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Preface

This thesis, a part of the subject TPK4920 - Project and Quality Management
(Master’s Thesis), is written as a master’s thesis at the Norwegian University of
Science and Technology, counting for 30 credits. The work is conducted during the
autumn semester of 2023 at NTNU’s Faculty of Engineering and marks the end
of my Master’s program in Engineering and ICT. Last semester I wrote the thesis
Utilizing Machine Learning and Text Data for Predictive Safety Identification of
High-Risk Construction Projects as a part of my specialization project. This thesis
therefore shares structural similarities to the preliminary report.

Over the past years, I have combined subjects within production management and
artificial intelligence. In the summer of 2021, I was involved in working within the
data field for a company, which sparked an interest in the field. The following year
on exchange in Lisbon, I enrolled in all classes possible within Artificial Intelligence
and Data Science. Returning to NTNU, I continued taking courses within machine
learning, leading to the selection of the project thesis called Artificial Intelligence
in Projects.

Within the project thesis, I chose to write for Sustainable value creation by di-
gital predictions of safety performance in the construction industry (DiSCo). This
choice was made because construction safety seemed like an interesting application
of artificial intelligence, and the availability of datasets that presented interesting
opportunities. Initially, my knowledge of Artificial Intelligence greatly surpassed
my knowledge of construction safety, but through writing this thesis I have tried to
expand my knowledge of construction safety. I hope this thesis inspires the construc-
tion industry to explore new technologies, hopefully enhancing safety and reducing
injuries within the industry.

While writing this thesis in English, there have been certain challenges due to the
textual data used being Norwegian. Because this thesis is written in English the
textual data has mostly been translated into English. Exceptions to this are in
Figures 16 and 22, which are in Norwegian due to the content of the most common
words and featuring a word cloud. The translation process has involved the use of
many different online tools, followed by a manual review. Translating construction-
specific words has been especially challenging. Therefore, the original Norwegian
text is included in the Appendix.
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Abstract

This research explores the application of machine learning and deep learning for
enhancing job safety analysis in the construction industry, known for its high acci-
dent rates. The research conducted utilizes job safety analysis data spanning from
2019 to 2023, gathered from a major European construction company’s Norwegian
division. The study proposes an artificial intelligence-driven approach to improve
safety measures.

For this purpose, three distinct machine learning algorithms are developed. The
first algorithm is designed to assess the quality of job safety analysis, using a dataset
of previously evaluated safety analysis for training. The second algorithm utilizes
multi-label classification techniques to identify potential hazards based on textual
descriptions of activities and their activity types. The third algorithm uses a large
language model, trained on a dataset with activity descriptions, their associated
hazards, and identified measures, to generate new preventive measures.

The results of this study are promising, and indicate potential for artificial intelli-
gence in construction safety. The quality assessment algorithm shows that machine
learning can evaluate the quality of job safety analysis, even though the perform-
ance is heavily dependent on the quality of the training data. The hazard identific-
ation algorithm displays a good capability of classifying various hazards, potentially
detecting hazards missed by human analysis. Finally, the generative artificial in-
telligence model for preventive measures suggests relevant and practical measures,
though these tend to be less detailed compared to human-written measures. Future
work involves improving the machine learning models employed and exploring how
machine learning tools can be integrated into the job safety analysis workflow.
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Sammendrag

Denne studien utforsker hvordan maskinlæring og dyplæring kan brukes til å for-
bedre sikker jobbanalyse i byggebransjen, som er kjent for høye ulykkesrater. For-
skningen er basert p̊a data fra 2019 til 2023, samlet inn fra den norske avdelingen av
et stort europeisk bygg- og anleggsselskap. Studien foresl̊ar en kunstig intelligens-
drevet tilnærming for å forbedre sikkerhetstiltak.

For dette formålet er tre forskjellige maskinlæringsalgoritmer utviklet. Den første
algoritmen er utviklet for å vurdere kvaliteten p̊a sikker jobbanalyser ved å bruke
et datasett av tidligere evaluerte sikkerhetsanalyser for opplæring. Den andre algor-
itmen benytter en klassifiseringsteknikk med flere etiketter for å identifisere poten-
sielle farer basert p̊a tekstbeskrivelser av aktiviteter og deres aktivitetstyper. Den
tredje algoritmen bruker en stor spr̊akmodell, som er trent p̊a et datasett med akt-
ivitetsbeskrivelser, deres tilhørende farer og identifiserte tiltak, for å generere nye
forebyggende tiltak.

Resultatene fra denne studien er lovende og viser at kunstig intelligens har et po-
tensial innen sikkerhet i bygg- og anleggsbransjen. Kvalitetsvurderingsalgoritmen
viser at maskinlæring kan evaluere kvaliteten p̊a sikker jobbanalyser, selv om res-
ultatene er sterkt avhengig av kvaliteten p̊a treningsdataene. Fareidentifisering-
salgoritmen viser god evne til å klassifisere ulike farer, og kan potensielt detektere
farer som menneskelige analyser ikke har fanget opp. Til slutt foresl̊ar den generative
modellen for forebyggende tiltak relevante og praktiske tiltak, selv om disse har en
tendens til å være mindre detaljerte sammenlignet med tiltak skrevet av mennesker.
Fremtidig arbeid innebærer å forbedre maskinlæringsmodellene som brukes, og ut-
forske hvordan maskinlæringsverktøy kan integreres i sikkerjobbanalyseprosessen.
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1 Introduction

This thesis looks into how utilization of Machine Learning (ML) and Deep Learning
(DL) techniques can be used in the process of performing a Job Safety Analysis,
referred to as a JSA. More specifically, the research looks into how ML can be used
to measure the quality of a JSA, identify hazards, and generate preventive measures.

1.1 Background and Motivation

Globally, the construction industry is widely recognized for being among the most
dangerous industries (Pinto et al., 2011). The nature of construction work, often
working at heights, handling heavy materials, and operating complex machinery,
contributes to these risks (Bhole, 2016). This holds true for Norway as well, where
the construction industry is one of the most accident-prone industries (Mostue et al.,
2022). In the last decade, there has been an average of eight fatalities each year
within the construction industry in Norway (Isachsen Berntsen, n.d.(a)). Therefore,
there is a need for innovative approaches to enhance the safety in construction
projects.

Recently, Artificial Intelligence (AI) has been rapidly developing, reshaping various
industries, and changing daily life for many (Nawaz, 2023). These rapid advance-
ments are contributed by improvements in ML and DL techniques, and increased
computational capabilities (Saha et al., 2021). AI’s ability to understand patterns in
complex data has made it a tool that can be utilized for innovative problem-solving
across various industries (Huang et al., 2020, Huntingford et al., 2019).

The construction industry is one of the least digitized industries in the world (Abioye
et al., 2021). Abioye et al., 2021 argues that the lack of digitization has caused
delays, bad performance in terms of quality and productivity, poor decision-making,
and issues related to health and safety. AI presents a unique opportunity to change
this industry. Within safety in construction, AI can be used for predictive ana-
lysis, automated hazard identification, and performing risk-assessments in real time
(Abioye et al., 2021). These methods can proactively address safety issues, redu-
cing accident rates. NTNU created DiSCo, Sustainable value creation by digital
predictions of safety performance in the construction industries, to address safety
issues in the construction industry (NTNU, 2023). The research project aims to
do this by using AI in early phases of construction projects to predict future safety
performance.

1.2 Research Questions

The primary long-term aim of this research is to enhance safety performance in the
construction industry. This objective is explored through three specific Research
Questions (RQs), each exploring the application of ML using data from JSA. The
research questions are as follows:
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RQ1: How can machine learning methodologies assess the quality of a job safety
analysis?

RQ2: How can machine learning detect potential hazards during activities in con-
struction projects?

RQ3: How can generative AI propose preventive measures for identified hazards?

To address these questions, three unique ML algorithms have been developed. The
first RQ is addressed by utilizing a variable within the JSA dataset named “Good
Example”, which indicates whether a JSA is exemplar. The second RQ involves
the use of a multi-label classification of activity descriptions to identify possible
hazards. The last RQ is explored by fine-tuning a generative AI model using activity
descriptions with their associated hazards, and the preventive measures taken to
address them.

1.3 Project Scope

The data for this research is collected from a large European construction company,
specifically its Norwegian division. The dataset consists of JSA records collected
from 2019 to 2023. The focus of the research is to explore how JSA can be util-
ized with modern AI methods to enhance their effectiveness and improve safety
performance. Even though the data is from the construction industry in Norway,
similar approaches could be applied universally and in other industries concerned
with safety and injury prevention.

1.4 Structure of Thesis

Section 1 offers an introduction to the research, explaining the background and
motivation of the research, followed by a presentation of the RQs and the scope of the
project. Section 2 delves into the theoretical background of the research. The initial
subsection discusses health and safety in the construction industry, before examining
how ML can be utilized to address safety concerns in the construction industry.
Further subsections explore more technical aspects, Natural Language Processing
(NLP) is covered in subsection 2.3, ML techniques are explored in subsection 2.4,
and DL is examined in subsection 2.5. The methodology employed in the research is
described in section 3. This includes a literature review, Exploratory Data Analysis
(EDA), data cleaning, and the ML algorithms developed in the research. In section
4, the results of the three ML algorithms developed in the thesis are presented,
showing the empirical findings of the study. In section 5 the research is discussed.
The results are discussed in addition to the limitations, and practical applications
of the study. Lastly, in section 6 the research is concluded, stating the findings and
suggesting further work.
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2 Theory

This chapter delves into the theory that forms the foundation of this thesis. It
explores concepts and frameworks that are important for this study, such as safety in
the construction industry, the use of ML in the construction industry, and principles
of NLP. Furthermore, it examines the field of ML and DL. This chapter serves as
the theoretical basis for the research and development of this thesis.

2.1 Health, Safety and Environment in the Construction
Industry

Health Safety and Environment referred to as HSE, focuses on the well-being of
workers. “Health” is concerned with the preservation of workers physical and mental
well-being against illness. Meanwhile, “Safety” deals with the protection of physical
harm, as defined by Hughes and Ferrett, 2012. The construction industry in Europe
has reported the highest rate of fatal work-related accidents in 2014, and it is widely
recognized as one of the most dangerous industries in the world (Winge, Albrechtsen
and Mostue, 2019, Lingard and Rowlinson, 2004). As a result of this, there has been
a notable rise in HSE-related publications since the early 2010s (Jin et al., 2019).

Figure 1 presents the accidents in Norway within the construction industry, dis-
tinguishing between fatal accidents, and accidents with Long-term and Short-term
absence. Absence that has lasted for longer than three days is in this case defined as
an injury that has caused long-term absence (Isachsen Berntsen, n.d.(a), Isachsen
Berntsen, n.d.(b)).

