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Abstract

Biometrics, which is defined as the automated recognition of individuals based
on their behavioural and biological characteristics, can be applied to increase
the trust and usability of digital interactions. Due to their uniqueness and per-
sistence, biometric characteristics allow for a reliable connection between an in-
dividual and their digital identity.

However, these same properties of uniqueness and persistence also give rise to
privacy concerns. Therefore, this thesis investigates the cryptographic protection
of biometric systems. If such protection is built from classical cryptography, it
has two main shortcomings: firstly, it is limited in the type of computations that
can be performed on the encrypted data, and secondly, it does not provide long-
term protection against threats posed by quantum computers.

Fully homomorphic encryption can mitigate both of the aforementioned con-
cerns. Based on hard lattice problems, it falls into a new category of mathemati-
cal problems that are believed to withstand known quantum computing attacks,
called post-quantum cryptography. However, its practical efficiency remains an
open challenge. Therefore, this thesis studies the efficiency of biometric systems
under fully homomorphic encryption.

In addition, this thesis addresses how biometric characteristics can be used to
facilitate cryptographic key exchange, where a shared key for encrypted com-
munication between a client and a server is computed correctly if and only if
the biometric verification was successful. As with biometric comparisons in the
encrypted domain, the security of such schemes against quantum computing
threats needs to be considered in order to achieve a lasting protection of the
sensitive biometric information.

Finally, the security of biometric information protection against malicious ad-
versaries, which can deviate arbitrarily from a given protocol, and its impact on
the computational efficiency are investigated in this thesis.
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Sammendrag på norsk

Biometri, som er definert som automatisert gjenkjennelse av individer basert
på deres adferdsmessige og biologiske egenskaper, kan brukes for å øke tilliten
og brukervennligheten i digitale interaksjoner. På grunn av deres unikhet og
robusthet, sørger biometriske egenskaper for en pålitelig forbindelse mellom et
individ og deres digitale identitet.

Imidlertid gir de samme egenskapene av unikhet og robusthet også opphav til
personvernbekymringer. Derfor undersøker denne avhandlingen den krypto-
grafiske beskyttelsen av biometriske systemer. Dersom slik beskyttelse er bygget
fra klassisk kryptografi, har den to hovedmangler: for det første er den begrenset
av mulige beregninger som kan utføres på de krypterte dataene, og for det andre
gir den ikke langsiktig beskyttelse mot trusler fra kvantedatamaskiner.

Fullstendig homomorfisk kryptering kan løse begge de nevnte problemene. Ba-
sert på vanskelige problemer fra gitre, faller den inn i en ny kategori av matema-
tiske problemer som antas å motstå kjente angrep fra kvantedatamaskiner, kalt
kvantesikker kryptografi. Den praktiske effektiviteten er imidlertid en utford-
ring. Derfor studerer denne avhandlingen effektiviteten til biometriske systemer
under fullstendig homomorfisk kryptering.

I tillegg tar denne avhandlingen for seg hvordan biometriske egenskaper kan
benyttes til å forenkle kryptografisk nøkkelutveksling, der en delt nøkkel for
kryptert kommunikasjon mellom en klient og en server beregnes riktig hvis og
bare hvis den biometriske verifiseringen var vellykket. Som med andre biomet-
riske sammenligninger i det krypterte domenet, må sikkerheten til slike proto-
koller beskyttes mot kvantedatamaskiner for å oppnå en varig beskyttelse av
den sensitive biometriske informasjonen.

Til slutt undersøkes sikkerheten til biometrisk informasjonsbeskyttelse mot ond-
sinnede motstandere, som kan avvike vilkårlig fra en gitt protokoll, og dets inn-
virkning på beregningseffektiviteten til slike protokoller.
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Chapter 1

Introduction

Biometrics, or biometric recognition, is defined as the automated recognition of
individuals based on their behavioral and biological characteristics [152]. Ex-
amples of biological biometric characteristics that can be used for automated
recognition are facial images or the ridge line patterns in fingerprints. Exam-
ples of behavioral biometric characteristics include keyboard timing patterns,
hand-written signatures, or speaker recognition. From such characteristics, dis-
tinguishing and repeatable biometric features can be extracted and used for com-
parison, determining the success or failure of the biometric recognition transac-
tion.

Biometric recognition can be used in different modes, three of which are relevant
to this thesis: verification, identification, and key establishment. In a verification
transaction, a biometric probe is compared against a previously stored biomet-
ric reference using a one-to-one comparison of the probe and reference features.
The outcome of this comparison is a comparison score, which can be compared
against a predefined threshold. The verification transaction produces a binary
output depending on the threshold comparison, resulting in either an accept
or a reject decision for the biometric probe in question. If a similarity measure
is used, comparison scores above the threshold are accepted. If a dissimilar-
ity measure such as a distance function is used, comparison scores below the
threshold are accepted. Biometric verification has become an established part of
our digital infrastructure, from smartphone access to automated border control,
where a stored reference, e.g., a fingerprint pattern on a smartphone or a face
image in a passport, is compared against a freshly captured probe.

In an identification transaction, a biometric probe is compared against a refer-

19



20 Post-Quantum Secure Biometric Systems

ence database and a one-to-many comparison is performed. All references that
yield comparison scores above the given threshold (for a similarity measure) are
collected in a candidate list. Depending on the decision policy, only the refer-
ence identifier corresponding to the best candidate (i.e., the reference with the
highest comparison score based on a similarity measure) is returned. Alterna-
tively, more candidates may be returned. If no candidate was found within the
reference database, the identification transaction was unsuccessful. Biometric
identification can be used to prevent duplicate issuance of unique citizenship or
tax identifiers [256], or in law enforcement to perform checks against databases
of previously convicted criminals.

The third mode of biometric recognition used in this thesis is biometrics-based
key establishment. This application goes beyond the binary outcome of an accept
or reject decision by deriving cryptographic keys from biometric characteristics
which can be used for encrypted communication between a client and a server.
In this transaction, the server holds a key derived from a biometric reference,
and the client generates a key from a biometric probe. The shared key between
the client and the server should be the same if and only if the verification for
the probe resulted in an accept decision, and different if the probe is rejected.
Cryptographic keys generated in this way can be used to establish secure chan-
nels for messaging applications and further applications relying on encrypted
communication [260].

In all three transactions described above, the uniqueness and persistence of bio-
metric characteristics enable a user-friendly and reliable way of connecting a
human user to their digital identity. Compared to passwords or cryptographic
tokens, biometric authentication therefore provides an additional level of trust
and usability to the service it is applied to [237].

However, these same properties of uniqueness and persistence have also raised
security and privacy concerns [154]. If biometric features, e.g., a fingerprint
pattern, are stolen, they can be used to conduct impersonation attacks on the
data subject in question. In addition, the information may be used to link the
subject across different applications or derive personal information from the ob-
tained biometric sample such as the subject’s ethnic origin or sensitive medical
information. The importance of the protection of such personal identifiable in-
formation has been explicitly recognized by the European Union’s General Data
Protection Regulation (GDPR) [109], which has increased awareness and regula-
tory requirements around digital authentication, including biometric recogni-
tion.

Contrary to knowledge-based authentication mechanisms, biometric character-
istics cannot be revoked or easily replaced following such an attack. It is there-
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fore important to ensure the protection of biometric data used for automated
recognition throughout different applications, particularly whenever biometric
data is stored remotely. As biometric characteristics allow for an accurate iden-
tification of individuals over several decades [166], this protection should be de-
signed with long-term security against potential future attacks in mind.

To ensure the security of biometric information against the threats discussed
above, the international ISO/IEC 24745 [149] standard on Biometric Information
Protection (BIP) gives three requirements: the unlinkability, renewability, and
irreversibility of protected biometric templates, i.e., extracted feature representa-
tions. Therefore, the term Biometric Template Protection (BTP) can be used inter-
changeably with BIP. Unlinkability refers to the cross-application linkage attack
discussed above. It requires that protected templates created from the same
source cannot be linked by an attacker, implying that the space of possible pro-
tected representations for a single template needs to be large and provide in-
distinguishability. Renewability addresses the revocation of protected templates,
requiring that new protected templates can be created from the same source
such that they cannot be tied to stolen biometric information. Irreversibility en-
sures the confidentiality and privacy of the biometric data, as an attacker should
not be able to reconstruct original biometric samples given only the protected
templates. Unprotected templates, although an abstract representation of the
original biometric data, have been shown to be vulnerable against such sample
reconstruction attacks [59, 119, 185].

One approach to fulfil all three requirements is computation on encrypted data.
If the biometric templates stored and processed within each transaction are en-
crypted, an attacker cannot recover them, given that the applied encryption
scheme achieves confidentiality. Encryption schemes that achieve indistinguish-
ably against chosen-plaintext attacks, or IND-CPA security, ensure that encryp-
ted biometric templates cannot be linked across applications. This is due to the
fact that IND-CPA security means that an attacker cannot efficiently distinguish
between an encryption of the bit zero and an encryption of the bit one. Extend-
ing this property to biometric templates, an attacker is not able to efficiently
distinguish an encryption of a given template from an encryption of a different
template. In addition, cryptographic schemes with non-deterministic proper-
ties do not allow an attacker to efficiently distinguish an encryption of a given
template from a second encryption of the same template.

However, the challenge of computing on encrypted data is the meaningful eval-
uation of biometric comparison functions on the encrypted templates, which
cannot be achieved with arbitrary encryption schemes. Instead, a subcategory
of encryption schemes with homomorphic properties are required, which allow
for operations on ciphertexts that translate directly to operations on the under-
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lying plaintext. Informally speaking, a homomorphism describes a structure-
preserving map between two algebraic structures of the same type, e.g., between
two sets. In the case of encryption, arithmetic operations such as additions and
multiplications can be preserved between the plaintext space and the ciphertext
space of an encryption scheme, and such schemes are referred to as Homomorphic
Encryption (HE) schemes. For example, a homomorphic multiplication allows
for the multiplication of two ciphertexts that results in the product of the two
underlying plaintexts after decryption. More generally, a homomorphic evalu-
ation of a given function describes its computation on ciphertexts such that the
value of the function is returned in a plaintext after decryption. Thereby, biomet-
ric comparison functions can be evaluated homomorphically without revealing
private information to the party performing the computation. As the outcome,
only the comparison score is revealed after decryption, from which an accept or
reject decision over the comparison trial can be derived.

Homomorphic properties of public-key encryption schemes have been studied
since the seminal work by Rivest, Shamir, and Adleman [224], whose RSA en-
cryption scheme allows for homomorphic multiplications of ciphertexts [223].
Later, HE schemes such as the ElGamal [102] and Pailler [203] schemes were ap-
plied to BIP specifically [26, 126, 233], allowing for a homomorphic evaluation
of distance metrics such as the Euclidean distance that can be used for biometric
comparisons.

The aforementioned HE schemes are public-key encryption schemes that are
based on the security of the factorization problem [224] or the discrete logarithm
problem [87]. As such, they have two significant shortcomings that make them
inapplicable for the scope of this thesis: Firstly, they are limited in the type and
number of homomorphic operations they support, and secondly, they do not
provide long-term security in the face of quantum computing.

Even though no quantum computer of sufficient size to break current encryp-
tion has been publicly announced, the European Union estimates that practi-
cal attacks could be expected as soon as 2035 [107]. The most important threat
posed by quantum computing that impacts public-key encryption is Shor’s al-
gorithm [238]. Proposed in the 1994, this algorithm allows to solve both the fac-
torization and discrete logarithm problems in polynomial-time, rendering them
unusable for cryptography. In other words, Shor’s algorithm implemented on a
quantum computer allows for an efficient computation of the decryption func-
tion without knowledge of the cryptographic secret key. The encrypted data,
e.g., biometric templates, can thereby be accessed by an attacker and further
exploited for personal information or impersonation attacks. Given the persis-
tence of biometric characteristics [166], security against such attacks needs to
be considered today. As a viable attack, an attacker could intercept protected
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biometric templates today, and reverse them decades later using a quantum
computer. This attack can be considered feasible, as quantum computing may
become more attainable and inexpensive in the future.

In addition to Shor’s algorithm, a second algorithm threatens symmetric cryp-
tography when implemented on a quantum computer, namely Grover’s algo-
rithm [132]. Published in 1996, this algorithm allows for a square-root speed-up
on unstructured search problems and impacts the security of hash functions and
symmetric encryption schemes [77]. Contrary to Shor’s algorithm however, the
square-root search time improvement provided by Grover’s algorithm can be
mitigated by doubling the security parameters of symmetric schemes, which
still allows for an efficient computation of their encryption and decryption func-
tions. Therefore, symmetric cryptography is not threatened by quantum com-
puting to the same degree as asymmetric cryptography.

Given the threats posed by Shor’s and Grover’s algorithm, the most recent ver-
sion of ISO/IEC 24745 also emphasizes the long-term protection of biometric
data against attacks using quantum computers. For BIP schemes relying on
asymmetric cryptography, this security can be achieved through Post-Quantum
Cryptography (PQC), a term established for public-key cryptography that is be-
lieved to withstand known attacks implemented on quantum computers [238].
In comparison, cryptographic schemes that base their security on the factoriza-
tion or discrete logarithm problems are referred to as classically secure. The
United States National Institute of Standards and Technology (NIST) has shepherded
a PQC standardization competition which investigates suitable schemes and
encourages cryptanalysis on the latter [10]. Two categories of cryptographic
schemes have emerged as the most promising within this competition: lattice-
based [204] and code-based [262] cryptography.

Out of these two categories, lattice-based cryptography is particularly interest-
ing and relevant for this thesis, as it provides post-quantum security and homo-
morphic properties that exceed the capabilities of classically secure HE. Lattices,
which can informally be defined as discrete subgroups of real vector spaces,
allow for the construction of hard mathematical problems that are assumed to
withstand attacks implemented on quantum computers. Hard problems based
on lattices have been studied since the 1990s [140]. In addition to their believed
post-quantum security, lattices enable cryptographic constructions that are not
known to be feasible with classical cryptography. A challenge that persisted
with classically secure HE schemes was the combination of different arithmetic
operations such as additions and multiplications, and the number of consecu-
tive multiplications on a single ciphertexts, i.e., the multiplicative depth of an
arithmetic circuit. Only in 2009, the breakthrough construction of Fully Homo-
morphic Encryption (FHE) by Gentry [121] paved the way for the evaluation of
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arbitrary arithmetic functions over encrypted data.

Since Gentry’s initial construction of FHE, a number of improved schemes with
different properties and foci have been developed [50, 51, 52, 65, 69, 98, 112]. As
their computation efficiency has improved over recent years, their application
to privacy-preserving computation in fields such as BIP has received increas-
ing interest [44, 103, 104, 169, 171, 243, 270]. More recently, the homomorphic
properties of key establishment algorithms analyzed in the NIST PQC compe-
tition have also been successfully applied to BIP [19, 226]. Even though these
algorithms have not been designed with homomorphic encryption in mind,
they inherit limited homomorphic properties from their mathematical construc-
tions based on lattices or error-correcting codes which are sufficient to evaluate
simple distance metrics between biometric templates. Closely related to ho-
momorphic encryption, further techniques that allow for computation on en-
crypted data such as Secure Multiparty Computation (MPC) and Functional En-
cryption (FE) have also been applied to BIP instantiated with lattices-based prim-
itives [30, 66].

Aside from privacy-preserving biometric comparisons, key generation based on
biometric authentication has received increasing research interest [48, 106, 260].
The advantages of biometrics-based key establishment compared to password-
based protocols follow from the motivation for biometric authentication, yield-
ing a more secure and user-friendly digital infrastructure. As lattice- and code-
based schemes are used in these works, they also contribute to the development
of post-quantum secure biometric systems.

While many advances have been made in the evolving research field of BIP,
many critical challenges remain, which can be categorized into challenges re-
garding the security and challenges regarding the efficiency of BIP schemes. In
terms of security, the need for post-quantum protection of biometric data is mo-
tivated through the threat posed by Shor’s algorithm [238]. Additionally, the
majority of BIP schemes with post-quantum security have only been constructed
under the semi-honest adversary model, where all parties are assumed to follow
the given protocol. However, this assumption cannot be considered a realistic
model of real-world adversaries, which may behave maliciously [28].

In terms of the computational efficiency, the compatibility of biometric feature
representations with privacy-preserving computation techniques is a critical com-
ponent. Captures of biometric characteristics are inherently noisy. For example,
biometric features may change through ageing processes [131, 166], changing
the appearance of the same individual to a certain degree. Even if the same fea-
tures are captured within short time intervals, the feature extraction process will
result in slightly different mathematical representations of the same instance.
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Therefore, biometric features cannot be compared using absolute equity, but re-
quire a similarity measure that is tolerant to noisy representations. Historically,
these representations and similarity measures have been developed to obtain
the highest recognition accuracy for the targeted biometric modality, but not
necessarily with cryptographic protection in mind. The encoding of biometric
features into plaintext spaces of cryptographic schemes can therefore be non-
trivial [154].

In addition to the challenges for single biometric modalities, combinations of
different biometric modalities and their feature representations require further
considerations. This approach is referred to as multibiometrics and can be applied
to increase the trust in the authentication through requiring the authentication
of multiple biometric instances of the same individual. Different approaches
have been explored for multibiometric in the encrypted domain which address
the challenges of consolidating different feature representations [243].

Finally, improving the efficiency of large-scale biometric identification under
encryption remains an open problem [154]. As a one-to-many search against
a potentially large reference database is computed in a biometric identification
transaction, the computational workload of this transaction increases linearly
with the size of the database. Given the cost of cryptographic operations for a
single comparison discussed above, this can render identification searches in the
encrypted domain infeasible [91].

Two main approaches have been explored to facilitate a workload reduction
for identification transactions on large biometric databases: feature transforma-
tion and preselection [92]. Altering the representation of extracted biometric
features, or feature transformation, can be applied to reduce the size or form of
the biometric feature representation in a way that reduces the cost of a single
biometric comparison, and thereby decreases the overall cost of the database
search [92]. This approach has been explored for FHE-encrypted databases with
efficient execution times for mid-sized galleries of 1 to 5 million subjects [31,
103]. However, the feature transformation approach continues to scale linearly
with the database size.

Therefore, preselection, i.e., selecting a subset of the reference database, may be
applied to reduce the search space and remove biometric comparisons that can
be considered unlikely to result in a positive identification outcome [92]. In
terms of the application of FHE, preselection can be applied on top of an en-
crypted database, aiming to produce a subset of encrypted feature vectors to
be considered for the full and expensive homomorphic evaluation of the com-
parison function. However, any auxiliary information required for preselec-
tion needs to be evaluated for privacy-sensitive information leakage, and pro-
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tected accordingly [33]. Notably, feature transformation and preselection are not
mutually exclusive. Indeed, some feature transformation approaches for FHE-
encrypted databases have been shown to be compatible with preselection [33],
while others apply an encoding of the biometric feature representation that does
not trivially allow for a meaningful preselection [103].
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1.1 Research Questions

The first research question targets one of the broadest challenges within BIP,
namely the compatibility of biometric feature representations with privacy-pre-
serving computation techniques. This first research question also includes a
comparison between different privacy-preserving computation techniques for
BIP, where the focus of this thesis lies on solutions with post-quantum security.
For such solutions, the trade-off between security and efficiency is investigated.

In some cases, the biometric feature representation aligns with the cryptographic
scheme. This is for example true for fixed-length binary representations that
be compared using a simple distance metric such as the Hamming distance, as
many cryptographic schemes allow for binary plaintext representations [170].
With the rise of deep-learning based feature extraction [191] however, biomet-
ric features from different modalities can be represented as real-valued vectors
of a fixed dimension and may require quantisation to be compatible with cryp-
tographic schemes that operate on integer or binary plaintext spaces [96]. The
impact of such changes must be evaluated with regard to the biometric perfor-
mance.

A particular challenge arises in the case where the biometric feature representa-
tion is not expressed in fixed-length vectors, but unordered sets of variable car-
dinality. This is the case for minutiae-based fingerprint representations, where
minutiae are significant points in the fingerprint ridge line pattern given through
the ridges and valleys in the skin that can be captured using ink and paper,
or by different digital fingerprint capture devices [151]. The captured location
and number of such minutiae can vary between captures even for the same bio-
metric instance, i.e., a finger. Comparison algorithms for such variable-length
feature representations are more complex than distance metrics evaluated on
fixed-length vectors, which impacts the computational workload. The feature
representation and its encoding have been shown to have a significant impact
on the computational workload, and remain one of the main challenges for se-
cure, efficient, and accurate biometric systems [103, 104, 202].

Research Question 1

Which privacy-preserving computation techniques are best suited for bio-
metric information protection?

• How do different approaches to biometric information protection com-
pare in terms of their security and efficiency?

• How can biometric features be represented to aid different encoding
mechanisms used in privacy-preserving computation techniques?
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The second research question builds upon the first with a focus on the efficiency
of biometric identification schemes, where a large number of biometric com-
parisons are computed within the encrypted domain. In particular, we con-
sider BIP schemes where the biometric references stored in the database are en-
crypted using FHE. In terms of workload reduction approaches, the compat-
ibility of feature transformation and preselection approaches is an important
factor to achieve efficiency. At the same time, the security of the overall transac-
tion with regard to the ISO/IEC 24745 requirements as well as security against
quantum adversaries should not be impaired by the application of workload
reduction. This is particularly important for preselection approaches using aux-
iliary indexing data, which require the same level of protection as the reference
database.

Research Question 2

How can computational workload reduction be applied to improve the effi-
ciency of FHE-based biometric identification systems?

• How can computational workload reduction for biometric identifica-
tion be applied in the homomorphically encrypted domain?

• How can the trade-off between computational workload reduction and
efficient encryption be optimized?

The remaining two research questions focus on the security of BIP schemes.
In particular, the security against semi-honest and malicious adversaries is in-
vestigated within the third research question. Semi-honest adversaries are as-
sumed to adhere to the given protocol, which can only be considered a realis-
tic behaviour within a controlled environment. In contrast to semi-honest ad-
versaries, malicious adversaries may deviate arbitrarily from a given protocol,
which can be considered a significantly more realistic and challenging scenario.
We discuss this further in Section 4.2.

In addition to these cryptographic security models, the ISO/IEC 30136 [148] on
the performance testing of BIP schemes has defined the full disclosure model. In
this model, an adversary is assumed to have access to all secrets used within
the protocol, which includes cryptographic secret keys. For FHE-based BIP
schemes, this implies that the adversary is assumed to have gained access to
the FHE secret key used for the encryption of the reference database. Having
gained access to this key, the reference database could be decrypted, and the
adversary would obtain the unprotected biometric templates. Notably, this is
an attack scenario that is not covered by the definition of malicious security, as
an adversary with access to the secret key of a cryptographic scheme is typi-
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cally considered to win the security game trivially [165]. In particular, malicious
security does not imply security under the full disclosure model.

Even though the full disclosure model does not align with standard crypto-
graphic assumptions, it has recently gained increasing interest within the BIP
research community, and is therefore investigated in this research question in
addition to the established semi-honest and malicious adversary models. Even
though the focus of this research question is on security, the computational
workload remains important, as is has been shown that security against ma-
licious adversaries can render post-quantum secure cryptographic primitives
infeasible [12, 71].

Research Question 3

Can biometric information protection based on homomorphic encryption be
secured against malicious adversaries in a feasible manner?

• Is it possible to secure biometric systems under the full disclosure
model defined in ISO/IEC 30136 using only homomorphic encryption?

• Is it possible to efficiently secure biometric systems against malicious
adversaries?

Finally, this thesis focuses on post-quantum secure BIP schemes. Therefore, both
semi-honest and malicious adversaries with access to quantum computers are
considered in addition to standardized security models such as the full disclo-
sure model discussed above. The last research question can therefore be con-
sidered an overarching goal for the research contributions presented in this the-
sis.

Research Question 4

How can biometric systems be secured against quantum adversaries?

• Which quantum adversary models need to be considered for biometric
systems?

• How can the computational workload of post-quantum biometric sys-
tems be optimized?
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1.2 Overview of Contributions

In this section, an overview of the contributions to the open research problems
described above is given. The contributions are presented based on six publi-
cations or manuscripts that are currently in peer review. For each paper, the
contribution to the research question is highlighted. An overview over the con-
tributions of the papers to the research questions is given in Table 1.1.

Contribution to Research Questions RQ1 RQ2 RQ3 RQ4

Paper A [38]  # # G#

Paper B [36] G#  #  

Paper C [34] G# #  G#

Paper D [32]  # # G#

Paper E [37]  #  G#

Paper F [35]     

Table 1.1: Overview of the contributions of each paper to each research ques-
tion. Filled circles indicate that the paper contributes to the research question,
half-filled circles indicate that the research question is addressed partially in the
paper, but is not the focus of the contribution, and empty circles indicate that
the paper does not directly contribute to the research question.

Paper A: On the Feasibility of Fully Homomorphic Encryption
of Minutiae-Based Fingerprint Representations

Fingerprint recognition has been established as a reliable mode of biometric au-
thentication. It is traditionally based on minutiae, which are significant points
in the fingerprint ridge pattern [151]. Related work has previously only stud-
ied post-quantum protection for fixed-length fingerprint representations [169],
which have shown lower recognition accuracy compared to minutiae-based ap-
proaches [153]. However, variable-length fingerprint representations had previ-
ously only been combined with classically secure cryptography [20, 125]. The
aim of this work was therefore to explore biometric template protection with
post-quantum security for variable-length fingerprint representations.

The key challenge of fingerprint recognition is the construction of accurate and
efficient comparison functions between two minutiae templates. The difficulty
of this challenge increases with the application of FHE, as operations on FHE-



31

encrypted data are limited. FHE schemes with the best amortized computation
times can only handle additions, multiplications, and rotations of vectorized
data [51, 52, 65, 112]. FHE schemes with programmable bootstrapping addi-
tionally support the efficient homomorphic evaluation of look-up tables, but do
not have similarly good amortization, and can only efficiently handle smaller
message precision [69]. Despite the challenge of limited efficient homomorphic
operations, FHE provides the desired post-quantum protection, as the scheme
applied in this work is based on hard lattice problems [65].

In this work, we evaluated the Minutia Cylinder Code (MCC) [58] comparison
algorithm on encrypted fingerprint templates. This algorithm was chosen due
to its rotation-invariance and the limited number of conditional statements that
need to be evaluated during the comparison. For the FHE scheme, Cheon-Kim-
Kim-Song (CKKS) [65] was chosen. CKKS allows for operations on fixed-point
data, such that the MCC fingerprint comparison algorithm did not need to be al-
tered or quantized significantly, thereby maintaining the biometric performance
of the unencrypted system. However, not all operations of the MCC algorithm
could be expressed in the encrypted domain. In particular, conditional opera-
tions had to be computed on plaintext data, as they cannot be efficiently realized
under FHE [147]. Nevertheless, the proposed approach still provides protection
to the encrypted fingerprint templates. For example, when the difference be-
tween two minutiae angles is decrypted and compared against a threshold, we
argue that it is still challenging to derive the single minutiae angles purely based
on their difference.

In terms of computational performance, the evaluation revealed that a large
number of FHE operations needed to be performed in order to evaluate the
MCC comparison algorithm. In our approach, the comparison between each
minutiae pair corresponded to the cost of one verification computed on fixed-
length fingerprint representations, with some additional operations. The overall
number of minutiae comparisons is the product of the number of minutiae of the
reference and probe template. On the MCYT [199] database, which the proposed
protocol was evaluated on, the median number of minutiae per template was 35,
which yields an average number of cylinder comparisons for one verification of
35 · 35 = 1225. Thereby, one verification transaction took over three hours on
commodity hardware.

Notably, this work was the first to evaluate biometric template protection with
post-quantum security for variable-length fingerprint representations. The bio-
metric performance of the unencrypted computations were not compromised
by the applied FHE scheme, which additionally provided long-term protection
through post-quantum security. However, the challenge of evaluating condi-
tional statements on encrypted data and the high complexity of minutiae-based
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fingerprint comparison algorithms leads to an unacceptable computational cost
for real-world applications. This is a motivation for future work on faster FHE
computations, as well as fixed-length fingerprint representations with high ac-
curacy. In this area, deep-learning based fingerprint representations are cur-
rently emerging [104], which lend themselves ideally to the problem explored
in this work.

Contribution of Paper A

Paper A addresses RQ1 on biometric feature representations and their com-
patibility with post-quantum secure template protection approaches, in par-
ticular FHE. The paper shows a clear trade-off between security and effi-
ciency with regard to variable-length fingerprint representations. Based on
the results reported in Paper A, it can be argued that variable-length repre-
sentations cannot be efficiently compared under FHE at the moment. Re-
lated work has shown fixed-length representations achieve high efficiency
even under post-quantum secure encryption [169]. However, these repre-
sentations have been shown to lack high accuracy. With advances in both
FHE and fixed-length fingerprint representations, this trade-off could be mit-
igated in the future. Through the post-quantum security of the applied FHE
scheme, Paper A also partly addresses RQ4, showing that security against
semi-honest quantum adversaries can be achieved when comparing variable-
length feature representations, even though this protection could not be
achieved with computational efficiency in this particular approach.

Paper B: HEBI: Homomorphically Encrypted Biometric Index-
ing

The computational workload of biometric identification in the encrypted do-
main is often a hindering factor in their real-world application [154]. Therefore,
indexing has become a popular approach to preselection for biometric identifi-
cation [90, 137, 195, 200, 205, 229, 246, 261]. While such approaches have been
shown to reduce the computational workload, they also introduce additional
data to the biometric transaction, which we refer to as auxiliary indexing data.
In previous works, this indexing data had not been encrypted, but it was con-
sidered that it did not reveal sensitive information about the underlying data
subjects clustered under one index [200].

In this work, we showed that this assumption does not hold true in general, and
conducted an experimental analysis on a recently proposed scheme. Our exper-
iments showed that soft-biometric features of the subjects assigned to the same
cluster can be reconstructed with high fidelity. Significantly, the analysis showed
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that underrepresented ethnicities are particularly vulnerable to such attacks.
Our results clearly showed that the encryption of the reference database alone
does not suffice to grant complete protection of the stored biometric data.

As a solution, we presented the HEBI protocol, which utilizes Public-Key Encryp-
tion with Keyword Search (PEKS) [45] to encrypt the auxiliary indexing data. The
PEKS scheme applied in our work is based on lattices and can therefore be con-
sidered to have post-quantum security [39]. Additionally, the reference database
is encrypted with lattice-based FHE [65]. If FHE with plaintexts in fixed-point
representation is applied as in our work, the biometric performance is not im-
paired by adding encryption. This also holds true for the PEKS-encryption of
the indexing data, as long as it can be represented as binary vectors.

Using our proposed HEBI protocol, the computational cost of a cluster retrieval
based on PEKS was evaluated at 0.12 milliseconds per cluster, while post-quan-
tum security was achieved both for the indexing data as well as the biometric
templates. In a relative comparison, the experimental evaluation showed that
the cost of protected preselection was less than 8% of the overall transaction
cost in terms of execution time, which can be considered a negligible overhead.
Compared to the FHE baseline system without indexing, HEBI reduced the com-
putational workload down to 3% in terms of execution time.

Contribution of Paper B

Paper B addresses RQ2 and RQ4. With regard to RQ2, Paper B investigates
computational workload reduction for biometric identification through in-
dexing, while maintaining protection through all steps of the transaction.
The high computational cost of FHE can be mitigated through indexing. At
the same time, the PEKS scheme used for protected indexing does not in-
troduce a significant workload of its own, making it applicable to workload
reduction. The workload of post-quantum secure schemes such as lattice-
based PEKS and FHE is the focus of RQ4. Here, Paper B shows that aux-
iliary indexing data can efficiently be secured against semi-honest quantum
adversaries, building on an FHE-protected reference database. Furthermore,
Paper B party addresses RQ1, as it explores PEKS as a privacy-preserving
computation technique and shows that PEKS can be applied for biometric
identification efficiently and securely, as long as biometric indexes can be rep-
resented as binary vectors.
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Paper C: MT-PRO: Multibiometric Template Protection Based On
Homomorphic Transciphering

FHE typically requires a two-server architecture, where one server holds the
protected reference database encrypted with the FHE public key, and a second
server holds the FHE secret key [270]. The security model then demands that
the two servers do not collude. If they did, the reference database could be
decrypted and the biometric templates would no longer be protected.

The aim of this work was to design a post-quantum secure biometric template
protection scheme based on FHE that is secure even if the non-collusion assump-
tion is violated. In other words, the reference database should remain protected
even if an attacker gains access to the FHE secret key. Related work on this chal-
lenging problem has only achieved this through combining FHE with cancelable
biometrics, which leads to a loss in accuracy [201]. In addition, we designed
our solution to be multimodal, i.e., compatible with multiple different biometric
modalities, in order to increase the recognition accuracy of the overall system
and show the agility of our approach to different real-world applications.

To address the aforementioned research gap, we proposed the MT-PRO proto-
col which utilized Homomorphic Transciphering (HT) [71]. HT is a cryptographic
technique designed to improve the storage and communication requirements of
homomorphic encryption. It allows for the transformation of a symmetric ci-
phertext into an FHE ciphertext through a homomorphic evaluation of the sym-
metric scheme’s decryption circuit. In our protocol, we apply this technique
as follows. During enrolment, the biometric references are encrypted with the
symmetric encryption scheme. Then, during a verification transaction, the client
sends a symmetrically encrypted probe together with a homomorphic encryp-
tion of the symmetric secret key to the server, which transciphers both the probe
and reference templates and computes the desired comparison function homo-
morphically.

In terms of the overall system security, MT-PRO achieves security against of-
fline attacks on the reference database. Indeed, in this approach, an attacker that
obtains the FHE secret key cannot decrypt the symmetrically encrypted biomet-
ric reference database during the offline phase. However, this security does not
hold for the verification phase of the system, where both probe and reference
templates are available as FHE ciphertexts. We however argue that a database
in storage is most vulnerable to attacks by unauthorized external parties, rather
than the computations performed on in-house servers, which can be assumed to
adhere to the given protocol.

In addition, we argue that MT-PRO partly fulfils the challenging full-disclosure
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security model of ISO/IEC 30136 [148], which demands that biometric templates
must remain protected even if an attacker learns all system secrets. It is impor-
tant to note that the symmetric key must remain secret in this case. We ensure
this by assigning this key to the client and offering different options for key
management, including password-authenticated key exchange.

