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Abstract

General relativity is at the forefront of modern physics. More tests of the theory are highly valued, to push the limits of
physics. One particular field this can be applied to, is periapsis precession of planets. This paper offers a Python program
to analytically and numerically predict the periapsis precession of all planets with non-zero eccentricities. The program is
an open source that anyone can use for any reason, whether its for education, program improving, archiving, comparing,
etc. This allows for more availability in this field of study. Our Solar System planets, and some exoplanets are highlighted
to show the program’s performance. The observational, analytical, and numerical values match very well with each other
for most eccentricities, however, a small deviation of up to 4% occurs for some high eccentricity values. Therefore, these
calculated values with non-high eccentricity orbits gives very similar prediction values on the periapsis precession of the
planet, while high eccentricity orbits still gives a very good prediction, but with a deviation of 4% at most.

Generell relativitetsteori er i forkant av moderne fysikk. Flere tester pa teorien er hgyt verdsatt, for a skyve fysikkens
grenser. Ett spesifikt felt dette kan anvendes pa er periapsis presesjon av planeter. Denne oppgaven tibyr et Python
program til & analytisk og numerisk forutsi periapsis presesjon for alle planeter med mer enn null eksentrisitet. Programmet
er et apent kilde som hven som helst kan bruke for hviklen som helst grunn, om det er for leering, programforbedring,
arkivering, sammenligninger, osv. Dette tillater for mer tilgjengelighet i dette fagfeltet. Vart solsystems planeter, og
noen eksoplaneter er uthevet for & vise programmets ytelse. De observasjonelle, analytiske, og numeriske verdiene
samsvarer veldig godt med hveradnre for de fleste eksentrisiteter, men noe avvik av opp til 4% oppstar for noen
hgye eksentrisitetsverdier. Derfor gir disse berregnede verdier for lave og middels lave eksentrisitetsverdier veldig like
forutsigende verdier for periapsis presesjonen av en planet, mens planetbaner med hgy eksentrisitet gir likevel en veldig
god forutsigelse, men med et avvik av opp til 4%.

1. Introduction

General Relativity (GR) is the best theory of gravity as
of today. A great amount of contributions have been put
into the theory to make it reach the level of status it cur-
rently has. Ever since the Renaissance, and especially since
the Scientific Revolution in the 16th century, physics have
been at the forefront of knowledge. It has been pushed by
great historical figures like Copernicus, Gallileo, Kepler,
and Newton; each one of them performing major contri-
butions to science. Arguably, the greatest achievements
of them all, is Newton’s book of "Philosophiae naturalis
principia mathematica", which was published the 5th of
July 1687, that introduced Newtonian Mechanics (N) to
the world. Amongst other revelations, the book described
the universal law of gravitation (ULOG), which explained
the orbits of the planets, and described their motions from
a gravitational force. Until then, the true motion of the
planets had only been able to be partially described by
Kepler with his laws. Kepler’s laws did not explain why
they moved the way they did. Newton’s ULOG changed
this.

The ultimate verification came when the prediction of
the return of Halley’s Comet became correct. In 1705,

Edmond Halley used Newton’s ULOG, and a list of 24
known comets, to predict the comets path, taking into
account the influence of Jupiter and Saturn [1]. He noticed
that three of them had very similar orbital parameters. He
concluded it’s the same comet, and predicted its closest
arrival in 1758. In 1758, it was observed. The closest
arrival came 3 months later at the 13th of March 1759.
This deviation was small enough that the prediction was
confirmed to be correct.

It showed that Newton’s ULOG successfully predicted
the orbital path of a comet, something that has never been
done before, and therefore showing that the ULOG was
powerful. It was a great step towards our understanding
of the physics in the skies above us. More evidence of the
ULOG would come as time went on; one of those was the
discovery of Neptune.

After scientists calculated the orbital path of Uranus
by using Newton’s ULOG, and accounting for all the other
planet’s gravitational tugs and pulls, and some clever ap-
proximations, they discovered that Uranus was lagging
behind compared to the observed orbital path [2]. This
was a mystery no one could explain. In 1845, Le Verrier
picked up on this problem. He reasoned there must be an-



other planet tugging and pulling on Uranus to account for
this, and predicted its location. One year later in 1846, the
predicted location was sent to the Berlin Observatory, and
almost immediately, around one degree off of the prediction,
they found Neptune [2].

This was shown to be yet another testament to the
power of Newton’s ULOG, and how it was the correct
equation to describe the motion of the planets. A similar
problem arose some time later. However, this time, it
would prove to be a different story.

Le Verrier figured out the same perihelion precession
deviation with Mercury by using human calculators and
14 accurate transit times [2]. From the experiences of
discovering Neptune, he did the same calculations, and
predicted a new planet. He would later give this planet
the name Vulcan. The difference here was, such a planet
would be so bright, it would already have been observed.
An alternative explanation was given, as in, multiple small
objects collaboratively tugging and pulling on Mercury,
called Vulcanoids. But they were never found either. After
decades of observation, the Vulcanoids were in practice
proven not to exist due to lack of evidence [2]. That means
there were no planet to deviate Mercury’s path. Therefore,
Newton’s ULOG was unable to solve this deviation, showing
that there was something else needed to explain it.

Many years later the solution would come. Published in
the 25th of November 1915 by Albert Einstein, the theory
of GR is an extension to Special Relativity, describing
the behaviour of the space-time curvature [3]. The theory
predicted, as a consequence, that perihelion precession
occurs without any object other than the parent star to tug
and pull on the planet. When compared to the observations,
it matched the missing observed perihelion precession of
around 43 arcseconds per century, with only a very slight
error. It solved Mercury’s mystery. It also predicted that
the light from stars will be bent, and the redshift due to
the gravitational well, and both were later confirmed [4]
[5]. An explanation, and a confirmed prediction, made
GR the superior theory of gravitation, as Newton’s ULOG
becomes the approximation to GR. It was another step
towards finding the solution to the orbital mechanics we
observe in our skies.

Over a hundred years later, GR remains the leading
theory of gravity in science, explaining more phenomenons
than any other theory of gravity. However, observations
have been building up that GR can’t explain [6].

Therefore there is a desire to test GR for every pre-
diction it gives. Despite expecting it to give deviations
only on extreme gravity and extreme distances, where the
periapsis precession doesn’t have either of those, a test on
it on exoplanets has never been done before. This gives
a basis on spreading availability on this problem. The
usual site of cataloging these exoplanets, "NASA Exoplanet
Archive", does not include their periapsis precession values.
This is because there currently doesn’t exist any method of
observing and measuring the periapsis precession. However,
they can be predicted.

This is exactly what this paper aims to achieve: Make
a program to automatically calculate and predict the nu-
merical and analytical periapsis precession of exoplanets,
and give error estimates of it. The program is free to be
used by anyone for any reason.

2. Mathematical theory

GR explained the missing perihelion precession observed
in Mercury, something the Newtonian ULOG was unable
to do. To get the GR version of Newton’s ULOG, The
GR acceleration is needed. The way to fully derive it
analytically and numerically, is very complex and long. We
include both analytical and numerical predictions, since two
different methods of predicting the same target is stronger
than only one. The full derivation can be read from the
two references it is acquired from [7] [2]. This paper shows
the basis of how the derivation is done.

GR is based off of 2 postulates. Physics is the same in
all inertial frames, and the speed of light is a constant value,
always [3]. The second postulate gives a 4th coordinate: ct.
So the dimensions become z, y, z, and ct. Altogether, they
are called spacetime, because time makes up a coordinate
alongside the 3 normal spatial coordinates, linking space
and time together.

