accounted for. Algorithm 6 shows the
workflow for validating AIS tracks. We assume that classifying an AIS track as
quarantined or validated also classifies all the AIS messages associated with the
track.
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Algorithm 5 Additional information validation
Require: Cluster with AIS measurement zj , measurement likelihoods ltj calculated

without additional information, existence probabilities rt, threshold �2
↵

if information in z
j outside the intervals in Table 6.1 then

discard additional information
end if
for track t in cluster do

wtj  rtltj . Weight given track t
⇣tj  (zj � x̂

t)>(Pt)�1(zj � x̂
t) . Test statistic

end for
wtj  wtj/

P
tw

tj . Normalize weights
⇤j  

P
tw

tj⇣tj . Combine test statistics
if �2

↵  ⇤j then
keep additional information

else
discard additional information

end if

Algorithm 6 AIS track validation
Require: Marginal association probabilities ptj , detection probability density
PD(x), clutter density �(x), thresholds T1 and T0, previous SLRT Lt

k�1
for track t do

L l(xt
i|H0)/l(xt

i|H1)
Lt
k  Lt

k�1 ⇥ L
if T1 < Lt

k then
validate track t

else if T0 � Lt
k then

quarantine track t
end if

end for
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Figure 6.3: An outline of the program flow for validating and using AIS messages.

6.5 Results

6.5.1 Tracker implementation

The tracker used to provide the results is the multi-target tracker described in Chapter 3,
of which an implementation is available at [69]. Furthermore, in addition to the AIS
message validation framework, we expand the method to include rate of turn data
in the update of the estimates. The update is done in one of two ways, depending
on the type of turn rate information a target transmits. We use two CT models,
with a positive and negative turn rate, respectively, to get the desired behavior. If
the target only transmits the turn direction, we perform the update by giving the
kinematic model s with the corresponding turning direction a high probability when
calculating the measurement likelihood:

l(z|x, s) = fzs(zs|s)l(z|x) (6.12)
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where

fzs(zs|s) =
(
Pturn if s = zs

1� Pturn if s 6= zs
. (6.13)

Here, Pturn denotes the probability that the target turns in the direction corresponding
to model s given a match with measurement zs. Pturn serves the purpose of not
letting a single kinematic model obtain all the probability mass. We also use (6.12) if
the target transmits the turn rate, but then the estimated turn rate in the corresponding
model is also updated.

6.5.2 Performance analysis on simulated data

We want to know how effectively the tracker detects AIS measurement errors. For
this purpose, we look at the receiver operating characteristic (ROC) curves for the
different error types: false tracks, sporadic and repeating zero- and random-valued
velocity errors, and sporadic or repeating zero-valued turn rate errors.

The results are based on 150 simulated scenarios that include radar measurements
and AIS messages. The scenarios consist of ten targets maneuvering within a
surveillance area with a radius of 1000 meters. The reader is referred to Chapter 3 for
a more detailed description of the modeling of targets and measurements. Four of the
ten targets created for each scenario represent the trajectories of false AIS messages.
We randomly selected the four false track targets from the set of ten and removed all
radar measurements generated by them. We kept the AIS messages transmitted by
the removed targets, and they served as the false AIS message input. For the sporadic
error tests, each AIS message had a 5% chance of containing erroneous velocity
information. Furthermore, for the repeating error tests, each AIS message had a
1% chance of being the start of a sequence of messages with erroneous velocity
information. An AIS message in an erroneous message sequence had a 5% chance
of being correct and ending the sequence.

The ROC curves in Figure 6.4 show the probability of error detection PED

as a function of the probability of false alarm PFA. We see in Figure 6.4a and
Figure 6.4c that the tracker can detect the errors in the velocity and false tracks with
high probability. However, the turn rate error detection, seen in Figure 6.4b, is not
as effective. This reflects the general difficulty in estimating the turn rate using
noisy measurements. We are nevertheless able to detect a meaningful percentage of
the errors. Furthermore, we see in Figure 6.4c that the SLRT test for false tracks
becomes more precise with more radar scans, but it still performs well when using
only three samples.

We also investigate the average error between the undetected wrong velocity
measurements and the true state. The results are shown in Figure 6.5. The error
decreases sharply for low significance levels before leveling off. The curve indicates
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Figure 6.4: ROC curves for the velocity error detector (a), angular velocity error
detector (b), and the false track SLRT detector (c).
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Figure 6.5: Average error between the velocity of an AIS message where the wrong
velocity info is undetected, and the true velocity of the originating target.

that the rejection of erroneous measurements is limited by the uncertainty of the
target estimate. However, significant errors are likely to be detected as these would
differ enough even from an uncertain estimate.

6.5.3 Demonstration on experimental data

Figure 6.6 shows how the method performs when applied to an experimental data set
with injected false AIS messages. The data were collected as part of the preparation
for a demonstration of autonomous collision avoidance in the Trondheim Fjord and
shows two targets crossing while the ship with the radar maneuvers to avoid collision.
False AIS messages were added by copying the collected messages from the targets
and offsetting these in space and time. Furthermore, the velocity reported by the
AIS messages from the actual targets had a 5% chance of obtaining a random value
within the permitted interval.

As shown, the false and erroneous AIS messages confuse the tracker when
not accounted for, and if used as input to a collision avoidance system it would
likely paralyze the decision-making process. Tracks are initialized on the false AIS
messages, and the erroneous velocities also lead to false tracks. However, when
utilizing the tracker structure in Figure 6.3, the tracker is able to only report estimates
on the true targets and disregard the false AIS information.

170



6.5. Results

������

(a) Tracker output when not accounting for potentially wrong AIS messages.

������

(b) Tracker output when accounting for potentially wrong AIS messages.

Figure 6.6: Tracking of multiple targets using the tracker from Chapter 3. Two
targets are shown, in orange and purple, and the ship with the radar is shown in grey.
The other graphical elements are explained in Figure 6.2.
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6.6 Chapter summary

We have introduced techniques for safely utilizing AIS messages in target tracking
while validating them for use in other system components. The validation allows the
tracking component to supply reliable AIS data to other functions used in unmanned
or autonomous maritime vessels, such as collision avoidance methods. We evaluate
AIS messages within a statistical framework that uses additional exteroceptive
sensors to provide trustworthy estimates. We have discussed the most relevant AIS
fields for the tracking system and developed methods to validate them. Our results
demonstrate the effectiveness of the hypothesis tests for detecting wrong velocity
information and that the tracker is capable, but somewhat less effective, when it
comes to detecting errors in the rate of turn. We also show that the tracker can
validate or quarantine erroneous tracks with a high probability of detection and a low
probability of false alarms based on only a few exteroceptive sensor scans. Lastly,
we demonstrate the method on experimental data, where the tracker is able to handle
the injected false AIS information.
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Chapter 7

Compensating Radar Rotation in
Target Tracking

This chapter is based on the publication:

[67] A. G. Hem and E. F. Brekke. Compensating radar rotation in target
tracking. In Proc. Sensor Data Fusion: Trends, Solutions, Applications,
Bonn, Germany, Oct. 2022

Changes from the original publication involve shortening of the introduction.

7.1 Introduction

Most target tracking methods assume that all measurements from a single scan
arrive simultaneously, for example, [108], and the one described in Chapter 2.
However, such an assumption will only be a simplifying approximation when the
measurements originate from a rotating radar. Rather than explicitly considering
the timing of the individual measurements, additional induced measurement noise
usually masks the timing inaccuracies of the models. Furthermore, the possible
performance degradation of approximating the detections as simultaneous has not
been investigated in the literature, which raises the question of how big of an impact
the radar rotation has on the target estimates.

