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� The occurrence of hydrogen-induced material failures requires safety enhancements.

� Hydrogen embrittlement relies on a synergistic interplay of several factors.

� Tailored inspection activities could aid to monitor equipment exposed to hydrogen.

� RBI approaches are not used for planning inspections of hydrogen technologies.

� Material science and safety are often considered two separated research fields.
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Hydrogen could gradually replace fossil fuels, mitigating the human impact on the envi-

ronment. However, equipment exposed to hydrogen is subjected to damaging effects due

to H2 absorption and permeation through metals. Hence, inspection activities are neces-

sary to preserve the physical integrity of the containment systems, and the risk-based (RBI)

methodology is considered the most beneficial approach. This review aims to provide

relevant information regarding hydrogen embrittlement, its effect on materials’ properties,

and the synergistic interplay of the factors influencing its occurrence. Moreover, an over-

view of predictive maintenance strategies is presented, focusing on the RBI methodology. A

systematic review was carried out to identify examples of the application of RBI to

equipment exposed to hydrogenated environments and to identify the most active

research groups. In conclusion, a significant lack of knowledge has been highlighted, along

with difficulties in applying the RBI methodology for equipment operating in a pure

hydrogen environment.
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Introduction

Hydrogen has been recently indicated by the European Com-

mission and the Norwegian Ministry of Petroleum and Energy

as a promising fuel to reduce greenhouse gas emissions [1,2].

The growing interest in the widespread rollout of this energy

carrier rests on two factors: hydrogen can be used with very

limited direct pollutant emissions, and it can be produced

from various low-carbon sources by steam reforming as well

as from water by electrolysis [3,4]. The importance of

hydrogen in the global energy scenario is reflected by its rising

share in the total final energy consumption: hydrogen

accounted for less than 0.1% in 2020 [5], but it is expected to

reach 2% by 2030 and 10% in 2050 [6].

Despite the advantage of being potentially clean and

renewable, there are serious safety concerns associated with

hydrogen properties. Along with hydrogen flammability and

explosivity, the capability of permeating and embrittling

metallic materials are critical safety issues associated with

hydrogen handling and storage [7]. Hydrogen can be absorbed

by most metals and alloys, and its accumulation in the prox-

imity of internal defects (e.g., vacancies, grain boundaries,

dislocations, precipitates, and inclusions) represents a serious

concern for iron, steels, nickel and titanium-based alloys, and
many other materials normally employed for industrial ap-

plications [7,8]. The hydrogen-induced degradation of me-

chanical properties of metallic materials was first-time

observed by Johnson in 1874 [9] and validated by Reynolds one

year later [10]. Thereafter, the mechanisms responsible for

hydrogen-related damages have been widely researched.

Despite the variety of theories that have been proposed to

explain the complex interaction between metallic materials

and hydrogen, the underlying mechanisms are still being

discussed [11e13]. Although the hydrogen-induced degrada-

tion of metals has been extensively investigated over the

years, hydrogen embrittlement (HE) is still responsible for

many industrial failures and associated catastrophic releases

of hazardous substances in the environment [14e17]. Com-

ponents for storing and transporting compressed gaseous

hydrogen (CGH2) are exposed to hydrogenated working envi-

ronments at high-pressures and near-ambient temperatures.

They can be subjected to elevated stresses and exposed to

cyclic loads, resulting from the pressure fluctuations during

normal operations (e.g., in pipeline systems, cylinders, and

tanks). In addition, most of these equipment items have not

been specifically designed for hydrogen service and therefore,

the construction materials can be highly degraded by H2.

Hence, inspection and maintenance activities must be per-

formed to preserve the physical integrity and fitness-for-
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service of components exposed to hydrogen environments.

Over the last decades, maintenance strategy has undergone

radical changes, moving from corrective to predictive ap-

proaches. In particular, the risk-based methodology is

considered the most beneficial strategy for inspection and

maintenance planning. This approach has been largely

adopted in the chemical and petrochemical industries, but its

application to hydrogen technologies is still challenging.

This review aims to answer the following research

questions.

� How does hydrogen embrittlement affect equipment for

hydrogen handling and storage?

� How to plan inspection and maintenance towards

hydrogen-induced material degradation of equipment for

CGH2 transport and storage?

The increasing interest of the scientific community in

these topics is confirmed by some ongoing research projects,

such as the European H2 CoopStorage [18], the Norwegian

SH2IFT-2 [19], and the Euro-Japanese project SUSHy [20].

Several review papers regarding the hydrogen embrittlement

effects on various steels (e.g., pipeline steels [21e25],

martensitic high-strength steels [26,27], austenitic stainless

steels [28,29], medium and high-Mn steels [30,31]) were

recently published. Moreover, the techniques to prevent

hydrogen embrittlement were investigated by several re-

searchers [32e34], which focused on the influence of micro-

structural features [35e37], the utilization of gaseous

inhibitors [38e40], or the adoption of surface coatings [41e43].

Nevertheless, a thorough review regarding the inspection and

maintenance of hydrogen technologies and the techniques to

detect hydrogen-induced damages is still missing.

This work adopts a hybrid approach: a systematic review

(SR) was conducted sequentially to a narrative review (NR).

This innovative methodology is capable not only to answer

the abovementioned research questions but also to highlight

the main trends and pinpoint the most active groups in this

research field. Themethod adopted is extensively described in

the Methodology section. In addition, the most relevant in-

formation about the HE effects and the influencing factors for

materials’ susceptibility is presented in the Hydrogen

embrittlement section. The Methodologies for inspection and

maintenance planning section comprehends both the tradi-

tional approaches and the RBI methodology. The main find-

ings of the SR are presented with the aid of graphs and tables

and extensively discussed in the Systematic review and Dis-

cussion sections, respectively. A summary of the main find-

ings and suggestions for future research are provided in the

Conclusion.
Methodology

The methodology for this study is based on both a narrative

and a systematic review. The former aims at identifying and

summarizing results of previous research, avoiding dupli-

cates, and looking for new study fields to be investigated [44].

In contrast, the ultimate objective of the latter is to formulate

a clearly defined research question and provide a quantitative
and qualitative analysis of the state of the art, potentially

followed by a meta-analysis [45]. A systematic review has in-

clusion criteria explicit and reproducible and is quantitative,

comprehensive, and structured. This paper follows the

guidelines provided by Xiao and Watson [46] and applies the

methodology of the PRISMA Statement [47] to transparently

conduct a systematic review. The process for carrying out this

review can be divided into five phases.

1. Identifying the research area and carrying out a narrative

review

2. Identifying specific queries

3. Identifying, screening, and selecting relevant studies

4. Mapping and presenting the data

5. Summarizing and reporting the findings

Fig. 1 shows how this hybrid methodology was applied to

the present study.

The focus of the review is primarily placed on hydrogen

embrittlement and its implications in the inspection and

maintenance of equipment operating in pure hydrogen envi-

ronments. A brief overview of various inspection planning

approaches is provided, focusing on the RBI methodology.

Although themajor bibliographic sourceswere represented by

journal papers and conference proceedings, grey literature

(e.g., reports, standards, recommended practices, and gov-

ernment documents) was also included, where relevant.

Subsequently, the queries of the systematic review were

defined based on the results of the narrative review.

The SR was completed on November 20, 2022. The data

were collected from the Web of Science Core Collection (WoS

CC) database [48]. The first keyword of each query was related

to hydrogen embrittlement or generically to hydrogen, while

the second was associated with risk-based inspection and

maintenance, or to inspection andmaintenance in general. In

addition, several filters were applied for rapid screening of the

records. For the sake of clarity, all the queries and filters

selected are collected in Table 1.

After identifying the records from the database, they were

screened based on title, keywords, and abstract. Then, a more

thorough assessment for eligibility was carried out by reading

the full-text papers. In addition, several other records were

selected through forward-backwards searches. Finally, key-

words co-occurrence maps, co-authorship networks, and

countries networks were created through VOSviewer [49], a

software tool with text mining capability specifically designed

to perform bibliometric analyses.

A hybrid methodology is a valuable tool to perform an

objective, transparent, and reproducible analysis of the stateof

the art and to enhance the quality of the literature review. This

approach allows for reducing the inevitable bias of narrative

literature reviews, even if it cannot be completely avoided

since the records gathered from WoS CC must be manually

screened and assessed for eligibility. In addition, rigorous

statistical methods and automatic pattern recognition allow

for describing and evaluating the state of the art andpredicting

the future trends of this research field. The qualitative and

quantitative analyses turn out to be essential to have a

descriptive overview of the state of the art and to highlight the

most active institutions and groups and their connections.

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 1 e Schematic methodology of this study.
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Hydrogen embrittlement

Hydrogen embrittlement is a degradation process resulting in

the reduction of materials' mechanical properties due to the

interaction with hydrogen atoms from the component's
working environment. In equipment exposed to hydrogenated

environments, hydrogen is dissociated and absorbed in the

material. Absorbed atoms diffuse through the metal's bulk,

preferentially toward high triaxial stress regions, and locally

affect the material resistance to internal stress or external

load [13]. Despite being a long-known phenomenon, HE is still

responsible for unpredictable failures in many applications,

such as storage tanks, fasteners, process reactors, pipelines,

fuel cell vehicles, and aircraft components [14,17]. This sec-

tion focuses on the HE theory, its effects on tensile and frac-

ture resistance properties, and the hydrogen-enhanced

fatigue crack growth rate (HEFCGR). In addition, the main
Table 1 e Queries and filters selected in Web of Science Core C

Type

Queriesa “hydrogen* embritt

“maintenance” OR

“maintenance” OR

maintenance”

Analysis Field Topic

Document type Articles, Review Ar

Language English

Countries Global

Period examined Not applied

a The quotation mark allows to search for an exact word or phrase, whe
susceptibility factors and their synergistic interaction are

discussed.