The two postulates means that a normal straight line
for a moving object might not be a normal straight line
for an observer, when GR effects are at play. Therefore,
the normal equations of mechanics needs to be rewritten
in order to take this GR effect into account. To study
the periapsis precession, this equation should specifically
include GR effects about relativistic orbital mechanics, for
example what effects a massive object will have on a planet’s
orbit. This site [7] calculates such an equation using many
aspects of GR, boundary conditions, and approximations.
It results in the Schwarzschild solution:

ds” = (14rs/F) " dr —r2(d6% +sin 02d?) — 2 (147 /7)di>
(1)
where rs = 2GM /c?

This is the "invariant interval around a mass M in a
static spherically symmetric spacetime" [7]. This is useful,
as this object with a mass M is a good approximation for
what a star is, and what a star can do on the planets in the
GR physics. With this, another set of difficult calculations
are made by this site [2], and it finds that the angular
movement per orbit for GR is approximately:

27(1 +¢) (2)

where € = 3G2M?2/(c2h?) and h = 7 x

This equation is the normal period of a Newtonian
orbit, except it adds onto an €. It is the equation that will
be used to determine the analytical perihelion shift in the
orbit when the Newtonian part is removed, so 2we. The
reason this can be done is explained in the derivation of



the numerical equation. The € comes from the average of

the (1 — r5/7) part from the Schwarzschild solution (1).

It says that dr will be inversely higher for lower r. This
means that for ds to be compensated, more time is needed
on the radial part. Therefore, less change on the radius is
made. This comes from the fact that the speed of light is
constant for all reference frames. That means the planet
has more time than usual to do the rotation around its host
star. Because a Newtonian orbit keeps the periapsis still
when there are no other planets, extra rotation from GR
will force the periapsis to rotate. That is how GR causes
periapsis precession.

In the following discussion, the procedure of Korber
et al’s paper [8] of numerical relativistic calculations of
Mercury’s orbit will be used. The paper uses an ansatz
that the GR acceleration is:

a = (*r3/(2r%)) (1 + a(r3/7) + Bl /F))7/r - (3)

where 7% = 2GM/c* and rl = (7 x #/c)?. Setting a = 0
and = 3 from GR, replacing rs with its variables, and
seeing 7/r as a direction, gives:

i = (GM/P)(1 + 3(rl/7)?)

Notice how this has a similar structure to the 27 (1 + €)
(2). The period of the normal Newtonian orbit is:

27(1 4 0) (4)

The Newtonian acceleration is:

a=GM/i* % (140) (5)

Comparing the two orbital paths (4) (2) and the two
acceleration equations (5) (2), it can be concluded that a
linear approximation will make the GR acceleration (2) give
the GR orbital path (2), if € = 3G2M?2/(c2h?) = 3(rl/7)2.
This is why the analytical equation works.

This is what will be shown in this derivation. The
centrifugal acceleration will be used to derive it:

a=v)F (6)

This is the derivation:

3G2M?/(c2h?) (starting equation)

3a%7 /(2h?) (4)

30472/ (c2h?) (6)

30%/(c?) (h = (7 x ¥)

3(rl/7)2 (rl = (7 x T/c)?)

This proves that (2) is the GR acceleration force. The
eccentricity (e) plays a major role in determining this new
term. r is proportional to 1 — e, and v is proportional to
(1 +e)/(1 —e))/?, which means that rl/rr xv/r = v is
proportional to ((14 ¢e)/(1 — ¢e))'/2. It means the added
term diverges to infinity when the eccentricity goes to
1. The equation also says that periapsis precession still
happens when there is zero eccentricity. However, with

zero eccentricity, there is no periapsis to measure, so the
only way to measure it is to observe the timing of when it
arrives at the same spot, which is not done on the program.

This (2) will be the equation used to numerically simu-
late the GR caused periapsis precession.

3. Numerical theory

The Python program is using an iterative process to go
through the time evolution of the planets orbit to simulate
the rate of periapsis precession. The numerical program
will use Euler-Cromer’s method [8]. The program takes in
both N and GR acceleration for the current position, and
uses v = a x At and r = v x At to extract a new velocity
and position. The N is included as a comparison to GR.
The newly calculated position is then used for calculating
the new acceleration. That is how one step of the iteration
process is done. This process is repeated, until the simu-
lation has completed a set amount of orbits. Afterwards,
the program finds where the periapsis has shifted for each
orbit, and averages the periapsis shift to get the numerical
periapsis precession value. The error of the N starting
position, and the N and GR motion variance error, are put
together to create the uncertainty of the periapsis preces-
sion value. The analytical uncertainties are put through
Gauss’ law of error propagation, and put together into one
uncertainty, like the numerical one. Finally, the analytical
and numerical values and uncertainties are printed out for
the user. To do this, the program needs input data from
the planets.

Data from the exoplanets and their uncertainties are ex-
tracted from https://exoplanetarchive.ipac.caltech.edu/ [9].
Data from the Solar System planets and their uncertainties
are also extracted [10] [11] [12] [13] [14] [15] [16].

Four of the planet’s parameters, and their respective
uncertainties, are extracted: eccentricity, orbital period,
semi-major axis, and solar mass. Orbits with an eccentricity
of zero are not included. For the other three values, the
program only needs two of them, since the last one can be
calculated from the other two. This way, more planets are
viable to be studied.

This filtered data of the planets will be used for the
analytical and numerical calculations. The program uses
four parameters as the input: the planet name, the set of
values from a research group to be chosen from, the amount
of orbital turns, and the time step accuracy.

The program uses numerous methods to improve the
performance. For a relativistic orbit, the amount of the
added term from the acceleration equation (2) is set at three.
When it’s multiplied with (rl/r)?, the total added term
becomes very small. In programming, very small values
tend to have high relative uncertainty. This is because the
absolute uncertainty remains the same for any numeric time
step. This means a small value compared to the absolute
uncertainty gets the relative uncertainty high. One way
to solve this is to increase the value of the added term.


https://exoplanetarchive.ipac.caltech.edu/

The equation is changed to add a variable 8 to the added
term, and divide it by three for the purpose of making the
equation look clean:

a = (GM/P)(1 + B(rl/7)?) (7)

This works for three reasons. Firstly, the absolute
uncertainty remains unchanged when g is changed, there-
fore increasing the 8 will decrease the relative uncertainty.
Secondly, this increase doesn’t interfere with the approx-
imation of the added GR term, since the value starts off
being very small. It means 8 can be increased without in-
creasing the significance of a better approximated GR term.
Thirdly, when the value of the added term is increased,
the resulting value needs to be decreased in a proper way,
to get the original value back. According to Korber et
al’s paper [8], the 5 and the periapsis shift have a linear
proportion for small values. This means that a division of
the resulting value with 3, and multiplying it by three, will
in total give the original value, but with a much reduced
relative uncertainty.

This method of scaling up the 8 value, running the sim-
ulation, and then scaling down again, is called dimensional
analysis [8]. It usually only works for the order of magni-
tude if its the only method at play. This same technique is
used on the constant values, so they are set at the Einstein
units.

When the time step is a constant across the entire
simulated orbit, it can have an effect on the performance.
If the time step is too low, the program takes too long at
apsis on high eccentricity orbits, and on all parts of low
eccentricity orbits. It is because relative uncertainty builds
up as many iterations are needed, while at the same time
requiring great precision for each iteration. If the time step
is too high, the program struggles to be accurate at the
high-velocity periapsis part of the orbit, and can shift the
periapsis in an unwanted way. Therefore, the time step is
calculated from each position to account for this.

How the program is ran, is written on Appendix A,
and the main program is in Appendix B. For other useful
programs, see Appendix D, E, and especially C.