Some research has previously been conducted concerning radar rotation and
handling measurements with individual time stamps. In [59], Habtemariam et al.
presented a data association method for rotating radars to reduce tracking latency
in systems with long time intervals between radar measurement updates. The
model presented by Gaglione et al. in [44] processes AIS measurements using
individual time stamps. The radar measurements, however, are handled assuming
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simultaneous arrival. Several researchers have also done work on spinning radars
for use in navigation and Simultaneous Localization And Mapping (SLAM) [129].
In [27], Burnett et al. consider the impact of Doppler effects and motion distortion
in spinning radar navigation, showing that spinning radar navigation methods
should consider motion distortion. A similar problem, that of using rolling shutter
cameras in navigation, was investigated in [92]. For the more general problem of
filtering of measurements with time delays, solutions include using a multi-rate
Kalman filter [76], and extrapolation of the delayed measurements [89]. Albeit
SLAM and radar navigation places different demands on the sensors in use, the
previously mentioned research indicate that unaccounted radar rotation can degrade
performance.

This work investigates the impact of the assumption of simultaneously arriving
measurements when the measurements come from a spinning radar. The investigation
is carried out within the framework of a joint integrated probabilistic data association
(JIPDA) tracker [105].

The main contribution of this chapter lies in investigating the effects of radar
rotation and finding ways of mitigating these effects. First, we identify problems
caused by radar rotation. Then, we present a method where the model does not include
a synchronization assumption before we present an implementation containing the
mitigating solutions. Lastly, we evaluate the performance loss from assuming
simultaneously arriving measurements and the effect of the proposed solutions.

7.2 Problem formulation

The problem consists of tracking an unknown number of targets using noisy
measurements from a radar, with the presence of false alarms and missed detections.
The radar is assumed to be situated on top of a maneuvering ship, rotating with
a fixed rotation rate. The target births are modeled according to a Poisson Point
Process (PPP) model with density b(x). Furthermore, targets are assumed to survive
from time tk to time tk+1 with probability PS(tk, tk+1). The movement of a target
from time tk to time tk+1 is assumed to follow a transition density fx(xk+1|xk).

The probability of a target being detected isPD, chosen as a constant for simplicity,
and the measurement has likelihood function fz(z|x). Clutter measurements arrive
according to a homogeneous stationary PPP with parameter �. We make the standard
assumptions of a target only being the origin of a single measurement and that a
measurement can not originate from more than one target. The exact position and
pose of the ownship, that is, the ship carrying the radar, is assumed to be known,
and the movements of the targets and ownship are assumed to be constant between
time steps. The above model choices are the same as in Chapter 2, where further
details can be found.
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7.2. Problem formulation

Figure 7.1: A radar surveillance area, with the radar rotating with a counter-clockwise
motion. The measurements are time stamped at the time when the radar has finished
half its rotation. The red color represents the bias of the targets, and a clearer red
signifies a larger bias.

Figure 7.2: How a double detection can occur. The gray discs indicate the progress
of the counter-clockwise radar rotation, and the radar is located on an ownship
following the gray path. The target follows the orange path, and gray dots mark its
detections. Detection times can be seen on the timeline.
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The measurements are assumed to arrive at intermediate time steps ki between
time steps k � 1 and k. This assumption differs from the one usually applied in
the models, for example, [108], because the radar measurements are not assumed
to originate from the same point in time, that is, simultaneously. Each bearing
resolution cell provides an intermediate time step, indexed by i. The intermediate
time step ki belonging to a measurement is defined by the radar spoke in which
the measurement lies. This formulation allows us to investigate the effects of radar
rotation on the estimates.

7.3 Error sources from non-compensated radar rotation

We identified three effects caused by radar rotation:

• When making the simplifying assumption that all radar detections from a
radar measurement batch are simultaneous, a bias is introduced in the system.

• A radar sweep will not necessarily correspond to a single, complete sweep of
the surveillance area.

• The prediction intervals between time steps are not constant.

The consequences of these effects are, together with how they occur, explained here.

7.3.1 Bias

When not accounted for, radar rotation will result in a bias. This bias comes from
the movement of targets between their detection and when the radar batch is time
stamped. The targets at the start and end of the rotation have moved at most half a
radar period dt relative to their detection. Figure 7.1 illustrates this.

Proposition 7.1. Assuming that the targets in the surveillance area are uniformly
distributed and that the radar measurements are time stamped to the midpoint of the
radar rotation, an approximation of the induced bias B per target over time is given
as

B =
dtR
4

v̄ (7.1)

where dtR is the radar period, and v̄ is chosen as the average speed of the targets. The
choice of v̄ could also be, for example, the speed of a specific target, or a perceived
maximum target speed, depending on the application.
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7.3. Error sources from non-compensated radar rotation

Proof. The duration a target can move as a function of where in the radar rotation it is
detected can be written as dtR✓/(2⇡), where ✓ is the relative bearing. Furthermore,
the probability of a target existing in a segment of length d✓ is d✓/(2⇡) because the
targets are uniformly distributed. Integrating, we get that the average time a target
can move relative to its detection is

Z ⇡

�⇡

dtR
2⇡

✓
d✓

2⇡
=
hdtR
8⇡2

✓2
i⇡
�⇡

=
dtR
4

. (7.2)

Knowing this, the bias B becomes the average velocity v̄ times dtR/4.

The targets will have almost correct timing relative to other targets in their
vicinity, except for the angle where the radar finishes the collection of a batch of
measurements. Around this angle, measurements collected almost a whole radar
period apart from each other end up being processed as part of the same cluster.

7.3.2 Multiple detections of the same target

Another consequence of radar rotation is that two detections of the same target can
occur in the same radar scan. The time difference between detections at the start
and at the end of the radar rotation is a radar period dtR. Thus, a target could move
so that the radar detects it both at the start and end of its rotation. We denote this
phenomenon as a double detection. As shown in Figure 7.2, the ownship movement
exacerbates this problem due to the radar not covering the surveillance area exactly
once. A target moves in a straight line while the ownship makes several turns.
The target is detected each time the radar is pointed at it, but due to the ownship
movement its detection is not present in each radar measurement batch. The timeline
in Figure 7.2 shows the times the target is detected, and the fixed interval ticks
indicate when the radar has completed a rotation, which also means that the radar
outputs a radar measurement batch. The radar detects the target in the first batch,
but in the second, it does not. In the next batch, however, two detections are present.
This phenomenon breaches the assumption that each target can only be the origin of
a single measurement and may cause undesired and unpredictable behavior.

Proposition 7.2. The number of double detections can be approximated as

Ndouble =
NmA�

2
+ C (7.3)

where Nm is the number of target detections and C is a constant. A� is a fraction of
the surveillance area decided by

A� =
2⇡ +��

2⇡
. (7.4)
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Here, �� is the total change in heading for the ownship during a radar period.

Proof. Under the assumption that the sum of the changes in heading over time will
be approximately zero, the area that will be scanned twice by the radar will be
A�/2 times the surveillance area. Thus, the number of double detections becomes
Ndouble = NmA�/2, plus a constant C which represents the double detections
caused by target movement, rather than ownship movement.

7.3.3 Variable prediction intervals

Prediction intervals are assumed to be constant, but this is an approximation when
the target or the ownship is moving. Unless the target remains in the same bearing
resolution cell, the time between detections will slightly differ from the radar period.
This fact means fast-moving targets will cause more significant prediction interval
errors, as will the ownship movement. When the ownship heading changes, so does
the bearing cell the target detection occurs in. Thus, a large �� will give a large
prediction timing error. If the prediction interval is inaccurate, this will result in less
accurate predictions and, ultimately, less accurate estimates.

7.4 Removing the measurement synchronization assump-
tion

Here, we present the changes required for a JIPDA to consider the exact time stamps.
This will reduce the bias and provide precise prediction intervals. The changes
consist of modifying the prediction, and the detection part of the update. That is,
we use the same prior as in the regular JIPDA. For the update, the expressions for a
new target and a missed detection remain unchanged. The notation and structure
of the mathematical explanation is based upon that of Chapter 2, albeit somewhat
simplified.

