
TREAFET: Temperature-Aware Real-Time Task Scheduling for
FinFET based Multicores
SHOUNAK CHAKRABORTY, Department of Computer Science, Norwegian University of Science and

Technology (NTNU), Norway

YANSHUL SHARMA and SANJAY MOULIK, Department of Computer Science and Engineering,

Indian Institute of Information Technology (IIIT) Guwahati, India

The recent shift in the VLSI industry from conventional MOSFET to FinFET for designing contemporary chip-

multiprocessor (CMP) has noticeably improved hardware platforms’ computing capabilities, but at the cost of

several thermal issues. Unlike the conventional MOSFET, FinFET devices experience a significant increase in

circuit speed at a higher temperature, called temperature effect inversion (TEI), but higher temperature can also

curtail the circuit lifetime due to self-heating effects (SHEs). These fundamental thermal properties of FinFET

introduced a new challenge for scheduling time-critical tasks on FinFET based multicores that how to exploit

TEI towards improving performance while combating SHEs. In this work, TREAFET , a temperature-aware

real-time scheduler, attempts to exploit the TEI feature of FinFET based multicores in a time-critical computing

paradigm. At first, the overall progress of individual tasks is monitored, tasks are allocated to the cores, and

finally, a schedule is prepared. By considering the thermal profiles of the individual tasks and the current

thermal status of the cores, hot tasks are assigned to the cold cores and vice-versa. Finally, the performance and

temperature are balanced on-the-fly by incorporating a prudential voltage scaling towards exploiting TEI while

guaranteeing the deadline and thermal safety. Moreover, TREAFET stimulates the average runtime frequency

by employing an opportunistic energy-adaptive voltage spiking mechanism, in which energy saving during

memory stalls at the cores is traded off during the time slice having the spiked voltage. Simulation results

claim TREAFET maintains a safe and stable thermal status (peak temperature below 80
◦
C) and improves

frequency up to 17% over the assigned value, which ensures legitimate time-critical performance for a variety

of workloads while surpassing a state-of-the-art technique. The stimulated frequency in TREAFET also finishes

the tasks early, thus providing opportunities to save energy by power gating the cores, and achieves a 24%

energy delay product (EDP) gain on average.

CCS Concepts: • Computer systems organization→ Real-time systems; Embedded and cyber-physical
systems; • Hardware→ Thermal issues.

Additional Key Words and Phrases: real-time systems, scheduling, FinFET, multicores, thermal and energy

efficiency, TEI, SHE, dynamic thermal management, memory stalls, core frequency, voltage scaling

ACM Reference Format:
Shounak Chakraborty, Yanshul Sharma, and Sanjay Moulik. 2018. TREAFET: Temperature-Aware Real-Time

Task Scheduling for FinFET based Multicores. ACM Trans. Embedd. Comput. Syst. 00, 0, Article 000 (2018),

29 pages. https://doi.org/XXXXXXX.XXXXXXX

Authors’ addresses: Shounak Chakraborty, Department of Computer Science, Norwegian University of Science and Tech-

nology (NTNU), Trondheim, Norway, 7491, shounak.chakraborty@ntnu.no; Yanshul Sharma, yanshul.sharma@iiitg.ac.in;

Sanjay Moulik, sanjay@iiitg.ac.in, Department of Computer Science and Engineering, Indian Institute of Information

Technology (IIIT) Guwahati, Guwahati, Assam, India, 781015.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1539-9087/2018/0-ART000 $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

HTTPS://ORCID.ORG/0000-0003-1679-6210
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-1679-6210
https://doi.org/XXXXXXX.XXXXXXX

000:2 Chakraborty et al.

1 INTRODUCTION
The recent shift from conventional MOSFET to FinFET for contemporary chip-multiprocessor

(CMP) designs has noticeably improved hardware platforms’ computing capabilities by lowering the

short channel effects of MOSFET, but at the cost of several thermal issues specifically caused due to

confined 3D geometrical shape of the FinFETs [41, 53, 60]. Due to the shape of FinFET, devices have

become special in terms of their power and performance characteristics [34, 71, 78, 80]. Unlike the

conventional MOSFET, FinFET devices experience a significant increase in circuit speed at a higher

temperature, called temperature effect inversion (TEI) [20, 50]. This TEI might incorporate timing

and synchronization issues during execution, which introduces new challenges for scheduling

time-critical applications. Additionally, encapsulation of FinFET channel within a thermal insulator

clogs heat dissipation that can potentially lead to circuit failure due to self-heating effect (SHE) [6].

Hence, developing novel scheduling strategies for FinFET based multicores that prudentially balance

TEI and SHE is a prime requirement for the time-critical computing paradigm.

Scheduling real-time tasks has been becoming challenging in the case of multicore platforms over

the years with a gradual increase in workload as well as computational resources. Towards legitimate

distribution and utilization of the computational resources, semi-partitioned scheduling [8] has

been proposed for multicore platforms having low task migration overheads. In such schedulers,

the execution timeline is split into a batch of time slots known as intervals, and execution in systems

happens interval by interval. The proposed scheduler also allows missing task deadlines within

a stipulated bound but can offer efficient task utilization. In another approach [38], the authors

proposed an optimal static scheduler to schedule soft real-time sporadic tasks based on the Earliest

Deadline First (EDF) notion. A two-phase strategy was proposed by Casini et al. [22], where the first

phase employs an approximation scheme to split the tasks, and the next phase is a load-balancing

algorithm that limits the number of task migrations. A cluster-based scheduler was also devised [5],

which initially partitions the tasks into clusters, each of which may contain a set of processors.

Next, the tasks are scheduled using global EDF in every cluster.

Advancement in VLSI technology further drives real-time system researchers to include thermal

management while developing efficient schedulers for modern multicore platforms [54, 82], where

tasks are statically allocated based upon their thermal characteristics. Unfortunately, prior offline

approaches are mostly based on the conventional MOSFET based system, hence did not consider

the thermal characteristics of the FinFET. Over a decade, TEI in FinFET has been investigated,

which increases the operational speed at higher temperatures even in the super-threshold voltage

region [20, 21, 47, 49, 50]. Kim et al. [47] have explored this phenomenon by analyzing the circuit-

and device-characteristics. By scaling supply voltage dynamically, Lee et al. [50] also proposed a

thermal management technique for the FinFET devices while considering TEI. However, these prior

techniques mostly focused on the TEI, but its performance impacts on the multicores were first

evaluated by Cai and Marculescu [21]. Later, Neshatpour et al. [63] devised a TEI-aware DVFS that

scales the cores’ voltage/frequency (V/F) by exploiting on-chip thermal sensors. However, these

earlier techniques did not consider SHE, which needs to be taken care of while exploiting TEI in

FinFET devices, which can also be an interesting design choice for time-critical environments. In

earlier work, we proposed RESTORE [72], which is a temperature-aware real-time scheduler for

FinFET based multicores that govern the voltage/frequency of the cores by considering TEI and

SHE phenomena of the FinFET. To the best of our knowledge, RESTORE is the first technique that

considered TEI and SHE phenomena of the FinFET based multicores in the spectrum of time-critical

environments. However, as a reactive mechanism, RESTORE considers the current temperature of

the cores and regulates the voltage accordingly so that a legitimate frequency can be met. As core

temperature depends upon the task’s runtime characteristics, fine-grained thermal management of

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:3

Constraints:
1. Assigned Frequency
2. Critical Temperature

Max. TEI Exploitation and Min. SHEs

T1 T2 T3 Tn

Segregate Hot and Cold Tasks

V1 V2 V3 Vm

Sort Cold to Hot Cores

Set of Tasks Set of Cores

Scheduling Algorithms

Deadline Partitioning Find Task Parameters

Mapped Hot (Cold) Tasks on Cold (Hot) Cores

Frequency Assigned for each Task

S
ch

ed
u

le

Opportunistic Voltage Spiking

Throttle Voltage during Memory Stalls

Runtime Thermal Management

Fig. 1. Process Overview: TREAFET

the FinFET based time-critical system must account for the change in temporal thermal status of

the individual tasks during execution, which was not included in RESTORE.

In this paper, we propose TREAFET , a two-phase temperature-aware real-time scheduling strategy

for the multicore platforms that first schedules tasks at design time by assigning a particular runtime

frequency for individual tasks. The entire strategy of TREAFET is depicted in Figure 1 (detailed

in Sec. 3). At first, the task-to-core allocation is performed by considering the thermal characteristics

of the individual tasks. On the other hand, the present thermal status of the cores is also analyzed,

and the cores are also sorted as per their temperature values. Our proposed scheduler is based

on the semi-partitioned approach and, hence, can offer high resource utilization with a limited

number of migrations. The task execution is divided into several intervals, where the interval

boundaries act as pseudo-deadlines for each task. This feature not only helps the scheduler maintain

a steady rate of progress for all tasks but also meets their final task deadlines. Overall, our proposed

semi-partitioned scheduler considers the thermal characteristics of individual tasks and the current

thermal status of each core and maps hot (cold) tasks to cold (hot) cores. For each task, the scheduler

also assigns a particular frequency so that the deadline is not violated. During execution, TREAFET

will prudentially apply the dynamic voltage scaling (DVS) mechanism by considering the core

temperature, with an objective of balancing TEI and SHE properties of the FinFET. As the tasks are

known beforehand, TREAFET detects the different execution phases of each task and the runtime

temperature of the core to apply DVS strategically so that exploitation of TEI benefits can be

enhanced while maintaining a safe temperature and meeting the real-time constraint. Additionally,

during costly memory stalls at the cores, the supply voltage is throttled to save power, while

an opportunistic energy-adaptive voltage spike is applied just after the memory stall to improve

performance. To the best of our knowledge, TREAFET is the first real-time scheduling approach that

accounts for TEI and SHE phenomena of the FinFET based multicore along with an intense focus on the

runtime task-characteristics.

The contributions of TREAFET can be listed as follows:

• In Scheduling Phase (detailed in Sec. 3.2)-

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:4 Chakraborty et al.

– the interval based independent tasks are allocated to the cores based on the tasks’ thermal

profiles;

– the current temperature of the individual cores is considered at the beginning of each

interval to allocate hot tasks to the cold cores and vice versa;

– each task is also assigned a specific frequency and the minimum frequency value at which

the task needs to be executed to meet the deadline.

• For each task, the Runtime Thermal Management (detailed in Sec. 3.3)-

– intends to execute the hotter execution phase with increased TEI exploitation while limiting

the SHEs by employing DVS prudentially towards maintaining an average preset frequency

so that deadlines are not violated;

– detects and exploits the costly memory stalls induced by the last level cache (LLC) misses

and prudentially throttles the core-voltage towards balancing TEI exploitation vs. mitigating

SHEs while guaranteeing the performance;

– employs an energy-adaptive opportunistic voltage spiking just after completion of the

memory stall interval to improve the performance;

– exploits slacks generated online due to performance improvement for energy saving by

turning off the cores.

Simulation based results (detailed in Sec. 5) show that TREAFET is able to maintain a safe and stable

peak temperature of 80
◦
C even with 100% system utilization. Overall, by employing TEI-aware

and runtime energy-adaptive voltage scaling mechanism, TREAFET improves core frequency up

to 17% over the assigned frequency while scheduling the tasks. By stimulating core frequency,

TREAFET reduces the task execution time that generates slacks within the interval, which are

further exploited to improve energy efficiency by power gating the processor cores, and thus a 24%

average gain in energy delay product (EDP) is achieved while surpassing a prior art [63].

2 BACKGROUND AND SYSTEMMODEL
This section will briefly discuss the semi-partitioned scheduling, and thermal characteristics of

FinFET based CMPs, along with the system model used in this work.

2.1 Semi-Partitioned Scheduling
Multicore schedulers are broadly classified as either global or partitioned. In global scheduling [10,

28, 70], all ready tasks are added in a single priority queue and at each scheduling point, the

highest priority𝑚 tasks are scheduled on𝑚 available cores of the system. Although such schedulers

have several advantages like automatic load balancing among cores, simple implementation, etc.,

they also suffer from a high number of migrations [14, 29]. This is attributed to the fact that at

each scheduling point, there might be a migration. In partitioned scheduling [30, 33, 55], there

are separate priority queues for each available core and once a task is allotted to a core, it is not

permitted to migrate. Hence, there is no migration cost involved in such scheduling. Further, each

core may use an optimal single core scheduling strategy like Earliest Deadline First, Rate Monotonic

Scheduling, etc., which may be different from the strategy followed by other cores in the system.

However, the problem of optimal task-to-core allocation is NP-Hard [12, 44]. These schedulers

use various heuristics like First Fit, Next Fit, Worst Fit, etc., to perform the task-to-core allocation.

Further, these schedulers also suffer from low resource utilization, which is a side-effect of not

allowing migrations. Hence, hybrid strategies are employed for preparing multicore scheduling

strategies, which can be categorized as semi-partitioned [9, 43]. In such schedulers, the execution

timeline is split into batches of time slots known as intervals, using some heuristics. In each such

split, a single schedule is prepared for the interval at the beginning, and the number of migrations

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:5

is restricted by a preset threshold. But if an interval is short, the scheduler will behave as a global

one. On the other hand, a large interval will indicate a partitioned scheduler. Further, if a task has

a deadline within an interval, which is very likely, the scheduler must consider it as a constraint.

In TREAFET , we will use a heuristic known as deadline partitioning [66, 67] to achieve such time

splits, which have the advantage of having task deadlines only at the interval boundaries.

2.2 Thermal Aspects of FinFET CMPs
The thermal status of any on-chip component obeys the basic superposition and reciprocity principle

of the heat transfer, which is driven by three prime factors: (1) the component’s own power

consumption, (2) heat abduction by ambient, and (3) conductive heat transfer with its peers [76].

Out of these three factors, the power consumption of the component plays the most vital role in

determining its thermal status, especially those built in sub-14nm technology, due to encapsulation

of the FinFET channel by the insulator [6, 7, 45, 53, 60, 80]. Hence, to ensure the thermal safety of

these devices, prudential control of power consumption can be a potential optimization knob.