While MT-PRO does not impair the biometric performance of the unencrypted
baseline system, the computational cost is impractically high due to workload
of HT framework. The implementation of MT-PRO is based on the framework
provided by [71]. We made it publicly available to aid the reproducibility of our
work. While the high computational workload can be partly attributed to miss-
ing code optimizations, MT-PRO cannot be accelerated without significant effi-
ciency improvements on the cryptographic primitives. This challenge remains
for future work.

Contribution of Paper C

Paper C is the main investigation into RQ3, with connections to RQ4 on
quantum adversary models. The main objective of both Paper C and RQ3
is a feasible solution to the protection of FHE-based biometric template pro-
tection against malicious adversaries. In the case of Paper C, the solution
provides the desired security, but not the computational efficiency to make
the approach feasible. In connection to RQ4, this work also investigates dif-
ferent security model in a quantum adversary setting, and discusses the full-
disclosure model of ISO/IEC 30136 [148], which is partly fulfilled through the
protection against offline attacks. In addition, Paper C partly addresses RQ1
by showing that homomorphic transciphering can be applied to multibio-
metric BIP, even if the efficiency of this approach is not practical yet.

Paper D: Type2: A Secure and Seamless Biometric Two-Factor
Authentication Protocol Using Keystroke Dynamics

Password-based user authentication is widely deployed. However, it comes
with the drawback of easy forgeability and offline attacks on password data-
bases, in particular in the case where many users chose the same password
string [237]. The aim of this work was to add a seamless two-factor authenti-
cation based on keystroke-biometric features to a standard password authenti-
cation setup.

The advantages of keystroke dynamics for the purpose of two-factor authentica-
tion are their seamless capture during the password typing, which does not re-
quire the user to access a second device or tool. While the accuracy of keystroke
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authentication is generally speaking lower compared to physiological biomet-
rics such as face recognition, it is a valuable addition to password-based au-
thentication, used as a strengthening factor rather than a stand-alone authenti-
cation [167]. Furthermore, the keystroke authentication builds on a fixed-length
known password, which is the least challenging of keystroke authentication ap-
plications with the highest performance.

Previous works on this topic lacked either accuracy preservation [6], preserva-
tion of computational performance [182], or post-quantum security [235]. We
applied the CKKS [65] encryption scheme requiring no quantization or round-
ing on the keystroke timing vectors, which achieves post-quantum security. In
terms of comparison functions, we evaluated 14 established keystroke anomaly
detectors published alongside the publicly available CMU keystroke data-
set [167], aiding the reproducibility of our work. Different protocols for Password-
Authenticated Key Exchange (PAKE) [155] can be used in our proposed two-factor
authentication protocol.

As our main contribution, we analysed the keystroke anomaly detectors with
regards to their compatibility with FHE. Not all function components could be
computed under encryption, or had feasible computational workload. Taking
these considerations into account, we provided a security analysis of the adap-
tions necessary to accommodate the FHE application, and categorized the de-
tectors into vector-based distance metrics, detectors based on matrix multiplica-
tion, and detectors requiring the evaluation of conditional statements. We gave
a comprehensive overview of the cost of FHE operations for each detector, and
proceeded with the detectors using vector-based distance metrics for the exper-
imental evaluation.

In the experimental evaluation, we showed that variants of the Manhattan and
Euclidean distance could be evaluated in the encrypted domain in less than
130 milliseconds for keystroke dynamic features, making our protocol efficient
for real-world applications. As the FHE computations directly correspond to
the plaintext operations, we inherited the biometric performance of the origi-
nal work using the CMU keystroke dataset [167]. Finally, we concluded our
work with a security analysis, showing that our proposed protocol fulfils the
ISO/IEC 24745 [149] requirements for biometric template protection systems.

Contribution of Paper D

Paper D addresses RQ1 with its investigation into the efficiency of FHE
protection for keystroke dynamic features. Our evaluation showed that
keystroke timing vectors do not need to be altered in representation in or-
der to achieve real-time efficiency. This shows that RQ1 should be evaluated
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for each biometric modality individually, as Paper A on fingerprint verifi-
cation resulted in the opposite conclusion. Furthermore, Paper D provides
post-quantum security alongside a discussion of its computational cost and
is therefore also related to RQ4.

Paper E: BRAKE: Biometric Resilient Authenticated Key Ex-
change

Cryptographic key exchange is an established component in authenticated com-
munication, where cryptographic keys are exchanged between devices to facil-
itate encrypted communication [197]. However, there are many applications
where the authentication of individuals is required, such as financial or legal
transactions. To this end, we proposed Biometric Resilient Authenticated Key Ex-
change (BRAKE), using biometric verification to derive cryptographic key mate-
rial, while the underlying biometric data remain protected.

Previous and concurrent works on the topic have either been computationally
inefficient or limited in biometric feature representations they support, often
limited to fixed-length binary inputs [48, 106, 260]. Our construction on the
other hand builds on a recently proposed PAKE protocol [155] using an Oblivious
Pseudo-Random Function (OPRF) [116]. In our work, we extended this protocol
to allow for biometric verification instead of password verification.

A focus of this work was the security of our proposed BRAKE protocol against
offline attacks. While offline attacks are harmful for password databases, a pass-
word or token can be exchanged easily. This is not true for biometric character-
istics, which can be persistent over an individual’s lifetime [166]. Therefore, ad-
ditional considerations must be made to prevent offline attacks. To this end, we
modified an established approach to biometric key generation known as Fuzzy
Vaults [251]. In our construction, we remove the checksum stored alongside the
protected biometric features, and replace it with an OPRF evaluation. Thereby,
an attacker needs to interact with the system for every brute-force guess, al-
lowing a rate-limiting on brute-force attacks and effectively preventing offline
attacks. Significantly, the key material generated in our protocol is not derived
from the biometric features directly, i.e., no biometric features are stored inside
the key material. A brute-force attack on the public key would therefore not
yield any information on the underlying biometric features.

Our protocol can be instantiated both with classical security, using Elliptic Curve
Diffie-Hellman (ECDH) [87, 114] primitives, as well as post-quantum security
using lattice-based primitives [12, 49]. The main challenge of the lattice-based
instantiation was the OPRF, for which only one lattice-based instantiation ex-
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isted in previous works at the time of submission [12]. However, the OPRF
in question was designed with verifiability, resulting in an infeasible compu-
tational workload. Therefore, we adapted the OPRF construction such that it
could be applied in a semi-honest setting with real-time efficiency. However,
the efficiency of an efficient verifiable lattice-based OPRF goes beyond the scope
of this contribution and hence is left for future work.

We implemented our BRAKE protocol and evaluated the biometric and com-
putational performance on publicly available datasets. Our protocol is achieves
efficient transaction times for the cryptographic key exchange of under one sec-
ond on commodity hardware from the biometric capture to the completed key
exchange, including communication cost.

Contributions of Paper E

Paper E addresses RQ1 through the application of oblivious computation to
biometric authentication. Notably, this is the only approach not relying on
FHE in this thesis, and therefore an important addition to the evaluation of
RQ1. The thorough security analysis and compatibility with different biomet-
ric modalities and feature representations complete the evaluation of RQ1. In
addition, Paper E addresses the use of verifiable computation as protection
against malicious adversaries, which is the objective of RQ3. Finally, Paper E
partly addresses RQ4 through the considerations of semi-honest and mali-
cious quantum adversaries, where malicious security was not found to be
computationally efficient. Contrary to the FHE-based contributions of this
thesis, which inherit post-quantum security from their lattice-based construc-
tion, the BRAKE protocol based on the combination of an OPRF and a KEM
required a designated post-quantum secure instantiation in addition to the
classically secure instantiation.

Paper F: Post-Quantum Secure Biometric Systems: An Overview

The long-term protection of biometric data is important due to their unique-
ness and persistence, as recognized by international laws and standards [109,
149, 166]. Therefore, the application of post-quantum cryptography has re-
cently emerged as a research field in the realm of biometric template protec-
tion [30, 33, 44, 103]. This work aims to give an introduction and overview of the
current literature landscape and highlight current research challenges.

Surveys related to this topic either focused on concrete cryptographic schemes
such as FHE alone [75, 267], or considered mostly biometric information pro-
tection with classical security [54, 216]. On the other hand, literature reviews
exist for various cryptographic contributions [78, 196], but not their application
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to biometrics. Therefore, a literature survey dedicated to post-quantum secure
biometric systems was missing from the current research landscape.

The survey introduced biometric information protection and relevant post-
quantum secure cryptographic schemes. As the main contribution, a compre-
hensive literature review following a dedicated taxonomy were presented,
where a large number of publications were analyzed and compared. A specific
focus within the literature review were open-source implementations, includ-
ing an overview of established libraries for FHE and PQC that can aid the se-
lection of secure parameter choices and reproducibility of future works in post-
quantum secure BIP [22, 53, 136, 194, 234, 244].

Utilizing the insights won during the literature review, the survey identified
three main open research challenges. Firstly, the analysis revealed that secu-
rity against malicious quantum adversaries was only investigated in a minority
of the reviewed works [3, 18, 34, 66, 192, 201]. To mitigate real-world threats,
further research on post-quantum secure BIP under this security model is there-
fore required. Secondly, the majority of reviewed works focused on FHE, while
other cryptographic techniques such as MPC or FE have been applied success-
fully to post-quantum secure BIP, and have shown better performance in some
cases [30]. Finally, the need for open-source implementations and the applica-
bility of synthetic datasets was discussed [158].

Contributions of Paper F

Paper F addresses all four research questions RQ1, RQ2, RQ3, RQ4 through
an overview of the research landscape in the area of post-quantum secure
BIP. The literature survey and analysis aimed at providing fellow researchers
an overview over the emerging research field of post-quantum secure BIP,
with an introduction into relevant cryptographic primitives and analysis of
key challenges. Thereby, we hoped to increase future work on this important
topic and contribute to the long-term protection of biometric data in real-
world applications.

1.3 Outline

The remainder of this thesis is structured as follows: Chapter 2 gives back-
ground information about biometric performance metrics, post-quantum cryp-
tography, and fully homomorphic encryption. Chapter 3 discusses related works
relevant to this thesis, before Chapter 4 presents a summary of the contributions
and their limitations as well as future work. The research contributions are pre-
sented as published or submitted research articles in Papers A to F.
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Chapter 2

Background

This chapter introduces background information relevant to the scientific contri-
butions presented in this thesis. First, biometric evaluation metrics and informa-
tion protection approaches will be discussed. Then, cryptographic background
information will be given for post-quantum cryptography, including fully ho-
momorphic encryption.

2.1 Biometric Evaluation Metrics

Biometric systems can perform two main transactions: verification, or a one-to-
one comparison of a biometric probe against a biometric reference correspond-
ing to a chosen identity, or biometric claim, and identification, or a one-to-many
comparison of a biometric probe with an unknown biometric claim against mul-
tiple biometric references. In a verification transaction, a binary decision about
the acceptance of the biometric claim is revealed, whereas an identification trans-
action determines if none, one, or more than one of the references yield an accept
decision when compared to the probe. In addition to these two transactions,
biometrics-based key establishment can be derived from a successful verification
transaction.

All three types of transactions are preceded by an enrolment transaction, where
biometric references are stored in a data storage subsystem for further compar-
ison. The transactions of enrolment, verification, and identification have been
standardized in the ISO/IEC 19795-1 [152] standard on biometric performance
testing and reporting alongside standardized biometric vocabulary and evalu-
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Figure 2.1: ISO/IEC 19795-1 flowchart of biometric system components [152].

ation metrics. Figure 2.1, taken from ISO/IEC 19795-1, gives an overview of a
generic biometric system including its subsystems and transactions.

Before we describe the standardized evaluation metrics, we briefly detail the
workflow of the transactions depicted in Figure 2.1. All transaction begin with
the capture and feature extraction steps. First, a biometric sample is captured by
a capture device, e.g., a face image is taken using a camera. From this sample,
features are extracted according to the biometric modality. For example, state-of-
the-art face recognition is based on deep-learning based feature extractors [191],
which have been explored for further modalities such as fingerprint [104] and
iris [202] as well. The feature extraction process results in biometric features,
which are referred to as reference templates if they are stored as references in
the data storage subsystem during enrolment. In case of deep-learning based
feature extraction, this process yields real-valued vectors of a fixed dimension.
It is important to note that feature extraction algorithms and the resulting fea-
ture representations may be more complex than in the example of deep-learning
based facial features [38].

During a verification transaction, a fresh biometric sample is captured and fea-
tures are extracted as during the enrolment transaction. This feature represen-
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tation is then compared against the reference template corresponding to a bio-
metric claim of the sample using a comparison function with both probe and
reference template as the inputs. For example, fixed-length features vectors are
often compared using established distance metrics such as the Euclidean dis-
tance. Independent of the specific comparison function, this step results in a
comparison score, which can be either a similarity score, where a higher score
indicates a higher similarity of the probe and reference, or a dissimilarity score,
where a lower score indicates higher similarity. Finally, the comparison score is
compared against a predefined threshold, and the transaction results in an ac-
cept decision if the score is higher than the threshold for similarity metrics, or
lower than the threshold for dissimilarity metrics.

In an identification transaction, this procedure is iterated over all stored refer-
ences in the database, where all references that pass the threshold comparison
are added to a candidate list. Depending on the decision policy, only the refer-
ence identifier corresponding to the best comparison score is returned, or multi-
ple candidates are revealed.

We now introduce the main standardized evaluation metrics, beginning with
verification transactions. In a set of such transactions, the False-Match Rate (FMR)
describes the percentage of accepted comparison trials where the reference and
probe stem from different instances, i.e. different fingers. Such a comparison
is referred to as a non-mated comparison. If a non-mated comparison results in
an accept decision, it constitutes a false positive (false match). Colloquially, non-
mated comparison trials can be referred to as imposters comparisons. Notably,
this phrasing implicates a malicious intent of the data subject, which is not mea-
sured by the FMR. Instead, false matches may also occur for honest subjects due
to the variance of biometric features representations after the capture process, or
their fuzziness.

The corresponding metric to the FMR is the False Non-Match Rate (FNMR), indi-
cating the percentage of rejected verification transactions where probe and ref-
erence stem from the same instance, and should therefore have been accepted.
Such comparisons are referred to as mated comparisons. If a mated comparison
results in a reject decision, it constitutes a false negative (false non-match). Infor-
mally, the FNMR can be thought of as a convenience measure of the system, as it
expresses the inconvenience of honest users that are rejected by the automated
recognition system and may have to repeat the biometric authentication or use a
fall-back authentication procedure. The FMR on the other hand determines the
biometric security of the system. Depending on the application, it can be argued
that the FMR is therefore the more significant measure of the two. Biometric fea-
ture extraction and comparison algorithms with a high FMR risk unauthorized
access through an acceptance of non-mated comparisons, or imposter compar-
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isons. Biometric systems operated in high-risk scenarios such as automated bor-
der control are required to achieve a FMR lower than 0.01% [117].

It is important to note that the FMR is a metric of the comparison subsystem
and can be generalized for the entire biometric system through the False Accept
Rate (FAR), which takes into account those instances where no features of qual-
ity high enough to be used for biometric comparison could be extracted. This
measure is referred to as the Failure To Acquire Rate (FTAR), which can be used
to define the FAR as

FAR = FMR(1− FTAR). (2.1)

While biometric performance is typically reported through the FMR, the FAR
has recently been used to define the security of biometric systems compared
to previous approaches based on the entropy of biometric feature representa-
tions [251]. Even though high entropy can positively impact the recognition
accuracy by allowing for more discriminate feature representations, it can only
be considered an upper bound for the overall security of a biometric system.
Instead, the FAR gives a more realistic and reliable measure of the biometric
security under brute-force attacks. For example, the entropy of minutiae-based
fingerprint representations has been estimated at 82 bits [215], while [251] de-
rive the FAR security of their concrete fingerprint BIP scheme at around 20 bits.
Following the argumentation of [251], we continue to refer to the FAR security
as the measure for biometric security. We note however that in the case where
the FAR of a given system is not measured or reported, the FMR can be used
instead to derive the biometric security of the system. The corresponding metric
to the FAR is the False Reject Rate (FRR), which is defined as

FRR = FTAR + FNMR(1− FTAR). (2.2)

For identification transactions, the corresponding metrics of False-Positive Iden-
tification Rate (FPIR) and the False-Negative Identification Rate (FNIR) apply. As in
the verification scenario, the FPIR quantifies the biometric security of the overall
system, while the FNIR indicates the convenience. Notably, high biometric per-
formance of identification transactions is significantly more difficult to achieve
than in a verification scenario due to the approximation

FPIR ≈ (1− FTAR)(1− (1− FMR)N), (2.3)

given in the standard [152]. This relation indicates that the FPIR grows expo-
nentially with the number of enrolled subjects N, creating a challenging sce-
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nario even for biometric systems that achieve a FMR lower than 0.01%. The
approximation can be considered an exact equation in the case where no failure-
to-acquire errors were measured and all mated comparison trials resulted in the
same FMR at a given threshold, which cannot be assumed to arbitrarily hold
true [92].

2.2 Biometric Information Protection

The uniqueness and persistence of biometric characteristics put them at risk of
attacks when processed unprotected in the transaction described above [166].
Even though the feature extraction process yields an abstract representation of
the original biometric characteristics, this representation alone is not sufficient
to hide the data subject’s characteristics or identity. Indeed, sample reconstruc-
tion attacks have been successfully conducted for the most widely used bio-
metric modalities, with the most notable works including [185] for face, [119]
for iris, and [59] for fingerprint. Reconstructed biometric samples can be used
for more effective presentation attacks or leak personal information such as
medical conditions or ethnic origin, which are protected under international
laws [109].

Therefore, additional protection mechanisms need to be applied after the feature
extraction process to ensure the privacy of biometric information. The interna-
tional ISO/IEC 24745 [149] standard has defined three main requirements for
Biometric Information Protection (BIP) which all protection mechanisms should
fulfil. These requirements are the unlinkability, renewability, and irreversibility of
biometric reference templates stored and transmitted within the biometric sys-
tem, as well as probe feature vectors handled during verification and identifica-
tion transactions. In particular, these requirements must be upheld during the
comparison step of the transaction, requiring solutions that allow for the evalu-
ation of comparison functions on protected templates. Before we describe such
approaches, we define the ISO/IEC 24745 requirements in more detail.

Unlinkability requires that an attacker cannot link two protected biometric tem-
plates or their corresponding data subjects stored in different applications. To
fulfil this requirement, the applied protection mechanism needs to allow for the
creation of a large number of protected templates, such that several protected
templates created from the same input, i.e., the same reference template, cannot
be distinguished from protected templates created from different inputs.

Renewability is closely linked to unlinkability, requiring that multiple unlinkable
protected templates can be created without the need to re-enrol a subject. In
particular, should a protected template or its source leak, renewability ensures
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that this biometric instance can still be securely enrolled into the system. In
other words, knowledge of a biometric template does not allow an attacker to
determine whether the corresponding subject is enrolled in an application, or
gain additional information about further templates enrolled for this subject. In
other words, given two protected templates, an attacker should not be able to
efficiently determine if both protected templates were created from the same
template, or from different templates.

Irreversibility describes the protection of the biometric data against unauthorized
use. Concretely, it should be impossible for an attacker to retrieve original sam-
ples given only protected templates, implying the confidentiality of biometric
templates. As discussed above, this requirement should be upheld both during
the storage and comparison stages. In particular, irreversibility is not fulfilled if
the protection mechanism needs to be removed in order to compute a compari-
son between a probe and one or multiple references, as they would be vulnerable
to reconstruction attacks at this point in the pipeline [185].

A final requirement that is stated implicitly in ISO/IEC 24745 is the performance
preservation of the transactions under the applied protection mechanism. It is
clear that both the biometric performance, i.e., recognition accuracy, and the
computational performance should not be decreased significantly through the
application of BIP to an unprotected biometric system. If a protection mech-
anism significantly decreases the recognition accuracy of the overall system,
the biometric security in terms of false-accept attacks is mitigated. Therefore,
the preservation of the biometric performance is crucial to obtain a secure, as
well as a private, biometric system. The computational performance of the un-
protected system is typically increased by adding a layer of protection to the
original data. Different approaches have achieved significantly different perfor-
mances, from real-time efficiency with transaction times of under one second to
infeasible computational workload of several hours per comparison [38].

Historically, three different classes of approaches have been established to meet
the ISO/IEC 24745 requirements for secure and private biometric systems [270].
The first approach is based on irreversible feature transformations which can be
viewed as part of the feature extraction process. Approaches that fall into this
category are cancelable biometrics [214], robust hashing [247], Bloom filter-based
approaches [128] or secure sketches [177]. While such approaches have been
shown to be computationally efficient, they typically suffer from a decrease
in recognition accuracy compared to unprotected system [216]. As discussed
above, this negatively impacts the overall system security through an increased
FMR. Additionally, they have not in all cases undergone the same level of crypt-
analysis or standardization as other cryptographic approaches, and it can there-
fore be challenging to make reliable and quantifiable guarantees about their se-
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curity. Similarly, unlinkability and irreversibility need to be measured experi-
mentally for each approach [127], yielding a high overhead and making it more
difficult to compare or reproduce approaches.

The second approach is referred to as biometric cryptosystems, in which biometric
feature representations are tied to secrets that can be further used as key mate-
rial in cryptographic protocols [61]. Such schemes utilize error-correcting codes
to correct the variable component of biometric captures, and create a stable out-
put associated to a biometric instance. Even though concerns about the security
and unlinkability of biometric cryptosystems have been raised in the past [231],
new and improved constructions have been proposed that achieve high accu-
racy, unlinkability, and information-theoretic security against reconstruction at-
tacks [218, 220, 250]. However, their construction continues to be vulnerable to
offline attacks, as a checksum of the secret tied to the biometric input is stored
alongside the protected template, allowing an attacker to determine whether a
brute-force attack succeeded. This attack can be executed offline without the
knowledge of the system provider, and can consume unlimited resources out-
side of the provided infrastructure [37].

The third and final category of BIP approaches can be summarized as biomet-
rics in the encrypted domain. While previous works have focused on homomor-
phic encryption [270], there exist further cryptographic techniques such as Se-
cure Multiparty Computation (MPC) [269] and Functional Encryption (FE) [47] that
have been applied to evaluate comparison functions on encrypted biometric
templates. One important advantage of biometric comparisons in the encrypted
domain is its limited impact on the recognition accuracy compared to the un-
protected systems. For schemes that directly translate operations on encrypted
data into the plaintext domain, the outcome of the computation, e.g., a biometric
comparison function, it not altered.

However, depending on the feature representation, the quantization of float-
ing point values into integers or bits is required to ensure compatibility with
the cryptographic scheme, which can lead to a loss in accuracy. In addition,
some schemes operate on approximations of fixed-point data and introduce
an additional inaccuracy to the computation [65], which typically does not im-
pact the recognition accuracy significantly [44]. Overall however, the aforemen-
tioned cryptographic techniques allow for the evaluation of biometric compar-
ison functions on private input data, i.e., in a way that does not reveal the un-
protected templates. Either the comparison score or the decision outcome are
revealed as a result of the respective transaction.

The security of these cryptographic schemes is based on hard mathematical
problems and supported by a research community that conducts extensive crypt-
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analysis on the schemes independent of their application to biometrics or other
fields. This increases trust in the biometric protection, as security improve-
ments and the selection of secure parameters are provided by cryptographic
experts. The clear limitation of computations on encrypted data is however
their computational workload, which can render solutions infeasible for practi-
cal use [38, 210]. Particularly in identification transactions, workload reduction
approaches that maintain the privacy of the reference database are therefore rel-
evant [33, 103].

2.3 Post-Quantum Cryptography

The protection mechanisms discussed above have recently come under the ad-
ditional threat of quantum adversaries due to the continued advances in quan-
tum computing. The latter allow for an implementation of two algorithms pre-
sented in the 1990s: Shor’s factorization algorithm [238] and Grover’s search algo-
rithm [132].

Grover’s algorithm implemented on a quantum computer offers a square-root
speedup on unstructured search problems. This attack affects symmetric ciphers
such as the Advanced Encryption Standard (AES) [77] or cryptographic hash func-
tions, as it allows for more efficient brute-force attacks. To counter this attack,
the key size of symmetric cryptographic schemes need to be doubled and in this
case, may remain computationally feasible.

Shor’s algorithm however has a more severe impact, as it allows for efficient
attacks on the mathematical problems that asymmetric cryptography has been
based upon in the past decades. More concretely, Shor’s algorithm allows for
a polynomial time solution of the factorization and discrete logarithm prob-
lems, which underlie the majority of the currently deployed public-key cryp-
tography. Examples of schemes vulnerable to this attack are RSA [224], Diffie-
Hellman [87], ElGamal [102], and Paillier [203]. Increasing the parameter sizes
of these schemes to a level secure against Shor’s algorithm would render the
schemes infeasible in terms of execution time. Therefore, new cryptographic
schemes based on different mathematical problems are required which with-
stand attacks based on Shor’s algorithm [10].

To aid the research and development of such new cryptography that is believed
to be hard to break even in the presence of a quantum computer, NIST has run
a Post-Quantum Cryptography (PQC) standardization process [10]. The standard-
ization process focused on public-key cryptography, and considered contribu-
tions based on five types of cryptography for post-quantum security: lattice-
based, code-based, multivariate, hash-based, and isogeny-based cryptography.
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Out of these, lattice-based and code-based schemes have emerged as the most
robust and relevant candidates [10].

Lattice-based cryptography is constructed from hard mathematical problems based
on lattices, which can informally be defined as discrete subgroups of real vector
spaces. Hard problems on lattices have been studied since the 1990s [140], in-
cluding the Shortest Vector Problem (SVP) and Closest Vector Problem (CVP) [204].
Regev [222] later proposed the seminal Learning with Errors (LWE) problem many
modern schemes build upon. Variants of this problem based on polynomial
rings, or Ring-Learning With Errors (RLWE) [183], facilitate smaller public key
sizes than the original LWE problem. Aside from LWE-based schemes, schemes
based on the NTRU problem [140] are also currently considered within the NIST
PQC standardization process. We point the reader to Paper F for definitions of
important lattice problems and further details on post-quantum cryptography
that has become relevant for BIP.

Code-based cryptography utilizes error-correcting codes and was first proposed in
the McEliece cryptosystem in 1978 [189]. Messages in code-based encryption
schemes can be encrypted as erroneous codewords, and efficiently decrypted
using the decoding algorithm of the chosen code [262]. Three code-based en-
cryption schemes were under consideration of the NIST PQC standardization
effort [10]. We point the reader to Paper F for further discussion on the McEliece
cryptosystem and its application to BIP.

2.4 Fully Homomorphic Encryption

A class of encryption schemes particularly relevant to this thesis are Fully Homo-
morphic Encryption (FHE) schemes, which allow for computations on encrypted
data. Through this property, biometric comparison functions can be evaluated
while maintaining template protection, revealing only the comparison score. As
the hardness of FHE schemes is based on hard lattice problems, they can be
considered to be post-quantum secure [121].

More concretely, a homomorphic encryption scheme is defined through the prop-
erty that

Dec(Enc(x ☼ y)) = Dec(Enc(x) $Enc(y)), (2.4)

where Enc(·) denotes the encryption function, Dec(·) denotes the decryption
function, ☼ is an operation on plaintext messages x and y, and $ is an oper-
ation on ciphertexts. The two operations ☼ and $ can be the same, i.e., addi-
tion of ciphertexts corresponds to an addition of the underlying plaintexts, or
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different, e.g., a multiplication of ciphertexts corresponds to an addition of the
underlying plaintexts. Homomorphic encryption schemes can be categorized
by the number and type of operations they support. In the following, we focus
on post-quantum secure homomorphic encryption schemes within the different
categories.

Partially Homomorphic Encryption (PHE) schemes allow for the homomorphic
evaluation of only one operation, e.g., addition, an unlimited number of times.
A number of lattice-based encryption schemes that have additive homomorphic
properties have been applied to BIP [170]. They can be applied to evaluate sim-
ple comparison functions such as the Hamming distance of two encrypted bio-
metric templates, which can be expressed as a homomorphic addition modulo 2.

In addition to PHE schemes, the lattice-based key encapsulation mechanisms
Kyber [49], which was recently standardized by NIST as a result of the PQC stan-
dardization competition [10], Saber [101], and the previously discussed code-
based encryption scheme McEliece [189] have been applied to BIP using their
partially homomorphic properties [19, 226]. Even though these schemes have
not been designed with homomorphic evaluations in mind, their underlying
primitives allow for homomorphic additions, and can thereby also be applied to
post-quantum secure BIP.

Somewhat Homomorphic Encryption (SHE) schemes allow for three operations,
e.g., addition, multiplication, and vector rotations, to be evaluated homomor-
phically, where at least one of the operations is restricted to a limited number
of iterative computation. Going above this given limit results in incorrect de-
cryption. A prominent example of an SHE scheme is the lattice-based Brakerski-
Vaikuntanathan (BV) [52] scheme.

Fully Homomorphic Encryption (FHE) schemes allow for multiple homomorphic
operations with an unlimited number of iterative computations. The first con-
struction that fulfils this requirement was Gentry’s [121] lattice-based FHE
scheme with the seminal concept of bootstrapping that allows to maintain cor-
rect decryption under iterative computations. In theory, this approach there-
fore allows for an unlimited number and combination of different homomor-
phic operations such as addition and multiplication. In practice however, the
computational workload of the bootstrapping step can render this construction
infeasible.

On a lower abstraction level, FHE schemes consist of the following algorithms.

• (sk, pk) ← KeyGen(1λ): on input of the security parameter λ, this algo-
rithm generates a secret key sk and public key pk, where pk includes the
homomorphic evaluation keys.
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• cm ← HomEnc(pk, m): on input of the public key pk and a message m, this
algorithm outputs a ciphertext cm.

• c f (m1,m2)
← HomEval(pk, cm1 , cm2): on input of the public key pk and two

ciphertexts cm1 and cm2 , this algorithm outputs an encryption c f (m1,m2)
of

the evaluation of a function f on the underlying plaintext messages m1
and m2.

• m′ ← HomDec(sk, cm): on input of the secret key sk and ciphertext cm, this
algorithm outputs a message m′.

Instantiations of the HomEval algorithm vary between different FHE schemes,
but typically include homomorphic addition, multiplication, and element-wise
rotation of encrypted vectors [65].

Two different approaches have been proposed to address the handling of the
computational overhead of FHE. In levelled FHE schemes, homomorphic op-
erations up until a fixed number of times can be computed without requir-
ing bootstrapping, where the total computational workload increases with each
added level. If the allowed limit is exceeded, the costly bootstrapping oper-
ation must be computed. Schemes that follow this approach are the Gentry-
Halevi (GH) [122], Brakerski-Fan-Vercauteren (BFV) [50, 112], the Brakerski-Gentry-
Vaikuntanathan (BGV) [51] and the Cheon-Kim-Kim-Song (CKKS) [65] schemes.
In contrast to levelled FHE schemes, a different approach is followed by the
TFHE [69] and FHEW [98] schemes, which prioritize the optimization of the
bootstrapping operation. Thereby, the number of homomorphic operations be-
comes unlimited. We refer the reader to Paper F for further insights into the
different FHE schemes.
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Chapter 3

Related Work

In this chapter, related work to the contributions of this thesis is presented. The
chapter follows the structure of the research questions presented in Chapter 1.
Related work relevant to each research question is discussed separately for the
first two research questions and combined for the last two research questions.

3.1 Feature Representations Under Encryption

The first research question is concerned with the efficiency and security of dif-
ferent BIP approaches. A significant contributing factor to this question is the
compatibility of biometric feature representations with privacy-preserving com-
putation techniques, which will be the focus of this section.

Iris features have historically been represented as fixed-length binary vectors,
following the seminal work by Daugman [80]. Not only has this representa-
tion been shown to yield a high recognition accuracy, but it is also compatible
with cryptographic techniques that natively operate on binary inputs. The com-
parison of iris features in the encrypted domain has therefore been considered
soon after their initial proposal by Schoenmakers and Tuyls [233], who used the
Paillier [203] encryption scheme to compute Hamming distances between fixed-
length binary vectors. This approach has received further interest for iris BIP
with classical security [126]. Later, iris features have also been used in combi-
nation with the lattice-based homomorphic encryption scheme NTRU [140] by
Kolberg et al. [170], the GH [122] scheme by Yasuda et al. [270], the BGV [51]
scheme by Torres et al. [253] and Cheon et al. [64], and the BFV [50, 112] scheme
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by Morampudi et al. [192], Bassit et al. [29], and Vallabhadas and Sandhya [258],
all of which can be considered to be post-quantum secure.

In addition to (F)HE schemes, MPC has also been applied to binary fixed-length
iris features. One of the first works to apply Yao’s Garbled Circuits (GC) pro-
tocol [269] were Blanton and Aliasgari [41]. However, their work did not pro-
vide post-quantum security. Through applying a lattice-based GC protocol [55],
Bauspieß et al. [30] later achieved post-quantum secure iris verification based
on MPC.

While all of the works discussed above utilize a fixed-length binary iris fea-
ture representation, deep-learning based iris features have recently been ex-
plored [202]. The rapid increase in recognition accuracy for deep face recogni-
tion [191] was the motivation behind the construction of deep iris features. Fur-
thermore, efficiency improvements could be expected from smaller feature vec-
tors, as the typical length of the Daugman representation is an order of magni-
tude larger than typical deep-learning based feature vectors [30, 170]. However,
the recent initial constructions have not outperformed the traditional Daugman
feature representation in terms of recognition accuracy [202].

Deep-learning based feature extraction models have become state-of-the-art for
face recognition [86, 191]. They typically produce fixed-length vectors of small
floating point numbers centered around zero, which have been computed such
that distance metrics can be applied to distinguish mated from non-mated com-
parisons. However, floating point numbers, even if transformed to fixed-point
numbers, do not trivially correspond to the plaintext representations of crypto-
graphic schemes that use binary or integer inputs. Indeed, the only FHE scheme
that naturally operates on fixed-point numbers is the CKKS [65] scheme, which
allows for an approximate computation on the latter up to a predefined accuracy
level. For all other schemes, a quantization or encoding needs to be applied to
map deep-learning based features into plaintext spaces.