7.4.1 Prediction

When predicting the target estimates, often denoted as tracks, one usually assumes
that the prediction is for an interval of constant or nearly constant length. We do
not make the same assumption here. As a result, the varying prediction intervals
influence the Markov chain modeled existence model and the kinematic model.
The only impact on the kinematic modeling is through the implementation of the
model, and we reserve the details for later. However, the prediction of the existence
probability requires using continuous-time Markov chains.
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7.4. Removing the measurement synchronization assumption

Proposition 7.3. The prediction for a target estimate for a general time interval
tki � tk�1 , dt, that is, between time steps k � 1 and ki, the existence probability
for track t becomes

rtki|k�1 = P dt
S rtk�1 (7.5)

and the kinematic state becomes

f t
ki|k�1(x) =

Z
f t
ki(x|x̃)f

dt
k�1(x̃)dx̃. (7.6)

Proof. We model the existence as a two-state Markov chain with a generator matrix

G =


P ⇤
S � 1 1� P ⇤

S
0 0

�
. (7.7)

It is well-known [88, p. 198] that a generator matrix on this form results in the
transition matrix

P (dt) = exp

 
dt


P ⇤
S � 1 1� P ⇤

S
1 1

�!
. (7.8)

We are only concerned about the survival probability, that is, the probability
of remaining in the first state. It becomes p11(dt) = e(P

⇤
S�1)dt , P dt

S where
PS = eP

⇤
S�1 < 1 is a constant. Furthermore, (7.6) is the prediction equation from

Chapter 2, with prediction interval up to an intermediate time step ki.

7.4.2 Detection

The mathematical formulation for updating a track is elaborately explained in
Chapter 2. The reader is referred there for information regarding initialization of
new tracks and the updating of a track based on a missed detection. However, the
change in how the measurements are modeled demands a change in how we conduct
updates based on detections.

Proposition 7.4. Suppose we have a measurement zj , which arrives at the interme-
diate time step ki. The detection of track dt through measurement j is weighted
as

wtj = PDr
tj
ki|k�1l

tj . (7.9)

The weight wtj is used to calculate the probability of the association hypotheses
which include the association between track dt and measurement j. The association
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hypotheses consist of feasible subsets of associations between tracks and measure-
ments. The expressions for the existence probability rtjki , and the kinematic state
f tj
ki
(x), conditional on the association between track dt and measurement j, becomes

rtjki = 1 (7.10)

f tj
ki
(x) = fz(z|x)f t

ki|k�1(x)/l
tj (7.11)

where

ltj =

Z
fz(z|x̃)f t

ki|k�1(x̃)dx̃. (7.12)

Proof. The above equations are simply the update from Chapter 2 for time step ki,
where the predictions from k � 1 to ki are acquired by use of (7.5) and (7.6). The
assumption that the targets are the origin of at most one measurement in the span of
a radar revolution, and that a measurement comes from at most one target, enables
us to use the same data association methods as in any tracker assuming synchronized
measurements.

Remark 7.1. The association hypotheses can be formulated as in Chapter 2. They
will, however, consist of associations from different intermediate time steps. While
this may seem a problem at first glance, we can use the weights the same way as
if the measurements arrived simultaneously. The weights between measurement
j and possible tracks are calculated based on the possible tracks’ predictions up
to the same intermediate time step, the one when measurement j arrives. Thus,
comparisons between a single measurement and several tracks are made based
on weights calculated from the same intermediate time step. Furthermore, any
comparisons between a single track and several measurements are made on weights
calculated based on the intermediate time steps of the measurements. In sum, this
means that the time differences between measurements always will be accounted
for when comparing weights so that we can use them the same way we would in a
regular JIPDA. /

7.4.3 Mixture reduction

The existence probability and kinematic state are predicted from time step ki to
k to be in sync with states updated based on other association hypotheses. This
prediction is performed using (7.5)-(7.6) with the values acquired from (7.10)-(7.11),
giving rtjk|ki and f tj

k|ki(x). Recognizing that these quantities serve the same purpose
as if they had been the result of a measurement arriving at time tk, the updated
estimate after time step k can be calculated as one would do if assuming simultaneous
measurements.
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7.5 Implementation

The tracker used to create the results in this chapter is implemented similarly to the
one described in Chapter 2. We perform mixture reduction as in Chapter 2, only
without the multiple kinematic models. While the tracker from Chapter 2 implements
a visibility state and multiple kinematic models, for simplicity, the tracker used here
does not. We use the same method for initialization and termination of tracks, and
Murty’s method [104] is used together with the auction method [87] to make the
data association problem computationally tractable. Furthermore, we make the same
Gaussian-linear assumptions and use the same measurement model. Some necessary
details, however, must be considered when using a model with time stamps for the
individual measurements.

7.5.1 Kinematic model

A (nearly) Constant Velocity (CV) model [8, p. 269] is used to model the movement
of the targets. Because of the varying prediction intervals, we use the discretized
continuous formulation of the model. The discrete CV model formulation is only
suitable for constant prediction intervals. For the individual dimensions, the transition
matrix F and process noise covariance matrix Q are

F =


1 dt
0 1

�
and Q =

"
dt3/3 dt2/2
dt2/2 dt

#
q, (7.13)

where q is the process noise intensity [8, p. 270].

7.5.2 Measurement gating

When gating the measurements that have arrived between time steps k � 1 and k, it
would be advantageous to do so without performing predictions up until the time
of arrival for all measurements. For this purpose, a gating method can be used,
which first uses the maximum realistic velocity of a target to find a subset of the
measurements before predicting up to and gating only the measurement subset. The
first part of the procedure is described in [141], while the second part amounts to
evaluating

(ẑki � zj)S
�1
ki

(ẑki � zj) < g2 (7.14)

using the output of a Kalman filter for each intermediate time step ki.
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7.5.3 Measurement batches

In Section 7.3, we showed that highly maneuvering ownships could result in increased
double detections. However, given some preconditions, we can counter the effects
shown in Figure 7.2. The idea is to define a radar measurement batch as the result of
a complete rotation relative to the surveillance area rather than a rotation relative
to the ownship. This approach assumes knowledge regarding the ownship heading.
Denoting the rotation of the radar since the last intermediate time step as ��, and the
ownship’s change in heading as � , the measurement batches are created according
to Algorithm 7.

Algorithm 7 Measurement batch creation
Require: Radar measurement set Zki , ownship heading change ��, radar angle

change � , surveillance area coverage ✓
Zk  Zk [ Zki
✓  ✓ +��+� 

if ✓ � 2⇡ then
k  k + 1

Zk  {}

✓  ✓ � 2⇡
end ifreturn Z1:k, ✓

7.6 Simulation setup and results

7.6.1 Simulation setup

We assume that measurements come from a rotating radar, with a bearing resolution
of 2� and a range resolution of 2 meters. Each radar period contains 360�÷2� = 180
possible time stamps for radar detections. Unless otherwise stated, the radar periods
are T = 2 seconds long. A radar measurement batch is either the result of one
complete radar rotation or the output of Algorithm 7. The simulator also supplies
simultaneously arriving measurements to act as a benchmark.

The simulated scenarios consist of seven targets and a single ownship, all
maneuvering inside a circle with a 2000-meter radius for 100 seconds. The data
is created according to the assumptions in Section 7.2. The ownship and the
targets move according to the CV model from Section 7.5.1, with the process noise
intensity q determining the magnitude of their acceleration changes. Furthermore,
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Figure 7.3: TLE values with increasing radar period, tracking a single target with
constant maneuvering index [8, p. 287].

the simulator creates the measurements according to the measurement model from
Chapter 2.

The scenarios are created to be somewhat challenging for the tracker, with
parameters found in Table 7.1. Evaluation of the results is done by use of the
Track localization error (TLE) [29] and the Optimal sub-pattern assignment (OSPA)
metric [122]. 250 data sets were used for evaluation.

Quantity Symbol unit Value

Target process noise intensity q [m2/s3] 2.0
Probability of detection PD [-] 0.8
Survival probability PS [-] 0.99
Cartesian measurement noise �xy [m] 6.6
Range measurement noise �r [m] 8.0
Bearing measurement noise �✓ [°] 1.0
Clutter intensity � [1/m2] 5⇥ 10�7

Initial velocity std. [m/s] 10

Table 7.1: Tracker parameters.