Hydrogen embrittlement theory

Most of the equipment for H2 handling, transport, and storage

is exposed to high-pressure hydrogenated environments and

can be subjected to monotonic and cyclic loading. In addition,

hydrogen can be absorbed into the metal during the compo-

nent's fabrication or through cathodic protection (in the case

of subsea pipelines) and corrosion processes. This section

presents concisely the mechanism of hydrogen uptake into

metals in compressed gaseous atmospheres.

The size of the H2 molecule is too large to diffuse through

metals. Thus, hydrogen is dissociated into atoms on themetal

surface and enters the materials in two distinct steps, known

as adsorption and absorption. The former is based on the

hydrogen gas-metal interaction and comprehends the
ollection for the systematic review.

Option selected

lement*” “inspection” OR “hydrogen* embrittlement*”

“hydrogen* damage*” “inspection” OR “hydrogen* damage*”

“hydrogen*” “risk-based inspection” OR “hydrogen*” “risk-based

ticles, Conference Proceedings

reas the asterisk can be used to look also for similar words.

https://doi.org/10.1016/j.ijhydene.2023.05.293
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mechanisms of physisorption and chemisorption, which can

be distinguished in terms of bonding energy (weak van der

Waals forces for physisorption and covalent bonding for

chemisorption). Hydrogen adsorption on the metal surface is

based on the following reversible reaction [50]:

H2 þ2M42MHads (1)

The Sievert's law states that hydrogen concentration in

metals is proportional to the hydrogen partial pressure under

thermodynamic equilibrium conditions:

CH ¼ K$
ffiffiffiffiffiffiffiffi
pH2

p
(2)

where CH indicates the concentration of dissolved hydrogen, K

is the equilibrium constant, and pH2
is the hydrogen partial

pressure. The concentration of dissolved H depends on the

temperature, according to the Arrhenius law:

CH ¼ C0
ffiffiffiffiffiffiffiffi
pH2

p
$e

�

�
DHs=RT

�
(3)

where C0 represents the pre-exponential factor, DHs the

dissociation enthalpy of the hydrogen molecule, R is the gas

constant, and T the temperature [51].

After the adsorption on the metal surface, hydrogen can

either recombine in molecular form and release gaseous H2 in

the environment or recombine in a surface-subsurface ab-

sorption reaction and diffuse through the bulkmaterial. These

competing mechanisms are described by the following re-

actions [50]:

MHads þMHads/2MþH2 (4)

MHads þM4MþMHabs (5)

Once absorbed into the metal, hydrogen atoms can

occupy interstitial sites and jump from one site to another,

moving through the material. The atomic radius of

hydrogen (i.e., 5.3,10�11 m) is similar to the size of the

interstitial sites in the body-centered cubic (bcc) and face-

centered cubic (fcc) structures, and this allows for elevated

H atoms' mobility [52]. Temperature, chemical composition,

and microstructure strongly influence the diffusivity.

Hydrogen solubility is lower in bcc materials (e.g., ferritic

steels) than in fcc (e.g., austenitic steels). In fact, despite the

higher number of interstitial sites in bcc structures, their

size is comparatively smaller. The hydrogen diffusion de-

pends on the concentration gradient and is described by

Fick's first law [53]:

JH ¼ �DH$VCH (6)

where JH represents the hydrogen flux and DH is the

diffusivity.

In a theoretically perfect lattice, hydrogen should

distribute homogeneously in the crystal structure. Despite

this, real materials have imperfections and microstructural

features that act as trapping sites, i.e., potential gaps where

hydrogen atoms get trapped [54]. These sites can be divided

into reversible and irreversible traps, depending on their

binding energy. H atoms can escape from vacancies, disloca-

tions, and grain boundaries thanks to the low binding energy
of these microstructural features. On the other hand, higher

activation energy is necessary to release hydrogen atoms from

irreversible traps. Hence, H atoms can either diffuse from one

interstitial site to another or be trapped within the material

[55e57].

The mechanisms through which hydrogen is adsorbed,

absorbed, transported, and trapped are generally well-

accepted. In contrast, the physical mechanism responsible

for the hydrogen embrittlement effect is still debated in the

scientific community. The most accepted opinion is that the

degradation is caused by the interaction of several mecha-

nisms, such as Hydrogen-Enhanced Decohesion (HEDE) and

Hydrogen-Enhanced Localized Plasticity (HELP) [58]. The HEDE

theory suggests that embrittlement is caused by a local

reduction of cohesive strength in the metal lattice, thus pro-

voking the separation of cleavage planes or grain boundaries

under lower stress levels. In other words, the atoms are

separated when the applied stress exceeds the local cohesive

strength in the crack tip; the interatomic bonds are weakened

by the presence of hydrogen in the lattice, thus resulting in

atoms’ separation [59]. On the other hand, the HELP mecha-

nism states that H atoms enhance dislocation mobility by

causing a local reduction in shear stress. Hydrogen transport,

accelerated by dislocationmovement, causes an increase in H

concentration near the crack tip. The accumulation of

hydrogen around dislocations enhances the local strain,

which disrupts the crystal structure. If the local hydrogen

concentration is sufficient, the deformation can lead to a

macroscopic brittle fracture [60,61].

Effects on mechanical properties

Industrial equipment exposed to high-pressure hydrogen gas

may operate under various loading conditions. Concerning

the HE phenomenon, the effect on mechanical properties can

be roughly divided into two categories: quasi-static and dy-

namic. The former indicates a constant or slowly varying load,

which allows for a general hydrogen distribution equilibrium;

it is often relevant for components exposed to high gas pres-

sure. On the other hand, the latter is associated with dynamic

components (e.g., compressors), vibrations in static equip-

ment, or fluctuations in gas pressure [62]. Due to the time-

related nature of the HE phenomenon, the materials’ sus-

ceptibility is often investigated through tests performed in

quasi-static conditions. Tensile properties, fracture resistance

properties, and fatigue crack growth rate (FCGR) under cyclic

loading need to be quantified in a relevant hydrogenated

operating environment in order to assess the performance

and integrity of components commonly used in the hydrogen

value chain [22].

Tensile properties
Slow strain rate tests (SSRTs) are normally used to test the

materials’ tensile properties [63]. Hydrogen-induced degra-

dation often manifests itself as a ductility loss and can be

expressed as the change in reduced areas after a tensile test

obtained in the hydrogenated environment and in a reference

environment [64e66]. This is usually quantified through the

Embrittlement Index [67]:

https://doi.org/10.1016/j.ijhydene.2023.05.293
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EI ¼ RAref � RAH2

RAref
$100

¼
��
Ai �Af

��
Ai

	
ref

� ��
Ai � Af

��
Ai

	
H2��

Ai �Af

��
Ai

	
ref

$100 (7)

where RAref and RAH2
are the reduced area at fracture in a

reference environment (air or inert gas) and hydrogen,

respectively, and Ai and Af represent the initial and the final

fracture areas, respectively. High values of EI are associated

with the high HE susceptibility of the tested material.

While elongation and reduction of area at fracture are

strongly affected by the hydrogen-metal interaction, elastic

properties, yield strength (YS) and ultimate tensile strength

(UTS) are often barely modified [68e71]. Generally, metals

with higher strength feature stronger susceptibility to

hydrogen degradation. San Marchi et al. [64] tested the tensile

properties of a wide range of carbon and low-alloy steels in

gaseous hydrogen environments (at 6.9 and 69 MPa); the re-

sults show that the loss of RA for smooth specimens ranges

from 20% to up to 50%, compared with valuesmeasured in air.

Other studies confirmed similar findings for X52 and X65

pipeline steels [45,49]. Fig. 2 shows the fracture surfaces of X65

specimens with and without hydrogen charging.

The presence of geometrical imperfections or notches,

which act as stress concentrators, can significantly increase
Fig. 2 e SEM magnified fracture surface of an X65 steel weld unc

charged (c) macroscopic and (d) microscopic [72].
the material susceptibility to HE. As mentioned earlier, this

enhanced sensitivity is associated with the inherent presence

of a region ahead of the notch with higher triaxial stress and a

high strain zone at the notch root, resulting in higher

hydrogen accumulation in these areas and greater localized

embrittlement [50,51]. Notched specimens present significant

losses in the reduced area and limited changes in yield and

tensile strength. In this case, the RA in hydrogen gas ranges

from 5 to 9%, while the reduced area loss is up to 80%. Aside

from the quantitative measurement of the hydrogen effect on

tensile properties, SSRT can also be used as a screening

method to select materials for hydrogen service [73,74]. To

rigorously assess the reliability of steels exposed to hydrogen

gas, tests on cracked specimens, both under monotonic and

cyclic loading, are required [54]. Table 2 summarizes the HE

susceptibility of several steels, based on the EI measured at

24 �C and 69 MPa hydrogen gas.