Drozdowski et al. [96] analyzed the quantization and binarization of deep face
templates and showed that only minor accuracy losses can be expected from
the investigated quantization and binarization techniques. Notably, four quan-
tization intervals are sufficient to maintain an acceptable recognition accuracy,
ensuring that feature vectors do not grow to infeasible length under binariza-
tion. This and similar encodings have been applied to post-quantum secure
face recognition based on homomorphic encryption by many works in the past
decade, including [19, 44, 142, 157, 171, 201, 210, 226, 243, 249, 254, 268]. For
an in-depth discussion of these works, we refer the reader to Paper F. MPC for
face recognition has also been proposed by Sadeghi et al. [228], however not
with post-quantum security. Further, less frequently applied biometric modali-



55

ties such as keystroke dynamics, gait, finger and hand veins, and voice have also
been studied under protection by privacy-preserving computation techniques.
Whenever these features can be represented as fixed-length floating point vec-
tors, approaches that apply to face recognition may be transferred. Such feature
representations can be found in [6, 18, 178, 182] with post-quantum secure pro-
tection. For an in-depth review of BIP with classical security, we refer the reader
to the surveys by Barni et al. [27] and Bringer et al. [54].

Fingerprint features have historically been based on minutiae, or significant
points in the fingerprint ridge pattern. As such, they have been standardized
in ISO/IEC 19794-2 [151]. The cryptographic protection of minutiae-based rep-
resentations was recently recognized as challenge by Engelsma et al. [104], who
argue for the need of accurate fixed-length fingerprint representations based on
deep-learning or filter-based approaches [153]. The latter allow for a direct bi-
nary representation of feature vectors, which was used by Kim et al. [169], who
applied the TFHE [69] scheme for their protection, thus achieving post-quantum
security. Prior to Paper A, variable-length feature representation had only been
protected with classical security, amongst others by Barni et al. [26], Gomez-
Barrero et al. [126], and Yang et al. [266]. In addition, MPC with classical secu-
rity was applied for fingerprint BIP by Liu and Zhao [180], Zhang and Koushan-
far [277], and Gilkalaye and Derakhshani [124].

3.2 Efficient and Secure Biometric Identification

The second research question focuses on two challenges regarding biometric
identification in the encrypted domain: its security and efficiency. Regarding
the latter, Drozdowski et al. [92] gave an overview of workload reduction ap-
proaches to biometric identification without BIP, which can be transferred to
protected identification transactions. As above, the focus lies on BIP with post-
quantum security.

A straightforward approach to the application of FHE to biometric identification
was presented by Drozdowski et al. [91]. However, this work did not consider
any workload reduction and proved to be computationally infeasible. One cat-
egory of approaches to improve upon this baseline system is concerned with
optimizing the cost of single biometric comparisons, such that the total cost of
the exhaustive search is reduced. Bauspieß et al. [31] extended the plaintext
packing technique proposed by Boddeti [44] to biometric identification such that
multiple biometric comparisons could be computed at the cost of one. In combi-
nation with feature dimensionality reduction, this approach yields a quadratic
improvement over the baseline system in [91]. The same approach was later
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discussed by Ibarrondo et al. [145], who extended their packing approach by a
group testing technique that determines the identification outcome.

A different encoding approach that yielded high efficiency was presented by
Engelsma et al. [103], outperforming the previously discussed works [31, 91,
145]. In their work, they encoded the feature dimensions into individual ci-
phertexts instead of using a packed encoding, which allows them to utilize
a trade-off between the computational efficiency and communication require-
ments. While [103] also utilize feature dimensionality reduction, their feature
encoding is not trivially compatible with further preselection, contrary to [31]
and [145].

Huang and Wang [143] and Bai et al. [23] expanded upon the state-of-the-art
through the addition of result-revealing protocols based on classically secure
MPC. They argue that this improves the security of the system as no compari-
son scores are revealed, but only binary identification outcomes. However, the
classically secure components of their protocols would need to be exchanged for
post-quantum secure instantiations to achieve long-term protection throughout
the entire transaction. Notably, the scheme presented in [23] is the most efficient
in terms of computational performance, outperforming [103].

An additional improvement to biometric identification can be achieved through
preselection, or determining a subset of the enrollment database that is likely to
contain the mated reference. Then, the expensive exact comparisons in the en-
crypted domain only need to be computed on the subset, lowering the compu-
tational workload significantly. However, this approach introduces an preselec-
tion error in the case where a mated comparison is not included in the selected
subset [92].

Different preselection approaches have been explored for FHE-protected refer-
ence databases. Drozdowski et al. [95] utilized feature fusion to construct bi-
nary search trees through averaging feature vectors iteratively, and traversing
the search tree upon an identification transaction. While their approach ensures
post-quantum security through the encryption of the fused search vectors, it is
inflexible in terms of database changes, and limited in workload reduction po-
tential for large databases. Osorio-Roig et al. [200] mitigated this shortcoming
by proposing an efficient and accurate indexing scheme based on short stable
indexing strings derived from clustered feature vectors. However, their unpro-
tected indexing is vulnerable to template reconstruction attacks, as Paper B pre-
sented in this thesis shows.

Bauspieß et al. [33] proposed an approach to protected preselection using Public-
Key Encryption with Keyword Search (PEKS) [45]. In their work, an encrypted ref-
erence database can be filtered based on soft-biometric attributes such as the
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gender or ethnicity of the enrolled subjects. However, their construction relies
on a ground-truth assumption of these soft-biometric attributes that cannot be
realistically reproduced and is limited to face identification, as soft-biometric
descriptors with high correctness are difficult to derive from other biometric
modalities. PEKS had previously been applied for biometric verification by
Zhang et al. [278]. However, their approach requires strong statistical assump-
tions to the feature representation that cannot be assumed to be applicable for
arbitrary biometric modalities [33]. Zhang et al. [276] further utilized PEKS for
biometrics-based key generation, but do not apply their scheme to biometric
identification [33].

3.3 Security Models

In this section, we combine the related work relevant for the third and forth
research questions on malicious security and post-quantum security. A compre-
hensive overview of post-quantum secure biometric systems and their respec-
tive security models is given in Paper F.

Paper F revealed that the majority of post-quantum secure BIP schemes are con-
sidered under the semi-honest adversary model, including the seminal works
presented in [44, 103, 253, 270]. However, the semi-honest adversary model
does not include realistic capabilities of real-world adversaries which may devi-
ate from the protocol. Different approaches to achieve security against malicious
adversaries have therefore been explored for post-quantum secure BIP.

Abidin and Mitrokotsa [3] described an attack against the semi-honest verifi-
cation scheme presented by Yasuda et al. [270] along with a mitigation of this
attack based on PIR [72], achieving protection against a malicious client. Arjona
and Baturone [18], Cheon et al. [66], and Morampudi et al. [193] considered ma-
licious servers and achieve security against the latter implicitly through their re-
spective constructions, but without explicit use of verifiable computation. For a
more detailed comparison of these works, we refer the reader to Paper F.

In addition to the established semi-honest and malicious adversary models, the
ISO/IEC 30136 [148] standard defines the challenging full disclosure model,
where an adversary is assumed to receive all secrets used within the BIP scheme.
In terms of FHE-based BIP, this translates to the disclosure of the secret de-
cryption key to the adversary, a scenario not typically considered within cryp-
tographic security models. Nevertheless, Otroshi et al. [201] proposed a BIP
scheme that combined FHE with a feature transformation approach that remains
in place even if the FHE ciphertexts are decrypted. However, the protection
of the feature transformation approach cannot be considered post-quantum se-
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cure. In addition, security against a loss of the FHE secret key does not imply
security against malicious adversaries, as parties deviating from the protocol
would not be detected in the protocol by [201]. We refer the reader to Paper F
for further discussion on the full disclosure model and its relation to malicious
security.



Chapter 4

Conclusion

In this chapter, the contributions of this thesis are summarized and highlighted,
and conclusions for each research question are presented. In addition, limita-
tions of the work presented in this thesis are discussed, and finally, open re-
search problems and opportunities for future work are identified.

4.1 Summary of Contributions

We summarize the contributions of this thesis based on the research questions,
and reiterate the latter for this purpose.

Research Question 1

Which privacy-preserving computation techniques are best suited for bio-
metric information protection?

• How do different approaches to biometric information protection com-
pare in terms of their security and efficiency?

• How can biometric features be represented to aid different encoding
mechanisms used in privacy-preserving computation techniques?

The main contributions to this first research question were given in Paper A,
Paper D, Paper E, and Paper F, while the remaining two Papers B and C con-
tributed partly. Regarding the comparison of privacy-preserving computation
techniques for BIP, the focus of this thesis was on BIP schemes with post-quantum
security, a comprehensive overview of which was given in Paper F.
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Papers B and D showed that FHE can be applied to achieve privacy-preserving
biometric verification and identification secure against semi-honest adversaries.
Notably, even though Paper B was concerned with the modality face and Pa-
per D with the modality keystroke, both works consider fixed-length feature
representations under FHE protection, which aids the efficiency of the presented
protocols. In contrast to this, Paper A showed that efficiency could not be main-
tained for variable-length fingerprint representation, which results in an infeasi-
ble computational overhead when compared under FHE. Additionally, Paper C
showed that the efficiency of FHE-based BIP schemes cannot generally be ex-
pected to be high if adversary models stronger than the semi-honest model are
considered. In Paper C, using the cryptographic tool of homomorphic transci-
phering introduced a significant overhead over purely FHE-based comparisons.
Notably, the proof-of-concept implementation this work built upon was not op-
timized for execution time [71], as the FHE comparisons using the CKKS [65] en-
cryption scheme were evaluated to be more expensive than in related work [171]
and Paper B. Given the fixed-length feature representations used in Paper C, im-
provements on the cryptographic components and implementation of the tran-
sciphering framework can be expected to decrease the computational workload
in the future.

In Paper E, fuzzy vaults [160] were combined with oblivious evaluations [155],
showing the feasibility of the latter for BIP. The feature representation in this
case depends on the fuzzy vault constructions, which have been evaluated for
different biometric modalities in independent works [218, 220, 251]. While the
biometric performance of these schemes can be lower than in FHE-protected
BIP schemes due to additional quantization required during the encoding step,
Paper E showed that biometrics-authenticated key exchange can be efficiently
constructed with both classical and post-quantum security, where the latter was
only efficient in the semi-honest adversary model.

Overall, the contributions to the first research question revealed that the fea-
ture representation is a significant factor for the efficiency of privacy-preserving
computation techniques such as FHE, as it determined the number and type of
comparison steps that need to be computed privately. On the other hand, the
efficiency of privacy-preserving computation techniques is impacted by the as-
sumed adversarial capacities, where both security against malicious adversaries
and security under the full disclosure model can render post-quantum secure
BIP schemes infeasible. Finally, it can be concluded that post-quantum secure
cryptographic techniques offer long-term protection to biometric systems. How-
ever, the efficiency of their application to biometric systems remains an open
research problem for stronger adversarial capacities or feature representations
with complex comparison functions.
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Research Question 2

How can computational workload reduction be applied to improve the effi-
ciency of FHE-based biometric identification systems?

• How can computational workload reduction for biometric identifica-
tion be applied in the homomorphically encrypted domain?

• How can the trade-off between computational workload reduction and
efficient encryption be optimized?

The second research question was mainly addressed in Paper B and Paper F,
where the former presented specific workload reduction approach to biometric
identification and the latter discusses the state-of-the-art on post-quantum se-
cure biometric identification. In Paper B, preselection in the form of indexing
was investigated and the vulnerability of unprotected preselection of a recently
proposed scheme was revealed [200]. Mitigating this information leakage, Pa-
per B applied lattice-based PEKS to achieve post-quantum protection through-
out the entire identification transaction. Notably, Paper B shows that feature
transformation approaches can be combined with preselection, where feature
transformation approaches such as [31] can be applied within individual clus-
ters.

Paper F gave an overview and a comparison of further approaches to workload
reduction for FHE-based biometric identification systems following both the fea-
ture transformation and the preselection paradigm. Out of those approaches,
the feature transformation approaches by [103] and [23] perform best among
the current literature. However, their feature encoding is not trivially compati-
ble with preselection, which could hinder further efficiency improvements. Ul-
timately, both feature transformation and preselection introduce a trade-off be-
tween computational efficiency any accuracy. While feature transformation ap-
proaches rely on feature dimensionality reduction to achieve efficiency [31, 103],
preselection introduces an additional error in the case where a mated compari-
son is not included in the candidate list [95, 200].

Overall, we conclude that computational workload reduction for FHE-based
biometric identification systems can be achieved both using feature transforma-
tion and preselection approaches. However, it is important to ensure the pro-
tection of all data that allows for conclusions about biometric features, such as
indexing strings derived from features vectors, in addition to the FHE-protected
reference database. Furthermore, feature transformation approaches that can
be combined with preselection allow for reducing the workload on the selected
subset of the reference database. In such cases, the trade-off between efficient en-
coding and workload reduction through preselection can be optimized.
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Research Question 3

Can biometric information protection based on homomorphic encryption be
secured against malicious adversaries in a feasible manner?

• Is it possible to secure biometric systems under the full disclosure
model defined in ISO/IEC 30136 using only homomorphic encryption?

• Is it possible to efficiently secure biometric systems against malicious
adversaries?

The third research question was addressed in Paper C, Paper E, and Paper F.
Paper E showed that malicious security can be achieved through verifiable com-
putation under classical security assumptions, confirming related work [28].
With post-quantum security however, the verifiable computation of the OPRF
proved to be infeasible [12]. Paper C followed a different approach to verifiable
computation, targeting the ISO/IEC 30136 [148] full disclosure security model.
While Paper C achieved post-quantum security under this model, the chosen
solution using homomorphic transciphering was not efficient. Even though Pa-
pers C and E did not achieve computational efficiency under their respective
security model, computationally efficient post-quantum security against mali-
cious adversaries can be achieved, as will be further discussed in Section 4.2.

Paper F identified that there are few BIP approaches that consider malicious
security [3, 18, 66, 193, 201] in addition to Papers C and E. While all of these
schemes can be considered to be post-quantum secure in the semi-honest adver-
sary model, classically secure primitives were used to achieve security against
malicious adversaries in [3]. Further schemes argue that they achieve malicious
security implicitly through their construction and do not explicitly apply ver-
ifiable computation [18, 66, 193]. Finally, [201] considered the full disclosure
model addressed in Paper C, where FHE was combined with a feature trans-
formation approach that cannot be considered to withstand attacks by quantum
adversaries and lowers the recognition accuracy of their overall scheme. Con-
trary to Paper C however, the approach presented in [201] is computationally
efficient.

Overall, the security of biometric systems against malicious adversaries remains
an important open research problem. In scenarios where adversaries cannot be
assumed to behave semi-honestly, stored and processed biometric features need
to be protected accordingly. The cryptographic model of security against ma-
licious adversaries remains the most relevant model against these threats, as
security under the full disclosure does not imply security against malicious ad-
versaries. Under both adversary models, the efficiency of post-quantum secure
solutions remains a challenge.



63

Research Question 4

How can biometric systems be secured against quantum adversaries?

• Which quantum adversary models need to be considered for biometric
systems?

• How can the computational workload of post-quantum biometric sys-
tems be optimized?

Post-quantum security of biometric systems was the main focus of this thesis,
which is reflected in all contributing papers. The main tool used in this the-
sis was FHE, which was used in Paper A, Paper B, Paper C, and Paper D, and
discussed in the literature review presented in Paper F. Because of the under-
lying hardness assumptions, FHE can be assumed to be post-quantum secure
with appropriate parameter choices [11]. In addition to the protection of the
reference database provided by FHE, this thesis highlighted that post-quantum
protection needs to be considered for additional steps of the transaction, such as
preselection addressed in Paper B and homomorphic transciphering addressed
in Paper C. While Paper E builds on the information-theoretic security of error-
correcting codes to achieve post-quantum protection of the underlying biomet-
ric data, the additional cryptographic components in the presented protocol
were also instantiated with lattice-based constructions to achieve post-quantum
protection throughout the transaction.

The comprehensive literature survey given in Paper F showed that three security
models need to be considered: semi-honest and malicious quantum adversaries
as well as adversaries considered in the ISO/IEC 30136 full disclosure model. As
discussed above, Paper F revealed that the majority of post-quantum secure BIP
schemes operate under the semi-honest adversary model. In terms of the com-
putational workload of post-quantum secure biometric systems, Paper A and
Paper F showed that the choice of feature representation impacts the efficiency
of single biometric comparisons, whereas feature transformation and preselec-
tion approaches can be considered for identification transactions. As discussed
above, Paper C and Paper E showed two instances of infeasible post-quantum
secure BIP schemes under the full disclosure model and the malicious adversary
model, respectively.

Overall, we conclude that biometric systems can and should be protected with
post-quantum cryptography to achieve long-term protection. Different privacy-
preserving computation techniques such as FHE, MPC, and FE, can be applied
to this goal. Regarding relevant adversary models, all models relevant to classi-
cally secure cryptography remain relevant for post-quantum secure BIP, where
the semi-honest, malicious, and full disclosure model can be considered accord-
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ing to the application scenario. As some of these cryptographic operations, in
particular FHE operations, can introduce a significant computational overhead
to biometric systems, this cost can be mitigated either through efficient feature
representations and encoding, or workload reduction techniques applicable to
biometric identification.

4.2 Limitations and Future Work

In this Section, the limitations of the contributions presented in this PhD thesis
will be discussed, and opportunities for future work are outlined.

We begin with limitations concerning the security of the schemes proposed in
Papers A, B, C, D, and E. Out of these schemes, only Papers C and E consider
security against adversaries that are not semi-honest. While the focus of the re-
maining Papers A, B, and D was on different contributions, their semi-honest
security can only be assumed to hold true in a controlled setting, e.g., within a
governmental or corporate setting. However, adversaries in other scenarios can-
not always be assumed to have compelling incentives to behave semi-honestly.
This is particularly true in scenarios where the encrypted reference database
is outsourced to a third-party service provider. A malicious service provider
could tamper with the computation, giving false decisions of biometric transac-
tions without detection. In addition, FHE-based BIP schemes are vulnerable to
the hill-climbing attack performed by malicious clients presented by [3]. As [3]
presents a solution to their attack based on Private Information Retrieval (PIR) [72],
further research on post-quantum BIP has considered this attack to be mitigated
and has focused on research on FHE-based BIP schemes without the additional
PIR protection against hill-climbing attacks [44, 103]. However, the PIR protocol
applied in [3] is built from classical security assumptions and does not provide
post-quantum security throughout the entire transaction, indicating that further
research is required to achieve the desired long-term protection throughout the
biometric transactions.

Out of the two papers presented in this thesis that consider stronger adversary
models, Papers C and E, only Paper E considers verifiable computation as a
means to detect malicious behaviour. As discussed above, security under the
malicious adversary model could only be achieved efficiently under classical
security assumptions, but not based on lattices. Concretely, the cost of the ver-
ifiable computation of the lattice-based OPRF proposed by [12] was impracti-
cally high. However, this is not true for all lattice-based verifiable computa-
tion, as both [120] and [16] have recently shown efficient verifiable computa-
tion for FHE, which can be relevant to FHE-based BIP schemes. Regarding Pa-
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per C, which investigated security against the ISO/IEC 30136 [148] full disclo-
sure model, verifiable computation would not have been able to fulfil security
under this assumption, as the risk of the disclosure of the FHE secret key cannot
be mitigated by verifiable computation. On the other hand, the solution based
on homomorphic transciphering presented in Paper C cannot be considered se-
cure against malicious adversaries due to the absence of verifiable computation,
revealing a mismatch between the two security models.

Further limitations concern the security of the schemes presented in Papers A
and D, both of which involve the evaluation of conditional statements. In Pa-
per A, the fingerprint comparison algorithm for minutiae-based representations
requires several conditional statements, such as comparing the two minutiae
angles against a given threshold, and proceeding further with computation on
this minutiae pair if and only if the distance between the angles falls below the
threshold. In Paper D, the conditional statements appear within the computa-
tion of the Manhattan distance between two encrypted keystroke dynamic fea-
ture vectors, which requires the computation of an absolute value. Even though
improvements have been proposed recently [147], the computation of condi-
tional statements under FHE is still impractical. Therefore, these statements
were computed after decryption in both schemes, which may impact the pri-
vacy of the underlying biometric data. In Paper A, it can be argued that the
revealed information does not allow for a reconstruction of the biometric tem-
plates. For example, the difference between two minutiae angles does not reveal
the individual minutiae angles. However, evaluating the conditional statements
outside of the encrypted domain cannot be considered to achieve the same pri-
vacy protection as a computation of the entire comparison under encryption. Fi-
nally, the computational efficiency of the schemes presented in Papers A and C
is a limitation in terms of the practical application of these schemes.

Concluding from the aforementioned limitations, future work on the impact of
verifiable FHE [16, 120] for BIP is relevant to achieve security against real-world
adversaries. In addition, efficient verifiable computation techniques for post-
quantum primitives need to be investigated for oblivious evaluations as applied
in Paper E, which would positively impact applications outside of BIP as well.
With regard to malicious security, it is interesting to note that only biometric ver-
ification has been explored under this model with post-quantum security, as Pa-
per F revealed. The application of verifiable computation or further techniques
to achieve malicious security of biometric identification is therefore an interest-
ing open research problem. Similarly to semi-honest FHE-based solutions to
biometric identification, the computation workload of the additional malicious
security can be expected to require analysis and optimizations. For example, the
workload of verifiable computation for identification transactions could be re-
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stricted to the candidate list obtained after preselection, or applied to a random
subset of comparisons such that a malicious server tampering with the compu-
tation will be detected with high probability. Overall, Papers A, C and E showed
that the computational workload of post-quantum secure BIP schemes remains
an open challenge.

In addition, Paper F showed that a majority of post-quantum secure BIP schemes
are based on FHE, and further privacy-preserving computation techniques with
post-quantum secure instantiations, such as MPC [55], FE [66], or PSI [63], have
not received comparable interest. PSI in particular corresponds to minutiae-
based fingerprint recognition, where two sets of minutiae are compared to re-
veal the minutiae common to both fingerprints. This technique has been applied
to fingerprint comparisons [257], but not with post-quantum security. An inter-
esting open problem is the application of these techniques for further biometric
modalities, both physiological and behavioral. In addition to the application of
further cryptographic techniques, biometric identification could be investigated
for a larger variety of biometric modalities. As Paper F revealed, biometric iden-
tification with post-quantum security was almost exclusively explored for face
recognition. While such constructions can be assumed to translate to other fixed-
length feature representations, an interesting open problem is the investigation
of the security and efficiency of biometric identification for variable-length fea-
ture representations under post-quantum security.

Finally, future work on research areas closely related to BIP can be expected
to impact the latter positively. One prominent research area is deep-learning
based feature representations, which have become state-of-the-art for face recog-
nition [191], but have also been explored for fingerprint [104] and iris [202]. The
current limitation of such feature representations for other modalities than face
recognition are their lower biometric performance compared to feature repre-
sentations that are not based on deep learning, such as the Daugman IrisCode
representation [80]. As the biometric performance of these feature extractors in-
creases with further research, their protection under FHE and further schemes
that allow for computations on encrypted data becomes computationally fea-
sible, and therefore relevant to BIP. In addition to deep-learning based feature
representations, the research field of secure machine learning can similarly im-
pact future work on BIP. As Paper F motivates, machine learning under encryp-
tion can be applied to perform deep-learning based feature extraction in the
encrypted domain, which allows for an extension of the protection of the under-
lying biometric features. In state-of-the-art BIP schemes today [44, 103], feature
extraction is computed on unencrypted samples, e.g., face images, and only the
extracted features are encrypted. Future work can improve the security of this
computation through a direct extraction of encrypted feature representations.
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[19] R. Arjona, P. López-González, R. Román, and I. Baturone, “Post-quantum
biometric authentication based on homomorphic encryption and classic
mceliece,” Applied Sciences, vol. 13, no. 2, p. 757, 2023.

[20] R. Arjona, M. A. Prada-Delgado, I. Baturone, and A. Ross, “Securing
minutia cylinder codes for fingerprints through physically unclonable
functions: An exploratory study,” in 2018 International Conference on Bio-
metrics (ICB). IEEE, 2018, pp. 54–60.

[21] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm
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Abstract

Protecting minutiae-based fingerprint templates with fully homomorphic en-
cryption has recently been recognised as a hard problem. In this work, we eval-
uate state-of-the-art fingerprint recognition based on minutiae templates using
post-quantum secure fully homomorphic encryption that operates directly on
floating point numbers, such that no simplification or quantisation of the com-
parison algorithm is necessary. In a practical evaluation on a publicly available
dataset, we run a benchmark and provide directions for future work.

A.1 Introduction

Fingerprint patterns allow for an irrevocable and accurate identification of in-
dividuals over several decades [166]. Images and templates representing such
patterns have therefore, along with other biometric data, been recognised as
sensitive personal data by the European Union’s General Data Protection Regu-
lation and the ISO/IEC 24745 [149] standard.

In its most recent version from 2022, the standard places particular emphasis on
Biometric Information Protection (BIP) in the presence of quantum computers.
In their Quantum Manifesto [107], the European Union expects quantum com-
puters to pose a realistic threat within the next 15 years. Comparing this time
frame to the the retention period for biometric systems ranging from 5 [110] up
to 12 years [166], it becomes evident that long-term protection of biometric data
needs to be addressed today.

More concretely, access to a quantum computer would allow an attacker to
break the unlinkability, irreversibility, and renewability assurances of classically
protected BIP systems, leaving the enrolment data vulnerable for malicious ex-
ploitation. These three requirements are defined in ISO/IEC 24745 [149] as i)
unlinkability, two protected templates stored in different applications cannot be
linked to the same subject, ii) renewability, new templates can be created from the
same biometric instance without the need to re-enrol, and iii) irreversibility, it is
impossible to retrieve original templates given only protected templates. Con-
sidering the quantum challenge, this work proposes a BIP system that achieves
long-term protection according to the standard’s requirements through the use
of post-quantum cryptography.

However, the lift to post-quantum security does not come without challenges. In
particular, the combination of accurate minutiae-based fingerprint recognition
and BIP through Fully Homomorphic Encryption (FHE) has recently been recog-
nised as a notorious hard problem by leading researchers in biometrics [104].
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So far, solutions have only been proposed for fixed-length fingerprint represen-
tations [169], or using classically secure cryptography [125]. The novelty and
objective of this work is therefore to evaluate minutiae-based fingerprint com-
parison with FHE on floating point numbers, an encryption scheme which en-
joys increasing interest since its proposal in 2017 [65]. As a lattice-based FHE
scheme, its post-quantum security is provided by the Ring-Learning with Er-
rors (R-LWE) [183] hardness assumption.

This work presents post-quantum secure minutiae-based fingerprint compari-
son algorithm [58] using FHE, where the comparison algorithm has not been
simplified or quantised in order to be compatible with the encryption scheme.
Furthermore, we highlight challenges inherent to the application of FHE to mi-
nutiae-based fingerprint comparison and provide an experimental benchmark
from which we draw conclusions for future work.

The rest of this paper is structured as follows: Section A.2 contextualises our
contribution, before we present our proposed system in Section A.3. We give
an experimental evaluation in Section A.4 and draw our conclusions in Sec-
tion A.5.

A.2 Related Work

Fingerprint recognition has historically been based on minutiae, which are de-
fined as ridge endings and bifurcations of fingerprint ridges. While compari-
son algorithms with high accuracy have been developed [58, 259], they reflect
the complexity inherent to comparing two sets of minutiae such as rotation,
non-linear transformation, and absence of an inherent ordering. In their de-
velopment, they have not necessarily considered the application of encryption
schemes, which offer only a limited number of operations that can be com-
puted with feasible computational effort [147]. Therefore, two research direc-
tions have emerged that approach the challenge of combining fingerprint recog-
nition with encryption: one is to develop fingerprint representations with sim-
ple distance functions as comparison metrics that maintain high recognition ac-
curacy, while the other is to apply and adapt compatible encryption schemes to
complex minutiae-based comparators.

Indeed, FHE for fixed-length representations has been proposed for different
biometric modalities such as face [31, 44, 171] and iris [170] with high accuracy
and real-time efficiency. For fingerprint specifically, the most prominent repre-
sentation is Jain et al.’s FingerCode [153]. Notable works on encrypting this rep-
resentation include [26, 126, 266]. However, the encryption schemes used are
based on classical assumptions and do not hold in the quantum age. A recent
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work using FHE with post-quantum security on FingerCode templates is [169].
The FHE scheme [69] applied here only tolerates binary values, which is com-
patible with FingerCodes, but not with minutiae templates.

Minutiae-based comparators share the difficulty of finding close pairs within
the sets of k reference minutiae and l probe minutiae, the mapping between
which can be neither injective nor surjective due to potential missing or spu-
rious minutiae. In addition, samples might be rotated, translated or distorted,
requiring either prealignment or a rotation-invariant approach. In theory, FHE
allows for the evaluation of arbitrary circuits on encrypted input data [121]. In
practice however, both alignment and set comparison are functions that can only
be described using conditional statements, the number of which in prevalent ap-
proaches is high [259, 277]. Their combination with FHE is therefore not straight-
forward, and more importantly too costly for practical applications [147]. In
contrast to that, the comparison of alignment-free fixed-length representations
can be performed by computing a simple distance function on the encrypted
templates, the result of which is typically decrypted to evaluate the comparison
against the decision threshold.

Classically secure homomorphic encryption, which is only partially or some-
what homomorphic [121], has been applied to minutiae-based comparison [125].
However, these schemes lack post-quantum security. This is also true for a
approaches based on cancelable biometric templates constructed based on ran-
domized feature transformation, most recently represented by [213], which do
not adhere to formal security proofs and are vulnerable to unlinkability attacks.
In particular, the indistinguishability under chosen plaintext attacks provided
by (F)HE schemes, which gives formal security in terms of ISO/IEC 24745 [149]
is not given in the latter. Other works [180, 277, 124] have utilised secure multi-
party computation (MPC), which is generally speaking more flexible than FHE.
As a drawback, it introduces a communication overhead, and practical post-
quantum secure MPC has only been explored recently [55].

Table A.1 gives a qualitative overview of the most relevant related works dis-
cussed in this Section and provides a comparison against our proposed ap-
proach.

A.3 Proposed System

We study a combination of the minutiae-based fingerprint comparison algo-
rithm Minutia Cylinder-Code (MCC) [58] and the state-of-the-art FHE encryp-
tion scheme Cheon-Kim-Kim-Song (CKKS) [65] to illustrate the challenges that
arise in the process.
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Reference
Template Crypto- Variable-length Post-
protection graphic feature quantum
category scheme representation security

Barni et al., 2010 [26] HE ElGamal [102]
✗ ✗Pailler [203]

Gomez-Barrero et al., 2017 [126] HE Pailler [203] ✗ ✗Yang et al., 2020 [266]

Zhang and Koushanfar, 2016 [277] MPC Garbled
✓ ✗Gilkalaye and Derakhshani, 2021 [124] Circuits [269]

Gomez-Barrero et al., 2017 [125] HE Pailler [203] ✓ ✗

Kim et al., 2020 [169] FHE TFHE [69] ✗ ✓

Ours FHE CKKS [65] ✓ ✓

Table A.1: Qualitative comparison of related work on cryptographic fingerprint
template protection.

A.3.1 Background

Before we describe our proposed system, we introduce the necessary background
in this Section. Subsequently, we introduce the baseline verification scheme
without encryption, and finally, our proposed protected system.

Throughout this work, we consider a biometric system operating in verification
mode. In a setup phase, subjects are enrolled to the system with their fingerprint
features. During a verification transaction, a fresh probe sample is captured a
biometric claim, i.e., the claimed identity of the data subject, is transferred to
the database along with the probe feature set. Then, a comparison between the
probe features and the reference template corresponding to the claim is com-
puted, resulting in a comparison score in the range [0, 1], where 1 indicates high-
est similarity. Finally, this score is compared against a predetermined decision
threshold and the comparison trial is accepted or rejected accordingly. In the
following section, we describe this comparison algorithm in more detail.

A.3.1.1 Minutia Cylinder Code

Minutia Cylinder-Code (MCC) [58] is a fingerprint comparison algorithm that
takes as input two minutiae-based fingerprint templates as standardized in
ISO/IEC 19794-2 [151] and outputs a similarity score that can further be used
for an automated comparison. Minutiae are significant points in the pattern of
fingerprint ridges: ridge endings and bifurcations, where one ridge line splits
into two. We remind the reader of the following definition of an ISO/IEC 19794-
2 [151] fingerprint template in the notation of [58], Section 3.
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Definition A.1 (Fingerprint Template). A fingerprint template is an unordered
set T = {mi}N

i=1 of minutiae mi, where N is the number of minutiae found in a
given fingerprint image. Each minutia is given as a tuple m = (xm, ym, θm) of
its location in terms of x- and y-coordinate (xm, ym) given in pixels from the left
upper corner of the sample together with its tangential angle with respect to the
x-axis θm.

Note that the number of minutiae N varies between captures, not only between
different subjects, but also within repeated captures of the same instance. This
is due to noise during the capture process: depending on the image quality and
capture conditions, minutiae can either be missed during feature extraction, or
spurious minutiae can be added, resulting in different length representations
of the same fingerprint. In addition, the location of the minutiae are subject to
fuzziness, as their location and angle can be distorted through rotation, trans-
lation and non-linear transformations. Therefore, minutiae-based fingerprint
comparison comprises of the complex problem of accurately comparing two
unordered, variable-sized sets of noisy points, a number of which can be spuri-
ous.

To address the aforementioned challenges, MCC introduces a local structure as-
sociated with each minutiae referred to as a minutia cylinder. This structure in-
corporates information about the neighbourhood of each minutiae, i.e., further
minutiae found in close proximity and their spatial and directional relationship
with the center minutiae [58]. This approach ensures system interoperability as
the cylinder representation is still based on ISO/IEC 19794-2 [151] fingerprint
templates. In particular, the variable-length representation is maintained, as the
number of minutia cylinders corresponds to the number of minutiae in a finger-
print template. We restate the following definitions from [58], Section 3.