7.6.2 Effect of decreased radar frequency

As described in Section 7.3.1, the radar rotation will, when not accounted for,
introduce a bias in the estimates. Simulations with increasing radar periods, shown
in Figure 7.3, demonstrate that a longer radar period results in a more significant
error. This result is expected, as the detected targets will be able to move further
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away from where they were detected when the radar frequency is low. This linear
increase is also in line with the approximation in (7.1).

7.6.3 Effect of increased ownship acceleration

We see from Table 7.2 that double detections happen more often with more ownship
maneuvers. These results align with the explanation in Section 7.3.2. We can also
see from Table 7.2 that the prediction interval timing errors increase similarly. As
explained in Section 7.3.3, large changes in the ownship heading during a radar
period will give large prediction interval timing errors.

Process noise intensity q [m2s�3] 0.5 1.0 1.5 2.0

Timing error [s] 0.155 0.256 0.303 0.340
Double detections [%] 1.83 3.06 4.44 4.84

Table 7.2: Timing errors and double detections for increasing ownship process noise
intensity q.

7.6.4 Effect of compensating methods

We evaluated four slightly different JIPDA trackers: one with none of the changes
implemented, one with only the changes from Section 7.4, one with only the
measurement batch solution in Section 7.5, and lastly, one with both.

Figure 7.4 shows the performance of the different JIPDA combinations. We
include the results for when the measurements arrive simultaneously as a benchmark
for the best possible performance. We see from the OSPA values that the overall
tracking performance decreases with increasing maneuvering. When only consid-
ering the TLE, however, we see that the positional error of the estimates is almost
invariant to ownship movement. This indicates that the performance degradation
seen with increasing ownship maneuvering is due to track jumps and problems with
data association. Furthermore, Figure 7.4 shows that the best result is achieved when
we both compensate for the bias and use the batch creation method.

While the methods give a performance increase individually or in combination,
the performance is still clearly better when all measurements arrive simultaneously.
This performance gap is in part because we evaluate the performance at the end of
the radar period, so when the radar rotates we evaluate the performance based on
tracks predicted from some time within the radar period.

Table 7.3 shows the average NEES [8, p. 168] values. It is clear that the bias
from the radar rotation, when not accounted for, makes the tracker overconfident.
In practice the overconfidence would be mitigated by increasing the measurement
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Figure 7.4: OSPA and TLE for the different methods when using a spinning radar
and when the radar delivers all measurements simultaneously. The results show the
methods with increasing ownship process noise intensity q.

Average NEES

95% confidence interval [3.99, 4.01]
No rotation 3.80
With bias compensation, no batch creation method 3.70
Without bias compensation, no batch creation method 12.30

Table 7.3: Average NEES values with ownship process noise intensity q = 1.0 .
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covariance. When the bias is compensated the average NEES values are similar to
when the radar measurements arrive simultaneously.

7.7 Chapter summary

In this work, we have shown the assumption of measurements from a rotating radar
arriving simultaneously to become dubious under certain conditions. We have
presented approximate expressions for the magnitude of the introduced bias, and the
number of double detections. Furthermore, methods for mitigating these problems
have been presented together with implementation details. Results show both the
impact of the radar rotation and the performance gain achieved through the proposed
methods.

Future investigations should include how the effects from Section 7.3 impact the
fusion of measurements from different sources. Furthermore, showing the effects in
experimental data will further clarify their impact.
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Chapter 8

Target Tracking With Existence
Modeling in the Presence of Wakes

This chapter is based on the publication:

[64] A. G. Hem, H.-G. Alvheim, and E. F. Brekke. WakeIPDA: Target Tracking
With Existence Modeling in the Presence of Wakes. In Proc. IEEE 26th
International Conference on Information Fusion, Charleston, SC, USA, June
2023

Changes from the original publication involve shortening and editing of the intro-
duction section.

8.1 Introduction

Wakes are likely to be present when tracking targets in the maritime domain.
Intuitively, the wake clutter measurements usually occur in an area behind the target
and depend on the target state. When not modeling the wake clutter, the tracker will
often mistake it for target measurements, resulting in poor tracking performance [4].
In addition, the wake clutter measurement density is usually much higher than the
regular clutter density, further complicating the tracking problem.

The tracking algorithm presented in this chapter builds upon the integrated
probabilistic data association filter (IPDA) [106]. The IPDA is an extension of the
probabilistic data association filter (PDA) [9], to which the IPDA adds an extra state
modeling the existence probability of the target. The IPDA is a well-known and
widely used algorithm and has been applied to the tracking of surface [137] and
underwater [18] targets in the maritime domain.

Several methods for mitigating the effects of wake clutter already exist. [133]
presents a general framework for handling measurements that do not adhere to
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the usual assumptions made when developing target tracking methods. In [117],
Rødningsby and Bar-Shalom present a PDA method designed to track a diver with
bubbles in its wake. They expand the PDA to support multiple targets in [118], and
finally, multiple sensors in [119]. Furthermore, [19] presents a multi-target tracking
method that uses marginalization to mitigate the wake clutter effects. The use of
marginalization distinguishes it from the methods presented in [117–119].

The methods mentioned in the previous paragraph are based on the PDA, or its
multi-target equivalent, the joint PDA. They do not take advantage of the IPDA’s
ability to model the existence probability of the target. We present a novel single-
target tracking method called WakeIPDA, which enables the IPDA to account for
wake clutter. This extension helps mitigate the undesirable effects of wake clutter and
takes advantage of the information inherent in wake clutter measurements through
their implicit confirmation of target existence.

The chapter is structured as follows. In Section 8.2 we formulate our problem
before we present the WakeIPDA algorithm in Section 8.3. Furthermore, Section 8.4
presents two ways of modeling the wake of a target. In Section 8.5 we present the
simulation setup and results, and finally, in Section 8.6 we conclude the chapter.

8.2 Problem formulation

We want to track a target using noisy measurements that may include false alarms
and missed detections. The targets are assumed easily separable, such that it is
reasonable to use a single-target method. We model the birth of the target as a
Poisson point process (PPP) with a density of �b(x). See Chapter 2 for more details
regarding target birth. The target is assumed to have a constant detection probability
of PD, while its movement from one time step to the next follows a transition density
of fx(x|·). We assume that the probability of a target surviving from one time step
to the next is PS .

The likelihood function for the target measurement is fz(z|x). Furthermore,
we make the assumption that a single target can only be the origin of one target
measurement and a single target measurement must come from only one target.
Regular clutter measurements are generated from a homogeneous stationary PPP
with constant intensity �0(z) = �0. We also model wake clutter as a homogeneous
stationary PPP, but with intensity �w within the wake area and intensity 0 outside it.
The combined spatial clutter likelihood is thus �(z|x) = �0 + �w(z|x). The clutter
PPPs are the same as in [19], where more details are provided.
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8.3 The WakeIPDA algorithm

We now present a mathematical description of the WakeIPDA algorithm, based on
the above problem formulation. The input to the algorithm is a Bernoulli, serving as
our prior, and a set of measurements Z. The prior is defined as

fk�1(Xk�1) =

(
1� rk�1 if Xk�1 = ;
rk�1fk�1(x) if Xk�1 = {x}

. (8.1)

Furthermore, the algorithm consists of two steps: a prediction step, and an update
step. The prediction step is the same as in the IPDA [106].

Proposition 8.1. The prediction between time steps k � 1 and k is given by

rk|k�1 = Psrk�1 (8.2)

for the existence probability, and

fk|k�1(x) =

Z
fx(x|x̃)fk�1(x̃)dx̃. (8.3)

for the kinematic state.

We continue by presenting the update step, which is where the model changes
have to be taken into account.

8.3.1 Including wake clutter in the measurement likelihood

The inclusion of target-dependent wake clutter means that the measurement likelihood
needs to be reformulated. Rather than only being a function of the target measurement,
as is usually the case, the measurement likelihood becomes a function of all the
measurements.