We represent the dynamic power consumption of a core as 𝑃𝑜𝑤𝐷𝑦𝑛 , which is proportional to the

supply voltage, 𝑉𝑑𝑑 , and the operational frequency, 𝐹 , of the core. 𝑃𝑜𝑤𝐷𝑦𝑛 can be represented as:

𝑃𝑜𝑤𝐷𝑦𝑛 = 𝐾 ·𝑉 2

𝑑𝑑
· 𝐹 (1)

where 𝐾 is a circuit related constant. The leakage power of a core depends on the supply voltage

(𝑉) and current core temperature (𝑇𝑒𝑚𝑝), which can be expressed as:

𝑃𝑜𝑤𝐿𝑒𝑎𝑘 (𝑉𝑑𝑑 ,𝑇𝑒𝑚𝑝𝑑𝑖𝑒) = 𝑉𝑑𝑑 · (𝑐1 ·𝑇𝑒𝑚𝑝2𝑑𝑖𝑒 · 𝑒
(𝑐2 ·𝑉𝑑𝑑 +𝑐3
𝑇𝑒𝑚𝑝𝑑𝑖𝑒

) + 𝑐4 · 𝑒 (𝑐5 ·𝑉𝑑𝑑+𝑐6)) (2)

where 𝑐1 to 𝑐6 are technology dependent parameters
1
and 𝑇𝑒𝑚𝑝𝑑𝑖𝑒 represents the die tempera-

ture [50]. We employ Kirchhoff’s equation for the RC-circuit thermal model to track the rate of

change in temperature [50]:

𝑑𝑇𝑒𝑚𝑝𝑑𝑖𝑒

𝑑𝑡
= (𝑃𝑜𝑤𝑐𝑖𝑟𝑐𝑢𝑖𝑡 −

𝑇𝑒𝑚𝑝𝑑𝑖𝑒 −𝑇𝑒𝑚𝑝𝑎𝑚𝑏

𝑅𝑑𝑖𝑒−𝑎𝑚𝑏

)/𝐶𝑑𝑖𝑒 (3)

where 𝐶𝑑𝑖𝑒 , 𝑅𝑑𝑖𝑒−𝑎𝑚𝑏 , and 𝑇𝑒𝑚𝑝𝑎𝑚𝑏 are the thermal capacitance of the die, thermal resistance

between the die and ambient, and the ambient temperature, respectively. 𝑃𝑜𝑤𝑐𝑖𝑟𝑐𝑢𝑖𝑡 is the total

power (i.e., summation of dynamic and leakage) consumed by the die and can be written as:

𝑃𝑜𝑤𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝑃𝑜𝑤𝐷𝑦𝑛 + 𝑃𝑜𝑤𝐿𝑒𝑎𝑘 (4)

By using a prior measurement for ARM-cortex A8 processor, built-in 14nm FinFET technology

nodes [59], we set 𝐶𝑑𝑖𝑒 and 𝑅𝑑𝑖𝑒−𝑎𝑚𝑏 , values of which are given in Table 1
2
. We set 𝑇𝑒𝑚𝑝𝑎𝑚𝑏 as

40
◦
C. TEI in FinFET reduces circuit delay at the increased temperature, which can directly impact

the core frequency (𝐹) that can be written as follows:

𝐹 = 𝑑0 ·𝑉 2

𝑑𝑑
+ 𝑑1 ·𝑉𝑑𝑑 ·𝑇𝑒𝑚𝑝𝑐𝑜𝑟𝑒 + 𝑑2 ·𝑇𝑒𝑚𝑝𝑐𝑜𝑟𝑒 + 𝑑3 ·𝑉𝑑𝑑 + 𝑑4 (5)

where 𝑑0 to 𝑑4 are the constants, and values of which are decided empirically [21] and are given

in Table 1. The maximum temperature limit for our die is set as 80
◦
C.

Table 1. System-wide Constants (based on 14nm FinFET Technology node) and their Values [21, 50]

Parameters 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝐶𝑑𝑖𝑒 𝑅𝑑𝑖𝑒−𝑎𝑚𝑏

Values −4.27 0.0042 0.0052 10.6 −2.66 9.0 J/K 35.8 K/W

1
which are internally set in McPAT-monolithic’s power model [56], used in our simulation (Sec. 4)

2
These values might be determined and updated for other technology nodes empirically detailed in prior works [20, 21]

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:6 Chakraborty et al.

2.3 System Model
The considered system comprises a periodic task set T = {T1,T2, . . . ,T𝑛} comprising 𝑛 tasks, that

needs scheduling on a multicore platform V with𝑚 cores, i.e., V = {V1,V2, . . . ,V𝑚}. Each core

is able to run on a normalized set of frequencies F = {F1, F2, . . . , F𝑚𝑥 }, where F𝑚𝑥
refers to the

highest (lowest) available normalized frequency of 1 (0) and other frequencies range between 0

and 1. Each occurrence of T𝑖 is associated with a deadline/period 𝑑𝑖 , an execution requirement

𝑒𝑖 (while performing on F𝑚𝑥
), utilization 𝑢𝑖 = 𝑒𝑖

𝑑𝑖
, and steady state temperature T𝑖𝑠𝑠 . The steady

state temperature of a task on a core is defined as the core’s achieved temperature when the task

performs without interruption on the core at a specific frequency for a prolonged stretch of time,

possibly over multiple instances. At any moment, the remaining deadline/period of a task T𝑖 is
represented as 𝑟𝑑𝑖 .

3 TREAFET: PROPOSED TECHNIQUE
The working mechanism of TREAFET can be represented in a hierarchical manner that comprises

five algorithms. In the outer layer (Algorithm 1), the execution of tasks in the system is broken

down into multiple chunks of time slots called intervals, and the algorithm keeps track of the

progress of each task across the intervals. In the intermediate layer (Algorithm 2), a heuristic based

temperature-aware schedule is prepared for the given tasks on the available cores. In the inner layer

(Algorithm 3), a FinFET specific online technique is used by the scheduler to further manage the

temperature and energy consumption of the individual cores in the system. To carry out the whole

thermal management process, Algorithm 3 employs an energy-adaptive frequency determination

strategy (Algorithm 4) and a slack exploitation technique (Algorithm 5) for energy saving. In the

subsequent subsections, we describe the working of each layer in detail.

3.1 Overall Progress Tracking
The overall progress tracking mechanism is given in Algorithm 1. In this layer, the scheme keeps

track of the overall progress for each task in the system using the technique of deadline partition-

ing [32] (line 2). The algorithm sorts the remaining deadlines of the given tasks in the list T. Next,
the algorithm determines the duration of the next interval (say I𝑘), which is the time duration from

the current time slot to the nearest deadline among all the tasks. It can be represented as:

I𝑘 =𝑚𝑖𝑛{𝑟𝑑1, 𝑟𝑑2, . . . , 𝑟𝑑𝑛} (6)

TREAFETemploys a number of temperature-aware heuristics at different layers. In the first layer

(Algorithm 1), it applies a basic temperature aware strategy. The algorithm needs to sort the tasks

based on their temperature characteristics. However, if the sorting is done based on steady state

temperatures, it may not be a realistic scenario because the steady state temperature can only be

reached if the task keeps on running on a core for a very long time. In our algorithm, the task

execution is broken into several parts, and a task T𝑖 can only execute for a duration 𝑒𝑟 𝑖
𝑘
in I𝑘

(explained next). So, a core may not reach the steady state temperature in the interval. Further,

the actual task-to-core assignment happens in the next layer. Therefore, the algorithm uses the

concept of virtual core, which is used for initialization purposes. Since the algorithm does not know

on which core the task T𝑖 will be assigned, it computes 𝑇𝑒𝑚𝑝
𝑎𝑣𝑔

𝑉
by computing the average of

temperatures of the available𝑚 cores (line 4) and assigns it to the virtual core. It assumes that

each task will execute on this core separately with the starting temperature𝑇𝑒𝑚𝑝
𝑎𝑣𝑔

𝑉
and check the

hotness of the core𝑇𝑒𝑚𝑝T
𝑖

V when they finish. Depending on this final temperature𝑇𝑒𝑚𝑝T
𝑖

V , a sorted

task list ∧1 will be prepared. This final temperature presents a more realistic scenario because it is

based on the actual execution requirement in the interval. Further, in a system having a decent

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:7

workload, it is highly improbable that some cores are totally idle and have a significantly lower

temperature than other cores of the system. Hence, the consideration of 𝑇𝑒𝑚𝑝
𝑎𝑣𝑔

𝑉
as the initial

temperature of the virtual core is a reasonable assumption.

With the onset of the interval I𝑘 , it considers each task T𝑖 in the list T individually (line 5 to 8).

For each task T𝑖 , the algorithm determines the execution requirement (𝑒𝑟 𝑖
𝑘
) of the task (line 6) for

the ensuing interval I𝑘 by using the following equation:

𝑒𝑟 𝑖
𝑘
= ⌈𝑒𝑖× | I𝑘 | /𝑑𝑖⌉ (7)

Algorithm 1: TREAFET : Determination of Intervals and Workload

Input: T, V
Output: A set of schedules for the interval set

1 Let, i. Set of intervals, I = {I1, I2, . . . }, ii. ∧1 be sorted list (in non-increasing order) based on the temperature of a core with an

initial temperature𝑇𝑒𝑚𝑝
𝑎𝑣𝑔

𝑉
if it runs T𝑖 , and iii. 𝑆𝑇𝑘 [𝑚] [𝑛] be the generated schedule table for I𝑘

2 Find a set of intervals I using Deadline Partitioning

3 for each interval I𝑘 ∈ I do
4 Compute average core temperature,𝑇𝑒𝑚𝑝

𝑎𝑣𝑔

𝑉
=

𝑇𝑒𝑚𝑝
𝑉 1
+𝑇𝑒𝑚𝑝

𝑉 2
+···+𝑇𝑒𝑚𝑝𝑉𝑚

𝑚

5 for 𝑖 ← 1 : |T | do
6 Find share 𝑒𝑟 𝑖

𝑘
using Equation 7

7 Find core temperature𝑇𝑒𝑚𝑝T
𝑖

V if it runs T𝑖 using Equation 3

8 ∧1 ← ∧1 ∪ {⟨𝑖, 𝑒𝑟 𝑖𝑘 ,𝑇𝑒𝑚𝑝T
𝑖

V ⟩}
9 Call Algorithm 2

If the scheme can execute each task T𝑖 for 𝑒𝑟 𝑖
𝑘
time-slots in every interval, I𝑘 , then all tasks

will definitely meet their deadlines. Further, such execution of tasks will guarantee that the tasks

maintain a steady rate of progress at the boundary of the intervals. The algorithm maintains a

non-increasing ordered sorted list of tasks ∧1 based on the temperature reached by the tasks if they

execute on the virtual core from the beginning of the interval. To prepare the list ∧1, the algorithm
determines the temperature of the virtual core if the task under consideration, i.e. T𝑖 , runs on the

core for its required time-slots 𝑒𝑟 𝑖
𝑘
in the interval using Equation 3 (line 7). Based on this value, the

task T𝑖 is added to the list ∧1 at an appropriate position (line 8). Once all the tasks have been added

to the list ∧1, the algorithm moves to the next phase by calling Algorithm 2 (line 9).

3.2 Scheduling Phase
Algorithm 2, the heart of the scheduling phase, prepares the basic schedule for the tasks on the

available cores. The algorithm uses a heuristic where it tries to schedule the hottest task on the

coolest core and the coolest task on the hottest core in an alternate iteration. Such a heuristic has

proved useful to reduce core temperatures in prior literature [27, 88]. It iterates over the task list

∧1 by considering one appropriate task-core pair at a time (line 4 to 20). To alternatively extract

hot and cool tasks from the list ∧1 and assign them to an appropriate core, it uses a binary variable

𝑓 𝑙𝑎𝑔. If the 𝑓 𝑙𝑎𝑔 is currently set (line 5), the hottest task (say T𝑖) is chosen from the front of the

list ∧1 (line 6), and the core (say V𝑗
) having the lowest temperature is chosen, which can meet the

requirement of the chosen task (line 7). If no such core is found for the chosen task T𝑖 , it is added to
the front of the list of migrating task ∧𝑚𝑔𝑟 (line 8 to 10). Alternatively, suppose the current value of

the 𝑓 𝑙𝑎𝑔 is 0. In that case, the task having the lowest steady-state temperature is chosen from the

back of the list ∧1 (line 12) and is scheduled on the core having the highest current temperature

(line 13). Subsequently, the core capacity V
𝑗
𝑐 is updated (line 18) and the temperature at which the

core V𝑗
will reach if it executes the task T𝑖 is computed using Equation 3 (line 19). It may be noted

that each core V𝑗
can execute for a maximum |I𝑘 | time-slots in an interval I𝑘 at the maximum

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:8 Chakraborty et al.

available normalized operating frequency F𝑚𝑥
(which is equal to 1). Hence, at the start of every

interval, each core capacity V
𝑗
𝑐 is set to the value |I𝑘 | (line 3). Next, the 𝑓 𝑙𝑎𝑔 is set to the alternate

value (line 20). Using such a strategy helps TREAFET to prepare a basic temperature-aware schedule

which keeps the temperature of the cores balanced. At the end of Algorithm 2, all the tasks present

in the list ∧𝑚𝑔𝑟 are scheduled on available cores using Next Fit Bin Packing strategy (line 21). Tasks

that could not be scheduled on any single core are executed among the available set of cores without

considering the thermal status of the cores. When all the tasks have been scheduled on available

cores, Algorithm 2 computes the operating frequency for each core V𝑗
in the interval I𝑘 where each

core can execute for a maximum |I𝑘 | time-slots. The assigned workload on V𝑗
for the interval can

be determined as

∑𝑛
𝑖=1 𝑒𝑟

𝑖
𝑘
, ∀T𝑖 having 𝑆𝑇𝑘 [𝑗] [𝑖] > 0. Therefore, the required operating frequency

F
𝑗
𝑜𝑝𝑡 for the coreV

𝑗
can be computed as a ratio of assigned workload to available time slots (line 22):

F
𝑗
𝑜𝑝𝑡 = ⌈

∑𝑛
𝑖=1 𝑒𝑟

𝑖
𝑘

|I𝑘 |
⌉, ∀T𝑖 ∈ T | 𝑆𝑇𝑘 [𝑗] [𝑖] > 0 (8)

Since the computed frequency may not always be available in the discrete frequency set F, we
used the ceiling notation to denote the next available frequency, which is greater than or equal to

this ratio. Further, it may be noted that the scaling down of the operating frequency will lead to the

execution of tasks at a slower speed; however, the assigned workload to a core can never exceed

its capacity in an interval, which means that the value of F
𝑗
𝑜𝑝𝑡 will always be less than or equal

to 1. Therefore, running each core V𝑗
at F

𝑗
𝑜𝑝𝑡 ensures that the workload finishes by the interval

boundary of I𝑘 . For the dynamic thermal management (explained in Sec. 3.3), the algorithm requires

separate operating frequencies for each task. Therefore, we assigned F
𝑗
𝑜𝑝𝑡 as the base frequency

𝐹_𝐵𝑎𝑠𝑒 [𝑖] for each task T𝑖 which has been assigned to the core V𝑗
. Algorithm 3 is called next to

manage the temperature during execution (line 23).