Definition A.2 (Minutia Cylinder). A minutia cylinder is given by a fixed radius
R and height 2π centered around the location (xm, ym) of a minutia m. It is
discretized into small cuboids, called cells, which are orientated in the direction
of the tangential angle θm of the center minutiae. It can be represented as a vector
cm ∈ [0, 1]n, where n denotes the total number of cells in a cylinder.

As a minutia cylinder only contains relative information concerning the relation-
ship between the minutiae, such as distance and directional difference, but no
global information, it can be considered translation and rotation invariant [58].
The same properties also make it robust against minor non-linear transforms
during capture such as different levels of pressure applied on the fingerprint
sensor. Most importantly, the fixed-radius neighbourhood is a key component
in the handling of missing and spurious minutiae [58].

Definition A.3 (Contribution Score). Each cell inside a minutia cylinder is as-
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signed a numerical value Cm, called contribution score, which details the likeli-
hood of finding another minutia in a small neighbourhood with a compatible
directional difference.

For a more technical definition along with insightful figures, the reader is re-
ferred to [58], Section 3.

Definition A.4 (Cylinder Set). Given a fingerprint template T, its corresponding
cylinder set is defined as the set of valid cylinders cm for m ∈ T. A cylinder is
considered valid if it contains a sufficient number of contribution scores, i.e.,
exceeding a predefined threshold of a minimal number of contribution scores
and a minimal number of contributing neighbour minutiae.

Finally, a reference fingerprint template can be compared against a probe fea-
ture set based on their cylinder set representations. Therefore, we restate the
comparison process given in [58].

Definition A.5 (Conditional Contribution). Let ca and cb be cylinders corre-
sponding to minutia a in a reference template and minutia b in a probe template.
Then, ca|b = ca where cb ̸= 0. In other words, ca|b contains all contributions from
ca where cb has contribution from corresponding cells.

Definition A.6 (Candidate Pair). Two cylinders represented by ca and cb are
considered a candidate pair if and only if they satisfy the following requirements:

1. The directional difference between the two minutiae a and b is not greater
than π

2 .

2. At least 60% of corresponding elements in the two vectors ca and cb are
non-zero.

3. ∥ca|b∥+ ∥cb|a∥ ̸= 0.

Intuitively, it can be seen that these conditions enable to filter out the most rel-
evant pairings of cylinders. Firstly, the orientation of the minutiae should be
reasonably close in order to be considered as a mated comparison trial. Sec-
ondly, there is a significant overlap in the contribution scores associated with
each minutia cylinder, and thirdly, the contributions in said overlap should
occur at similar indices, indicating that the spacial relationships to neighbour
minutiae are similar. Based on valid pairings of cylinders according to these
criteria, the overall similarity between two cylinders is given by the following
definition.

Definition A.7 (Cylinder similarity). The cylinder similarity between two cylin-
ders represented by their vectors ca and cb is given as
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γ(a, b) =

1− ∥ca|b−cb|a∥
∥ca|b∥+∥cb|a∥

, if ca and cb are candidate pairs.

0, otherwise.
(A.1)

The cylinder similarity allows to calculate local similarity scores for each minu-
tia pair. From those local scores, a global similarity score indicating the similar-
ity between two fingerprints can be calculated. The authors of [58] propose four
different strategies for global score consolidation. In our work, Local Similarity
Sort (LSS) is applied, where the top k cylinder similarity scores are averaged to
produce the global similarity score.

A.3.1.2 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) schemes allow for additions and mul-
tiplications of ciphertexts that correspond directly to operations on the corre-
sponding plaintexts [224]. More formally, a cryptographic scheme is homomor-
phic if

Encpk(a ∗ b) = Encpk(a) ∗ Encpk(b) (A.2)

for an operation ∗. In partially homomorphic encryption schemes, this property
is limited to either addition or multiplication. In comparison, FHE schemes al-
low for a combination of additions and multiplications, making them applicable
to a wider variety of use cases.

The public-key encryption scheme used in this work is the Cheon-Kim-Kim-
Song (CKKS) [65]. Historically, FHE schemes have first been proposed for in-
teger or binary input data. Only more recently, [65] have proposed a scheme
that operated on floating point numbers directly, eliminating the need for input
quantisation or significant rounding. While the scheme does come with an ap-
proximation error, its order of magnitude is not significant to the application in
our work.

Similarly to other FHE schemes, the security of CKKS based on the hardness
of the Ring-Learning with Errors (R-LWE) problem [183]. Encryption within
such schemes is a probabilistic operation, meaning that every encryption uses
fresh randomness. In addition, encryption in CKKS is indistinguishable under
chosen-plaintext attacks (IND-CPA), such that an attacker cannot distinguish
between an encryption of 0 and an encryption of 1. In particular, an attacker
cannot distinguish between two encryptions of the same input, e.g., the biomet-
ric template of a specific data subject, and an encryption of a different input,
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Figure A.1: Simplified flowchart of the proposed solution.

e.g. the biometric template of a different subject. For more details, we refer the
reader to the original scheme [65].

A.3.2 Baseline System

The baseline system operates in verification mode on unprotected data without
encryption. During enrolment, the reference subjects’ fingerprint samples are
captured and features are extracted as ISO/IEC 19794-2 [151] fingerprint tem-
plates. From the templates, the MCC cylinder sets are constructed as described
above, and stored in the reference database. For a verification transaction, a
probe subject’s features are extracted in the same manner and represented as
a cylinder set. Then, the probe cylinder set is compared against the reference
cylinder set corresponding to the claimed identity of the probe subject. The
comparison outcome is the global similarity score of the two cylinder sets, which
is compared against the predefined decision threshold to yield the comparison
trial outcome.

A.3.3 Protected System

The protected system builds on the baseline system, but with the addition of
FHE. The reference templates are stored in ciphertext form, and the probe fea-
tures are encrypted before comparison. Through the homomorphic properties of
the FHE scheme, the comparison algorithm can be computed on the encrypted
data, ensuring privacy protection of the underlying data.
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MCC operation Enc EvalAdd EvalSub EvalMult EvalAtIndex( · , 1) Dec

Cylinder encryption 3 — — — — —
Directional difference — — 1 — — 1
Common validity — n− 1 1 2 n− 1 1
Denominator — 2(n− 1) 2 2 2(n− 1) 2
Numerator — n− 1 2 1 n− 1 1

Total 3 4(n− 1) 6 5 4(n− 1) 5

Table A.2: Homomorphic operations for the encrypted comparison of two minu-
tia cylinders.

Operation on encrypted data Add Subtract Rotate Decrypt Multiply Encrypt

Relative cost 1 5 24 33 46 52

Table A.3: Relative cost of CKKS [65] operations implemented in PAL-
ISADE [227].

We work in an established client-server architecture with a computation server
(CS) controlling the database of encrypted reference templates and an authen-
tication server (AS) controlling the secret key for decryption in a semi-honest
adversary model [270]. Figure A.1 shows the workflow of the protected sys-
tem.

In the first step, the client captures a fingerprint sample and generates a cylinder
set from it. For each minutia point m, it constructs the encrypted cylinder as a
tuple of three CKKS ciphertexts [Encpk(θm), Encpk(cm), Encpk(cval

m )] using coef-
ficient packing. The first ciphertext is the encrypted cylinder angle θm, which
inherits the minutia angle. The second ciphertext is an encryption of the con-
tribution vector cm, while the third ciphertext stores the vector cval

m , which rep-
resents the validity of each cell related to minutia m. Even though cylinders
are encrypted individually, they cannot be utilised for hill-climbing attacks due
to the chosen plaintext security of the encryption scheme. In other words, the
separate encryption of multiple cylinders does not lower the privacy protection
compared to an encryption of the entire set of cylinders.

For CS to execute the comparison between all probe and reference cylinders, it
first determines pairs of cylinders that can be considered candidate pairs. Fol-
lowing Definition A.6, the first condition requires the directional difference be-
tween two cylinders to be lower than π

2 . This is evaluated in the encrypted do-
main by subtracting the two encrypted minutia angles Encpk(θa)− Encpk(θb) =
Encpk(θa− θb). The resulting difference is decrypted at AS and compared against
π
2 by CS. The comparison is computed in plaintext, as evaluating encrypted con-
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ditional statements is complex [147]. However, the difference between two an-
gles does not reveal the orientation of the original minutiae, and therefore, does
not leak critical information.

For the second condition, CS verifies that over 60% of the corresponding ele-
ments in ca and cb are non-zero by calculating a common validity vector as the a
homomorphic multiplication of two encrypted validity vectors Encpk(cval

a ) and
Encpk(cval

b ). The number of elements in the resulting packed vector can be ob-
tained by applying the rotation technique first introduced in [44]. The resulting
value is decrypted in order to evaluate the condition. If the amount of non-zero
elements in the two vectors is below 60% of the total amount of elements, the
cylinders are not candidate pairs and are not considered further.

The third step is calculating the vectors Encpk(ca|b) and Encpk(cb|a) and their
norms. For this step, CS multiplies Encpk(ca) and Encpk(cb) with the common
validity vector homomorphically, which filters out contributions of cells that
should not be taken into account for the cylinder similarity score. The Euclidean
norm of the resulting vectors Encpk(ca|b) and Encpk(cb|a) can then again be eval-
uated as above. Then, AS decrypts Encpk(||ca|b||) and Encpk(||cb|a||) and CS
checks that ∥ca|b∥+ ∥cb|a∥ ̸= 0.

For the cylinder pairings that can be considered candidate pairs, the final cylin-
der similarity score is given in Definition A.7. The denominator has already been
calculated in the previous step, while the numerator is calculated by performing
one homomorphic subtraction of Encpk(ca|b)− Encpk(cb|a) = Encpk(ca|b − cb|a),
and evaluating the Euclidean norm ||Encpk(ca|b − cb|a)|| of the result as before.
The remaining parts of the cylinder similarity γ(a, b) are calculated in plaintext,
and the method is repeated m1 · m2 times for m1 cylinders in the probe and m2
cylinders in the reference template. The global comparison score is consolidated
using local similarity sort [58] and is compared against a threshold that deter-
mines whether to accept or reject the verification attempt.

An overview of the workload of homomorphic operations is summarized in Ta-
ble A.2. Note that the computation of one Euclidean norm requires one homo-
morphic subtraction and multiplication as well as n− 1 additions and rotations
by one position [44], where n = 1536 is the fixed number of cells in each cylin-
der. We account for the encryption of the reference template during enrolment,
such that only the encryption of the probe template remains. To complement
Table A.2, Table A.3 gives the relative cost of the FHE operations.
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A.4 Experimental Evaluation

In this Section, we give an experimental evaluation of our proposed system as
well as a security analysis according to ISO/IEC 24745 [149]. Further, we com-
pare the performance of our system against the state of the art.

A.4.1 Performance

The experiments have been conducted on an Ubuntu server with version 1.13.0
ubuntu1.1 with 4GHz CPU and 128GB RAM. The proposed system has been
evaluated on the publicly available MCYT database [199] containing fingerprint
images of 330 subjects with 12 samples of each finger per subject. For feature ex-
traction of the ISO/IEC 19794-2 [151] minutiae templates, the SourceAFIS [259]
implementation was used. The MCC [58] algorithm was implemented in C++
based on the original paper without any further optimisations or simplifications.
For the implementation of the FHE scheme, the PALISADE library [227] provid-
ing the CKKS [65] encryption scheme was used.

The recognition accuracy of our implementation for the baseline system and
the protected system is shown in Figure A.2. The biometric performance of the
protected system is not impacted through the application of FHE, as all compu-
tations are carried out in the same manner as in the baseline system, with the
difference being the computation of ciphertexts on contrast to the unencrypted
data in the baseline system. As the FHE scheme is able to operate on floating
point numbers, no simplification or quantisation was need for our approach.
This stands in contrast to other schemes [125, 169], where accuracy loss has to
be accepted in order to accommodate the chosen encryption scheme.

Note that the contribution of our work is independent of the biometric perfor-
mance of the baseline system, which could vary depending on the database
used. Instead, the contribution of our proposed system lies in the unimpaired
accuracy after the application of BIP, as CKKS is currently the only FHE scheme
known to operate on floating point numbers directly [65].

Transaction times for the proposed system are presented in Table A.4. Note
that transaction times for the baseline system can be considered negligent in
comparison, as they are lower than 50ms throughout all system components
on comparable hardware [58]. For the computational performance of the pro-
tected system, the relevant metric is the number of cylinders that need to be
compared, which corresponds to the number of minutiae in the probe and ref-
erence template. In the evaluated database, the median number of minutiae
per template was 35, with the lowest number of 6 and highest of 100 minutiae,
both of which can be traced back to poor sample quality. The average num-
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Figure A.2: Detection error trade-off curve for the evaluated MCYT [199]
database.

Step Cylinder Template

Key generation — 0.08
Enrolment — 0.53

Verification
Probe encryption — 0.53
Direct. diff. 0.004 4.13
Common validity 0.017 25.12
Nom. + Denom. 3.80 11410.38
Total — 11525.03

Table A.4: Transaction times for the proposed system in seconds.
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ber of cylinder comparisons for one verification can therefore be extrapolated as
35 · 35 = 1225.

Evidently, the obtained execution times show that the system is not practical in
real-life applications, with a verification transaction taking approximately 192
minutes. The main bottleneck is the computation of the Euclidean norms. This
has already been recognised as a challenge in biometric systems [31]. Within the
calculation of the norms, the most costly operation is the rotation of ciphertexts,
as can be derived from Table A.3.

A.4.2 Security Analysis

We evaluate the protected system with respect to the requirements defined in
ISO/IEC 24745 [149]. Firstly, unlinkability in the protected system is given
through the chosen-plaintext security of the applied CKKS scheme. By the fresh
random component generated for every encryption operation, even two cipher-
texts computed from the exact same template look indistinguishable from a ran-
dom input to an attacker. Therefore, it is not possible for an attacker to link ci-
phertexts corresponding to a certain data subjects to any other ciphertext within
our proposed system, or any other BIP system the subject is enrolled in.

Similarly, the CKKS scheme yields renewability, as a template from the same
instance can be re-encrypted and still be used securely in the system. In case the
template is no longer available in plaintext form, or decryption is not possible
for security reasons, an encryption of 0 can be homomorphically added to the
previously stored reference to ensure a newly randomized representation of the
ciphertext [28].

Finally, irreversibility of the protected templates is guaranteed through the hard-
ness of the Ring-LWE problem, which the security of the CKKS scheme builds
upon. Notably, this assumption only holds true for correct parameter choices
[11], which are enforced within the PALISADE library [227].

A.5 Conclusion

Recent standards have placed emphasis on the long-term protection of biomet-
ric data. Therefore, this work has evaluated the application of post-quantum se-
cure FHE on minutiae-based fingerprint comparison. The challenge of minutiae-
based comparison lies in the variable length of the templates, absence of an in-
herent order, and thereby more complex comparison which requires conditional
statements before a global comparison score can be obtained. In a case study
and experimental evaluation, it has been shown that it is not yet practical to
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evaluate such algorithms using FHE. The computational overhead of FHE is ex-
pected to decrease with further research in cryptography, while at the same time
more efficient representations of biometric data need to be found that do not im-
pair the recognition accuracy. In this regard, recent works based on deep neural
networks have reported significant improvements for fixed-length fingerprint
representation [104]. Until efficient post-quantum protection for high-accuracy
fingerprint representations has been developed, classically secure HE or post-
quantum secure MPC should be considered.
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Abstract

Biometric data stored in automated recognition systems are at risk of attacks.
This is particularly true for large-scale biometric identification systems, where
the reference database is often accessed remotely. A popular approach for the
protection of the stored templates is homomorphic encryption, which grants
privacy protection while maintaining the biometric performance of the unpro-
tected system. However, it introduces a significant computational overhead that
can render identification transactions infeasible. To reduce this workload, bio-
metric indexing in the encrypted domain has become a recent research inter-
est. In this work, we show that in such schemes, auxiliary indexing data can
leak additional privacy-sensitive information that violate standardized require-
ments for biometric template protection. In response to this leakage, we pro-
pose a novel framework HEBI that protects biometric indexing approaches at a
post-quantum security level while requiring a computational effort of only 0.12
milliseconds per cluster.

B.1 Introduction

Biometric data allow for an irrevocable identification of individuals over several
decades [166]. Therefore, biometric data need to be considered sensitive data
requiring long-term protection, even more so than passwords or authentication
tokens that can be exchanged upon a security breach. To ensure this protection,
the ISO/IEC 24745 standard on biometric information protection [149] defines
the following requirements: i) unlinkability, two protected templates stored in
different applications cannot be linked to the same subject, ii) renewability, new
templates can be created from the same source if the previously stored reference
was leaked without the need to re-enrol, and iii) irreversibility, it is impossible to
reconstruct original samples given only protected templates. Furthermore, both
the computational and biometric performance (i.e., accuracy) of the unprotected
system should be preserved.

In biometric identification, where a 1:N search against a large database is per-
formed, biometric templates are at particular risk as reference databases are
maintained for long time spans. For example, this is true for criminal databases
held by law enforcement agencies or for national citizen registration [256]. In
addition, these databases are static targets of attack, as their large storage re-
quirements do not allow for agile changes to their physical security.

Recently, biometric identification protected through Fully Homomorphic Encryp-
tion (FHE) has been explored to mitigate these security risks [31, 91, 103]. While
this approach grants cryptographically sound protection of the biometric tem-
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Figure B.1: Biometric information leakage in indexing schemes on encrypted
reference databases: an attacker can observe privacy-sensitive information from
indexing data, e.g., soft-biometric attributes such as gender of the probe and
reference subjects.

plates, it comes with a significant overhead in computational workload. For
large-scale databases, workload reduction strategies need to be applied to
achieve practical biometric identification systems. Workload reduction strate-
gies have been categorized into two main classes [92]: feature transformation
and preselection. Preselection approaches offer a significant speed-up through
selecting a smaller subset of the enrolment database that contains the reference
identifier with high probability. Using an index string i common to a subset
of enrolled references Ci, preselection can be achieved in O(1) and is therefore
efficient.

However, a key challenge with these approaches is the continuous protection
of data subject privacy under preselection, i.e., ensuring that the preselection
procedure and its outcome do not reveal any information about the underly-
ing subject, or infringe on the unlinkability of the system. This vulnerability
is depicted in Figure B.1. It is important to note that the encryption of the fea-
ture vectors alone is not sufficient to fulfil this requirement, as the preselection
algorithm can reveal additional information about the enrolled subjects, e.g.,
soft-biometric characteristics such as the gender of ethnicity of the probe and
reference subjects.

The risk of information leakage shown in Figure B.1 is particularly high when
biometric indexing is based on similarity measures between the enrolled sub-
jects, e.g., in feature-based clustering approaches. These similarity measures



112 Post-Quantum Secure Biometric Systems

contained in the Auxiliary Indexing Data (AID) can potentially reveal sensitive in-
formation about the preselected subset such as their shared soft-biometric char-
acteristics. For sound privacy protection in the sense of ISO/IEC 24745 [149],
this information needs to be obscured in addition to the protection of the feature
vectors.

To mitigate the privacy leakage in biometric indexing, we therefore propose a
novel protocol HEBI that can be applied to indexing approaches in the encrypted
domain. The key contributions of our work are as follows:

• Privacy analysis. To illustrate the significant risks that come with the use
of unprotected AID, we give a privacy analysis of existing approaches. We
show that we were able to reconstruct the gender and ethnicity of enrolled
subjects based only on AID, which must be considered a severe security
risk.

• Formalization of information leakage. Further, we give a formalization
of information leakage in biometric indexing that indicates that such a
leakage exists in arbitrary biometric indexing schemes. We use this formal-
ization as further motivation for our work, in addition to the experimental
analysis.

• The novel HEBI protocol. As our main contribution, we present the HEBI
protocol for secure biometric indexing in the encrypted domain. Through
the use of lattice-based cryptography [39, 65], our protocol provides post-
quantum security in storage, preselection and comparison. We give an ex-
perimental evaluation that shows that HEBI can be applied in real-world
operational systems at a cost of only 0.12 additional milliseconds for the
the post-quantum secure retrieval compared to unprotected preselection
systems. At the same time, the biometric performance of the underlying
indexing approach is not impacted by the applied cryptographic protec-
tion mechanisms.

• Security analysis. We provide a comprehensive security analysis of our
protocol and show how it mitigates the flaws of unprotected approaches,
thus giving full post-quantum security to biometric data under preselec-
tion.

The remainder of this article is structured as follows: Section B.2 discusses works
that are closely related to ours, before we analyse of the privacy leakage in a pre-
viously proposed privacy-preserving biometric indexing scheme in Section B.3.
In Section B.4, we introduce more technical cryptographic background informa-
tion. From this, we present our novel HEBI protocol in Section B.5 that alleviates
the presented privacy risks. Section B.6 gives experimental results and a security
analysis. Finally, we draw our conclusions in Section B.7.
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B.2 Related Work

Workload reduction in homomorphically encrypted biometric identification sys-
tems has recently been achieved with post-quantum security [31, 103]. How-
ever, both of these works were only based on feature transformation, such that
an exhaustive search requiring a linearly increasing costs remains. It is impor-
tant to note that our HEBI protocol can integrate such feature transformation
approaches seamlessly and therefore allows for further improvements in large-
scale biometric identification systems.

The cryptographic concept of homomorphic search has previously been applied
to biometric identification in [278]. In their work, the authors use the search
scheme as a replacement for FHE rather than an additional protection layer for
the preselection step. In order to realize homomorphic search on the feature
vectors directly, strong statistical assumptions about the feature representation
are required, which do not generalize over different modalities. Another recent
work [276] applied homomorphic search for biometric authentication instead of
identification. Most recently, [33] applied homomorphic search for preselection
on an encrypted reference database. However, our HEBI protocol differs non-
trivially from the proposal in [33] in several aspects. Firstly, the work by [33]
can only be considered as proof-of-concept, as a handcrafted preselection ap-
proach is utilized in their work, which underlies the unrealistic assumption of
perfect ground truth. In comparison, HEBI is designed for real-world indexing
approaches that allow for a meaningful analysis of the overall biometric perfor-
mance. Secondly, [33] apply a binning approach that does not trivially gener-
alize to other application scenarios apart from their own, while HEBI enables
efficient and secure cluster generation independent of the indexing algorithm.
Finally, our work offers an extensive analysis of the risk of preselection indepen-
dent of the concrete indexing approach and shows how to mitigate these risks
in a universal approach.

The application of unprotected biometric indexing to biometric identification [90,
137, 195, 200, 205, 229, 246, 261] will be discussed at length in the following
Section. These are the schemes our HEBI protocol improves upon through an
additional layer of protection during the preselection step. Notably, the choice
of protection mechanism for the reference database is independent of the HEBI
preselection protocol, though we adhere to FHE-based protection in our work.
In addition, HEBI does not impair the originally given biometric performance
of the above works.
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B.3 Privacy Analysis of Biometric Indexing

Biometric indexing as depicted in Figure B.1 has been applied in a number of
recent research works, among others [90, 137, 195, 200, 205, 229, 246, 261]. In this
Section, we give further intuition to the privacy implications of such approaches
through probability theory.

B.3.1 Formal Model

In this analysis, we investigate the relation between the enrolled reference fea-
ture vectors {rj}N−1

j=0 for a number of reference subjects N and the auxiliary in-

dexing data (AID) represented by index strings {ik}K
k=0, where K denotes the

number of clusters or index strings in the given scheme. We define that every
reference feature vector rj is assigned one and only one index string ik, while one
index string ik clusters several references (i.e., K < N). Upon an identification
transaction, a probe feature vector p is extracted from a presented probe sample,
and the corresponding index ik is determined. Then, only the reference features
vectors associated with ik are compared to p in the encrypted domain.

For the formalization of privacy leakage in such indexing schemes, we utilize
the information-theoretic concept of mutual information I(X; Y), which is defined
as

I(X; Y) = DKL(P(X,Y)||PX ⊗ PY), (B.1)

where X and Y are random variables and DKL denotes the Kullback–Leibler
divergence [76]. The mutual information can further be expressed in terms of
entropy [236]:

I(X; Y) = H(X)− H(X|Y), (B.2)

where H(X) is the marginal entropy of X and H(X|Y) is the conditional entropy
of X given Y. Let {X}j be the variable family that represents the reference fea-
ture vectors and {Y}k be the variable family that represents the index strings. In
a meaningful indexing scheme, it holds that

I(Xk, Yik ) > I(Xk, Yim), (B.3)

i.e., the mutual information between the reference feature vector rj associated
with index string ik should be greater than the mutual information between the
same reference feature vector rj and a different cluster associated with an index
string im. Otherwise, rj would be associated with im instead. From Equation B.3,
it follows that H(Xk|Yim) > H(Xk|Yim). As H(Xk|Yim) cannot be smaller than 0,
it follows that H(Xk|Yik ) > 0. At the same time, the similarity of index strings
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does not correspond to the full feature vectors, which would yield no advantage
over an exhaustive identification search. Therefore,

H(Xk) > H(Xk|Yik ) > 0, (B.4)

and consequently,

I(Xk; Yik ) = H(Xk)− H(Xk|Yik ) > 0, (B.5)

meaning that there is mutual information contained between the feature vectors
and index strings. This mutual information defines the leakage of biometric in-
formation, which allows for attacks on the probe and reference subjects that can
violate their privacy. Indeed, it has been shown that auxiliary data in biometric
systems can lead to privacy risks in other applications, e.g., biometric cryptosys-
tems [231]. However, we emphasize that our formal model is not intended to be
used as a concrete metric, as mutual information is hard to calculate precisely.
Instead, it serves as a logical argument for the existence of privacy leakage in
AID.

More empirically, index strings are commonly constructed such that they allow
for a clustering of the reference feature vectors based on a more general mea-
sure of similarity than the exact comparison between feature vectors. In some
approaches [90, 200, 229], the index strings are even derived from the feature
vectors directly, representing a down-sampled representation of one or more
feature vectors. In the following, we show how to concretely extract privacy-
sensitive information from such representations.

B.3.2 Case Study

To illustrate the risks of soft-biometric leakage in biometric indexing in a case
study, we analyze the recent work of [200], which is one of the works relying on
unprotected index strings discussed above.

In their work, the authors generate a look-up table of short binary strings, or sta-
ble hashes, which represent distinct clusters of reference templates. They present
different methods of obtaining these stable hashes, all of which are based on the
feature representations of the enrolled references. In our evaluation, we focus
in the first of their proposed approaches, which is the established k-means clus-
tering technique [184]. During the enrolment phase, the clustering algorithm is
trained on the enrolment database, which is subsequently encrypted using FHE.
The protected templates are stored in the database alongside the look-up table
of stable hashes, which in the case of k-means clustering are a binary represen-
tation of the cluster centers, or centroids. Upon an identification transaction,
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the distance of the probe feature vector to all centroids is calculated, and the
closest centroid is determined to be the probe stable hash. Then, the reference
subjects with the same stable hash are extracted from the enrolment database,
a homomorphic comparison of the encrypted probe feature vector against the
encrypted references is computed, and the decision is revealed to the client that
initiated the transaction [200].

The advantage of this indexing approach is the error-correcting capability of the
clustering approach, which allows for an exact comparison of the stable hashes
and is therefore very efficient. The retrieval cost of the look-up operation is
constant at O(1) and can be considered negligible compared to the cost of the
homomorphic operations. Furthermore, the low preselection error even on chal-
lenging datasets makes the approach in [200] attractive.

However, the vulnerability of the approach with regard to the reference sub-
jects’ privacy lies in the stable hash look-up table, which is stored alongside
the enrolment database. As argued above, it can be expected that the stable
hashes encode information about the probe and reference subjects to some de-
gree, which could be privacy-sensitive information. For example, soft-biometric
similarities to the subjects in one cluster could be revealed, which would consti-
tute a violation of ISO/IEC 24745 [149]. Disclosure of soft-biometric data related
to the ethnic origin is a breach of the European Union’s General Data Protection
Regulation [109].

To confirm our hypothesis, we conducted an experimental evaluation of the
privacy leakage in the system presented in [200]. For this evaluation, we se-
lected 3,165 samples of 533 subjects from the Face Recognition Grand Chal-
lenge (FRGC) database [206] that are compliant with the International Civil
Aviation Organization’s face image quality requirements for machine-readable
travel documents. The code for the stable hash generation from k-means clus-
tering [184] has been provided by the authors to facilitate the reproducibility of
their results. In terms of parameters, we followed the original work with P = 1
subspaces and K = 64.

Figures B.2 and B.3 show the distribution of ethnicity and gender of the 64 clus-
ters. For this analysis, ground truth labels for the image samples were hand-
annotated, such that a high accuracy in the labelling can be assumed compared
to soft-biometric feature extractors [95]. From the visualization of the distribu-
tions, it becomes evident that there exists pooling of soft-biometric characteris-
tics within both dimensions of ethnicity and gender. This can be for example
observed in clusters clusters 36, 38 and 39, which exclusively contain female
subjects, while clusters 3, 9 and 11 only contain male subjects. Similarly, clus-
ters 10 and 11 exclusively contain Asian subjects, while clusters 21, 22, 23, 42,
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Figure B.2: Distribution of ethnicities over the clusters derived from an ICAO-
compliant subset of the FRGC database [206].

46 and 63 only contain Caucasian subjects. While these characteristics are not
perfectly separated over all clusters, it is particularly concerning that the clus-
tering effectively exposes underrepresented subgroups. A prominent example
is cluster 10, which contains only female Asian subjects. An attacker observing
the stable hash corresponding to cluster 10 can therefore with high probability
deduct the gender and ethnicity of the probe subject and the reference subjects
stored alongside that stable hash.

To extend our analysis, we further evaluated a synthetic face image generation
from the centroids to approximate the average features of the subjects in the
clusters and their similarity to the synthetic approximation for the respective
cluster. We leveraged the StyleGAN3 generator [163] pre-trained on the FFHQ
database [164] that includes more than 70, 000 face images with diverse ethnic-
ities, gender labels, and other facial characteristics. To reconstruct latent repre-
sentations and subsequently derived representative face images from each sta-
ble hash (s), we trained a fully connected neural network (M) that maps each
stable hash into the semantic manifold of the StyleGAN3 intermediate latent
space. We froze the generator (G) weights during training to preserve its capa-
bility to generate photo-realistic face images. Further, we applied a simple mean
squared error loss function to minimize the difference between the reconstructed
face images x̂ = G(M(s)) to the randomly drawn face images x of their corre-
sponding cluster.
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Figure B.3: Distribution of genders over the clusters derived from an ICAO-
compliant subset of the FRGC database [206].

For this experiment, the FRGCv2 training subset has been reduced such that
each stable hash is assigned with only one face image per identity. This setting
prevents the mapping network from oscillating due to the high intra-subject
variance. For the optimization ofM, the StyleGAN3 truncation factor was set
to 0.75, enabling the generation of face images with stable quality. We adopted
the Adam optimizer settings from [164] and increased the learning rate to 0.01
to accelerate the training process. The results of this evaluation are shown in
Figure B.4.

In Figure B.4, the reconstructed latent representations corresponding to cluster
10 are depicted alongside a selection of bona fide sample images from that clus-
ter, which contains only female Asian subjects. The reconstructed images are
based on incrementally scarce training data to show that our GAN-based ap-
proach generalizes even in an open-set scenario. The closest approximation has
been trained on cluster 10 alone, and cannot be considered a realistic attack. Both
the closed-set and the open-set training scenario excluding cluster 10 continue
however to show significant similarities to the original identities. Most impor-
tantly, the soft-biometric characteristics of gender and ethnicity are preserved.
A breach of the latter in particular constitutes a GDPR [109] violation and must
be prevented.

To conclude this analysis, significant privacy leakage has been found in the in-
dexing approach by [200]. However, the overall indexing scheme is of high rele-
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(a) Bona fide samples of subjects from cluster 10.

(b) Left to right: Reconstructions based on untrained, trained on cluster
10 only, trained on all clusters, trained on 70% of all clusters (excluding
cluster 10) StyleGAN approximations.

Figure B.4: Comparison of bona fide FRGCv2 samples of cluster 10 and Stlye-
GAN presentation attack approximations of cluster 10.

vance to the problem of workload reduction for large-scale biometric identifica-
tion, as it benefits from a high biometric performance and is therefore desirable
to apply.

Looking towards the cryptographic protection of indexing approaches such as
[90, 200, 229], the component of the index string that allows for the privacy leak-
age is their deterministic nature, i.e., in the case of [200], similar feature vectors
will always be mapped to the same stable hash. In the remainder of this paper,
we are therefore proposing a transformation of this deterministic preselection
approach to a non-deterministic preselection, where similar feature vectors are
mapped to randomized outputs that look indistinguishable to an attacker. At
the same time, they allow for the correct retrieval of the corresponding refer-
ence subjects, such that the biometric performance of the indexing approach is
not impacted.

B.4 Preliminaries

B.4.1 Fully Homomorphic Encryption

Homomorphic encryption describes a cryptographic technique that allows for
the evaluation of functions on encrypted data. More precisely, we call a public-
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key encryption scheme homomorphic if

Enc(pkH , x⊙ y) = Enc(pkH , x)⊙ Enc(pkH , y). (B.6)

More recently, Fully Homomorphic Encryption (FHE) has become practical for
application in certain use cases. Following the groundbreaking work by Gen-
try [121], different schemes have established themselves with respect to their dif-
ferent properties. One of these is the CKKS [65] scheme, which provides the use-
ful advantage of computing on high-precision approximations of floating point
numbers directly, where other schemes require integer quantisation [52, 112] or
binarisation [69]. In terms of the encrypted comparison of biometric feature
vectors, this means that the underlying data does not need to be altered, and no
information from the biometric comparison is lost. Therefore, the computations
on encrypted templates correspond directly to computations on the unprotected
templates, and the biometric performance remains unimpaired.

The security of many FHE schemes, including CKKS, is based on the Ring-
Learning with Errors (R-LWE) problem, which is assumed to be secure against
attacks implemented on a quantum computer [183]. These cryptosystems there-
fore provide a high level of protection to the biometric data, and in particu-
lar, long-term protection over several decades according to the current basis of
knowledge and expectations in the field of cryptography [11].

