
Received: 1 July 2023 Accepted: 22 August 2023

DOI: 10.1002/pamm.202300206

RESEARCH ARTICLE

Developing an immersed boundary method for
compressible flow

Frederik Kristoffersen1 Martin Larsson2 Sverre Gullikstad Johnsen3

Wolfgang Schröder4 Bernhard Müller1

1Department of Energy and Process
Engineering, Norwegian University of
Science and Technology (NTNU),
Trondheim, Norway
2Sportradar AS, Trondheim, Norway
3SINTEF Industry, Trondheim, Norway
4Institute of Aerodynamics,
Rheinisch-Westfälische Technische
Hochschule, Aachen, Germany

Correspondence
Frederik Kristoffersen, Department of
Energy and Process Engineering,
Norwegian University of Science and
Technology (NTNU), 7034 Trondheim,
Norway.
Email: frederik.kristoffersen@ntnu.no

Funding information
Research Council of Norway,
Grant/Award Number: 303218

Abstract
Development of a 3D sharp interface ghost node immersed boundary method
(IBM)within a fluid solver based on the compressible Navier–Stokes equations is
underway. The objective of the IBM is to accurately apply boundary conditions at
fluid–solid interfaces. The Navier–Stokes solver is currently being verified using
various test cases, including the classic cylinder in cross flow. As part of this
verification process, particular attention was given to investigating the effects
of different lateral boundary conditions. The results demonstrate that extrapola-
tion boundary conditions exhibit better agreement with the literature compared
to symmetry conditions, in cases with relatively narrow domains. These findings
highlight the potential benefits of extrapolation boundary conditions in reducing
confinement effects and removing nonphysical waves in external flow problems.

1 INTRODUCTION

Non-conforming grid methods, such as cut-cell methods and immersed boundarymethods (IBM), do not require remesh-
ing, which saves computational time [1, 2]. However, these methods require more sophisticated techniques to apply
boundary conditions at non-grid-aligned boundaries.
The first IBMs developed [3] have later been categorized as diffuse interface IBMs. Another more recent approach is

the sharp interface model [4–10]. With this model, grid nodes that lie in the solid domain, but are close enough to the
interface to be included by numerical stencils in the fluid solver, are marked as ghost nodes.
In this paper, we focus on the fluid solver of a 3D IBM code currently under development, which utilizes a ghost point

IBM. The flow values at the ghost nodes are determined by the boundary conditions at the fluid-solid interface and
interpolated flow values at image points in the flow domain. We outline the governing equations, including their non-
dimensionalized and perturbation forms, in Section 2. The spatial and temporal discretizations are discussed in Section 3,
along with an outline of the boundary conditions in Sections 3.3 and 3.4. We introduce a test case, namely the classic
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cylinder in cross flow, in Section 4, and present and discuss the verification results in Section 5. The work presented in
this article builds on previous work [11], and parts of the text have been reused with adaptation.

2 NAVIER–STOKES EQUATIONS FOR COMPRESSIBLE FLOW

Compressible fluid flow is governed by the Navier–Stokes equations:
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Here, 𝑡 represents time, 𝜌 is themass density, �⃗� = [𝑢, 𝑣, 𝑤]𝑇 denotes the velocity,𝐻 = 𝐸 +
𝑝

𝜌
represents the total specific

enthalpy, 𝐸 is the total specific energy, 𝑝 represents pressure, 𝐈 is the identity matrix, ∇ is the nabla operator, 𝜅 denotes
thermal conductivity, 𝑇 represents temperature, and
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represents the components of the viscous stress tensor 𝜏 for a Newtonian fluid, where 𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧} denote Cartesian
coordinates. Here, 𝜇 represents dynamic viscosity, and 𝛿𝑖𝑗 denotes the Kronecker delta. The equations of state for a perfect
gas yield:

𝑝 = (𝛾 − 1)
(
𝜌𝐸 −

𝜌

2
||�⃗�||2), (3)

where 𝛾 =
𝑐𝑝

𝑐𝑉
is the ratio of specific heats at constant pressure and volume, cp and cv, respectively. The transport properties

𝜇 and 𝜅 are modeled as functions of temperature 𝑇 only. The viscosity is given by Sutherland’s law:
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, (4)

where 𝜇0 and 𝑇0 are reference states for 𝜇 and 𝑇, respectively and 𝑆 represents Sutherland’s constant divided by 𝑇0.
Assuming constant Prandtl number 𝑃𝑟, the thermal conductivity is given by

𝜅 =
𝑐𝑝
Pr𝜇. (5)

𝑐𝑝To non-dimensionalize the governing equations, we introduce the following non-dimensional quantities, denoted by
superscript ∗ for non-dimensional values and subscript 0 for reference states:
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(6)