3.3 Runtime Thermal Management
Once the tasks are scheduled, the individual tasks are executed at the assigned processor cores.

The variation in the counts of different types of instructions over the execution phases of a task

changes the core temperature over time. As per Equation 5, the core frequency at any time-stamp

of a FinFET based processor core depends upon the supply voltage and the core temperature due

to TEI. Although at higher temperatures, the cores run faster, which can be leveraged to enhance

the performance, a safe temperature needs to be maintained, so that circuit failure caused by SHE

can be prevented beforehand. Hence, our runtime thermal management first considers the live

core temperature periodically and tries to prudentially exploit the TEI to speed up the execution,

whereas thermal safety is guaranteed by fine-grained dynamic voltage scaling (FG-DVS).

Runtime thermal management of TREAFET can be presented as an integration of the following

three modules:

• Dynamic Exploitation of TEI

• FG-DVFS during Memory Stalls

• Shutdown the core during Slacks

The first one attempts to exploit TEI by considering the current-voltage magnitude and temperature.

The supply voltage is governed to ensure a core frequency equal to the assigned value for the current

task. Moreover, the power consumption must not violate the underlying core’s thermal design

power (TDP) to ensure thermal safety. As this voltage management is performed periodically, we

must select a moderate period length during which thermal status can be assumed unchanged [21].

Moreover, the period length should be sufficiently large so that voltage switching should not

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:9

Algorithm 2: Task Scheduling

Input: ∧1 , V, 𝑆𝑇𝑘
Output: Schedule for current interval

1 Let i. ∧𝑚𝑔𝑟 be the task list having tasks which need migration in the current interval, ii. V
𝑗
𝑐 be the spare capacity of V𝑗

in I𝑘 , and
iii. 𝑓 𝑙𝑎𝑔 ∈ {0, 1}

2 Set 𝑓 𝑙𝑎𝑔← 1 and sort cores in non-increasing order of their temperature

3 Set V
𝑗
𝑐 = |I𝑘 | for 𝑗 = 1, 2, . . . ,𝑚

4 while ∧1 ≠ 𝑒𝑚𝑝𝑡𝑦 do
5 if 𝑓 𝑙𝑎𝑔 = 1 then
6 Fetch T𝑖 from the front of ∧1
7 Choose the core (say V𝑗

) having the lowest temperature and V
𝑗
𝑐 ≥ 𝑒𝑟 𝑖

𝑘

8 if No such core found then
9 Add T𝑖 to front of ∧𝑚𝑔𝑟

10 continue;

11 else
12 Fetch T𝑖 from the end of ∧1
13 Choose the core (say V𝑗

) having the highest temperature and V
𝑗
𝑐 ≥ 𝑒𝑟 𝑖

𝑘

14 if No such core found then
15 Add T𝑖 to end of ∧𝑚𝑔𝑟

16 continue;

17 Schedule T𝑖 on V𝑗
for 𝑒𝑟 𝑖

𝑘
time-slots by updating 𝑆𝑇𝑘 [𝑗] [𝑖]

18 V
𝑗
𝑐 ← V𝑗

𝑐 − 𝑒𝑟 𝑖𝑘
19 Compute𝑇𝑒𝑚𝑝V𝑗 using Equation 3 and update position of V𝑗

in core list

20 𝑓 𝑙𝑎𝑔 = (𝑓 𝑙𝑎𝑔 + 1)%2
21 Schedule all tasks of ∧𝑚𝑔𝑟 on cores using Next Fit bin packing with respect to shares of tasks and remaining capacities of cores by

updating 𝑆𝑇𝑘

22 Compute operating frequency F
𝑗
𝑜𝑝𝑡 , for each core V𝑗

using Equation 8

23 Call Algorithm 3

frequently occur, which might incur significant power and performance issues at the voltage

regulators (VRs) along with the transient faults. The second approach considers individual memory

stalls at the cores during a period and reduces the core’s V/F to the lowest possible value to save

energy. The V/F will be scaled up just before the data arrives from the memory. The saved energy

is next traded off by scaling the voltage to a larger value to maintain a higher core frequency for a

stipulated time. The time span will be determined by accounting for the energy saved by DVFS

during the memory stall. Prudential exploitation of TEI and energy-adaptive FG-DVFS during

memory stalls result in improved performance, thus generating slacks, during which the core will

be power gated to reduce energy usage and temperature, which is our last strategy.

3.3.1 Dynamic Exploitation of TEI. The entire process of runtime TEI exploitation and frequency

management for the underlying FinFET based cores is given in Algorithm 3. The execution span

of a task T𝑖 on a core is broken into ⌈𝑒𝑟 𝑖
𝑘
/Δ⌉ parts, each of which is called frame. We consider Δ

as the maximum allowed frame size, which is given as an input to the algorithm. To periodically

monitor the core-temperature, Algorithm 3 first considers the length of a frame (𝑚𝑖𝑛{Δ, 𝑟𝑒𝑖
𝑘
}) and

initial core temperature (𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡), where 𝑟𝑒𝑖
𝑘
denotes the remaining execution share of T𝑖 in I𝑘 .

Note that 𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡 is basically the current core temperature (can be determined through on-chip

thermal sensors) just before the task execution. The higher and lower temperature thresholds are

also inputs to the algorithm (𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

and 𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

) along with the operational voltage levels

for the cores and the derived base frequencies for the individual tasks. Once initialization of the

required parameters is done, the scheduled tasks are fetched for execution. Next, the supply voltage

(𝑉𝑖𝑛) is set to a certain level so that the assigned base frequency is guaranteed, i.e. 𝐹𝑟𝑒𝑞(𝑉𝑖𝑛,𝑇𝑒𝑚𝑝)
≥ 𝐹_𝐵𝑎𝑠𝑒 [𝑖] (line 3), and the task execution will be started.

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:10 Chakraborty et al.

T1 T4
F1
F2
F3

Frequency

Time

(A) After Task Allocation

Frequency/
Temperature

Time

(B) Runtime Temperature

T1 T4

Temperature
Frequency

T1

Basic
Frequency}

T3T2

T2
T3

T1

(C) Task Level DTM at Core
(D) TEI/SHE-aware FG-DVFS

at Memory Stalls

Voltage
/Frequency

Memory-Stall
FG-DVFS

Final
Slack

Assigned Frequency
Average Runtime Frequency

Voltage
/Frequency

Average Runtime
Frequency with FG-DVFS

F1
F2
F3

Fig. 2. Online TEI/SHE-Cognizant DTM

During execution, our algorithm collects the core temperature at the end of each frame, where

the frame length is determined by𝑚𝑖𝑛{Δ, 𝑟𝑒𝑖
𝑘
} (line 7). Once the core temperature at the end of

the last frame is higher than 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

, the 𝑉𝑖𝑛 is set at the lowest possible level, 𝑉𝑑𝑑 [1] (line 8 to 9).

Lowering supply voltage will reduce the core power consumption, but higher temperatures will be

able to maintain a suitable frequency, thanks to TEI. Note that we need to set the lowest voltage

magnitude at some optimal value, which at the maximum allowed temperature, can maintain a

certain frequency by exploiting TEI so that the deadline can be met. In RESTORE [72], we have

shown how our considered lowest voltage value can still maintain a sufficiently high frequency

when the temperature is higher or the same as 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

. Once the temperature is lower than

𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

, 𝑉𝑖𝑛 will be set to the highest possible value 𝑉𝑑𝑑 [𝐿] (line 10 to 11), where 𝐿 implies the

number of available voltage levels.

If the current temperature of the core is within the predefined thresholds, the voltage level is set

to a minimum possible magnitude which can maintain an average core frequency at least 𝐹_𝐵𝑎𝑠𝑒 [𝑖]
(line 12 to 17). After setting 𝑉𝑖𝑛 , the core frequency is updated (line 18). During a frame, the core

executes a task normally, and the number of completed clock cycles is tracked by employing

a counter, 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 (line 22). Figure 2[C] illustrates the idea of our dynamic TEI exploitation

technique at the task level granularity with an example where three (base) frequencies (𝑓1, 𝑓2 and

𝑓3) are considered with four tasks (𝑇 1
to 𝑇 4

). The figure magnifies how our technique monitors

the temperature and exploits it periodically to apply DVFS while guaranteeing the task deadlines.

Once the frequency is set for a period, our algorithm also checks for the costly memory stalls at

the individual cores, during which FG-DVFS can be applied in an energy-adaptive manner so that

TDP will be maintained (line 23). The details of energy-adaptive FG-DVFS will be discussed next.

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:11

Algorithm 3: TREAFET : Dynamic Exploitation of TEI

Input: 𝐹_𝐵𝑎𝑠𝑒 [1 : |T |],𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡 , Δ, 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 ,𝑉𝑑𝑑 [1 : 𝐿],𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

,𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

, 𝑟𝑒𝑖
𝑘

Output: Thermal Safety with maintained base frequency

1 𝑇𝑒𝑚𝑝 =𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡

2 for each task T𝑖 do
3 # Fetch task T𝑖 along with its assigned base frequency 𝐹_𝐵𝑎𝑠𝑒 [𝑖], current temperature (𝑇𝑒𝑚𝑝) of the core, and set 𝑟𝑒𝑖

𝑘
= 𝑒𝑟 𝑖

𝑘

4 # Set𝑉𝑖𝑛 to fix the frequency, so that, 𝐹𝑟𝑒𝑞 (𝑉𝑖𝑛,𝑇𝑒𝑚𝑝) ≥ 𝐹_𝐵𝑎𝑠𝑒 [𝑖], and start execution and 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 = 0

5 while T𝑖 is executed do
6 if 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 ==𝑚𝑖𝑛{Δ, 𝑟𝑒𝑖

𝑘
} then

7 # Get the frequency and temperature for V𝑗
in the last frame

8 if 𝑇𝑒𝑚𝑝 ≥ 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

then
9 𝑉𝑖𝑛 =𝑉𝑑𝑑 [1]

10 if 𝑇𝑒𝑚𝑝 ≤ 𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

then
11 𝑉𝑖𝑛 =𝑉𝑑𝑑 [𝐿]
12 if 𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
> 𝑇𝑒𝑚𝑝 > 𝑇𝑒𝑚𝑝𝐿𝑜𝑤

𝑡ℎ𝑟
then

13 for 𝑝 = 2 to (𝐿 − 1) do
14 𝐹𝑁𝑒𝑥𝑡 = 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑉 [𝑝],𝑇𝑒𝑚𝑝)
15 if (𝐹𝐶𝑢𝑟𝑟 + 𝐹𝑁𝑒𝑥𝑡)/2 ≥ 𝐹_𝐵𝑎𝑠𝑒 [𝑖] then
16 𝑉𝑖𝑛 =𝑉𝑑𝑑 [𝑝]
17 𝑏𝑟𝑒𝑎𝑘

18 𝐹𝐶𝑢𝑟𝑟 = 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑉𝑖𝑛,𝑇𝑒𝑚𝑝)
19 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 = 0

20 𝑟𝑒𝑖
𝑘
= 𝑟𝑒𝑖

𝑘
-𝑚𝑖𝑛{Δ, 𝑟𝑒𝑖

𝑘
}

21 else
22 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 + +
23 𝑐𝑦𝑐𝑙𝑒_𝑐𝑡𝑟 = 𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 (𝐹𝐶𝑢𝑟𝑟 ,𝑉𝑖𝑛,𝑇𝑒𝑚𝑝) (call Algorithm 4) ;

24 Call Slack_Exploitation algorithm (Algorithm 5);

3.3.2 FG-DVFS during Memory Stalls.

Analyzing Memory Stalls. Prior literature claims that a significant portion of the entire execution

time of modern applications is spent on accessing the off-chip memory (both data and instruction

blocks) [4, 16, 73], and individual memory accesses are costly in terms of access-time and energy.

In case of an instruction miss in an OoO core, the instruction dispatch is stalled once the front end

is depleted by the instructions. On the other hand, upon a load miss (i.e. a miss for a data block),

due to memory-level parallelism (MLP), only the very first miss, or an isolated miss, of a set of

potential in-flight memory accesses to the same memory location (i.e. cache block), will observe

the entire duration of the memory access. Towards employing FG-DVFS at the core, we need to

detect which loads cause isolated misses. These isolated load misses can be identified by looking

at the miss status holding register (MSHR) of the respective cores that have requested the data.

Once a load (LLC-) miss does not have an allocated MSHR, and its respective requester core has

zero pending memory accesses at present, then this miss can be tagged as an isolated miss. We

executed eight PARSEC applications in gem5 [17], a cycle-accurate full system simulator, for 100𝑀

cycles (in Region of Interest (RoI)) on a single core OoO 𝑥86 processor, equipped with two levels

of caches (64KB 4W L1 (D/I) and 1MB L2) and observed the percentage of entire execution time

the stalls take place while accessing memory. We segregated the isolated and instruction misses

for each benchmark application and showed the results in Figure 3. The result portrays that two

memory-intensive applications, Ded and Stream, spend up to 60% of their whole execution time in

accessing off-chip memory. Overall, for all applications, on an average of 25% of the total execution

time, a core remains stalled for accessing memory. This is significantly high and hence can be

utilized to reduce the power and temperature of the core without any performance impact.