B.4.2 Public-Key Encryption with Keyword Search

In addition to the protection of the feature vectors, the privacy analysis in Sec-
tion B.3 has shown that the indexing and retrieval during the preselection pro-
cess requires additional protection. A recent work on face identification [33]
has proposed the use of Public-Key Encryption with Keyword Search (PEKS) for
the protection of semantic soft-biometric keywords. In this work, we apply this
technique to generic biometric indexing approaches.

The cryptographic basis of PEKS lies in Identity-Based Encryption (IBE), which
was first introduced by Boneh and Franklin in 2001 [46]. Building on this idea,
PEKS was proposed as a means of creating ciphertexts for specific semantic
keywords instead of identities [45]. In the typical application scenario, a PEKS
scheme is used to create an encryption of a keyword together with a correspond-
ing trapdoor. This pair of cryptographic objects can be subjected to a publicly
available test function which reveals no information except for the binary deci-
sion outcome of the similarity of the underlying keyword of the ciphertext and
trapdoor.
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A PEKS scheme [39] is defined as a tuple of four algorithms PEKS = (KeyGen,
PEKS, Trapdoor, Test):

- (pkS, skS) ← KeyGen(1k): On the input of the security parameter k, this
algorithm outputs the public and secret key pair (pkS, skS).

- sw ← PEKS(pkS, w): On the input of the public key pkS and a keyword
w ∈ {0, 1}∗, this algorithm outputs a searchable ciphertext sw.

- tw ← Trapdoor(skS, w): On the input of a secret key skS and a keyword
w ∈ {0, 1}∗, this algorithm outputs a trapdoor tw.

- b ← Test(tw, sw): On the input of a trapdoor tw = Trapdoor(skS, w′) and a
searchable ciphertext sw =PEKS(pkS, w), this algorithm outputs a bit b = 1
if w = w′, and b = 0 otherwise.

More recently, PEKS has been implemented based on lattice-based IBE [97] to
create lattice-based PEKS [39]. Compared to the original construction, lattice-
based PEKS has high computational efficiency and provides post-quantum se-
curity through R-LWE [183]. As an important property to the application in this
work, PEKS ciphertexts are constructed using a random component, yielding
non-deterministic encryption. In the following Section, we will detail how this
property ensures privacy protection when applied to biometric indexing.

B.5 The HEBI Protocol

In this Section, we present our novel HEBI protocol for biometric indexing in
the encrypted domain. The protocol can be applied to any existing biometric
indexing approach that clusters enrolment biometric references to prevent the
leakage of sensitive information about the data subjects.

B.5.1 Setting

The HEBI protocol is executed between three parties: A client device, a Database
Server (DS) and a Trusted Third Party service (TTP). All three parties are consid-
ered in the semi-honest security model, where they may aim to gain information
about the data they are exchanging, but are not assumed to deviate from the
given protocol. This is an established security assumption in remote biometric
authentication [126, 170, 270].

B.5.2 Enrolment

During the enrolment phase, two separate setup operations are performed: ini-
tialisation of the encrypted indexing algorithm and the homomorphic encryp-
tion of the enrolment database.
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Look-up table at DS

0
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t0 ← Trapdoor(skS, w0)

t1 ← Trapdoor(skS, w1)

...

tK−1 ← Trapdoor(skS, wK−1)

Look-up table at TTP

Figure B.6: HEBI look-up tables generated at enrolment.

The indexing algorithm is assumed to require some precomputation on an un-
encrypted enrolment database [200]. In our protocol, we allow for this precom-
putation to be conducted during an offline phase prior to the deployment of
the system, where the unprotected templates are not exposed to potential at-
tacks. As a result of the indexing algorithm, each biometric reference r will be
assigned an index, or cluster, i which can be of arbitrary data representation.
If the clustering algorithm does not produce balanced clusters, i.e., the number
of subjects per cluster is not consistent, the clusters are padded with random
feature vectors to be of equal size.

Once the clusters have been established, the PEKS framework can be initialised.
First, TTP generates a number of random PEKS keywords {wi | 0 ≤ i ≤ K− 1},
where K is the total number of clusters, and fixes a mapping M between the
clusters and PEKS keywords , which is made publicly available. Note that the
mapping M of clusters to PEKS keywords must be indicated by the clusters’
(arbitrarily assigned) order instead of the semantic index string i that could po-
tentially reveal privacy-sensitive information. By making the mapping publicly
available, the PEKS keywords do not act as additional secret keys in the sys-
tem.

From the PEKS keywords, two look-up tables are generated. At TTP, a trap-
door tp ← Trapdoor(skS, wi) is computed and stored for every cluster using the
PEKS secret key skS. At DS, a mapping of encrypted references to clusters is
stored, again based on any order of the clusters without using the index i as the
identifier. An overview of the look-up tables is given in Figure B.6.

For the setup of the encrypted enrolment database, TTP generates and stores
a key pair of the homomorphic encryption scheme (skH , pkH) and makes pkH
available to the client and DS. For a reference feature vector r, the client can
enrol a data subject by computing cr ← Enc(pkH , r) and sending cr encrypted
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biometric reference to DS. Since the assignment of subjects to clusters is initially
fixed, coefficient packing can be applied to facilitate further workload reduc-
tion [31].

B.5.3 Identification

During an identification transaction in HEBI, the client captures a probe sam-
ple and obtains its feature representation p. The client determines the index ip
of the probe with respect to the applied indexing algorithm and uses the pub-
lic mapping M to determine the corresponding PEKS keyword wp. Using the
public key pkH of the HE scheme, the client encrypts the probe feature vec-
tor by computing cp ← Enc(pkH , p). It further computes the encrypted probe
index sp ← PEKS(pkS, wp), and sends cp and sp to DS, which forwards sp to
TTP.

Upon receiving sP, TTP determines the corresponding trapdoor ti for which
Test(ti, sp) = 1 holds true. Using the look-up table mapping trapdoors to clus-
ters (see Figure B.6), TTP sends the cluster identifier to DS, where the homo-
morphic comparisons are computed between the encrypted probe cp and the

encrypted references {cl
r}

j
l=0 in the cluster corresponding to ti. The encrypted

comparison scores are sent to TTP, which decrypts them and determines the
identification outcome, which is forwarded to the client. Note that throughout
this transaction, DS and TTP do not have access to unprotected feature vectors
or the index strings i that could reveal sensitive information. An overview of an
identification transaction is given in Figure B.5.

Our HEBI protocol can be seen as an independent layer of protection to arbitrary
indexing schemes. Furthermore, it can also be combined with interchangeable
template protection approaches for the feature vectors themselves, e.g., differ-
ent FHE schemes or irreversible feature transformations. It is therefore versatile
in its application and can be considered for applications beyond face recogni-
tion.

B.6 Experimental Evaluation

To show the practicality of our HEBI protocol, we give an experimental evalua-
tion for the application to stable hashes [200]. By applying the additional layer
of security, the privacy concerns outlined in Section B.3 will be mitigated.

The experiments were conducted on the same subset of 533 subjects of the
FRGCv2 [206] database with 3,165 ICAO-compliant samples. In addition, 529
subjects with 1413 samples from the FERET [207] database of ICAO-compliant
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quality were used for the evaluation. From the samples, features are extracted
with the open-source feature extraction model ArcFace [86] which produces face
templates of 512-dimensional floating point vectors with documented good per-
formance on the used dataset [31]. For the stable hash generation using k-means
clustering, the parameters P = 1 subspace and K = 64 clusters are chosen in ac-
cordance with the size of the database. The experiments where implemented in
Python and C++ on macOS Monterey 12.4 with an M2 processor at 3.50 GHz
CPU clock frequency.

For the homomorphic operations, the CKKS [65] FHE scheme was applied, as
it does not impair the biometric performance. The implementation of the state-
of-the-art FHE library OpenFHE [22] was applied, where CKKS parameters cor-
responding to 128 bits of security were chosen [11]. For further workload re-
duction, coefficient packing for a quadratic speed-up as previously proposed
by [31] was applied, showing the compatibility of HEBI with such approaches.
The squared Euclidean distance was applied as the comparison metric. For the
lattice-based PEKS scheme, the implementation by [39] was used.

B.6.1 Results

The results of the experimental evaluation are presented in Tables B.1 and B.2.
In terms of execution times (Table B.1), it can be seen that the majority of the
workload is absorbed by the FHE comparisons on the encrypted feature vec-
tors, an observation which is consistent with related work [93, 95, 103]. It is im-
portant to note that this workload can differ for different FHE schemes and has
generally been found to be lower for integer-quantised and binary encryption,
which introduces a trade-off with the biometric performance [171]. The baseline
and preselection accuracy can be seen in Table B.2, were a closed-set identifi-
cation scenario was evaluated. Aside from this concrete instantiation however,
we stress that HEBI is independent of the concrete preselection procedure and
inherits and maintains the accuracy of the underlying indexing algorithm in
question.

The main focus of this evaluation is the overhead of a secure indexing using
HEBI over unprotected preselection. From Table B.1, it can be derived that the
protected preselection using PEKS takes 7.69 milliseconds for 64 clusters or 0.12
milliseconds per cluster. As the cost for the preselection scales linearly with the
number of clusters rather than the size of the enrolment database, this cost is
expected to grow significantly slower than the cost for an exhaustive identifi-
cation search. For larger databases, the original work on stable hashing [200]
proposes a number of K = 1024 clusters, the cost of which can be approximated
at 123.04 milliseconds, which can be considered real-time. Depending on the in-
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System function Time (ms)

Probe stable hash generation 0.28
Probe encryption 2.27
PEKS search 7.69
FHE comparisons 9,996.00

Total 10,006.24

Baseline (exh. search) 334,891.00

Table B.1: HEBI execution times for 533 subjects and 64 clusters.

Database Enroll Search False True Preselection Baseline
Samples Samples Negative Positive Accuracy Accuracy

FERET [207] 529 884 19 865 0.9785 1.0000

FRGCv2 [206] 533 2,632 207 2,425 0.9214 0.9971

Table B.2: Accuracy of the stable hash clustering [200] for the FERET [207] and
FRGCv2 [206] databases and K = 64 clusters.

dexing algorithm used, there exists a trade-off between the number of clusters,
the preselection error, and the number of biometric references per cluster. Over-
all, it becomes evident however that the lattice-based PEKS scheme adds only a
negligible overhead to the identification system at less than 8% of the total cost,
while providing post-quantum protection under preselection. Compared to the
baseline system, the workload is reduced down to 3%. The communication cost
for HEBI consists of 2.66MB for a CKKS public key, 267.4KB for a CKKS cipher-
texts, 27.2KB for a PEKS public key, 52KB for a PEKS ciphertext, and 27KB for a
PEKS trapdoor.

B.6.2 Security Analysis

The security of both the FHE and the PEKS scheme are based on the R-LWE [183]
problem, which is assumed to be post-quantum secure. The HEBI protocol
maintains the post-quantum security through all steps of the identification trans-
action, including preselection. Contrary to unprotected indexing approaches
such as [90, 200, 229], the PEKS ciphertexts are generated in a non-deterministic
manner, which makes them indistinguishable over the given clusters. A privacy
attack as discussed in Section B.3 is thereby prevented.

With regards to the requirements formulated in ISO/IEC 24745 [149], irreversibil-
ity is given through the security assumption of R-LWE [183]. Unlinkability and
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renewability can be derived directly from the IND-CPA security of both the
CKKS [65] and PEKS [39] schemes, i.e., the indistinguishability under chosen
plaintext attacks. Through this property, an attacker cannot distinguish between
an encryption of 0 and and encryption of 1. In biometric identification, this
extends to the indistinguishability of encrypted templates: even if an attacker
gains access to two encryptions of the same template, they cannot be distin-
guished from arbitrary inputs in a feasible manner. The same property holds for
the encryption of index strings through the PEKS scheme. Therefore, it is not
possible for an attacker to link data subjects to other subjects enrolled under the
HEBI protocol or another system.

Finally, the performance preservation of HEBI is given through the application
of CKKS [65] and PEKS [39], as neither scheme impairs the biometric perfor-
mance. The operations in the encrypted domain correspond directly to the op-
erations in an unprotected biometric system. In terms of computational perfor-
mance of HEBI, our experimental evaluation has shown that the overhead of
the PEKS scheme is small, while a trade-off between the preselection error and
homomorphic workload persists. Further limitations of HEBI include the as-
sumption of the semi-honest adversary model. Although this is an established
assumption in biometric template protection, it does not fully reflect the capa-
bilities of real-world adversaries. In addition, we have only evaluated the effi-
ciency of HEBI for fixed-length feature representations, which can be considered
a limitation.

B.7 Conclusion

This work firstly revealed that indexing schemes can leak privacy-sensitive bio-
metric information. Motivated by this, we introduced the HEBI protocol for
biometric indexing in the encrypted domain. Index strings in biometric iden-
tification systems allow for the reconstruction of privacy-sensitive information
about the data subjects, which stands in violation to ISO/IEC 24745 as well as
the GDPR. As a solution to this problem, HEBI gives post-quantum secure pro-
tection to the feature vectors alongside their auxiliary indexing data in storage,
preselection, and comparison. HEBI is independent of the indexing algorithm
and protection of the enrolment database and adds only negligible computa-
tional overhead per indexing cluster.
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Abstract

Reliable authentication of individuals is the foundation of trusted digital inter-
action. Biometrics lend themselves ideally to this goal. However, biometric data
must be protected under computation according to European laws and interna-
tional standards. Over the past ten years, fully homomorphic encryption has be-
come a popular tool for biometric template protection. However, it comes with
the security risk of cryptographic key material, which requires careful manage-
ment and could be leaked, leaving the stored templates vulnerable to attacks. To
meet this challenge, we present the novel MT-PRO protocol utilising homomor-
phic transciphering to improve the security of such systems against offline de-
cryption attacks. Our protocol does not impair the biometric performance and
allows for multibiometric comparisons of fixed-length feature representations.
Furthermore, we evaluated our protocol on public datasets with open-source
implementation available at https://github.com/dasec/MT-PRO and discuss
its real-world application potential.

C.1 Introduction

Trustworthy digital communication requires reliable authentication mechanisms,
i.e., the ability to tie a human user to their digital identity. The need for reliable
authentication is present in many applications, ranging from online banking and
legal transactions to telemedicine. Biometric characteristics are uniquely suited
to provide such authentication mechanisms, as they allow for a persistent iden-
tification of individuals [166].

However, there exist a number of concerns regarding biometric authentication,
which can be classified into two main categories: concerns about the reliability
(or security) of biometric authentication, and concerns about the protection of
biometric feature vectors stored and used in the system (i.e., privacy). For the
privacy protection of biometric reference templates, the ISO/IEC 24745 stan-
dard on biometric information protection [149] defines clear requirements: i)
unlinkability, two protected templates stored in different applications cannot be
linked to the same subject, ii) renewability, new templates can be created from
the same source if the previously stored reference was leaked without the need
to re-enrol a subject, and iii) irreversibility, it is impossible to reconstruct original
samples given only protected templates. Furthermore, both the computational
and biometric performance (i.e., accuracy) of the unprotected system should be
preserved.

Recent solutions to biometric template protection apply Fully Homomorphic
Encryption (FHE) for encrypted storage and comparison of biometric feature vec-

https://github.com/dasec/MT-PRO
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Figure C.1: Security risk in FHE-based biometric template protection: if the non-
collusion assumption is violated, the encrypted reference database can be de-
crypted by an attacker, leaving the enrolled templates vulnerable to attacks.

tors [31, 103, 126, 270]. The established architecture for these works includes a
two-server setup, where a trusted key server manages the cryptographic key
material, while a computation server has access to the encrypted reference data-
base (Fig. C.1). This scenario is typically considered in a semi-honest adversary
model (aside from [28]), where the two servers must not collaborate. If they do,
or an attacker gains access to the cryptographic key material in another way, the
database could be decrypted and the enrolled subjects would be vulnerable to
impersonation attacks.

This non-collusion assumption can be considered the weakest point in FHE-
based template protection systems, as it does not reflect real-world adversary
capabilities. This has lead to a decreased trust in outsourced biometric authenti-
cation compared to on-device biometric authentication, e.g., FaceID [15]. Secu-
rity against attackers who have obtained secret components of a biometric sys-
tem has previously only been achieved using cancelable biometrics [201], which
can decrease the accuracy of the system. The accuracy of biometric comparisons
however determines the reliability of biometric authentication, and thereby, its
security. As biometric feature representations are noisy due to intra-class vari-
ance, they introduce the risk of false-accepts, which can lower the security of the
biometric system. In response, multibiometric systems have received increased
interest in recent years [94, 126, 219, 243]. Through the combination of multi-
ple biometric modalities (e.g., iris and fingerprint), the false-accept rate can be
lowered significantly [219], increasing the overall security level.

A secure and reliable biometric authentication system would therefore address
both of the aforementioned research challenges: security and privacy. In this
work, we present such a system with our novel MT-PRO protocol that utilises
the cryptographic concept of Homomorphic Transciphering (HT) [71]. Using HT,
the protected database receives an additional layer of encryption, such that the
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leakage of the FHE secret does not enable a viable attack on the database. We
describe our contribution as follows.

• We present the novel MT-PRO protocol for secure and privacy-preserving
multibiometric verification with HT. To the best of our knowledge, this is
the first application of HT to biometric template protection.

• Our MT-PRO protocol is secure against an attacker who has obtained both
the protected multibiometric database and the corresponding FHE secret
key. Compared to related work considering this attack model, our proto-
col does not impair the biometric performance of the system. We give a
vulnerability analysis of established FHE-based BTP approaches with re-
gard to these offline attacks and compare our work to the state-of-the-art in
the field.

• We present a reproducible experimental evaluation of MT-PRO and give
a comprehensive security analysis, showing how the shortcomings of cur-
rent FHE-based BTP approaches have been addressed.

The remainder of this article is structured as follows: Section C.2 discusses re-
lated work and gives context to our contribution, before we define the cryp-
tographic backbones of our work in Section C.3. As our main contribution,
Section C.4 presents our proposed MT-PRO protocol for HT-based multibio-
metric template protection secure against offline attacks, including a vulnera-
bility analysis of previous work. The experimental evaluation of MT-PRO is
presented in Section C.5 with a security analysis, before we offer conclusions in
Section C.6.

C.2 Related Work

The concept of HT has previously received interest from various research fields,
including cloud computing [57] and privacy-preserving genomic comparisons
[242]. However, these previous works have only used FHE schemes based on in-
teger plaintexts, which in the context of real-valued biometric feature represen-
tations lead to accuracy loss through quantization. In comparison, our MT-PRO
protocol utilises an encryption scheme that operates directly on floating point
data [65], such that no accuracy is lost in the encrypted domain.

More recently, the problem of FHE-based template protection schemes secure
against offline decryption attacks has been investigated in biometric research,
with [201] proposing a combination of Cancelable Biometrics (CB) and FHE to mit-
igate the leakage of secret key material. However, the application of CB yields
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Reference BTP Preserve Prevent Post-quantum
approach accuracy offline attacks security

Canteaut et al. 2017 [57] FHE + HT∗ ✗ ✓ ✓

Singh et al. 2018 [242] FHE + HT∗ ✗ ✓ ✓

Boddeti 2018 [44] FHE (✓) ✗ ✓

Otroshi et al. 2022 [201] CB + FHE ✗ ✓ ✓

Sperling et al. 2022 [243] FHE ✓ ✗ ✓

Ours FHE + HT ✓ ✓ ✓
∗not applied to biometric data

Table C.1: Qualitative comparison of related work.

an accuracy loss [216] in addition to requiring quantisation to accommodate for
integer-based FHE.

Regarding the aspect of an additional layer of encryption in MT-PRO, a notable
recent work is [219], who utilise the concept of password-hardening for fuzzy
vaults. While [219] also add a password-derived symmetric key to their scheme,
the symmetric decryption is performed on the client side. Thereby, the client
gains access to the original protected database entry, i.e., the locked fuzzy vault,
and can potentially perform offline attacks. In MT-PRO on the other hand, the
symmetric decryption is performed inside the FHE circuit on the server side,
such that the client does not learn the protected reference template, while the
server does not learn the symmetric key. Table C.1 gives an overview of related
works.

C.3 Background

C.3.1 Homomorphic Encryption (HE)

HE is a cryptographic technique that allows for computation on encrypted data
that translate directly to computation on the underlying plaintext. HE schemes
are classified by the arithmetic operations they allow for, where FHE allows for
the evaluation of arbitrary arithmetic circuits [121]. For the scope of our work,
we give a simplified definition of the following FHE functionalities [65]:

• (sk, pk) ← HomKeyGen(1λ): on input of the security parameter λ, gener-
ates a secret key sk and public key pk, where pk includes the homomorphic
evaluation keys.
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• cm ← HomEnc(pk, m): on input of the public key pk and a message m,
outputs a ciphertext cm.

• c f (m1,m2)
← HomEval(pk, cm1 , cm2): on input of the public key pk and two

ciphertexts cm1 and cm2 , outputs an encryption c f (m1,m2)
of the evaluation

of a function f on the underlying plaintext messages m1 and m2.

• m′ ← HomDec(sk, cm): on input of the secret key sk and ciphertext cm, out-
puts a message m′. It holds that m = m′ with overwhelming probability.

C.3.2 Homomorphic Transciphering (HT)

HT [71] combines FHE and symmetric encryption. We first define a symmetric
cipher with the following functions:

• k ← SymKeyGen(1λ): on input of the security parameter λ, this function
generates a key k .

• cm ← SymEnc(k, m): on input of the key k and a message m, this function
outputs a ciphertext cm.

• m ← SymDec(k, cm): on input of key k and ciphertext cm, this function
outputs the message m.

Let (sk, pk) be a FHE key pair as defined above. Then, HT allows for the trans-
formation of a symmetric encryption SymEnc(k, m) of a message m to a homo-
morphic encryption of the same message m, i.e., HomEnc(pk, m), using a homo-
morphic encryption of the symmetric key, i.e., HomEnc(pk, k). An illustration of
the HT functionality can be seen in Fig. C.2.

The transciphering functionality performs a homomorphic evaluation of the de-
cryption circuit of the symmetric cipher. Thereby, the party computing the tran-
sciphering does not gain access to the symmetric key k or the message m. Typi-
cally, a client device will compute the symmetric encryption of m which requires
less computational workload and bandwidth, while a server will compute the
transciphering operation and retrieve the homomorphic encryption of m. It is
important to note that not all symmetric ciphers are considered FHE-friendly,
i.e., only symmetric ciphers specifically developed for an application to transci-
phering can be used [71].

C.4 Protocol

We will now describe our MT-PRO protocol in detail. We begin with a descrip-
tion of the unprotected and protected baseline system using FHE, including a
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Figure C.2: FHE encryption using Homomorphic Transciphering (HT) [71].

vulnerability analysis under offline attacks. Then, we will describe the integra-
tion of HT and discuss its benefits and drawbacks.

C.4.1 Pre-processing

Biometric characteristics can be captured by various sensors depending on the
biometric modality. In our protocol, we consider combinations of multiple bio-
metric modalities, known as multibiometrics. We consider only feature vectors
that can be expressed as fixed-length, ordered vectors. However, our protocol is
unconstrained in terms of the length of single vectors, number of vectors, and
data type (i.e., binary, integer, or floating point values). In particular, a combina-
tion of different feature representations and comparison functions can be used in
MT-PRO. After capturing and feature extraction, we consider the reference tem-
plate or probe feature vector as a concatenation of individually extracted vec-
tors. The cryptographic solution for deriving the combined comparison score
will be explained in further detail later in this Section.

C.4.2 Two-Server Architecture

Our MT-PRO protocol builds on the established architecture [31, 103, 126, 270]
consisting of a computation server and key server as described above. A client
capturing and extracting the reference and probe feature vectors interacts with
the computation server in order to initiate an enrolment or verification trans-
action. In prior works, both servers are considered to act as semi-honest ad-
versaries, i.e., such that they do not deviate from the given protocol, and do
not collude in sharing any data they receive or store. We will continue our de-
scription of the baseline system under this model before considering the risk of
offline attacks and its impact on this security assumption.
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Figure C.3: FHE-protected verification baseline system as used in [31, 103, 126,
270].

C.4.3 Unprotected Baseline System

The unprotected baseline system performs enrolment and verification transac-
tions on plaintext data. During enrolment, the unencrypted reference template
is stored in the database. Then, for a verification transaction, a fresh probe fea-
ture set is sent to the computation server, who computes the comparison score
and determines the verification outcome.

C.4.4 Protected Baseline System

The protected baseline system shown in Fig. C.3 performs the same transactions
as the unprotected system, however, while operating on encrypted instead of
plaintext data. During enrolment, the client encrypts the reference template to
a ciphertext HomEnc(pk, r), which is stored in the database. During verification,
the client encrypts the probe feature vector to HomEnc(pk, p), which is sent to the
computation server. Through the properties of FHE, the distance score can be
computed based on the encrypted reference and probe templates, yielding an
encrypted comparison score d = HomEnc(pk, dist(p, r)). The key server, using
the FHE secret key sk, can decrypt the score to HomDec(sk, d) and determine the
verification outcome after threshold comparison.

C.4.5 Vulnerability Analysis

Considering real-world adversaries, the FHE-protected baseline system described
in Section C.4.4 established over the past ten years [31, 103, 126, 270] can be vul-
nerable to the following attack. Having gained access to the protected reference
database consisting of ciphertexts HomEnc(pk, r), and the FHE secret key sk, an
attacker can easily decrypt and obtain the reference templates, from which sam-
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Figure C.4: Proposed MT-PRO protocol based on HT [71] and FHE [65] ensur-
ing protection of the encrypted database under offline decryption attacks. If an
attacker gains access to the database and the FHE secret key, it cannot decrypt
the encrypted references due to the additional layer of symmetric encryption.
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ples can be reconstructed with high confidence [59, 119]. If a template is com-
promised, its biometric instance (e.g., a finger or eye) can no longer be used
for trustworthy authentication due to the risk of impersonations attacks, which
could be viable for several decades [166]. We call this attack scenario an offline
decryption attack or offline attack, as the attack can be executed without active ac-
cess to the system and thereby in an unobtrusive manner.

It is important to note that the addition of zero-knowledge proofs in previous
works such as [28] does not withstand such offline attacks, and can therefore
not be considered a complete solution to the security challenge. While zero-
knowledge proofs guarantee that the computations have been calculated cor-
rectly, and can therefore aid in the detection of an attacker deviating from the
protocol, they do not protect the encrypted database from decryption once an
attacker has gained access to the FHE secret key. We will therefore now present
our MT-PRO protocol secure against offline attacks.

C.4.6 Enrolment in MT-PRO

In the MT-PRO enrolment phase (Fig. C.4), the client computes a symmetric en-
cryption of the reference template cr = SymEnc(k, r) instead of a homomorphic
encryption as in the baseline system, using the symmetric key k. Then, the client
sends cr to the computation server, who computes an additional layer of encryp-
tion around the symmetric ciphertext through encrypting it homomorphically to
HomEnc(pk, cr). This ciphertext is then stored in the reference database.

C.4.7 Verification in MT-PRO

During MT-PRO verification, also shown in Fig. C.4, the client repeats the sym-
metric encryption for the freshly extracted probe features and computes
SymEnc(k, p). In addition, it computes a homomorphic encryption of its sym-
metric secret key k, yielding HomEnc(pk, k). Then, both ciphertexts are sent
to the computation server, who executes the HT. Upon receiving SymEnc(k, p),
the computation server computes a homomorphic encryption HomEnc(pk, cp).
Then, HomEnc(pk, cp), HomEnc(pk, cr) and HomEnc(pk, k) are inputs to the HT
circuit as described in [71]. Using HomEnc(pk, k), the homomorphic evaluation
of the symmetric decryption function is computed. As outputs, the computa-
tion server obtains FHE ciphertexts HomEnc(pk, p) and HomEnc(pk, r), and the
comparison score is computed, which will be described in the following. The
key server decrypts the comparison score and determines the verification out-
come.
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C.4.8 Multibiometric Comparisons in MT-PRO

In the MT-PRO protocol, combinations of multiple biometric modalities can be
used. For this, we extend the concept of coefficient packing presented by [31],
where multiple templates are concatenated and encrypted into the same cipher-
text. Two challenges arise with regard to multibiometrics: different template
lengths and different comparison functions. Through sharing the template or-
der and length (but no information about the underlying data), the computation
server can execute the respective comparison functions for each subcomponent
of the multibiometric template. To ensure that no information is overwritten, the
masking technique from [91] is applied, where only the final comparison score at
the start position within the multibiometric plaintext vector is revealed. The in-
dividual scores are then combined though an average score level fusion.

C.4.9 Key Management in MT-PRO

Regarding the management of the additional symmetric secret key k within MT-
PRO, several options arise:

C.4.9.1 Device key

The symmetric key k can be embedded into the client device, as is typical in IoT
applications. This approach has the advantage that the data subject does not
need to manage any key material. As the key is static, the reference database can
be encrypted as described above, and the transciphering will be correct upon
verification. However, the risk of key leakage is larger as one key is used for
potentially many subjects, and all reference database entries corresponding to
the device key must be re-encrypted when the key is updated. Additionally, a
subject can only be verified from the same device that was used during enrol-
ment.

C.4.9.2 Static User Key

Alternatively, the secret key can be made user-specific. To ease key management
on the user side, a password-derived key can be used. As long as this key is
static, i.e., derived from the password in a deterministic manner, the protocol
can be executed as in the case of a device key. Upon a key update, only the
corresponding entry for one subject needs to be re-encrypted in the database.
Note that contrary to classical password authentication, no hashed password
is stored at the computation server, further improving the protection against
offline attacks.
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Figure C.5: DET curve showing the multibiometric system performance, where
FMR is the false-match rate and FNMR is the false non-match rate [152].

C.4.9.3 Ephemeral User Key

The symmetric key can also be derived from password-authenticated key ex-
change, corresponding to session keys that are different for each authentication
attempt. This approach yields a higher security level for the symmetric key as it
is no longer feasible to brute-force. As a significant drawback however, the ref-
erence database cannot be encrypted with a symmetric cipher, as the keys used
during enrolment and verification will be different. This is useful in classical
HT scenarios where large amounts of data are encrypted and HT is mainly used
for workload reduction on the client side, but not applicable to prevent offline
attacks.

C.5 Experimental Evaluation

We implemented our MT-PRO protocol using the framework by [71], which is
based on the Lattigo [194] FHE library. The cryptographic components are the
stream cipher HERA [71] and the CKKS [65] FHE scheme. All parameters are
chosen at a security level of 128bits. For reproducibility of our results, our im-
plementation is available at https://github.com/dasec/MT-PRO. Due to the

https://github.com/dasec/MT-PRO
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high RAM requirements of the HT framework, a Debian GNU 11 server with an
AMD EPYC processor at 32x2.8GHz CPU and 128GB RAM was used.

To illustrate the multibiometric verification, we used the newly available deep
fingerprint embeddings by [225] of the MCYT [199] database, and deep iris em-
beddings by [202] of the CASIA Iris Thousand database [70]. For both modal-
ities, 512-dimensional real vectors are extracted, where the fingerprint feature
vectors can be split into two 256-dimensional vectors representing the textural
and minutiae-derived information, respectively. Cosine distance is used as the
comparison function. We evaluated the individual performance (shown as Iris
and FingerprintFull in Fig. C.5), the performance using the first 256 dimensions of
the fingerprint features (FingerprintHalf in Fig. C.5), the combined performance
of both 512-dimensional feature sets (Multibiometric in Fig. C.5) as well as the
multibiometric performance where only the first 256 dimensions of the finger-
print features are used. For the latter, the individual modalities’ scores were
scaled according to their dimension (MultibiometricWeighted in Fig. C.5). By us-
ing different-length feature representations, we show the functionality of MT-
PRO described in Section C.4.8 compared to previous approaches considering
only feature representations of the same length [31]. MT-PRO can also be in-
stantiated with binary feature representations using the Hamming distance for
comparison.

C.5.1 Results

The biometric performance of our MT-PRO protocol can be observed in Fig. C.5,
where the weighted multibiometric system is the preferred approach. We note
however that our protocol is independent of the multibiometric combinations,
and that the individual system performance will depend on the modalities and
feature representations used. Due to the use of floating-point based FHE [65],
the biometric performance of the unprotected baseline system is maintained.

The computational performance can be viewed in Table C.2. It can be seen
that the transciphering operation, i.e., transferring the symmetrically encrypted
probe and reference to their homomorphically encrypted representation, is the
most expensive operation at 107.64 seconds, followed by the FHE operations
at 66.40 seconds. This shows that while the concept of HT is meaningful on a
theoretical basis, it is not yet applicable in real-world systems. Further improve-
ments on the cryptographic components are required to improve these trans-
actions times, as further dimensionality reduction of the biometric templates
would not yield a significant improvement. Due to larger parameter choices
required for HT, the baseline cost of FHE comparisons is also higher than in
previous works [31].
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MT-PRO Component Time (s)

Symmetric template encryption 0.42
Homomorphic template encryption 0.21
User key encryption 3.40
Template transciphering 107.64
FHE comparisons 66.40
Comparison score decryption 0.17

Enrolment 0.63

Verification 330.22

Protected Baseline Verification (without HT) 66.78

Table C.2: MT-PRO Execution times for verification and enrolment.

C.5.2 Security Analysis

MT-PRO fulfils the ISO/IEC 24745 [149] requirements of unlinkability and re-
newability due to security of the FHE scheme against chosen-plaintext attacks [65].
Post-quantum secure irreversibility is provided by the Ring-Learning With Er-
rors [183] hardness assumption of the FHE and HT schemes [71].

C.5.2.1 Security Against Offline Decryption Attacks

We reconsider the adversary from Section C.4.5 that has gained access to the en-
crypted database and the FHE secret key. In MT-PRO, the adversary only has
access to a database with entries HomEnc(pk, cr) = HomEnc(pk, SymEnc(k, r)).
Therefore, FHE decryption only yields SymEnc(k, r), which cannot be decrypt
without the key k. This security guarantee assumes that the database can be
attacked in storage, while the computation server is not corrupted during ver-
ification. If the adversary gains access to HomEnc(pk,k) during verification, the
database could be decrypted. However, an attack on the database is the more
realistic attack scenario from a forensic standpoint, as databases are static and
outsourced targets.