Here, 𝐿 is a characteristic length scale, and 𝑅𝑒0 =
𝜌0|�⃗�0|𝐿

𝜇0
denotes the Reynolds number of the reference state. By

employing these non-dimensional formulations, the non-dimensionalized governing equations retain the same form as
the dimensional ones, and hence, the superscript ∗ will be dropped henceforth. The reference Mach number is defined
as 𝑀𝑎0 =

|�⃗�0|
𝑐0
, where 𝑐0 represents the speed of sound in the reference state. To minimize cancellation errors for low

Mach number flow, the perturbation formulation [12] is adopted. With this approach we solve for the flow variables’
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perturbations around a reference state rather than the variables themselves. We decompose the flow variables as:

𝜙 = 𝜙0 + 𝜙′, (7)

where 𝜙 represents any flow variable, 𝜙0 denotes the reference value and 𝜙′ is the perturbation. This perturbation
formulation is applied to conserved and primitive variables but not to transport properties. By setting the reference state
of velocity to zero, the governing equations retain their forms, except for the convective flux in the energy equations, which
changes from 𝜌𝐻�⃗� to ((𝜌𝐻)0 + (𝜌𝐻)′)�⃗�.

3 NUMERICALMODEL

3.1 Discretization in Space

The spatial discretization of the fluid domain is done by second order central difference operators. This approach was
chosen for its compact numerical stencil. Thus, first derivatives, for example, in the continuity equation are approximated
as

𝜕(𝜌𝑢)

𝜕𝑥
≈

(𝜌𝑢)𝑖+1 − (𝜌𝑢)𝑖−1
2Δ𝑥

. (8)

Here, 𝑖, 𝑗 are grid indices in the 𝑥 and 𝑦 directions respectively. Mixed derivatives, as found in the viscous terms of the
Navier–Stokes equation, are discretized by applying the central difference operator twice,

𝜕
𝜕𝑦

[
𝜇
𝜕𝑢
𝜕𝑥

]
≈

1
4Δ𝑥Δ𝑦

[
𝜇𝑖,𝑗+1(𝑢𝑖+1,𝑗+1 − 𝑢𝑖−1,𝑗+1) − 𝜇𝑖,𝑗−1(𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗−1)

]
. (9)

In the case of repeated derivatives, applying the operator twice would result in a wider stencil. Instead, the compact
second derivative scheme is used, where the viscosity at the adjacent midpoints are computed as averages,

𝜕
𝜕𝑥

[
𝜇
𝜕𝑢
𝜕𝑥

]
≈

1

2Δ𝑥2
[(𝜇𝑖+1 + 𝜇𝑖)(𝑢𝑖+1 − 𝑢𝑖) − (𝜇𝑖 + 𝜇𝑖−1)(𝑢𝑖 − 𝑢𝑖−1)]. (10)

The compact stencil Equation (10) is also used for the thermal diffusion terms in the energy equation and the
heat equation. Besides being compact this discretization has the added benefit of better damping of high wave
number oscillations.

3.2 Discretization in time

The spatial discretization of the Navier–Stokes equations for compressible flow Equation (1) in the interior of the domain
leads to the system of ordinary differential equations

d𝜙𝑖𝑗𝑘
d𝑡

= 𝑅({𝜙𝑖𝑗𝑘}, 𝑡). (11)

The temporal discretization is done using the fourth order explicit classical Runge–Kutta method (RK4).
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+
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6

(
𝑘𝑛
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+ 2𝑘𝑛
2,𝑖𝑗𝑘
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3,𝑖𝑗𝑘

+ 𝑘𝑛
4,𝑖𝑗𝑘

)
, (12)

where

𝑘𝑛
1,𝑖𝑗𝑘

= 𝑅
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𝜙𝑖𝑗𝑘
}𝑛

, 𝑡𝑛
)
, (13)
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𝑘𝑛
4,𝑖𝑗𝑘
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The time-step size Δ𝑡 is chosen with regards to the stability criterion [13]:

Δ𝑡 = 𝑚𝑖𝑛{Δ𝑡CFL, Δ𝑡visc}, (17)

where

Δ𝑡CFL = 𝐶CFL

(|𝑢| + 𝑐
Δ𝑥

+
|𝑣| + 𝑐
Δ𝑦

+
|𝑤| + 𝑐
Δ𝑧

)−1

, (18)

and

Δ𝑡visc =
𝐶𝑅𝐾4

𝜇

𝜌
𝑚𝑎𝑥{

4

3
,
𝛾

𝑃𝑟
}

(
1

Δ𝑥2
+

1

Δ𝑦2
+

1

Δ𝑧2

)−1

. (19)

The constants 𝐶CFL = 0.9 and 𝐶𝑅𝐾4 = 0.68 are set smaller than their theoretical maximum values, 2 and 1.5, based on
experience, to ensure stability of the solution.