(a) Annual Accidents Causing Long/Short-
Term Absence (Isachsen Berntsen, n.d.(b))

(b) Construction Industry Fatalities per
Year (Isachsen Berntsen, n.d.(a))

Figure 1: Injury and Fatality Trends in the Norwegian Construction Industry

The data presented in Table 1 are from the same dataset as Figure 1. The data re-
veals that annually more than one percent of workers in the construction industry in
Norway experience either a short-term or long-term injury. These numbers are solely
based on reported incidents. Research indicates that the actual numbers might be
higher, as some accidents are unreported, representing “dark figures” (Albrechtsen,
2012).
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Type of absence Accidents per 1000 workers

Short-Term 5.3
Long-Term 5.4

Table 1: Annual Accident Rates per 1000 Workers Categorized by Absence Type
(2014-2022) (Isachsen Berntsen, n.d.(b))

2.1.1 Hazards in Construction Projects

Hazard recognition is fundamental to effective safety management in the construc-
tion industry (Holt, 2008). When hazards go unnoticed, they remain unaddressed,
posing a threat to worker safety (Carter and Smith, 2006). Research suggests that
due to the dynamic nature of construction sites workers may fail to recognize up to
57% of safety hazards (Albert et al., 2017). Furthermore, the ability of workers to
identify some hazards may be higher than for others. For instance, workers were
found to be better at identifying “being struck by” accidents compared to “chemical
exposure” accidents (S. Uddin et al., 2020).

Table 2 shows accident types within the construction industry in Norway from 2015
to 2022. It reveals that “falls” and “struck-by” accidents are the most common
types of accidents. A study by the United States Department of Labor reports
similar findings, with “fall”, “struck-by” and “caught-between” accidents being the
most common (Safety and Administration, 2011). This indicates a global pattern
in the most common site hazards within the construction industry.

In construction safety management, identifying hazards is an important part of
preventing accidents and enhancing safety performance. A study by Winge and
Albrechtsen, 2018 identified frequent accident types and found the barriers and
consequences associated with these incidents in the Norwegian construction industry.
This study shows an essential first step in accident prevention, which is recognizing
the various hazards that could potentially occur on construction sites.

The dynamic nature of construction projects adds another layer to the complexity
of hazard identification. Factors such as weather conditions, frequent work team
rotations, and changing construction site topography over time, are factors that add
to construction site complexity (Bobick, 2004). As construction sites are changing
all the time, there is a need to use strategies to identify hazards that are flexible, to
identify and mitigate risk (Rozenfeld et al., 2010).

2.1.2 Safety Indicators

Safety performance indicators measure an organization’s capability to manage and
mitigate the risk of accidents (Kjellen and Albrechtsen, 2017). These indicators
provide a quantitative method of assessing the safety performance over time, en-
abling the creation of targets for continuous improvement (Herrera, 2012). When
evaluating safety performance, it is common to distinguish between two types of
indicators; lagging and leading indicators.
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Type of Accident Number of Accidents % of Accidents

Fall 4662 21.51

Struck by object 4330 19.98

Puncture/cut by sharp/pointed object 2806 12.95

Electric shock 1387 6.40

Crushed/trapped 1300 5.99

Collision/impact 533 2.45

Overturn 402 1.86

Chemicals 257 1.19

Threats of violence 150 0.69

High/low temperature 100 0.46

Explosion, blast, fire 90 0.41

Inflicted injury by violence 37 0.17

Other 2264 10.45

Unknown 3352 15.47

Table 2: Categorization of Construction Accident Types in Norway (2015-2022)
(Isachsen Berntsen, n.d.(c))

Lagging indicators look at changes that have already occurred, and are considered
reactive. In economics, a lagging indicator is a measure that changes after the
economy has changed (Manuele, 2009). Within the construction industry, examples
of lagging indicators include incident and fatality rates (Hinze et al., 2013). These
rates are often calculated per hour worked, to normalize the metric relative to the
size of the project and workforce.

Leading indicators, on the other hand, are used to predict future trends, and are
therefore deemed as proactive (Stock and Watson, 2008). In construction, the in-
dicator is forward-looking, expressing the future safety performance. Examples of
leading indicators can be the quality and amount of training provided to workers,
the thoroughness of hazard, and measures analysis (Hinze et al., 2013, Alruqi and
Hallowell, 2019).

There are many ways of measuring safety performance in a construction project,
relying on a single metric can be insufficient. Therefore, Kjellen and Albrecht-
sen, 2017, suggests combining several indicators to measure and understand safety
performance within construction projects. This approach creates a more nuanced
understanding of workplace safety, and helps in decision-making.

2.1.3 Job Safety Analysis

SIBA (Safety Management in Construction) defines JSA, also known as Job Hazard
Analysis (JHA), as a review and assessment of possible hazards before performing
an activity where dangerous situations can arise. The aim is to assess if the safety
is addressed well enough with the current procedures and plans, or if there is a need
to implement additional measures, to eliminate and control the hazards identified
(Tinmannsvik et al., 2016).
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JSA focuses on the relationship between four elements: the worker, the task at
hand, the tools and the equipment being used, and the overall work environment
(Chao and Henshaw, 2002). Performing a JSA involves looking into every step of
an activity to identify potential hazards. When a hazard is identified the process
continues by suggesting and implementing appropriate safety rules and procedures
to address the hazards. This reduces the risk of accidents and injuries during the
execution of the activity.

Hazards are defined as conditions or activities that can lead to undesirable events,
leading to injuries to individuals, harm to the environment, or damage to materials
or property. Examples of hazards can be found in Table 2. Table 2 provides an
overview of hazards and their corresponding frequency in the Norwegian construction
industry. Understanding the hazards is a crucial step for developing effective safety
measures to both reduce the frequency of accidents and minimize their impact when
occurring.

Ideally, most risks should be identified and mitigated during the planning stage of
a project. However, due to the dynamic and unpredictable nature of construction
projects, there is often a need for re-evaluating safety in response to unexpected
developments or changes in plans. In this situation, JSA offers a proactive tool in
hazard management, that can be a valuable tool for re-evaluating safety measures
(Tinmannsvik et al., 2016). Figure 2 shows at which stage of the project JSA can
be used, and the amount of risk it potentially can reduced. As seen in Figure JSA
is used right before the execution stage.

Figure 2: Impact of JSA on Project Risk Over Time - Author’s own illustration -
based on (Svensli and Solberg, 2016)

Various papers suggest slightly different approaches to conduction a JSA. Despite
some variations, the fundamental essence of the JSA remains consistent throughout
the literature, centering on identifying and mitigating hazards associated with a
specific task. The JSA that is presented in this thesis is created by SIBA, and
includes the following steps (Tinmannsvik et al., 2016):
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1. Assess the need for a JSA: According to Kjellen and Albrechtsen, 2017, a JSA
should be performed in scenarios such as; activities involving uncontrolled hazards,
new tasks, deviations from standard procedures, unfamiliar teams or equipment,
and changing conditions such as weather or operational changes.

2. Preparation and Planning: Tinmannsvik et al., 2016 suggests a designated
JSA manager that oversees the gathering of relevant data such as work procedures,
manuals, previous JSAs, and forming the JSA team. The JSA team should include
all activity participants, a safety representative, a team leader, and experts in the
specific area (Rausand, 2013; Roughton and Crutchfield, 2013). The JSA manager
should be responsible for scheduling and documenting the JSA meeting, and ensuring
that all preventative measures are performed.

3. Conduct the JSA: Conducted right before the activity, the JSA should be
conducted and everyone involved or effected by the activity should have the possib-
ility to attend the JSA (Tinmannsvik et al., 2016). When performing the JSA the
following steps should be carried out (Albrechtsen et al., 2019):

1. Decomposition of job: breaking down the job into functions, tasks, and steps.
The steps are listed and described in order.

2. Hazard identification: Potential events and conditions that can lead to dan-
gerous situations are identified for each sub-task identified in 1).

3. Potential consequences of the hazards identified in 2) are assessed.

4. Expected frequency of occurrence for the hazards identified in 2) are assessed.

5. An assessment of the risk for each sub-task is performed based on the assessed
frequency and consequence, which is, in turn, assessed in relation to a risk
matrix.

6. Risk reduction measures that can help to improve safety for performing the
work is identified for those sub-tasks that have an intolerable risk.

4. Implementation of measures and execution of work After the JSA, the
identified safety measures are implemented, and the planned activity is executed
safely.

5. Summary and Learning Points: The JSA manager is responsible for docu-
menting the insights and learning’s from the JSA process, contributing to continuous
safety improvements.

JSA is a process that relies heavily on the input and expertise of the team involved
in performing the JSA. Every measure should have a responsible person to make
sure that the measure is acted upon. Researchers have looked into the effectiveness
of using JSA as a safety tool. Two studies, Van Derlyke et al., 2022 and Halim et al.,
2018, found that properly implementing JSA contributes to reducing accidents. In
addition to these findings, Albrechtsen et al., 2019 identified six benefits from the
use of JSA in safety management:
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1. Formalization of Work

2. Accountability

3. Participation of employees

4. Organizational learning

5. Hazard identification and situation awareness

6. Loss Prevention

Regulations

In the Norwegian construction industry, JSA, is a widely used tool, however it is
not mandated by law, nor mentioned in Norwegian legislation (Svensli and Solberg,
2016). Nonetheless, JSA can still help to satisfy certain legal requirements.

Paragraph § 3-2 (3) of the Working Environment Act requires a written instruction
for tasks that pose an increased risk to the safety and health of workers. This
law emphasized the need for guidelines on how to safely execute tasks with a high
risk of injury, with the demand for necessary safety measures being implemented
(Arbeidstilsynet, 2006).

Paragraph § 10-4 of the Regulation on the Performance of Work requires the workers
to receive adequate training for using specific equipment. The training should ensure
that the workers can use the equipment safely. This law requires the details of
the training to be documented in writing (Arbeidstilsynet, 2016). Both laws are
translated and written below, the original laws in Norwegian text can be found in
Appendix A.

§ 3-2. Specific Precautions to Ensure Safety

(3) If work is to be carried out that may pose a particular risk to life or
health, a written instruction must be prepared on how the work is
to be performed and what safety measures should be implemented.
(Arbeidstilsynet, 2006).

§ 10-4. Requirements for Equipment-Specific Training

The employer must ensure that the employee receives the necessary training
on the specific work equipment they will use. The training must be adapted
to the nature of the work equipment and ensure that the employee can use the
work equipment in a safe manner. It must be documented in writing which
work equipment training has been provided for, who provided the training,
and who has received the training (Arbeidstilsynet, 2016).
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2.1.4 Using data within HSE in Constructions Projects

Within HSE in construction projects, effective utilization of data is important. Re-
search conducted by Andreassen et al., 2020 mapped all the data collected from
clients and contractors within the construction industry. The primary objective was
to get a better understanding of how data is currently being utilized in the sector
and to identify which data holds potential for value creation. For this purpose, 30
different data types were ranked by its potential to be a part of a leading safety
indicator. The research highlighted the number of active JSAs as an effective metric
due to its simplicity and insightful nature.

The study by Andreassen et al., 2020 also investigated the data storage practices
of the companies. It discovered that a wide array of software solutions, 26 in total,
were used for data collection and data storage. Despite the many different software
solutions, the nature of the data stored was found to be similar across compan-
ies. These findings suggest a lack of standardization in software solutions and data
structuring in the construction industry. This makes the data hard to use across
companies and software solutions. The common goal of these software solutions
is to better understand a company’s HSE performance. The study found that the
software solution lacked the capabilities to visualize and analyse the data in order to
extract the desired information. This makes it hard to extract meaningful insights
from the collected information.

The study concludes that a substantial amount of data is collected by companies,
but the data is not utilized properly (Andreassen et al., 2020). In addition, the study
finds that there are no industry standards on how to store data, which makes it hard
to collect data from multiple sources and do a comprehensive analysis of data from
multiple sources. These findings underline a need for a structured and standardized
approach for data management in the construction industry. In addition to easier
ways to display and analyse the data to make it easier to utilize.