C.5.2.2 Security Under Full Disclosure Model

The ISO/IEC 30136 [148] standard on performance testing of biometric template
protection schemes defines the full disclosure attack model for biometric systems,
where an adversary has access to all algorithms and all secrets used in the sys-
tem. The standard adds that this security assumption can be restricted to the
adversary knowing a subset of the secret information handled throughout the
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system. Thereby, the security of MT-PRO against offline decryption attack can
be considered as a partial fulfilment of the full disclosure model, as MT-PRO
remains secure if the FHE secret key is leaked to an attacker. Notably, MT-PRO
achieves this security without accuracy loss of the biometric comparisons, which
is an advantage compared to previous work [201]. However, the symmetric key
k as well as its homomorphic encryption HomEnc(pk, k) must be kept secret. As
k can be freshly derived from a user-password for each authentication attempt
as described in Section C.4.9, it is not easily accessible to an attacker. Additional
protection of k could be achieved through the use of multi-party computation,
however, at the cost of an additional computational overhead.

C.6 Conclusion

In this work, we presented the MT-PRO protocol for fully homomorphic encryp-
tion-based biometric template protection secure against offline decryption at-
tacks even if an attacker gains access to the secret key of the homomorphic
encryption scheme. To achieve this, we applied homomorphic transciphering
to template protection for the first time, yielding a system with post-quantum
security and unimpaired biometric performance. Our experimental evaluation
showed that homomorphic transciphering is not yet feasible. Therefore, further
improvement of the cryptographic components is required.
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Abstract

Password-based user authentication comes with impersonation risks due to poor
quality passwords or security breaches of service providers. An additional layer
of security can be provided to the authentication through keystroke dynamics,
i.e., measuring and comparing users’ typing rhythm for their password. While
this two-factor authentication is efficient and unobtrusive, the privacy of the
biometric characteristics must be ensured. Therefore, we present the Type2 pro-
tocol for secure two-factor authentication based on keystroke dynamics, where
the anomaly detection of the latter is executed in the encrypted domain. In an
experimental evaluation, we show that our proposed protocol achieves real-time
efficiency with an overhead of less than 130 milliseconds compared to password-
only authentication.

D.1 Introduction

Reliable user authentication is an important building block in an increasingly
digital world [108]. In many authentication scenarios, it is important to ensure
that data is disclosed only to the intended receiver, and not to a third party using
the receiver’s device with their stolen authentication credentials. This applies,
e.g., to the disclosure of medical data, but also the agreement of legal contracts
or financial transactions.

One of the most common digital authentication methods, passwords, do not in-
herently provide this security. Trust in password-authenticated communication
can be impaired by the fact that many users choose simple passwords that are
easy to brute-force [237], or their password may have been compromised by a
large-scale attack on a service provider [173].

Biometrics can make such impersonation attacks harder and provide additional
confidence in the authentication. In particular, one efficient and unobtrusive
way of adding a second trust factor to password-based authentication are key-
stroke dynamics, i.e., measuring and comparing the users’ typing rhythm for
their password [167]. Thereby, a second authentication factor can be derived
from the already provided password through extracting the timing information
from the user’s typing rhythm. This motivation is visualized in Figure D.1.

However, such biometric characteristics are classified as sensitive by the Euro-
pean Union’s General Data Protection Regulation (GDPR) [109] and must be
protected according to the ISO/IEC 24745 international standard on biometric
information protection [149]. The latter defines the following three requirements
for secure biometric authentication: i) unlinkability, two protected biometric tem-
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Figure D.1: Seamless integration of biometric authentication using keystroke
dynamics.

plates stored in different applications cannot be linked to the same subject, ii) re-
newability, new templates can be created from the same biometric instance with-
out the need to re-enrol, and iii) irreversibility, it is impossible to retrieve original
templates given only protected templates. In addition, the biometric perfor-
mance (i.e., accuracy) as well as the computational performance of the unpro-
tected system should be preserved.

In this work, we present the Type2 protocol for secure two-factor authentication
based on keystroke dynamics, where the biometric comparisons are executed in
the encrypted domain. To this end, Fully Homomorphic Encryption (FHE) [121] is
applied to the biometric features both during enrolment and verification. More
concretely, we investigate the compatibility of established anomaly detectors for
keystroke dynamics [167], and present an analysis of the applicability and fea-
sibility of FHE to these detectors. Further, we give a comprehensive security
analysis of Type2 with regard to adaptations that have to be made in order to
apply FHE to different detectors. We evaluated our Type2 protocol experimen-
tally on publicly available data [167] and libraries [227]. Our proposed protocol
can be instantiated with detectors that achieve real-time user authentication at
an overhead of less than 130 milliseconds per authentication attempt.

The rest of this article is structured as follows: Section D.2 discusses works that
are closely related to ours, before Section D.3 gives more technical background
information. Our protocol and main contribution is presented in Section D.4,
together with its experimental evaluation given in Section D.5. Finally, we draw
our conclusions in Section D.6.

D.2 Related Work

One of the first to discuss the application of homomorphic encryption to keystroke
dynamics were Šeděnka et al. [235]. In their work, the authors indicate that their
key generation protocol could also be instantiated with FHE, but that they re-
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Encryption Accuracy Performance Post-quantum
Scheme Preservation Preservation Security

Šeděnka et al. 2014 [235] DGK ✓ ✗ ✗

Acar et al. 2019 [6] BFV ✗ ✓ ✓

Loya et al. 2021 [182] CKKS ✓ ✗ ✓

Ours CKKS ✓ ✓ ✓

Table D.1: Qualitative comparison of related works on keystroke dynamic au-
thentication with (fully) homomorphic encryption.

frained from this choice due to the significant computational overhead of FHE,
in particular with respect to the schemes and implementations that were avail-
able in 2014. Therefore, they use additively homomorphic encryption only [79],
which only allows for additions of ciphertexts, and therefore limits the complex-
ity of detectors. In their evaluation, they use an in-house dataset that does not
allow for reproducibility of their research. Nevertheless, we can estimate a com-
parison of the efficiency, as the authors of [235] achieve execution times in the
magnitude of minutes, whereas our Type2 protocol can be executed in the order
of milliseconds.

More recently, Acar et al. [6] presented a privacy-preserving multi-factor authen-
tication system named PINTA, where they consider keystroke dynamics as one
potential authentication factor. The authors evaluate their protocol on the estab-
lished and publicly available keystroke dynamics dataset provided by [167], in
addition to other modalities such as mouse movements. Their multi-factor au-
thentication protocol uses fuzzy hashing in combination with FHE, which im-
pairs the accuracy of the system. Furthermore, the FHE scheme used by [6] is the
BFV [50, 112] encryption scheme, which operates on integers and therefore re-
quires a quantisation of keystroke dynamic features. The computational cost of
their authentication decision was evaluated at around 370 milliseconds.

The most closely related work to ours was presented by Loya et al. [182] in 2021.
In their work, the authors evaluate a neural network with differential privacy
during the training process, while the keystroke dynamic features are protected
using the CKKS [65] encryption scheme. This is the same FHE scheme we will
use for our experimental evaluation. In addition, the work by [182] utilizes the
same established dataset for keystroke dynamic evaluation provided by [167].
However, the execution times of [182] are not applicable for real-time applica-
tions, as they are no lower than 14 seconds.
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D.3 Background

D.3.1 Password-Authenticated Key Exchange

For the first component of our Type2 protocol, Password-Authenticated Key Ex-
change (PAKE) [155] is used. Compared to traditional hashing and salting of
passwords, PAKE provides additional security against offline attacks and can be
considered the state-of-the-art in password authentication. Popular approaches
include the SRP protocol [264] used among others in the Apple iCloud, or the
more recent the OPAQUE [155] protocol. Similar to biometric authentication, a
PAKE protocol is defined through a registration phase, where the user’s pass-
word information is enrolled into the system in a protected manner, and an au-
thentication phase, where a cryptographic key is exchanged successfully if and
only if the correct password is provided again. The PAKE component in our
protocol can be easily exchanged and we therefore do not focus on it further
for the scope of this work, but refer the reader to the works of [264] and [155]
directly.

D.3.2 Fully Homomorphic Encryption

FHE allows for the evaluation of arithmetic circuits on encrypted data [121] and
has been determined to fulfil the ISO/IEC 24745 [149] requirements for biomet-
ric information protection [31, 44, 126, 270]. For the scope of our work, we define
an FHE scheme through the following algorithms:

• (sk, pk) ← KeyGen(1λ): on input of the security parameter λ, generates
a secret key sk and public key pk, where pk includes the homomorphic
evaluation keys.

• cm ← HomEnc(pk, m): on input of pk and a message m, outputs a cipher-
text cm.

• c f (m1,m2)
← HomEval(pk, f , cm1 , cm2): on input of pk, a public function f ,

and two ciphertexts cm1 and cm2 , outputs an encryption c f (m1,m2)
of the

evaluation of f on the underlying plaintext messages m1 and m2.

• m′ ← HomDec(sk, cm): on input of sk and ciphertext cm, outputs a message
m′.

These operations can be applied to vectorized data, where all evaluations will be
performed element-wise, yielding an improvement in terms of computational
overhead [44]. It holds that Dec(sk, HomEval(pk, f , cm1 , cm1)) = f (m1, m2) [65].
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D.3.3 Keystroke Dynamics

In this work, we focus on keystroke dynamic features that can be extracted from
password timings measured using the same keyboard for each authentication
attempt. For a given password, this feature set will always be of fixed length n,
and the order of typed letters will be the same, easing the task of anomaly detec-
tion. Different features that can be measured from password typings are [167]:
(i) keydown-keydown time: time interval between a key is pressed and the con-
secutive key is pressed, (ii) keyup-keydown time: time interval between a key is
released and the consecutive key is pressed, and (iii) hold time: time interval
between a key is pressed and the same key is released.

Using these timings, the typical typing pattern of a user is established during
the enrolment or training phase. In this step, the mean vector over a set of tim-
ing vectors is stored, with additional information such as the covariance of the
features. For neural network-based approaches, this step corresponds to the
training of the weights. For a verification transaction, a fresh probe timing vec-
tor is captured from the data subject. The probe features are compared against
the stored reference template and a distance score or anomaly score [167] is com-
puted. Using a predefined threshold, the anomaly score can be used to grant or
deny the subject access to the system. The combined algorithms of enrolment
and verification are referred to as an anomaly detector in the following.

D.4 Proposed System

In this Section, we describe the Type2 protocol with FHE protection and nec-
essary modifications and limitations for all of the anomaly detectors described
in [167]. An overview of our proposed system is given in Figure D.2.

In the enrolment phase, both the password and biometric reference of a subject
are enrolled into the system. For the password w, the PAKE registration is per-
formed according to the chosen approach [264, 155]. Additionally, an FHE key
pair (sk, pk) is generated by the key server, and the public key pk is shared with
the other parties. We assume that an attacker has access to the public key. The
client uses pk to encrypt the keystroke timing features after the reference vector
r has been established in the training process. The Computation Server (CS) stores
cr ← HomEnc(pk, r).

In the first step of the verification protocol, the subject provides a password w′,
which is input to the PAKE protocol. If the PAKE authentication phase is suc-
cessful, the system proceeds to the keystroke anomaly detection. For an opti-
mized user experience, both processes can also be run in parallel. Using the
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timing features t′ extracted from w′, the client computes the probe ciphertext
cp ← HomEnc(pk, t′) and sends it to the CS. Using the encrypted reference
template cr corresponding to the biometric claim, the CS computes the detec-
tor d(cr, cp), and sends d to the key server. Here, d can be decrypted and the
threshold comparison of the decrypted anomaly score against threshold τ is
computed. The system outputs a bit b = 1 if the anomaly score is smaller than
τ, and b = 0 otherwise.

D.4.1 Adversary Model

In our work, we consider all parties to operate in the semi-honest adversary model.
In this model, the participating parties do not deviate from the given protocol,
but may aim to collect information that is available to them. It can be argued
that a more realistic model is given through the malicious adversary model, where
parties are allowed to deviate from the given protocol to gain further informa-
tion. This model has been discussed in the context of biometric template pro-
tection [28], where zero-knowledge proofs are applied for the protection against
malicious adversaries. Our proposed Type2 protocol is compatible with such
proofs, however, we do not focus further on malicious adversaries in our work.
We assume that the capture process of the timing features takes place in a con-
trolled environment during enrolment, resulting in trusted reference vectors.
During verification, the system may be confronted with presentation attacks.
However, this work focuses on the application of FHE to keystroke dynamic
features in a manner that does not alter the unencrypted accuracy of the sys-
tem.

D.4.2 Euclidean Detector

The squared Euclidean distance used in the Euclidean detector [99] has been
studied for FHE-based template protection for other biometric modalities, mostly
for face [31, 44]. As the square-root operation is not supported by FHE, the
squared Euclidean distance is preferred to the original Euclidean distance. Dur-
ing the enrolment phase, [167] describe that the mean vector over the set of
training vectors is computed and stored as reference vector. As the enrolment is
considered an offline process, the mean vector is computed on the unencrypted
training vectors. Then, the client enrolls a subject by encrypting the mean refer-
ence vector r as cr ← HomEnc(pk, r), and sends cR to CS.

For a verification transaction, the client encrypts the probe feature vector p as
cp ← HomEnc(pk, p), which is sent to CS. Here, CS computes the squared Eu-
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protocol.
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clidean distance

dEuclid(r, p) =
n−1

∑
i=0

(ri − pi)
2 (D.1)

as established in the recent literature [44]: the two ciphertexts cr and cp are sub-
tracted, yielding an element-wise subtraction of their elements. The resulting
vector is multiplied with itself, corresponding the square of elements in the vec-
tor. To facilitate the computation of the sum over the packed vector, the estab-
lished rotate-and-add technique is applied [44]. The total cost of FHE operations
required for the Euclidean detector is summarized in Table D.2.

D.4.3 Normed Euclidean Detector

The normed Euclidean detector expands upon the Euclidean detector through
normalizing the final anomaly score, i.e., dividing it by the multiplied norm
of the probe and reference feature vectors [42]. During the enrolment phase,
the norm of the reference template is computed and encrypted to an additional
ciphertext c||·||r ← HomEnc(pk, ||r||), which is sent to CS together with the en-
crypted reference template cr, and both ciphertexts are stored at CS.

During verification, the client computes c||·||p ← HomEnc(pk, ||p||) in addition
to cp. The computation of the Euclidean distance follows the description in
Section D.4.2. In addition to the Euclidean distance, one homomorphic mul-
tiplication c||·||p · c||·||r is performed. Both the encrypted squared Euclidean dis-
tance and the encrypted multiplied norms are sent to the key server for decryp-
tion, which calculates the final anomaly score. Ideally, the division would also
be computed in the encrypted domain. However, division is not directly sup-
ported by FHE operations. In the following, we note the described approach
as approach A and describe a second option yielding a more private computa-
tion (approach B).

For a fully private computation of the normed Euclidean distance (approach B),
the client can compute the inverted Euclidean norms 1/||r|| and 1/||p|| from
the reference and probe feature vectors during enrolment and verification, re-
spectively. Then, it can produce ciphertexts c1/||·||

r ← HomEnc(pk, 1/||r||) and
c1/||·||

p ← HomEnc(pk, 1/||p||). The computation on the FHE ciphertexts de-
scribed above then corresponds to

d(cp, cr)

c||·||p · c||·||r

= d(cp, cr) · c1/||·||
p · c1/||·||

r , (D.2)
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where d denotes the squared Euclidean distance described in Section D.4.2. This
more private computation comes at a cost of one additional homomorphic mul-
tiplication and thereby an increased multiplicative depth of the circuit. The cost
for all homomorphic operations is higher for parameter sets that allow this ad-
ditional circuit depth. Therefore, approach B must be expected to have higher
computational workload than approach A.

D.4.4 Manhattan Detector

The Manhattan detector utilizes the Manhattan distance, which is another es-
tablished distance metric in pattern recognition [99]. It is defined as

dManhattan(r, p) =
n−1

∑
i=0
|ri − pi|. (D.3)

On unencrypted data, only a bit shift is required for the computation of the
absolute difference between the reference and probe feature vector elements.
However, a bit shift is not an available computation in FHE. When computing
on integer or float values, the computation of the absolute value corresponds to
a conditional statement. The evaluation of conditional statements is by design
infeasible on encrypted data, as the result of the computation needs to be known
in order to evaluate the statement. Recent approaches have explored conditional
statements in FHE, however, they cannot be considered feasible for real-world
applications [147].

Therefore, the only encrypted computation that can be performed during veri-
fication for the Manhattan detector is the difference between the reference and
probe feature vectors, i.e., cr − cp, and the absolute values and the sum are com-
puted on the plaintext data at the key server. It can be argued that the protected
computation of the difference yields an additional protection of the features, in
particular during storage, but also during the comparison, as it can be challeng-
ing for an attacker to determine the original features based on the difference
alone. However, the aforementioned privacy limitations apply. Further privacy
protection could be given through a random negation of both probe and refer-
ence feature vectors. However, this approach would correspond to an additional
multiplication of the encrypted probe feature vector during verification, thereby
increasing the authentication workload.

For the filtered Manhattan distance, outliers are excluded during the training
phase [159]. As the enrolment phase is computed on plaintext data however,
this does not impact the application of FHE to the detector in question.



155

D.4.5 Scaled Manhattan Detector

The scaled Manhattan distance utilizes mean absolute deviation ai of the i-th
feature of the training vector as a scale factor for the final anomaly score [17].
Similarly to the normed Euclidean distance, this additional vector a can be com-
puted on the plaintext reference vectors during enrolment. Due to the lack of a
division operation in FHE, we apply the same transform as in Section D.4.3 and
let the client encrypt the inverse 1/a into a ciphertext c1/a

r ← HomEnc(pk, 1/a),
which is stored at CS alongside the encrypted reference vector cr. Then, we can
express the anomaly score as

dscaled
Manhattan(r, p) =

n−1

∑
i=0

|ri − pi|
ai

=
n−1

∑
i=0

∣∣∣∣ ri − pi
ai

∣∣∣∣ = n−1

∑
i=0

∣∣∣∣(ri − pi) ·
1
ai

∣∣∣∣ (D.4)

and calculate the values ri−pi
ai

in the encrypted domain at the following cost for
a verification transaction (see Table D.2): first, one encryption of cp is computed,
then one subtraction of cr − cp. Subsequently, the inverted mean absolute devi-
ation vector c1/a

r is multiplied to the difference, and the result is decrypted. As
in Section D.4.4, the absolute values and computation of the sum must be con-
ducted on plaintext data, as the evaluation of conditional statements such as the
absolute value are not feasible on FHE-encrypted data.

For the computation of the scaled Manhattan distance, the mean absolute de-
viation vector a should be stored in encrypted form at CS. It can be assumed
that a encodes sensitive information about the biometric reference stored at CS,
and can therefore be considered to be of similar sensitivity as the feature vec-
tors themselves. Scaling on the decryption comparison score in plaintext can
therefore not be considered a secure approach.

D.4.6 Mahalanobis Detector

The Mahalanobis detector [99] is based on the Mahalanobis distance:

dMahalanobis(r, p) = (r− p)⊤S−1(r− p), (D.5)

where S denotes the covariance matrix over the training vectors. Both S and
the mean reference vector r are computed in plaintext. Then, the following
ciphertexts are computed by the client: an encryption of the mean reference
feature vector cr, and each column of the inverted covariance matrix S−1 into
a ciphertext cS

i , where {cS
i ← HomEnc(pk, S−1

i )}n−1
i=0 . During verification, the

client obtains and encrypts a probe feature vector and sends the resulting ci-
phertext cp to CS. In the first step of the distance computation, CS computes



156 Post-Quantum Secure Biometric Systems

(r− p)⊤S−1 on the corresponding ciphertexts through one subtraction of cr− cp,
and n multiplications of the resulting vector with each of the ciphertexts cS

i .
The vector-matrix multiplication is completed by computing the sum over each
(cr − cp) · cS

i , which is computed as described in Section D.4.2. The total cost for
the Mahalanobis detector is given in Table D.2. The approach to the normed Ma-
halanobis detector [42] follows the same procedure as the normed Euclidean de-
tector described in Section D.4.2 as approach B. In addition to the computations
for the Mahalanobis distance score, the inverted probe and reference feature vec-
tor norms c1/||·||

r ← HomEnc(pk, 1/||r||) and c1/||·||
p ← HomEnc(pk, 1/||p||) are

encrypted. Then, the final comparison score is obtained after a multiplication
by both ciphertexts to the original score, i.e., d(cp, cr) · c1/||·||

p · c1/||·||
r . The ad-

ditional encryption (of c1/||·||
p ) and two multiplications can be observed in Ta-

ble D.2.

D.4.7 Nearest-neighbor Detector

The nearest-neighbor approach [138] expands the Mahalanobis detector described
in Section D.4.6 by computing the Mahalanobis distance to every training vector
(instead of the mean reference vector), and choosing the lowest out of these com-
parison scores as the final outcome. Its cost with regard to FHE operations can
therefore be determined as the N-fold effort of the Mahalanobis detector, where
N is the number of training vectors. As discussed above, conditional statements
cannot be evaluated efficiently in FHE. Therefore, all N distance scores need to
be decrypted, and the lowest score is determined in the plaintext domain. The
nearest-neighbour approach can therefore not be fully realized in FHE, and fur-
thermore has an infeasible overhead in terms of the number of required FHE
operations.

D.4.8 Neural-Network Detector

The neural network detector utilizes a simple fully connected neural network
with one hidden layer. The enrolment phase corresponds to the training phase
of the network, while the comparison score is achieved through inference over
one probe sample [99]. This inference can be expressed as two matrix multipli-
cations with the encrypted probe feature vector, and can therefore be computed
similarly to the Mahalanobis distance. As the network only has one output
node, the second multiplication corresponds to a similar vector multiplication
as in Section D.4.6. The total cost with regard to the originally proposed pa-
rameter choices [167] can be viewed in Table D.2. The FHE protection for the
auto-associative neural-network detector introduced by [138] is similar to the
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previously described approach with the difference of n output nodes and an
additional distance computation. These additional costs can be viewed in Ta-
ble D.2.

D.4.9 Fuzzy Logic Detector

The fuzzy logic detector [135] applies a succession of logical statements, i.e.,
conditional statements, to classify the probe feature set instead of classic dis-
tance metric. While the reference and probe features can still be sent and stored
encrypted, all computations can only be computed in plaintext due to the chal-
lenge of evaluating conditional statements on encrypted data. FHE protection
can therefore not be meaningfully applied to this detector.

D.4.10 Outlier-Counting Detector

The outlier-counting detector presented by [135] is derived from the scaled Man-
hattan distance. However, the final score is a count of element-wise scores above
a predefined threshold, rather than the distance scores itself. For every feature
in the feature vector, a so-called z-score defined as

zi =
|ri − pi|

σi
, (D.6)

where σi is the standard deviation of the i-th feature calculated during the train-
ing phase. We therefore apply the same transformation as in Sections D.4.3 and
D.4.5, and store a ciphertext c1/σ ← HomEnc(pk, 1/σ) at CS during enrolment.
Here, the vector 1/σ contains all inverse standard deviations 1/σi for every fea-
ture i. During verification, client and CS proceed as in Section D.4.5 and obtain
the encrypted result of the computation c′z = (cr − cp) · c1/σ. As argued above,
neither the absolute value nor the threshold comparisons can be computed in
the encrypted domain. Therefore, c′z is decrypted and the remaining computa-
tions are executed over the plaintext vector.

D.4.11 One-Class Support Vector Machine Detector

For the one-class Support Vector Machine (SVM) detector [273], the training phase
is again conducted on the unencrypted training vectors. After training is com-
pleted, the determined hyperplane h used as the separator is encrypted into a
ciphertext ch ← HomEnc(pk, h) and stored at CS. A verification transaction then
corresponds to a projection of the encrypted probe feature set p into the higher-
dimensional separator space of the SVM, i.e., a matrix multiplication, the cost of
which is presented in Table D.2.
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D.4.12 k-Means Detector

The application of the established k-means clustering algorithm [184] has been
proposed for keystroke dynamics by [162]. In terms of the application of FHE
to this detector, the approach corresponds to the Euclidean detector described
in Section D.4.2. For each of the k centroids, the Euclidean distance between
the centroid and the probe feature vector is computed, and the closest distance
is determined to be the final comparison score. However, as the evaluation of
this last conditional statement is not feasible within FHE, all three distances are
decrypted, and the minimal distance is determined over the plaintext data. This
means that final comparison score was fully computed in the encrypted domain,
however, the algorithm reveals additional information in plaintext that may im-
pact the privacy of the enrolled subjects, i.e., the discarded distances to the re-
maining k− 1 centroids. This limitation is also indicated in Table D.2 for better
transparency with regard to the different approaches.

D.4.13 Workload and Feasibility Discussion

We have now described all keystroke anomaly detectors from the seminal study
by [167] and their challenges and adaptions under FHE encryption. Due to the
limitations of FHE computations discussed so far, we can classify these detectors
into three categories: (1) vector-based distance metrics such as the Euclidean
and Manhattan distance, (2) detectors requiring matrix-vector or matrix multi-
plications, which introduce a significantly higher workload in FHE operations
than the detectors discussed above. These include the (normed) Mahalanobis
detector [99] as well as neural network-based approaches, including SVMs, as
evaluated in [182]. And finally, (3), detectors require the evaluation of condi-
tional statements, which cannot be realized efficiently in FHE [147]. These in-
clude the nearest-neighbour [138], fuzzy logic and outlier counting [135], and
k-means [162] detectors. We give the computational workload of all detectors
in Table D.2. Further context to Table D.2 is provided through the relative cost
of FHE operations given in Table D.3. With regard to their feasibility however,
detectors from categories (2) and (3) are not evaluated them experimentally. The
experimental workload for some detectors of category (3) however can be es-
timated based on the Euclidean and Manhattan distance. E.g, the workload
of outlier counting can be estimated as the workload of the scaled Manhattan
distance, while the workload of the k-means detector corresponds to the k-fold
workload of the Euclidean detector.
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Detector Enc EvalAdd EvalSub EvalMult EvalAtIndex Dec

Euclidean 1 n− 1 1 1 n− 1 1

Euclidean (normed) (appr. A)∗ 2 n− 1 1 2 n− 1 2

Euclidean (normed) (appr. B) 2 n− 1 1 3 n− 1 1

Manhattan∗∗ 1 — 1 — — 1

Manhattan (filtered)∗∗ 1 — 1 — — 1

Manhattan (scaled)∗∗ 1 — 1 1 — 1

Mahalanobis 1 2n(n− 1) — n2 2n(n− 1) 1

Mahalanobis (normed) 2 2n(n− 1) — n2 + 2 2n(n− 1) 1

Nearest-neighbour∗ N 2Nn(n− 1) — N2n Nn(n− 1) N

Neural-network (standard) 1
⌈ 2n

3
⌉

n− 1 —
⌈ 2n

3
⌉2

2n(n− 1) 1

Neural-network (auto-assoc) 1 2(n2 − n) 1 n2 + n + 1 n− 1(2n + 1) 1

Outlier-counting∗∗ 1 — 1 1 — 1

SVM (one-class) 1 n + m− 2 m m ·m (n− 1) 1

k-means∗ 1 k(n− 1) k k k(n− 1) k

Table D.2: FHE operations during verification for keystroke anomaly detec-
tors [167], where n is the feature dimension, N is the number of training vectors,
k is the number of centroids in the k-means clustering, and m is the dimension
of the SVM projection space. Detectors marked with ∗∗ can only be partly com-
puted on encrypted data, while detectors marked with ∗ reveal more informa-
tion than the final comparison score.

Operation on encrypted data Add Subtract Rotate Decrypt Multiply Encrypt

Relative cost 1 5 24 33 46 52

Table D.3: Relative cost of CKKS [65] operations implemented in PALISADE
[31, 227].
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D.5 Experimental Evaluation

We implemented our Type2 protocol using the CKKS [65] scheme implemented
in the PALISADE [227] C++ FHE library at a security level of 128bits for all
variants of the Euclidean and Manhattan detectors. All execution times were
measured on an Intel i7 CPU @ 2.60GHz with 32GB RAM and an Ubuntu 20.04
operating system. As a dataset, we used the established CMU keystroke dynam-
ics dataset provided by [167] and maintain all features and the split into training
and testing data. For the 400 timing vectors captured from each of the 51 sub-
jects in the dataset, the first 200 password timings were used for the training of
each detector, and samples from the remaining timings for verification.

The execution times for enrolment and verification for the five discussed detec-
tors are given in Table D.4, where N is the number of subjects to be enrolled
in the system. As discussed in Section D.4, the Manhattan detectors have the
fastest execution times as they use the lowest number of homomorphic opera-
tions. However, they cannot be considered fully secure, as the pre-computation
step is decrypted before anomaly score can be calculated. The Euclidean de-
tectors grant more privacy, with the plain Euclidean and the normed Euclidean
(approach B) being the only fully private detectors with regard to evaluation
under FHE. For the latter, the impact of the increased multiplicative depth of 2
instead of 1 can be observed. The encryption of reference or probe data, which
consists of two encryption operations for the feature vector and its norm (or
inverted norm) for both approach A and B to the normed Euclidean detector,
therefore increases to 21 milliseconds instead of 8 milliseconds due the parame-
ter set required to accommodate the increased circuit depth.

In terms of the biometric performance, we refer the reader to the original evalu-
ation conducted in [167], which we give in Table D.5. Through the application of
the CKKS [65] with correct parameter choices, the biometric performance if not
altered in the encrypted domain. In particular, we chose a scaling factor of 50
bits for the CKKS scheme, such the accuracy of the detectors is not affected by
the application of the encryption scheme. Therefore, the accuracy evaluations
given by [167] are maintained.

D.5.1 Security Analysis

Our proposed Type2 protocol fulfils the ISO/IEC 24745 [149] requirements un-
linkability, renewability, and irreversibility. Firstly, irreversibility is given
through the hardness of the Ring-Learning with Errors (R-LWE) problem [183],
which the CKKS [65] FHE scheme builds upon. As R-LWE is believed to be se-
cure against attacks implemented on a quantum computer [10], our Type2 pro-
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Detector Enrolment (ms) Verification (ms)

Euclidean 4N 117

Euclidean (normed) (appr. A)∗ 8N 125

Euclidean (normed) (appr. B) 21N 338

Manhattan∗∗ 4N 4

Manhattan (filtered)∗∗ 4N 4

Manhattan (scaled)∗∗ 8N 8

Table D.4: Experimentally determined execution times in milliseconds for the
evaluated detectors. Detectors marked with ∗∗ can only be partly computed on
encrypted data, while detectors marked with ∗ are computed on encrypted data,
but reveal more information than the final comparison score.

Detector Equal-Error Rate (EER) Standard Deviation

Euclidean 0.171 0.095

Euclidean (normed) (appr. A)∗ 0.215 0.119
Euclidean (normed) (appr. B)

Manhattan∗∗ 0.153 0.092

Manhattan (filtered)∗∗ 0.136 0.083

Manhattan (scaled)∗∗ 0.096 0.069

Table D.5: Biometric performance for the evaluated detectors taken from [167].
Detectors marked with ∗∗ can only be partly computed on encrypted data, while
detectors marked with ∗ are computed on encrypted data, but reveal more in-
formation than the final comparison score.
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tocol inherits this post-quantum security. Secondly, unlinkability and renewa-
bility are provided through the IND-CPA security of the CKKS scheme, i.e., its
indistinguishability under chosen-plaintext attacks. Thereby, an attacker cannot
distinguish between two encryptions of the same feature vector and two en-
cryptions of different feature vectors. Finally, our protocol preserves both the
biometric and computational performance of the unprotected authentication as
shown in Section D.5. The choice of the PAKE, which is an independent com-
ponent of the protocol next to the FHE protection, determines the security of
the authentication as a second factor. However, post-quantum protection may
not be necessary for the PAKE component, as the user password does not re-
quire long-term protection as sensitive biometric features do. This yields more
flexibility with regard to the chosen PAKE approach, where computational effi-
ciency lower than the workload for the biometric authentication should be con-
sidered [155, 264].

D.6 Conclusion

In this work, we have presented the Type2 protocol for secure two-factor authen-
tication based on keystroke dynamics as second trust factor, where the protec-
tion of sensitive biometric data is ensured through fully homomorphic encryp-
tion. For five established keystroke anomaly detectors, we showed the poten-
tial and limitations of their evaluation under fully homomorphic encryption. In
an experimental evaluation, we show that our protocol outperforms the state-
of-the-art with execution times of under 130 millisecond per authentication at-
tempt. While the assumption of the semi-honest adversary model remains a
limitation, the cryptographic principles applied in this work can be used to ex-
tend the Type2 protocol in more realistic adversary models. With advances of
the cryptographic components, more complex detectors, e.g., neural networks,
could be investigated in future research. Furthermore, it would be interesting to
extend the Type2 protocol to other behavioral features using mobile phones as
the capture device.
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Abstract

Biometric data are uniquely suited for connecting individuals to their digital
identities. Deriving cryptographic key exchange from successful biometric au-
thentication therefore gives an additional layer of trust compared to password-
authenticated key exchange. However, biometric data are sensitive personal
data that need to be protected on a long-term basis. Furthermore, efficient
feature extraction and comparison components resulting in high intra-subject
tolerance and inter-subject distinguishability, documented with good biometric
performance, need to be applied in order to prevent zero-effort impersonation
attacks.

In this work, we present a novel protocol for Biometric Resilient Authenticated
Key Exchange that fulfils the above requirements of biometric information pro-
tection compliant with the international ISO/IEC 24745 standard. In our pro-
tocol, we present a novel modification of unlinkable fuzzy vault schemes that
allows their connection with oblivious pseudo-random functions to achieve re-
silient protection against offline attacks crucial for the protection of biometric
data. Our protocol is independent of the biometric modality and can be im-
plemented based on the security of discrete logarithms as well as lattices. We
provide an open-source implementation of both instantiations of our protocol
which achieve real-time efficiency with transaction times of less than one sec-
ond from the image capture to the completed key exchange.

