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Abstract: Heritable variation is a prerequisite for evolutionary change, but the relevance of 
genetic constraints on macroevolutionary timescales is debated. By using two datasets on 15 
fossil and contemporary taxa we show that evolutionary divergence among populations, and 
to a lesser extent among species, increases with microevolutionary evolvability. We evaluate 
and reject several hypotheses to explain this relationship and propose that an effect of 
evolvability on population and species divergence can be explained by the influence of 
genetic constraints on the ability of populations to track rapid, stationary environmental 20 
fluctuations. 
One-Sentence Summary: Macroevolution depends on microevolutionary potential for 
evolution. 
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Main Text: A key insight from the modern synthesis of evolutionary biology was that 
response to selection, and therefore adaptation, depends on the presence of genetic variation. 
This led to the idea that more genetically diverse populations and species should be able to 
adapt faster when their environment changes. Simpson (1) in the 1940s was the first to test 
this prediction, but he failed to detect differences in levels of variation between slow- and 5 
fast-evolving lineages. Thirty years later, Kluge and Kerfoot (2) reported a positive 
correlation between within-population variation and among-population differentiation in 
seven vertebrate species. Their study was criticized on methodological grounds (3, 4), casting 
doubt on what became known as the “Kluge-Kerfoot phenomenon”. Following the 
emergence of evolutionary quantitative genetics in the 1980s, the focus shifted from 10 
phenotypic to genetic variation, and studies started relating patterns of multivariate additive 
genetic variance (evolvability) to patterns of phenotypic divergence. The results have been 
mixed, however (5-18), and marred by persistent methodological problems related to the 
quantification of evolvability, divergence and their relationship (19-21). Amending some of 
these problems, two recent synthetic studies (17, 21) have concluded that multivariate 15 
microevolutionary evolvability relates to evolution on longer timescales within many study 
systems, but how general this relationship is and what generates it remain unknown. 
To investigate the divergence-evolvability relationship and evaluate various biological and 
methodological hypotheses put forward to explain it, we gathered two extensive datasets on 
contemporary and fossil taxa. For the contemporary taxa, evolvability estimated as within 20 
population mean-scaled additive genetic variance (22, 23), is combined with trait divergence 
based on 2011 population means from 280 traits in 33 species and 676 species means from 
130 traits in 96 different species. For the fossil taxa, evolvability estimated from mean-scaled 
within-sample variance is combined with changes in trait means across time in 589 fossil 
time series from 150 independent lineages for a total of 10594 samples. The time of 25 
divergence between fossil samples ranges from 10 years to 7.6 million years. 
The two datasets offer complementary strengths and unprecedented insights into the 
mechanisms that can generate a relationship between evolvability and divergence among 
taxa. The contemporary data provide direct measures of evolvability based on additive 
genetic variance in a wide variety of traits, but the exact history of population divergence is 30 
usually not known, which limits information about the causal interplay between evolvability 
and divergence. The fossil time-series data allow investigation of the dynamic relationship 
between divergence and evolvability through time but lack direct information about genetic 
variation. We mitigate this shortcoming by documenting a strong and near isometric scaling 
relationship between measures of additive and phenotypic variance observed across traits in 35 
the contemporary data (Fig. 1) and use this to translate phenotypic variation within fossil 
samples into estimates of evolvability. 
Relationship between divergence and evolvability 
Higher evolvability is systematically associated with more divergence among populations, 
species, and fossil samples (Fig. 2). Variation in evolvability explains 30% of the among-40 
population divergence, 12% of the among-species divergence and 37% of the fossil sample 
divergence. The scaling between divergence and evolvability is similar in the contemporary-
population and fossil data, with a 1% increase in evolvability predicting a 0.46±0.05% 
increase in among-population divergence and a 0.42±0.04% increase in divergence among 
fossil samples. For the contemporary-species data, a 1% increase in evolvability predicts a 45 
0.36±0.08% increase in among-species divergence.  
The fossil time series further allow for causal analysis, in which the evolvability of each 
fossil sample is used to predict the evolutionary change to the next sample (Fig. 3A). As for 
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divergence measured for whole time series, morphological distance between consecutive 
samples scales positively with evolvability (Fig. 3B). Our results show that an increase in 
evolvability of 1% is associated with a 0.40±0.02% increase in the magnitude of divergence 
between consecutive samples, explaining 17% of the variance. This relationship is not driven 
by differences among time series, as the average within-time-series relationship was of 5 
comparable magnitude: 0.36±0.02%. It could be an artifact, however, of within-sample 
variation (i.e., evolvability) being confounded by microevolution within the samples. To 
account for this, we fitted an Ornstein-Uhlenbeck process to each time series and used this to 
predict and remove within-sample variance due to microevolution of the trait mean. Because 
we did not have the exact duration of each fossil sample, we considered a worst-case scenario 10 
in which the within-sample time interval equals 50% of the maximum possible duration, that 
is, when there is no temporal gap between successive samples (see supplementary material 
(24)). Under such conditions a 1% increase in corrected evolvability estimates is still 
associated with a 0.30±0.02% increase in the magnitude of changes in the trait mean, 
explaining 11% of the variance (fig. S1D). A more realistic, yet still exaggerated, scenario in 15 
which the fossil samples are assumed to span 10% of the maximum duration gives an 
increase of 0.37±0.02% explaining 15% of the variance (fig. S1C), which is almost identical 
to the uncorrected result.  
We compiled and developed various hypotheses to investigate potential mechanisms that 
could generate a correlation between evolvability and divergence on micro- and 20 
macroevolutionary timescales (table S1). After rejecting several non-causal hypotheses, 
involving statistical artifacts, gene flow, plasticity and selection shaping genetic variation to 
align with lines of population divergence (concordant selection), we turn to causal 
hypotheses. We first argue that the relationship is not a simple consequence of lack of genetic 
variation limiting evolution under directional selection or genetic drift, before we propose a 25 
new hypothesis based on genetic constraints limiting evolutionary responses to rapidly 
fluctuating selection. 
Rejection of non-causal explanations for divergence-evolvability correlations 
Spurious correlation 
The regression of inter- on intrapopulation variation can be subject to statistical artifacts 30 
arising from i) the use of the same or related variables at both levels (4), ii) a correlation 
between within-sample variance, which is related to estimated evolvability, and estimation 
variance in the means, which will bias estimates of among-population variance, iii) a 
correlation between estimation variances of evolvabilities and means, and iv) heterogeneity in 
the data. The first problem, which was a source of criticisms of Kluge and Kerfoot, does not 35 
apply to our analysis, because we used population means to scale measures of evolvability 
and log transformation to measure divergence on a proportional scale. 
The second problem can be eliminated by correcting among-population divergence for bias. 
Analyzing a subset of the data for which bias correction was possible revealed no qualitative 
differences from our main results (figs. S2 and S3). As for the third problem, we show in 40 
figure S4 that correlated estimation variances in means and variances do not cause a spurious 
correlation. 
Correlations may also arise because both inter- and intrapopulation variances depend on trait 
type and dimensionality (25). This can be rejected as an explanation for our general result 
because divergence-evolvability relationships are similar within homogenous trait categories 45 
(Fig. 4A-F). 
Gene flow 
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Gene flow among populations may generate a divergence-evolvability relationship because 
introgression among more divergent populations could generate more genetic variation within 
populations (26), and because high evolvability could counteract maladaptation and 