Fracture resistance properties
Fracture resistance properties are quantified by fracture

toughness tests, performed on a pre-cracked specimen, which

is subjected tomonotonically increasing load, whilst the crack

mouth opening displacement (CMOD) is monitored. Fracture

toughness is typically expressed in terms of plane strain

fracture toughness KIC (MPa,m1/2) or elastic-plastic fracture
harged (a) macroscopic and (b) microscopic, and hydrogen-
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toughness JIC (kJ/m2) [76]. The elastic-plastic J-integral method

is used to measure the fracture toughness of metals for en-

gineering applications, according to BS 7448e4 [77], ASTM

E1820 [78], and ISO 12135 [79].

Fracture resistance properties may be highly decreased

when a material is exposed to hydrogen gas, especially in

weldments, causing brittleness in otherwise ductile materials

[80e82]. If not carefully accounted for, this toughness

decrease can represent a serious concern in the design of steel

components, where small, undetected cracks may be always

present. Robinson and Stoltz tested an A516 Grade 70 steel

over a hydrogen pressure range of 3.45e34.5 MPa and proved

how the detrimental effect of hydrogen was significant and

proportional to its partial pressure [83]. Further studies

confirmed the pressure dependence of the fracture toughness

reduction [84,85], as shown in Fig. 3.

San Marchi and Somerday found that the fracture tough-

ness of pipeline steels in a hydrogen environment can be from

48% to 60% of that measured in air, but its value remains high

enough for most engineering applications (greater than

100 MPa$m1/2 for steel grades up to X70) [64]. Nonetheless, the

hydrogen-induced detriment of fracture toughness depends

also on the presence of micro-alloying elements and specific

microstructural features [86]. The dependence on thematerial

microstructure is evenmore pronounced for the crack growth

resistance (expressed as dJ=da). The values of dJ=da for

hydrogen-charged carbon steels can be up to 90% lower than

thosemeasured in inert environments [64]. In other terms, the

presence of hydrogen not only lowers the stress required to

propagate a crack but also decreases the resistance for further

crack propagation once this critical stress level has been

reached.

Fatigue crack growth rate
Hydrogen can negatively influence the metals’ resistance to

fatigue crack growth rate under cyclic loads resulting from

pressure fluctuations in equipment for hydrogen transport

and storage or from the movement of rotating components
Fig. 3 e CMOD - Load curves for an X70weld simulated HAZ

at different hydrogen gas pressures [85].

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 4 e FCGR curve for an X80 steel tested in hydrogen at

5.5 and 21 MPa and in the air (adapted from Ref. [92]).
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[28,65]. The FCGR test method quantifies the rate of a crack in

terms of crack advance per load cycle and is performed on pre-

cracked specimens [87,88]. Minor imperfections, especially in

welded areas and heat-affected zones (HAZs), can act as crack

initiation sites in real components [66,67]. The per-cycle

variation of the crack length da=dN (mm/cycle) is reported

as a function of the stress intensity range DK (MPa,m�1/2).

Most metallic materials display three different stages of crack

propagation in hydrogen environments. The first stage,

known as the threshold domain, reports the crack growth at

low DK, where the fatigue crack seems to be latent below the

threshold DKth. In this regime, the data obtained in hydrogen

often converge with those in the reference environment.

Nonetheless, the test parameters can have significant

spurious effects on the recorded DKth. The second stage, the

Paris domain, is an intermediate zone where it is possible to

apply a continuum approach. The crack growth is described

by the Paris equation [89]:

da =dN¼AðDKÞm (8)

where A and m are both material constants. In this region,

tests in hydrogen show a sharp increase in FCGR compared to

tests conducted in the air. The magnitude of the acceleration

is strongly dependent on the material system and can reach

up to three orders of magnitude for high-strength steels

[90,91]. Finally, the third stage, the unstable regime, manifests

an accelerated crack growth, which is reached when Kmax

approaches the critical stress intensity KIC. The slope of the

FCGR in hydrogen is comparable to that measured in the air

since the effect of hydrogen has already reached its

maximum, and no further acceleration can be observed [90].

Fig. 4 shows the increased FCGR of an X80 pipeline steel tested

in hydrogen compared to that tested in the air.

The available results in the literature indicate that, when

tested without a pre-existing crack, the material's fatigue

life seems to be slightly influenced by the presence of

hydrogen as far as the stress ranges are around the material

fatigue limit, i.e., in the high-cycle fatigue domain [93].

Nonetheless, variations due to the hydrogen-induced fa-

tigue crack growth acceleration are recorded in the low-

cycle fatigue domain. Hydrogen can increase the FCGR by

one or two orders of magnitude if the stress intensity range

is higher than DKth [64,92,94e102]. The value of DKth de-

pends upon the material type, strength, and microstruc-

ture, but for most low-strength steels it ranges from 10 to

15 MPa,m�1/2 [70e73,76,86,103,104]. An et al. [105] proved

that hydrogen-accelerated crack initiation plays a more

important role than fatigue crack growth with increasing

hydrogen pressure. Other studies observed how the

threshold value seems to be reduced by 10e25% in

hydrogen environments [25,106,107]. However, open ques-

tions remain regarding the role of hydrogen in the reduc-

tion of the stress intensity threshold. In fact, spurious

effects, such as the crack closure reduction related to oxide

layer formation, may be more prominent than the actual

effect of hydrogen [106]. Indeed, the hydrogen-induced

reduction of DKth depends on the environment, the

loading parameters, and the material, making difficult its

accurate prediction.
Susceptibility factors

The occurrence of environmental hydrogen embrittlement

relies on the synergistic interaction of many factors. One of

the most important is the type of hydrogenated environment,

which comprehends pressure, temperature, hydrogen purity,

form, and source. The second factor is the metal considered,

from the basic crystal structure to the microstructure, het-

erogeneities, substructural conditions, phase stability,

strength level, surface conditions, etc. The third crucial factor

is the stress field, which accounts for the load type (monotonic

or cyclic), the state of applied stress, and the presence of re-

sidual stress [108]. Although the effect of these factors, taken

individually, has been extensively studied over the years

[64,86,109], their synergistic interplay is far from being un-

derstood [58]. Fig. 5 schematically represents the interdepen-

dence of the influencing factors for the HE susceptibility of

industrial equipment.

Effect of temperature
Temperature influences the hydrogen-metal interaction in

many aspects, from the kinetic of surface reactions to
Fig. 5 e Hydrogen embrittlement susceptibility factors.

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 6 e Stress-strain curves for an X100 steel tested in

hydrogen at different gas pressures and in air [68].
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hydrogen solubility, diffusivity, and trapping. Diffusion and

solubility properties are highly dependent on the material

system. For instance, already at room temperature, the ma-

terial diffusivity and solubility can vary up to four orders of

magnitude between austenite and ferrite [110]. Temperature

has strong influence on both solubility and diffusivity of iron

based alloys for temperature higher than 20 �C [111]. On the

other hand, when lowering the temperature, which is relevant

for liquid hydrogen transport and ancillary components, such

as turbo-compressors, quantum effects become relevant with

respect to the material hydrogen transport properties [112].

Hence, temperature strongly influences the bulk hydrogen

concentration, determining the magnitude of hydrogen-

induced degradation of mechanical properties [113]. Despite

this, experimental campaigns tailored to investigate the effect

of temperature on HE in metals have been recently reported

for high-pressure hydrogen environments [22]. Nelson and

Williams [114] and Takakuwa et al. [115] tested the HEFCGR of

low carbon steels (4130 and SM490B, respectively), demon-

strating independently that the most severe temperature

range for HE lies around room temperature, i.e., between 20

and 25 �C. On the other hand, Frandsen and Marcus [116] re-

ported that hydrogen-induced FCGR acceleration for high-

strength martensitic steels peaked at around 0 �C. This was

attributable to the temperature impact on the kinetics of ab-

sorption and dissociation of molecular hydrogen. Similarly,

Gangloff and Wei [117] found that the crack propagation in

hydrogen was increased at �10 �C and 20 �C for 200-grade and

250-grade maraging steels, respectively. Xing et al. [118] con-

ducted tests on X90 pipeline steel and observed that HE is

maximized at temperatures around 40 �C.
San Marchi and Somerday [119] demonstrated that

austenitic stainless steels, commonly used for liquid

hydrogen storage, show themaximumHE susceptibility in the

temperature range between �70 and �20 �C. This was moti-

vated by the strain-inducedmartensite transformation (SIMT)

promoted at low temperatures [28]. Yang et al. [120] observed

that the resistance to HE of 304 austenitic stainless steel is

reduced with decreasing temperature from 25 to �50 �C and

increased again when the temperature falls below �50 �C. HE

disappears at temperatures lower than �150 �C due to slug-

gish hydrogen diffusion. Michler and Naumann [121] proved

that the temperature dependence of HE in austenitic stainless

steels can be drastically reduced by increasing the Ni content

above 12.5% and controlling the local metallurgy to obtain a

very homogeneous microstructure. Ogata [122] tested also

austenitic stainless steels and proved that HE does not man-

ifest its effect until a certain amount of deformation, regard-

less of the operating temperature. Matsuoka et al. [123]

observed that HEFCGR has a prominent temperature depen-

dence at low gas pressures, while it is negligible at high

pressures. Moreover, Tan et al. [124] observed that

30CrMnSieNi2A high-strength steel is not affected by HE at

temperatures higher than 200 �C.
Overall, the effect of temperature can be explained by the

hydrogen trapping model, in which the hydrogen atoms are

assumed to diffuse through themetal lattice and be trapped at

microstructural defects. At cryogenic temperatures, hydrogen

diffuses too slowly to accumulate at trapping sites in sufficient

quantities to determine severe detrimental effects on
mechanical properties; on the other hand, at high tempera-

tures, hydrogen mobility increases and atoms’ de-trapping

overcomes the trapping [75]. As a rule of thumb, for many

metals and alloys, the HE effects tend to be more severe be-

tween �70 and 30 �C [125].