2.2 Machine Learning in Construction Safety

This chapter focuses on incorporating ML into construction safety. Recently, there
has been collected a substantial amount of data regarding project operations, in-
jury records, and preventive measures. Such extensive data opens up for new and
innovative approaches to enhance safety performance in construction projects.

Several studies have been conducted trying to utilize ML to forecast injury outcomes
within construction projects. Research conducted by Alkaissy et al., 2023 and Tixier
et al., 2016 have focused on predicting the consequences of an injury post-occurrence,
utilizing data related to the accident. These studies aim to predict various aspects of
the injury, including the type of injury, the affected body part, the injury’s severity,
and the type of energy involved in the accident. Furthermore, Marucci-Wellman
et al., 2017 extends this approach by classifying injury narratives using text data.

Several studies have looked into the integration of JSA with ML to enhance safety in
the construction industry. A paper, Ontology-based semantic modeling of construc-
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tion safety knowledge: Towards automated safety planning for job hazard analysis
(JHA), by S. Zhang et al., 2015, proposes to utilize advanced technologies such as
Building Information Modeling (BIM), Virtual Design and construction technology,
and Geographic Information Systems (GIS), to enhance hazard identification and
safety planning. These technologies are suggested to detect, visualize, and mitig-
ate safety hazards. The paper argues these tools should be used to assist human
decision-making, and suggests involvement of safety experts in reviewing and audit
the outcome produced by these automated systems.

Trying to use Information and Communication Technology (ICT) and prior exper-
ience to help identify safety hazards, Hadikusumo and Rowlinson, 2004 developed
the DFSP-database. The database is a comprehensive collection of potential safety
hazards and corresponding preventive measures, trying to facilitate hazard and pre-
ventive measure identification. Since the process of creating a JSA is complex and
time-consuming (S. Zhang et al., 2015), using previously identified hazards and
measures can facilitate identifying hazards and measures in upcoming activities.

A particularly interesting paper, by Chi et al., 2014, delves into how text classi-
fication potentially can be utilized to enhance JSA. The research used text data,
including activity descriptions and hazards, and classified them. The study utilized
ontology representation to connect the hazards with the corresponding measures.
The research, conducted in 2014, showed limitations in performance measured with
precision and recall. The ML methods employed in this paper are nearly a decade
later considered as simple and less advanced compared to state-of-the-art (SOTA)
techniques.

Several studies have been conducted trying to use visualizations and animations to
identify potential hazardous zones in construction sites. Bansal, 2011 implemented
a GIS-based 3D animation in safety planning, identifying areas and activities with
an increased risk of accidents. On the other hand, Kiviniemi et al., 2011 developed
a method for conducting a JSA using a virtual construction site model, using a
simulated environment to enhance the understanding of potential hazards. Lin et
al., 2011 developed a 3D video game where players, acting as safety inspectors, pass
through a virtual construction site identifying potential hazards, enhancing their
hazard recognition skills.

Two papers by Poh et al., 2018 and Jafari et al., 2019 explored how ML can be util-
ized as a leading safety indicator in construction projects. Poh et al., 2018, trained
ML models to predict the likelihood and severity of accidents using data from con-
struction sites. The researchers found that the models, particularly Random Forest
(RF), showed promising results in predicting accidents. A limitation of using ML to
predict accidents highlighted by the researchers, is the model’s “black-box” nature.
This makes it hard for humans to interpret the results and makes it difficult to get
a deeper understanding of how specific factors contribute to the occurrence of acci-
dents. Jafari et al., 2019 used ML with construction data to develop a leading safety
indicator. The research has promising results and found that 10 of 23 data points
effectively could indicate safety performance in a construction project. These stud-
ies show the potential of using ML to enhance safety management in construction
projects.
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Some studies have explored the potential generative AI has to be utilized within
construction safety. A study by, Rane, 2023, highlights the potential Generative AI
has in doing predictive analysis. According to the study, utilizing historical data,
including past accidents and safety measures, an AI model can identify patterns
and trends within construction projects. By doing so, the AI system can identify
potential safety hazards. S. J. Uddin, 2023 argues the utilization of generative AI
can enhance construction safety education and training. In the study, students
aspiring to become construction engineers were assessed on their ability to recognize
hazards. Following this evaluation, the students were trained using ChatGPT to
assist in hazard identification. A final assessment of their hazard identification skills
was conducted. The results showed an improvement, suggesting that ChatGPT can
be utilized in safety education to enhance hazard recognition skills.

Despite there being some research on the application of generative AI in construction
safety, the domain seems mostly unexplored. Every study found on the application
of generative AI in construction safety was conducted in 2023, suggesting it is a
new and emerging field of study. This presents opportunities for further research of
Large Language Models (LLMs) used within construction safety.

2.3 Natural Language Processing

Natural Language Processing, commonly referred to as NLP, is the subfield at the
intersection of computer science and linguistics. It seeks to enable computers to
comprehend and interpret human language (Chowdhary, 2020). Essentially, NLP
wishes to bridge the gap between human language and computer language by helping
with efficient information exchange between the two. By using NLP, computers can
process, analyse, and even generate human language in ways that are meaningful,
this can be enabled in a wide range of applications such as text translations, and
text-to-text generation.

This chapter looks into the NLP techniques employed in this thesis, mainly focusing
on NLPs role in converting human language into formats that can be quantitat-
ively used by computers. Through different tools in NLP, such as tokenization,
normalization, and vectorization, it tries to extract meaning and patterns from the
unstructured text data. Therefore NLP techniques offer important tools to help
computers interpret and make sense of complexities within the human language.
While this chapter explores various aspects of preprocessing in NLP, it is worth
noting that the application of ML techniques such as Long Short-Term Memory
(LSTM) networks and Transformers using text data will be covered separately in
the subsection 2.5.

2.3.1 Tokenization

Tokenization is a fundamental step in NLP, involving the segmentation of text into
smaller entities known as ’tokens’. Typically, a piece of text is split into individual
words, using spaces and punctuation as the separators. These tokens work as the
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basic building blocks for NLP models (Hassler and Fliedl, 2006). Once the text
is tokenized, it becomes more manageable for computers, and can more easily be
processed using different NLP techniques (Jurafsky and Martin, 2007). In Table 3
an example of a sentence broken down into individual tokens can be seen, where
each token represents a word.

Text Tokenization

The builders are using bricks. [“The”, “builders”, “are”, “using”, “bricks”]

Table 3: Example of Tokenization in NLP

2.3.2 Stopword Removal

Stopword removal is a technique within NLP that seeks to filter out words, commonly
used, but typically add little to the overall meaning of a sentence. These frequently
occurring words, known as stopwords, are often removed to help textual analysis,
as they might not give semantic value (Jurafsky and Martin, 2007). The Natural
Language Toolkit, a widely used tool in NLP, identified about 127 stopwords in
the English language, including words like “I”, “should”, “is” and “of” (NLTK
Contributors, n.d.).

The main purpose of using stopword removal is to simplify the textual data by
reducing its dimensionality. This reduction can enhance computational performance
(Yogish et al., 2019), and in some cases improve the precision of ML models by
eliminating noise and unnecessary data (Haddi et al., 2013). By removing words
with minimal semantic contribution, stopword removal can possibly make ML using
text data both more efficient and precise.

However, some researchers including Sarica and Luo, 2021, have raised some con-
cerns concerning stopword removal. Sarica and Luo, 2021, argues that stopword
removal might remove valuable contextual information, which could be crucial for
certain tasks. The trade-off lies in balancing the need to simplify textual data while
keeping the context and meaning of the text.

There is primarily two ways of identifying stopwords:

1. Predefined List: This approach matches the tokenized text with a predefined
list of words which is defined as stopwords. This method is straightforward, but it
ignores the context of the text (J. Kaur and Buttar, 2018).

2. Frequency-based Removal: This method removes words that occur more
frequently than a specified threshold. This method risks eliminating words with a
semantic meaning that occur frequently (J. Kaur and Buttar, 2018).

Schofield et al., 2017 proposes combining the two methods by having a predefined
stopword list but conditioning removal on a specified frequency threshold. Table
4 shows an example of a stopword with typical stopwords being removed from the
text.
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Text Stopword Removal

[“The”, “builders”, “are”, “using”, “bricks”] [“Builders”, “using”, “bricks”]

Table 4: Example of Stopword Removal in NLP

2.3.3 Normalization Techniques

The two most common normalization techniques in NLP are stemming and lem-
matization. Both techniques aim to reduce words into a more standardized form.
Stemming simplifies words by transforming them into their root form (Santosh and
Hegadi, 2018, p.594). Lemmatization, on the other hand, reduces the words into
their base or dictionary form, ensuring that the word is a valid word in the given
language (Santosh and Hegadi, 2018, p.599). The main objective of these normaliza-
tion techniques is to create a more compact and efficient representation of text while
preserving its semantic meaning (C. Manning and Schutze, 1999, p.194). Having a
more compact representation of text can help reduce complexity in subsequent ML
applications.

Critics such as, (C. Manning and Schutze, 1999, p.194), have pointed out that there
is a potential downside to these techniques, which is a loss of semantic meaning.
Normalization techniques can sometimes cause two distinct words with different
meanings to be reduced into the same lemma or stem. This can lead to a loss in
information, and affect the performance of further NLP tasks. In a study assessing
the effectiveness of normalization techniques, Hickman et al., 2022, found varied res-
ults. The study assessed the performance of ML algorithms after and before using
normalization techniques. The results show that stemming improved the perform-
ance of 6 out of 12 studies looked at. Lemmatization, on the other hand, improved
performance in 6 out of 8 studies looked at. It is important to note that the study
was conducted using English text, and the tools for lemmatization and stemming in
English may be more advanced and developed compared to other languages, such
as Norwegian. Normalization techniques used on English text seem to have varied
results on its effectiveness.

An example of stemming applies to a sentence can be seen in Table 5.

Text Stemming

[“Builders”, “using”, “bricks”] [“Builder”, “use”, “brick”]

Table 5: Example of Stemming in NLP

2.3.4 Vectorization

Vectorization is an important process, translating textual information into a numer-
ical format, enabling computers to process the data. As written by Krzeszewska
et al., 2022, the process involved mapping textual content to a multi-dimensional
vector space, with each dimension corresponding to a distinct textual feature. This
step is necessary since ML models require numerical input to function, as stated by
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Russell and Norvig, 2010. Vectorization is therefore an essential tool, ensuring that
text data can interact with computers and ML algorithms.

In this thesis, multiple vectorization techniques have been utilized. This subsection
will present each of these methods. For clarification, a “corpus” is the collection of
many “texts” or “documents”, while a “document” is an individual piece of writing
within the corpus.

Term Frequency - Inverse Document Frequency

Term Frequency- Inverse Document Frequency (TF-IDF) is a vectorization method
used to assess the importance of a word within a dataset (C. D. Manning, 2009). The
method assigns a weight to each term in a document, determined by its frequency
within that document. This weight is known as the term frequency (TF), denoted
by TFt,d, and it is mathematically shown in Equation 1 (C. D. Manning, 2009).

TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d
(1)

Term frequency represents the proportion of occurrences of a specific term in a doc-
ument, with the value ranging between 0 and 1. The Inverse Document Frequency
(IDF) measures the rarity of a term across the entire corpus. The total number of
documents in the collection is denoted by N , and the IDF for a term t is given in
Equation 2 (C. D. Manning, 2009, p.118) .