homogenization of populations due to gene flow (27, 28). Although this mechanism could 
contribute to the stronger relationship between divergence and evolvability at the population 5 
level than at the species level, we reject the gene-flow hypothesis as a general explanation 
because it cannot generate the divergence-evolvability relationship observed across 
temporally separated fossil samples. 
Phenotypic plasticity 
Non-genetic responses to environmental changes (plasticity) often constitute a substantial 10 
component of population differences (29) that may correlate with evolvability across traits 
within populations (30-32). We reject this as a general explanation, because a strong 
evolvability-divergence relationship remains in data from common-garden designs that 
reduce plasticity (Fig. 4G-I; see also Opedal et al. 17). We cannot exclude a minor role for 
plasticity, however, because the relationship is slightly shallower in the common-garden data.  15 
Concordant selection 
A divergence-evolvability correlation could arise if the episodes of directional selection that 
drive divergence are concordant with patterns of stabilizing selection molding genetic 
variance within populations (7, 33-35). In this case, differences in population evolvability 
would not be the cause of differences in divergence and would therefore not be causally 20 
relevant to macroevolution. Although relevant empirical estimates of stabilizing selection are 
lacking, this hypothesis can be rejected based on inconsistencies with some of our empirical 
findings and on theoretical grounds. 
First, molding genetic architecture by stabilizing selection is likely to take time and we would 
therefore expect the scaling relationship among species to be as strong – if not stronger – than 25 
that among populations. The weaker divergence-evolvability relationship at the among-
species level contradicts this prediction. 
Second, stabilizing selection is likely to reduce additive genetic variation more than 
environmental variation because the latter is not transmitted through generations. We would 
therefore expect a relationship between heritability and divergence, which is absent (fig. S5). 30 
The concordance hypothesis is also theoretically problematic because it requires an 
implausible range of variation in strengths of stabilizing selection. Assuming a standard 
model for maintenance of genetic variance in a balance between mutation and stabilizing 
selection (36), we show that the strength of stabilizing selection needs to vary over at least 
four orders of magnitude, and likely more, to account for the observed scaling between 35 
evolvability and divergence (fig. S6). This would cover a range from inefficiently weak to 
unrealistically strong selection. Such range in stabilizing selection is even more unlikely to 
explain the within-trait scaling relationship between evolvability and divergence observed in 
the fossil time series (Fig. 3).  
An alternative version of the concordance hypothesis is that within-population variation is 40 
shaped not by mutation-selection balance, but by canalizing selection changing the effects of 
alleles (rather than their frequencies) to match the fitness landscape. This is even less 
plausible, however, because canalizing selection is weak, nonlinearly related to patterns of 
selection on the phenotype, and largely determined by patterns of epistasis (37-39). Most 
salient, strong stabilizing selection makes canalization less effective than intermediate 45 
strengths of selection, rendering a close match between evolvability and the curvature of the 
fitness landscape unlikely even under ideal conditions. Combining this with the similarly 
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complex and nonlinear relationship between mutational effects and segregating genetic 
variance discussed with figure S6, we reject canalization as a general explanation for a 
regular relationship between divergence and evolvability. 
Causal explanations for divergence-evolvability correlations  
Neutral evolution 5 
In the absence of selection, trait divergence is expected to scale proportionally with 
evolvability and linearly with time due to genetic drift (40, 41). We reject this hypothesis 
because divergence in our data does not accumulate with time (fig. S7A) and on longer 
timescales rates of evolution becomes much too slow to be explained by either the standard 
drift model (40) or by the mutation-drift model (41, 42) (Fig. 5A; see also 33, 43-48). 10 
Directional selection and genetic constraints 
If population divergence reflects patterns of directional selection, the genetic-constraints 
hypothesis (7, 49) predicts more divergence along directions with more genetic variation, and 
therefore a positive relationship between divergence and evolvability (19). Given enough 
time, however, populations would reach their optima, and the relationship between 15 
divergence and evolvability should vanish (7). This prediction is supported by our finding of 
a weaker relationship at the species level than at the population level, as well as the strong 
signal in the fossil data for which the timescale is comparable to population divergence. It is 
also supported by the fact that low-evolvability traits have diverged less among populations 
than among species, while divergence of high-evolvability traits is similar at both levels (Fig. 20 
2).  
Nevertheless, estimated evolvabilities are too large to substantially constrain directional 
selection on the timescales considered. Indeed, only 29 generations would be necessary to 
generate the median divergence magnitude of 5% observed in the fossil data for a trait with a 
moderate evolvability under moderate selection (24, 50). This time span is much shorter than 25 
the median of 35115 years between our fossil samples.  
Pleiotropic constraints 
The genetic-constraints hypothesis could be rescued if the true potential for evolution were 
much lower than indicated by estimated evolvabilities. This could come about through 
constraining selection on genetically correlated traits (51). Such constraints can be quantified 30 
with conditional evolvability, that is, the evolvability of a focal character when other 
genetically correlated characters are kept constant (52, 53). If conditional evolvabilities are 
much smaller than unconditional evolvabilities but show similar patterns of variation across 
traits, then genetic constraints may influence evolution on longer time scales and explain the 
relationship between divergence and unconditional evolvabilities. We provide a partial test of 35 
this hypothesis by conditioning evolvabilities on overall size of the organism in a subset of 
twenty-five G-matrices from animal species in the contemporary data. Conditioning on size 
reduces the median evolvability by 43% and reveals a strong correlation between conditional 
and unconditional evolvabilities (fig. S8, R2 = 87%). Although a reduction of 43% is by itself 
insufficient to cause substantial genetic constraints under directional selection, it is possible 40 
that conditioning on more aspects of the organism than just size would reduce the 
evolvability of focal traits more drastically. This would increase the viability of the genetic-
constraints hypothesis beyond microevolutionary timescales and could explain some of the 
observed divergence-evolvability relationship. 
Fluctuating selection and genetic constraints 45 
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Genetic constraints could also influence divergence if the evolutionary timescale is very 
short. Evolution is not a rectilinear process, and on timescales below a million years or so it 
mostly takes the form of bounded fluctuations with a constant (stationary) distribution so that 
evolutionary changes do not accumulate with time (43, 44, fig. S7A). This is likely caused by 
populations tracking adaptive optima that fluctuate within a limited range. Under this 5 
scenario, traits with low evolvabilities would lag further behind their optima and change less 
than traits with higher evolvabilities as illustrated in Figure 5B. To explore if such dynamics 
could rescue a version of the genetic-constraints hypothesis we show (24; based on 14) that 
with stationary fluctuations, the predicted variance in the log trait mean would be D = Vr/(r + 
a), where r is the tracking rate of adaptation, and V and a are the stationary variance and the 10 
return rate of the fluctuating optimum, respectively. Because the tracking rate is proportional 
to evolvability, we predict a positive relationship between divergence and evolvability when 
the tracking rate is equal or slower than the rate of environmental fluctuations (14, 24).  
Fitting this model to the combined fossil time-series data revealed predominantly stationary 
dynamics and returned high rates of both tracking and fluctuations in the optimum, with 15 
plausible half-lives in the range from one and up to a hundred years at most (Fig. 5A, fig. 
S7B). As can be seen from the likelihood surface (fig. S7B), the fitted model is symmetric for 
r and a, and cannot tell if r is smaller or larger than a. Nevertheless, as illustrated in Figure 