Energy-Adaptive FG-DVFS vs. Individual Stalls. Now, we will discuss two different scenarios

during which FG-DVFS can be applied at the requester core during the memory stalls: the first

one is an instruction miss, and the second one is an isolated miss. Let us assume that each of our

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:12 Chakraborty et al.

Fig. 3. Percentage of Total Execution-time Spent for Accessing Off-chip Memory

fL

fC

fTur

vL

vC

VTur

tSW

tL
tTur

tSTur

time

time

vL/fL = lower level V/F

vC/fC = Current V/F

vTur/fTur = next possible higher V/F
 over the assigned values

Notations used in text

EL = energy consumption during tL
ETur = energy consumption during tTur
ESTur = energy consumption
 during 2 x tSTur
ESW = energy consumption
 during 2 x tSWStall

started

voltage

frequency

tp

Fig. 4. FG-DVFS Time-line: During Memory Stall

cores dispatches 𝐷 instructions per clock cycle. Once an LLC miss is detected due to the absence of

an instruction block, it requires 𝐿 cycles before the dispatch stops, where 𝐿 implies the front-end

pipeline depth of the core. Meanwhile, access to the off-chip memory is being performed, and on

completion, instructions will be fetched. However, the instruction dispatching will be resumed only

𝐿 cycles later. Therefore, for an instruction miss, the stall span for applying FG-DVFS is equal to

the off-chip memory access latency. Our energy-adaptive mechanism scales down the V/F once

an instruction LLC-miss is detected and scales the V/F up on completion of the memory access.

The V/F scaling effectively changes the core frequency abruptly when applying FG-DVFS, which

consequently elongates the depletion of the front-end pipeline. However, such temporal overhead

will not incur any performance impact as it will be hidden by the off-chip memory access.

An isolated (load) miss can be identified by accessing the MSHR of the respective requester core.

However, scaling down V/F on detection of an isolated miss can lead to performance aggravation.

Basically, the dispatch is stalled during a load miss if one of the following situations occurs: (A)

the Re-Order Buffer (ROB) is filled up, (B) the CPU-registers get exhausted, or (C) the issue queue

is filled up with all instructions that have a dependency on the currently missed block. As our

considered system handles time-critical applications, we decided to wait until the dispatch stalls.

On detection of a dispatch stall, the V/F is scaled down, and the dispatch resumes after scaling the

V/F up once the data arrives from the memory. In fact, waiting till dispatch stalls during an LLC

miss before scaling down V/F can also handle the overlapped misses of the independent blocks.

Waiting for dispatch stalls might compromise the benefits of FG-DVFS but can safeguard real-time

applications from deadline violation.

The stall spans for individual memory accesses depend upon several timing overheads, which

can result in variation in the stall span for individual LLC misses. To keep our problem simple

and straightforward, in TREAFET , we assume that the time span for accessing off-chip memory is

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:13

uniform. This might not be a realistic choice, but studying the variation of the memory access time

in the spectrum of real-time systems is another research avenue [61] and is out of the scope of

this paper. In TREAFET , we consider a fixed DRAM access latency of 70ns [25]. However, our FG-

DVFS mechanism can also be extended to tackle variation in memory delay without incorporating

significant changes
3
.

Figure 4 elaborates the (individual) timing diagram while FG-DVFS is applied. Conventional

systems usually experience a time gap between an LLC-miss detection and dispatch stalls at the

requester core, which is defined here as 𝑡𝑝 in this figure. Then, the FG-DVFS controller reduces

the frequency without any delay to a lower level and will concurrently start reducing the voltage

(from 𝑣𝐶 to 𝑣𝐿). The controller will start scaling up the voltage for a stipulated time span before the

stall completes so that upcoming instructions can be executed at the assigned V/F after the stall is

completed. Once the voltage is scaled up, the frequency is set to the respective higher level, which

incurs no delay.

In our work, we considered the OoO x86 core as having the highest voltage setting (Turbo voltage)

of 0.85V and a lower voltage setting of 0.65V, whereas our operational voltage is considered as 0.75V.

Our considered on-chip VR has a switching speed of 20mV/ns, and each VR consumes 0.09W and

0.12W, for 0.65V and 0.85V outputs, respectively [31]. For analyzing energy savings, we considered

that our core temperature remains stable at 77
◦
C, for which frequency values are obtained by

employing Equation 5 for 0.85V, 0.8V, 0.75V, 0.7V and 0.65V, which are 4.1GHz, 3.75GHz, 3.5GHz,

3.3GHz, and 3.0GHz, respectively. During a stall span of 70ns, the core (OoO 𝑋86) can consume

174nJ of energy at 0.75V, which is our baseline. By applying voltage downscaling to 0.65V from

0.75V and subsequent upscaling to 0.75V, we can save a significant amount of energy which is up

to 20% on an average, while including the power consumed by the VR during switching
4
. From a

timing perspective, each of the scaling up and scaling down processes of voltage can take up to

5𝑛𝑠 if it has to switch between 0.65V and 0.75V while considering VR’s voltage switching speed as

20mV/ns [31]. We also considered the configuration of a core (detailed in Sec. 4) and derived the

longest time taken before the dispatch stalls from the detection of an LLC-miss to be around 8ns

(i.e. 𝑡𝑝 in Figure 4). This implies the core can be operated at the lowest voltage level for 52𝑛𝑠 in the

worst case, whereas the entire duration of memory stall is considered as 70ns [25]. This indicates

the core will have sufficient time-spans both for switching operations as well as maintaining the

lowest possible voltage level.

We further analyzed the overall reduction in the dynamic energy of the core gained by FG-DVFS.

In order to do so, we executed eight PARSEC applications for 100𝑀 cycles (in RoI) in gem5 [17]

cycle accurate full system simulator. Subsequently, we derived the magnitudes of the energy usages

for individual applications by simulating the architecture and by feeding the performance traces

(collected from gem5’s output) in McPAT simulator [56] along with due consideration to Equation 5.

The thermal simulation has been performed by using HotSpot 6.0 [85] simulator for modeling TEI.

The entire closed-loop simulation setup used in TREAFET is detailed in Sec. 4. The energy savings

for individual benchmark applications by employing FG-DVFS during memory stalls is depicted

in Figure 5 that shows a significant reduction of 17% (up to 31%) in the core’s dynamic energy. As

3
Note that the following parameters might be helpful to gain insights regarding variation in the value of 𝑠𝑡𝑎𝑙𝑙_𝑠𝑝𝑎𝑛-

memory access latency, memory bus bandwidth, outstanding memory requests, data transfer size and memory-level

parallelism (MLP). As memory access patterns vary over different execution phases, an in-depth phase-based analysis for

these parameters will be helpful in the determination of 𝑠𝑡𝑎𝑙𝑙_𝑠𝑝𝑎𝑛, which can be done in a separate sub-routine and upon

detection of memory stall at line 15 in Algorithm 4, this sub-routine will be called before applying FG-DVFS. However,

detailed analysis regarding this concept is out of the scope of TREAFET .

4
We calculated energy usage at the nano-second precision level by discretizing. The energy consumed by each VR during

the switching processes between different levels of voltage is around 2nJ.

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:14 Chakraborty et al.

Fig. 5. Energy savings by employing FG-DVFS during Memory Stall

in the case of the core, dynamic energy shares a significant amount of the total energy usage [48];

this noticeable saving in dynamic energy potentially motivates us to employ FG-DVFS towards

improving the energy efficiency of the cores. We derived all of these values by simulating the

architecture in our simulation setup (detailed in Sec. 4), along with due consideration to Equation 5

and McPAT simulator [56].

Trading off Energy Saving by FG-DVFS. Now, we will elaborate on the entire idea of exploitation of

the energy gains of running the core at lower voltage during memory stalls by considering Figure 4.

Basically, Figure 4 depicts the timing diagram during an individual LLC-miss and the frequency

switching up on resolving the miss. As a stable temperature is assumed (77
◦
C), TEI’s impact

on the frequency due to temperature will also remain the same. However, the impact of voltage

scaling is considered. Our baseline V/F setting is assumed as 𝑣𝐶/𝑓𝐶 , which has been assigned by

our constrained scheduling. During a stall incurred due to an LLC miss, the V/F setting of the core

will be stepped down to 𝑣𝐿/𝑓𝐿 . While increasing the V/F on completion of a stall interval, the V/F

will be set to 𝑣𝑇𝑢𝑟/𝑓𝑇𝑢𝑟 (higher than 𝑣𝐶/𝑓𝐶). The respective energy consumption while staying at

𝐶 , 𝐿 and 𝑇𝑢𝑟 levels are 𝐸𝐶 , 𝐸𝐿 and 𝐸𝑇𝑢𝑟 (see Figure 4). The switching processes consume 𝐸𝑆𝑊 and

𝐸𝑆𝑇𝑢𝑟 during switching between 𝐶 and 𝐿 levels and 𝐶 and 𝑇𝑢𝑟 levels, respectively (see Figure 4).

As violating power budgets might entail severe thermal issues, the energy saving by FG-DVFS

over the baseline (i.e., 𝐸𝑠𝑎𝑣 = 𝐸𝐶 − (2 × 𝐸𝑆𝑊 + 𝐸𝐿)) during 2 × 𝑡𝑠𝑤 + 𝑡𝐿 should be the highest limit

while running the core at the turbo (𝑇𝑢𝑟) mode. Now, towards maintaining the power budget

or on-chip thermal safety, 𝐸𝑠𝑎𝑣 ≥ 𝐸𝑇𝑢𝑟 + 2 × 𝐸𝑆𝑇𝑢𝑟 . As the power consumption at 𝑣𝑇𝑢𝑟/𝑓𝑇𝑢𝑟 level
is known beforehand, the time span (𝑡𝑇𝑢𝑟) can be determined dynamically. Note that 𝑡𝐿 and 𝑡𝑇𝑢𝑟
denote the time spans the core can be operated at 𝐿 and𝑇𝑢𝑟 voltage levels, respectively. The overall

performance improvement and slack generation, in addition to its exploitation towards improving

energy efficiency, will be discussed in Sec. 5.

Energy-Adaptive FG-DVFS Algorithm (Algorithm 4). Our energy-adaptive mechanism for employ-

ing FG-DVFS is written in Algorithm 4. During a frame (𝑚𝑖𝑛{Δ, 𝑒𝑟 𝑖
𝑘
}), Algorithm 3 first determines

a particular voltage level that needs to be maintained to meet the base frequency requirement.

As our application is executed with a strict time and power/thermal constraint, our proposed

energy-adaptive algorithm exploits the costly memory stalls to reduce energy and exploits the

saved energy for improving performance. Towards that, Algorithm 4 is employed per core at the

task level granularity and is being called by Algorithm 3 while executing a task. Algorithm 4 consid-

ers current frequency (𝐹𝐶𝑢𝑟𝑟 as 𝑓𝐶), current voltage (𝑉𝑖𝑛 as 𝑣𝐶), and temperature (𝑇𝑒𝑚𝑝) as inputs

which are passed by Algorithm 3 (line 23 in Algorithm 3). The VR’s switching speed (𝑉𝑅_𝑆𝑝𝑒𝑒𝑑),

span for memory stall (𝑆𝑡𝑎𝑙𝑙_𝑆𝑝𝑎𝑛), 𝑣𝐿 and 𝑣𝑇𝑢𝑟 are also considered as inputs to Algorithm 4. To

maintain the functional correctness, Algorithm 4 maintains the following three flags: 𝑑𝑣 𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 ,

𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑜𝑤𝑛 and 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 .

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:15

Algorithm 4: EnergyAdaptive(𝐹𝐶𝑢𝑟𝑟 , 𝑉𝑖𝑛 , 𝑇𝑒𝑚𝑝)
Input:𝑉𝑅_𝑆𝑝𝑒𝑒𝑑 , 𝑆𝑡𝑎𝑙𝑙_𝑆𝑝𝑎𝑛, 𝑣𝐿 , 𝑣𝑇𝑢𝑟

Output: 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠
1 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑜𝑤𝑛 = 0, 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 0

2 𝑣𝐶 =𝑉𝑖𝑛 , 𝑓𝐶 = 𝐹𝐶𝑢𝑟𝑟

3 if (𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 0) and (LLC-miss is detected) then
4 if (dispatch stalls on a data miss) or (an instruction miss is detected) then
5 𝑓𝐿 = 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑣𝐿,𝑇𝑒𝑚𝑝)
6 𝑡𝑆𝑊 (in cycles) =

𝑣𝐶 −𝑣𝐿
𝑉𝑅_𝑆𝑝𝑒𝑒𝑑

× 𝑓𝐿

7 𝑡𝐿 (in cycles) = (𝑆𝑡𝑎𝑙𝑙_𝑆𝑝𝑎𝑛 − 2 × 𝑣𝐶 −𝑣𝐿
𝑉𝑅_𝑆𝑝𝑒𝑒𝑑

) × 𝑓𝐿

8 𝑡𝐴
𝐿

(actual cycle counts during 𝑡𝐿 at 𝑣𝐶) = 𝑆𝑡𝑎𝑙𝑙_𝑆𝑝𝑎𝑛 × 𝑓𝐶

9 # Set frequency to 𝑓𝐿 , and start reducing voltage to set at 𝑣𝐿 and stop increasing 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠

10 𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 = 1

11 𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 1

12 # Set 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to the duration of the reduced V/F setting (i.e. 𝑡𝐿)

13 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑡𝐿
14 else
15 # Block is already being handled by an earlier request, so execute as normal

16 if (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0) and (𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 == 1) then
17 𝑓𝑇𝑢𝑟 = 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑣𝑇𝑢𝑟 ,𝑇𝑒𝑚𝑝)
18 # Start increasing voltage to 𝑣𝐶
19 if 𝑣𝑇𝑢𝑟 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ≥ 𝑣𝐶 then
20 # set current frequency at 𝑓𝐶
21 start increasing 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 (i.e. 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 + +)
22 𝑡𝑆𝑇𝑢𝑟 (in cycles) =