Proposition 8.2. The measurement likelihood for a set Zk of measurements at time
k is given by

fk(Zk|Xk = ;) =
⇣ Y

z2Zk

�0
⌘
exp

⇣
�
Z

A
�0dz̃

⌘
(8.4)

if a target is not present, and

fk(Zk|Xk = {x}) = (1� PD) exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘ Y

z2Zk

�(z|x)+

exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘ mkX

j=1

PDfz(z
j
k|x)

Y

z2Zk\zjk

�(z|x) (8.5)
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if a target is present. Here, mk is the number of measurements at time k, and z
j
k

is the jth measurement in Zk. The area A is some general area from which the
measurements are obtained, usually corresponding to a validation gate [8, p. 263].

Proof. See Appendix I.

8.3.2 Including wake clutter in the IPDA update

The reformulation of the measurement likelihood means that we need to reformulate
the IPDA update as well.

Proposition 8.3. The update given a set Zk of measurements at time k is given by

fk(Xk|Z1:k) =

8
>><

>>:

1� rk if Xk = ;

rk

mkX

j=0

�jkfk(x|Z1:k, ak = j) if Xk = {x}
(8.6)

where ak is the measurement assignment. The �-values are found as

�jk =
pjkr

j
k

rk
(8.7)

which are calculated using the association probabilities pjk, the association condi-
tional existence probabilities rjk, and the existence probability rk. The association
probabilities describe the probability of the measurement assignment, and are given
by

pjk =

8
><

>:

rk|k�1l
0
c + (1� rk|k�1) exp

⇣
�
Z

A
�0dz̃

⌘ Y

z2Zk

�0 if j = 0

rk|k�1l
j
c otherwise.

(8.8)

For a missed detection have that

l0c =

Z
fk|k�1(x̃)(1 � PD) exp

⇣
�
Z

A
�(z̃|x̃)dz̃

⌘ Y

z2Zk

�(z|x̃)dx̃. (8.9)

and for a detection we have that

ljc = lj
Z

fk|k�1(x̃)PD exp
⇣
�
Z

A
�(z̃|x̃)dz̃

⌘ Y

z2Zk\zjk

�(z|x̃)dx̃ (8.10)
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where
lj =

Z
fz(z

j
k|x̃)fk|k�1(x̃)dx̃. (8.11)

The association conditional existence probabilities are 1 for j � 1, that is, when
conditioned on a detection, and

r0k =
rk|k�1l

0
c

p0k
(8.12)

when conditioned on a missed detection. Finally, the existence probability is given
by

rk = p0kr
0
k +

mkX

j=1

pjk. (8.13)

Proof. See Appendix II.

8.4 Wake modeling

In [19, Section III], a method for mitigating the effect of wake clutter in a JPDA
tracker by use of marginalization is presented. It is based on a non-parametric point
of view, while we will use a parametric approach. The difference lies in how the
values of �0 and �w are determined; through adaptive estimation (non-parametric)
or tuning (parametric). The assumptions we make regarding the clutter distributions
in Section 8.2 are nevertheless the same as in [19]. Furthermore, we present two
different models for the clutter distribution of the measurements gated by the track.
The first of these two models is also presented in [19] and is briefly summarized
here. We denote the models as Model I and II, and when used with the WakeIPDA
the resulting methods are denoted as WakeIPDA-1 and WakeIPDA-2.

Ultimately, what we want is to calculate (8.9) and (8.10). The first of these
integrals is the clutter likelihood for missed detections, while the second is the clutter
likelihood for detections. Because we also consider the existence probability, these
expressions differ from the ones found in [19]. No analytical solutions exist for these
integrals, but we can approximate them by use of, for example, importance sampling.
We do, however, need expressions for �(z|x) and exp(�

R
A �(z̃|x)dz̃).

8.4.1 Model I

The first model, as it is defined in [19], assumes that all the edges of the wake area
are outside the validation gate G. Such a situation is shown in Figure 8.1. Based
on this geometry, we need two things to calculate the clutter likelihoods. First, we
need to know the area of the wake within the validation gate. Second, we need to
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Figure 8.1: Illustration of the geometry of a validation gate and a wake area, with
two measurements z1k and z

2
k in the wake area, of which one is inside and one outside

the validation gate. The ellipsoid is the validation gate G, and the rectangle is the
wake area W(⇢k) of size 2a⇥ b. The rectangle divides the validation gate into two
areas of size C(⇢k) and D(⇢k), while ⇢k is the target position. Also shown is the
wake-oriented coordinate system (x̃, ỹ), the predicted target position ⇢̂k|k�1, and
the target velocity vector uk.

know whether the measurements in the gate are inside or outside the wake area. By
sampling from the prediction fk|k�1(x) we can get an estimate for the wake position
⇢k, and by using a wake-oriented coordinate system (ỹ, x̃) we can easily determine
whether the measurements are inside the wake area or not. Details regarding the
coordinate transformations can be found in [19]. We use the area of the wake within
the validation gate to calculate the expected number of clutter measurements. The
area is denoted as C(⇢k) in Figure 8.1, and is given in [19].

Using C(⇢k) we can calculate the expected number of clutter measurements as

exp
⇣
�
Z

G
�(z̃|x)dz̃

⌘
= exp(��wC(⇢k)) exp(��0VG) (8.14)
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where VG denotes the area of the validation gate. Furthermore, we have that

�(z|x) =
(
�w + �0 if zỹk � ⇢

ỹ
k

�0 otherwise
. (8.15)

8.4.2 Model II

The second model assumes that all wake measurements originating from a target
are gated by the track following said target. This can be enforced by gating an area
around the predicted wake position in addition to the regular validation gate. In
Figure 8.1 this would mean that the gated area is the union of the wake area VW and
the gate area VG , and that both measurements z1k and z

2
k would be gated. We assume

that we know the length of the sides of the wake region W(⇢k), and the expected
number of clutter measurements in the gate becomes

exp
⇣
�
Z

G[W
�(z̃|x)dz̃

⌘
= exp(�D(⇢k)�0) exp(�VW(�w + �0)) (8.16)

where we get the area D(⇢k) from [19]. Furthermore, we get the spatial likelihood
as

�(z|x) =

8
><

>:

�w + �0
if ⇢ỹk + b � zỹk � ⇢

ỹ
k

and |zx̃k |  ⇢x̃k + a

�0 otherwise

(8.17)

where we again use the wake-oriented coordinate system to decide if a measurement
is within the wake area.

Figure 8.2 shows the expected number of gated wake measurements compared
to the actual number for the two models, when tested on simulated data. For
WakeIPDA-1, the expected number is calculated by using exp(��wC(⇢k)) from
(8.14), while for WakeIPDA-2 it is calculated using exp(��wVW) from (8.16).
For WakeIPDA-1, the expected and actual numbers are close for high detection
probabilities, while the actual and expected number of wake measurements diverge
as the detection probability decreases. The covariances of the estimates increase with
decreasing detection probability, which results in increasing validation gate sizes
and more expected wake measurements. For WakeIPDA-2, the expected number
of wake measurements is independent of the validation gate size, due to the user
defined wake area. Furthermore, Model II allows for the gating of all the wake
measurements and thus the use of these for estimating target existence. When using
Model I only a subset of the wake measurements are gated.

Both models require us to find some appropriate values for the parameters �w
and �0. Deciding the regular clutter density parametrically by means of tuning is
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Figure 8.2: The expected number of gated wake measurements per time step, and the
actual number of gated measurements, for the two models when used in combination
with the method from Section 8.3. The values are averaged over all time steps, and
plotted for a range of different detection probabilities. The actual number of wake
measurements is, on average, one per time step.

shown to work well on experimental data in Chapter 2, and the possibility of using a
parametric approach the wake density is discussed in [19]. In WakeIPDA-2 we also
need to find values for the wake area, which can, for example, be based on average
wake sizes [111].