Effect of pressure
Hydrogen partial pressure is a relevant environmental

parameter influencing the magnitude of HE degradation [119].

According to Sievert's law, the solubility of hydrogen in

metals, intended as the total hydrogen concentration both at

normal lattice and trapping sites, is proportional to the square

root of its partial pressure. In other words, increasing

hydrogen partial pressure will increase the hydrogen con-

centration in metals, which in turns eases the hydrogen-

induced losses in tensile and fracture properties. By way of

illustration, Fig. 6 shows the hydrogen gas pressure impact on

the elongation of an X100 steel specimen.

In the case of HEFCGR, a less pronounced pressure

dependence can be observed [126,127]:

ðda=dNÞH2

ðda=dNÞair
¼ 1þN$p0:36

H2
(9)

where N is a coefficient which depends on the material. The

occupation of traps follows this dependence over a certain

pressure range and shows a plateau for higher values [68,114].

This is due to the traps' saturation which occurs when the

maximumamount of hydrogen has occupied all the traps that

are present in the metal lattice. This saturation concentration

depends on the material's microstructure, composition, and

strength [128,129]. The reduction of fracture toughness of

A516, API 5L Grade B, and X42 steels approaches the saturation

for hydrogen pressure greater than 13.8 MPa, while the

plateau is reached at 6.9 MPa for A-106 Grade B steel [86]. In

general, low-strength steels have a more severe reduction in

fracture toughness for increasing hydrogen pressure

compared to high-strength steels [114]. The fatigue perfor-

mances are also reduced for increasing hydrogen pressure,

depending on the materials' microstructure and the stress

intensity range [90,95,98,105,130]. At high DK values, the FCGR

is not very sensitive to pressure variations, while at lowDK the

https://doi.org/10.1016/j.ijhydene.2023.05.293
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fatigue crack growth can increase by ten folds varying the H2

pressure from 0.02 to 100 MPa [131]. Nevertheless, the stress

intensity ranges considered are often not applicable to normal

operations of equipment for hydrogen handling and storage.

Hence, further tests are required to confirm if these trends

remain valid at lower DK [132e134].

Operating a component at higher hydrogen pressures in-

creases the level of applied stress. Since hydrogen-induced

degradations are triggered by the applied stress, the H2 par-

tial pressure has a twofold negative influence on HE suscep-

tibility. Despite this, hydrogen is being stored and transported

at increasingly high pressures to overcome the issue repre-

sented by its low volumetric energy density (3.2 times lower

than that of methane [135]).

Effect of hydrogen purity
Hydrogen purity influences the hydrogen uptake into the

metal. In particular, the addition of small amounts of specific

gas species may reduce [86], enhance [136], or keep the HE

sensitivity unchanged. Hence, gas impurities can act as in-

hibitors for hydrogen embrittlement by hindering the surface

reactions of absorption. Oxygen is considered a promising

inhibitor because it creates a passivation oxide layer which

impedes hydrogen uptake [38]. Komoda et al. [40] performed

fracture toughness tests on A333 Gr. 6 carbon steel in

hydrogen gas with oxygen impurities, and observed how the

results in hydrogen and 100 ppm oxygen were comparable

with that in the air. The inhibiting effect of 10 ppmoxygenwas

present only at the initial stage of the crack propagation.

Similarly, Kussmaul et al. [137] tested the fracture toughness

of 15 MnNi 6 3 steel and obtained a complete HE inhibition

with 150 ppm oxygen. Somerday et al. [138] tested the FCGR of

X52 steel in hydrogen blended with oxygen impurities and

observed how the results in 1000 ppm O2 were comparable to

those in the air. At lower O2 concentrations, HE was inhibited

at medium-low DK, while an enhancement occurred above a

critical DK level. Cialone and Holbrook [139] tested an X42

pipeline steel in hydrogen with gaseous additives (O2, CO, and

SO2) and obtained a nearly complete inhibition of HEFCGR [82].

Nelson et al. [131] investigated the HEFCGR of 1020 steel in

different gas mixtures (hydrogen with CO2, CH4, and H2O).

While water reduced the fatigue crack growth, additions of

carbon dioxide and methane had negligible inhibiting effects

or even increased the FCGR compared to that measured in

pure hydrogen. Thereafter, Bai et al. [140] observed how small

additions of steam and CO2 increased the hydrogen-induced

ductility loss in a 3Cr steel. Moreover, the low HE inhibition

of CH4 was confirmed by Stayov et al. [38]. In general, both the

concentration and partial pressure of gaseous impurities are

considered relevant for the degree of inhibition [141]. In

addition, the amount of inhibitor required to eliminate the HE

effects depends on the yield strength, microstructure, chem-

ical composition of the steel [86], and the hydrogen partial

pressure [142]. Even if the addition of specific gas impurities

has been proven to limit, or even eliminate, the detrimental

effects of hydrogen in the short term, the benefits of inhibitors

in the long term remain to be assessed [119,143]. Fig. 7 shows

the ratio between the FCGR in hydrogen with additives and in

pure hydrogen for a 2.25Cre1Mo steel.
Effect of microstructure and chemical composition
The mobility of hydrogen atoms through the metal lattice is

influenced by the presence of microstructural defects, dislo-

cations, grain boundaries, non-metallic inclusions, and pre-

cipitates [122,123]. These reversible traps are considered the

main responsible for HE [144e148]. Different microstructures

are known to manifest dissimilar behavior in the presence of

hydrogen. The martensite shows a severe hydrogen-induced

degradation of mechanical properties, because of the

elevated residual stress and the number of dislocations [22].

Acicular ferrite exhibits higher hydrogen diffusivity than

bainite, which in turn has a higher hydrogen solubility than

pearlite [149]. In general, a higher amount of cold work is

associated with an increased dislocation density, implying a

more pronounced reversible hydrogen trapping, and conse-

quently a greater HE susceptibility [150].

Over the years, materials evolved in terms of microstruc-

tures and cleanliness. Hence, microstructure, composition,

andmechanical properties vary between steels with the same

grade that have been produced in different years and with

various manufacturing techniques [22,121]. Grain refinement

has also a strong influence on hydrogen embrittlement. If, on

the one hand, it introduces more grain boundaries which act

as barriers for hydrogen transport, on the other, it introduces

more hydrogen trapping sites. Several studies demonstrated

an increased HE resistance in fine-grained steels compared to

coarse-grained ones. Yazdipour et al. [151] showed how

hydrogen diffusion coefficients are maximized for a specific

grain size, because of the two contrasting effects of grain

refinement. In general, the correlation between HE suscepti-

bility and grain size is still debated [66,69,152,153]. Grain

boundary character and crystallographic texture have also a

role in thematerial's cracking behavior [154]. High-angle grain

boundaries (HAB) provide a preferential path for crack prop-

agation compared to low-angle boundaries (LAB) and coinci-

dent lattice sites (CSL) [134,135].

Welds and heat-affected zones (HAZs) are typically the

areas with the greatest defect density, thus making them

prone to hydrogen-induced cracking. The presence of residual

stresses, uncontrolled microstructures, weld flaws, and geo-

metric imperfections foster crack initiation and propagation

in the presence of pressurized hydrogen gas [143]. Martensite

or acicular ferrite can be locally observed in the HAZs,

depending on the welding procedure [155]. Many weld types

with various residual stresses, microstructures, and hardness

are used in industrial practice. The standard ASME B31.12

[156] indicates general acceptance criteria for welds and HAZs

in hydrogen pipelines. Several contradictory results can be

found in the literature regarding the HE susceptibility of welds

[64]. Lower effects on fracture toughness of X70 steels have

been observed in welded areas compared to the base metal

[157]. This observation has been explained by the synergistic

effect of microstructural features and the presence of in-

clusions: the ferritic and mixed bainitic-pearlitic-ferritic mi-

crostructures with elongated grains of the HAZ act as barriers

to the hydrogen diffusion [158]. Lower ductility loss was also

observed for X52 HAZs compared with the base metal,

because of the less pronounced banded microstructure

observed in the heat-affected zone [157]. Nevertheless, also

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 7 e Ratio between the FCGR in hydrogen with and without gas impurities (adapted from Ref. [119]).

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 3 5 3 1 6e3 5 3 4 635326
higher HE sensitivities were observed in HAZs for both tensile

and fracture resistance properties [159]. The study of the

HEFCGR gave contradictory results as well, depending on the

welding process and the different microstructures present in

the weld and HAZ [160,161].

The susceptibility of steels to HE depends on their chemical

composition. Higher contents of carbon, manganese, chro-

mium, molybdenum, vanadium, nickel, and copper tend to

influence hardness to different magnitudes. Several correla-

tions, known as carbon equivalent formulae, correlate the HE

susceptibility of the material to its content of alloying ele-

ments. The correlation of Dearden-O'Neill is suitable to

compare a large range of plain carbon and carbon-manganese

ferritic steels, while other equations can be used for high-

strength low-alloy steels [162]:

CE¼%Cþ%Mn
6

þ%Crþ%Moþ%V
5

þ%Niþ%Cu
15

(10)

The HE sensitivity increases for increasing values of CE.