5B, our estimated evolvabilities combined with reasonable strengths of selection will often 
generate tracking rates in the range of tens and hundreds of generations making it plausible 20 
that adaptation is slower than at least part of the environmental fluctuations of the optimum 
and able to influence the extent of fluctuations in the trait mean. 
Hence, tracking fast stationary fluctuations in optima can plausibly account for an effect of 
evolvability on evolutionary divergence in both extant and extinct populations. On above 
million-year timescales divergence may start to accumulate, and evolution may include rare 25 
bursts of change to new adaptive zones (1, 44). Even so, rapid stationary fluctuations would 
still constitute a component of the among-species variance (44) and could therefore explain 
an influence of evolvability also on this level. This is in line with the weaker relationship 
between divergence and evolvability observed in the contemporary species data. Note, 
however, that this model would not generate a phylogenetic signal by itself, and it cannot 30 
explain the strong association between evolvability and rates of evolution across million-year 
timescales found in studies of homogenous morphological traits such as dipteran wings, 
which are dominated by non-stationary Brownian-motions-like evolution (15, 18).  
Conclusion 
With two large and independent datasets we have established the existence of a positive 35 
scaling relationship between evolutionary divergence and evolvability, thus providing a link 
between micro- and macroevolution. After eliminating alternative explanations, we conclude 
that this pattern most plausibly results from genetic constraints on evolution under rapid 
stationary fluctuations. We have shown that if stabilizing selection around optima is not too 
strong, even high observed evolvabilities may cause constraints limiting trait fluctuations. If 40 
pleiotropic constraints further reduce evolvability along directions of selection, stronger 
selection and/or slower fluctuations of optima can be accommodated, leaving genetic 
constraints on stationary fluctuations a robust explanation for the divergence-evolvability 
relationship. 
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Fig. 1. Isometric scaling between phenotypic and genetic variation. Mean-scaled genetic 
variance, evolvability (eμ), expressed as percent evolutionary change regressed against mean-
scaled phenotypic variance (pμ×100). For the morphological traits (purple line, n = 527), 
ln(eμ) = -1.10 (±0.08) + 0.99 (±0.02) ln(pμ) and R2 = 83%. For all traits (orange line, n = 669), 5 
ln(eμ) = -1.24 (±0.08) + 0.96 (±0.02) ln(pμ) and R2 = 81%. The coefficients are obtained from 
least-squares regressions fitted to log-transformed variables, and the slopes±SE are corrected 
for attenuation (=	0.6%) due to estimation error in the phenotypic variance. The dashed line 
shows isometric scaling. We considered the exponent of the intercept (-1.1) from the 
morphological traits as an estimate of heritability, h2 = e-1.1 = 0.33, and used this to predict 10 
evolvabilities from phenotypic variances in the fossil data. The near isometry and high R2 
makes this a good prediction over the range of the data. 
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Fig. 2. Evolvability predicts divergence among populations, species, and fossil samples. 
Divergence (d) is the expected percent change in magnitude from the trait grand mean (24). 
Evolvability (eμ) is the mean-scaled additive genetic variance expressed as percent 
evolutionary change under unit selection. For the fossil data evolvability is predicted by 5 
multiplying the sample variance by the heritability (h2 = 0.33) obtained in Fig.1. The scaling 
exponents (b±SE) and marginal R2 (%) are obtained from mixed-effect models fitted to log-
transformed variables and are corrected for attenuation bias of 13%, 17% and 12% for the 
population (n = 271), species (n = 130), and fossil data (n = 589), respectively.  
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Fig. 3. Evolvability predicts divergence between consecutive fossil samples. (A) An 
example of a fossil time series from Grey et al. (54), for which sample means of shell area of 
the ostracod Velatomorpha altilis are shown across time elapsed since the oldest sample (bars 
indicate sample standard deviation). We converted sample variances into estimates of 5 
evolvability (eμ) as explained in Fig. 1 and used these to predict the absolute morphological 
distance to the next sample on log scale (inset figure). Sample 1 (dark blue) has a large 
variance and there is a large difference between the mean shell area of sample 1 and sample 
2. Hence, the evolvability of sample 1 and the absolute morphological distance from sample 2 
correspond to the point in the right upper corner of the inset figure. Plot (B) shows the 10 
relationship between evolvability and absolute morphological distance to the next sample for 
all cases with a sample size of at least 30 specimens (n = 5009). The slope (b±SE) and 
marginal R2 (%) are obtained from a mixed-effect model fitted to log-transformed variables. 
The dashed line shows the average within-time-series slope (b$!±SE). Both slopes±SE are 
corrected for a 2.1% attenuation bias. 15 
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Fig. 4. The divergence-evolvability relationship across different trait types and 
environments. The magnitude of divergence (d) is the expected percent change of a 
population, species, or fossil sample from the trait grand mean. Evolvability (eμ) is the mean-
scaled additive genetic variance expressed as percent evolutionary change under unit 5 
selection. For the fossil data evolvability is predicted by multiplying the sample variance by 
the heritability (h2 = 0.33) obtained in Fig.1. The scaling exponents (b±SE) are the slopes 
from the log-log regression from each group corrected for attenuation bias. The R2 (%) is 
given in parenthesis.  
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Fig. 5. Stationary fluctuations in optima and traits. (A) Rate of evolution (magnitude of 
change per year) against the time interval between two consecutive samples in the fossil data 
(n = 6231). The magnitude of change (dc) is corrected for estimation error in the sample 
means (24). The scaling exponent, b±SE (R2), is the slope of the least-squares regression on 5 
log-transformed data. Also represented are regression lines predicted by neutral evolution 
(light blue, scaling exponent = -0.5) and directional selection (dark blue, scaling exponent = 
0) that are fitted to the data with an intercept at the grand mean of both variables and a slope 
set to the theoretical prediction (43, 45-47). The prediction for the fluctuating-selection model 
(orange) is based on an Ornstein-Uhlenbeck model with parameters fitted using a grid search 10 
(24, fig. S6B), where the half-lives of the return rate of the optimum and the tracking are 
ln(2)/a = 1 year and ln(2)/r = 30.5 years, respectively. (B) Simulation showing evolutionary 
changes in the trait mean of two populations with different evolvabilities tracking a 
fluctuating optimum (grey curve). The half-life of the return rate of the optimum to its central 
value is set to 30 years (fig. S6B). If we assume one generation equals one year, then keeping 15 
r ≤ a requires r < 0.023 per generation. Because r equals the evolvability times the mean-
scaled quadratic selection gradient around the optimum, g, we can compute that an 
evolvability of 0.56% (the median of our data) would require |g| < 4.1 to keep r < 0.023. With 
this value of g, a 10% trait shift from the optimum reduces fitness with 2%. Population 1 
(light blue curve) has an evolvability of 0.01% and hence a slower tracking rate (r = geμ) of 20 
the optimum and smaller fluctuations in the trait mean than population 2 (eμ = 0.1%, purple 
curve). 
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Materials and Methods 
Data collection  
Contemporary data: We searched the primary scientific literature to compile a meta-database on 
within-population genetic variation and among-population or -species phenotypic variation. Only 
studies in which populations or species had diverged in the wild were included. This excluded 
studies in which divergence resulted from artificial selection, populations kept and bred in the 
lab (except for the generations in common garden for estimating genetic divergence) or 
populations constructed from inbred lines. The statistics required for these data were at least one 
estimate of additive genetic variance with corresponding mean and the mean for two or more 
populations or species for the same trait. In some cases, different studies (papers) were combined 
to obtain these data. This collection was based on (i) studies gathered by GHB, TFH and CP for a 
review on genetic constraints (14), (ii) studies included in the analyses of Hansen et al. (55), 
Matthews et al. (56), Noble et al. (30), Opedal (57) and Opedal et al. (17) and (iii) an additional 
search conducted with ISI Web of Science (date: 04/12/2019) with the key words “additive 
genetic variance” and “divergence” for all collections and all years.  
 