IDF(t) = log

(
N

Number of documents containing term t

)
(2)

By integrating both metrics, a weight for each term in the document can be calcu-
lated. The TF-IDF value, which is shown in Equation 3.

TF-IDF(t, d) = TF(t, d)× IDF(t) (3)

The TF component explains the significance of a term within a specific document,
while the IDF is the term’s uniqueness across the entire dataset. Combined, the
TF-IDF score measures a term’s relative importance within a particular document,
taking into account both the local frequency (TF) and its global rarity (IDF). A
high TF-IDF score indicates that the term is both important and distinctive to the
document it appears in, and a low score suggests that the term is common across
many documents, and is less significant in the specific document.

TensorFlow and Keras Tokenization

The TensorFlow and Keras package uses a vectorization algorithm based on the TF-
IDF model (Mart́ın Abadi et al., 2015). The TF-IDF algorithm is described in detail
in the previous subsection. TensorFlow and Keras have been used for vectorization
of the text data in every LSTM model in this thesis.

Word2Vec
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Another method employed in this thesis is Word2Vec, a technique that creates word
embeddings. Developed by Mikolov et al., 2013, the algorithm uses neural networks
to generate vector representations of words based on the textual context of the
words. These embeddings capture semantic meaning between words, which means
that words with a similar meaning will have similar vector representations.

Sentence Piece

SentencePiece is a vectorization algorithm used with the model Text-To-Text-Transfer-
Transformer (T5). SentencePiece is an unsupervised text tokenizer developed by
Google (SentencePiece Contributors, 2023). SentencePiece is mainly used for Neural
Network-based text generation systems, where the vocabulary size is predetermined
before the training of the neural model. Having a predetermined vocabulary size
makes it effective at managing out of vocabulary words, making the T5 model good
in different NLP tasks.

2.4 Machine Learning

This chapter explores the theory of various ML techniques. ML, a subfield of AI,
focuses on developing systems that can learn or enhance performance from exper-
ience, often represented as data (Mitchell, 1997). Unlike traditional programming,
in ML the system is not explicitly programmed to perform a certain task, the sys-
tem is expected to learn from patterns from data, thereby making the system able
to perform tasks or make predictions without directly being programmed to do so
(Alpaydin, 2020, p.2).

ML is commonly divided into three main types: supervised learning, unsupervised
learning, and reinforcement learning (Bishop, 2006, p.3). This thesis will mainly
focus on supervised learning since it is the methodology used in this research.

In supervised learning, the objective is to make a model that can accurately predict
or classify new instances based on a given set of labeled training data. The training
data consists of samples like: (x1, y1), (x2, y2), ..., (xN , yN), where each yj is the
output of a unknown function y = f(x). The task is to find a function h that
is the best approximation to the unknown function f . The performance of the
hypothesis function h is assessed using a test dataset, which is separate from the
training dataset used to build the model (Russell and Norvig, 2010, p.695). The test
dataset provides an unbiased evaluation of the model’s performance, giving feedback
on how well the model learns patterns in the data, and how good it is to generalize
to unseen data.

In supervised learning, the output variable y typically falls into one of two main
categories: Classification or Regression. In regression, the output variable is a con-
tinuous numerical value. This method is used when the aim of the model is to
predict a quantifiable outcome. A classic example is predicting the temperature the
next day, where the temperature is the target variable and a number. In classifica-
tion, the output variable is viewed as a category. Using an example with weather,
in a classification task the weather condition for tomorrow can be predicted. The
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options for weather status can be sunny, cloudy, or rainy, which functions as classes.
Both examples are found in Russell and Norvig, 2010, p.696. This study will exclus-
ively focus on classification methods, and the next subsections will explore different
classification techniques and methods.

2.4.1 Training, Test, and Validation Datasets

In ML, training and evaluating a model requires a sequence of steps to ensure its
effectiveness. The first step is the training phase, where the model is exposed to
labeled data, consisting of input-output pairs. The model learns patterns in the
data, and by altering its internal parameters it aligns its predictions with the actual
output. Sometimes a validation set is used to fine-tune the model’s parameters, to
avoid overfitting to the training data (Müller and Guido, 2016, p.262).

After the model is trained and validated, the testing phase starts, where the al-
gorithm is evaluated using a distinct set of data that is unseen, known as the test
set. This phase evaluates the performance of the ML algorithm, looking at its abil-
ity to make accurate predictions of new data (Müller and Guido, 2016, p.17). A
challenge called overfitting, is when the model learns patterns too specific to the
training set and therefore performs better on the training set compared to the test
set.

Splitting the data into a training, validation, and test set can be challenging if the
dataset is small. It is important to have enough data for each phase to train and
measure the performance of the model accurately (Xu and Goodacre, 2018). When
there is limited data, cross-validation becomes an important and effective technique
(Müller and Guido, 2016, 257).

2.4.2 Cross-Validation

Cross-validation is a technique used to assess how effectively a model can generalize
to new, unseen data. This technique divides the dataset into multiple folds and
iteratively uses different folds as training and test data (Müller and Guido, 2016,
p.252).

The advantage of using cross-validation in predictive ML tasks is the ability to
average out biases (Müller and Guido, 2016, p.254). This is achieved since there are
multiple training and test sets, which makes the model robust. Cross-validation can
mitigate the risk of overfitting, making sure that the model generalizes (Santos et al.,
2018). Additionally, cross-validation provides a method for setting hyperparameters,
optimizing the model’s performance.

K-Fold

K-Fold Cross-Validation is a widely used method for cross-validation. This approach
divides the dataset into k number of equal-sized folds. Each fold is used as the test
set exactly once, while the remaining folds function as the training set (Müller and
Guido, 2016, p.252). The model is trained using the training folds before it is tested
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using the test fold. This process is repeated k times. The results of every iteration
are aggregated and averaged to provide an assessment of the model. Figure 3 shows
how the dataset is split and utilized in K-Fold Cross-Validation with k equal to five.

Figure 3: Illustration of K-fold Cross-Validation Process with Five Iterations - Au-
thor’s own illustration - Adapted (Müller and Guido, 2016, p.252)

2.4.3 Performance Measures - Classification

In this subsection, performance measures of ML algorithms in classification tasks
are explored. Given that the data in this thesis is categorical, the focus will be on
classification metrics.

The aim in classification tasks is to assign an input vector X, to one distinct class k,
among all classes Ck, where 1, ...,K (Bishop, 2006, p.179). In standard classifica-
tion these classes are mutually exclusive, meaning each input vector is categorized
into exactly one class.

The primary focus of this thesis is binary classification problems, which is when
instances can labeled as one out of two states (Russell and Norvig, 2010, p.696).
Often these states are labeled as positive and negative, mathematically shown as
Ck ∈ 0, 1 (Bishop, 2006, p.180). When classification has more than two classes it
is called multi-class classification. This occurs when K ≥ 2 and there is a finite
number of classes (Shalev-Shwartz and Ben-David, 2014, p.47). Moving on, the
performance measures discussed will be binary classification problems, since the
research problems are simplified into binary classification problems.

Confusion Matrix
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In binary classification, the evaluation of a model’s predictions can be done using
a confusion matrix, classifying all predictions into four categories. A True Positive
(TP) occurs when the model correctly predicts a positive sample (Luque et al.,
2019). A False Positive (FP), or a Type 1 error, is a positive prediction, when the
instance actually is negative (Vujović et al., 2021). A True Negative (TN) is when
the model accurately predicts a negative outcome. In contrast, a False Negative
(FN), known as a Type 2 error, is a negatively labeled instance that is wrongly
labeled (Vujović et al., 2021).

These four values together compose a confusion matrix. An example of a confusion
matrix is illustrated in Figure 4.

Figure 4: Example of a Confusion Matrix for Binary Classification - Author’s own
illustration - Adapted Müller and Guido, 2016, p.281

Accuracy

Accuracy is a metric that measures the ratio of correct predictions to the total
number of predictions made (Baldi et al., 2000). Mathematically it is expressed in
Equation 4.

Accuracy =
# of correct predictions

Total # of predictions

=
TP + TN

TP + TN+ FP + FN

(4)

Accuracy provides an intuitive metric of understanding how often a ML model is
correct. However, accuracy can be misleading in cases where the dataset is imbal-
anced (Juba and Le, 2019). In a scenario involving a group of 1000 people, where
one member of the group has cancer, a model that predicts that everyone is cancer-
free will have 99.9 % accuracy. While the accuracy appears impressive, it does not
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give any insight into the models ability to correctly identify cancer (Bishop, 2006,
p.45). Another weakness of using accuracy is that it does not differentiate between
Type 1 and Type 2 errors, only providing information about the total amount of
errors. In many scenarios, it is valuable to differentiate between types of errors (Jain
and H. Kaur, 2017). Using cancer diagnoses as an example again, the cost of a FN
might be significantly higher than a FP.

Precision

Precision is the proportion of the positive identifications that are correct. The
definition of precision is given in Equation 5 (Luque et al., 2019).

Precision =
# of true positive predictions

# of true positive predictions + # of false positive predictions

=
TP

TP + FP

(5)

Precision is a metric that is particularly important when dealing with imbalanced
datasets (Juba and Le, 2019). The reason for that is that correctly identifying
positive samples, is especially important when there are few positive samples in the
dataset. The precision only looks at the positive classified examples and assesses
how many of them are correct.

However, the precision has some limitations. A significant limitation is that the
precision completely ignores the TNs (Flach and Kull, 2015). This can be problem-
atic in scenarios where identifying TNs is as important as identifying TPs. Another
problem that can occur if only precision is used as the performance metric is a con-
servative model that labels very few samples as positive. While this might lead to
a model with high precision, it might still miss many TPs. This problem shows the
need to use several performance metrics to get a complete understanding of how the
model is performing.

Recall

Recall, also known as sensitivity, measures the proportion of actual positives that a
model correctly identifies. Mathematically the recall is shown in Equation 6 (Chicco,
2017).

Recall =
# of true positive predictions

# of true positive predictions + # of false negative predictions

=
TP

TP + FN

(6)

Recall looks at the completeness of the positive predictions made by a model. The
metric tries to minimize the number of FNs. One method of increasing the recall is
to classify more instances as positive, but this will lead to a decrease in precision.
If all samples are labeled as positive, the recall would be 1, but the precision would
be very low, indicating many FPs (C. Manning and Schutze, 1999, p.156).
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The importance of the recall compared to the precision is often dependent on the use-
case. Using the medical diagnostics example with cancer screening, a FN might be
more undesirable than a FP. Then recall might be considered more important than
precision. This highlights the trade-off between precision and recall. Maximizing
one of them often leads to the reduction of the other, therefore a balanced approach
is often necessary (C. Manning and Schutze, 1999, p.22).

F-1 Score

The F1-score is the harmonic mean between precision and recall, and is made to
create a performance metric that balances both precision and recall (C. Manning
and Schutze, 1999, p.156). The formula for the F1-score is given in Equation 7.

F1 = 2× Precision× Recall

Precision + Recall
=

2× TP

2× TP + FP + FN
(7)

Using the F1-score is especially relevant in scenarios when using imbalanced datasets,
since the accuracy might not be a precise measure to evaluate a model’s performance
(Juba and Le, 2019). By combining precision and recall, the F-1 score offers a more
comprehensive evaluation of a model’s performance than both metrics isolated. It
balances the trade-off between precision and recall, creating a reliable measure in
situations when it is desirable to minimize both FPs and FNs.