San Marchi and Somerday [119] suggested that a carbon

equivalent content lower than 0.35 allows for avoiding the

formation of untempered martensite during welding. In

addition, the steel composition limits for hydrogen applica-

tions include sulfur and phosphorous contents lower than

0.01 and 0.015, respectively. Nevertheless, this correlation is

not valid for austenitic stainless steels, as proven by Michler

and Naumann [121].

Effect of strength
The relation between hydrogen embrittlement and material

strength is too complex to be determined precisely. Such ef-

fect is strongly linked to the material microstructure which

determines the hydrogen transport properties (i.e., diffusivity,

solubility, and number of trapping sites), as well as the

deformation processes and dominant degradation mecha-

nisms. This is confirmed by the recent theory for which

hydrogen-induced degradation is the results of multiple

mechanisms working together [163]. The reviews fromMartin

et al. [51] and Djukic et al. [58] give a comprehensive summary
of such phenomena and their interaction. From a more gen-

eral point of view, it is commonly accepted that high-strength

steels show a more pronounced HE sensitivity than low-

strength ones [64,164]. This is reflected by the current accep-

tance criteria for steels for hydrogen piping, which specifies

the maximum allowable strength [156]. The strength depen-

dence is even more pronounced at low hydrogen pressure

[114]. Three 4340 steels were tested in 0.11 MPa hydrogen gas,

and the critical stress intensity factor for H2-assisted crack

extension was found to decrease four to eight times

increasing the yield strength from 1145 to 1875 MPa [165]. The

importance of yield strength for HE susceptibility was also

confirmed for HY-80, A517 (F), and HY-130 steels [128]. Low-

strength (sy < 700 MPa) austenitic steels are proven to mani-

fest an elevated resistance to crack growth extension under

static loads [64].

However, this strength dependence does not apply in the

case of cyclic loads [25]. Clark [166] measured the HEFCGR in

HY-80 (sy ¼ 650 MPa) and HY-130 (sy ¼ 965 MPa) specimens,

and observed that the HY-80 steel had an FCGR two to 40 times

higher than the HY-130, despite the lower yield strength. Tau

et al. [158] demonstrated how three AISI 4130 steels with

different strengths but similar microstructures had a similar

fatigue performance in hydrogen gas. On the other hand, the

FCGR was proven to be strength-dependent for three

martensitic steels. Several studies confirmed that the HEFCGR

was not strength-correlated for X42 [25], X52 [98], X70 [25], and

X100 pipeline steels [132]. Other studies demonstrated that

chemical composition and microstructure are the most rele-

vant parameters affecting fatigue performance [167,168].

Hence, materials normally considered not susceptible to

hydrogen embrittlement may manifest severe HEFCGR, while

some high-strength steels can exhibit a comparatively low

susceptibility [25,92]. The possibility to use higher strength

steels for hydrogen applications is very interesting from the

technical point of view since it allows to overcome unneces-

sarily conservative guidelines for the fitness-for-service of

equipment exposed to high-pressure hydrogen gas (i.e.,

pipelines, cylinders, vessels, etc.) [62].
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Effect of frequency and stress ratio on FCGR
Since HE is a time and stress-driven process, when focusing

on FCGR performance, parameters such as frequency and

stress ratio will impact its occurrence and extent. In a

hydrogen environment, the FCGR is normally increased as the

frequency decreases [64]. In fact, the exposure time is much

higher at lower frequencies, hence more hydrogen atoms can

absorb and diffuse to the crack tip within each cycle. Despite

this hydrogen-enhanced FCGR at low frequencies, a limited

number of test results are available for frequencies below

0.1 Hz. Holbrook et al. [126] tested the FCGR for X42 steel at

6.9 MPa and did not observe significant changes varying the

frequency between 0.1 and 10 Hz. Similar results were ob-

tained for 2.25Cre1Mo steel tested between 0.05 and 5 Hz

[169]. Nevertheless, Walter and Chandler [170] measured a

fivefold increased HEFCGR for SA-105 steel, decreasing the

frequency from 1 Hz to 0.001 Hz. Moreover, Matsuo et al. [171]

tested tempered CreMo steel in 0.7 MPa hydrogen gas gradu-

ally decreasing the frequency to 0.1 Hz. They found out that

the acceleration peak was followed by a decrease in the FCGR

measured in hydrogen with respect to that in the air. The DK

at which the HEFCGR became equal to that in the air,

increased for decreasing frequencies. Subsequently, Yamabe

et al. [172] tested a low-carbon steel (JIS-SM490B) in hydrogen

gas at 0.1e90 MPa and 0.001e10 Hz. Increasing the pressure,

the acceleration peak shifted to lower frequencies. At pres-

sures higher than 10 MPa, the FCGR gradually increased for

decreasing frequency with no evidence of an acceleration

peak. Slifka et al. [90] tested both modern and vintage X52

steels and two X70 steels over the pressure range 0.01e1 Hz at

5.5 MPa and 34 MPa. They observed a moderate frequency

dependence at high pressure. The vintage X52 steel was less

sensitive to frequency variations, while the FCGR increase at

low frequency was more prominent for the modern X52 and

the X70A.

Cheng and Chen [173] suggested the existence of a critical

frequency below which the FCGR is not further affected by

frequency variations. The critical frequency was proven to

depend upon several factors, such as pressure, temperature,

material strength, and microstructure [174]. Alvaro et al. [175]

tested Fee3%Si alloy and X70 steels at 0.1, 1, and 10 Hz. The

experiments showed how HEFCGR was clearly frequency

dependent. The da=dN curves shifted to higher stress in-

tensity ranges with decreasing frequency. In addition, the

acceleration factor of Fee3%Si in hydrogen was up to 1000

times greater than the FCGR measured in the air. Murakami

et al. [176] studied the fatigue crack growth in austenitic

stainless steels and proved that, at very low frequencies, both

diffusible and non-diffusible hydrogen is responsible for the

HEFCGR. Matsunaga et al. [177] observed the same frequency

dependence of HEFCGR also for 304 austenitic steel and ductile

cast iron (DCI) both in hydrogen gas and with hydrogen-

charged specimens.

In industrial practice, a sequence of load cycles with

random amplitude is normally applied to the components.

The stress ratio R (i.e., Kmin=Kmax) influences the transition

between the three regimes of fatigue crack growth rate. Con-

tradictory data exist in the literature about the effect of stress

ratio on HEFCGR. Nelson [131] observed that the FCGR in 1020
steel was slightlymodified varying the stress ratio from 0.15 to

0.37. Suresh and Ritchie [106] proved that an increased R tends

to shift the onset of accelerated FCGR to lower DK. The same

effect can be observed for the critical stress intensity range

DKth. The FCGR in hydrogen was approximately increased by

two orders of magnitude and DKth was decreased by 50%. On

the other hand, both these values are comparable with those

in the air at stress ratios higher than 0.75. SanMarchi et al. [92]

and Somerday et al. [138] obtained similar results for X52, X60

HIC, X70, and X80 pipeline steels.

In contrast, Cialone and Holbrook [139] tested an X42 steel

in hydrogen gas and observed that the FCGR remained

approximately constant up to R ¼ 0:4, and increased linearly

for further stress ratio increases. This effect at higher R values

could be attributed to the increase in Kmax (at constant DK),

which approaches the fracture toughness in hydrogen gas.

Similar results were also obtained for an X70 steel. Roy et al.

[178] tested high-strength low-alloy steel at stress ratios

ranging from 0.1 to 0.5 and observed a significant increase in

FCGR for increasing R. This effect was attributed to the higher

mean stress, which enhances both the hydrogen damage and

the plastic damage and tends to suppress crack closure

effects.

Minor cycles at high R-values followed by an underload are

more representative of the normal working conditions of

hydrogen storage equipment, which operates at a near-steady

pressure with periodic pressure drops when it is emptied

[179]. Pressurized hydrogen environments would therefore

entail an FCGR acceleration due to these high R cycles. In the

case of an inert environment, a peak load (overload) normally

causes a reduction in fatigue crack growth rate. This trendwas

confirmed for a hydrogen-charged AISI 4130 steel [180].

Nevertheless, more studies are necessary to verify the effect

of hydrogen on overload.

The environmental, material, and loading factors affecting

the HE susceptibility of steels are summarized in Table 3,

specifying the most severe conditions under which hydrogen

technologies may chance to operate.
Methodologies for inspection and maintenance
planning

Preventive maintenance (PM) lays down that the components

are checked and serviced in a planned manner to prevent

breakdowns, and maintain the physical integrity of assets

[181], thus solving potential problems, and preventing unex-

pected system failures [182]. Ideally, a valuable PM method-

ology should be capable of reducing the frequency and

complexity of maintenance, while ensuring maximum utili-

zation of facilities under safe conditions [183,184]. Inspection

activities are a vital part of PM strategies. It is important to

clarify that the inspection itself does not reduce risk but is a

fundamental activity to determine if the degradation reached

a critical point or predict when a failuremay occur. It allows to

put plans and implement mitigation strategies before the

predicted failure date [185]. It is proven that the likelihood of

catastrophic accidents could be dramatically reduced by

applying proper inspection activities [186,187]. The
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determination of inspection frequency has evolved over the

years. The state of the art of the main inspection and main-

tenance strategies is provided in this section to highlight the

shift from a time-based approach to a risk-based one.