4. Results and discussion

Results and discussion will be merged into the same chapter,
as the tables and figures are spread throughout this section.

The numerical values are almost always slightly higher
than the observational and analytical values 1, the excep-
tion being HD 20782 b 3, which is slightly lower. All
the values for the Solar System planets follow this trend,
and match closely with each other. It shows the program
has successfully predicted the perihelion precession values
of the Solar System planets, and is therefore excellent at
predicting the values for all other planets.

Earth’s observation for reference one, and especially
Jupiter’s observation for reference two, are off compared to
the other observational, analytical, and numerical values
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Figure 1: This image shows the orbit of Mercury. Notice how
the black circle is thicker than the gray one. This is the 5/3
amplified GR effect at play.

1. This is likely due to the authors of those sites [17] [18]
either approximating the values too much, setting in the
wrong values, or setting the first significant digit on the
wrong order of magnitude. It is likely, because all the other
values agree with each other.

Uranus and Neptune are missing their observational
data 1. This is due to their long orbital period. Humanity
has not had enough time since they gained precise enough
measurements to fully measure their perihelion precession.
In the future, we will have enough time and precision to
measure these, and the values can be compared to the
analytical and numerical values.

The analytical values for the three references [19] [17]
[18] does not have an uncertainty 1. This is because the
sources assume that the periapsis precession is an absolute
value with no uncertainty, unlike the program, which uses
the uncertainty of the planet’s parameters to calculate the
analytical periapsis precession unceratinty 2.

Most of the uncertainty on the analytical values for
the Solar System planets are not given from a reference
[10], and are instead assumed to be varying from the last
significant digit 2. This will make the uncertainty much
lower than what would be expected 1. The Sun’s mass
has a different uncertainty, since a reference for its true
uncertainty was found. The same goes for Earth’s semi
major axis, when its assumed that its uncertainty is that
value divided by the astronomical unit value minus one.
Neptune’s orbital period uncertainty is much higher than
the other planets. This is because the reference [10] that
presents Neptune’s orbital period gives a value that is less



Table 1: This table shows the observational, analytical, and numerical values of the perihelion precession in arcseconds per century
for the eight Solar System planets. For the observational values, The Earth-1 and Jupiter-2 values are off from the real values [17]
[18]. Uranus and Neptune are missing their data, since no observational measurements have been done on them. For the analytical
values, Three outside references [19] [17] [18], and the calculated analytical values with its uncertainties, are listed on the table. For
the numerical values, one outside reference [17], and the calculated numerical values with its uncertainties, are listed on the table.
All the references does not include an uncertainty. Digits that come after the second significant digit of the uncertainty value are

not included.

Planet  Obs 1 [17] Obs 2 [18] Ana prog Ana 1[19] Ana2[17] Ana 3[18 Num prog Num site [17]
Mercury  43.1(5)  43.1(5))  42.997309(13)  42.980 42.98 42.9822  43.0(31) 43.03
Venus 8(5)) 8.6247(5)) 8.6290407(16) 8.6247 8.648 8.6247 8.75(38) 8.655
Earth 5(1)) 3.8387(4)) 3.8405859(12) 3.8374 3.839 3.83881 3.85(22) 3.840
Mars 1.3624(5)) 1. 3565( ) 1.34247133(92) 1.3504 1.346 1.35106 1.361(99) 1.356
Jupiter 0.070(5)) 0.6(3)) 0.06237416(25) 0.0623 0.06300 0.0623142  0.0632(13) 0.06325
Saturn 0.014(2)) 0. 0105(50) 0.01366748(14) 0.0136 0.01383 0.0136394  0.0139(67) 0.01384
0.0024 0.002428 Missing 0.0024(19) 0.002427

Uranus  Missing  Missing  0.002397742(70)
Neptune  Missing  Missing  0.000777008(39)

0.0008 0.0007827  Missing  0.00079(55) 0.0007831

Table 2: This table shows the analytical uncertainties on the
parameters of the eight Solar System planets. Notice how most
of them is assumed to be the error from the last significant
value.

Planet  T[day] a[AU] el M[Mg)
Mercury  0.05 0.0005 0.0005 3.6-107°
Venus 0.05 0.0005 0.0005 3.6-107°
Earth 0.05 1.1-10=% 0.0005 3.6-10"°
Mars 0.05 0.0005 0.0005 3.6-107°
Jupiter 0.5 0.0005 0.0005 3.6-107°
Saturn 0.5 0.0005 0.0005 3.6-107°
Uranus 0.5 0.005 0.0005 3.6-107°
Neptune 50 0.005 0.0005 3.6-107°

precise compared to the other planets.

The exoplanet 81 Cet b has the identical eccentricity of
Mercury 3. It can be seen that the relative difference for the
analytical and numerical values for both of them are exactly
the same. This means that different sizes of orbits do not
play a role in determining the relative difference between
the analytical and numerical values when the eccentricity
is the same. This makes sense, since it is only scaling up
and down the numbers for the program.

A similar result can be seen from Kepler-83 ¢ 3. It
has identical eccentricity as Venus, and similar to the case
of 81 Cet b and Mercury, the relative difference between
the numerical and analytical is the same. This confirms
that the § value is independent of the result regardless of

eccentricity when the dimensional analysis method is used.

From the results, there is no difference occurring from
low or high stellar mass or orbital period, as can be seen
from b Cen AB, PSR J1719-1438 b, HAT-P-35 b, and VHS
J125601.92-125723.9 b 3.

For LP 791-18 c, it also has a good agreement for the
analytical and the numerical values 3 2. For HD 20782 b,
the same can be said, but for other high eccentricity values,

Table 3: This table shows the numerical values of the peri-
apsis precession in arcseconds per century for eight selected
exoplanets, including their uncertainties. It is compared to the
analytical calculations. Digits that come after the second signif-
icant digit of the uncertainty value are normally not included.
The last name is VHS J125601.92-125723.9 b. It is written here
to compress the table.

Planet Analytical Numerical
HD 20782 b 31.206(33) 31.1(26))
LP 791-18 c 1328.6167(36)) 1346(54))
81 Cet b 1.47554(19)) 1.49(55))
Kepler-83 ¢ 94. 28145(15)) 95.5(38)
b Cen AB b 9.3-1075(18)  9.3-1075(13892)
PSR J1719-1438 b 4936362(0) 4.97 - 10°(20)

HAT-P-35 b 65206.21(49)  6.94-10°(21)
(name in desc) 2.2-1077(258)  2.2-1077(2832)

the difference is elevated to be slightly higher into a devia-
tion of up to 4% 3 5. The increased error is due to major
differences in the orbital speed and radius at apsis and peri-
apsis, as explained in the numerical theory. It explains why
the accuracy at high eccentricity values is lower than at low
eccentricity values. The effect can be seen at the very right
of the eccentricity image 3. The compensation value of
"dtBalance" in the program makes this issue less profound,
as it decreases the time step for very high eccentricities. If
it’s not added in, the difference between the analytical and
numerical values will be slightly elevated into a deviation of
up to 6% ??. However, this compensation value makes very
high eccentricity simulations take much longer to complete.

HD 20782 b show that the N periapsis is not at the
vertical line, but slightly clockwise to it when the eccen-
tricity of a planet is high 3. This shift in the N periapsis
makes the program count the first orbit very early on. This
is compensated for in the program. However, this slight
shift of the periapsis will make the orbit become slightly
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Figure 2: This image shows a low eccentricity planet called
LP 791-18 ¢. The N and GR orbits are practically the same.

shorter, which could explain why the numerical value is
usually higher than the analytical, as shorter orbits give
higher periapsis precessions.