8.5 Simulation setup and results

8.5.1 Simulation setup

We use simulated data sets to test the performance of the method. A discrete (nearly)
constant velocity (CV) model [8, p. 274] with process noise �2 = 0.352 m2/s4 is
used to model the movement of the targets. We model the measurements as having
both polar and Cartesian noise. The polar noise represents the error in the range and
bearing measurements, and the Cartesian noise represents other sources of error,
such as clustering errors and receiver noise. We set the bearing std. dev. �✓ to 1.0°,
the range std. dev. �r to 8.0 m, and the Cartesian std. dev. �xy to 6.6 m. We convert
from polar to Cartesian coordinates using the method described in [95]. The clutter
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8.5. Simulation setup and results

densities are �0 = 10�7 and �w = 10�4, and we define a 100 by 100 meter large
wake area. The gate size is set to g = 4.0.

We initialize new tracks on measurements that have not been gated by any
track. Furthermore, we categorize tracks as either confirmed or preliminary. Tracks
are confirmed when they have a probability of existence larger than a threshold
Tc = 0.99 and are preliminary otherwise. Preliminary tracks are only allowed to
associate with measurements not gated by any confirmed tracks. We terminate
tracks as described in [143], with a termination threshold Tt = 0.01, and we set the
survival probability PS to 0.99. Lastly, we assume that the relevant densities are
Gaussian, and we use a Kalman filter to estimate the target states.

The integrals in (8.9) and (8.10) are calculated using importance sampling with
N = 1000 samples. This is done by sampling the distribution of the predicted
state, and for each sample the values of (8.14) and (8.15), or (8.16) and (8.17) are
calculated, depending on which model is used. The value of the integrals are then
found by taking the mean of the values found by sampling. For a missed detection
we have that

l0c = (1� PD)
1

N

NX

i=1

exp
⇣
�
Z

A
�(z̃|xi)dz̃

⌘ Y

z2Zk

�(z|xi) (8.18)

and for a detection we have that

ljc = ljPD
1

N

NX

i=1

exp
⇣
�
Z

A
�(z̃|xi)dz̃

⌘ Y

z2Zk\zjk

�(z|xi) (8.19)

where xi ⇠ fk|k�1(x). When using Gaussian densities, lj from (8.11) can be
calculated analytacially.

8.5.2 Results

We obtained the results by running the algorithm on 2000 datasets, each containing
a single moving target in a surveillance region with a radius of 1000 meters. The
sensor, a radar, was placed in the center of the surveillance region. We assessed
the performance according to the measures described in [29]. These are the track
localization error (TLE), track probability of detection (TPD), track fragmentation
rate (TFR), and track false alarm rate (TFAR).

In Figure 8.3 and Figure 8.4, we see the results for the WakeIPDA with the two
wake models and for the regular IPDA. The results are shown for a range of detection
probabilities. Note that the wake clutter is independent of the detection probability,
and the expected number of wake measurements is constant across all scenarios.
We see that both WakeIPDA variants perform better than the regular IPDA in most
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Figure 8.3: TLE and TFR values when tracking a single maneuvering target at
varying probabilities of detection. The expected number of wake measurements is
one per time step, irrespective of the detection probability. The results are averaged
over 2000 datasets.

aspects and that the WakeIPDA-2 generally performs better than the WakeIPDA-1.
The differences for low detection probabilities are the largest, likely due to how
the IPDA can easily mistake the wake clutter measurements for detections when
the target itself is not detected. Mistaking wake clutter for detections can degrade
the estimate quality and may cause track loss. The WakeIPDA, on the other hand,
is more robust to this error. However, we see that the WakeIPDA-1 has a higher
TFAR than the other methods. We can find a cause for this in Figure 8.2; the large
validation gates can lead to the tracker overestimating the existence probability of
new tracks due to misclassification of regular clutter as wake clutter.

Figure 8.5 shows the target existence probability for the different methods.
The left plot shows the existence probability averaged over the same datasets as
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Figure 8.4: TPD and TFAR values when tracking a single maneuvering target at
varying probabilities of detection. The expected number of wake measurements is
one per time step, irrespective of the detection probability. The results are averaged
over 2000 datasets.

above. The rightmost figure shows the existence probabilities for PD = 0.9, at
different times in the scenarios. The values are averaged over all datasets, and with a
moving average taken over N = 5 time steps. We see that the WakeIPDA-2 has a
markedly higher probability of existence than the other methods. Furthermore, the
WakeIPDA-1 results in a slightly higher existence probability than the IPDA. The
difference between the two methods is likely because the WakeIPDA-2 has a more
accurate estimate for the number of wake measurements, resulting in a more precise
estimate of the existence probability. Furthermore, both WakeIPDA versions result
in higher existence probabilities in the early parts of the track duration. This effect
is likely the cause of the TPD improvement of the WakeIPDA over the IPDA, see
Figure 8.4, as the IPDA is more likely to fail to initialize a track.
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Figure 8.5: The probability of existence for the two WakeIPDA versions and the
regular IPDA. The left plot shows the average probability of existence over 2000
datasets for a range of different detection probabilities. The right plot shows the
moving average with N = 5 for PD = 0.9, averaged over 2000 datasets.

8.6 Chapter summary

We have presented a new method, the WakeIPDA, which expands upon the single-
target IPDA by modeling target-dependent wake clutter. We consider two different
ways of modeling the wake clutter, and simulation results show that the WakeIPDA
performs better than the regular IPDA when using either model. The models differ
in that Model I rests on the assumption that all edges of the wake area are outside
the validation gate of a track, while Model II uses the wake size directly. Model II
performs best on the simulated data but is aided by specific knowledge regarding the
wake measurements. On experimental data, the difference will likely be less clear-cut.
Furthermore, by exploiting the presence of wake measurements, the WakeIPDA
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applies a higher existence probability to the target than the IPDA, especially right
after track initialization.

Further work may include extending the method to handle multiple targets and
validating it on experimental data.

Appendix I

For the case where there is no target present, the measurement set is a Poisson RFS
with intensity �0. The cardinality distribution is Poisson with mean |Z| =

R
A �0dz̃,

and the individual measurements are independent and identically distributed (i.i.d.)
according to �0/|Z|. Then, from [98, p. 366] we have

f(Z|X = ;) =
⇣ Y

z2Zk

�0
⌘
exp

⇣
�
Z

A
�0dz̃

⌘
. (8.20)

where we for ease of notation have omitted the time indices. When target dependent
clutter may be present, we obtain a general expression for the measurement likelihood
from [133, Proposition 1]. For a set Z of m measurements we have that

f(Z|X = {x}) = (1� PD)⇢(|Z||x)|Z|!
Y

z2Z
c(z|x)+

PD⇢(|Z|� 1|x)(|Z|� 1)!
mX

j=1

fz(z
j |x)

Y

z2Z\zj
c(z|x). (8.21)

The cardinality distibution ⇢(|Z||x) is Poisson

⇢(|Z||x) =

⇣Z

A
�(z̃|x)dz̃

⌘|Z|

|Z|! exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘
(8.22)

while the clutter measurements are i.i.d. as

c(z|x) = �(z|x)Z

A
�(z̃|x)dz̃

. (8.23)

By inserting (8.22) and (8.23) into the measurement likelihood we obtain

f(Z|X = {x}) = exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘⇣
(1� PD)

⇥
Y

z2Z
�(z|x) + PD

mX

j=1

fz(z
j |x)

Y

z2Z\zj
�(z|x)

⌘
. (8.24)

This concludes our proof.
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Appendix II

The posterior we want to end up with is a Bernoulli mixture

fk(Xk|Z1:k) =
mkX

j=0

pjkfk(Xk|Z1:k, ak = j). (8.25)

where pjk are the weights of the mixture components, which sum to one. Bayes rule
states that we can find the posterior target density according to

fk(Xk|Z1:k) =
1

N
fk(Zk|Xk)fk(Xk|Z1:k�1). (8.26)

The Bernoulli RFS of a predicted track is defined as

fk(Xk|Z1:k�1) =

(
1� rk|k�1 if Xk = ;
rk|k�1fk|k�1(x) if Xk = {xk}

. (8.27)