In total, the database contains 411 unique traits from 124 different species from 55 published 
studies. The number of populations or species per unique trait ranged from 2 to 41. A total of 
2061 phenotypic variances, 1044 additive genetic variances, and 2687 trait means were retrieved.  
 
Fossil data: Fossil data come from the Phenotypic Evolution Time Series (PETS) Database 
version 1.0 (58) curated by KLV. Contemporary time series were excluded, and only fossil time 
series with traits on a ratio scale were included to allow for estimation of mean-scaled variance. 
This resulted in a total of 589 evolutionary (fossil) time series from 150 independent lineages 
and 101 studies. Each time series represents changes across consecutive fossil samples for a 
single trait. Data for each fossil sample (“population”) in a time series include mean trait size, 
sample variance, sample size and the geological age of the fossil sample. 
 
Analyses of contemporary data 
We measured evolvability on a proportional scale as the additive genetic variance divided by the 
square of the mean. This measure is derived from the mean-standardized Lande equation (23, 
55): 
 

∆"̅
"̅ =

$!
"̅" "#̅, 

 
where ∆#̅/#̅ is the proportional change in trait mean, #,̅ over one generation, VA/#̅2 is the mean-
scaled additive genetic variance (i.e. evolvability, eμ, on a proportional scale) and β#̅ is the mean-
scaled selection gradient. On this scale, evolvability can be interpreted as the expected 
proportional change in the trait mean under a mean-scaled selection gradient of 1, that is, under 
directional selection as strong as selection on fitness itself (23, 50). We computed mean-scaled 
evolvabilities as additive genetic variance estimates divided by the trait mean squared or by 
using additive genetic variance estimates computed on log-transformed trait values. These 
standardizations are asymptotically equivalent with negligible loss in accuracy when eμ < 0.1 
(10%), which is the case for 93% of our estimates. When more than one estimate of evolvability 
were available per trait, we used the unweighted mean of these. We did not calculate a weighted 
mean because only 32% of the collected additive variance estimates were reported with error. 
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Divergence variance (D) between populations or species was also calculated on a proportional 
scale as the variance in the log-transformed trait means across populations or species, D = 
var[log(#̅j)], where #%̅ is the trait mean in population j. We also estimated a divergence variance 
corrected for sampling error in the mean for a subset of the data with given sample sizes as Dc = 
D – E[SE2/#̅&]. To facilitate interpretation, we converted D into a magnitude of divergence (d) 
expressed as expected proportional change of a population or species from the trait grand mean, 
d = exp(√2()'(). The multiplication of √( by √2)'( gives the expected value of a folded 
normal distribution and taking the exponent returns the estimate on an arithmetic scale. By 
subtracting one and multiplying by a hundred we expressed the estimates as percent change. We 
estimated the corrected magnitude of divergence (dc) by substituting Dc for D. 
 
To analyze the relationship between evolvability and divergence we fitted mixed-effect models 
using the “lme4” package in R (59), with divergence as the response variable, evolvability as the 
fixed effect and closest shared taxon (i.e., species or genus) as the random effect. The 
evolvability and divergence variables were log-transformed prior to the analyses. Marginal 
coefficients of determination (R2) were computed using the “MuMIn” R package (60). Models 
were fitted for among-population variance and among-species variance separately in the extant-
species data. We also fitted models for different subcategories of the data, such as trait type 
(morphological, life-history and physiological), trait dimension (linear, area, mass or volume, 
counts, rate and unitless ratio), or taxa (plants and animals) to investigate if the scaling 
relationship between divergence and evolvability remained similar within groups. 
 