From the image of HD 20782 b, its apsis is clearly
shrinking with each orbit 3. This is an effect that comes
from constantly recalculating the time step. The reason
can likely be that the time step calculations to perform
varying sizes of positional change can interfere with the
way the Euler-Cromer method stores the orbital energy.
It is likely, because it only happens for high eccentricity
values, where the variation of the time steps are the largest.
Nonetheless, it still gives a very good prediction of the
periapsis precession, with a maximum deviation of around
4% .

The eccentricity image displays effects for short and
middle sized eccentricities 5. For low eccentricity orbits,
the line is jumping back and forth. This could be due to
the program taking one more or one less iteration in finding
the periapsis. the same cause is happening for the middle
sized eccentricity values. But here, its not due to random
fluctuations. This is due to the program taking longer to
perform the simulation for a higher eccentricity, therefore
taking more time steps. This can be seen from the line
being bumped up when it goes too far down.

b Cen AB and HAT-P-35 b, with very large orbits, have
uncertainties that exceed the numerically predicted values
3. This is due to the low periapsis precession values they
have, meaning the program requires excellent precision if
it should get an uncertainty that solves this issue. The
program however, doesn’t have this precision, since when
the uncertainty is low enough, the absolute uncertainty
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Figure 3: This image shows a high eccentricity planet called
HD 20782 b. Notice that both N and GR orbits are shrinking.
This effect is due to the repeated time step calculations.

becomes the dominant uncertainty, which can’t be lowered.
It means that the program is unable to achieve an uncer-
tainty value that does not exceed the numerically predicted
values when the planet’s orbit is very large. However, the
analytical and numerical values still agree with each other,
like they do on all the other planets.

PSR J1719-1438 has zero analytical uncertainty 3. This
is because all the three uncertainty values that have been
gathered from NASA Exoplanet archive used in the pro-
gram have been given zero uncertainty, and that’s because
the research team who got those values have not mea-
sured its uncertainty, or that it’s too large to be measured
accurately. This uncertainty is not realistic. The real
uncertainty would be a non-zero value.

Some other contributions of uncertainties are also la-
beled as zero 4. These uncertainties lead to lower overall
uncertainties of the periapsis precession values than what
they should normally be, and might misrepresent their true
values.

The program is only using the At to acquire the numer-
ical uncertainty value, it does not include the uncertainties
of the planet parameters. Therefore, the uncertainties of
the program are lower than what a truly accurate uncer-
tainty would be.

The program is using Euler-Cromer as the numerical
method, which is only of order one. Other methods of
numerically calculating the periapsis precession exist, for
example an integration method [17], or using an orbital
RK4 method[20]. These methods can lessen the variation



Figure 4: This image shows the logarithmic relation between
the numerical value divided by the analytical value compared
to different eccentricity values, when the time step does not
vary with eccentricity. Notice how the small eccentricity jumps
from one line to another, and the destabilization of the high
eccentricity values. The max deviation is around 6%. The data
was made from the program in Appendix D and E.
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Figure 5: This image shows the logarithmic relation between
the numerical value divided by the analytical value compared
to different eccentricity values, when the time step does vary
with eccentricity. Notice how it deviates less here, since the
largest eccentricity values are given a much bigger time step.
The max deviation is around 4%. The data was made from the
program in Appendix D and E.

on the results, and give even more accurate predictions.
The results in the table takes in ten orbits, and an accu-
racy of 1000 as an input for the program 77 3. Increasing
more orbits per simulation and accuracy can increase the
accuracy. However, the time required for the program to
complete the orbits, and with the new accuracy are, from
experience, approximately proportional to 72. This means
doubling the amount of orbits quadruples the time required,
which at some point would take too long to complete.
There are other small assumptions included in the pro-

Table 4: This table shows the analytical uncertainties on the
parameters of the eight exoplanets. If it’s labeled zero, there is
no contributions to the uncertainty. It includes the reason the
exoplanet is included in the analysis for study.

Reason T[day] a[AU] ef] M[Mg]
High e 2.8 0.2 0.01 0.07
Low e 74-107% 3.6-107* 4-107° 0.01
Mercury e 8.8 0 0.029 0.03
Venus e 0.94 0.0032 0.0018 0.03
High a 8.3-10° 17.0 0 0.5
Low a, low T 2-107° 0 0 0
High M 2.1-107° 0 0.02 97.1
Low M, high T 4106 150 0.11 0

gram. Firstly, the program assumes that the three parame-
ters of orbital period, semi major axis, and solar mass, agree
with each other in a way that putting two of the values in an
equation will give the third value correctly. Secondly, the
star is assumed to be stationary, as its mass far outweighs
the mass of all other planets. However, if that was the
case, all planets with radial velocity detection would not
have been detected, which is false. However, the approxi-
mation works well when the star has a much larger mass
than the planet, as then, the star’s movement compared
to the planet’s orbit would be insignificant. Therefore, the
interference of the approximation of the star being still
is insignificant for the overall uncertainty of the periapsis
precession value. Thirdly, the GR equation is based off
of the Schwarzschild solution (1), another approximation.
However, as mentioned in the mathematical theory, this is
a good approximation, as stars with orbiting planets will
have the approximate behaviour of what the Schwarzschild
solution says their behaviour would be: being a massive
static spherically symmetric object [7]. Lastly, the program
uses an approximation of the GR acceleration equation. It
doesn’t have a major impact on the results, since the
value is divided by a high value, so not to make the better
approximation of the GR acceleration equation become
significant enough to interfere with the calculations.

5. Future outlook

The most important future outlook is to find a way to ob-
serve the periapsis precession on the other planets; Uranus,
Neptune, and the exoplanets. When that is done, the ob-
servational values can be compared to the analytical and
numerical values, to give a test on GR for the periapsis
precession.

The program is the first step of this field of study. It
can be improved by other people, and there are many
improvements to be made.

The Euler-Cromer method is of order one.
provement of the program would be to implement a higher
order method that conserves energy. Another improvement

An im-



would be to alter the numerical values slightly, in a way
so it match better with the analytical values. This might
be done by increasing or decreasing the time step. For
the deviations between the analytical and numerical val-
ues caused by the high eccentricity, it might be solved by
modifying the "dtBalance" compensation.

The approximations used everywhere can be modified
to give even better approximations, or exact solutions.
Those approximations are for example all the derivations
to acquire the GR acceleration, Having the star stand still,
using a finite time step, etc.

Periapsis precession with zero eccentricity can still hap-
pen. However, the program does not include these planets.
One future step is to implement zero eccentricity periapsis
precession simulations, to be able to study more planets.
Note that no real planet has exactly zero eccentricity. How-
ever, NASA Exoplanet Archive label many planets to have
this value, so this expansion is still useful.

Another outlook is to implement uncertainty of the
planet parameters into the numerical simulation. This
improves the true accuracy of the numerical uncertainty
value of the periapsis precession.

Other developments not mentioned can be done. The
program is open for anyone to expand upon, and to be
used by anyone for any reason; examplewise for education,
comparison, archiving, program improving, etc.

6. Conclusion

The analytical, observational, and numerical values of the
periapsis precession values match well with each other; up
to 4% error for certain high eccentricities, and very small
errors for other eccentricity values. Therefore, the program
is excellent at doing analytical and numerical predictions
for exoplanet periapsis precessions, for when they will be
compared against observational periapsis precessions when
a method of observing it is realized.

The main issues of the program are the destabilization
and wrong modelling orbits that come from high eccen-
tricity orbits. The destabilization comes from the major
differences of velocity and position at high eccentricity orbit.
The shrinkage of the orbits is likely due to time step cal-
culations interfering with the Euler-Cromer method. It is
likely, because it only happens for high eccentricity values,
where the variation of the time steps are the largest.