𝑣𝑇𝑢𝑟 −𝑣𝐶
𝑉𝑅_𝑆𝑝𝑒𝑒𝑑

× 𝑓𝐶

23 𝑡𝑇𝑢𝑟 (in cycles) =
(2×𝐸𝑆𝑊 +𝐸𝐿−2×𝐸𝑆𝑇𝑢𝑟)

𝐶𝑜𝑟𝑒𝑃𝑜𝑤𝑇𝑢𝑟
× 𝑓𝑇𝑢𝑟

24 # Start increasing voltage to 𝑣𝑇𝑢𝑟

25 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑜𝑙𝑡𝑎𝑔𝑒 == 𝑣𝑇𝑢𝑟 then
26 # set current frequency at 𝑓𝑇𝑢𝑟

27 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑜𝑤𝑛 = 0

28 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 1

29 # Set counter to the duration of the increased V/F setting (i.e. 𝑡𝑇𝑢𝑟)

30 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑡𝑇𝑢𝑟

31 if (counter == 0) and (𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 == 1) then
32 𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 0

33 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 0

34 # Set frequency to 𝑓𝐶 , and start reducing voltage to 𝑣𝐶
35 # Since DVFS (scaled down and up) is applied for some certain lengths,

36 # a fixed number of cycles can be added to 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 that accounts for the frequency difference

37 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 + = 𝑡𝐴
𝐿

38 # 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is an unsigned saturating decrementer

39 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 --

40 return 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠

Once an LLC-miss (data or instruction miss) is detected, and DVFS is not enabled, Algorithm 4

starts preparing for applying DVFS, and eventually DVFS will be applied (line 3 to 15). Before

lowering the voltage to 𝑣𝐿 , 𝑓𝐿 is calculated through the 𝑔𝑒𝑡𝐹𝑟𝑒𝑞() function that also considers

temperature. Subsequently, the number of cycles during 𝑡𝑆𝑊 and 𝑡𝐿 are also computed so that the

total number of cycles can be tracked during the process. As frequency can be changed abruptly,

while the voltage switching takes time, the frequency is set at the lower level at the beginning of

the voltage scaling down process. During the voltage scaling-up process, frequency is changed

upon completion of the voltage scaling. However, as reducing frequency to 𝑓𝐿 will finish a lesser

number of cycles than in 𝑓𝐶 , to maintain the correct cycle count of the task, 𝑡𝐴
𝐿
is also calculated

that keeps track of the number of cycles which can be completed if frequency would be at 𝑓𝐶 . Next,

the frequency is set at 𝑓𝐿 , and the voltage switching process is initiated by setting 𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 and

𝑑𝑣 𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 flags. The cycle counter, 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 , is also stopped increasing (line 8 to 11). To keep

track of the duration (𝑡𝐿), an unsigned saturating decrementer (𝑐𝑜𝑢𝑛𝑡𝑒𝑟) is employed, which is set

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:16 Chakraborty et al.

at 𝑡𝐿 at this point (line 12). However, if the dispatch does not stall during an LLC miss, the execution

will be continued normally.

Once the counter reaches 0, and the 𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 flag is set, the algorithm starts the voltage

scaling up process to set the frequency at the 𝑇𝑢𝑟 level in an energy-adaptive manner (line 16 to

30). At first, the 𝑓𝑇𝑢𝑟 is computed, and the voltage scaling-up process is initiated. Once the voltage

reaches 𝑣𝐶 , the frequency will be set at 𝑓𝐶 , and subsequently, 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 will start increasing (line 17

to 21). Our algorithm next computes the voltage switching time to turbo mode (𝑡𝑆𝑇𝑢𝑟) and derives

𝑡𝑇𝑢𝑟 during which scaled voltage will be maintained (line 22 to 23). Towards that, respective energy

usages are also derived so that overall TDP is maintained. However, upon deriving 𝑡𝑇𝑢𝑟 , scaling

up of voltage to 𝑣𝑇𝑢𝑟 will be initiated, and once it will reach 𝑣𝑇𝑢𝑟 , the frequency will be set at 𝑓𝑇𝑢𝑟
and the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is initialized to 𝑡𝑇𝑢𝑟 (line 24 to 30). Once the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 reaches 0, the frequency is set

at 𝑓𝐶 , and voltage is scaled down to 𝑣𝐶 . Finally, to maintain the correctness in the cycle counting

process, 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 is updated with 𝑡𝐴
𝐿
and returned (line 31 to 40).

Algorithm 5: Slack_Exploitation
Input: 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒

1 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 = (𝐶𝑦𝑐_𝐸𝑥𝑡_𝐸𝑛𝑑_𝑇𝑖 − 𝐶𝑢𝑟𝑟_𝑇𝑖𝑚𝑒) ;
2 if 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 > 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒 then
3 # Turn off the core ;

4 while 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 > 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒 do
5 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 --;

6 #Turn on the core ;

3.3.3 Slack Detection and Exploitation. Upon completion of the execution of𝑇𝑖 , the slack interval is

checked, as TEI and our energy-adaptive FG-DVFS can potentially increase the effective frequency

of the tasks assigned during scheduling. To determine the slack interval, we introduce another

parameter, called extended end time of 𝑇𝑖 (𝐶𝑦𝑐_𝐸𝑥𝑡_𝐸𝑛𝑑_𝑇𝑖). 𝐶𝑦𝑐_𝐸𝑥𝑡_𝐸𝑛𝑑_𝑇𝑖 of a task is the

start time-stamp of the next task at the same processor or the deadline of the frame if 𝑇𝑖 is the

last task of the current frame. After completion of 𝑇𝑖 , Algorithm 5 is called to detect and exploit

the slack spans for improved energy efficiency. At first the slack-span (𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖) is derived

(line 1) and if 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 is higher than the 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒 of the processor core (line 2), the

processor core will be power gated (line 3). The core will be further turned on once the slack-span

(𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖) is over (line 4 to 6).

3.3.4 Implementation. Our scheduling mechanisms (Algorithm 1 and 2) can be executed on some

accelerators associated with main CPU cores, which is common in practice now-a-days [1, 2].

Towards implementing Algorithm 3 and 4, thermal sensors are needed to track the current tem-

perature. Although the temperature sensing mechanism is different in the case of FinFET than

the conventional MOSFET, there exists a plethora of options for the FinFET based cores [58]. On

the other hand, for voltage scaling, conventional VR can be integrated at each core, which is com-

mon in practice for modern CMPs [18]. Integration of on-chip VRs might incur their own power

and thermal overheads, which can be mitigated by employing techniques like ThermoGater [46].

Additionally, TREAFET can potentially incur frequent changes in voltage, which might lead to a

transient fault in the core-circuitry, that can, however, be mitigated by incorporating some prior

techniques [74]. The functional logic for dynamic exploitation TEI and FG-DVFS (i.e. Algorithm 3

and 4) can be implemented at the respective core’s controller, which will orchestrate the associated

VR to scale V/F setting of the core on LLC-miss induced stalls. Additionally, Algorithm 5 can also be

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:17

I1 I2 I3 I4

Deadline

 T1, T2

Deadline

 T3, T4

Deadline

 T1, T2

Deadline

 T1, T2, T3, T4

0 100 150 200 300

Task

 Arrivals

Fig. 6. Example: Deadline Partitioning

implemented at each core’s controller to exploit the per-core-power-gating technique [23]. Overall,

the implementation of TREAFET will not include any additional hardware support.

3.4 Analysis of the algorithms
In this section, we explain the working principle of the deadline partitioning technique and how it

helps in meeting the task deadlines with the help of an example. The optimality of the technique for

multiprocessor platforms has been proven earlier [32]. Further, we will analyze the time complexity

of the proposed algorithms.

3.4.1 Deadline Partitioning Technique. To ensure that tasks are not violating deadlines, let us

consider the following example. Consider a task set T = {T1,T2,T3,T4} having four tasks with

execution parameters shown (execution requirements (𝑒𝑖) and deadline (𝑑𝑖)) in Table 2.

Table 2. Example: Task Parameters

Task T1 T2 T3 T4

𝑒𝑖 20 40 30 60

𝑑𝑖 100 100 150 150

Initially, the remaining deadlines of the tasks are as follows: 𝑟𝑑1 = 100, 𝑟𝑑2 = 100, 𝑟𝑑3 =

150, and 𝑟𝑑4 = 150. Hence, the first interval I1 can be computed from Equation 6 as: I1 =

𝑚𝑖𝑛{𝑟𝑑1, 𝑟𝑑2, 𝑟𝑑3, 𝑟𝑑4} = 100. The execution requirement of tasks for I1 can be computed from

Equation 7 as: 𝑒𝑟 1
1
= 20, 𝑒𝑟 2

1
= 40, 𝑒𝑟 3

1
= 20, and 𝑒𝑟 4

1
= 40. Within the interval I1, tasks will be

assigned and scheduled on cores using Algorithm 2. At the end of the interval I1, second instances

of T1 and T2 will start their execution as tasks are periodic in nature. Hence, the updated remaining

deadlines of the tasks are updated as 𝑟𝑑1 = 100, 𝑟𝑑2 = 100, 𝑟𝑑3 = 50, and 𝑟𝑑4 = 50.

The length of the second interval will be I2 = 𝑚𝑖𝑛{𝑟𝑑1, 𝑟𝑑2, 𝑟𝑑3, 𝑟𝑑4} = 50. The execution re-

quirements of the tasks for the second interval will be 𝑒𝑟 1
2
= 10, 𝑒𝑟 2

2
= 20, 𝑒𝑟 3

2
= 10, and 𝑒𝑟 4

2
= 20.

Again, the tasks will be scheduled using Algorithm 2. At the end of the interval I2, second instances
of T3 and T4 will start their execution. The remaining task deadlines will again be updated. The

execution requirements of the tasks for four intervals are shown in Table 3, and the first four

intervals corresponding to task deadlines are shown in Figure 6.

Table 3. Example: Task execution requirements

Task 𝑒𝑟 𝑖
1

𝑒𝑟 𝑖
2

𝑒𝑟 𝑖
3

𝑒𝑟 𝑖
4

Task 𝑒𝑟 𝑖
1

𝑒𝑟 𝑖
2

𝑒𝑟 𝑖
3

𝑒𝑟 𝑖
4

T1 20 10 10 20 T3 20 10 10 20

T2 40 20 20 40 T4 40 20 20 40

As we can observe, the execution of the first instance of T3 is broken into two intervals I1 and I2.
The sum of execution requirements for T3 across these intervals can be computed as 𝑒𝑟 3

1
+ 𝑒𝑟 3

2
=

20 + 10 = 30, which is equal to the original requirement 𝑒3 = 30. This phenomenon holds true for

all task instances. Therefore, we may conclude that the intervals will act as pseudo-deadlines for

the tasks, and if the tasks complete their execution requirements for each interval, they will not

miss their execution deadlines. One other advantage of the deadline partitioning technique is that

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:18 Chakraborty et al.

tasks can have their deadlines only at some interval boundaries. So, at the start of every interval,

the proposed scheduler can prepare a schedule till the boundary of that interval without worrying

about individual task deadlines between the interval boundaries.

Once the tasks are scheduled, they are deployed for execution with a particular frequency. This

frequency is called base frequency (Equation 8), and Algorithm 3 ensures that the operating core

frequency will never be lesser than this base value for individual tasks. Thus, the task deadlines are

not violated.

3.4.2 Time-Complexity Analysis. In this section, we analyze the time-complexity of the proposed

work TREAFET algorithm-wise for an interval I𝑘 using a bottom-up approach starting from Algo-

rithm 5 to 1.

• Algorithm 5 computes the generated slack after completion of the execution requirement

for each task in an interval. If the generated slack is greater than the break-even time,

the corresponding core is turned off for the slack duration. All these computation steps in

Algorithm 5 take a constant time. Hence, the time complexity of the algorithm is O(1).
• Algorithm 4 applies energy adaptive techniques during memory stalls. There are no iterative

operations in this algorithm. Therefore, each operation in this algorithm may be associated

with a constant amount of time which brings the time complexity of the algorithm to be

O(1).
• Algorithm 3 deals with dynamic exploitation of TEI during execution for every task at each

core in an interval I𝑘 . It keeps track of task execution with the help of the 𝑐𝑦𝑐𝑙𝑒_𝑐𝑡𝑟 variable.

At each frame boundary, it performs a set of operations of constant time depending upon

the core temperature at the frame boundary. The summation of the 𝑐𝑦𝑐𝑙𝑒_𝑐𝑡𝑟 for all tasks at

a core will be equal to the interval length |I𝑘 |. It may be noted that the summation of the

𝑐𝑦𝑐𝑙𝑒_𝑐𝑡𝑟 may be less if a task finishes before its computed requirement because of the TEI,

but we are considering the worst case. As there are𝑚 available cores in the system, the time

complexity of Algorithm 3 in an interval is O(𝑚 × |I𝑘 |).
• Algorithm 2 assigns task onto cores and prepares the actual schedule. It considers each task

sequentially for assignment between line 4 and line 20. All operations in the loop take a

constant amount of time, except updating of the core list in line 19, which takes O(𝑚) time.

The loop runs for each task. As there are 𝑛 tasks, the loop has O(𝑛𝑚) time complexity. The

preparation of the schedule for themigrating tasks may takeO(𝑛𝑚) time. Further, Algorithm 3

is called which takes O(𝑚 × |I𝑘 |) time. Therefore, the time complexity of Algorithm 2 comes

to be O(𝑚(𝑛 + |I𝑘 |)).
• Algorithm 1 is the main algorithm for TREAFET which calls other algorithms. Computation

of a set of intervals in line 2 takes O(𝑛 𝑙𝑜𝑔𝑛) time and is done only once at the start of the

system. Within each interval I𝑘 , the computation of the starting temperature for the virtual

core takes O(𝑚) time. For each task, the computation of execution requirements and the

final temperature for the virtual core take a constant amount of time. However, insertion

of the task in the sorted list ∧1 takes O(𝑛) time. Next, Algorithm 2 with time complexity

O(𝑚(𝑛 + |I𝑘 |)) is called. As there are 𝑛 tasks, the final time complexity of TREAFET comes to

be O(𝑛2 +𝑚𝑛 +𝑚 |I𝑘 |).
As the number of cores is much lesser than the number of tasks running in a system, the number

of cores can be neglected, which brings the time complexity to be O(𝑛2 + |I𝑘 |). The preparation
of the list ∧1 is done only once per interval, and the respective time complexity can further be

brought down to O(𝑛 𝑙𝑜𝑔𝑛) from O(𝑛2) if priority queues are used. Further, for the |I𝑘 | part, the
time complexity is a nominal value for any online algorithm and is required to keep track of core

temperatures.