To account for the attenuation of the slope due to measurement error in the predictor variable 
(evolvability) we divided fixed-effect slopes and their standard errors with an attenuation factor, 
K, computed following Hansen and Bartoszek (61). The attenuation factor was computed as 
 

* = 1 − )#*$*%&')
)#) , 

 
where x is the vector of predictor variables (evolvabilities) centered on the mean, Vu and Vx are 
(in our case) diagonal variance matrices containing respectively measurement and total variances 
of the predictor variable. In Figure 2, the diagonal elements of Vu is the variance among 
evolvability estimates of different populations/species/samples of the same trait (s2ui), as we 
assume this is larger than the square of the standard errors of the evolvability estimates. The 
diagonal elements of Vx are -+& −	-,-&//// +	-,.& , where s2x is the empirical variance of the predictor 
variable. In Figures 1 and 3B, the diagonal elements of Vu is the measurement error variance 
(s2ui = 2/(n + 2)) (62 p. 815) of the mean-scaled phenotypic variance and evolvability estimates, 
respectively.  
 
To assess to what extent evolvability measures decrease when at least one correlated trait is not 
allowed to evolve, we estimated evolvabilities conditioned on size using the conditional 
evolvability from Hansen et al. (19, 52): 

 
1(3|5) = 7/81 − 9+/& :, 
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where Gy is the variance of the focal trait y and 9+/&  is the squared genetic correlation coefficient 
between focal trait y and trait x on which y is conditioned on. 
 
To assess the effect of phenotypic plasticity on the evolvability-divergence relationship, we 
compared the relationship obtained with divergence data collected in either controlled indoor, 
controlled outdoor or field environment. If the evolvability-divergence relationship were mostly 
due to correlations between evolvability and phenotypic plasticity, we would expect the 
relationship between evolvability and divergence to vanish for the data obtained under controlled 
environments where the effect of plasticity has been strongly reduced. 
To quantify the constraints generated by univariate evolvabilities, we considered the number of 
generations that would be necessary to produce a divergence of a given magnitude (d) under a 
typical mean-scaled selection gradient (bμ) per generation (50) with a given evolvability eμ.  This 
can be calculated as, ngen = ln(1+d)/ln(1+ eμbμ) (53). Here, we used bμ = 0.3 that correspond to 
the median selection gradient reported by Hereford et al. (50), and the median eµ = 0.56% 
observed in the contemporary data. 
 
Analyses of fossil data 
In a first analysis equivalent to the analysis for the extant data, we investigated if the mean 
sample variance per time series predicted the divergence among all the fossil samples in that 
time series, thus estimating a single measure of divergence per time series. To reduce the bias 
from unreliable estimates of individual sample variances, we estimated a sample-size-weighted 
average of the sample variance (;,)	for a time series as:  

 

;, =
∑ 1("23('(4(
∑ 23('(4(

 , 

 
where -%& is the proportional (mean-scaled) variance of sample j and nj is the size of sample j.  
 
Using the contemporary species data, we showed that mean-scaled additive genetic (eμ) and 
phenotypic variances (pµ) for morphological traits scaled isometrically on a log-log scale (slope 
= 0.99±0.02 corrected for 0.6% attenuation, R2 = 83%). On the original scale, the intercept of 
this relationship (-1.10±0.08 when log(pµ) = 0, hence, pµ = 1) represents the average heritability, 
h2 = e-1.1 = 0.33, across all measures, as 
 

ℎ& = $!
$)
= 5*

6*
. 

 
We used this heritability to predict evolvabilities from phenotypic variances in the fossil data as 
eμ = h2;,. Divergence was computed as the variance in sample (“population”) means, D = 
var[ln(#̅j)] per time series (“trait”), and the magnitude of divergence, d = exp(√2()'(), as in the 
contemporary data. The corrected divergence (Dc) and magnitude of divergence (dc) estimates 
were also calculated as in the contemporary data. Mixed-effect models were then fitted with 
divergence as the response variable, evolvability as the fixed effect and species and study as the 
random effects.  
 



 
 

5 
 

The fossil data also allow the use of evolvability measured for each sample (“population”) to 
predict the divergence during the next timestep in the timeseries, i.e., the phenotypic distance in 
the trait mean between two consecutive samples. To decrease the variation in sampling variance 
resulting from the irregular number of specimens measured per sample in this analysis, we only 
computed the evolvability from samples with at least 30 measured specimens. This resulted in a 
dataset of 5009 fossil samples across 382 time series from 96 independent lineages. Proportional 
variance for a fossil “population” was calculated as var[log(zi)], where zi is specimen i in the 
sample. We used the observed heritability from the contemporary data (Fig. 1) to estimate 
evolvability of the fossil samples as eμ = h2var[log(zi)]. Morphological distance between two 
consecutive sample means defined the magnitude of divergence and was calculated as, d = |ln(#%̅) 

– ln(#%̅7()|, where #%̅ is the trait mean in sample j. We also calculated a magnitude of divergence 
corrected for sampling error variance as dc = =>& − 	E[SE&/#̅&]. Mixed-effect models were then 
fitted with divergence as the response variable, evolvability as the fixed effect and time series 
nested within study, and species, as the random effects. 
 
Microevolution during the accumulation of a fossil sample may inflate estimates of evolvability. 
To quantify this effect, we predicted the amount of variance that could be explained by evolution 
during the time interval covered by the sample. We first fitted an Ornstein-Uhlenbeck model of 
evolution to each of the 382 time series and estimated the expected variance in the trait mean (#.̅) 
as a function of time, t, following Hansen (63): var[#.̅ |#8̅] = σ2/2α(1 – e-2αt), where #8̅ is the 
estimated ancestral state of the trait mean, σ2 is the variance of the perturbations in the trait mean, 
and α determines the rate of adaptation toward the optimum. The sample variance corrected for 
anagenetic microevolution in the trait mean is then given by var[ln(zi)] – var[#.̅ |#8̅; tsample], where 
tsample is the time interval covered by the sample. The analyzed time series lacked information on 
the within-sample time interval. We thus calculated the maximum duration that could be covered 
by the samples as the duration of the entire time series divided by the number of samples, 
assuming that there was no temporal gap between samples in the time series. As a “worst-case 
scenario”, we then used 50% of this maximum duration as the tsample to calculate the sample 
variance corrected for anagenetic microevolution. We also calculated corrected sample variance 
with tsample as 10% and 1% of max duration (fig. S1). 
 