The next step for this program would be to compare it
to exoplanetary observational values when such a method
is realized in the future.
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8. Appendix A: How to use the programs

Before calculating the numerical periapsis precession, a
dataset of exoplanets needs to be acquired. The site to use
is the NASA Exoplanet Archive. This is how to perform
the steps necessary to run the code:

Step 1: Go to https://exoplanetarchive.ipac.caltech.
edu/, and click at the first black box called "Confirmed
Planets".

Step 2: Click on "Download Table", choose CSV Format,
"Download All Columns', and "Download All Rows". Then
click "Download Table".

Step 3: Copy and paste the program located in Ap-
pendix C. This program will sort through the archive, and
write down the exoplanets that can be used to study the
periapsis precession.

# PSR J1719-1438 b: Lowest s
# HAT-P-35 b (3rd): Highest
# VHS J125601.92-125723.9 b: lLowest s

ExoplanetName = "Mercury"” # The plane
ExoplanetSelection = 1 # Select the n
turns = 10 # Amount of orbits of the
accuracy = 1000 # Accuracy to make th

Figure 6: This image shows where "ExoplanetName', "Exo-
planetSelection”, and the other two settings are.

Analytical value: 42.99730948352939

Analytical uncertainty: 1.229371017248731e-05
Numerical value: 43.46991593912609

Numerical uncertainty: 3.0619221352904242
contributions to numerical uncertainty: 3 / 3
Time uncertainty contribution: .85

Semi major axis uncertainty contribution: ©.0005
Eccentricity uncertainty contribution: @.0005
Mass uncertainty contribution: 3.6e-85

Orbit (N and GR) of Mercury

o~

Figure 7: This image shows The data printed for Mercury.
The plot underneath the data is found at 1

\, and top for N

Step 4: Rename the downloaded file to "Exoplanet Archive.csv',

or rename "open("ExoplanetArchive.csv", "rt") to the CSV
type file that was downloaded in the previous step.

Step 5: Run the Appendix C program until it prints
"Finished". A new file called "ExoplanetArchiveSorted.csv'
will be made. This CSV file will be used for the main
program.

Step 6: Open the new file, and find a planet to be
studied, and the set of values from a research group to be
chosen from.

Step 7: Copy and paste the main program located
in Appendix B, put the planet in "ExoplanetName", and
which set of values from a research group to be chosen from
at "ExoplanetSelection".

Step 8: Choose the two settings: how many orbital
turns the numerical simulation will do, and the accuracy
of the time step.

Step 9: Run the Appendix B program, and collect the
data from the print and plot.

The next section Explains how to retrieve a performance
test to compare against analytical and numerical values
with different eccentricities.

Step 1: Copy and paste the program located in Ap-
pendix D. Change the values of the eccentricity, time step,
5, and the amount of simulated runs, if desired.

Step 2: Run the Appendix D program. This program
can take up to multiple days to fully complete, or stop
prematurely due to the program flinging the planet away.

Step 3: Copy the printed values onto a file, and save
the file as a .csv with a name.

Step 4: Copy and paste the program located in Ap-
pendix E. Rename the downloaded file to "Eccentricity-
Data.csv", or rename open("EccentricityData.csv', "rt") to
the CSV type file that was downloaded in the previous
step.

Step 5: Select the scale of the dataset, for example
logarithmic, and add in enough data extractors from the
"if i%2 == 1:" part.

Step 6: Run the Appendix E program, and collect the

data from the plot
1

LCompared to Kérber’s paper [8], the base acceleration G * M
is missing. This is because it is not needed, since it is always cou-
pled with r—2. Speaking of which, Kérber’s paper has an error in
calculating the acceleration, as it fails to include the r—2
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9. Appendix B: Main program # Select the "ExoplanetSelection" result
if ExoplanetSelection > 1:
# Importing numpy for data calculations, matplotlib for plo¥tindgn nadge st xfoplafidts etaotdgamen))

import numpy as np iterating = next(iterate)
import matplotlib.pyplot as plt
import csv # Collects the parameters of the exoplan
name = iterating [0]
#Formulas from K rber et al.s paper is written with The fMas(itlealating [11]) # Orbital perio
a = float (iterating[15]) # Semi—major ax
# Ezxoplanets used for the report: e = float(iterating [36]) # Eccectricity
# HD 20782 b (5th): Highest eccentricity M = float (iterating [59]) # Stellar mass
# LP 791—18 c: Lowest eccentricity if not (iterating[l2] = "" and iteratir
# 81 Cet b: Same eccentricity as MercuryTDelta = max(abs(float (iterating[12]
# Kepler—82 c: Same eccentricity as Venakse:
# b Cen AB b: Highest semi major axis TDelta = 0
# PSR J1719—1488 b: Lowest semi major axis, afidnbswesteratintg|lplr+ed"" and iteratir
# HAT-P-35 b (3rd): Highest stellar mass aDelta = max(abs(float (iterating[16]
# VHS J125601.92—125728.9 b: Lowest stellar mass, and highaservaimttyComéribdtion += 1
else:
ExoplanetName = "Mercury" # The planet/exoplanet to gain abfeltmatiOn on. Insert "Mercury' or
ExoplanetSelection = 1 # Select the n—th result of théf sabtc{dtderatiplg127] from" thand rehtieratin
turns = 10 # Amount of orbits of the simulation. eDelta = max(abs(float (iterating[37]
accuracy = 1000 # Accuracy to make the time step smaller ,vandrthbreyQoa tmidrat oo wreatt .
else:
# Mercury as standard selection eDelta = 0
name = "Mercury" if not (iterating[60] — "' and iteratir
T = 88.0 # Mercurian orbital period in day MDelta = max(abs(float (iterating [60]
a = 0.387 # Mercurian semi major axis in RO uncertaintyContribution 4= 1
e = 0.206 # Mercurian eccectricity else:
M= 1 # Solar mass MDelta = 0
TDelta = 0.05 # T error except:
aDelta = 0.0005 # a error pass
eDelta = 0.0005 # e error
MDelta = 0.000036 # M error print ("Exoplanet/planet, selcted")
# Initials at 0. N = Newtonian, GR = General ;BRdlativiatifs and values for calculations.
t =0 # time RO = 149597870700 # Awerage distance from the Fa
turnsN = 0 # N turns TO = 86400 # Seconds in a day, often wused in arc
turnsGR = 0 # GR turns MO = 1.9891e30 # Mass of the Sun, often used in
meanAngle = 0 # Mean perihelion precession angle
meanNvec = 0 # Mean of perihelion N # Constant conversions
varianceN = 0 # Variance of perihelion N uc = 299792458 # Speed of light

varianceGR = 0 # Variance of precession GR ¢c =uc / RO x TO # ¢ in ROxx1 TO0xx—1 wunits
uncertaintyContribution = 0 # How many of theuGh=eb.aimldeartdin#vdlniaserend goatitbttedalo cohsta
Gl = uG / ROx%3 x MOxx1 x TO0xx2 # G in RO0x+3 MO
# Goes through the sorted exoplanet archive, Gewmrthi#Fifistethe unpecified exoplanet if it exis
print ("Selecting exoplanet/planet")
# Orbital calculations

try: r =a x (1 — e) # Perihelion radius
with open("ExoplanetArchiveSorted.csv", "ptL)aas @leebi¥w®) # Semilatus rectum, used for an
iterate = csv.reader (archive)
# vxx2 = GM(2/r—1/a). r(perihelion) = a * (1 — e
while True: v=(GsxM=x (1 +e) / (1 —e) / a)sx(1/2)
iterating = next(iterate) # Calculating the perihelion speed of the planet
if iterating [0] = ExoplanetName:rl = (r * v / ¢) # Specific angular momentum in
break