Consolidated methodologies

Time-based maintenance (TBM) is a traditional maintenance

strategy in which maintenance activities are carried out with

predetermined schedules [182], and mainly at regular time

intervals [188,189]. This model assumes that the possibility of

failure depends entirely on the age of the component. The

failure trends show how a component experiences decreasing

failure rates in the first period of its life cycle, followed by a

roughly constant failure rate during the normal operating life.

Then, at the end of the component's life cycle, the failure rate

tends to increase again [190]. This implies that two pieces of

equipment of the same type and age have the same failure

rate, regardless of the events that have occurred during their

service life [191]. The TBM starts by gathering failure time data

for each component. Then, the dataset is analyzed through

statistical models (e.g., the Weibull distribution [192]) to esti-

mate the failure trend of the specific component. The

decision-making process is the third step, which is composed

of an operational cost assessment, aimed at calculating both

the failure cost and the preventive maintenance cost, and an

equipment mechanism assessment, aimed at classifying the

component as repairable or non-repairable. Finally, the

appropriate policy can be selected and implemented [190].

Fig. 8 shows a block diagram with the four main steps of the

time-based inspection approach.

The TBM methodology is a relatively straightforward pro-

cedure, but in real practice, it presents several significant

drawbacks. Firstly, the collection of failure time data is a

challenging and time-consuming task. In addition, several

studies indicate that the share of age-related equipment fail-

ures accounts only for 15e20% of the total, while the rest is

caused by random events happening during the service life of

the assets [191]. Another drawback of the TBM strategy is that

all operating conditions are assumed to remain constant,

which is rarely correct in practice [193]. All these limitations

resulted in the progressive adoption of different methodolo-

gies based on equipment operating conditions and associated

material degradations.

It is proven that 99% of all machine breakdowns are pre-

ceded by premonitory signs that allow to forecast the failure

occurrence [194]. In this light, condition-based maintenance

(CBM) planning is based on a combination of data-driven

reliability models and sensor data [195]. The CBM strategy

aims at performing a real-time assessment of equipment

conditions in order to plan inspections and reduce the cost of

unnecessary maintenance activities. The condition moni-

toring process is capable of collecting data from the plants’

items (online or offline) to understand their deterioration

patterns [190]. It can be performed continuously, periodically,

or non-periodically [195]. While continuousmonitoring allows

to know in real-time the equipment conditions, it is associ-

ated with high costs and potentially inaccurate information

[196]. The main drawback of periodic and non-periodic

monitoring is the risk of losing relevant information

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 8 e Block diagram of the TBM methodology.
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between two inspection intervals [190]. Various techniques

are commonly used to control equipment conditions (e.g.,

vibration and sound monitoring, oil and wear particle anal-

ysis, temperature, electrical, and physical condition moni-

toring) [190,193]. There are several standards for monitoring

the conditions of industrial equipment. For instance, API 653

[197], API 510 [198], and API 570 [199] provide minimum re-

quirements for maintaining the integrity of storage tanks,

pressure vessels, and piping systems, respectively.

After the condition monitoring process, the fault diagnosis

and prognosis are normally carried out. While the former lies

in providing early warning signs that a certain component is

operating under deteriorated conditions, the latter consists in

predicting when the failure might occur [190]. Recent systems

have relied on artificial intelligence techniques, such as expert

systems, neural networks, fuzzy logic, and model-based sys-

tems, to strengthen the robustness of the diagnostic systems

[193]. Then, the maintenance decision is taken through two

approaches: the current condition evaluation-based (CCEB),

which estimates the equipment condition at present, and the

future condition prediction-based (FCPB), which predicts the

conditions under which the equipment will be in the future

[190]. Fig. 9 shows the block diagram of the condition-based

approach for maintenance planning.
Fig. 9 e Block diagram of the CBI meth
On many occasions, the CBM policy has been compared

with traditional time-based approaches, proving that it is

preferable to TBM when the inspection cost is minor, and the

repair cost is higher [182], and when the inspections are

scheduled during the component's useful life or later [201].

Kang et al. [202] adopted the CBM methodology for offshore

wind turbines and proved that it is capable to lower the costs

by 32.5% compared with traditional periodic maintenance.

Ganesh et al. [203] discussed a systems architecture for the

CBM data flow, implemented it in the continuous manufac-

ture of oral solid drug products, and proved its superiority over

the traditional TBM in proactively monitoring and managing

future system failures. Liang et al. [204] applied a CBM model

based on a continuous-time semi-Markov chain (CTSMC) to

concrete bridges, showing its potential to lower overall

maintenance costs. In addition, Zeng and Zio [205] combined

statistical and condition-monitoring data, proving an

increased effectiveness thanks to additional information on

system-specific characteristics.

Risk-based inspection methodology

Nearly all major industrial accidents resulted from a failure in

understanding or managing risk. Hence, the risk-based
odology (adapted from Ref. [200]).

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 10 e Flow diagram of the RBI methodology.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 3 5 3 1 6e3 5 3 4 635330
inspection (RBI) methodology, developed by the American

Petroleum Institute, is focused on minimizing the risk of loss

of containment and providing mitigation measures to avoid

major consequences in the case of hazardous releases [206]. It

assumes that, in most plants, a significant percentage of the

total risk is associated with a relatively small number of

equipment items. Then, the risk management efforts are

focused on these high-risk components, prioritizing their in-

spection andmaintenance to guarantee the greatest benefit in

reducing the total risk [164]. The calculation of the risk is

determined by combining the probability of failure PfðtÞ with

its consequences Cf:

Rfðt; IEÞ ¼ Pfðt; IEÞ$Cf (11)

where t represents the time and IE is the inspection

effectiveness.

The RBI procedure can be qualitative, quantitative, or semi-

quantitative. Several software tools can help the analyst in

managing the amount of information required for performing

a quantitative RBI. For instance, DNVGL developed the com-

mercial software Synergi Plante RBI for optimizing a risk-based

inspection strategy [207], while Antea Group created the in-

tegrated management system Inspection Manager to catalogue

the items starting from the P&ID [208,209]. The RBI procedure

starts with the step of data collection and validation. Sec-

ondly, the risk analyst must identify the damagemechanisms

likely to occur for each piece of equipment and calculate the

probability of failure for each damage. Then, the analyst must

determine the risk for each component. All the equipment

items should be ranked according to their risk level to develop

the inspection plan, and eventually, to implement mitigation

activities (e.g., maintenance or replacement of damaged

components) [210]. A simplified flow diagram of the RBI
methodology, as described in API 580 [185], is illustrated in

Fig. 10.

Several standards and recommended practices provide

guidelines for the implementation of the RBI methodology.

The recommended practice API 581 [211] provides tables, al-

gorithms, equations, and models to carry out quantitative RBI

planning. API 580 and ASME PCC-3 document the essential

elements of a qualitative RBI for the chemical and petro-

chemical industries [185,212], while EN 16991 is also appli-

cable to other industrial sectors [213]. In addition, DNVGL-RP-

G101 describes a specific RBI methodology for the upstream

offshore topside equipment [214].

To sum up, the main advantages and disadvantages of

time-based, condition-based, and risk-based approaches for

inspection and maintenance planning are summarized in

Table 4.

Probability of failure
The probability of failure of a component is calculated through

the product of the Generic Failure Frequency, gff, the Damage

Factor, Df, and a Management System Factor, FSM:

Pfðt; IEÞ ¼ gfftotal$Dfðt; IEÞ$FSM (12)

The gff represents the failure frequency of a certain type of

equipment item operating in a relatively benign service. API

581 provides the release frequencies for several pieces of

equipment and four breakage sizes, from small leaks to rup-

tures. The gfftotal for the component is the sum of the gff

calculated for each hole size [211]. These data have been

mostly obtained from the chemical and petrochemical in-

dustries. The vast operational experience with pipes and

pipelines, valves, tanks, vessels, heat exchangers, compres-

sors, and safety equipment allowed the accurate calculation

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Table 4 e Advantages and disadvantages of TBI, CBI, and RBI.

Time-based

Advantages � Requires minimal training for technicians

� Easy to implement

� Predictable schedule

� Effective for continuously running assets

Disadvantages � Ignores the real operating conditions of the equipment

� Too frequent maintenance introduces risk

� Ineffective for assets running occasionally

� Increases costs from excessive maintenance

Condition-based

Advantages � Increases the asset availability

� Effective for both continuously and occasionally running assets

� Lower possibility of asset failure

� Lower direct inspection and maintenance cost

Disadvantages � Unpredictable maintenance indicators

� Requires sensors and monitoring equipment

� Requires high training for technicians

Risk-based

Advantages � Increases the asset availability

� Effective for both continuously and occasionally running assets

� Minimal possibility of asset failure

� Minimal direct inspection and maintenance cost

� Enables risk-informed decisions

� Enhances efficiency in maintenance management

� Reduces the risk

Disadvantages � Time-consuming when implemented for the first time

� Requires historical data from the plant or similar facilities

� Lacks objective criteria to assess the risk and is based on experts' judgements
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of the failure frequency of these components. Even if these

equipment items are used in the hydrogen industry, their gff

can be easily determined. This is not the case with other H2-

specific components, such as fuel cells and electrolyzers.