By combining the above with the measurement likelihood from Appendix I we
obtain

fk(Xk|Z1:k) =
1

N
(1� rk|k�1) exp

⇣
�
Z

A
�0dz̃

⌘ Y

z2Zk

�0(z) (8.28)

for the case when Xk = ;. When Xk = {x} we have

fk(Xk|Z1:k) =
1

N
rk|k�1fk|k�1(x) exp

⇣
�
Z

A
�(z̃|x)dz̃

⌘
⇥

⇣
(1� PD)

Y

z2Zk

�(z|xk) +
mkX

j=1

PDfz(z
j
k|xk)

Y

z2Zk\zjk

�(z|xk)
⌘
. (8.29)

The measurement likelihood for an individual association hypothesis is given by

fk(Zk|xk, ak = 0) = (1� PD) exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘Y

z2Z
�(z|xk) (8.30)

for a missed detection, and

fk(Zk|xk, ak = j > 0) = PD exp
⇣
�
Z

A
�(z̃|x)dz̃

⌘
fz(z

j
k|xk)

Y

z2Zk\zjk

�(z|xk)

(8.31)
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for a detection. The posterior target density conditional on a single association
hypothesis is

fk(xk|Z1:k, ak = j) =
fk(Zk|xk|k�1, ak = j)fk|k�1(x)

ljc
(8.32)

where
ljc =

Z
fk(Zk|x̃, ak = j)fk|k�1(x̃)dx̃. (8.33)

Inserting this in Equation (8.29) we get

fk(Xk|Z1:k) =
1

N

⇣
rk|k�1l

0
cfk|k�1(x|Z1:k, ak = 0)

+
mkX

j=1

rk|k�1l
j
cfk(x|Z1:k, ak = i)

⌘
(8.34)

when Xk = {x}. We now see that pjkr
j
k / rk|k�1l

j
c . Furthermore, as rjk = 1 for

j > 0, we have pjk = rk|k�1l
j
c/N for j > 0. Some more work is needed to find the

existence probability r0k. We find it by dividing the unnormalized joint probability
of a target existing and a missed detection occurring, by the probability of a missed
detection. This gives

r0k =
rk|k�1l

0
c

rk|k�1l0c + (1� rk|k�1) exp
⇣
�
Z

A
�0dz̃

⌘ Y

z2Zk

�0(z)
(8.35)

where the denominator is the sum of the probability of a missed detection occurring
when a target exists, and a missed detection occurring when a target does not exist.
Recognizing that the numerator in (8.35) is p0kr

0
k ⇥ N , we find p0k ⇥ N as the

denominator. By remembering that
Pmk

j=0 p
j
k = 1 we can find the normalization

constant N .
Lastly, we want to have the final Bernoulli on the form

fk(Xk|Z1:k) =

8
>><

>>:

1� rk if Xk = ;

rk

mkX

j=0

�jk ⇥ fk(xk|Z1:k, ak = j) if Xk = {xk}
(8.36)

while we now have

fk(Xk|Z1:k) =
mkX

j=0

rjkp
j
kfk(xk|Z1:k, ak = j) if Xk = {xk}. (8.37)
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This is done by dividing the association probabilities and association-conditional
existence with the posterior existence probability

�jk =
pjkr

j
k

rk
. (8.38)

Lastly, we find the posterior existence probability as

rk = p0kr
0
k +

mkX

j=1

pjk (8.39)

which leaves us with all the needed expressions.
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Chapter 9

Concluding Remarks

This thesis has presented ways of including target-provided information in target
tracking, with a special focus on the application of AIS messages in maritime
target tracking. It is also concerned with specific problems encountered when
using exteroceptive sensors in the maritime domain. This chapter summarizes and
discusses the contributions of the thesis and proposes possible future work.

9.1 Summary and discussion

Rather than summarizing the contributions of this thesis on a chapter-by-chapter
basis, this section will instead connect the dots by considering concepts and problems
encountered throughout.

Including target-provided information in target tracking

The single overarching theme of this thesis is the use of AIS messages in maritime
target tracking, and this demands models and methods that can handle such informa-
tion. A more general view of the problem is how to use target-provided information.
The problem is not only relevant for maritime target tracking, but it is also applicable
to, for example, air traffic control. In the context of measurement modeling, most
messages a tracker can receive from surrounding targets share similar properties that
distinguish them from exteroceptive sensor measurements: It is difficult to know
when the messages will arrive, and the messages contain identity information, are
not false alarms, and have position and velocity data gathered by the target. The
fact that not all targets provide information to the tracker is also important. The
measurement model should be able to model these properties rather than making
similar assumptions as for exteroceptive measurements. Chapter 3 presents such
a model, and a variant of the tracker from Chapter 2 is derived to account for the
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target-provided information. The model upholds the mathematical properties needed
for it to be applicable for use in the tracker from Chapter 2, and the results in both
Chapter 3 and Chapter 5 show that the model works well in practice.

The trackers in Chapter 2, and by extension, the one in Chapter 3, are derived
from the PMBM filter equations. Chapter 4 exploits this to create a PMBM tracker
that can handle target-provided information. In addition to bringing the tracking
performance for point targets close to what can be considered state-of-the-art, we
also present a method for utilizing target-provided information in extended object
tracking. When the identity of a target is known, its dimensions are often possible
to obtain, either through the messages themselves or through a database. The
results show that the method improves the extent estimate significantly by using this
information. The results in Chapter 4 show that the PMBM variant improves upon
the tracker from Chapter 3, especially in difficult situations.

In Chapter 5, the point target PMBM with multiple models and support for AIS
messages is used in a closed-loop collision avoidance experiment. The collision
avoidance method predicts the positions of the targets to a possible future point of
contact, which makes the course and speed estimates especially important. A key
motivation behind developing the trackers in Chapters 2–4 was experiences with poor
course and speed estimates from simpler tracking methods. The uplifting results
suggest that the PMBM variant is well-suited for such applications. Furthermore, the
same field test applies the JIPDA variant from Chapter 3, and the results confirm that
it also works well for its intended usage in autonomous marine collision avoidance.

The hybrid state formulation

The hybrid state, as formulated in [8, p. 411], is used extensively in the first part
of this thesis. A hybrid state is in itself a simple concept; it is a state that includes
both continuous and discrete elements. Using Chapter 2 as a reference point, the
continuous part of the hybrid state contains the position and velocity of the target,
whereas the discrete parts inform what kinematic model the target is following and
whether or not it is visible. This way of looking at the target state allows both a
structured way of developing the target tracking methods and simplifies changes to
the target state. As shown in Section 3.4 and throughout Chapter 4, when thinking
about the target state in such a way, the extraction of the individual elements of the
target state becomes somewhat detached from the tracking method itself. That is,
under the assumption that the hybrid state upholds any restrictions placed on the
target state by the tracking method, the tracker need not be concerned with what
specific elements hide in the hybrid state.

When Chapter 3 introduces the ID as a part of the hybrid state, and in the two
trackers in Chapter 4 that use different state spaces, the hybrid state formulation both
simplifies and enables. If one, for example, would want to include the color of a
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boat as part of the state, this could be done without changing much more than the
implementation details. Even though this way of thinking about the target state is
more of an enabler than a contribution in itself, it highlights how the hybrid state
formulation can be used to simplify the development of target tracking methods for
specific applications in a more plug-and-play manner.

Why we should distrust AIS messages but still use them

For any sensor, it is important to understand its limitations. The problems encountered
when using exteroceptive sensors are well known, with their false alarms, missed
detections, and measurement noise. The limitations take on a different form for
target-provided information in general and AIS messages specifically. First and
foremost, the system that utilizes the information is no longer in control of the
information gathering. This contrasts the exteroceptive sensors, where, for example,
the radar is mounted on the ship that uses its measurements. In the case of AIS
messages, the surrounding ships collect information to populate the different fields
in the messages with no way for the receiver to know how this information was
obtained or if the transmitter even tries to provide correct data. Furthermore, the
information is transmitted over a wireless channel and is vulnerable to noise and
interference.