dtBalance = (1 — ex%10) / (1 — 0.206%%10) # Make
10



# (X) # Check if orbital point is closer than the
dt =2 % v x r*x%2 / (G * M) / accuracy * dtBalancér$Time step restriction , makes the GR appro
if np.linalg.norm(RvecN[—3]) > np.linalg

dtN = dt # Timesteps for N turnsN += 1
dtGR = dt # Timesteps for GR perihelionListN = np.append(perihelio
beta = (r/rl)*%x2 / 248.939200199999405 # The effect valuepoin€GRf" {tusnsdNofimally 100} % tdoheeon, ]
except:
#Defines the acceleration functions pass
# (X) without the wvectors try:
def aN(x): if np.linalg.norm(RvecGR[—3]) > np.linal;
return G *x M / np.linalg .norm(x)**2 % —x / np.linalg .herns(X #=Nlgravitational acceleratic
def aGR(x): perihelionList GR = np.append(periheli
return G *x M % (1 4+ beta * (rl/np.linalg.norm(x))**2)ptrinp (I{'qdalpna@@Rl(uyrs216015% donp. din
except:

# We only have two orbital directions, since the angupassmomentum is always in the same direc
RvecN = np.array ([[0, —r]
VvecN = np.array ([[—v, O
RvecGR = np.array ([[0,

)

) t =t + dt # Advance with one time step
r]])
VvecGR = np.array ([[v, 0]])

# We add this, because the closest point accordi;
perihelionListN = np.delete(perihelionListN , 0,
# Adds on the initial positions for N and GR,peniheldonl.istfzbe=appedédtdtetpesilucelionlistGR, 0
perihelionListN = RvecN
perihelionListGR = RvecGR # Checking if N or GR got extra turns, and remowv
while len(perihelionListN) > len(perihelionListGE
#Defines how the orbit will evolve over time, bothpefridral BuniBt@R = np.delete (perihelionListN |
def timeEvolution (RvecNOId, VvecNOId, RvecGROId, VvecGROId, dtN, dtGR):
# Get acceleration magnitude from N and GRYikeml&K( petbhdlionListN) < len(perihelionListGF
perihelionList GR = np. delete (perihelionListGE
dtN = 2 % np.linalg.norm(VvecNOId) * np.linalg.norm(RvecNOId)**2 / (G x M) / accuracy * d
dtGR = 2 * np.linalg .norm(VvecGROId) x np#lidvadle . egrm@Rvecd@ROMd)*x2 / (G x M) / accuracy
def angle(vl, v2):
# (X) for whole iteration part excluding vectvesurmdngtNraads {tRdot (vl, v2) / (up.linalg
AN =G % M / np.linalg .norm(RvecNOId)**2 # N gravitational acceleration with current posi
AGR =G * M % (1 + beta % (rl/np.linalg.ngnl(R¢éeGRQIAY) ww2)s/ fup. biwatg cudmn (RieeGROLd ) *:
length = (len(perihelionListGR) — 1) # Amount of
# Includes the acceleration directions. TheamFstimatgn=1i§ periledeanListiN4¢0}the#abetdethéia
AvecN = —AN % RvecNOId / np.linalg.norm(RangN€ldéhvert = 180 / np.pi % 3600 / T % 365.2421¢
AvecGR = —AGR % RvecGROId / np.linalg.norm(RvecGROId)
# N and GR list are the same lengths. Summing up
# Uses the calculated acceleration to get#thX)ndor vedneiveygtandpposition

VvecNNew = VvecNOId + AvecN % dtN for i in range(length):
VvecGRNew = VvecGROId + AvecGR x dtGR meanAngle += angle (perihelionListGR[i], peril
RvecNNew = RvecNOld + VvecNNew * dtN meanNvec += (perihelionListN [i4+1] — meanEsti

RvecGRNew = RvecGROId + VvecGRNew % dtGR meanN = np.linalg .norm(meanNvec)

return (RvecNNew, RvecGRNew, VvecNNew, Vv#(RNew(hdtNgrdt@R¢ of N and GR
# (X) for non—vector parts
# Goes through the calculations, and simulatefow eiriiap stangeebesgihn: for the planet
# (X) for non—vector part, and non N part varianceN += (meanN — np.linalg .norm(periheli
while turnsN < turns or turnsGR < turns: varianceGR += (meanAngle — angle(perihelionLi
# Gets new values, and adds them onto the list
RvecNNew, RvecGRNew, VvecNNew, VvecGRNew,#ltMNgl!cdtGiRes timeRwmlartion (RwdcNn-alltiVadeN ptailds
RvecN = np.append (RvecN, [RvecNNew], axisrBel)a = (((1—e) % aDelta)**x2 + (—a * eDelta)**2
VvecN = np.append (VvecN, [VvecNNew], axispBdlja (((1—ex**2) x aDelta)**2 + (=2 * a * e *
RvecGR = np.append (RvecGR, [RvecGRNew], axDeltaOFx (((G x (1 +e) / (1 —e) / a)*xx(1/2) /
VvecGR = np.append (VvecGR, [VvecGRNew], axliPetkt®)= (((v / c¢) % rDelta)*x2 + ((r / ¢) % vD

11



dwDelta = ((6 * np.pi * (2 % rl / r*x2) x rlDelta)*%2 4+ (6 * np.pi * (=2 % rl*%2 / r*%x3) % rD

# (X) for non—G and non—beta wvalue fix

Uncertainty = (meanNx%2 + varianceN + varianceGR)x*x%(1/2) # Non—rescaled numerical periapsis p
dw = 2 % np.pi * 3 * (rl/p)**2 x angleConvert / G x Gl # Analytical periapsis precession valu
Precession = meanAngle * angleConvert / beta * 3 / G x Gl # Numerical Periapsis precession va
PrecessionDelta Uncertainty * angleConvert / beta x 3 / G x Gl # Numerical periapsis preces

# Shows the analytical and numerical values for the precession, including the uncertainties,
print (f" Analytical value: {dw}")

print (f{" Analytical juncertainty: {dwDelta}")

print ({"Numerical jvalue: {Precession}")

print (f{"Numerical juncertainty: {PrecessionDelta}")

print (f"contributions, to numerical juncertainty: {uncertaintyContribution}./,3")

print ({"'Time uncertainty, contribution: {TDelta}")

print (f"Semi major axis, uncertainty contribution: {aDelta}")

print ({"Eccentricity uncertainty contribution: {eDelta}")

print ({"Mass uncertainty, contribution: {MDelta}")

#Prints the N and GR trajectories for wvisual purposes. Gray is N, black is GR
aph = a x (1 + e) % 10.1 / 10 # Sets a value a bit larger than apsis, to be used for plot bou

plt . figure(figsize =(5,5))

plt .plot (RvecN|[:, 0], RvecN[:, 1], color = '#888888’, label = "Newtonian reference")

plt.plot (RvecGR[:, 0], RvecGR[:, 1], color = "#000000", label = f"GR_ orbit, e = {e}, uC =, {un
plt.plot (0, 0, "yo")

plt.title (f"Orbit, (N and, GR) of {name}")

plt.xlabel ("x—axis")

plt.ylabel ("y—axis , periapsis_ at bottom,for GR, and top for N")

plt . axis([—aph, aph, —aph, aph])

plt.legend ()

plt .show ()