Their limited market penetration results in a dearth of

equipment reliability data, thus making the determination of

their gff inherently challenging. The damage factor adjusts

the gff considering the real operating conditions of the

component, its susceptibility to a damage mechanism, and

the escalation rate of the damage. The Df depends on the

service time and inspection effectiveness and accounts for

historical inspection data together with future scheduled in-

spections. Damage factors are provided for the following

categories of damage mechanisms [215]:

� Thinning damage;

� Stress corrosion cracking;

� External damage;

� High-temperature hydrogen attack;

� Mechanical fatigue;

� Brittle fracture.

Among the brittle fractures, HE is not even mentioned and

the factors determining the material's susceptibility are not

accounted for. In addition, the pressure fluctuations in pipe-

line systems or the filling-emptying cycles in pressurized

tanks can result in mechanical fatigue, which is highly

enhanced in hydrogenated environments. The hydrogen ef-

fect on FCGR and crack initiation is not considered in the

existing RBI codes and guidelines. Finally, the Management

System Factor is based on the evaluation of a facility
management system that affects the plant's risk. This factor is
applied equally to all the components of a unit, and conse-

quently, it does not modify the order of the equipment items

ranked on a risk basis [185]. Fig. 11 shows the effect of in-

spection and maintenance activities in terms of reduced

probability of failure and consequent risk mitigation.

Consequence of failure
The consequences of an undesired release are determined

using well-established consequence analysis techniques, and

they are expressed in financial terms or as an affected area.

The impact area derives from the calculation of the thermal

radiation and overpressure [216e219]. On the other hand, the

effects of toxic releases are quantified as the overexposure of

personnel to hazardous substances. Cloud dispersion simu-

lations are used to calculate the amount of flammable sub-

stances released and the extent and duration of personnel

exposure to toxic releases. Financial consequences include

losses due to business interruption and costs associated with

environmental harm.

API 581 provides methodologies for two levels of conse-

quence analysis. The Level 1 assessment is a simplified

method for the estimation of the impact areas. It only requires

basic fluid properties, operating conditions, and release rates

as input data. The Level 1 assessment should be considered as

a preliminary analysis, but its results are not reliable as an

estimation of the actual consequences of hazardous releases.

Level 2 analysis is more rigorous, since it provides fluid

physical properties, performs flash calculations to determine

the release phase, accounts for two-phase releases, and as-

sesses the quantity of flammable material released or the

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 11 e Effect of inspection and maintenance activities on the risk level.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 3 5 3 1 6e3 5 3 4 635332
toxic concentration. Nevertheless, this analysis is much more

complex and requires a vast amount of input data [211].

Examples of application of RBI
Examples of the conventional fields of application of the RBI

methodology are provided in this subsection. The American

Petroleum Institute developed the RBI methodology for the

chemical and petrochemical industries. Hence, this approach

has been applied in the oil and gas sector from the upstream

(for separator vessels [187] and offshore platforms [220]) to the

downstream (for desulphurization reactors [208], sour water

stripper units [209], sour crude-oil processing plants [221],

crude-oil desalters [222], petrochemical reforming reaction

systems [223], and refineries in general [224]). In addition,

several examples related to the transportation of hydrocar-

bons [181] and the distribution to the end-users [186,225] are

available in the literature. Various works compared the

traditional inspection and maintenance policies with the RBI

for single pieces of equipment [226,227] or for entire process-

ing plants [228]. They all proved the benefits of RBI in terms of

both cost and risk reduction, still respecting the availability

requirements. This approach was applied to plan the in-

spections of a direct coal liquefaction facility [229] and to

manage the shutdowns of an LNG production plant [230],

where a variety of damage mechanisms are likely to occur.

RBI can be adopted for offshore static equipment according

to the recommended practice DNVGL-RP-G101 [214]. Arzaghi

et al. [231] applied a dynamic RBI methodology to subsea

pipelines subjected tomechanical fatigue; Davatgar et al. [232]

planned the inspections of the FPSO platform Goliat, while

Yeter et al. [233] used the RBI methodology for offshore wind

turbine farms. This scheduling framework was also used in

the naval sector to reducemaintenance costs and increase the

availability of a large-scale ship [234]. In the energy sector, the

RBI methodology was successfully applied to entire power

generation plants [235,236], as well as to single components

(e.g., steam turbines) [235]. Moreover, in 2000, the European

Commission produced a report to develop a methodology to

identify safety-significant categories for nuclear plants and to

optimize the targeting of inspections [237]. Nilsson [238]
thereafter developed a quantitative RBI for a nuclear power

plant in Oskarshamn (Sweden).

In themanufacturing industry, Stefana et al. [239] applied a

risk-based framework capable of integrating occupational

safety and health (OHS) and process safety, using as a case

study three real events that occurred in the steel industry.

Moreover, Marmo et al. [240] used recursive operability anal-

ysis (ROA) and fault tree analysis (FTA) to support RBMpolicies

in an ultra-pure silicon wafers production plant. The RBI

approach was also adopted to optimize inspection and

maintenance activities in the water distribution system, often

in combination with other techniques, such as analytic hier-

archy process (AHP) [241], fuzzy inference system (FIS) [242],

and multi-attribute value theory (MAVT) together with port-

folio decision analysis (PDA) [243].

The main fields of application of the RBI policy, the case

studies, and the techniques adopted in combination with RBI

are summarized in Table 5.
Systematic review

The results of the systematic review regarding the applica-

tions of the RBI methodology to hydrogen technologies are

presented in this section. A quantitative analysis of the state

of the art is provided through co-authorship patterns, collab-

oration network maps between different countries and

research groups, citation networks, and recurring keywords.

After the selection of the queries and the application of the

filters (reported in Table 1), a total of 106 papers were found.

All these records were preliminarily screened by title, key-

words, and abstract. After the screening procedure, 70 papers

were included and assessed for eligibility through full-text

reading. A total of 47 articles were selected as eligible for the

systematic review, and other 19 relevant papers were identi-

fied through forward-backward searches. The systematic re-

view process is summarized in Table 6, specifying the number

of records excluded and the reason for exclusion.

As mentioned in the Methodology section, no limitations

on the publication year were introduced. Fig. 12 shows the
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Table 6 e Studies included in the systematic review.

Phase Description Records
included

Records
excluded

Reasons for inclusion or exclusion

Identification Records for WoS CC database search 107

Records after filters applied 106 1 Language other than English

Screening Records screened by title, keywords, and abstract 70 36 Unrelated to hydrogen

Unrelated to inspection and maintenance

Eligibility Full-text articles assessed for eligibility 47 23 Unrelated to hydrogen embrittlement

Present post-mortem analysis only

Inclusion Additional records identified 19 Related to NDT to detect HE

Related to RBI for hydrogen technologies

Total number of studies included 66

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 3 5 3 1 6e3 5 3 4 635334
time distribution of publications related to this research topic.

The plotted trend fairly reflects how much attention this sci-

entific field is receiving [246]. The time distribution shows how

the research interest in this topic has globally been increasing

over the last 12 years, even with some fluctuations.

Fig. 13 summarizes the main journals and conference

proceedings where these records have been published. As

shown,most of the top-ranked journals, i.e., Engineering Failure

Analysis, Corrosion, andMaterial Performance, cover thematerial

science domain, while some others (e.g., Journal of Ship Pro-

duction and Design and Journal of Pressure Vessel Technology) are

related to engineering design of mechanical components. In

addition, the Journal of Loss Prevention in the Process Industries is

related to risk assessment and safety.

The journals’ ranking in Fig. 13 is reflected by the distri-

bution of the records by topical area, which shows how most

of the papers are related to material science and metallurgy,

while only a few records address the topic of safety,
Fig. 12 e Publication year of the papers s
maintenance, and risk assessment. The distribution by topical

area is shown in Fig. 14 and includes only the categories

defined by WoS CC.

Table 7 shows the first ten authors with the highest num-

ber of publications in the field, specifying their number of

publications and citations, as well as their country and insti-

tution. Raouf Ibrahim, from theWayne State University (USA),

is the author with the highest number of publications (i.e., six

papers), followed by the other nine authors with two papers

each.

Even if Raouf Ibrahim has a relatively high number of pa-

pers, he has a comparatively small number of citations, thus

proving the lack of connections with other researchers in the

same scientific field. This observation is confirmed by the co-

authorship and co-citations network maps, in Figs. 15 and 16,

respectively. The co-authorship network map provides infor-

mation about the various research groups and their connec-

tions and it can be useful for new researchers as long as
elected from the database WoS CC.

https://doi.org/10.1016/j.ijhydene.2023.05.293
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Fig. 13 e Source journals (J) and conference proceedings (CP) of the records from WoS CC.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 3 5 3 1 6e3 5 3 4 6 35335
external stakeholders [247]. Different clusters are marked

with different colors, while the node size represents the

number of publications per author. The large number of

autonomous clusters makes it immediately clear the lack of

connections between different research groups.