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:19

Execution
Unit

Inst. Sched.
& ROB

L1 Data
Cache

L1 instruction
Cache

Inst.
Decoder

Memory
Ordering Unit

Branch
Pred. Unit

Interrupt Serv.
Unit

Core 0 Core 1

Core 2 Core 3

Shared L2 Cache

CMP

C
o

re
 A

re
a

Fig. 7. Floorplan of the four core based CMP

gem5
McPAT-

Monolithic

HotSpot

Prepare inputs
for McPAT-Monolithic

Performance
Traces

McPAT
input

Prepare power
Traces for HotSpot

Dynamic
Power
Values

Power
TracesTemperature

Traces

Temperature
Traces

Temperature at the
end of last period

HotFloorPlan

Area
Floorplan

Compute Leakage

Leakage
Power Values

Fig. 8. Simulation Framework

4 SIMULATION INFRASTRUCTURE
We simulated a homogeneous CMP having 4 𝑥86 OoO cores (that resembles Intel Xeon CMP [3]),

as shown in Figure 7, in the gem5 [17] full system simulator. In addition to a core, each of these

tiles contains data and an instruction local L1 cache. The L2 cache is shared among all the cores and

located centrally in the CMP. A 2D-mesh-NoC connects the tiles and the L2 cache. Hence, individual

tiles and the L2 cache are equipped with routers. Towards analyzing complete performance-power-

thermal status, the periodic performance traces of the multithreaded PARSEC benchmarks [16],

collected from gem5, are fed to McPAT-monolithic [34] for simulating power and the power

values are subsequently sent to HotSpot 6.0 [85] to generate temperature. Note that we are only

considering dynamic power fromMcPAT, whereas leakage is separately computed by employing our

own leakage model that considers the temperature of individual components. Once both dynamic

and leakage power values are ready, the total power of all components is derived and sent to

HotSpot 6.0. To improve the accuracy in generating thermal traces, we adopt the thermal properties

of 14nm FinFET technology node [21] in HotSpot 6.0. HotSpot 6.0 also considers the floorplan of

the entire chip, which is generated at the beginning of the simulation by considering the area of

each component derived from McPAT. The power values, chip floorplan and temperature of each

component during the last period are used next to generate the current temperatures of the cores.

Our performance-power-thermal simulation framework generates power and temperature traces

based on the number of operations performed at each individual on-chip component, and hence, it

is agnostic to the thread counts of the task being executed. With an interval of 1ms, we collected

the periodic performance traces from gem5. Although the TEI effect in FinFET makes the frequency

no longer fixed at various temperatures, for our simulation, we assume a fixed temperature during

the whole span of a 𝑃𝐸𝑅𝐼𝑂𝐷 (frame), i.e., 1ms [21]. The default parameters used in our simulations

are listed in Table 4, and our closed loop performance-power-temperature simulation framework is

illustrated in Figure 8.

We consider a prior TEI induced frequency model [21] to set the threshold values used in Algo-

rithm 3 as follows:𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

= 80
◦
C,𝑇𝑒𝑚𝑝𝐿𝑜𝑤

𝑡ℎ𝑟
= 77

◦
C,𝑉𝑑𝑑 [𝐻𝑖𝑔ℎ] = 0.75𝑣 and𝑉𝑑𝑑 [1] = 0.65𝑣 . Note

that we further assumed a maximum safe temperature of 82
◦
C. Hence, we set 𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
= 80

◦
C to

limit the thermal overshoot beyond 82
◦
C. Khan et al. have shown that the operating temperature of

FinFET can also reach as high as 80−85 ◦C, which can be considered a hotspot [45]. By considering

various technology nodes and process variations, both temperature values for determining hotspots

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:20 Chakraborty et al.

Table 4. System Parameters

Parameters Values Parameters Values
Number of Cores 4 Core Model (Technology) 𝑥86 (14nm FinFET)

Nominal Frequency 3.5GHz 𝑉𝑑𝑑 [1],𝑉𝑑𝑑 [𝐻𝑖𝑔ℎ], 𝑣𝑇𝑢𝑟 (at cores) 0.65v, 0.75v, 0.85v

Private L1 D/I Cache 64KiB, 4W SA, LRU Shared L2 Cache 8MiB, 16W SA, LRU

DRAM 8GiB Ambient Temperature 40
◦
C

and the threshold temperatures can be adjusted, which we intend to explore in our future work.

However, to maintain an average frequency of 3.7GHz on-the-fly, we set these values so that we

can maintain the lowest and the highest frequencies at 3.0GHz (for 𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

, 𝑉𝐿𝑜) and 3.9GHz

(for 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

, 𝑉𝐻𝑖), respectively. Note that all of our threshold values can be tuned and can also be

adjusted by considering the technical specifications of the underlying circuitry and/or technology

nodes. However, our employed on-chip VR is assumed to be installed at the individual core, and

each VR has a switching speed of 20mV/ns [31], and the respective area and power overheads

are based on a prior regulator-power model [81]. The calculation of timing overhead of each VRs

considers 𝑡𝑆𝑊 and 𝑡𝑇𝑢𝑟 of Figure 4, and the respective power overhead is also derived [26].

We have evaluated the following core-based techniques:

• Baseline – the default model with system parameters according to Table 4;

• TREAFET – implementation of the techniques as described in Sec. 3.3;

• ENPASS – a recent prior DVFS technique for the FinFET based CMPs [63].

We considered eight PARSEC applications to frame the tasks. Each of our tasks is framed with a

PARSEC application running multi-threaded with a large input set. In our task model, 20 different

tasks are considered, as was in our prior work, RESTORE [72]. The task-set is detailed in Table 5.

In our simulation, to avoid the complexity of inter-core communication, we assumed all threads

of a particular task are executed on the same core [23]. Each task set is characterized by the term

System Utilization𝑈 , which is the ratio of the sum of task utilization 𝑢𝑖 and the number of available

cores𝑚 in the system. In other words, it denotes the ratio of the workload that has to be handled by

the system and the capacity of the system. The distribution with standard deviations ranging from

𝜎𝑢 = 0.1 to 𝜎𝑢 = 0.5 and the mean 𝜇𝑢 = 0.4 has been used to create the task utilization based on the

total number of tasks 𝑛 and the necessary System Utilization𝑈 . It’s possible that the total of the

randomly generated task utilization will not be precisely equal to𝑈 . On the other hand, keeping

the summation of task utilization constant facilitates comparing and assessing the algorithms.

The individual task utilization has been scaled to ensure that the total task utilization equals the

necessary system utilization𝑈 . For each distinct set of input parameters, we ran 50 experiments

and took their average as the final result.

Table 5. Task Details: <Task ID: PARSEC Benchmark (# Threads)>. The abbreviation details for the bench-
marks are as follows: Black (Blackscholes), Body (Bodytrack), Can (Canneal), Ded (Dedup), Fluid (Fluidani-
mate), Stream (Streamcluster), Swap (Swaptions), X264 (X264).

𝑇 0
: Body (4) 𝑇 1

: Can (2) 𝑇 2
: X264 (4) 𝑇 3

: Fluid (2) 𝑇 4
: Stream (2)

𝑇 5
: Swap (2) 𝑇 6

: Black (2) 𝑇 7
: Body (2) 𝑇 8

: Can (4) 𝑇 9
: Ded (4)

𝑇 10
: Fluid (4) 𝑇 11

: Stream (4) 𝑇 12
: Swap (4) 𝑇 13

: Black (4) 𝑇 14
: Can (6)

𝑇 15
: Ded (6) 𝑇 16

: Fluid (6) 𝑇 17
: X264 (6) 𝑇 18

: Swap (6) 𝑇 19
: Black (6)

5 EVALUATION
Before showcasing the overall efficacy of TREAFET , we will first discuss the changes in frequency

and instruction per second (IPS) for different benchmark applications, which are used to construct

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:21

our task set. Next, we will show how the changes in frequency and IPS finish the tasks earlier

within an interval and generate slacks which are further used to improve energy saving. We will

also discuss the peak temperature of the processor cores for different system utilization, and overall

EDP gains will also be discussed before concluding the section.

5.1 Changes in Frequency and IPS
By employing Algorithm 3, TEI is exploited during execution, named as ExploitTEI[C], whereas

[C] represents scenario Figure 2[C], which improves the performance. The performance is further

improved by incorporating energy-adaptive DVFS, given in Algorithm 4, just after the memory

stalls at the cores, named as ExploitTEI_MemStall[D], where [D] indicates scenario Figure 2[D]. By

employing Algorithm 4, memory-intensive benchmarks are more benefited over the CPU-intensive

and mixed ones. The higher number of memory stalls in the case of Stream, Ded, Body, etc., offers

more scopes to run these applications at turbo frequency for a large portion of execution.

Fig. 9. Change in Frequency: TREAFET vs. ENPASS Fig. 10. Change in IPS: TREAFET vs. ENPASS

From our closed loop simulation framework, we periodically extracted the core temperature

and the frequency for the next interval is thus updated by considering the supply voltage for all

of our configurations. Finally, the average frequency across the periods is derived at the end of

execution and is plotted in Figure 9. We capture the improvements in frequency for ExploitTEI[C]

and ExploitTEI_MemStall[D] in Figure 9, where the frequency of Baseline[A] (scenario Figure 2[A])

implies the frequency assigned by Algorithm 1 and 2. However, by exploiting TEI dynamically

while being thermally safe, the average frequency during execution is improved by 6 to 7.5%, with

an average increase of around 6.7%. However, our energy-adaptive performance stimulation boosts

up this gain further and results in a frequency increase of around 12% on average over Baseline[A],

with a range between 9 to 17.1%. We also capture the respective changes in IPS (instructions per

seconds) by considering total instruction counts and execution time from gem5’s output for all

of our considered benchmarks, where ExploitTEI[C] shows 6.2% improvement on average over

Baseline[A], which is around 10.6% on average for ExploitTEI_MemStall[D]. The changes in IPS is

plotted in Figure 10.

5.2 Impacts of Frequency Boosting in Scheduling
TREAFET first schedules the tasks by considering system-wide constraints. The hot (cold) tasks are

mapped to the cold (hot) cores, and the run-time frequencies for each task are also assigned. During

execution, the dynamic exploitation of TEI, along with our opportunistic energy-adaptive voltage

spiking, reduces the execution span of each task. The reduction in task execution time means that

tasks are finished early and generate slacks at the end of each interval. We show our schedule for

an interval at two of our processor cores, V0
and V1

, and the scenario is shown in Figure 11, where

[A], [C] and [D] represent the scenarios depicted in Figure 2. The span of the interval is considered

at 3691 units of time, where the task sequences for V0
and V1

are shown in Figure 11a and 11b,

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:22 Chakraborty et al.

P0[D]

P0[C]

P0[A]

0 500 1000 1500 2000 2500 3000 3500 4000

sub-title

Time-Stamps

Task-Sequence: T17, T0, T5, T16, T13, T14V0

Interval: 3691

V0[A]

V0[C]

V0[D]

(a) Processor P0

Task-Sequence: T15, T11, T6, T1, T3, T14V1

P1[D]

P1[C]

P1[A]

0 500 1000 1500 2000 2500 3000 3500 4000

Time-Stamps Interval: 3691

V1[A]

V1[C]

V1[D]

(b) Processor P1

Fig. 11. TREAFET : Task Schedule at Processors V0, and V1 in Frame 1, with 100% System Utilization. [A], [C]
and [D] represent the schedule after task allocation, the modified schedule after exploiting TEI and the final
schedule with TEI/SHE-aware FG-DVFS at memory stalls. Note that [A], [C] and [D] resemble [A], [C] and
[D] concepts of Figure 2

respectively, and the execution times for each task is derived from gem5’s output for the benchmark

applications associated for the respective task. The tasks are scheduled here by considering 100%

system utilization. Initial schedules ([A]) in both cores do not have any slacks, but both of our

online techniques ([C] and [D]) reduced the execution spans of each task, thus generated slacks at

the end of each schedule. The exploitation of TEI along with energy-adaptive voltage scaling in

[D] trivially shows better improvement, in terms of frequency, than [C].

By considering all of our 20 tasks, scheduled on 4 processor cores, we also observed the slack

spans for three consecutive intervals with different system utilization. The average percentages of

time spans shared by slacks within an interval are plotted in Figure 12. Our Baseline [A] schedule

does not have any slack with 90% or higher system utilization. However, slack is still lesser

than 2% (of the entire duration of Interval) with 80 and 85% system utilization. With 75% system

utilization, Baseline [A] experienced a 6% slack span in an interval, on average. While employing

ExploitTEI[C] and ExploitTEI_MemStall[D], the amount of slack is increased for all system utilization,

and ExploitTEI_MemStall[D] shows the highest amount of slack percentages for all cases. The slack

span increases while reducing the system utilization. At 75% workload, ExploitTEI_MemStall[D]

shows an average slack span of more than 20% of an interval, which is slightly higher than 15%

in the case of ExploitTEI[C]. The slack percentage reduces to around 7% and 10% at the higher

system utilization for ExploitTEI[C] and ExploitTEI_MemStall[D], respectively. Note that from

gem5’s output, we calculated the slacks for the tasks and average slack percentages for different

magnitudes of system utilization are subsequently derived.

Fig. 12. Average Slack Percentages for different Sys-
tem Utilization and Changes due to Online Policies

Fig. 13. Peak Temperature at different System Uti-
lization and Reduction due to online policies

5.3 Impacts on Peak Temperature
Improving frequency can only be beneficial if the core is being operated at some safe temperature.