E.1 Introduction

Biometric characteristics provide accurate and non-repudiable identification of
individuals over several decades [166]. This makes them suited for bridging the
gap between real and digital identities in a way passwords or other machine-
generated identifiers cannot. At the same time however, these properties also
make them uniquely vulnerable. In particular, biometric information cannot be
revoked or replaced in the same way a password or cryptographic token can.
Once a digital representation of a biometric characteristic, further referred to as
a biometric template, has been leaked, the underlying source (e.g., a particular
finger or eye), can no longer be used securely for authentication. In fact, bio-
metric templates provide no protection of the underlying data, as they can be
reversed to samples sufficient for attacks [59, 119, 185].

Due to this risk, biometric data have been recognised as sensitive personal data
by the European Union’s General Data Protection Regulation (GDPR) [109] and
the ISO/IEC 24745 international standard on biometric information pro-
tection [149]. The latter defines three security requirements for secure biometric
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systems: i) unlinkability and renewability, meaning that an attacker cannot con-
nect two protected biometric templates stored in different applications, and new
templates from the same source look indistinguishable to a previously stored
reference, ii) irreversibility, it should be impossible for an attacker to retrieve
original samples given only protected templates, and iii) performance preserva-
tion, the computational performance and the recognition accuracy of the system
should not be impacted significantly by adding a layer of protection to the orig-
inal data.

At first sight, the performance preservation requirement in ISO/IEC 24745 seems
to be a question of convenience only. However, it details a second and crucial
dimension that determines the security of biometric authentication: the accu-
racy of the underlying biometric comparison function. Contrary to passwords,
which can be compared in an exact manner, captured samples of the same bio-
metric characteristic are never exactly equal, but fuzzy. They are subject to noise
such as ageing, environmental influence, or image quality. Comparison of two
samples is therefore based on some measure of similarity. If this measure is
too imprecise, or the feature representation is not discriminative enough, an au-
thentication system is not capable of accurately distinguishing between mated
comparisons, where the samples stem from the same subject, and non-mated
authentication attempts, where the samples stem from different subjects. Trust
in the derived authentication would consequently be low.

Recently, the idea of building authenticated key exchange on the basis of biomet-
rics has gained interest with the proposal of Biometrics-Authenticated Key Ex-
change (BAKE) [260]. Analogously to Password-Authenticated Key Exchange
(PAKE) [155], a client and server negotiate a shared cryptographic key that
should be equal if and only if the biometric authentication was successful.

With their protocol, the authors of [260] achieve security in terms of the protec-
tion of the biometric data with classical security assumptions. However, their
biometric comparator is vulnerable, as we show by reproducing their results ex-
perimentally. The reason for this imprecision is a fingerprint comparison algo-
rithm that is specific to their protocol, but has not been evaluated in terms of bio-
metric performance (i.e., accuracy). We provide this evaluation and show that
the algorithm is not able to distinguish between mated comparison trials within
the same identity and non-mated comparison trials between different identities
in a sufficient manner (see Appendix E.6). More generic protocols both on sym-
metric fuzzy PAKE (fPAKE) [100] and asymmetric fuzzy PAKE (fuzzy aPAKE)
[106] have been proposed. However, with regard to biometrics, they have the
following shortcomings: fPAKE [100] does not achieve protection of the bio-
metric data, which is shared with the server in plaintext. Fuzzy aPAKE [106]
achieves security in both dimensions in theory, but is inefficient in practice as
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it is based on generic oblivious transfer which is performed once for each bit
in the biometric template. In addition, [100] and [106] only enable comparison
of fixed-length biometric representations. The most accurate comparison metric
for fingerprints, one of the most popular biometric modalities, is however based
on variable-length representations, the similarity of which cannot be expressed
as a simple distance function.

E.1.1 Contribution

In this work, we present a protocol for Biometric Resilient Authenticated Key Ex-
change (BRAKE) that addresses the deficiencies of previous works [100, 106,
260]. Our BRAKE protocol achieves effective protection of the biometric data
against offline attacks through the application of an Oblivious Pseudo-Random
Function (OPRF). Our protocol is efficient with execution times of under one
second on commodity hardware from the biometric capture to the completed
key exchange, including communication cost. To the best of our knowledge, our
protocol is the first to achieve secure biometric authenticated key exchange with
high biometric and computational performance, thus fulfilling ISO/IEC 24745.
More precisely, we contribute:

• Biometric resilient authenticated key exchange secure against offline at-
tacks: through a novel modification of unlinkable fuzzy vault schemes,
we build a seamless integration of biometric authentication into oblivious
pseudo-random functions to achieve resilient protection against offline at-
tack, which is crucial for the long-term protection of biometric data accord-
ing to the ISO/IEC 24745 [149] standard.

• Classical and post-quantum security: Our two-round protocol can be in-
stantiated both with a discrete logarithm OPRF [155] and Diffie-Hellman
key exchange [87] as well as a lattice-based OPRF [12] and the state-of-the
art post-quantum key encapsulation mechanism CRYSTALS Kyber [49],
which was recently standardized in NIST IR 8413 [10]. Through our pro-
tocol’s compatibility with lattice-based primitives, which are assumed to
be post-quantum secure, we further achieve long-term protection of the
underlying biometric data.

• Interchangeability of biometric modalities: our protocol can be instanti-
ated with different fuzzy vault schemes that have been designed for dif-
ferent biometric modalities and feature representations. In particular, it is
compatible with both fixed-length and variable-length representations of
biometric characteristics.

• Open-source implementation: an implementation of our protocol based
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on discrete logarithms as well as lattices is available at https://github.c
om/dasec/DL-BRAKE and https://github.com/dasec/PQ-BRAKE, respec-
tively. We show that our protocol achieves real-time efficiency with trans-
action times of under one second from the fingerprint image capture at the
sensor to the completed key exchange. To support the reproducibility of
our results, we provide automated installation scripts with all dependen-
cies alongside our implementation.

E.1.2 Related Work

We briefly discuss the state-of-the-art to motivate two principles for secure
biometrics-authenticated key exchange: recognition accuracy and reciprocal in-
teraction.

The main concern with the protocol proposed in [260] is the generation of the
biometric secret key constructed from fingerprint representations. The authors
use a simplified version of the well-studied nearest-neighbour approach first
proposed by [156], which they chose due to its anticipated rotation invariance.
However, this algorithm and its flaws have been studied for two decades, specif-
ically, its inability to tolerate missing genuine minutiae [58]. It has therefore
been found unusable in practice, and improved rotation-invariant fingerprint
recognition algorithms have been proposed that mitigate the known shortcom-
ings [58]. Such improved algorithms require a more complex comparison sub-
system however, and are not compatible with the constructor offered in [260].
Notably, the authors of [260] fail to state the recognition accuracy of their iris
and fingerprint based protocols, and do not give an experimental evaluation
detailing the security with regard to the biometric performance.

Their construction for iris is based on the established fixed-length feature rep-
resentation IrisCode [80] and can be assumed to achieve adequate accuracy as
long as the sample quality is high. It is worth noting that the state-of-the-art
in iris recognition is based on samples captured under near-infrared light, and
therefore requires designated capture devices, i.e., near-infrared sensors. Such
specific sensors are however not part of most personal communications devices
such as smartphones. The use of classical iris recognition in the Signal [115]
protocol as motivated by [260] is therefore not meaningful. In such a scenario,
iris recognition in the visual spectrum would need to be considered, which is a
more challenging task and provides, as of today, lower accuracy [211].

Secondly, the public keys derived from the biometric secret keys in [260] are
vulnerable to offline attacks: in their construction, any adversary can guess a
biometric template and check if it corresponds to the public key in hand, with-
out interacting with another party. In such an attack, the adversary does not

https://github.com/dasec/DL-BRAKE
https://github.com/dasec/DL-BRAKE
https://github.com/dasec/PQ-BRAKE
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Table E.1: Comparison of our protocol to related work.
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have to guess an exact biometric feature representation, but succeeds as soon
as she finds an input that is close enough with regard to the distance metric
used. This probability can be expressed as the false-match rate of the biometric
system, i.e., the proportion of authentication attempts from non-mated samples
falsely accepted as authentication attempts of an enrolled data subject. Again,
low biometric accuracy leads to a low effort in an offline search attack.

Even with assumed high biometric accuracy, offline attacks expose biometric
data to high risks. Therefore, we construct our protocol such that interaction is
required for every adversarial guess, which allows for rate-limiting that can be
enforced as long as at least one party remains honest. The concept of enforcing
interaction through a third party OPRF service in itself is not new [111]. How-
ever, the construction previously presented by [111] is neither trivially compat-
ible with fuzzy secrets such as biometric features, nor with lattice-based primi-
tives as our proposed protocol. In particular, no lattice-based partially OPRF as
required for the protocol given in [111] is known as of today, and its construction
lies outside of the scope of this work.

An overview of how our proposed scheme compares to related works can be
found in Table E.1. An efficient solution to fuzzy PAKE was presented by [100].
However, the solution is constructed as a symmetric protocol, where the server
learns the biometric reference template. The approach of [100] does therefore
not fulfil the ISO/IEC 24745 [149] requirements. Building on this line of re-
search, [48] recently proposed fuzzy PAKE based on Error-Correcting
Codes (ECC). While their protocol is efficient with a small overhead compared
to [100] and improves upon the security of [100], the symmetric construction
remains an obstacle with regard to ISO/IEC 24745 [149].

A different line of research emerged with the fuzzy asymmetric PAKE construc-
tion of [106]. Here, the asymmetric protocol does not allow the server to learn
the biometric reference template. However, the expensive computation of bit-
wise Oblivious Transfer (OT) makes the solution impractical for real-world ap-
plications. More recently, [139] proposed their solution ttPAKE to typo-tolerance
PAKE, which can be considered related to the challenges posed by biometric au-
thentication with regard to the fuzziness of input data. Their solution builds on
the idea of [106], but is based on double-layered secret sharing. While their
protocol is asymmetric, the password is shared with the server in the setup
phase for the purpose of constructing a secret-shared password table, and is
deleted by the semi-honest server afterwards. If this protocol were applied
to biometric data, this plaintext disclosure of the authentication secret would
violate the ISO/IEC 24745 [149] requirements. Another recent work presents
BAKA [275], a protocol for biometric authentication and key agreements based
on fuzzy extractors. However, this work applies blockchain to store biomet-
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ric data, which is an inherent violation of the ISO/IEC 24745 [149] renewa-
bility requirement. Through the immutability of blockchain records, compro-
mised reference templates cannot be renewed. Furthermore, none of the above
works apart from [260] have been instantiated using post-quantum secure cryp-
tographic primitives.

Further recent works are concerned with authentication based on fuzzy input
data, however, with different aims to our work. Motivated by more private so-
lutions for TLS authentication, [176] proposed single message Credential Hiding
Login (CHL). Their one-round protocol allows for efficient user authentication
both for static and fuzzy secrets, with biometric authentication as a possible ap-
plication. Their scheme is based on the security of Learning with Errors (LWE)
problems and can be instantiated with post-quantum secure parameters. In con-
trast to our work however, not session keys are exchanged as a result from the
successful login. Another solution to biometric authentication based on func-
tional encryption was recently presented by [105]. While their solution is com-
putationally efficient, no key material is generated from the successful biometric
two-factor authentication. Similarly, [265] presented post-quantum secure bio-
metric authentication using searchable encryption, a cryptographic technique
related to functional encryption as applied in [105].

Other related works have been directed on extracting uniformly distributed
cryptographic keys directly from biometric templates without running an inter-
active protocol [89]. Similar to [100] and [106], only fixed-length representations
are considered that can be compared with some distance metric. From fuzzy
extractors, two-factor authentication protocols have been built [212]. More re-
cently, [230] proposed a session key generation protocol specifically for finger-
print based on so-called cancelable biometrics, which are one-way transforms
on the biometric data that are not based on well-studied cryptographic prob-
lems and can therefore not be assumed to underlie specific hardness assump-
tions.

E.1.3 Structure of Paper

The rest of this paper is structured as follows: In Section E.2, background in-
formation and definitions required for the construction of our protocol are pre-
sented. As our main contribution, Section E.3 presents our BRAKE protocol with
security definitions and proof sketches, before we give concrete instantiations
based on discrete logarithms and lattices in Section E.4. Section E.5 presents the
experimental evaluation of the protocol and practical comparison with related
work, before we outline our conclusions in Section E.6.
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E.2 Preliminaries

The framework for automated and interoperable biometric recognition has been
standardised in ISO/IEC 19794-1 [150], and subsequent parts of the standard
define biometric data interchange formats for the modalities fingerprint, face,
iris, voice, handwritten signatures, and vascular biometrics. For the scope of
our work, we look at the three most prevalent modalities fingerprint, face, and
iris, for which well-tested fuzzy vault schemes exist.

E.2.1 Biometric Performance Metrics

Biometric performance testing and reporting is standardised in ISO/IEC 19795-
1 [152] and subsequent parts. The evaluation of biometric systems is based on
two components: error rates and throughput rates. For a verification scenario,
the most important error metrics are:

• False Non-Match Rate (FNMR): proportion of mated comparisons that re-
sulted in a reject decision.

• False Match Rate (FMR): proportion of non-mated comparisons that re-
sulted in an accept decision.

The FMR can be thought of as the security level of the biometric system, detail-
ing how many zero-effort impostors were able to be verified. In most scenarios,
systems with a FMR below 1% are considered secure, while high-security appli-
cations such as automated border control require a FMR lower than 0.1% [117].
The FNMR on the other hand can be considered as the convenience level of the
system, detailing how many mated comparison trials were not able to be veri-
fied. A FNMR up to 5% is considered acceptable [117].

Factors impacting the recognition performance of a biometric system are first
and foremost the sample quality both during enrolment and verification, and
the robustness of the feature representation and comparison algorithm with re-
gard to rotation, translation, and noise of the samples [198, 248]. Furthermore,
any feature transformation such as binarisation may impact the accuracy of the
system.

E.2.2 Entropy of Biometric Representations

The entropy of biometric data is a topic that is often referred to in works about
fuzzy cryptographic primitives [100]. In the literature, the entropy of a face has
been determined at 56 bits [7], a minutiae-based fingerprint representation at
82 bits [215], and an iris at 249 bits [81]. However, these numbers can only be
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considered as an upper bound of the entropy of a certain biometric instance, as
the amount of information in a biometric sample heavily depends on the capture
device used and its fidelity (e.g., its resolution) as well as the feature extraction
algorithm used. Indeed, [251] argues that it is not in all scenarios appropriate to
use the entropy of a single biometric template as a measure for security, which
is an overestimate when it comes to comparisons between biometric features.
Here, the false-accept security defined as log2(FMR−1) gives a more accurate
measure, as it is sufficient for an attacker to guess a template that is close enough
to a reference template.

E.2.3 Fuzzy Vault

The concept of fuzzy vaults was first introduced by [160], who propose a scheme
that allows to lock a biometric feature secret set t with a secret polynomial f using
a biometric feature secret set t using a probabilistic algorithm. The output of this
algorithm is a locked fuzzy vault that can be unlocked using a second biometric
feature set t′, if there are enough points the intersection of t and t′. We give a
short definition of their original scheme before we move on to the state-of-the-
art for different biometric modalities.

Definition E.1 (Fuzzy Vault Scheme [160]). Let C be an error-correcting code,
H : C → {0, 1}2λ, for security parameter λ, be a cryptographic hash function H,
and let τ a biometric comparison threshold. Then, a fuzzy vault scheme is a set of
the following algorithms:

• ( f , H( f ), V) ← lock(t): On input of a biometric feature set t, the algo-
rithm samples a random secret f ∈ C and outputs a locked fuzzy vault V
together with the hash digest H( f ).

• f ′ ← unlock(V, H( f ), t′): On input of a locked fuzzy vault V and a bio-
metric feature set t′, the algorithm outputs an opening polynomial f ′ ∈ C.
The unlocking can be verified by comparing H( f ) to H( f ′).

A basic authentication protocol based on the fuzzy vault scheme is given in
Figure E.1.

Instantiation for Fingerprint

The original schemes by [160] and a similar scheme by [73] have been proven
to be insecure due their construction based on large point clouds to hide the
secret f , which are vulnerable to correlation attacks [250]. Therefore, [251] pre-
sented an improved scheme to mitigate correlation attacks (see [251], Section
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Enrolment

Setup party Server
t reference template

( f , H( f ), V)← lock(t)

H( f ), V

store (H( f ), V)

Verification

Client Server
t′ probe template (H( f ), V)

request H( f ), V

H( f ), V

f ′ ← unlock(V, H( f ), t′)

return H( f ) = H( f ′)

Figure E.1: Fuzzy vault authentication protocol based on [160].
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1.2.3), building on the initial proposal by [89]. These improved fuzzy vault
schemes fulfil the requirements of ISO/IEC 24745 [149].

The improved fuzzy vault scheme has first been constructed for minutiae-based
fingerprint representations [251]. From the pattern of fingerprint ridge lines, sig-
nificant points known as minutiae are extracted as compact and distinguishing
features, specifically, ridge endings and bifurcations, namely the location and
orientation where one ridge line splits into two. In the scheme by [251], minu-
tiae are encoded into a finite field Fp′ using absolute pre-alignment and quanti-
sation to account for a certain degree of noise with regard to the position of the
minutiae. The set of minutiae t ⊂ Fp′ is then considered the biometric template.
A polynomial f ∈ Fp′ [x] of degree τ − 1 is chosen uniformly at random and
locked as

lock(t) = ( f , f (x) + ∏
a∈t

(x− a)) =: ( f , V). (E.1)

To unlock the vault, V is evaluated on the probe minutiae set t′ and decoded
using a Reed-Solomon decoder, yielding

unlock(V, t′) = decode({(b, V(b)) | b ∈ t′}) =: f ′. (E.2)

Lemma E.1 (Theorem 1 in [251]). Let ( f , H( f ), V) ← lock(t) be a commitment
to a polynomial f ∈ Fp′ [x] with minutiae set t, and f ′ ← unlock(V, H( f ), t′) an
unlocking of V using a minutiae set t′. Then, f = f ′ if and only if |t ∩ t′| ≥ τ.

Analogue constructions exist for iris [220] and face [218] recognition, which we
refer the reader to for full details.

E.2.4 Cryptographic Primitives

Definition E.2 (Pseudo-Random Function, [60]). A family of functions
fk : {0, 1}λ × {0, 1}n → {0, 1}n′ , with key k ∈ {0, 1}λ, are called Pseudo-Random
Functions (PRFs) if the following holds:

• fk(x) is efficiently computable from k and x.

• It is not efficiently decidable whether one has access to a computation or-
acle for fk(·) or to an oracle producing uniformly random bit-strings of
length n.
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Definition E.3 (Oblivious Pseudo-Random Function, [116]). A two-party pro-
tocol π between a client and a server is an Oblivious Pseudo-Random Func-
tion (OPRF) if there exists some PRF family fk, such that π privately realizes the
following functionality:

• Client has input x; Server has input k.

• Client outputs fk(x); Server outputs nothing.

Definition E.4 (Hashed Diffie-Hellman OPRF, [114]). Let G be a cyclic group of
prime order p, x ∈ {0, 1}∗ the client input, k ∈ Zp the evaluator’s secret key,
HG : {0, 1}∗ → G and HZp : {0, 1}∗ → Zp cryptographic hash functions that
output values in G and Zp, respectively. The protocol HashDH consists of the
following algorithms:

• (B, r) ← blind(x): The client samples a random r ←$ Zp and outputs r
and B← [r]HG(x).

• S← eval(B, k): On input B ∈ G, the evaluator outputs S← [k]B.

• U ← unblind(S, r): On input S ∈ G and r ∈ Zp, the client outputs U ←
HZp(x, [r−1]S).

As a result of this protocol, the client privately obtains HZp(x, [k]HG(x)) without
learning k and without the evaluator learning the input x nor the output U.

Definition E.5 (Key Encapsulation Mechanism, [197]). A Key Encapsulation
Mechanism (KEM) is a scheme with three algorithms KeyGen, encap and decap,
where

• (pk, sk) ← KeyGen(1λ): takes as input the security parameter λ and out-
puts a public key pk and a secret key sk.

• (ctx, γ) ← encap(pk): takes as input a public key pk, samples a session
pre-key γ, and outputs γ and an encapsulation ctx of γ under the public
key pk.

• γ′ ← decap(ctx, sk): takes as input an encapsulated session pre-key ctx

and a secret key sk and outputs a decapsulated session pre-key γ′.

We require that for all (pk, sk) generated from KeyGen we have, except with
negligible probability, that γ = decap(encap(γ, pk), sk), and that the scheme is
IND-CCA secure.
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E.2.5 Lattice-Based Cryptography

Lattice-based cryptography builds upon certain lattice problems which are con-
sidered hard to solve even for quantum computers, and these can be used as
the basis for designing a variety of cryptographic systems [204]. The two most
popular lattice problems are the Learning With Errors (LWE) decision-problem in-
troduced in [222] and the Short Integer Solution (SIS) search-problem introduced
in [8]. In this work, we use the module variants of these problems, where we
are working over cyclotomic rings Rq = Zq[X]/⟨XN + 1⟩ where N is a power
of two and q a prime. The norm of elements in Rq is computed on coefficient
vectors of polynomials in Z.

Definition E.6 (Module-LWE). . Let χ be a bounded distribution over Rd
q and

let s ← χ be a secret vector. Then, sample Ai ∈ Rd×d
q uniformly at random

and ei ← χ, and finally set (Ai, bi = Ai · s + ei) in Rd×d
q × Rd

q . The M-LWEd,s,χ
decision-problem is to decide with non-negligible advantage whether m inde-
pendent samples {(Ai, bi)}m

i=1 are computed as above or sampled from the uni-
form distribution over Rd×d

q × Rd
q .

Definition E.7 (Module-SIS). . Given m uniform vectors ai ∈ Rd
q , the M-SISd,m,β

problem is to find polynomials si ∈ Rq such that all ||si|| ≤ β and

m

∑
i=1

ai · si = 0 ∈ Rq.

E.3 Biometric Resilient Authenticated Key Exchange

In this Section, we introduce our protocol for Biometric Resilient Authenticat-
ed Key Exchange (BRAKE) built from a fuzzy vault scheme, an OPRF, and a
KEM.

E.3.1 Setting

For our proposed protocol, we assume that a biometric capture device is linked
to a client which performs the preprocessing and feature extraction, and acts
as a communicating party in the protocol. Its communication counterparts are
a server which controls a database of locked fuzzy vaults and client reference
public keys, and an evaluator which is in possession of a secret OPRF key. In
practice, the evaluator can be instantiated by a trusted execution environment at
the server. For this reason, we do not model direct communication between the
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client and the evaluator, but work under the weaker assumption that all com-
munication between client and evaluator is seen by the server. This is a common
practice in biometric information protection [270], as it allows for enhanced net-
work security choices that protect the party handling secret key material. Fur-
thermore, we assume that authenticated channels are established between all
parties, e.g., through TLS. Thereby, mutual authentication can be established
between a client and the server.

E.3.2 Modification of Fuzzy Vault Schemes

In the original improved fuzzy vault schemes, the decoding algorithm with
highest performance both in terms of execution times and accuracy is the
Guruswami-Sudan decoder [133]. Thereby, unlocking a fuzzy vault with fea-
ture vector t′ corresponds to a randomised brute-force decoding strategy, where
subsets of t′ are chosen uniformly at random and evaluated as unlocking sets
for the reference fuzzy vault. During this randomised decoding, a candidate
polynomial f ′ is generated for each subset and compared against the stored
hash H( f ) corresponding to the biometric reference template t. When a can-
didate polynomial is found for which H( f ) = H( f ′), the decoding attempts are
stopped. If no candidate polynomial is found within a certain number of decod-
ing attempts, the underlying comparison of t and t′ is classified as a non-mated
comparison trial.

In our protocol however, we do not wish to store H( f ) at the server as it allows
for offline brute-force attacks. Instead, we run the full decoding attempts until
the threshold for non-mated comparison trials is reached, even when we expect
a mated comparison trial. During decoding, we temporarily store all candidate
polynomials and sort them with respect to their frequency. For a mated compar-
ison, we expect the correct candidate polynomial f ′ for which H( f ′) = H( f ) to
appear as the most frequently reconstructed polynomial due to the large overlap
of the sets t and t′. A similar strategy is applied in [73] and is supported by our
experimental evaluation, showing only a negligible deviation with regard to the
biometric performance.

Notably, the FMR and thereby security of the system is not affected by the
change to highest-frequency decoding. In both cases, no non-mated compar-
isons yield matching candidate polynomials within the list decoder threshold.
Therefore, the polynomial that occurs with the highest frequency is also not a
matching candidate polynomial. Consequently, the FMR is not affected by the
change from hash-verified decoding to highest-frequency decoding.

In addition, the frequency pattern found in a mated comparison does not give
an attacker an advantage in terms of an offline-brute force attack. Through the
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additional roots of the randomly generated secret polynomial f , a number of
seemingly correct polynomials of degree τ − 1 could be interpolated by an at-
tacker that is not in possession of a mated feature set. Therefore, a brute-force
attack on a locked vault alone, without the confirmation of H( f ) or a successful
key exchange, corresponds to a non-mated comparison attempt with no clear
frequency pattern.

E.3.3 Protocol

In this Section, we give the formal definition of our proposed protocol for bio-
metric resilient authenticated key exchange.

Definition E.8 (Biometric Resilient Authenticated Key Exchange). A three-party
protocol BRAKE between a client, a server and an evaluator is a Biometric Re-
silient Authenticated Key Exchange, if it realizes the following functionalities:

• Enrolment: A trusted setup party inputs a biometric reference template
t and corresponding identifier id. The setup party computes a locked
vault ( f , V) based on t. The evaluator inputs a key k. Then the parties
jointly compute a client public key cpkt derived from f . The server out-
puts (V, cpkt = eval( f , k), id) and the other parties outputs nothing. The
enrolment protocol is detailed in Figure E.2.

• Verification: The client inputs a biometric probe feature set t′ and a bio-
metric claim id, the server inputs (V, cpkt, id) and the evaluator inputs
k. The client requests the locked vault V for id and interpolates a poly-
nomial f ′ from t′. The parties jointly compute a key exchange on input
f ′. The server outputs a session key ρ and the client outputs a session
key ρ′ and a bit indicating if H(ρ) = H(ρ′). The verification is detailed in
Figure E.3.

Here, the client will output the bit 1 if and only if |t ∩ t′| ≥ τ for τ the biometric
verification threshold. For the algorithms defined in Definition E.8, we require
the following building blocks:

Definition E.9 (Building blocks). We define the following building blocks for
the BAKE protocol:

• pp ← setup(1λ): The setup algorithm defines a universe P , randomness
space R, key space K and a cryptographic hash function H : {0, 1}∗ →
{0, 1}2λ. Further, the setup algorithm defines an error-correcting code C
with correction capacity τ. These are incorporated in the public parame-
ters pp and all following algorithms implicitly inherit pp.
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• ( f , V) ← lock(t): The algorithm takes as input a biometric template t,
samples a random polynomial f ∈ C, and outputs f and a locked fuzzy
vault V. Note that the fuzzy vault scheme do not include the hash digest
H( f ).

• f ′ ← unlock(V, t′): The algorithm takes as input a biometric probe feature
vector t′ and locked fuzzy vault V, and outputs an opening polynomial f ′.

• (B, r) ← blind( f ): The algorithm samples a random element r ∈ R and
outputs an element B ∈ P .

• S ← eval(B, k): On input B ∈ P and key k ∈ K, the server outputs an
evaluation S ∈ P .

• sk ← unblind(S, r): On input S ∈ P and r ∈ R, the algorithm outputs
an evaluation t U that can further be used as (or to generate) a client secret
key csk ∈ K.

• (sk, pk) ← KeyGen(1λ): The algorithm outputs a secret key sk ∈ K and a
public key pk ∈ P .

• pk ← pkGen(sk): The algorithm takes as input a secret key sk ∈ K and
outputs a public key pk ∈ P .

• (ctx, γ) ← encap(cpk): The algorithm takes as input a client public key
cpk, samples a session pre-key γ and outputs γ and an encapsulation ctx

of γ under cpk.

• γ′ ← decap(ctx, csk): The algorithm takes as input an encapsulated ses-
sion pre-key ctx and a client secret key csk and outputs a decapsulated
session pre-key γ′.

• ρ ← KDF(cpk, spk, cpke, spke, γ): The key derivation function KDF takes as
input the client and server static and ephemeral public keys cpk, spk, cpke,
spke as well as a pre-key γ and outputs a session key ρ ∈ {0, 1}2λ.

The detailed functioning of the BRAKE protocol can be seen in Figures E.2 and E.3.
We also give a short semantic description in the following. During enrolment
(Figure E.2), a client public key cpkt is derived from a biometric reference tem-
plate t and the OPRF key k, and is stored at the server together with a locked
fuzzy vault V of t using a secret random polynomial f . First, the client generates
f and locks the vault with template t. Note that now, the fuzzy vault scheme no
longer includes the hash digest H( f ) of the secret polynomial sampled during
locking. Then, the client initiates the OPRF evaluation on input f . The evaluator
evaluates the blinded input B using the OPRF key k, and the client is able to
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Enrolment

Setup party Server Evaluator
t reference template ssk ∈ K k ∈ K
id verified identity spk ∈ P

( f , V)← lock(t)
(B, r)← blind( f )

B B

S← eval(B, k)

S S

cskt ← unblind(S, r)
cpkt ← pkGen(cskt)

V, cpkt, id

store

(V, cpkt, id)

Figure E.2: BRAKE enrolment protocol.
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Verification

Client Server Evaluator
t′ probe feature vector ssk ∈ K k ∈ K
server public key spk ∈ P spk ∈ P
biometric claim id (V, cpkt, id)

id

V

f ′ ← unlock(V, t′)

(B′, r′)← blind( f ′)

(cske, cpke)← KeyGen(1λ) (sske, spke)← KeyGen(1λ)

B′, cpke B′

(ctx, γ)← encap(cpkt) S′ ← eval(B′, k)
ρ← KDF(cpkt, spk, cpke, spke, γ)

S′, spke, ctx, H(ρ) S′

cskt′ ← unblind(S′, r′)
cpkt′ ← pkGen(cskt′ )

γ′ ← decap(ctx, cskt′ )

ρ′ ← KDF(cpkt′ , spk, cpke, spke, γ′)

return H(ρ′) = H(ρ)

Figure E.3: BRAKE verification protocol.

unblind and obtain its secret key cskt, from which it computes the correspond-
ing public key cpkt. To conclude the enrolment step, the client sends the tuple
(V, cpkt, id) to the server to be stored for future reference.

For verification and key exchange (Figure E.3), the client requests the fuzzy vault
V stored at the server for identity id, and, using a biometric probe t′, unlocks
the vault to a polynomial f ′. Then, the OPRF evaluation on f is computed anal-
ogously to the enrolment step. At the same time, the client and server generate
ephemeral key pairs to prepare the key exchange. Additionally, the server has
a static key pair (ssk, spk) generated during setup that is not derived from any
biometric information. For the key exchange, we assume that the client has ac-
cess to the static server public key spk as discussed above. Once all keys have
been generated, the server encapsulates a session pre-key γ using the client’s
public key cpkt. The client can decapsulate γ if and only if the secret recon-
structed from the fuzzy vault was correct, i.e., in the case where t and t′ are
closer than threshold τ. Finally, the session key ρ is derived from γ using the
client and server static and ephemeral public keys cpk, spk, cpke, spke in the key
derivation function KDF. We note that the hashed session key ρ allows for the
authentication to be explicit.
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E.3.4 Security Definitions

Following the definition of the BRAKE protocol in Figures E.2 and E.3, we give
formal definitions of the security of the protocol. For simplicity, we implicitly
model the use of identifiers within the enrolment database. In theory, an ad-
versary wants to learn a biometric feature vector that is close to any enrolled
template. In practice however, it always needs to choose a specific identity to
attack or run attacks on multiple specific identities in parallel. The following
definitions and proof sketches model security in the case where a template t is
enrolled in the database held by the server, and an honest client would use a
feature vector t′ to authenticate.

Notation. Denote by f−1 = log2(FMR−1) the false-accept security of a biomet-
ric feature extractor and comparator, let ℓ be the rate limit enforced by the server
and the evaluator, and let ℓA be the brute-force capacity of the attackerA.

Definition E.10. (Correctness) We say that a BRAKE protocol is correct if a cap-
ture subject presenting a biometric probe feature vector t′ and identifier id can
successfully authenticate to an honest server if and only if |t ∩ t′| ≥ τ for a fixed
biometric verification threshold τ, except with negligible probability.

Definition E.11. (Client Privacy) We say that a BRAKE protocol has client privacy
if an adversaryA controlling the client has the following advantage in obtaining
a biometric feature vector t′ that is close to an enrolled biometric template t:

Pr


dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)

∀i ∈ [ℓ] :


(B′, cpke)← A(pp, V)

(sske, spke)← KeyGen(1λ)

S′ ← eval(B′, k)
t′ ← A(S′, spk, spke, ctx)


≤ ℓ f−1 + negl(λ).

Definition E.12. (Server Privacy) We say that a BRAKE protocol has server pri-
vacy if an adversary A controlling the computation server has the following
advantage in obtaining a biometric feature vector t′ that is close to an enrolled
biometric template t:

Pr

dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)

∀i ∈ [ℓ] :

{
B′ ← A(pp, {V, cpkt})
S′ ← eval(B′, k)

t′ ← A(S′)

 ≤ ℓ f−1 + negl(λ).

If client and server run the protocol BRAKE honestly, the evaluator only sees
the blinded element, which is information-theoretically secure, and hence, in-



183

dependent of the biometric template. We therefore do not model evaluator pri-
vacy.

The advantage of an adversary controlling both the client and the server effec-
tively reduces to server privacy. In this scenario, the information the adversary
needs to guess is the evaluated element S′. However, as discussed above, the
evaluator cannot distinguish between evaluation requests for different biomet-
ric feature vectors corresponding to mated authentication attempts, or repeated
evaluation requests for a single identity aimed at running a brute-force search.
Therefore, rate-limiting at the evaluator can be enforced by user-specific OPRF
keys. This way, the evaluator will learn the identifier of the user attempting to
authenticate, but is not able to gain any more knowledge about her biometric
data, while effectively preventing the server from learning it.