One of the limitations of using the F1-score is that it treats both precision and
recall equally. This means that the result is an aggregate between them, and it is
impossible to see if the limitations of the model are because of the recall or precision
by only looking at this metric. It means that the metric does not distinguish between
Type 1 and Type 2 errors. Therefore, it is often beneficial to look at the F1-score
in combination with other performance metrics to fully understand the model’s
performance and behavior.

The Precision-Recall Curve

When evaluating a model’s performance, especially using an imbalanced dataset,
relying on a single performance metric might not reflect the model’s performance
(Hasanin et al., 2019, Branco et al., 2016). Therefore the Precision-Recall (PR)
curve emerges as a viable tool. It offers a visual representation showing the trade-
off between precision and recall for different thresholds.

The PR curve is a graph with recall on the x-axis and precision on the y-axis.
It shows the model’s behavior by illustrating the precision and recall at different
threshold levels. In classification, a threshold is the level of certainty a model has
to reach to label an instance as positive (Saito and Rehmsmeier, 2015). Traditional
performance metrics, such as the four already discussed: Accuracy, Precision, Re-
call, and F1, are single-threshold measures, where the scores are calculated based
on a specific threshold. The PR curve, on the other hand, evaluates the model’s
performance across all thresholds.

The curve is valuable when fine-tuning the model’s behavior to balance precision
and recall in a manner that is preferable for the task’s use-case. Some tasks demand
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minimizing FPs, while other tasks wish to minimize FNs. The PR curve offers a
tool to understand how thresholds can affect the results, enabling informed decision-
making in setting the thresholds.

An additional metric that can be derived from the curve is the area under the
PR curve (AUC-PR), which is the integral under the PR curve. It gives a single
number describing the model’s performance over all thresholds (Sofaer et al., 2019).
A perfect classifier will have AUC-PR equal to 1. For random guessing the AUC-PR
will be the same as the proportion of positive samples in the dataset. Therefore,
the AUC-PR offers a single metric that can describe the performance of the model
over all thresholds.

ROC curve

The Receiver Operating Characteristic (ROC) curve is a graph that depicts the True
Positive Rate (TPR) against the False Positive Rate (FPR) at different thresholds
(C. Manning and Schutze, 1999, p.162). The mathematical Equation of the TPR
and the FPR is shown in Equation 8 and 9 (Davis and Goadrich, 2006).

TPR = Recall =
TP

TP + FN
(8)

FPR =
FP

TN + FP
(9)

Similarly to the PR curve, the ROC curve assesses the model’s performance over
different thresholds. The curve works in exactly the same way as the PR curve but
shows the TPR and the FPR, instead of the Precision and Recall (Hoo et al., 2017).
The curve is a tool that can be used to select optimal thresholds to balance the
number of FPs and the number of .

An ROC curve will typically go from the bottom left corner to the top right corner.
A high performing classifier rises steeply towards the upper left corner of the plot,
indicating a high TPR and a low FPR (C. Manning and Schutze, 1999, p.162).
An example ROC curve is illustrated in Figure 5, with different colors representing
classifiers of different performance levels.

21



Figure 5: Example of a ROC-Curve - Author’s own illustration - adapted Thoma,
2018

The AUC is also a metric used when looking at ROC curves. The ROC-AUC will
range from 0.5, indicating a random classifier, to 1.0, indicating a perfect classifier
(Hoo et al., 2017). Previous studies have shown that classifiers that perform well
according to ROC curve, often also perform well when looking at the PR curve
(Davis and Goadrich, 2006), since both curves are related.

2.4.4 Multi-Label Classification

Multi-label classification refers to the problem where an instance can be associated
with multiple classes (Tsoumakas and Katakis, 2007). A movie can be categorised
into multiple genres. An example of this can be seen in Table 6, where “Inception”
can be categorized as “Romance”, “Action”, and “Fantasy”.

Movie Title Romance Action Fantasy

The shape of Water ✓ ✓
Titanic ✓ ✓
Inception ✓ ✓ ✓

Table 6: Example Multi-Label Classification

To solve a multi-label classification problem a strategy is needed to simplify the
problem. A common approach is Binary Relevance, where each label is treated
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as an independent binary classification problem (M.-L. Zhang et al., 2018). This
is a straightforward solution, but it ignores potential correlations between labels.
Classifier Chains is a similar method to Binary Relevance, with the only difference
being, that it uses previous classifications as additional input to the classifier (M.-L.
Zhang et al., 2018).

Label Powerset is another method used in multi-label classification where each
unique combination of labels is treated as a distinct class (Read et al., 2014). This
method is effective at capturing correlations between labels. The issue of using this
method is that many classes will make the total number of combinations very high.

Choosing the best approach for multi-label classification depends on the dataset,
and label correlation. Each method has strengths and weaknesses, and the choice
of method should align with the requirements of the specific problem.

Micro and Macro-Averaging Techniques

In multi-label classification, the performance metrics such as precision, recall, and
F1-score differ compared to single-label classification. In Multi-label classification
an instance can be in two classes, and therefore there is a need for a method to
calculate the performance metrics differently. Therefore micro and macro averaging
techniques are used (Pereira et al., 2018).

Micro-averaging is the method of aggregating all predictions and computing the
average metric. Looking at precision, micro-averaging calculates the TP and FP
across all classes, and computes the precision. The formula for micro precision is
given in Equation 10 (Sokolova and Lapalme, 2009).

Micro Precision =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi

(10)

Macro-averaging computes the performance metric independently for each class and
then calculates the average (Pereira et al., 2018). This means that every class is
given the same importance, regardless of the class size. Using Precision again, the
macro-average can be calculated by calculating the precision for each class and then
averaging the results. The formula for macro precision can be seen in Equation 11
(El Kafrawy et al., 2015).

Macro Precision =
1

n

n∑
i=1

Precisioni (11)

Both methods can be useful to look at. Micro-averaging takes into account the
performance of frequent labels, while macro-averaging treats every class equally.
The same procedure would be used to calculate the micro and macro recall and
F1-score, as Equation 10 and 11 calculates precision.
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2.4.5 Class Imbalance

Dealing with class imbalance is a common challenge in ML, particularly classification
tasks. The problem arises when one class significantly outnumbers another class in a
dataset, leading to biased ML models that tend to predict the majority class (Müller
and Guido, 2016, p.277). This chapter explores various methods used to address
the issue of class imbalance.

Under and Over-sampling

Under-sampling and over-sampling are two common techniques used to mitigate the
problems of class imbalance (Han et al., 2005). Both methods aim to equalize the
class imbalance, providing a balanced dataset for training a ML model.

Under-sampling involves removing a number of instances in the majority class to
make the frequency of every class the same (Mohammed et al., 2020). The most com-
mon approach to under-sampling is using random under-sampling, where random
instances of the majority class are removed. This is an easy to implement method.
The main drawback is data loss, which is particularly problematic in cases when
there are very few samples of the minority class since much valuable information
will be discarded.

Over-sampling, on the other hand, increases the number of instances of the minority
class (Mohammed et al., 2020). The simplest method is called random over-sampling
and randomly chooses instances of the minority class to duplicate. The problem of
this is the possibility of overfitting since the same data point can be duplicated many
times. Examples of both undersampling and oversampling are shown in Figure 6.

Figure 6: Illustration of Undersampling and Oversampling techniques - Author’s
own illustration - Adapted Xia et al., 2019
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The Synthetic Minority Over-sampling Technique (SMOTE) offers a different over-
sampling approach. SMOTE generates new, synthetic instances of the minority class
(Han et al., 2005). To achieve this the method chooses samples from the minority
class, and slightly alters them, creating a new sample. SMOTE offers a more diverse
set of data points for the minority class, removing some of the risk of overfitting.
A problem with SMOTE is that the random new samples might introduce “noise”
to the model, as some of the artificially created samples might overlap with the
majority class (Han et al., 2005). There are many different SMOTE algorithms
designed for different purposes, such as Borderline-SMOTE and Adaptive Synthetic
Sampling (Han et al., 2005, He et al., 2008).

Weights

Adjusting weights within a ML algorithm is another method to deal with class
imbalance, focusing on making the model more sensitive to the minority class (Zhu
et al., 2018). This approach tries to penalize the misclassification of the minority
class more heavily than errors predicting the majority class. This method is simple
to implement for some ML algorithms and has the advantage of not having to alter
the dataset. This means that all the information in the data is preserved.

A limitation of this technique is that internal weights are not supported for every
ML model. This will restrict the use of weights depending on which models and
frameworks are used. In classification tasks in ML, class imbalance is a complex
issue. There is no universal solution that can be applied to every model and dataset.
The goal is to end up with a model with low bias, that can accurately predict both
the minority and majority classes.

2.5 Deep Learning

DL focuses on algorithms inspired by the structure and function of the human brain,
particularly artificial neural networks. DL has been especially important in driving
advancements in fields such as computer vision and NLP. DL is a subfield of ML,
which again is a subfield of AI, their relationship is depicted in Figure 7.
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Figure 7: Venn Diagram of AI, ML, and DL (Goodfellow et al., 2016, p.24)

In this thesis, the data source is primarily text data, and therefore NLP techniques
within DL will be explored. Techniques that will be explored are Recurrent Neural
Networks (RNNs), LSTMs, and transformers since these techniques are especially
effective in handling sequential and linguistic data.

2.5.1 Artificial Neural Networks

The most basic unit within an artificial neural network is the artificial neuron, often
referred to as a perceptron. Each neuron receives multiple input signals, denoted
as x, and processes these input signals to produce a single output signal (Aggarwal,
2018, p.5). Every input the neuron receives is associated with a weight, w, which
determines the importance and influence of that particular input. In addition, each
neuron has a bias, b, adjusting the output independently of the input (Goodfellow
et al., 2016, p.15).

The process of calculating the output of a neuron, using both the input weights
and bias, can be represented mathematically as shown in Equation 12. During
the training of a neural network, these weights and biases are iteratively adjusted
(Nielsen, 2015, p.16). The adjustments aim to improve the network’s performance
and enable the network to learn from complex patterns in data.

z =
n∑

i=1

wixi + b (12)
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In a neural network, each neuron uses input from other nodes with its own weights
and biases, and passes the combined input, z, into an activation function. The
activation function decides the output of a specific neuron (Goodfellow et al., 2016,
p.171). The activation function takes the input, z, and produces an output using a
predefined function.

Historically, the Sigmoid function has been a popular activation function. However,
in newer neural networks, the Rectified Linear Unit (ReLU) function has gained
significant popularity in DL methods (Glorot et al., 2011). Both the sigmoid function
and the ReLU function are mathematically expressed in Equation 13 and 14.

σ(z) =
1

1 + e−z
(13)

ReLU(z) = max(0, z) (14)

The entire process in neural networks, of how a neuron receives multiple inputs and
generates an output, is illustrated in figure 8.

Figure 8: Neural Network Node Activation Process (McCullum, 2020, p.24)

In multi-layer neural networks, the neurons are arranged in a layered fashion, where
the input and output layers are separated by a number of hidden layers (Aggarwal,
2018, p.6). Feed-forward neural networks are a type of artificial neural network
where the connections between neurons do not form any cycles (Goodfellow et al.,
2016, 168). The design ensures a one-way “flow” of data, starting in the input layer,
moving through all hidden layers, before ending in the output layer (Nielsen, 2015,
p.12). Figure 9 provides a visual representation of how feed-forward neural networks
look, each circle representing a neuron.
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Figure 9: Feed-forward Neural Network Architecture (Nielsen, 2015, p.11)

When training artificial neural networks the backpropagation algorithm is utilized.
The backpropagation algorithm works by adjusting weights and biases based on the
errors in the predictions (Goodfellow et al., 2016, p.204). This adjustment allows
the neural network to learn and enhance its performance.