From each fitted Ornstein-Uhlenbeck model, we also calculated the distance from each fossil 
sample mean to the primary optimum to assess the effects of maladaptation on the predicted trait 
divergence. To test if the scaling relationship between evolvability and morphological distance 
changes when traits evolve across longer time span, we fitted mixed-effect models with log 
morphological distance as response variable and log evolvability as fixed effect. Time separating 
the sample means in millions of years, distance to the optimum, and sample size were fitted as 
covariates. The interaction terms of the covariates with evolvability were included. Trait 
dimension or type (linear, ratio, count), size (microfossil, macrofossil) and growth pattern 
(indeterminate, determinate) were included as fixed factors. Study was fitted as a random effect. 
Model fit was assessed using AICc and coefficients of determination (R2). The best-fitting model 
included time, distance to the optimum, sample size (and their interaction terms) and trait type as 
fixed effects. 
 
Tracking fluctuating selection 
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To formalize and test the hypothesis that genetic constraints limit the ability of populations to 
track rapid environmental fluctuations, we use a model from Bolstad et al. (14) in which the trait 
mean, z, tracks a moving optimum, q, at a rate determined by the product of the evolvability, eμ, 
and a linear selection gradient proportional to the distance of the trait mean to the optimum, b = - 
g(z - q). The optimum itself moves around an arbitrary central point (zero) according to an 
Ornstein-Uhlenbeck process. This is described by the stochastic differential equations: 
 

dz = eμb = -r(z - q)dt, 
dq = -aq dt + s dB, 

 
where r = geμ measures how fast the trait tracks the optimum, dt is time differential, dB is the 
differential of a Brownian-motion process (i.e., a white noise), and σ is the square root of the 
average magnitude of random fluctuations per time. The parameter a measures how fast the 
optimum returns to its central value and is an inverse measure of autocorrelation in the 
movements of the optimum. 
 
From the moments of this process, derived in Bolstad et al. (14), we compute the expected rate of 
evolution of the trait as 
	

D	 = 	E[|#(F) 	− 	#(0)|]F = 2
F 	H

9I
)(9	 + 	J)	H1	 −	

9K'9: − 	JK';:	
9	 − 	J , 

 
where V = s2/2a is the stationary (stochastic equilibrium) variance of the fluctuations in the 
optimum. This expression is derived by assuming that the initial values of the trait and the 
optimum are random variables drawn from the stationary distribution of the process, and uses the 
fact that the expectation of the absolute value of the deviation of a normal variate from its mean 
is =2 )⁄  times the standard deviation of the variate. 
 
In the limit of t → 0, the rate is a constant R = =2J9&I )(9 + J)⁄ , and for short time intervals 
the scaling exponent with time is zero, which means that the rate is unaffected by the time 
interval. As the time interval increases a negative scaling appears and for long intervals a scaling 
exponent of -1 is reached (i.e. the process behaves as white noise).  
 
We fitted this rate function to the combined fossil time-series data by assuming that the 
parameters r, a and V were the same for all the time series (Fig. 5A, n = 6231). We used a mixed 
model with the deviance of the observed lnR from the predicted lnR as response variable with 
time series nested within study as random variables and assuming the residuals were gaussian. 
The rate of evolution, R, is calculated as R = dc/t, where dc is the magnitude of divergence 
corrected for sampling error variance as dc ==(|ln(#%̅)	– 	ln(#%̅7()|	)& − 	E[SE&/#̅&] and t is time 
in years. We performed a grid search to calculate restricted likelihood over values of the 
parameters r, a and V. Results from the grid search are shown in Figure S7B.  
 
When the process is stationary, the variance of the trait fluctuations reduces to Vr/(r + a). This 
expression is also an accurate approximation of the variance in the fluctuations of log trait values 
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(D), provided the variance of the optimum, V, is scaled with the trait mean squared. Assuming 
that the strength of stabilizing selection around the optimum is not related to the amplitude of 
fluctuations, the scaling exponent between divergence (D) and evolvability (proportional to r) 
would be unity when r ≪ α, about 1/2 when r ≈ α, and approach zero as r ≫ α. If we take our 
divergence measures to be the magnitude of the difference between two independent random 
observations, z1 and z2, from this process as d = |ln(z1) – ln(z2)|, then the expectation of d will be 
2=I9 )(9 + J)⁄ . We can write this as 
 

ln(>) = (
& ln(I) +

(
& ln(9) −

(
& ln(9 + J) + C, 

 
where C is a constant. Assuming that r << a, and decomposing r into its components eμ and g, 
we can write this as 
 

ln(>) = (
& ln(I) +

(
& ln8K,: +

(
& ln(V) −

(
& ln(J) + C. 

 
This shows that variation in divergence has four equally contributing components due to 
variation in the position of the optimum, V, due to evolvability, eμ, due to strength of stabilizing 
selection around the optimum, g, and due to the rate of fluctuation in the optimum, a. This 
predicts that one quarter of the variance in evolvability should appear as variance in divergence. 
Values presented in table S2 reveal that the variance in evolvability is larger than half the 
variance of divergence for the contemporary population and fossil data and a bit less than half for 
the species data. This fits well with evolvability explaining 20-40% of the variance in 
contemporary population and fossil divergence and a bit less for species divergence.   
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Fig. S1. Testing the effects of microevolution within fossil sample on the scaling 
relationship between evolvability and sample divergence.  
Microevolution occurring in the time interval during which fossil samples accumulate may 
inflate our estimates of evolvability by confounding standing variation with evolutionary change 
and may affect the scaling relationship between evolvability and sample divergence. Here, we 
correct estimates of evolvability (sample variance) for anagenetic microevolution in the trait 
mean. Because most time series lacked information on the time interval within samples (tsample), 
we estimated this time interval as a percent of the maximum duration covered by the fossil 
samples computed as the duration of the entire time series divided by the number of samples. 
Hence, 50% of max duration is considered as a “worst-case scenario”, as this gives the average 
estimate of microevolution in the trait mean with a within-sample time interval similar to the 
temporal gap between the fossil samples. Solid lines represent the slope (b±SE) of the mixed-
effect model (n = 5009) and the dashed line represent the average within time-series slopes 
(b/<±SE), corrected for 2.1% attenuation bias. Colors represent different time series. (A) Original 
data (same as Fig 3B): Absolute distance over evolvability (within sample variance), b = 
0.40±0.02%, R2 = 17%, b/< = 0.36±0.02%. (B) Evolvability corrected with tsample as 1% of max 
duration: b = 0.39±0.02, R2 = 16%, b/< = 0.35±0.02%. (C) Evolvability corrected with tsample as 
10% of max duration: b = 0.37±0.02, R2 = 15%, b/< = 0.30±0.01%. (D) Evolvability corrected 
with tsample as 50% of max duration: b = 0.30±0.02, R2 = 11%, b/< = 0.21±0.01%.  
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Fig. S2. The divergence-evolvability relationship among populations, species and fossil 
samples with divergence corrected for sampling error variance. 
The magnitude of divergence (dc) is the expected percent change of a population, species, or 
fossil sample from the trait grand mean, corrected for sampling error variance (see methods). 
Evolvability (eμ) is the mean-scaled additive genetic variance expressed as percent evolutionary 
change under unit selection. For the fossil data evolvability is predicted by multiplying the 
sample variance by the heritability (h2 = 0.33) obtained in Figure 1. The scaling exponents 
(b±SE) and marginal R2 (%) are obtained from mixed-effect models fitted to log-transformed 
variables and the b±SE are corrected for attenuation bias of 14%, 15% and 13% for the 
population (n = 257), species (n = 93), and fossil data (n = 544), respectively.  
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Fig. S3. The divergence-evolvability relationship among consecutive fossil samples with 
divergence corrected for sampling error variance.  
The magnitude of divergence (dc) is the absolute morphological distance to the next sample on 
log-scale, corrected for sampling error variance (see methods). Evolvability (eμ) is predicted by 
multiplying the sample variance by the heritability (h2 = 0.33) obtained in Fig.1 and expressed as 
percent evolutionary change under unit selection. The scaling exponent (b±SE) and marginal R2 
(%) are obtained from a mixed-effect model fitted to log-transformed variables (n = 3572) and 
the b±SE is corrected for 2.2% attenuation bias. 
  