12



10. Appendix C: Exoplanet data filter row[11] = (2 * np.pi * (floa

# Importing numpy for data calculations, and csv for file manijerosnflb] — "":

import csv row[15] = (((float(row[11]))
import numpy as np
if row[59] = "":

#Units for calculations row [59] = ((2 % np.pi * (flo:
RO = 149597870700 # Average distance from the FEarth to the Sun (Astronomical Unit, AU), often
TO = 86400 # Seconds in a day, often wused in archives writer . writerow (row)
MO = 1.9891e30 # Mass of the Sun, often used in archives

except:
uc = 299792458 # Speed of light # Ends up here when the whole list is it
¢c =uc / RO % TO # ¢ in RO*x1 TO0xx—1 wunits pass

uG = 6.6743e—11 # Universal gravitational constant

G = uG / RO*x3 x MOxx1 x TO0xx2 # G in ROx%3 MPprint ( THinichadn'i}s

# Fxoplanetary wvalues: Source 9

# Values for the Solar System planets: Source 10

# Planetary fluz values: Source 11

# Values for the Sun: Source 12

# Solar magnitude value for 2MASS: Source 13

# Solar magnitude value for Gaia: Source 14

# Solar mass uncertainty: Source 15

# Farth semi major axis uncertainty: Source 16

# Open the wunedited file , and write on a new file where the requirements of the exoplanet are

with open('ExoplanetArchive.csv', "rt") as archive, open("ExoplanetArchiveSorted.csv', "w", n
reader = csv.reader (archive)
writer = csv.writer (sort)

#Throws away the mon—data part
for i in range(97):
throwAwayNonData = next(reader)

#Adds on the eight planets of our Solar System:

writer .
writer .
writer .
writer .
writer .
writer .
writer .
writer .

writerow ([ ’Mercury’,’Sun’,’1’,’17,’8’ ,’Eye’, ’Ancient times’, ’Eye’, ’Published Confir

writerow ([ ’Venus’,’Sun’,’1’,’1’,’8’ ,’Eye’,’ Ancient times’, ’Eye’, ’Published Confirm
writerow ([ "Earth’,’Sun’,’1’,°1",’8’ |’Eye’,’Ancient, times’, ’Eye’,’Published ,Confirm
writerow ([ 'Mars’,’Sun’,’1’,’1’,’8" [ ’Eye’,’Ancient times’, ’Eye’,’Published Confirme
writerow ([ > Jupiter’,’Sun’,’1’,’1’,’8’ ,’Eye’,’ Ancient times’, ’Eye’, ’Published Confir
writerow ([ ’Saturn’,’Sun’,’1’,’1’,’8’ ,’Eye’,’Ancient times’, ’Eye’, ’Published Confirn
writerow ([ ’Uranus’,’Sun’,’1’,’1’,’8’,’Eyeand, telescope >, 717817 ,’A 6.2—inch reflect
writerow ([ ’Neptune’,’Sun’,’1’,’1’,’8’ ,"Eyeand, telescope ’, 71846’ ,’A 9—inch refract.

#lterates through each row; checks if each row has the requirements, and writes down the

try:

while True:

# Checks requirements. 11 = orbital period, 15 = semi major azxis, 36 = eccentricil
row = next(reader)

if row[l1] = "' and row[15] = "" or row[ll] = "" and row[59] = "' or row[15] -
pass

else:
#Calculates missing data if needed, and writes all the data, calculated or no
if row[ll] = "":

13



11. Appendix D: Performance test M = float (iterating [59]) # Stellar mass
if not (iterating[l2] = "" and iteratir

# Importing numpy for data calculations, matplotlib for pTdiéltag= mad(abs(fboatf(lte madiagefichf

import numpy as np else:

import matplotlib.pyplot as plt TDelta = 0

import csv if not (iterating[l16] = "' and iteratir

aDelta = max(abs(float (iterating [16]
#Formulas from K rber et al.s paper is written with the (XtesgmibalyContribution 4= 1

else:
# FEzoplanets used for the report: aDelta = 0
# HD 20782 b (5th): Highest eccentricity if not (iterating[37] = "' and iteratir
# LP 791—18 c: Lowest eccentricity eDelta = max(abs(float (iterating [37]
# 81 Cet b: Same eccentricity as MercuryuncertaintyContribution += 1
# Kepler—82 c: Same eccentricity as Venakse:
# b Cen AB b: Highest semi major axis eDelta = 0
# PSR J1719—1488 b: Lowest semi major axzis, afidnbswesteratlintg[6@kr+sd"" and iteratir
# HAT-P-35 b (3rd): Highest stellar mass MDelta = max(abs(float (iterating [60]
# VHS J125601.92—125728.9 b: Lowest stellar mass, and highaservaimttyComéribdtion += 1

else:

ExoplanetName = "HD 20782 b" # The planet/exoplanet to gadiDéWgorm@tion on. Insert "Mercury'
ExoplanetSelection = 5 # Select the n—th resudxceptthe selected exoplanet from the archive
turns = 10 # Amount of orbits of the simulation. pass

accuracy = 1000 # Accuracy to make the time step smaller, and therefore more accurate.
runtimeAccuracy = False # Enable a * (1 — e) anciubzcyuSaueasynp tooppulacmeuibcyl]y compensate for

# Mercury as standard selection

name = "Mercury"

T = 88.0 # Mercurian orbital period in day

a = 0.387 # Mercurian semi major axis in RO # Can be changed. Modify how many times the progr
e = 0.206 # Mercurian eccectricity for calcy in range(5999):

M= 1 # Solar mass

TDelta = 0.05 # T error

aDelta 0.0005 # a error

eDelta = 0.0005 # e error

MDelta = 0.000036 # M error

# Initials at 0. N = Newtonian, GR = General
# Goes through the sorted exoplanet archive, searth#nQ #Hotimke specified exoplanet if it exis
turnsN = 0 # N turns

try: turnsGR = 0 # GR turns
with open("ExoplanetArchiveSorted.csv", "rt")meanduedleve: 0 # Mean perihelion precession a
iterate = csv.reader(archive) meanNvec = 0 # Mean of perihelion N
varianceN = 0 # Variance of perihelion N

while True: varianceGR = 0 # Variance of precession GR
iterating = next(iterate) uncertaintyContribution = 0 # How many of th
if iterating [0] = ExoplanetName:

break

# Select the "ExzoplanetSelection" result of the selected exoplanet

if ExoplanetSelection > 1: # Can be changed. Modifies the eccentricity
for i in range(ExoplanetSelection —1):e = 10%%((calcy+1)/1000 — 6)
iterating = next(iterate)

# Collects the parameters of the exoplanet if it’s found. The uncertainties are chose;

name = iterating [0]
T = float (iterating [11]) # Orbital period in days
a = float (iterating[15]) # Semi—major aziacénr&dy = accuracySave

e = float(iterating [36]) # Eccectricity
14



# Adds on runtime accuract, if set at true

if runtimeAccuracy = True: # We only have two orbital directions, since
accuracy *= (1 — e) RvecN = np.array ([[0, —1r]])
VvecN = np.array ([[—v, 0]])
# Our units and values for calculations. RvecGR = np.array ([[0, r]])

RO = 149597870700 # Awerage distance from theVite@R #onpharSuy ([Astronpbmical Unit, AU), o

TO = 86400 # Seconds in a day, often wused in archives

MO 1.9891e30 # Mass of the Sun, often used #nAddshdneshe initial positions for N and GR
perihelionListN = RvecN

# Constant conversions perihelionList GR = RvecGR

uc = 299792458 # Speed of light

c =uc / RO x TO # ¢ in ROx%1 TO0xx—1 wunits #Defines how the orbit will evolve over time

uG = 6.6743e—11 # Universal gravitational condédntimeEvolution (RvecNOld, VvecNOld, RvecGR