The backpropagation process begins with calculating the network’s prediction error,
typically using the squared difference between the predicted values and the target
values. This error calculation serves as the basis for adjusting weights and biases
moving on (Alzubaidi et al., 2021). After the error is calculated, the gradient descent
algorithm is used. Gradient descent is an optimization algorithm that finds the local
minimum of the error function. The algorithm works by updating the network’s
weights in response to the calculated error, with the goal of minimizing the error
over time (Alzubaidi et al., 2021). The gradient of the error function is calculated
using the network’s weight and is shown in Equation 15.

∇wE =
∂E

∂w
(15)

In Equation 15, ∇wE is the gradient of the error function E with respect to the
weights w of the network. Furthermore, the weights are updated using the formula
expressed in Equation 16 (Goodfellow et al., 2016, p.231).

wnew = wold − η · ∇wE (16)

In this formula wnew represent the updated weights, while wold is the previous
weights, η is the learning rate, ∇wE is the gradient of the error function E. The
learning rate, η, is a small positive number that controls the step size of the weight
update, ensuring stable adjustments.
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A key element in backpropagation is the chain rule, which is used for computing the
gradient of the loss function with respect to each weight for networks with multiple
layers. Each layer in the network is viewed as a unique function, and the chain rule
is applied to multiply the derivatives of all functions (Goodfellow et al., 2016, p.205).
This allows the error gradient to be propagated backward through the network, from
the output layer to the input layer, ensuring all the weights in all layers are updated
in response to the error.

To summarize, backpropagation distributes blame back through the network, ad-
justing weights to enhance learning. While feed-forward neural networks can be
used for certain tasks, they struggle with sequential data, such as time series or
text, due to their inability to remember previous inputs. To address this limitation,
RNNs were designed.

2.5.2 Recurrent Neural Networks

RNN are a type of neural network, specialized for processing sequential data and
natural language. Unlike traditional feed-forward neural networks, RNNs use a
feedback loop, enabling it to keep memory of previous input (Fei and Lu, 2017).
This feature makes RNNs able to capture sequential dependencies.

Structurally, RNNs integrates a form of “memory” by incorporating its input from
previous time steps. In addition to the current input value, denoted as xt, RNNs also
consider a hidden state from the previous time step, labeled as ht−1. A neuron’s hid-
den state is calculated using Equation 17, where wx, and wh represents the weights
of the current input and the previous hidden state, respectively, b is the bias, and f
is the activation function (Goodfellow et al., 2016, p.379).

ht = f(wx · xt + wh · ht−1 + b) (17)

This mechanism enables neurons to keep some state information across time steps.
As a consequence, the output at any given time step is influenced by all preceding
inputs. The presence of the hidden state enables RNNs to detect patterns in se-
quences, a capability that standard feed-forward neural networks lack. This unique
characteristic of RNNs is depicted in Figure 10, which shows an RNN unrolled across
time steps. In the Figure, the same network A is applied at each time step, with the
hidden state ht being passed along to the next step. This visualization shows how
RNNs can handle different lengths of sequences as input, and maintain information
across these sequences.
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Figure 10: An unrolled RNN - Author’s own illustration - adapted from (Olah, 2015)

However, RNNs encounter two challenges called the vanishing and exploding gradi-
ent problems. As RNNs iterate through sequences, the gradients, using back-
propagation to adjust the networks weights, can either go to zero or increase ex-
ponentially (Sutskever, 2013). The vanishing gradient phenomenon happens due to
the repeated multiplication of numbers smaller than one, during backpropagation
through time (Alzubaidi et al., 2021). This makes the network unable to utilize
information from earlier steps in the sequence. Exploding gradients, on the other
hand, happen because of the multiplication of numbers larger than one during back-
propagation (Alzubaidi et al., 2021). This leads to unstable network behavior, where
the weight updates are so large that they destabilize the learning process. To ad-
dress these issues, several advanced architectures have been proposed. One of the
most popular of these architectures is called LSTM networks.

2.5.3 Long Short-Term Memory

The LSTM unit, introduced by Hochreiter and Schmidhuber, 1997, represents an
advancement in the field of RNNs, specially designed to address the challenges of
gradient instability. LSTMs are specially designed to avoid the long-term depend-
ency problem, making them excellent at capturing information from sequences that
have a long interval of relevance (Sutskever et al., 2014).

Figure 11 shows a single LSTM unit at time step t. It displays the flow of information
through various gates, and how the cell state is updated. A LSTM cell contains the
following three gates: a forget gate, an input gate, and an output gate (Goodfellow
et al., 2016, 412). These gates manage both the hidden state and the cell state
over time, regulating the flow of information, and deciding which data should be
updated, stored, or discarded as the network process sequences.
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Figure 11: LSTM Module Structure (Olah, 2015)

The forget gate within a LSTM unit has the responsibility to determine which
information should be removed from the cell state. It employs a sigmoid function
(σ) to produce a number ranging from 0, indicating forget everything, to 1, indicating
complete retention. The operation of the forget gate is mathematically expressed in
Equation 18 (Graves, 2013).

Forget gate: ft = σ(Wf · xt + Uf · ht−1 + bf ) (18)

In Equation 18, xt is the current input vector, ht−1 is the previous hidden state, Wf

and bf are the weight matrix and the bias term of the forget gate, respectively. The
output ft indicates which parts of the previous cell state, Ct−1, should be kept or
discarded.

The input gate’s function is to decide which values are to be updated in the cell
state. It generates a vector of new candidate values, c̃t, which could be added to the
cell state. This process is represented in Equation 19 and 20 (Graves, 2013).

Input gate: it = σ(Wi · xt + Ui · ht−1 + bi) (19)

Cell input: c̃t = tanh(Wc · xt + Uc · ht−1 + bc) (20)

where, σ and tanh are the sigmoid and hyperbolic tangent functions, respectively.
The cell state is then updated by using both the forget gate output with the new
candidate values, expressed in Equation 21 (Graves, 2013).

Update the cell state: ct = ft ⊙ ct−1 + it ⊙ c̃t (21)

Lastly, the output gate controls the flow of information from the cell state to the
hidden state, which is either used for predictions or transferred to the next LSTM
cell. The mathematical expressions of the output gate and the computation of the
hidden state are shown in Equations 22 and 23 (Graves, 2013).
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Output gate: ot = σ(Wo · xt + Uo · ht−1 + bo) (22)

Compute the LSTM cell output: ht = ot ⊙ tanh(ct) (23)

In these formulas, ⊙ means the element-wise multiplication making sure each part
of the cell state is updated based on the calculated outputs of the forget and input
gates. The output gate utilizes the updated cell state to generate a new hidden
state, ht, hopefully only containing relevant information.

Through this structure, LSTM networks have revolutionized how sequential data
is handled in neural networks. By addressing the limitations of traditional RNNs,
LSTMs have enhanced the performance in solving complex tasks involving sequential
data, such as language processing and time-series tasks.

2.5.4 Transformers and the Attention Mechanism

In 2017 the Google engineers, Vaswani et al., 2017, wrote the paper “Attention Is All
You Need”, which introduced the transformer architecture, and a paradigm shift in
NLP. Vaswani et al., 2017’s model beat traditional models, and set a new benchmark
for text translation tasks, and has revolutionized other NLP tasks. This chapter
starts with explaining the attention mechanism before describing the transformer
architecture. Lastly, T5 model is explained, which is the transformer model utilized
in this thesis.

In 2014, Bahdanau et al., 2014, introduced the attention mechanism, changing how
neural networks process text. This mechanism enables models to dynamically focus
on a particular segment of a sequence during text processing, similar to how humans
read and comprehend text. This is achieved through learning alignments between
the states of the decoder and the encoded representations of the input, allowing the
model to assign different importance to different words in an input sequence.

Expanding this mechanism, the self-attention mechanism was developed, which is
an integral part of the transformer model developed by Vaswani et al., 2017. Self-
attention uses a single layer by aligning its processing to all positions within the
sequence itself. This allows the model to assess the entire sequence’s information
when processing each word, capturing interdependencies across the entire sequence.

The potential of self-attention was realized by Vaswani et al., 2017 in the transformer
architecture. This architecture uses scaled dot-product to calculate the attention
using the formula in Equation 24.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (24)

In Equation 24 Q, K, and V represent queries, keys, and values, respectively. The
Transformer calculates the dot products of the query with all keys and scales the
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results by the inverse square root of the dimensionality. Lastly, a softmax function
is applied, which transforms the scaled dot product into a distribution. In this
distribution, each weight indicates the attention, or importance, that each word
in the input sequence is given. This allows the Transformer to focus on the most
relevant part of information when constructing the output sequence.

The Transformer model enhances its attention capabilities using Multi-Head At-
tention, which allows multiple self-attention operations to be calculated in parallel.
This allows the model to capture multiple parts of the input at the same time. As
shown in Figure 12d, queries q, keys k, and values v are each projected across h
layers. These are concatenated, and linearly transformed as seen in Equation 26

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)W
O (25)

where headi = Attention(QWQ
i , KWK

i , V W V
i ) (26)

In Equation 26, QWQ
i , KWK

i , V W V
i , is the linear projection matrices.

Figure 12a shows the transformer architecture as designed by Vaswani et al., 2017. It
shows how the overall architecture looks, and how the encoders and decoders work.
Firstly the input is embedded, which is a vectorization algorithm, the positional
encoding is added to indicate where in the input a word is. This means that the
same word in different places in the input will be embedded differently.

In Figure 12b the encoder architecture is depicted. The encoder within the trans-
former model uses a stack of identical layers, each consisting of two main sub-layers:
the multi-head self-attention, and a feed-forward network. Multi-head attention
makes it possible to handle inputs in parallel in the encoder, and it makes it possible
to focus on different parts of the input independently. After this, the feed-forward
network transforms the data received from the multi-head attention layer. The next
step “Add & Norm” combines the output and normalizes the result, stabilizing the
learning process. In the stack of encoders, the output of one encoder is used as the
input for the next encoder, creating a complex representation of the original input.

In Figure 12c the decoder architecture can be seen. The decoder is similar to the
encoder in structure, but with one main difference to make sequence generation
possible. The decoder starts by using masked multi-head self-attention, which makes
sure that future words from the sequence are hidden from the decoder. The masking
makes sure that predictions for a position only depend on already known outputs
before it. After this, the multi-head attention layer is used to focus on relevant parts
of the output of the encoder. The “Add & Norm” step normalizes in this case, and
the feed-forward network enables the decoder to produce relevant sequences, one
element at a time. The output sequences are generated using the full data of the
encoder’s input, and the part of the output sequence that is already generated.

After the final decoder layer, the output is passed through a linear layer. The
linear layer projects the decoder’s high-dimensional output into a space that has
the same dimensionality as the model’s vocabulary. This process is needed because
the decoder’s output is high dimensional, but for humans to understand the output
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needs to be interpretable as words or tokens. The last layer used is a softmax
layer, which converts the raw predictions made by the linear layer, to a probability
distribution. Each element of the softmax vector represents the model’s probability
of that a corresponding token to be the next element in the output sequence, and
the token with the highest probability is selected.