3.3 Boundary conditions at the boundary of the domain

At the boundary of the domainwe use combinations of the following different boundary conditions: inlet, outlet, periodic,
symmetry, and extrapolation. At the inlet, we set a fixed inlet velocity, along with a temperature fluctuation of 𝑇 = 0,
and the pressure is linearly extrapolated from the interior. The conserved variables 𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸 are derived from
the primitive variables 𝑢, 𝑣, 𝑤, 𝑝, 𝑇, using the ideal gas relation. The outlet boundary fixes only the pressure fluctuation
to be 𝑝 = 0, while the momentum components and density are linearly extrapolated from the interior. At the periodic
boundaries, the values for all flow variables are copied from the boundary-adjacent nodes at the opposite side of the
domain. The symmetry condition represents a full-slip wall, providing confinement without friction. Numerically, this is
done using a layer of ghost nodes. The ghost nodes copy the values of the primitive variables from the boundary adjacent
nodes in the interior, except for the normal velocity component, which changes sign. The conserved variables are derived
from the primitive ones. The last boundary condition involves extrapolating all conserved variables from the interior. This
is also implemented using a layer of ghost nodes. The flow variables in these nodes are linearly extrapolated from the
interior nodes that coincide with the boundary and the interior boundary adjacent nodes: 𝜙ghost = 2𝜙boundary − 𝜙adjacent,
where 𝜙 is any conserved variable. This boundary condition allows flow over the boundary, but should not be used if
considerable inflow is expected, as the extrapolation would be based on downstream values.

3.4 Boundary conditions at immersed boundaries

Figure 1 illustrates the points close to an immersed boundary, along with their classifications. Ghost nodes are nodes
located outside the fluid domain but included in the numerical stencil of at least one fluid node.
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F IGURE 1 Illustration of ghost nodes (GN), body intercept (BI) points, and image points (IP).

To approximate the flow variables at the ghost nodes, the following procedure is followed. A normal probe is extended
from each ghost node to the closest point on the interface, referred to as the body intercept point. This normal probe is
further extended into the fluid domain to determine the position of an image point. By performing trilinear interpolation
of the surrounding fluid nodes, we can compute the flow variables at the image points. As depicted in the figure, values
from the boundary conditions at the body intercept point can also be utilized in the interpolation process. The values
at the ghost nodes are determined based on the boundary conditions at the body intercept points and the values at the
image points.
To enforce no-slip conditions at the immersed surfaces, Dirichlet conditions are applied to the velocity components. The

velocity �⃗�BI in the body intercept point will be 0 for a stationary surface, and the surface velocity otherwise. We employ
linear extrapolation from the body intercept and image points to the ghost node:

�⃗�GN = 2�⃗�BI − �⃗�IP. (20)

The immersed surfaces are modeled as adiabatic walls, resulting in a zero normal gradient for the temperature at these
surfaces. Additionally, we assume the boundary layer approximation for the pressure, implying zero normal pressure
gradient. These homogeneous Neumann conditions for 𝑇 and 𝑝 are implemented as:

𝑇GN = 𝑇IP − 2|�⃗�BI − �⃗�GN| ⋅ 𝜕𝑇
𝜕𝑛

, 𝑝GN = 𝑝IP − 2|�⃗�BI − �⃗�GN| ⋅ 𝜕𝑝
𝜕𝑛

. (21)

Here, �⃗�BI − �⃗�GN represents the vector from a ghost node to its body intercept point, as illustrated in Figure 1, and 𝜕

𝜕𝑛
denotes the normal gradient.

4 TEST CASE

One of the test cases used to verify the method is the cross flow around a cylinder. The test case is set up as a rectangular
domain with artificial boundaries, as seen in Figure 2. The flow wise direction aligns with the positive x-axis, while the
axial direction of the cylinder corresponds to the z-axis, in which the flow does not change. The length of the domain in
the flowwise direction is set to 40 times the diameter of the cylinder, and the width in the lateral direction along the y-axis
is 20 times the cylinder diameter.
The implementation of the boundary conditions at the domain boundary are outlined in Section 3.3. In this case the inlet

is at 𝑥 = 0, on the left side, and on the opposite side we have the outlet at 𝑥 = 40𝐷. At the lateral boundaries 𝑦 ∈ {0, 20𝐷}
we simulate two different configurations: symmetry conditions and extrapolation. The cylinder is modeled as an adiabatic
surface with no-slip conditions and the boundary layer approximation for the pressure, as discussed in Section 3.4.
The simulations presented here were conducted at Reynolds number 𝑅𝑒0 = 40 andMach number𝑀𝑎0 = 0.25, on a grid

of 1600 × 802 × 3 nodes. The initial condition is uniform stagnation flow at the reference condition, and the inlet velocity
linearly builds up to the target value 0.25 over the first 50 units of time.
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F IGURE 2 Illustration of the cylinder test case. D is the cylinder diameter.