To showcase the thermal efficiency of TREAFET , we also observed the peak temperature of our

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:23

cores where the temperature values are collected from HotSpot’s output. The peak temperature

values for different system utilization are traced during task execution, at the end of each 0.5ms [26],

periodically. The values of peak temperature for different system utilization for Baseline [A],

ExploitTEI[C] and ExploitTEI_MemStall[D] are shown in Figure 13. The peak temperature is highest

for Baseline [A] for all system utilization, which reaches up to 85
◦
C, but the reduction can be noticed

for both ExploitTEI[C] and ExploitTEI_MemStall[D] than Baseline [A]. However, our algorithm

maintains a safe peak temperature of 80
◦
C for ExploitTEI[C] and ExploitTEI_MemStall[D] for all

processor cores with different system utilization. Note that, to exploit TEI, we need to maintain a

sufficiently high but safe temperature, which in our case should not be more than 80
◦
C.

5.4 Energy Savings and EDP Gains
TREAFET exploits the generated slacks in ExploitTEI[C] and ExploitTEI_MemStall[D] for energy

saving by power gating the cores (Algorithm 5). We further derived the energy savings for different

system utilization by considering the respective slack time spans and energy values are derived by

considering the execution time of each task and power consumption generated by McPAT. As slack

spans are more in cases of lower system utilization, the energy saving is more than the energy saving

at the higher system utilization. For all of our considered system utilization values (75% to 100%),

energy savings are almost same for both ExploitTEI[C] and ExploitTEI_MemStall[D], which are

plotted in Figure 14. Actually, the energy usage in ExploitTEI[C] is trimmed due to generated slacks

caused by shortening the runtime of tasks through TEI exploitation. For ExploitTEI_MemStall[D],

the energy is further saved by employing FG-DVFS during memory stalls, but this saving is fur-

ther traded off to improve performance. Hence, both ExploitTEI[C] and ExploitTEI_MemStall[D]

experience almost the same energy savings, which is almost close to 20% on average at 75% system

utilization and close to 10% on average at full system utilization. However, to show the overall effi-

cacy of our algorithms, we derived and plotted EDP in Figure 15. For lower system utilization of 75%,

ExploitTEI[C] and ExploitTEI_MemStall[D] show EDP gains of 21% and 24%, respectively, whereas,

at 100% system utilization, these values are around 11% and 14%, respectively. Overall, exploiting

generated slacks improves the energy saving for both ExploitTEI[C] and ExploitTEI_MemStall[D],

and our energy-adaptive mechanism in ExploitTEI_MemStall[D] also keep the overall energy usage

in check, while boosting up core performance.

Fig. 14. Energy savings at different System Utiliza-
tion over scheduling mechanism of TREAFET

Fig. 15. EDP gains at different System Utilization
over scheduling mechanism of TREAFET

6 STATE-OF-THE-ART
Reducing energy inmodern CMP-based real-time systems has become a research topic of paramount

importance in the recent past [62, 64]. Executing real-time tasks on state-of-the-art CMP platforms

by considering the energy/power budget is gradually becoming challenging with technology

scaling [36]. Over the recent years, researchers have been attempting to develop energy-aware

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:24 Chakraborty et al.

scheduling strategies for real-time task sets with different system-wide constraints [15, 37, 42].

Shrinking in process technology is gradually replacing MOSFETs with a confined 3D device, FinFET,

having different power/thermal characteristics. To the best of our knowledge, none of these prior

scheduling strategies considered FinFET’s power/thermal characteristics. In this section, we will

discuss recent thermal/energy efficient scheduling mechanisms followed by prior techniques for

managing safe temperature in FinFET based CMPs.

6.1 Thermal/Energy Efficient Scheduling
Minimizing energy and temperature is essential for modern CMP-based real-time systems because

reducing temperature impacts time-critical system performance, reliability, and cost-effectiveness.

In a recent exploration [69], a power and thermal-aware task scheduling on multiprocessor systems

has been proposed. The scheduling algorithm tries to maintain the maximum power limit and thus

avoids the generation of hotspots. A multilevel scheduler, TheSPoT [39], has been proposed later

that considers spatial and temporal thermal variations. Core consolidation and deconsolidation are

performed based on peak temperature and power constraints, whereas the operating frequencies

are then determined by employing a convex optimization problem. A mixed integer linear pro-

gramming (MILP) model for mapping and scheduling real-time applications on CMP platforms was

proposed [57], with an objective to minimize energy usage while satisfying temperature and lifetime

reliability constraints. The MILP model also considers processor voltage/frequency assignment

using the DVFS technique.

Zhao et al. [86] proposed a novel task scheduling framework for 3D CMP to address power supply

noise and thermal issues. The framework includes power delivery network (PDN) stimuli extraction,

an efficient PDN solver, and a heuristic algorithm for task scheduling. Another strategy, VFSM [65],

has been proposed to address thermal issues at the CMPs by incorporating task migration and

task swapping to reduce energy consumption and meet the high-priority task deadlines while

alleviating hotspots. In another attempt [40], the authors proposed resource mapping and thread-

partitioning of applications with online optimization to manage the thermal and energy efficiency

of heterogeneous mobile systems. Bashir et al. [13] proposed a thermal-aware load balancing

technique for CMPs by considering ambient, as well as spatial and temporal temperature gradients

during execution. The technique estimates the time taken by a task set to reach temperature

threshold values using offline recorded thermal profiles of datasets.

Zhou et al. [87] proposed a two-level scheduling algorithm for real-time tasks on DVFS-enabled

heterogeneous MPSoC systems. In this work, at the processor level, a multi-processor model sup-

porting DVFS is transformed into a virtual multi-processor model having only one fixed frequency

level. At the core level, real-time tasks are assigned to individual cores of the virtual processor

under the constraints of task precedence and peak temperature. The work by Taheri et al. [77]

presents a solution to the challenges posed by CMOS technology scaling, including issues of tem-

perature, reliability, performance and leakage power. The authors employed Stochastic Activity

Networks (SANs) to model and evaluate the power consumption of a multicore system with respect

to thermal constraints. The DVFS technique is used to dynamically control the temperature of

cores by assigning lower voltage/frequency to the core with higher temperatures.

6.2 Thermal Management in FinFET based CMPs
Over the last decade, the industry has been gradually shifting from conventional planar MOSFET

to 3D FinFET devices while designing state-of-the-art CMPs, due to lower leakage, higher circuit

speed, better scalability and lower power consumption of FinFET over the MOSFET [35, 68, 75, 79].

Specifically, FinFET devices have become the prevalent choice in CMP design to alleviate the short

channel effects in sub-20nm CMOS devices [6, 11]. In fact, the reduced channel length of FinFET

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:25

leads to better area efficiency. However, the power density of these FinFET devices has become

a design concern with the reduced channel length [24]. Such higher power density restricts the

designers and architects from fully taking advantage of the higher circuit speed of these devices.

The upsides of reduced gate delay i.e. higher circuit speed in FinFETs, can be achieved if the circuit

is operated at a higher temperature [24, 51, 52]. However, thermal safety needs to be guaranteed

to prevent the device from breaking down. DVFS, in combination with online state-destroying

caches, are widely used in managing the temperature of the high-end computer systems [26, 48, 84].

Prior arts mostly focused on MOSFET based designs, where reduced temperature improves both

the performance and the energy efficiency of the system. On the contrary, the FinFET based

designs benefit from an increased temperature due to TEI property, while energy and reliability

get worse [63]. Over a decade, TEI in FinFET is investigated, which significantly lowers circuit

delay in higher temperatures even at the super-threshold voltage region [19–21, 47, 49, 50, 83].

Kim et al. [47] have analyzed several circuit and device characteristics in detail to understand

TEI in-depth. Through runtime scaling of the supply voltage, Lee et al. [50] proposed a thermal

management technique for the FinFETs, while exploiting TEI. However, these prior techniques

focused on the TEI effects, but its impacts on the performance of multicores were first evaluated by

Cai and Marculescu [21], but time-critical applications were not considered.

Electro-thermal issues in the current generation of FinFETs, also known as SHE, have become a

serious design concern for the CMPs, especially those built in sub-14nm FinFET technology [80].

In the recent past, researchers tried to reduce SHEs to maintain thermal safety in FinFET based

CMPs [6, 7, 45, 53, 60]. Authors in [45] focused on the SHE and reliability issues, where the

temperature of the FinFET cores can potentially be more than 80
◦
C due to an increase in the gate

and drain temperature. The confined geometry of FinFET devices is the most significant cause of

SHE. Hence, it needs to be modeled with due consideration to the 3D geometric shape in addition

to the power consumption to reduce the aging process [6, 53].

6.3 TREAFET over Prior Art
Prior scheduling mechanisms that considered power and/or temperature as a constraint(s) are

mostly based on the conventional MOSFET based CMPs. The earlier thermal efficient techniques

proposed at the architecture level also targetedMOSFET based systems, where lowering temperature

is always beneficial to combat the leakage power issue. Due to lower leakage in FinFET based CMPs

along with the presence of TEI property, lowering the temperature of the cores might not be a

viable option as long as thermal safety is guaranteed. However, maintaining thermal safety while

exploiting TEI in real-time scenarios has remained a fundamental challenge, which has not yet

been addressed by the prior arts. In TREAFET , we proposed a semi-online scheduling mechanism

that schedules a set of real-time tasks at the beginning, and by employing runtime mechanisms,

TEI is exploited while combating SHEs. In fact, effective frequency is further stimulated by an

opportunistic energy-adaptive voltage spiking mechanism applied just after the memory-induced

stalls at the cores. One such energy-adaptive performance improvement strategy has been proposed

recently by Chakraborty et al. [23]. However, this prior art did not consider FinFET’s thermal

characteristics, and hence, the time span for spiked V/F was determined statically. Due to TEI, in

TREAFET , we consider the current core temperature, and accordingly, the time-span for spiked

V/F is determined dynamically by taking TEI into account. Additionally, the overall performance

gain at the cores reduces the execution span of the tasks and thus generates slacks at the cores,

which are further utilized to improve energy usage by putting the cores in sleep mode. To the best

of our knowledge, TREAFET is the first real-time scheduling strategy that considers TEI and SHE

properties of the FinFET based CMPs to boost overall performance and energy efficiency without

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

000:26 Chakraborty et al.

violating system-wide constraints. We have further summarized our related works in Table 6 to

showcase how TREAFET is different in comparison with its prior arts.

Table 6. Summary of Related Works

Related Energy Temperature Time Platform
Work Aware Aware Criticality

H. Salamy [69] ✓ ✓ X Homogeneous CMP(MOSFET)

A. Iranfar et al. [39] ✓ ✓ X Homogeneous CMP(MOSFET)

Y. Zhao et al. [86] ✓ ✓ X Homogeneous CMP(MOSFET)

Q. Bashir et al. [13] ✓ ✓ X Homogeneous CMP(MOSFET)

G. Taheri et al. [77] ✓ ✓ X Homogeneous CMP(MOSFET)

W. Liu et al. [57] ✓ ✓ ✓ Homogeneous CMP(MOSFET)

D. Rupanetti and H. Salamy [65] ✓ ✓ ✓ Homogeneous CMP(MOSFET)

S. Isuwa et al. [40] ✓ ✓ X Heterogeneous CMP(MOSFET)

J. Zhou et al. [87] ✓ ✓ ✓ Heterogeneous CMP(MOSFET)

S. Kim et al. [47] ✓ ✓ X Single core (FinFET)

W. Lee et al. [50] ✓ ✓ X Single core (FinFET)

E. Cai and D. Marculescu [21] ✓ ✓ X Homogeneous CMP (FinFET)

K. Neshatpour et al. [63] ✓ ✓ X Homogeneous CMP (FinFET)

TREAFET ✓ ✓ ✓ Homogeneous CMP (FinFET)

7 CONCLUSIONS
Rapid progress in contemporary real-time systems leads the researchers not only to focus on

scheduling the competing tasks but also to concentrate on the energy/thermal aspects of the cores.

Stagnation in process technology is gradually shifting the VLSI industry from conventional MOSFET

to faster FinFET based multicore design. These FinFET based multicores have brought up new

challenges for real-time system designers, as FinFET’s performance increases with temperature,

known as TEI. However, a higher temperature can accelerate the circuit aging due to self heating

effects (SHEs). The existing diversity in instruction types at different execution phases of the

applications changes the core temperature over time, hence the core frequency in FinFET based

cores due to TEI. As core frequency plays the most pivotal role in the real-time paradigm, modern

time-critical systems must be designed by considering TEI and SHEs properties of the FinFET based

multicores. In this work, we propose a temperature cognizant real-time scheduler, TREAFET , that,

as a first study, exploits the TEI feature of FinFET based multicore platforms in the context of time-

criticality to meet other design constraints of real-time systems. By considering the overall progress

of individual tasks along with the thermal characteristics of each of the tasks and of the cores,

TREAFET derives a task-to-core allocation and prepares a schedule. TREAFET attempts to assign hot

tasks to the cold cores and vice-versa. During execution, TREAFET analyzes the trade-offs between

performance and temperature by incorporating a prudential temperature cognizant V/F scaling

to exploit TEI while guaranteeing deadline and combating SHEs. Moreover, TREAFET stimulates

the average runtime frequency by employing an opportunistic energy-adaptive voltage spiking

mechanism, whereas energy saving during memory stalls is traded off by the energy usage during

the execution span having spiked voltage. The stimulated frequency in TREAFET also finishes the

tasks early, thus providing opportunities to save energy by power gating the cores, and that leads

to average gains in EDP by up to 24%.

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:27

ACKNOWLEDGMENT
This work is funded by Marie Curie Individual Fellowship (MSCA-IF), EU (Grant Number 898296).

REFERENCES
[1] [n. d.]. AMD Ryzen Processor with Accelerator. https://www.amd.com/content/dam/amd/en/documents/instinct-tech-

docs/white-papers/amd-cdna-3-white-paper.pdf. Accessed: 2024-03-20.

[2] [n. d.]. Intel Xeon Phi Processor Cores. https://www.intel.com/content/dam/develop/external/us/en/documents/intel-

xeon-phi-quick-start-developers-guide-mpss-3-4.pdf. Accessed: 2024-03-20.

[3] 2022. Intel Xeon Processor. https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

Accessed: 2024-03-20.

[4] S. Achour and M. C. Rinard. 2015. Approximate Computation with Outlier Detection in Topaz. SIGPLAN Not. (2015).