0.1

1

10

100

0.01 0.1 1 10
Evolvability (%)

Ab
so

lu
te

 d
is

ta
nc

e 
(%

)
b = 0.42±0.02 (28%)



 
 

11 
 

 
Fig. S4. Effect of correlated sampling error on the evolvability-divergence scaling.  
Correlated sampling errors in means and variances could generate correlated inflation of within- 
and among-population variances if the sampling error has a directional bias in both variables. 
Assuming no true divergence among populations (i.e., same population means) and no 
differences in evolvability among populations, sampling errors in divergence estimates will be 
positively biased, while estimates of evolvability will have a symmetrical sampling error (i.e., no 
bias). We tested this by regressing population divergence against evolvability for 500 simulated 
traits. Each trait was simulated with two populations with the same trait mean and standard 
deviation (i.e., the two population means only differ due to sampling error). Correlated error was 
introduced by varying the sample size of the two populations from 2 to 500 with the paired 
populations having the same sample size. The evolvability (eμ) and divergence (D) were 
estimated for each trait as K, = E[=>?["+]"̅" ] and D = var[log(#%̅)], for individual i in population j. 
(A) An example of one regression of evolvability and divergence. The sampling error in 
evolvability is symmetric around the true evolvability while the sampling error in the divergence 
estimates is positively biased. R2 = 0.1% and n = 10000. (B) Correlated errors did not generate 
any correlation between divergence and evolvability estimates, as illustrated by the distribution 
of the R2 from the 1000 replicates of divergence-evolvability regressions with 500 traits each 
which barely exceeds 4%.  
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Fig. S5. No relationship between heritability and divergence.  
Heritability is the proportion of additive genetic variance in the total phenotypic variance, 
expressed in percent. In (A) divergence (D) is computed as the variance in logarithmic trait 
means of the measured populations or species, expressed as expected proportional divergence in 
percent change of the trait grand mean (=2( )⁄ ). The least-square regression slope for the 
population data is b = -0.15±0.67 and R2 = 0%, and for the species data b = 3.21±1.49 and R2 = 
5%. In (B) divergence is computed as the variance of the trait mean standardized by the 
phenotypic variance (var[#.̅ IB.⁄ ]) of the measured populations or species, i.e., similar to the 
heritability standardization. The least-square regression slope for the population data is b = -
2.20±1.63 and R2 = 1%, and for the species data b = -3.85±4.35 and R2 = 1%. 
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Fig. S6. Theoretical difficulties with the concordant-selection hypothesis. This hypothesis 
posits that patterns of stabilizing selection that shapes evolvability within populations are 
concordant with patterns of directional selection that cause population divergence. We now 
illustrate that this would require extreme variation in strengths of stabilizing selection to be 
effective. We first assume that the magnitude of divergence in a trait or direction x in phenotype 
space scales inversely with the strength of stabilizing selection in direction x to a power k, d(x) ∝ 
γ(x)-k. Here x is taken to be eigenvectors of the second-order selection gradient matrix with 
corresponding eigenvalues γ(x). The gaussian model of mutation-selection balance (36) 
combined with observed near isometric scaling between mutational variance and evolvability 
(15) yields eμ(x) ∝ V(Y)'( (see 64, p. 85). Therefore, the magnitude of divergence should scale 
with evolvability as d(x) ∝ eμ(x)k. This implies that k has the same range as the scaling exponents 
in Figures 2 and 3B, ranging from 0.36 to 0.46. Thus, explaining 2-3 orders of magnitude 
differences in divergence with differences in stabilizing selection would require the strength of 
stabilizing selection to vary with at least 4, and maybe as much as 9, orders of magnitude. This 
range goes from extremely strong (lower shaded area) to insufficient weak (upper shaded area) 
stabilizing selection. The lower and upper dashed lines mark selection strengths corresponding to 
a 10% trait shift from the optimum reducing fitness by 50% and 0.05%, respectively. (A) Data 
from Figure 2, and we use b/ = k = 0.41. (B) Data from Figure 3B (without cutting the axis), k = 
0.40. 
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Fig. S7. Stationary fluctuations.  
(A) The magnitude of divergence (dc) corrected for sampling error variance (see methods) over 
the time interval between two samples. The magnitude of divergence is the absolute 
morphological distance to the next sample on log-scale and does not accumulate over time 
(dashed line: slope = 0.03±0.01%, R2 = 0.5%, n = 6231). The green and yellow ribbons show the 
expectations from standard genetic-drift (green) and mutation-drift (yellow) models. The range 
of effective population sizes for the standard drift model is 10 – 105 individuals, taken from Estes 
and Arnold (43). The range of mutational variance for the neutral model is 10-2 % – 1% of the 
environmental variance (VE) found by Lynch (65) in Drosophila, Tribolium, mice, and several 
crop species. We assume VE is 65% of the median sample variance. (B) Support surface, in log-
likelihood deviance (ΔLog-lik.) from the maximum, for the α and r parameters represented as 
half-lives (in years) obtained from a grid search performed on the derived Ornstein-Uhlenbeck-
process function for rate of evolution (R) over time (t). The surface is symmetrical for values of 
α and r, and the two stars represent the best estimate combinations where the maximum log-
likelihood resides.  
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Fig. S8. Relationship between unconditional and conditional evolvability.  
Conditional evolvabilities were obtained by conditioning the additive genetic variance of 66 
traits on the size of the organisms (see methods). The dashed line represents the 1:1 line. The 
regression is ln(eμ|size) = 0.01 (±0.36) + 1.11 (±0.05) ln(eμ), R2 = 87%. Mean unconditional and 
conditional evolvabilities per trait within study is shown in table S3.  
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Table S2. Median and variance for evolvability and divergence on log-scale in the different 
data sets. 
The tracking fluctuating selection hypothesis predicts that one quarter of the variance in 
evolvability should appear as variance in divergence (see methods). Here, we present these 
different variances for the different datasets.   
Estimate Population data Species data Fossil data (time-series level) 
Median[eμ] 0.01 0.002 0.0034 
Var[ln(eμ)] 3.08 2.41 2.59 
Median[D] 0.0086 0.014 0.0045 
Var[ln(D)] 4.92 6.38 3.16 
eμ = mean-scaled evolvability (not in percent) 
D = var[ln(z)] 
z = trait mean 
  