Text-to-Text Transfer Transformer (T5)

T5, also known as Text-to-Text- Transfer Transformer, extends the transformer
model by framing NLP tasks as a text-to-text problem (Raffel et al., 2020). This
means that it is specialized in taking text as input and producing text as output,
examples of problems like this are summarizing and translation. T5 comes in five
different sizes: small, base, large, XL, and XXL. The bigger models generally allow
for better results but for the cost of computational complexity for fine-tuning.

T5 is already pre-trained using “unsupervised pre-training”, where the model is
trained on a large corpus without any specific objectives (Raffel et al., 2020). This
makes T5 able to learn and understand language and context. T5 is then “fine-
tuned”, which is supervised training, where it is trained on a specific task. This
allows the model to in the first stage understand language, and in the second stage
enables this knowledge to be used to solve specific tasks.
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(a) The Transformer Model Architecture
(b) The Transformer En-
coder

(c) The Trans-
former Decoder (d) Multi-Head Attention Block

(e) Scaled Dot-
Product Attention
Process

Figure 12: Overview of the Transformer Model Architecture and Components -
Author’s own illustration - based on Vaswani et al., 2017
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3 Methodology

This section describes the methodologies employed in this research, exploring how
ML can be utilized within construction safety. The section contains a literature
review, looking into both construction safety and fields within AI. The data undergo
a thorough EDA and cleaning. This study utilizes three distinct ML algorithms, each
designed for a specific RQ related to JSA. The ML models aim to assess the quality
of JSAs, identify potential hazards, and generate preventive measures.

3.1 Literature Review

The literature review in this paper is divided into three main categories. The first
category focuses on safety within the construction industry, with an emphasis on
the theory behind JSA. The second category looks into the applications of ML in
improving construction industry safety. The final category examines more technical
aspects, exploring methods in ML and in DL.

The literature review was conducted in two distinct steps. First, a search prompt
was used to identify relevant papers within academic databases. The relevance of
each paper was determined after reviewing its abstract. The two search engines used
for this thesis were Google Scholar and NTNU’s digital library, Oria. Both search
engines provide the possibility to filter results based on whether it is peer-reviewed,
ensuring papers are reviewed by scholars.

Search Query No. of hits (Oria)

“Job Safety Analysis” 123

“Job Hazard Analysis” 61

“Job Safety Analysis” + “construction safety” 23

(“Job Safety Analysis” OR “Job Hazard Analysis”) AND “Machine learning” 1

“Construction safety” AND “machine learning” 117

“Safety Performance” AND “machine learning” 86

“Safety Performance” AND “Natural Language Processing” 3

“Construction safety” AND “Natural Language Processing” 26

“Long short term memory” AND “Text data” 136

“Long short term memory” AND “Classification” 5 818

“Transformers” AND “Text generation” 108

Table 7: Search Queries used in Literature Review

The selection of papers was based on the following inclusion criteria: (IC1): Avail-
ability on either Oria or Google Scholar; (IC2) publication date after 2010; (IC3)
written in either English or Norwegian; (IC4) the papers had to be peer-reviewed.

Exceptions to these inclusion criteria were made on occasion. Certain older papers,
heavily cited within their field, were included. In addition to this state-of-the-art
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Id Type Criteria

IC1 Availability ✓
IC2 Time 2010-2023
IC3 Language English OR Norwegian
IC4 Peer reviewed ✓

Table 8: Inclusion Criteria

technical papers, often published by major technology companies such as Google and
Meta, were also considered. These papers are extremely relevant when looking into
technical aspects, even though the papers are not always academically published or
peer-reviewed.

3.2 DiSCo Project

DiSCo is short for, Sustainable value creation by digital predictions of safety per-
formance in the construction industry, which is a research project funded by the
Norwegian Research Council (NTNU, 2023). The project has four industry partners
serving as important stakeholders in the research program. The project is managed
by the Institute of Industrial Economics at NTNU, and the project’s timeline spans
from 2021 to 2025.

The aim of the DiSCo project is to gain insight into how AI can be used at the
early stages of construction projects, to accurately forecast the safety standards of
projects. The goal is that the adoption of new technology can help decision-making
and lower the number of accidents in the industry.

3.3 Confidentiality and GDPR

The company from where the data was obtained is undisclosed to maintain con-
fidentiality, as the dataset contains sensitive information like personal names. The
reason for this confidentiality is to be inline with the General Data Protection Regu-
lation (GDPR). To ensure privacy, the identifiable information in the data has been
removed. The ML models used in this thesis do not use any sensitive data. They
use data related to hazards and descriptive information within JSA.

3.4 Exploratory Data Analysis

An EDA is a methodical approach for an in-depth examination of datasets, aiming
to gain insights into the content of the data (Chatfield, 1986). This process can
help identify patterns, challenges, and potential limitations within the dataset. The
primary objective of doing an EDA is to get insights into the data that can enable
well thought out decision-making in the future usage of the data.

37



3.4.1 Project Data

This paper uses several datasets gathered from a leading European contractor, spe-
cifically from its Norwegian branch, spanning from 2019 to 2023. These datasets
include information related to JSA reports.

In this chapter, each data is systematically explored. In the first dataset, referred to
as the “Reports”-dataset, each observation represents an individual JSA. Following,
the “Reports, Hazards, and Measures” (RHM) dataset is delved into. A notable
complexity within this dataset is that a JSA may include multiple hazards, and each
hazard may have multiple identified preventative measures. To help clarify, hazards
and measures have been divided into two separate datasets. Figure 13 illustrates a
simplified data model. This model shows both the original dataset structure and
the adjusted structure made for clarity. The “Cause” dataset looks into the causes
of the creation of JSAs, while the “Checklist” dataset consists of questions asked
about the JSA process to ensure a high quality of the JSA. Both the “Cause” and
“Checklist” datasets are simplified in the figure for enhanced clarity.

Figure 13: Entity-Relationship Diagram of Job Safety Analysis Dataset

A comprehensive description of all columns in the datasets is presented in Table 9.
This table includes the dataset in which the column is, the name of the column, a
short description of the column, and lastly the data type of the column. The terms
“Primary Key” and “Foreign Key” are respectively denoted by the abbreviations
PK and FK.
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Dataset Column name Description Data type

Reports

Project name Name of project associated with
the JSA

Category

Date Date when the JSA was created Date
Subject area Subject area of the JSA Category
Responsible firm Firm responsible for the JSA Category
Work operation Category describing the work op-

eration performed
Category

Project number Project ID number Integer
Activity Description Description of the planned activity Text
Good Example Indicator of whether the JSA is

considered a good example
Boolean

Report ID Unique identified for each JSA PK

Report,
Hazards,
Measures

RHM ID Unique identifier for each measure
and hazard found within an activ-
ity

PK

Hazards Category showing the type of haz-
ard associated with an activity

Category

Preventative Measure Preventative measure proposed to
mitigate a hazard

Text

Report ID JSA report ID that links the haz-
ard and measure to JSA

FK

Activity relationship The relation between the activity
and the hazard described

Text

Cause
Cause ID Unique identifier for each cause PK
Cause desc Description of the cause Text
Report ID Links the cause to the JSA report FK

Checklist

Checklist ID Unique identifier for each checklist
item

PK

Report ID Links the checklist item to the JSA
report

FK

Question The checklist question related to
safety measures

Text

Answer The response to the checklist ques-
tion

Boolean

Hazard
Hazard ID Unique identifier for the hazard PK
Hazard Description of the hazard Text
Report ID Links the hazard to the JSA report FK

Measures

Measure ID Unique identifier for the measure PK
Measure Description of the safety measure Text
Activity relation Describes the relation of the meas-

ure to the activity
Text

Hazard ID Links the measure to the specific
hazard

FK

Table 9: Description of Every Variable in the Dataset

3.4.2 JSA-Report Data

This subsection delves into the JSA-report data. Figure 14 displays the chronological
distribution of JSAs, plotted by the month. The dataset spans from September 2019
to May 2023, and a notable trend is the increase of the number of JSAs over time.
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Figure 14: Monthly Distribution of JSAs Over Time

Further analysis is conducted on the proportions of different types of activities.
These proportions are depicted in a pie chart presented in Figure 15. The chart
reveals a relatively balanced distribution among the different types of activities.
The categories in Figure 15 are translated to English, but their original content is
available in Appendix B.

Figure 15: Pie Chart of Different Activity Types in JSA Reports

An observation is that the predominant category of activity is “others-defined”. The
fact that the most common category is other presents challenges when using this
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variable in a ML model, due to the ambiguous nature of the value. Aside from this
category, the distribution among the remaining categories is uniform. The “Others”
segment, which aggregates all the least frequent categories, only accounts for 3.4
% of the data. Given the even distribution of the other categories, this variable,
in conjunction with textual descriptions of the activities, can be used to possibly
increase the predictive value of ML algorithms that try to find potential hazards.

Moving on one can plot the most common words in describing the activities. A word
cloud of the most common words in activities is shown in Figure 16a. Subsequently,
the analysis can include the frequency of word usage in the descriptions of activities.
Figure 16 illustrates a word cloud and the most frequent words. It should be noted
that the word cloud automatically filters stopwords, while the word count includes
stopwords.

(a) Word Cloud of Words used JSA Activity
Descriptions

(b) Frequency Distribution of the Most
Common Words in JSA Activity Descrip-
tions

Figure 16: Textual Analysis of Words from JSA Activity Descriptions

Figure 16a shows that various forms of the word “Assembly” are the most common in
the activity description. Additionally, the terms “hoisting” and “lifting” are widely
used, alongside “scaffolding” and “crane”. These findings show that the dataset is
collected from the construction industry, because of its frequent use of construction
industry-specific terminology. The frequency of the most common words within the
dataset is depicted in Figure 16b. This depiction supports the findings in the word
cloud. Hence, the text from the Figures confirms that the text is related to the
construction industry.

Another attribute that should be examined closer is the length of the activity de-
scriptions, quantified by the number of characters. Figure 17 shows the distribution
of text lengths by the number of characters. The majority of the descriptions are
about 50 characters long, which makes them short and concise. While some descrip-
tions are more descriptive, reaching 500 characters, these are outliers and not the
norm.
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Figure 17: Character Count Distribution of JSA Activity Descriptions

3.4.3 Hazards Data

The following analysis focuses on the hazards dataset. A pie chart categorizes the
nine most common hazards, with the remaining hazards aggregated to an “Others”
category, as depicted in Figure 18. In Figure 18 translated hazards are used, but
the original content is available in Appendix C

Figure 18: Pie Chart of the Most Common Hazards

Looking at the pie chart, it can be observed that the three most common hazards
are falling objects, moving objects/ crush hazards, and falls from height. There is
significant variation in the distribution of hazard categories, with some being more
common than others.

Each JSA may have multiple hazards associated with it. To understand the relation-
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ship between JSA and the hazards identified, Figure 19 illustrates the distribution
of the number of hazards identified per JSA. The identification of three hazards per
JSA is the most common, with the occurrence of one and two hazards being iden-
tified being almost as common. After three identified hazards, there is a noticeable
decline in the number of hazards identified per JSA.