[5] S. Ahmed and J. H. Anderson. 2020. A Soft-Real-Time-Optimal Semi-Clustered Scheduler with a Constant Tardiness

Bound. In RTCSA.

[6] W. Ahn et al. 2018. Integrated modeling of Self-heating of confined geometry (FinFET, NWFET, and NSHFET)

transistors and its implications for the reliability of sub-20nm modern integrated circuits. Microelectronics Reliability

(Elsevier) (2018).

[7] H. Amrouch et al. 2019. Reliability Challenges with Self-Heating and Aging in FinFET Technology. In IOLTS.

[8] J. H. Anderson et al. 2005. An EDF-based scheduling algorithm for multiprocessor soft real-time systems. In ECRTS.

[9] J. H. Anderson et al. 2016. Optimal semi-partitioned scheduling in soft real-time systems. Journal of Signal Processing

Systems (2016).

[10] J. H. Anderson and A. Srinivasan. 2000. Early-release fair scheduling. In Proceedings 12th Euromicro Conference on

Real-Time Systems. Euromicro RTS 2000.

[11] A. Bansal et al. 2006. Compact thermal models for estimation of temperature-dependent power/performance in FinFET

technology. In ASPDAC.

[12] S. Baruah and N. Fisher. 2005. The partitioned multiprocessor scheduling of sporadic task systems. In 26th IEEE

International Real-Time Systems Symposium (RTSS).

[13] Q. Bashir et al. 2018. A scheduling based energy-aware core switching technique to avoid thermal threshold values in

multi-core processing systems. Microprocessors and Microsystems 61 (2018).

[14] M. Bertogna et al. 2009. Schedulability Analysis of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE

TPDS (2009).

[15] A. Bhuiyan et al. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM TECS (2018).

[16] C. Bienia et al. 2008. The PARSEC Benchmark Suite: Characterization and Architectural Implications. In PACT.

[17] N. Binkert et al. 2011. The gem5 Simulator. ACM SIGARCH CAN (2011).

[18] E. A. Burton et al. 2014. FIVR — Fully integrated voltage regulators on 4th generation Intel® Core™ SoCs. In APEC.

[19] E. Cai et al. 2016. Exploring aging deceleration in FinFET-based multi-core systems. In ICCAD.

[20] E. Cai and D. Marculescu. 2015. TEI-Turbo: temperature effect inversion-aware turbo boost for FinFET-based multi-core

systems. In ICCAD.

[21] E. Cai and D. Marculescu. 2017. Temperature Effect Inversion-Aware Power-Performance Optimization for FinFET-

Based Multicore Systems. IEEE TCAD (2017).

[22] D. Casini et al. 2020. Task Splitting and Load Balancing of Dynamic Real-Time Workloads for Semi-Partitioned EDF.

IEEE Trans. on Comp. (2020).

[23] S. Chakraborty et al. 2021. Prepare: Power-Aware Approximate Real-Time Task Scheduling for Energy-Adaptive QoS

Maximization. ACM TECS (2021).

[24] S. Chakraborty et al. 2022. STIFF: Thermally safe temperature effect inversion aware FinFET based multi-core. In

Proceedings of the 19th ACM International Conference on Computing Frontiers. 21–29.

[25] S. Chakraborty and H. K Kapoor. 2019. Exploring the role of large centralised caches in thermal efficient chip design.

ACM TODAES (2019).

[26] S. Chakraborty and M. Själander. 2021. WaFFLe: Gated Cache-Ways with Per-Core Fine-Grained DVFS for Reduced

On-Chip Temperature and Leakage Consumption. ACM TACO (2021).

[27] J. Choi et al. 2007. Thermal-aware task scheduling at the system software level. In Proceedings of International

Symposium on Low Power Electronics and Design (ISLPED). 213–218.

[28] R. I. Davis and A. Burns. 2011. Improved priority assignment for global fixed priority pre-emptive scheduling in

multiprocessor real-time systems. Real-Time Systems (2011).

[29] R. I. Davis and A. Burns. 2011. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems. ACM Comput.

Surv. (2011).

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-xeon-phi-quick-start-developers-guide-mpss-3-4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-xeon-phi-quick-start-developers-guide-mpss-3-4.pdf
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

000:28 Chakraborty et al.

[30] D. de Niz and L. T. X. Phan. 2014. Partitioned scheduling of multi-modal mixed-criticality real-time systems on

multiprocessor platforms. In RTAS.

[31] S. Eyerman and L. Eeckhout. 2011. Fine-Grained DVFS Using on-Chip Regulators. ACM TACO (2011).

[32] S. Funk et al. 2011. DP-Fair: a unifying theory for optimal hard real-time multiprocessor scheduling. Real-Time Systems

47 (2011), 389–429.

[33] G. Gracioli et al. 2013. Implementation and evaluation of global and partitioned scheduling in a real-time OS. Real-Time

Systems (2013).

[34] A. Guler and N. K. Jha. 2020. McPAT-Monolithic: An Area/Power/Timing Architecture Modeling Framework for 3-D

Hybrid Monolithic Multicore Systems. IEEE TVLSI (2020).

[35] Shaofeng Guo et al. 2017. Towards reliability-aware circuit design in nanoscale FinFET technology: new-generation

aging model and circuit reliability simulator. In Proceedings of the 36th International Conference on Computer-Aided

Design. IEEE Press, 780–785.

[36] Z. Guo et al. 2017. Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks. In ECRTS.

[37] Z. Guo et al. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clustered Multi-Core Platforms. In RTAS.

[38] C. Hobbs et al. 2019. Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (and Dynamic). In RTNS.

[39] A. Iranfar et al. 2017. Thespot: Thermal stress-aware power and temperature management for multiprocessor systems-

on-chip. IEEE TCAD (2017).

[40] S. Isuwa et al. 2019. TEEM: Online Thermal- and Energy-Efficiency Management on CPU-GPU MPSoCs. In DATE.

[41] M. Jin et al. 2016. Reliability characterization of 10nm FinFET technology with multi-VT gate stack for low power and

high performance. In IEDM.

[42] K. Kanoun et al. 2014. Online energy-efficient task-graph scheduling for multicore platforms. IEEE TCAD (2014).

[43] S. Kato et al. 2009. Semi-partitioned Scheduling of Sporadic Task Systems on Multiprocessors. In 21st Euromicro

Conference on Real-Time Systems.

[44] O. R. Kelly et al. 2011. On Partitioned Scheduling of Fixed-Priority Mixed-Criticality Task Sets. In IEEE International

Conference on Trust, Security and Privacy in Computing and Communications.

[45] M. I. Khan et al. 2014. Self-heating and reliability issues in FinFET and 3D ICs. In ICSICT.

[46] S. Khatamifard et al. 2017. ThermoGater: Thermally-aware on-chip voltage regulation. In ISCA.

[47] S. Kim et al. 2007. Temperature Dependence of Substrate and Drain–Currents in Bulk FinFETs. IEEE T-ED (2007).

[48] J. Kong et al. 2012. Recent Thermal Management Techniques for Microprocessors. ACM Comput. Surv. (2012).

[49] C. Lee and N. K. Jha. 2011. CACTI-FinFET: An integrated delay and power modeling framework for FinFET-based

caches under process variations. In DAC.

[50] W. Lee et al. 2014. Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion

phenomenon. In ISLPED.

[51] W. Lee et al. 2014. Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion

phenomenon. In International Symposium on Low Power Electronics and Design. 105–110.

[52] W. Lee et al. 2017. TEI-power: Temperature Effect Inversion–Aware Dynamic Thermal Management. ACM Trans. Des.

Autom. Electron. Syst. 22, 3, Article 51 (2017).

[53] Y. Lee et al. 2016. Consideration of BTI variability and product level reliability to expedite advanced FinFET process

development. In IEDM.

[54] Y. Lee et al. 2019. Thermal-Aware Scheduling for Integrated CPUs–GPU Platforms. ACM TECS (2019).

[55] B. Lesage et al. 2012. PRETI: Partitioned Real-Time Shared Cache for Mixed-Criticality Real-Time Systems. In

International Conference on Real-Time and Network Systems.

[56] S. Li et al. 2009. McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore

Architectures. In MICRO.

[57] W. Liu et al. 2019. Energy-Efficient Application Mapping and Scheduling for Lifetime Guaranteed MPSoCs. IEEE TCAD

(2019).

[58] K. A. A. Makinwa. 2018. Temperature Sensor Performance Survey. http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

[59] A. Mandke et al. 2011. Adaptive Power Optimization of On-chip SNUCA Cache on Tiled Chip Multicore Architecture

Using Remap Policy. In WAMCA.

[60] S. Mei et al. 2016. New understanding of dielectric breakdown in advanced FinFET devices — physical, electrical,

statistical and multiphysics study. In IEDM.

[61] O. Mutlu and T. Moscibroda. 2007. Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors. In MICRO.

[62] S. Narayana et al. 2016. Exploring Energy Saving for Mixed-Criticality Systems on Multi-Cores. In RTAS.

[63] K. Neshatpour et al. 2018. Enhancing Power, Performance, and Energy Efficiency in Chip Multiprocessors Exploiting

Inverse Thermal Dependence. IEEE TVLSI (2018).

[64] S. Pagani et al. 2015. Energy and peak power efficiency analysis for the single voltage approximation (SVA) scheme.

IEEE TCAD (2015).

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores 000:29

[65] D. Rupanetti and H. Salamy. 2019. Thermal-Constrained. Energy-Aware Load Management on MPSoC Architectures.

In UEMCON. IEEE.

[66] S Saha et al. 2015. Scheduling Dynamic Hard Real-Time Task Sets on Fully and Partially Reconfigurable Platforms.

IEEE Embedded Systems Letters (2015).

[67] S. Saha et al. 2018. Real-Time Application Processing for FPGA-Based Resilient Embedded Systems in Harsh Environ-

ments. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[68] Tarun Sairam et al. 2007. Optimizing FinFET technology for high-speed and low-power design. In Proceedings of the

17th ACM Great Lakes Symposium on VLSI. 73–77.

[69] H. Salamy. 2015. Task scheduling on multicore embedded systems under power and thermal constraints. International

Journal of Electronics (2015).

[70] A. Sarkar et al. 2011. A Low-Overhead Partition-Oriented ERfair Scheduler for Hard Real-Time Embedded Systems.

IEEE Embedded Systems Letters (2011).

[71] A. Shafaei et al. 2014. FinCACTI: Architectural Analysis and Modeling of Caches with Deeply-Scaled FinFET Devices.

In ISVLSI.

[72] Y. Sharma et al. 2022. RESTORE: Real-Time Task Scheduling on a Temperature Aware FinFET based Multicore. In

DATE. IEEE.

[73] J. Shun and G. E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In PPoPP.

[74] M. O. Simsir et al. 2010. Fault modeling for FinFET circuits. In IEEE/ACM International Symposium on Nanoscale

Architectures.

[75] J. Singh et al. 2018. 14-nm FinFET Technology for Analog and RF Applications. IEEE Transactions on Electron Devices

65, 1 (2018), 31–37.

[76] K. Stavrou and P. Trancoso. 2005. TSIC: Thermal Scheduling Simulator for Chip Multiprocessors. In Proceedings of the

Panhellenic Conference on Advances in Informatics. Springer-Verlag.

[77] G. Taheri et al. 2018. Temperature-aware dynamic voltage and frequency scaling enabled MPSoC modeling using

stochastic activity networks. Microprocessors and Microsystems (2018).

[78] A. Tang et al. 2015. McPAT-PVT: Delay and Power Modeling Framework for FinFET Processor Architectures Under

PVT Variations. IEEE TVLSI (2015).

[79] T. Uemura et al. 2016. Investigation of logic circuit soft error rate (SER) in 14nm FinFET technology. In IEEE International

Reliability Physics Symposium (IRPS). 3B–4–1–3B–4–4.

[80] S. Venkateswarlu et al. 2018. Ambient Temperature-Induced Device Self-Heating Effects on Multi-Fin Si n-FinFET

Performance. IEEE T-ED (2018).

[81] W. Kim et al. 2008. System level analysis of fast, per-core DVFS using on-chip switching regulators. In HPCA.

[82] Z. Wang et al. 2015. Efficient task partitioning and scheduling for thermal management in multicore processors. In

ISQED.

[83] X. Huang et al. 2001. Sub-50 nm P-channel FinFET. IEEE T-ED (2001).

[84] W. Zang and A. Gordon-Ross. 2013. A Survey on Cache Tuning from a Power/Energy Perspective. ACM Comput. Surv.

(2013).

[85] R. Zhang et al. 2015. HotSpot 6.0: Validation, Acceleration and Extension.. In University of Virginia, Tech. Report

CS-2015-04.

[86] Y. Zhao et al. 2018. Power Supply Noise Aware Task Scheduling on Homogeneous 3D MPSoCs Considering the

Thermal Constraint. Journal of Computer Science and Technology (2018).

[87] J. Zhou et al. 2018. Thermal-aware correlated two-level scheduling of real-time tasks with reduced processor energy

on heterogeneous MPSoCs. JSA (2018).

[88] X. Zhou et al. 2010. Thermal-Aware Task Scheduling for 3D Multicore Processors. IEEE TPDS 21, 1 (2010), 60–71.

Received 00 June 2023; revised 00 March 2024; accepted 07 May 2024

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 000. Publication date: 2018.

	Abstract
	1 Introduction
	2 Background and System Model
	2.1 Semi-Partitioned Scheduling
	2.2 Thermal Aspects of FinFET CMPs
	2.3 System Model

	3 TREAFET: Proposed Technique
	3.1 Overall Progress Tracking
	3.2 Scheduling Phase
	3.3 Runtime Thermal Management
	3.4 Analysis of the algorithms

	4 Simulation Infrastructure
	5 Evaluation
	5.1 Changes in Frequency and IPS
	5.2 Impacts of Frequency Boosting in Scheduling
	5.3 Impacts on Peak Temperature
	5.4 Energy Savings and EDP Gains

	6 State-of-the-art
	6.1 Thermal/Energy Efficient Scheduling
	6.2 Thermal Management in FinFET based CMPs
	6.3 TREAFET over Prior Art

	7 Conclusions
	References