 
 

2 
 

Table S3. Evolvability and conditional evolvability. 
Conditional evolvability is calculated for 66 traits from 25 G-matrices of animal species. Trait: 
focal trait; Conditioned on: genetically correlated trait representing the organism size that is used 
to calculate conditional evolvability; n:  number of populations or species with available G 
matrices per trait; eμ: mean evolvability per trait in percent; c: mean conditional evolvability in 
percent; a: mean autonomy; Red: percent reduction in evolvability when conditioned on size; N 
gen.: number of generations necessary for doubling the trait value with a mean standardized 
directional selection gradient (β) of 0.1 for both evolvability and evolvability conditioned on 
size. The last two rows show the overall median and mean for all columns. 

Trait Conditioned on Shared taxa n eμ c a Red. N gen. (eμ) N gen. (c) 
wing length tarsus length Cyanistes caeruleus 4 0.017% 0.015% 0.89 10% 41 382 46 077 
body mass tarsus length Cyanistes caeruleus 4 0.081% 0.067% 0.82 18% 8 584 10 418 
tarsus length wing length Cyanistes caeruleus 4 0.042% 0.037% 0.89 11% 16 602 18 648 
bill length tarsus length Cyanistes caeruleus 4 0.057% 0.054% 0.95 5% 12 160 12 793 
subcaudal scales (F) ventral scales (F) Thamnophis elegans 2 0.140% 0.126% 0.89 10% 4 964 5 495 
dorsal scale rows (F) ventral scales (F) Thamnophis elegans 2 0.033% 0.033% 0.99 0% 20 836 20 923 
infralabial scales (F) ventral scales (F) Thamnophis elegans 2 0.054% 0.021% -0.31 62% 12 798 33 748 
supralabial scales (F) ventral scales (F) Thamnophis elegans 2 0.085% 0.082% 0.97 3% 8 132 8 420 
postocular scales (F) ventral scales (F) Thamnophis elegans 2 0.269% 0.266% 0.99 1% 2 578 2 602 
subcaudal scales (M) ventral scales (M) Thamnophis elegans 2 0.128% 0.122% 0.95 5% 5 411 5 689 
dorsal scale rows (M) ventral scales (M) Thamnophis elegans 2 0.069% 0.067% 0.97 3% 10 040 10 372 
infralabial scales (M) ventral scales (M) Thamnophis elegans 2 0.044% 0.037% 0.74 17% 15 616 18 734 
supralabial scales (M) ventral scales (M) Thamnophis elegans 2 0.105% 0.079% 0.85 25% 6 625 8 810 
eye span femur length Diasemopsis dubia 1 0.018% 0.007% 0.39 61% 38 897 98 545 
eye stalk width femur length Diasemopsis dubia 1 0.063% 0.010% 0.16 84% 10 934 66 428 
head length femur length Diasemopsis dubia 1 0.035% 0.020% 0.57 43% 19 993 35 097 
femur length tibia length Diasemopsis dubia 1 0.004% 0.002% 0.35 65% 156 963 454 281 
tibia length femur length Diasemopsis dubia 1 0.011% 0.004% 0.35 65% 61 630 178 368 
tarsus length (1st tars) femur length Diasemopsis dubia 1 0.025% 0.011% 0.46 54% 28 129 61 773 
wing length 1 femur length Diasemopsis dubia 1 0.019% 0.011% 0.57 43% 35 729 63 157 
wing length 2 femur length Diasemopsis dubia 1 0.011% 0.008% 0.69 31% 62 121 90 355 
wing length 3 femur length Diasemopsis dubia 1 0.010% 0.007% 0.68 32% 69 488 101 735 
femur length prothorax width Gryllidae 7 0.117% 0.030% 0.30 74% 5 946 22 812 
head width femur length Gryllidae 7 0.130% 0.040% 0.32 69% 5 326 17 277 
prothorax length femur length Gryllidae 7 0.161% 0.061% 0.41 62% 4 309 11 322 
prothorax width femur length Gryllidae 7 0.142% 0.037% 0.30 74% 4 896 18 596 
ovipositor length femur length Gryllidae 7 0.211% 0.118% 0.60 44% 3 283 5 868 
body mass tarsus length Cyanistes caeruleus 3 0.325% 0.312% 0.96 4% 2 136 2 223 
Cold recovery time (F) wing size (F) Drosophila melanogaster 3 1.690% 1.361% 0.80 19% 410 509 
Desiccation rate (F) wing size (F) Drosophila melanogaster 3 1.600% 1.380% 0.86 14% 433 502 
Heat knockdown time (F) wing size (F) Drosophila melanogaster 3 3.096% 3.032% 0.98 2% 224 229 
Cold recovery time (M) wing size (M) Drosophila melanogaster 3 1.338% 1.323% 0.99 1% 518 524 
Desiccation rate (M) wing size (M) Drosophila melanogaster 3 1.665% 1.646% 0.99 1% 416 421 
Heat knockdown time (M) wing size (M) Drosophila melanogaster 3 1.883% 1.858% 0.99 1% 368 373 
Overall median    0.083% 0.047% 0.81 43% 8 358 15 031 
Overall mean    0.402% 0.361% 0.69 10% 19 938 42 151 

 
 