The advantage of an adversary controlling both the client and the evaluator ini-
tially reduces to the definition of client privacy, as the adversary seeks to learn
the reference public key stored during enrolment. However, after running one
(unsuccessful) authentication attempt for a specific identity, the adversary will
receive the encapsulated key derived from the biometric reference data of the
data subject in question. From that point on, it can guess a biometric feature
vector, issue an evaluation by use of the evaluation key, and compare the result-
ing key against the obtained one. Therefore, we realistically model an adver-
sary controlling both the client and the evaluator as being able to run an offline
search on the biometric enrolment database. Due to the architecture considera-
tions, this scenario is somewhat unlikely in practice, and a more realistic threat
is the server and evaluator colluding.

Definition E.13. (Client-Evaluator Privacy) We say that a BRAKE protocol has
client-evaluator privacy if an adversary A controlling both the client and the
authentication server does not have an advantage in obtaining a biometric fea-
ture vector t′ that is close to any enrolled biometric template t above running a
brute-force search on V:

Pr


dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)

∀i ∈ [ℓ] :


(B′, cpke)← A(pp, id, V)

(sske, spke)← KeyGen(1λ)

S′ ← A(B′, k)
ctx← encap(ρ, cpkt)

t′ ← A(S′, spk, spke, ctx)


≤ ℓA f−1 + negl(λ).

Definition E.14. (Server-Evaluator Privacy) We say that a BRAKE protocol has
server-evaluator privacy if an adversary A controlling both the server and the
evaluator does not have an advantage in obtaining a biometric feature vector
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t′ that is close to any enrolled biometric template t above running a brute-force
search on V:

Pr

dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)

f ′ ← unlock(V, t′)
B′ ← blind( f ′)

(cske, cpke)← KeyGen(1λ)
t′ ← A(pp, id, V, B′, k, cpkt, cpke)

 ≤ ℓA f−1 + negl(λ).

E.4 Concrete Instantiations

We now give two concrete instantiations of BRAKE, where the first is based
on the hardness of discrete logarithms, while the second utilises lattice-based
cryptography. Thereby, we show that both classical security and post-quantum
security can be achieved using BRAKE. For both instantiations, the modified
improved fuzzy vault scheme described in Section E.3.2 is used. The detailed
description of the instantiations includes their cryptographic building blocks,
complete instantiated protocols, and security proofs.

E.4.1 Instantiation Based on Discrete Logarithms

In this Section, we give an instantiation of the protocol defined in Figures E.2
and E.3 using cryptographic primitives that build on the security of discrete
logarithms (DL). Concretely, we instantiate the universe P with a cyclic group
G, which can be the group of points on an elliptic curve, and the key space
K and randomness space R with a scalar field Zp, where p is the prime or-
der of G. Further, we also define two hash functions HG : {0, 1}∗ → G and
HZp : {0, 1}∗ → Zp.

Building on these foundations, the respective algorithms of Definition E.9 are
instantiated with the Hash-DH OPRF defined in Definition E.4 and ephemeral
Diffie-Hellman key exchange with a key-derivation function KDF. The detailed
protocols for enrolment and verification are defined in Figures E.4 and E.5, re-
spectively. In the following, we refer to the verification protocol in Figure E.5 as
DL-BRAKE. We note that in the setting where the evaluator rate-limits the num-
ber of evaluations per user, the protocol can trivially be updated to send the
identity of the user (or a fixed pseudonym) together with the blinded value, and
the evaluator evaluates a partially oblivious PRF where the identity is a public
input to the function together with the secret evaluation key. Implementing the
techniques from [240, 255] allows us to perform this slightly different evalua-
tion without (noticeable) increased computation nor communication compared
to the protocol we have described.
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DL-BRAKE enrolment protocol

Setup party Server Evaluator
t reference template ssk ∈ Zp k ∈ Zp

spk ∈ G

f ←$ Fp′ [x] : deg( f ) = τ − 1

V(x) = f (x) + ∏
a∈t

(x− a)

r ←$ Zp

B = [r]HG( f )

B B

S = [k]B

S S

U = [r−1]S = [k]HG(x)
cskt ← HZp (U)

cpkt = [cskt]G

V, cpkt, id

store

(V, cpkt, id)

Figure E.4: DL-BRAKE enrolment protocol instantiated with discrete-logarithm
OPRF and Diffie-Hellman key exchange.
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DL-BRAKE verification protocol

Client Server Evaluator
t′ probe feature vector ssk ∈ Zp k ∈ Zp

spk ∈ G spk ∈ G

(V, cpkt, id)

id

V

find {(b, V(b)) : b ∈ t′}
and decode to f ′ ∈ Fp′ [x]

r′ ←$ Zp

B′ = [r′]HG( f ′)
cske ←$ Zp sske ←$ Zp

cpke = [cske]G spke = [sske]G

B′, cpke B′

ρ← KDF([sske]cpke, S′ = [k]B′

[ssk]cpke, [sske]cpkt,

cpke, spke, cpkt, spk)

S′, spke, H(ρ) S′

U′ = [r′−1]S′ = [k]HG(x′)

cskt′ ← HZp (U
′)

cpkt′ = [cskt′ ]G

ρ′ ← KDF([cske]spke,

[cske]spk, [cskt′ ]spke,

cpke, spke, cpkt′ , spk)

return H(ρ′) = H(ρ)

Figure E.5: DL-BRAKE verification protocol instantiated with discrete-
logarithm OPRF and Diffie-Hellman key exchange.
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E.4.2 DL-BRAKE Security Proofs

In this Section, we provide theorems stating the security of the DL-BRAKE based
on the hardness of discrete logarithms, and we sketch the security proofs.

Theorem E.1 (Correctness). Assume that a probe sample t′ is within the veri-
fication threshold τ compared to a biometric template tid for some registered
identity id. Then the DL-BRAKE protocol in Figure E.5 is correct.

Proof sketch. This follows directly from the construction. If the comparison result
of the probe feature set t′ to a biometric template tid is within the the verifica-
tion threshold τ for some registered identity id, then the client will successfully
reconstruct the correct polynomial f ′ using interpolation. From the correctness
of the OPRF, the KEM, and the KDF, we then conclude that the client and the server
compute the same values, and the data subject is correctly authorised. If the dis-
tance between probe and reference feature set is more than τ points, by correct-
ness of Lagrange interpolation, two different polynomials will be reconstructed,
and, but for a collision in the hash function, the key exchange will fail.

Theorem E.2 (Client Privacy). Let A0 be an adversary against client privacy in
the DL-BRAKE protocol in Figure E.5 with advantage ϵ0. Then there exists an
adversary A1 against the fuzzy vault V with advantage ϵ1 and an adversary
A2 against the OPRF with advantage ϵ2, such that ϵ0 ≤ ϵ1 + f−1(1 + ϵ2). The
runtime of A0 is essentially the same as of A1 and A2.

Proof sketch. We consider a single log-in attempt by an adversary A0 controlling
the client. IfA0 guesses a biometric probe, the probability that this probe is close
to the reference sample is approximately f−1. Furthermore, ifA0 with probabil-
ity ϵ0 can output a valid probe sample t′ given access to the fuzzy vault V, we
can trivially turn A0 into an adversary A1 against V with the same advantage.
Moreover, if A0 with advantage f−1 can output a valid probe sample t′ when
having access to values evaluated with key k, then we can turn A0 into an ad-
versary A2 against the OPRF. Finally, we observe that the KEM are independent
of tid, and hence, an adversary A0 cannot learn anything from interacting with
this protocol. We conclude that the protocol achieves client privacy.

Theorem E.3 (Server privacy). Let A0 be an adversary against server privacy
in the DL-BRAKE protocol in Figure E.5 with advantage ϵ0. Then there exists
an adversary A1 against the fuzzy vault V with advantage ϵ1 and an adversary
A2 against the OPRF with advantage ϵ2, such that ϵ0 ≤ ϵ1 + f−1(1 + ϵ2). The
runtime of A0 is essentially the same as of A1 and A2.

We omit the proof of Theorem E.3 since it is similar to Theorem E.2.
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Theorem E.4 (Client-Evaluator Privacy). Let A0 be an adversary against client-
evaluator privacy in the DL-BRAKE protocol in Figure E.5 with advantage ϵ0
controlling both the client and the evaluator. Then ϵ0 ≤ f−1 and A0 has no
advantage in guessing a biometric probe within the threshold of an enrolled
template above a brute-force search.

Proof sketch. We consider a colluding malicious client and malicious evaluator.
Assume that A0 runs the verification protocol once on any input probe t′ and
receives (S′, spke, H(ρ)) from the server. Then A0 can guess a biometric probe,
interpolate to get a polynomial f ′ and execute the OPRF on input f ′ using the
evaluator’s key k. For each guess, A0 can check if the KDF output corresponds
to H(ρ). No information about any enrolled template tid is encoded in the mes-
sages from the server.

Theorem E.5 (Server-Evaluator Privacy). LetA0 be an adversary against server-
evaluator privacy in the DL-BRAKE protocol in Figure E.5 with advantage ϵ0
controlling both the server and the evaluator. Then ϵ0 ≤ f−1 and A0 has no
advantage in guessing a biometric template within the threshold of an enrolled
template above a brute-force search.

Proof sketch. We consider a colluding malicious server and malicious evaluator.
Then A0 can guess a biometric probe, interpolate to get a polynomial f ′ and
execute the OPRF on input f ′ using the evaluator’s key k. For each guess, A0 can
check if [HZp(B′)]G = cpkr. No information about any enrolled template tid is
encoded in the messages from the client.

E.4.3 Instantiation Based on Lattices

Our BRAKE protocol can also be instantiated with lattice-based cryptographic
primitives, which are assumed to yield post-quantum security for certain pa-
rameter choices [11]. Two components in the protocol need to be instantiated:
the OPRF and the KEM.

A construction of a lattice-based OPRF has recently been proposed by [12], which
builds on the security of the M-LWE problem defined in Section E.2.5 for d = 1
(often referred to as the Ring-Learning With Errors (R-LWE) problem [183]). Ad-
ditionally, this specific construction has the additional property of being verifi-
able (making it a VOPRF), i.e., the client has a guarantee that the output received
from the OPRF evaluation is truly correct and calculated with the server’s pub-
licly committed key k [12, 60].
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However, the zero-knowledge proof appended to the lattice-based PRF for veri-
fiability are not practical for real-world application due to proof sizes of several
gigabytes [12]. The authors of [12] give a rough indication of the amounts in
question at approximately 240 bits or around 128 GB of communication data for
realistic parameter choices of log2(q) ≈ 256 and ring dimension 16384. There-
fore, we only look at the case of passive security against dishonest clients for the
lattice instantiation, which can be significantly simplified by replacing the PRF
with a hash function. We will give a detailed description of the modifications
applied to the lattice-based VOPRF by [12] in the following.

E.4.3.1 Lattice OPRF

An option that is made possible by removing the zero-knowledge proofs is the
ability to heavily reduce the computation time and communication cost gener-
ated by the PRF. Originally, the PRF is evaluated as

Fk(x) := ⌊ax · k⌉q′ ∈ Rd′
q′ ,

where ax is a lattice PRF [24]. This evaluation can be replaced with the PRF
F′k(x) := ⌊ax · k⌉q′ where ax a pseudorandom ring element output by a hash
function evaluated on some secret input x. This truncation shrinks the calcula-
tions from a vector of polynomials to just single polynomials in Rq′ .

In practical terms, the input ax we wish to evaluate the OPRF on, is the random
polynomial f generated by the fuzzy vault scheme. Therefore, the element f
needs to be mapped to a ring element in a deterministic fashion. The procedure
is described in the following steps:

1. Concatenate every coefficient of f into a string c f .

2. Create h := H(c f ) using a cryptographic hash function.

3. Produce N coefficients of the polynomial ax by creating a hash of the form
hi := H(i∥h) for i = 0, ..., N − 1 using the same hash function as before
and converting hashes into integers. Here, ∥ denotes concatenation.

4. Reduce the coefficients of ax mod q (if needed).

This procedure results in a polynomial ax which is an element of the ring
Rq = Zq[X]/⟨XN + 1⟩ and can subsequently be used to compute an M-LWE
sample. Using the truncated PRF described above, the lattice-based OPRF con-
struction by Albrecht et al. [12] can be modified as will be described in the fol-
lowing Section. Figure E.6 shows the functioning of the modified OPRF, using
the truncated PRF, in more detail. Here, Dσ is a uniform distribution over Rq
which produces ternary values, and Dσ′ is a uniform distribution over Rq which
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Modified lattice OPRF protocol

Client Evaluator
a←$ Rq

k← Dσ(Rq)

e← Dσ(Rq)

c := a · k + e

c

store(c)

s← Dσ(Rq)

e′ ← Dσ(Rq)

ax := H(x)

cx := a · s + e′ + ax

cx

E← Dσ′ (Rq)

dx := cx · k + E

dx

yx := ⌊dx − c · s⌉q′
output(yx)

Figure E.6: Modified OPRF protocol based on [12] using the truncated PRF.

produces values in a range [−B, B], where B is a large power of two smaller
than q.

The final step, rounding, produces the Client’s output, which is the polynomial
yx. If the rounding is implemented correctly and the protocol has been success-
fully executed, this rounded value will be equal to the rounded value ⌊ax · k⌉q′ .
This is known as the unblinding operation, which allows the Client to receive
the computation of ax · k without learning the Evaluator’s key k, while the Evalu-
ator does not learn the value of ax. Additionally, before rounding, it is necessary
to represent the values that are to be rounded in (− q−1

2 , ..., q−1
2 ).

The principle behind the validity of the rounding mechanism is shown in the
following equations based on [12], which depict the total amount of noise that
is accrued through the protocol. Firstly, we introduce the M-LWE samples c, dx
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PQ-BRAKE enrolment protocol

Client Server Evaluator
t reference template ssk ∈ K c ∈ Rq

id verified identity spk ∈ P k ∈ Rq

c ∈ Rq
( f , V)← lock(t)
s← Dσ(Rq)

e′ ← Dσ(Rq)

ax := H( f )

cx := a · s + e′ + ax

cx cx

E← Dσ′ (Rq)

dx := cx · k + E

dx dx

yx := ⌊dx − c · s⌉q′
cskt ← ExpKDF(yx)

cpkt ← pkGen(cskt)

V, cpkt, id

store (V, cpkt, id)

Figure E.7: PQ-BRAKE enrolment protocol instantiated with modified lattice
OPRF and Kyber KEM.
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PQ-BRAKE verification protocol

Client Server Evaluator
t′ probe feature vector ssk ∈ K c ∈ Rq

spk ∈ P spk ∈ P k ∈ Rq

biometric claim id (V, cpkt, id)

c ∈ Rq
id

V

f ′ ← unlock(V, t′)
(cske, cpke)← KeyGen() (sske, spke)← KeyGen()

s← Dσ(Rq)

e′ ← Dσ(Rq)

ax := H( f ′)

cx := a · s + e′ + ax

cx, cpke cx

(ctx, γ)← encap(cpkt) E← Dσ′ (Rq)

ρ← KDF(cpkt, cpke, dx := cx · k + E
spk, spke, γ)

dx, H(ρ)

spke, ctx
dx

yx := ⌊dx − c · s⌉q′
cskt′ ← ExpKDF(yx)

cpkt′ ← pkGen(cskt′ )

γ′ ← decap(ctx, cskt′ )

ρ′ ← KDF(cpkt′ , cpke,

spk, spke, γ′)

return H(ρ′) = H(ρ)

Figure E.8: PQ-BRAKE verification protocol instantiated with modified lattice
OPRF and Kyber KEM.
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and cx, which form the total noise value. These are elements of Rq and are
transmitted between the Client and Evaluator during the protocol. We recall
their definitions as given in Figure E.6:

c = a · k + e
dx = cx · k + E

cx = a · s + e′ + ax.

Next, we recall the computation of the polynomial y on the Client’s side, which
includes the values dx, c and s before they are summed and rounded in yx:

y = dx − c · s
= cx · k + E− (a · k + e) · s
= (a · s + e′ + ax) · k + E− a · k · s + e · s
= e′ · k + ax · k + E− e · s.

Then, as the polynomial yx can be obtained from y as:

yx =

⌊
q′

q
· (dx − c · s)

⌉
=

⌊
q′

q
· ax · k

⌉
.

In the expanded equation for y, we notice that it contains the polynomial ax · k
and and a noise polynomial e′ · k− e · s + E. Therefore, the last equation, show-
ing the value of yx, is correct with all but a negligible probability if the noise
polynomial

∣∣∣ q′
q · (e′ · k− e · s + E)

∣∣∣ is small enough for each coefficient to achieve
acceptable correctness after rounding. In other words:∣∣∣∣ q′

q
· (e′ · k− e · s + E)

∣∣∣∣
∞
<

1
2

.

E.4.3.2 CRYSTALS Kyber Key Encapsulation Mechanism

We exchange the Diffie-Hellman key exchange with a lattice-based KEM: the
recently standardised CRYSTALS-Kyber [49]. Kyber is based on the M-LWE
problem described in Section E.2.5 and provides IND-CCA2 security [21]. The
main parameters of Kyber, N = 256 and q = 3329, were specifically chosen for
the ability to use the Number Theoretic Transform (NTT) providing an efficient
way to perform multiplications in Rq [21]. In our work, the parameter set of
Kyber768 was chosen due to its optimal performance while providing more than
128 bits of security [21]. While no significant changes were applied to Kyber on
a theoretical basis, we give further details on the integration of Kyber into the
implementation of the BRAKE protocol in Section E.5. In particular, we note that
the security of the session key established through BRAKE is given through the
security guarantees of Kyber.
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E.4.3.3 PQ-BRAKE

Combining the introduced modified lattice OPRF and the Kyber KEM, we can
define the PQ-BRAKE protocol as described in Figures E.7 and E.8.

E.4.4 PQ-BRAKE Security Proofs

The security proofs for PQ-BRAKE follow directly from the proofs given for the
DL-BRAKE instantiation given in Section E.4.2 through the hardness of M-LWE
and M-SIS.

E.4.5 Improved Security using NIZK

The protocol can be further secured by the addition of non-interactive zero-
knowledge proofs (NIZKs) using the established construction by Chaum and
Pedersen [62] together with a Fiat-Shamir transform [113]. The NIZK is added
to prove the honest evaluation of the OPRF. Thereby, a client can verify that the
evaluator computed the evaluation honestly. In the case of an unsuccessful au-
thentication attempt, the client therefore gains more knowledge about the reason
of failure, and can potentially reveal a corrupted evaluator. We note that above
this additional information, the passively secure protocol already allows for the
protection of the biometric data even in the presence of malicious adversaries,
as long as at least one of the parties remains honest as given by the security
definitions above. However, in the lattice-based instantiation, a malicious client
may be able to learn the OPRF key, facilitating a similar attack as in the case of
a colluding client and signer. Therefore, the lattice-based instantiation can only
be considered in the semi-honest adversary model.

E.5 Experimental Evaluation

We evaluated our protocol instantiated with elliptic curves presented in Figure
E.5 and lattices presented in Figure E.8 experimentally and show the results in
this Section. Our experiments were run on a commodity notebook with Intel
Core i7-8565U CPU@1.80GHz and 8GB RAM. Our code is available at https:
//github.com/dasec/DL-BRAKE and https://github.com/dasec/PQ-BRAKE

and includes automated installation scripts with all dependencies in order to
support the reproducibility of our work.

To begin, we give a more detailed comparison of our work with closely related
work in Table E.2 by extending Table 1 in [260] with our protocol. In terms of
round efficiency, our protocol compares well to [100] and [106] with two rounds

https://github.com/dasec/DL-BRAKE
https://github.com/dasec/DL-BRAKE
https://github.com/dasec/PQ-BRAKE
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Table E.2: Summary of our protocol compared to previous published protocols
as described in Table 1 of [260].
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of communication. In order to prevent offline attacks, a minimum number of
two rounds of communication is necessary. Therefore, [100], [106], and our
protocol can be considered optimal in terms of number of rounds. As [260]
constructed a one-round protocol, this leaves them open to offline attacks. In
terms of the protection of the biometric data compliant with ISO/IEC 24745
[149], our protocol is the only compliant one: we inherit unlinkability, renewa-
bility, and irreversibility from the fuzzy vault schemes. Moreover, we show that
our protocol is efficient in terms of execution times given in Table E.3 and as
well as in terms of biometric performance shown in Figure E.9. In compari-
son, fPAKE [100] does not achieve irreversibility as templates are disclosed to
the server in plaintext, fuzzy aPAKE [106] does not achieve computational effi-
ciency, and [260] does not achieve an acceptable biometric performance, as we
show in Appendix E.6.

E.5.1 Fuzzy Vault Implementation

For the fingerprint fuzzy vault instantiation, we used the open-source imple-
mentation provided by [251] with all original parameter settings, in particular,
the minutiae quantisation and encoding into a product of finite field F218 ×F218

which accommodates a unique encoding of at most tmax = 44 genuine minu-
tiae as described in [251]. Keeping the parameter choices evaluated in the work
of [251] ensures perfect replaceability with other state-of-the-art fuzzy vault in-
stantiations, such as [220] for iris and [218] for face. In particular, we run our
implementation on the same fingerprint database MCYT-330 [199] and same
feature extractor, Digital Persona’s FingerJetFX open source edition minutiae ex-
tractor1. This means that all evaluations of biometric performance can be com-
pared directly to the original paper of [251] and papers that compare their work
with the latter [218, 220].

The only modification applied to the implementation of [251] is in the unlocking
function. Here, [251] use the stored hash H( f ) of the secret polynomial f corre-
sponding to a reference template t, which allows for offline brute force attacks.
Our protocol prevents offline attacks by removing the hash and using highest-
frequency decoding in its place (see Section E.3.2). As discussed above, this does
not impact the security in terms of the false-match rate of our protocol.

E.5.2 DL-BRAKE Implementation

Our implementation of the OPRF and Diffie-Hellman key exchange is based on
OpenSSL. For all cryptographic operations, we used P-256 [25] as the elliptic

1http://www.digitalpersona.com/fingerjetfx

http://www.digitalpersona.com/fingerjetfx
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Polynomial degree τ − 1

6 8 10 12 14 16

Feature extraction 200.59and preprocessing

lock 2.38

unlock 112.24 185.99 276.37 385.26 511.91 694.87

DL−OPRF 0.21

PQ−OPRF 31.81

DL−KeyGen 0.05

PQ−KeyGen 0.21

DL−encap 0.16

PQ−encap 0.08

DL−decap 0.15

PQ−decap 0.03

DL-Verification 313.4 387.15 477.53 586.42 713.07 896.03(Figure E.5)

PQ-Verification 347.34 421.09 511.91 620.36 747.01 929.97(Figure E.8)

FMR (%) 1.04% 0.04% 0.00% 0.00% 0.04% 0.09%

1− FNMR (%) 92.88% 88.79% 81.97% 73.18% 60.45% 44.09%

Estimated security 17 23 29 36 44 —in bits based on [251]

Table E.3: Execution times in milliseconds for the DL-BRAKE and PQ-BRAKE
protocols using the fingerprint fuzzy vault by [251].

DL-BRAKE PQ-BRAKE

Locked fuzzy vault 99 B

OPRF 128 B 114 KB

KEM 64 B 4672 B

Hash digest 32 B

Total 0.3 KB 60.2 KB

Table E.4: Communication cost for DL-BRAKE and PQ-BRAKE.
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curve and SHA-256 as the hash function.

Regarding the computational performance and recognition accuracy of our pro-
tocol, we give timings for increasing polynomial degrees τ − 1 in Table E.3,
where τ is the biometric decision threshold. At the same time, we give the bio-
metric performance in FMR and FNMR along with the estimated false-accept
security in bits as evaluated in [251]. As these security levels are derived from
the FMR and our modified unlocking function does not impact the FMR, we
are able to refer to the evaluation performed in [251] directly. For an accept-
able recognition accuracy at τ− 1 = 8, the execution of the protocol DL-BRAKE
given in Figure E.5 takes 387.15 milliseconds. To compare, the fastest setting
reported in Table 2 in [260] also achieves 387 milliseconds, but at significantly
lower accuracy (see Appendix E.6).

The execution times are dominated by the constant cost of feature extraction
(200.59 milliseconds) and the cost for unlocking, which is dependent on the
polynomial degree. We note that timing for the enrolment part of the protocol
given in Figure E.4 is 203.23 milliseconds, where feature extraction dominates
compared to the locking at 2.38 milliseconds. However, the enrolment step is
a one-time effort when setting up the system, and does not affect verification
performance.

Accordingly, Figure E.9 shows the trade-off between FMR and FNMR for our
protocol. To conclude the efficiency evaluation of our protocol, we report that
the communication cost of objects transferred between the parties during the
verification step of the protocol is 32 bytes for any point on the elliptic curve
P-256 [25] (i.e., cpke, spke, B′ and S′), 99 bytes for a locked fuzzy vault of degree
at most 43 and coefficients in F218 , and 32 bytes for the hash digest.

E.5.3 PQ-BRAKE Implementation

For the lattice-based instantiation of our protocol, we utilised the OpenSSL im-
plementation of the SHA-256 hash function, Open Quantum Safe’s liboqs C li-
brary [244] through its C++ wrapper, liboqscpp, for the CRYSTALS Kyber [49]
implementation. To support key generation from a designated input (i.e., the
fuzzy vault secret polynomial f ), we extended the C++ wrapper to include the
functionalities required for BRAKE. The documentation can be found in our
repository at https://github.com/dasec/PQ-BRAKE.

For the OPRF part of the protocol, parameter choice is crucial for both com-
munication and computation complexity along with security, and needs to be
carefully evaluated. We therefore tested our parameter validity using the es-
tablished lwe-estimator [13]. As a result, we chose the parameters N = 4096,

https://github.com/dasec/PQ-BRAKE
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q ≈ 275, and B = 253 with security of 188 bits. In comparison, the Kyber KEM is
instantiated with N = 256 and q = 3329.

Using these parameters, it is also possible to calculate a probability of the round-
ing step failing, which would result in a decryption failure in practice, due to
noise wrapping the value around Z+ 1/2 and causing a rounding to the wrong
value. As demonstrated in Section E.4.3.1, the upper bound on the noise is given
as: 2N + B ≤ q

4 . We consider the probability of one coefficient of the output
polynomial yx being wrongly decrypted to be: 2N+B

q , and its complement situ-

ation, the probability of no error occurring as 1− 2N+B
q . With this in mind, we

claim that the probability of at least one decryption error occurring during the
rounding of N polynomial coefficients and thus the protocol failing in the OPRF
step, to be

1−
(

1− 2N + B
q

)N
. (E.3)

Applying this formula, we set the parameters so that the failure rate is signif-
icantly smaller than the false-accept security of the biometric component, i.e.,
the improved fuzzy vault scheme. A success rate of 99.9% was chosen for this
benchmark.

The computational performance of the PQ-BRAKE protocol can be seen in Ta-
ble E.3. Compared to DL-BRAKE, the most significant change is the lattice-
based OPRF, which has a significantly higher computational workload of 31.81
milliseconds compared to the classically secure OPRF at only 0.21 milliseconds.
However, compared to the overwhelming cost of feature extraction, preprocess-
ing, and the unlocking step of the fuzzy vault, the lattice OPRF cost can still
be considered feasible. A visual comparison of the execution times for both the
Dl-BRAKE and PQ-BRAKE protocols as well as the fixed costs of feature ex-
traction and the individual effort of the fuzzy vault unlocking step is given in
Figure E.10.

The communication cost for PQ-BRAKE can be determined as 99 bytes for a
locked fuzzy vault as before, 114KB for the OPRF, covering a total of three R-
LWE samples, a total of 4672 bytes for the Kyber key exchange, and 32 bytes
for the has digest. A comparison of the communication cost for DL-BRAKE,
PQ-BRAKE, and the original lattice VOPRF by Albrecht et al. [12] can be seen in
Table E.4.
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E.6 Conclusions

In this work, we constructed biometric resilient authenticated key exchange
from fuzzy vaults and proved its security in compliance with ISO/IEC 24745.
Our protocol is efficient both in terms of execution times and biometric perfor-
mance.

The combination of asymmetric, secure, and efficient biometric authenticated
key exchange has not been achieved in prior works. Related protocols are either
symmetric, and thus does not provide protection of the biometric data on the
server side, or inefficient in terms of computational speed due to their general-
ity, or else insufficient in terms of recognition accuracy, allowing for zero-effort
imposter and low-effort brute-force attacks. The accuracy deficiencies of the lat-
ter cannot be addressed by exchanging the biometric comparison subsystem, as
the construction is specific to the imprecise comparator used.

In our protocol, we enforce communication for every adversarial guess through
OPRFs. Using established and interchangeable improved fuzzy vault schemes
for different biometric modalities, the key exchange is only successful if the
two biometric samples were close. Furthermore, we show that our protocol can
be instantiated both with classical primitives, namely discrete logarithm based
OPRFs and Diffie-Hellman key exchange, as well as with lattice-based OPRFs
and KEMs.

Future works may focus on addressing the necessary pre-alignment processes
of minutiae-based fingerprint representations. A promising approach both with
regard to rotation and entropy is the use of four-finger captures, where four fin-
gerprints are captured within one image. Through the relative position of the
fingers, pre-alignment can be realised more efficiently than based on minutiae,
and the intra-identity independence of fingerprint patterns yield the fourfold
entropy of the biometric data. Notably, the implementation of the minutiae
fuzzy vault evaluated in our work includes the option of combining four fin-
gerprints into one fuzzy vault. However, auxiliary alignment data required for
pre-alignment are not yet discussed in this context.
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Appendix E.6: Biometric Performance Analysis

In this Appendix, we give the experimental evaluation of the recent work on
biometrics-authenticated key exchange proposed by [260]. Specifically, we show
the biometric performance of their construction for fingerprint and discuss its
shortcomings.

For this evaluation, we implemented Algorithm 2 in [260] according to the de-
scription available in the paper. According to the description, we set the number
of neighbours for each minutia at µ = 4 and, iterating through the minutiae in
the template, construct the vectors vj,ρ from the minutia’s x- and y-coordinates
which are given in pixels (i.e., integers) from the upper left corner. The cal-
culation of the Euclidean distances dj,1, ..., dj,4 therefore result in floating point
numbers, whereas the angles ϕj,ρ,1, ..., dj,ρ,6 remain as integer values. In Section
6.2.2 in [260], the authors state that the number of neighbours µ = 4 originates
an encoding of the values dj,ρ and ϕj,ρ,ω into µ = 4 bits each. This relation is not
clear to us and we were not able to satisfactorily follow the reasoning given by
the authors of [260] during an email exchange. Therefore, we give the evaluation
of the biometric performance for the original float and integer values, which can
be considered an upper bound for the performance of a binary encoding. As
comparison function, we determined the set difference by mapping minutiae
based on their minimal Hamming distance.

We evaluated our implementation of Algorithm 2 in [260] on the FVC2004 DB-
1 [252], which is the least challenging out of the four databases used in [260] in
terms of image quality and rotation of the fingerprint images. We compare the
performance against a state-of-the art rotation invariant minutiae comparator,
SourceAFIS [259]. From the evaluation, it becomes evident that the fingerprint
comparison algorithm proposed by [260] does not have an acceptable perfor-
mance (see Table E.5).

FVC2004 DB-1 [252] CASIA-FPV53

FMR FNMR FMR FNMR

BAKE [260] 27.8% 25.4% 27.6% 30.90%

SOTA2 1.01% 17.29% 1.13% 9.85%

Table E.5: Biometric performance of BAKE [260] compared to state-of-the-
art (SOTA) performance.

For the optimal threshold, the FMR is measured at 27.8% with a FNMR of 25.4%.
Both of these values are not close to the required FMR of 0.1% [117] and FNMR
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below 5%. Compared to the state-of-the-art, the performance that can be achieved
in this dataset lies at a FMR of 1.01% at FNMR of 17.29% using the SourceAFIS
comparison algorithm2. This shows the challenging nature of the dataset, which
was collected as a fingerprint verification challenge with the goal of providing
challenging fingerprint samples. Therefore, we also evaluated both algorithms
on the less challenging CASIA-FPV53 database. However, the result are similar
with a FMR of 27.6% and FNMR of 30.90% for BAKE-1 compared to a FMR of
1.13% and FNMR of 9.85% for SourceAFIS.

To conclude, the fingerprint comparison algorithm proposed for the construc-
tion in [260] is not able to distinguish between mated and non-mated compari-
son trials to a satisfactory degree.

2https://sourceafis.machinezoo.com/
3http://biometrics.idealtest.org

https://sourceafis.machinezoo.com/
http://biometrics.idealtest.org
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Appendix E.7: Notation

Parameter Explanation

Generic t Biometric lock feature set.
t′ Biometric unlocking feature set.
f Secret random polynomial.
τ Correction capacity of C.
Fp′ Finite field for minutiae encoding.
C Error-correcting code.
H Cryptographic hash function.
λ Security level.
V Locked fuzzy vault.
fk Pseudorandom function with key k.
x Secret client input for OPRF.
r Randomness sampled by client.
B, B′ Blinded OPRF input.
S, S′ OPRF evaluation.
U, U′ Unblinded OPRF evaluation.
k Secret OPRF evaluation key.
pp Public parameters.
id Biometric claim.
csk Client secret key.
cpk Client public key.
ssk Static server secret key.
spk Static server public key.
(sk, pk) Ephemeral asymmetric keys.
γ Session pre-key.
ctx Encapsulation of session pre-key γ.
γ′ Decapsulation of session pre-key γ.
KDF Key derivation function.
ρ Session key.
f−1 False-accept security.
l Rate limit enforced by the server.
A Adversary.
lA Brute-force capacity of adversary.
ϵ Adversary advantage.

Group setting p Prime group order.
G Cyclic group.
Zp Scalar field of order p.
HG Cryptographic hash function HG : {0, 1}∗ → G.
HZp Cryptographic hash function HZp : {0, 1}∗ → Zp.

Lattice setting q Ciphertext modulus.
Rq Cyclotomic ring Rq = Zq[X]/⟨XN + 1⟩.
N Ring dimension of cyclotomic ring.
χ Bounded distribution over Rq.
d Module dimension for M-LWE.
s M-LWE secret sampled from χ.
e M-LWE error sampled from χ.
m Number of M-SIS vectors.
β Bound for M-SIS solutions.
Dσ Ternary distribution overRq.
Dσ′ Uniform distribution overRq bounded by [−B, B].
B Bound for Dσ′ .

Table E.6: Overview of parameters.
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