1 =uG / RO*%3 % MOxx1 % TOxx2 # G in ROx+3 MOx+#1GEO*ac2elanidbion magnitude from N and

=1 # Finstein units

dtN = 2 % np.linalg.norm(VvecNOId) * np.
Orbital calculations dtGR = 2 % np.linalg .norm(VvecGROId) = n
a x (1 — e) # Perihelion radius
a * (1—exx2) # Semilatus rectum, used for anglylX¢aforabdwletidnsation part excluding
AN =G * M / np.linalg.norm(RvecNOId )2
# vxx2 = GM(2/r—1/a). r(perihelion) = a * (1 — e )AGR(pddihdNEean (k2 beGM(2/(al fnpltiypty /
v=(Gx«M=x*x (1 +e) / (1L —e) / a)yxx(1/2)
# Calculating the perihelion speed of the planet # Includes the acceleration directions.
rl = (r «= v / ¢) # Specific angular momentum in r&veacN v5s4AN »wrBbecNWK cdnnpo liira kg viorin .
AvecGR = —AGR % RvecGROIld / np.linalg .nor

T o= IR Qe

# Uses the calculated acceleration to ge
VvecNNew = VvecNOIld + AvecN x dtN
# Can be changed. Modifies the time step contribuViedGENew d=fVeree@ROd cle et { & s AtGR
dtBalance = (1 — exx10) / (1 — 0.206%%10) # MakesRvheNNewu=esRogcNQUH + cVecelNNewty DN its
dtBalance = 1 RvecGRNew = RvecGROId + VvecGRNew x dtGR

return (RvecNNew, RvecGRNew, VvecNNew, V

# Goes through the calculations, and simulat
# (X) # (X) for mon—wvector part, and non N part
dt =2 x v x r*x+%2 / (G x* M) / accuracy * dtBabauide #AThwsdN s<epures torctionsGRuakesuths:GR a
# Gets new values, and adds them onto th
dtN = dt # Timesteps for N RvecNNew, RvecGRNew, VvecNNew, VvecGRNew
dtGR = dt # Timesteps for GR RvecN = np.append (RvecN, [RvecNNew], axi:
VvecN = np.append(VvecN, [VvecNNew], axi:
RvecGR = np.append (RvecGR, [RvecGRNew],
VvecGR = np.append (VvecGR, [VvecGRNew],

# Can be changed. Modifies the beta wvalue # Check if orbital point is closer than
beta = (r/rl)**2 / 248.939200199999405 # The effettywvalue of GR. It’s normally set at thr
if np.linalg.norm(RvecN[—3]) > np. li1
turnsN += 1
perihelionListN = np.append(peril

except:
pass
#Defines the acceleration functions try:
# (X) without the vectors if np.linalg.norm(RvecGR[—3]) > np. 1
def aN(x): turnsGR 4= 1
return G « M / np.linalg .norm(x)**2 *x —x / np.linalg . pemil{«l)o# INsy@R +atipo appemdcpée:
def aGR(x): except:

return G * M x (1 + beta % (rl/np.linalg.norm(x))pa8$ / np.linalg.norm(x)**2 * —x / n
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t =t + dt # Advance with one time step

# We add this, because the closest point according to the program is not the starting poi:
perihelionListN = np.delete(perihelionListN , 0, axis = 0)
perihelionList GR = np.delete (perihelionListGR , 0, axis = 0)

# Checking if N or GR got extra turns, and removing the extras:
while len(perihelionListN) > len(perihelionListGR):
perihelionListN = np.delete(perihelionListN , —1, axis = 0)

while len(perihelionListN) < len(perihelionListGR):
perihelionListGR = np. delete (perihelionListGR, —1, axis = 0)

# Angle of two vectors
def angle(vl, v2):
return np.arccos(np.dot(vl, v2) / (np.linalg.norm(vl) * np.linalg.norm(v2)))

# Initials and units for error calculations

length = (len(perihelionListGR) — 1) # Amount of orbits used for error calcuations
meanEstimate = (perihelionListN [0]) # Sets the periapsis point of N. It shifted, as ezxpla
angleConvert = 180 / np.pi * 3600 / T % 365.242199 x 100 # Radians per orbit to arcsecond

# N and GR list are the same lengths. Summing up the angles, and summing up the N differes
# (X) for mon—wector parts
for i in range(length):
meanAngle += angle (perihelionListGR[i], perihelionListGR[i+1]) / (length)
meanNvec += (perihelionListN [i4+1] — meanEstimate) / (length)
meanN = np.linalg .norm(meanNvec)

# Gets the wvariance of N and GR

# (X) for non—vector parts

for i in range(length):
varianceN += (meanN — np.linalg .norm(perihelionListN [i4+1] — meanEstimate))**2 / (leng!
varianceGR += (meanAngle — angle(perihelionListGR[i], perihelionListGR[i+1]))*%2 / (1l

# Calculates the numerical and analytical values, with uncertainty

rDelta = (((1—e) % aDelta)**2 + (—a * eDelta)**2)*x(1/2) # Periapsis radius uncertainty
pDelta = (((1—exx2) % aDelta)*xx2 + (=2 % a x e *x eDelta)**2)xx(1/2) # Semilatus rectum wun
vDelta = (((G % (1 +e) / (1 —e) / a)xx(1/2) / (2 % Mxx(1/2))* MDelta)**2 + ((G « M x (1
rlDelta (((v / ¢) = rDelta)**2 + ((r / c¢) * vDelta)*%2)*xx(1/2)# Relativistic specific a
dwDelta ((6 * np.pi * (2 % rl / r*x2) x rlDelta)*%2 4+ (6 * np.pi * (=2 % rl*x2 / r**3)

# (X) for non—G and non—beta value fiz

Uncertainty = (meanN=%2 4 varianceN + varianceGR)x**(1/2) # Non—rescaled numerical periaps
dw = 2 % np.pi * 3 * (rl/p)**2 x angleConvert / G x Gl # Analytical periapsis precession
Precession = meanAngle x angleConvert / beta * 3 / G x Gl # Numerical Periapsis precessiol

PrecessionDelta = Uncertainty * angleConvert / beta * 3 / G x Gl # Numerical periapsis pr

# Can be changed. Modifies which desired data to priont out to be collected in the second
print (e)
print (Precession / dw)
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12. Appendix E: Data plotter plt.ylabel ("Numerical value divided by analytica
plt .show ()

# Importing numpy for data calculations , matplotiib for plotting, and csv for file management

import numpy as np

import matplotlib.pyplot as plt

import csv

1)
0])

Input = np.array ([0
Output = np.array (|

# Can be changed. Insert the file to read the data from

try:
with open("EccentricityData.csv"', "rt") as archive:
reader = csv.reader (archive)
i=20
while True:
i+=1
data = next(reader)
# Can be changed. Insert which data to be extracted. Don’t forget to add more of
if i%2 = 1: #lnput
Input = np.append(Input, [np.log(float(data[0]))]) # Can be changed. Modifies
if i%2 = 0: #Output
Output = np.append (Output, [np.log(float(data[0]))]) # Can be changed. Modifi
# Some of the printed results from the previous code gives holes in the data. rem
except:
pass

Input = np.delete (Input, 0)
Output = np.delete (Output, 0)

plt.figure (figsize=(5,5%x9/16))
plt.plot (Input, Output, linestyle = "", marker = ".")
plt.title (f"Numerical/analytical value, in different e—values")

plt.xlabel ("Eccentricity")
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