This poor co-authorship network is reflected by the con-

nections per institution in Fig. 17. The University of Belgrade

and the University of Defence turn out to be the best-

connected institutions, thanks to the number of active re-

searchers in the field.
Fig. 14 e Records from WoS C
Finally, a co-occurrence network map was created for the

keywords with a minimum of 10 occurrences in the selected

papers. Themap is depicted in Fig. 18 and shows that themost

co-occurrent keywords present in the records gathered from

WoS CC are related to material damages: “hydrogen embrit-

tlement”, “embrittlement”, “failure”, “cracking”, “fracture”,

and “corrosion”. In addition, several keywords, such as

“resistance”, “fracture toughness”, “mechanical properties”,

“strain rate”, and “elastic-plastic fracture mechanics”, are

related to the materials’ properties which are eventually
C sorted by topical area.
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Table 7 e Top ten authors by number of published papers and number of citations.

Author Country Institution No. Of documents No. Of citations

Ibrahim R. A. USA Wayne State University 6 13

Djukic M. B. Serbia University of Belgrade 2 104

Pluvinage G. France FM.C 2 22

Dodic M. Serbia University of Defence 2 21

Krstic B. Serbia University of Defence 2 21

Rebhi L. Serbia University of Defence 2 21

Trifkovic D. Serbia University of Defence 2 21

Matsunaga H. Japan Kyushu University 2 19

Gibbons M. R. USA Lawrence Livermore National Laboratories 2 12

Richards W. J. USA McClellan Nuclear Radiation Center 2 12
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decreased by HE. Moreover, some other keywords are associ-

ated with reliability and risk-based inspection: “reliability

index”, “probability of failure”, “life prediction”, and

“inspection”.
Discussion

The RBI methodology directly correlates the type of material

degradation that leads to equipment failure to the inspection

that can potentially reduce the associated risk. Wang et al.

[248] used the RBI methodology and a semi-quantitative
Fig. 15 e Co-authorship network map wei
failure modes and effects analysis (FMEA) to plan the inspec-

tion of a continuous catalytic methane reforming plant. This

approach allowed for determining a risk-informed mainte-

nance strategy. Nevertheless, no details regarding the damage

mechanisms affecting each component (e.g., hydrogen com-

pressors) are provided. Recently, Defteraios et al. [249] adop-

ted a risk-based approach to planning the inspections of a

methane steam reforming plant for hydrogen production.

Considering the operating conditions, the metallurgy and

other variables, equipment exposed to hydrogen was classi-

fied as susceptible to hydrogen embrittlement and high-

temperature hydrogen attack. The determination of the
ghted on the number of publications.
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Fig. 16 e Largest set of co-citations weighted on the number of publications.

Fig. 17 e Largest set of co-authorship connections (per institution) weighted on the number of publications.

Fig. 18 e Co-occurrence map for the keywords.
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probability of failure was based on condition monitoring

performed through non-destructive techniques (NDT).

A limited number of hydrogen damages are considered in

the current version of the RBI standards and recommended

practices. Moreover, a procedure to calculate the damage

factor for HE is missing, and other damage mechanisms,

although they require the presence of hydrogen as a by-

product of acidic substances, do not apply to H2 environ-

ments [250]. On the one hand, the inaccurate evaluation of the

probability of failure increases the uncertainty, thus
overestimating the risk associated with equipment for

hydrogen handling and storage. On the other hand, if the

damaging effects of HE are neglected or improperly associated

with other degradation modes, the resulting risk might be

underestimated. Ustolin et al. [251] recently reviewed the

standard EN 16991 and suggested severalmodifications for the

future application of the RBI methodology to technologies

exposed to pure compressed gaseous hydrogen. In addition,

Campari et al. [250] proposed a review of the existing RBI

standards and highlighted how the RBI approach can be
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adopted to optimize the inspection planning of hydrogen

technologies only with an additional level of uncertainty.

Non-destructive tests can be used to evaluate the material

integrity and the presence of internal defects or surface cracks

without changing the original characteristics of the compo-

nent. NDT is the most used method for inspecting a compo-

nent for hydrogen service without damaging the material or

jeopardizing its fitness-for-service [252]. Given its complexity,

the detection of hydrogen embrittlement often requires using

a variety of non-destructive tests. Visual inspections (VI) and

remote visual inspections (RVI) allow the detection of

macroscopic surface flaws only; hence, they are not reliable in

identifying hydrogen-induced cracks [253]. Ultrasonic testing

(UT) is based on the transmission of high-frequency sound

waves through the material to detect any internal modifica-

tion. Radiographic tests (RT) use X or gamma radiation to

detect internal defects and fractures, but they are often not

sufficiently sensitive to detect HE microcracks [215]. Magnetic

particle testing (MT) or wet fluorescent magnetic particle

testing (WFMT) can detect surface or sub-surface defects in

ferromagnetic materials by looking for perturbations of mag-

netic fields within it [252]. Phased array ultrasonic testing

(PAUT) and short wave ultrasonic testing (SWUT) allow the

finding and sizing of hydrogen-induced cracks with very good

precision [215]. Acoustic emissions (AE) can detect any change

in the component's mechanical behavior when exposed to

hydrogen, but the results are often difficult to interpret [254]

and they require expensive equipment [253].

The systematic review resulted in a limited batch of pa-

pers, considering the specificity of the topic. The records

gathered from theWeb of Science database belong to different

research fields mostly related to materials science and met-

allurgy. Only a few papers have a clear and explicit connection

with safety, inspection and maintenance, or risk assessment.

Another interesting trend resulting from the SR is the number

of publications over the years. From the analysis, it turns out

that the scientific activity on this topic increased over the last

12 years. Nevertheless, this generally rising trend presents

some fluctuations and is less pronounced than might be ex-

pected, given the growing interest of both governments and

private stakeholders in hydrogen technologies and particu-

larly in hydrogen safety. The ranking of authors by number of

publications and number of citations shows how the USA,

Serbia, France, and Japan have the most active research

groups. Raouf Ibrahim from Wayne State University is the

author with the most publications in the field, while Milos

Djukic from the University of Belgrade is the most cited

author. In addition, the co-authorship and co-citations

network maps show a significant number of independent

and unconnected clusters. This fact might be because mate-

rial science and safety have beenmostly considered two well-

distinguished research fields. The scientific community

working on hydrogen embrittlement is relatively small but

well-connected. On the other hand, the researchers address-

ing the topic of H2 safety mainly concentrated on modeling

and simulating undesired hydrogen releases in the environ-

ment. The connection of hydrogen-induced material degra-

dations and their impact on predictive maintenance,

inspection planning, and estimation of the remaining useful

life of hydrogen technologies is a virtually unexplored
research field. In such a context, the studies on this topic are

mostly conducted by groups that are actively investigating HE

or hydrogen safety, but rarely both topics. This is proven by

the a lack of collaboration, not only between researchers from

different countries but also between different institutions

within the same country.
Conclusion

In this study, an overview of hydrogen embrittlement, its ef-

fect on material properties, and the factors determining the

materials' susceptibility is provided. Moreover, the most

effective inspection and maintenance planning approaches

are explained, focusing on the RBI methodology. A systematic

review regarding the adoption of this approach for inspecting

and maintaining industrial equipment exposed to the

degrading effect of HE is presented, highlighting a dearth of

studies on this topic. This field is inherently multidisciplinary

since it represents the link between materials science and

RAMS (reliability, availability, maintainability, and safety)

engineering: two scientific domains which have been histor-

ically considered separated. It was highlighted that hydrogen

embrittlement is a complex degrading mechanism that re-

sults in detrimental effects on tensile properties, fracture

toughness, and fatigue performance of a variety of metallic

materials, and potentially in a loss of containment of

hydrogen technologies. In this regard, inspection and main-

tenance activities must be carried out to preserve the physical

integrity of components exposed to pure H2 environments and

maximize the system's safety and reliability, while mini-

mizing operational costs. The RBI methodology, already well-

established for the chemical and petrochemical sectors, is

proven to be the most beneficial guideline for inspection

planning in a variety of industrial sectors.

Despite this, the systematic review has highlighted how the

RBI has been rarely adopted for components operating in hy-

drogenated environments, thus neglecting the detrimental ef-

fect of hydrogen embrittlement on the equipment's structural

integrity. Inspections can be performed through non-

destructive testing to effectively identify, monitor, and mea-

sure hydrogen-inducedmaterial degradation. Nevertheless, the

major bottleneck for applying the RBImethodology to hydrogen

technologies has a regulatory nature: at present, RBI standards

and recommended practices do not consider HE a damage

likely to occur. Hence, the utilization of the existing regulatory

framework can lead to an inaccurate calculation of the proba-

bility of failure of hydrogen technologies, thus increasing the

uncertainty to an unacceptable level when planning

inspections.

The statistical analysis has shown an evident dearth of

collaboration between the research groups from various

countries and organizations with different expertise (i.e., ma-

terial science and safety analysis). Considering this, it is

advisable not only to strengthen the network between

different nations and institutions but also to address the issue

through amultidisciplinary approach. Future research projects

on the operational safety of hydrogen technologies will benefit

from the combined expertise in material science and risk

analysis.Moreover, future versions of the RBI standards should
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include HE among the potential causes of material failure and

develop a methodology to calculate the Damage Factor asso-

ciated with this degradation. This amendment is essential to

adopt the RBI methodology to plan inspection and mainte-

nance activities for the emerging hydrogen infrastructure. The

improvement of accident prevention policies is necessary not

only for in-service equipment but also for components in the

design phase, thus stimulating an increasingly widespread

utilization of hydrogen in the forthcoming years.
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