TABLE 1 Properties from the cylinder test case at Reynolds number 40. Experimental and simulated values from the literature and the
present study. 𝐶D =

2𝐹D

𝜌0|→𝑢0|2𝐷 is the drag coefficient. The other variables are explained in Figure 3.

𝑳𝒔 𝒂 𝒃 𝜽 𝑪𝐃

Tritton [14] - - - - 1.59
Dennis & Chang [15] 2.35 - - 53.8◦ 1.52
Coutanceau & Bouard [16] 2.13 0.76 0.59 53.8◦ -
Fornberg [17] 2.24 - - 55.6◦ 1.50
Linnick & Fasel [18] 2.28 0.72 0.60 53.6◦ 1.52
De Palma et al. [19] 2.28 0.72 0.60 53.8◦ 1.55
Canuto & Taira [20] 2.24 0.72 0.59 53.7◦ 1.54
Khalili et al. [10] 2.22 0.72 0.59 53.1◦ 1.52
Present study, symmetry BC 2.37 0.79 0.60 54.2◦ 1.75
Present study, extrapolation BC 2.30 0.74 0.60 54.1◦ 1.69

F IGURE 3 Schematic of the notation for parameters of interest. 𝐿s is the separation length, 𝑎 and 𝑏 give the positions of the cores of the
counter vortices relative to the cylinder’s trailing edge, and 𝜃 is the separation angle. The cylinder diameter is 𝐷 = 1. The figure is taken from
[10].

5 RESULTS

The results of the cylinder flow simulations with two different lateral boundary conditions are presented and discussed.
Table 1 compares experimental and simulated values from the literature with those obtained in the present study. Overall,
the results align well with the values reported in the literature.
However, it is notable that the drag coefficient𝐶D is significantly higher in the present study.We attribute this difference

to the confinement effect of the boundaries. The width of the computational domain relative to the cylinder diameter has
a substantial impact on the flow structures near the cylinder, particularly on the drag coefficient. For instance, when using
symmetry conditions at the lateral boundaries, the calculated 𝐶D values are 2.58, 2.05, and 1.75 for domain widths of 5D,
10D, and 20D, respectively. The significance of the domain width has also been emphasized by Fornberg [17] and Linnick
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KRISTOFFERSEN et al. 7 of 8

& Fasel [18]. It should be noted that, in the other listed studies, the domain width is typically 40D or larger, whereas our
verification process has been limited to 20D thus far.
Another observation is that the results obtained with extrapolation boundary conditions are closer to the results from

other studies compared to those with symmetry conditions. Our hypothesis is that since the extrapolation allows flow
over the boundary and thus imposes less confinement on the flow, it acts more as far-field boundary conditions, unlike
the symmetry conditions. Additionally, the extrapolation boundary conditions allow density and pressure waves to pass
through without reflection, rather than nonphysically bouncing back and forth between the boundaries. These two fea-
tures are advantageous for simulating external flows. The reduced confinement may alleviate the demand for a larger
domain width, while the non-reflective nature of the extrapolation boundary conditions may lead to faster convergence
or reduced noise in transient simulations.
As for the temporal development, when the inlet velocity was increased from zero to the target value, this velocity

propagated through the domain. Even though the velocity was increased gradually, this still created a planar density wave
that traveled back and forth between the inlet and outlet boundaries. The wave was smooth and did not have a clear
wavefront, but it still caused the flow to pulsate a bit. Consequently the separation bubble was elongated and compressed
slightly, as the wave traveled with and against the flow direction. Naturally, this caused the output parameters in Table 1
to sway as well. At the end of the present simulations, the pulsation was still there, though much weaker than at the
start. This means that the flow did not converge fully. The values in the table were obtained by computing means over
40 sample points in time close before the end of the simulation. Despite the pulsation, the flow stayed fully symmetric
about the middle plane 𝑦 = 10𝐷 throughout the simulation. There was no meandering of the wake, and no alternating
vortex shedding.

6 CONCLUSIONS

The Navier–Stokes solver for compressible flow, utilizing a sharp interface ghost point immersed boundary method, is
being verified using the cylinder cross-flow test case. The results show good agreement with experimental and simulated
values reported in the literature, except for the drag coefficient. The higher drag coefficient observed in this study can be
attributed to the narrower domainwidth compared to other investigations. It is worth noting that the extrapolation bound-
ary conditions seem to reduce confinement effects and allow waves to exit the domain without reflection. Consequently,
they may reduce the domain size requirement and convergence time for simulations of external flows. To draw defini-
tive conclusions, further tests on external flow problems with different boundary condition types, e.g. periodic boundary
conditions, are recommended.
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