This thesis addresses the problem of potentially incorrect AIS information in
several ways. The IDs received from surrounding targets are not always assumed
to be correct. Instead, the received IDs are modeled with a slight possibility of
being incorrect, as is done in Chapter 3 and Chapter 4, and thus the tracker does not
always see a new target in each new ID. However, the trackers themselves do not
consider incorrect information in other message fields, except for inaccuracies in
the transmitted position and velocity. These inaccuracies are modeled similarly to
how the models assume some error in the exteroceptive measurements. Under the
assumption that all the information the trackers want to use can be wrong, Chapter 6
provides a method to validate the information in the AIS messages. By use of
exteroceptive sensors, simple hypothesis tests can detect errors. The validation helps
avoid the initialization of tracks from AIS messages where no target is present and
removes incorrect velocity data that otherwise would be used to update the target
estimates. The information given by the AIS messages has to be confirmed before it
is allowed to affect the tracker estimates.

Nevertheless, data from surrounding targets can be an invaluable source of
information. For AIS, the messages contain the identity of the transmitting ship,
which can be hard to obtain by other means. The identities can help the tracker with
the data association problem and find additional uses in other parts of the larger
system. Furthermore, the received measurements of position, course, and speed
are usually more precise than what exteroceptive sensors can provide. Thus, the
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target estimates can be improved by the AIS messages, in some cases significantly.
The AIS messages also report turn rate information that allows the tracker to detect
a maneuver quicker than otherwise possible. Lastly, Chapter 4 shows how the
AIS messages can improve target extent estimates by using the dimensions of the
transmitting ship.

How to improve tracking performance?

The methods presented in Chapters 2–4 try to improve tracking performance by
adding to existing trackers. Chapter 2 shows how modeling the visibility of targets,
in combination with more elaborate modeling of target kinematics, helps when
encountering difficult situations in the maritime domain. The same tracker is
extended to include target-provided information, which can help when measurements
from exteroceptive sensors are too poor to provide precise estimates regardless of
the tracker. The tracker in Chapter 4 expands the PMBM to include target-provided
information, and it is shown how this can help when the tracker is faced with difficult
situations or poor measurements.

However, what should not be overlooked is how the trackers rely on assumptions
that will always be an approximation of the real world. The best possible tracker
will perform poorly when based on incorrect assumptions. The methods also rely on
further approximations when derived from the models, and how the compounding
approximations impact the tracking performance is not easy to assess. Limited
knowledge of the environment and the targets that inhabit it argues for a conservative
approach where the models are kept simple. Chapter 7 dissects one of the common
assumptions made when modeling radar measurements, in that all detections in a
single scan are from the same point in time. With any rotating sensor that outputs its
measurements after each full rotation, this is an approximation. The results show
that the approximation is not necessarily a problem but can be in some situations.
The chapter illustrates how questioning assumptions and approximations can help
improve performance, whereas the use of a visibility state, multiple kinematic models,
and target-provided information shows how adding functionality can help. However,
the distinction is not necessarily clear-cut, as the goal of adding to an existing model
is often to come closer to the real world. Allowing a target to become temporarily
invisible to a sensor is closer to reality than assuming it is always visible.

The reliance on models means that real-world data is paramount. Such ex-
perimental data can reveal situations not accounted for in the models and inspire
new developments. Many of the research problems encountered in this thesis were
discovered when analyzing experimental data in the Autosea project [26], where the
trackers often struggled to handle occlusions, maneuvering targets, and wakes. Test-
ing the trackers on experimental data also provides a way to assess their usefulness
in practical applications, where assumptions such as uniformly distributed clutter or
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constant probability of detection can be unreasonable. The focus on real-world data
is brought further in Chapter 5, which uses the trackers from Chapter 3 and Chapter 4
in their intended application: autonomous marine collision avoidance. Their success
in this application strongly indicates their usefulness in the maritime domain, which
is difficult to assess with simulated data adhering to their model assumptions.

The persistent problems of wake clutter and occlusions

Wake clutter showed up in most of the chapters in this thesis, either by explicit
mention or through the problems they cause. In Chapter 2, it is encountered in the
Joyride data set, where track losses occur when not using the visibility model. In
Chapter 3, it is the reason for poor radar measurement quality when a large target
ship, Gunnerus, makes a sharp turn. Here, the tracker is able to provide precise
estimates only when aided by AIS messages. In Chapter 4, the wake of a target that
is tracked with a LiDAR confuses the extended object tracker. When the wake is
assumed to be a part of the target, its extent and position estimates become poor.
Again, the AIS messages, through the target dimensions available through them,
help the tracker avoid a blown-up extent estimate. When the trackers were tested in
a closed-loop collision avoidance experiment in Chapter 5, the wake of the ownship
caused problems, requiring us to discard all measurements close to the ship. Lastly,
Chapter 8 presents a method for tracking targets in the presence of wakes. Here,
rather than relying on general performance-enhancing measures to avoid problems
caused by wakes, we instead went to the root of the problem and modeled the wakes
themselves.

By modeling the wake clutter, the tracker can follow a target without being
impeded by it. Furthermore, wake clutter measurement indicates that a target is
the cause of the wake and can be used to estimate the target’s existence probability.
The results indicate that the information inherent in the wakes can help with target
initialization and the continued estimation of its existence probability. However, the
tracker is a single-target tracker and will have trouble with multiple closely spaced
targets. Furthermore, a lack of available experimental data sets makes it difficult to
evaluate the wake-compensating methods in a maritime environment. Nevertheless,
awareness of the problem enables us to design experiments to provide data, and it
can also help identify useful data sets in other contexts.

The problem of occlusions is also present in most of the chapters in this thesis.
Occlusions occur when a target is hidden in some way that makes the exteroceptive
sensor unable to detect it. The visibility state from Chapter 2 and target-provided
measurements can mitigate the problem. It helps the target estimates behave
reasonably when the tracker does not receive any detections for a prolonged time, and
the target-provided measurements provide information about the target regardless
of the occlusion. Even though the absence of measurements will deteriorate
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any estimate somewhat, results throughout the thesis indicate that the remedies
successfully contain the issues caused by occlusions.

9.2 Future work

Possible directions for future work have been hinted at in individual chapters and are
summarized here. The availability of robust ways associating between exteroceptive
sensors and target-provided messages provides the opportunity to use such messages
in a wide range of applications. Chapter 4 introduces the use of AIS in extended
object tracking, but more elaborate ways of exploiting the information likely exist.
The AIS messages contain more information than what this thesis has considered,
and the use of this information should be explored further. In other subject areas,
such as coastal surveillance, air traffic control, and similar problems where the
surveillance area is large, trackers that combine the target-provided information with
exteroceptive sensor data can be beneficial. Furthermore, topics such as long-term
prediction and collision avoidance can benefit from robust data association between
AIS and exteroceptive measurements and the possibility of validating the AIS
message information.

Regarding the trackers themselves, there exist ways of taking their performance
even further. The trajectory PMBM filter [57] has shown itself to be a powerful
method, and identity-carrying messages should intuitively work well in such a tracker.
Furthermore, generalization of the wake modeling in Chapter 8 to multi-target
trackers such as JIPDA and PMBM would increase its utility in practical applications.
Such an extension is not trivial, however, because the sampling needed to compute
the likelihoods may be prohibitive when increasing the number of association
hypotheses. Furthermore, the number of associations themself will increase when we
no longer assume that each target only creates at most one detection. Nevertheless,
Chapter 8 can serve as a starting point for such an extension through its basis in [133].
Collecting data to evaluate the trackers in a wider range of situations is also important,
and can help identify problems not yet considered.

Lastly, it can be viable to investigate the use of target-provided information
to mitigate some of the more practical problems often encountered when using
target tracking methods. Tuning of tracking methods can often be difficult and
situation-dependent. Here, the target-provided information can provide a way to
evaluate the accuracy of the exteroceptive sensors automatically. Knowledge of
target extent through AIS messages can also help with clustering when the targets in
an area are of varying sizes. AIS can also provide a minimum number of targets in
an area, which can help avoid clustering detections from several targets together.
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