Figure 19: The Distribution of Identified Hazards per JSA

When analyzing the hazards identified within JSAs, it is important to remember
that an activity may be associated with multiple hazards. Figure 20 depicts a
confusion matrix that gives insight into which hazards often are identified within
the same activity. A pattern emerges from the confusion matrix, which is that the
identification of “falling objects” often occurs simultaneously with the identification
of “fall from height”. This correlation is logical since activities performed at elevation
increase the risk of both persons falling and falling objects. Similarly, there is a
correlation between the presence of “falling objects”, and “moving objects/crush
hazards”, which makes sense since the hazards are related. “Collision” hazards
also tend to accompany “falling objects”. The relationships between the identified
hazards can suggest that aggregating hazards into broader categories may improve
the performance of ML algorithms when trying to identify hazards.

3.4.4 Preventive Measures Data

The EDA proceeds with an analysis of the “preventive measures” data. Firstly, the
distribution of the number of preventative measures associated with each identified
hazard can be seen in Figure 21. The visualization shows that it is most common
for a single preventive measure to be identified for a hazard, however there are some
instances where multiple preventative measures are identified to a hazard.
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Figure 20: Heatmap of Hazards Co-occurrences in JSA

Figure 21: The Distribution of Preventative Measures Identified per Hazard

44



In Table 10, the number of JSA samples is shown, along with the number of hazards
identified for those JSAs, and the number of measures identified for those hazards.

Type Number of Observations

Job Safety Analysis 3425

Hazards identified for JSA 6313

Measures identified for Hazards 8319

Table 10: The Number of Observations of JSA, Hazards, and Preventative Measures

Text analysis measures

Examination of the word cloud generated from the preventive measures text reveals
clear differences compared to the activities text data. In Figure 22a, the Norwegian
word “bruke”, meaning “use” seems like the most common. Additionally, the word
“must” is used frequently. In Figure 22b the most common observations are listed
with their frequency. Notably, adjectives associated with preventive measures in-
clude words such as “use”, “secure”, and “block”, likely describing the actions used
as preventative measures.

(a) Word Cloud of Words used in Prevent-
ative Measures

(b) Frequency Distribution of the Most
Common Words in JSA Measures

Figure 22: Textual Analysis of Words from Preventive Measures in JSA

Figure 23 shows the character count for each preventative measure. Compared to
the activity descriptions, the character lengths of the preventive measures are more
evenly distributed. The most common length of a measure description is about 60
characters long, though the average length is likely higher. This suggests that JSA
creators provide a more detailed description of preventive measures compared to the
activities themselves.
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Figure 23: Character Length Distribution of Preventive Measures

3.4.5 Causes of Creating JSA

The dataset includes details on the motivations for conducting the JSA. Table 11
shows these reasons with the rates at how often each of them occurs, with the ori-
ginal Norwegian text being available in Appendix D. The three primary reasons
for initiating a JSA are; “The consequences are serious if something goes wrong”,
followed by “The work involves a risk of health damage/injury risk”, and lastly “Ac-
cidents or unintended incidents have occurred in the past during similar activities”.
The two first reasons stem from the potential severity of the risks involved, whereas
the last reason is a proactive approach to learn from historical incidents.

Reason Count

The consequences are serious if something goes wrong 1473

The work involves a risk of health damage/injury: 1415

Accidents/unwanted incidents have occurred previously in similar activities: 1240

The activity is new and unknown 568

People who do not know each other have to perform a critical job together 522

Prerequisites for the activity have changed (weather conditions, time, sequence,
other activities nearby):

342

The work entails deviations/changes from descriptions in procedures and plans: 313

Need to provide and document equipment-specific training: 221

Other: 110

Table 11: Reasons of Initiation of JSA
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3.4.6 The Good Example Variable

The dataset includes a column that denotes whether the identified hazards and pre-
ventative measures associated with an activity are considered a “Good Example”.
Given one of the RQs is to find indicators of the quality of a JSA, a detailed examin-
ation of this variable is fitting. Figure 24 displays the distribution of Not a Number
(NaN), False, and True values within the variable.

(a) Proportion of “Good Example”
Assessments Including NaN Values

(b) Proportion of “Good Example”
Assessments Excluding NaN Values

Figure 24: Distribution of “Good Example” Assessments in JSA

Figure 24a reveals that a substantial amount of JSAs lack labels. This presents
questions about whether the NaN values should be categorized as negative examples
or be discarded as “unlabeled”. The following analysis will look at how JSAs labeled
as “Good Examples” distinguish them-self from JSAs labeled as “False”, while the
JSAs labeled with NaN is disregarded.

Figure 25: Scatter Plot of JSA “Good Example” classifications by the Number of
Measures and Their Lengths
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Observations of Figure 25 suggest that JSAs are more likely to be considered a “Good
Example” with a greater number of measures identified. On the other hand, the
average character length of measures seems to have a smaller effect on whether a JSA
is a “Good Example” or not. A more detailed exploration of this relationship can
be seen in Figure 26. From this figure it seems like a “Good Example” on average
has a higher number of identified measures, and longer lengths of the measures
descriptions. The number of measures identified seems considerably higher for the
good examples, while they seem to have slightly more characters.

(a) Distribution of Number of Measures by
“Good Example” Variable

(b) Distribution of Average Length of Meas-
ures by “Good Example” Variable

Figure 26: Violin Plots of the “Good Example” Variable

3.5 Data Cleaning

In this subsection, the methodologies used for data cleaning are presented. The
cleaning of each dataset is explained in detail.

3.5.1 JSA-Reports Data

First, looking at the JSA reports data the dimensionality is that there is 3425
different observations, each with 22 variables captured in Table 12.

Columns Rows

22 3425

Table 12: Dimensionality of Reports Data

Removal of JSAs containing the string “Test”

In the dataset, there are many activity descriptions which are called “Test”. To
clean the dataset, a query for the term “Test” was used, to find that 39 observations
contained the word. Looking closer at these observations one can see that many
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of them are attempts to test system functionality, while others contain the word
“test” in a contextually relevant way. Therefore, a manual review was conducted
to differentiate between noise and meaningful data. Table 13 gives an example of
entries that were typically removed and entries that have been kept.

Text content of row Include in Analysis?

[Anonymized] is energized and test driving is ongoing on
Tuesdays, Thursdays, and occasionally on Fridays. Work
in/near the track requires an application. Travel on the
track does not require an application

Yes

Test description No

Table 13: Examples of Activity Descriptions Containing the String “test”

Detecting the language of activity description

The dataset examination revealed numerous observations consisting of random key-
strokes, which need to be filtered to ensure high data quality. This thesis approaches
the issue by labeling each activity description with a language. The outcomes of
doing language labeling are shown in Table 14.

Language Count

Norwegian 3164

Danish 99

English 44

Swedish 27

German 11

Indonesian 10

Tagalog 7

Dutch 7

Afrikaans 5

Unknown 4

Table 14: Language Distribution Among Activity Descriptions

In addition, the dataset contained 15 other languages, each with three or fewer
instances. The entries labeled as Norwegian were assumed to be informative and
therefore kept. Since language detection models often struggle with distinguishing
between Norwegian and Danish due to the similarity in the languages written form,
danish-labeled descriptions were also kept.

Considering only 44 English-labeled instances, the decision to remove these from
the dataset was made, since ML algorithms need input in the same language. The
Swedish samples were kept since some were mislabeled, and a few of them seemed
like Swedish workers working in Norway. The rest of the languages were reviewed
manually. Those incorrectly labeled, but written in Norwegian were kept. While
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the entries that were random keystrokes and in other languages were removed from
the dataset.

Text Preprocessing: Tokenization, Special Character Removal and Lower
Casing

The preprocessing started with tokenization, where the text was segmented into
individual words. Then special characters, such as &, *, ], were removed from the
text strings. Finally, all text was converted to lowercase to ensure uniform word
recognition in future ML processes.

Stopword removal

Following these techniques, stopwords were removed from the text. This was done by
using a predefined list of Norwegian stopwords from the Natural Language Toolkit,
where any words present in the list are removed from the tokenized text.

In preprocessing, stopword removal was selectively applied based on the type of ML
model being used. When using LSTM networks, and traditional ML algorithms,
stopwords were removed sometimes and kept sometimes. This was to test if the
model would benefit from the removal of redundant words or not. During the train-
ing of the generative AI model stopwords were kept at all times, since transformer
models have a complex and advanced contextual understanding, which yields bet-
ter performance when having the full textual content. The reason for this is that
transformer models are often trained on large amounts of textual data, and the text
used to fine-tune to model, should have the format as the model was trained on.

3.5.2 Preventive Measures

The text data for preventive measures was processed using the same techniques as
those used for activity descriptions. Given that the methodologies are similar, the
steps of data cleaning for preventive measures will not be explained in detail.

3.5.3 Hazards Data

The hazards used in this thesis correspond to a list of predefined hazards from the
provided data. A full list of these hazards, with the number of occurrences, is shown
in Table 15.

Looking at the data, it seems like the JSA system has the option to either choose
one of the predefined hazards in Table 15, or define a new hazard with text. A closer
examination was performed to determine the proportion of self-identified hazards
compared to the predefined list. The findings are that 7279 of the hazards identified
align with the predefined list of hazards, while 1687 hazards identified do not match
with the predefined list. When looking closer at the unlisted hazards many different
unique hazards are found, where the most common is an empty string. Given the
need to have many samples per category for ML algorithms, the free-text hazards
were removed from the dataset used for classifying hazards. Moving onward in this
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chapter only hazards which match the predefined list will be used.

Hazard Count

Falling object 1725

Moving objects/ entrapment risks 1205

Fall from a height 1182

Collision 764

Electrical shocks 325

Structural failure 302

Heavy lifting/heavy materials 243

Fire, explosion 227

High pressure, splash hazard 201

Risk of tripping or slipping 199

Weather conditions (wind, cold, fog) 181

Drowning 172

Dust, smoke, gases, toxic substances 146

Emissions/pollution 132

Sharp objects (cuts, stabs) 120

Noise, vibration 73

Working in confined spaces/oxygen deficiency 40

Biological health hazard 20

Collapse of excavation pit 14

Surfaces with extreme temperatures (high/low) 8

Table 15: Frequency of Each Hazard in the Dataset

When looking at Table 15 it can be seen that the different hazards are unevenly
distributed. To make sure that every class has enough samples the hazards with less
than 100 occurrences were removed. As a consequence of this, the following hazards
did not meet the criterion and were removed:

• Noise, vibration

• Working in confined spaces/oxygen deficiency

• Biological health hazard

• Collapse of excavation pit

• Surfaces with extreme temperatures (high/low)
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3.6 Machine Learning

To address the RQs in this thesis, three different ML algorithms were designed.
The first algorithm is called the Good Example Classification algorithm, the second
algorithm is called the Hazard Classification Algorithm, while the third algorithm
is called the Preventative Measures Generation Algorithm.

3.6.1 Algorithm I: Good Example Classification

The Good Example algorithm is designed to determine the probability of a JSA
qualifying as a “Good Example”. This task is framed as a classification task, where
the goal is to assess the potential of a JSA to meet “Good Example” criteria. The al-
gorithm outputs a value ranging from 0 to 1, representing the likelihood of that given
JSA being in the “Good Example” category. To address this classification challenge
numerous ML models were utilized, including RF, Gradient Boosting (GB), and
LSTM.

Activity description + [Preventative measures] 7→ Probability of “Good Example”
(27)

The model has to address the issue of a significant imbalance in classes as seen in
Figure 24b. To fix this problem, two techniques were used, which are SMOTE and
the use of weights, both of which are explained in detail in sub-chapter 2.4.5.

Different vectorization techniques were used to identify the optimal solution, includ-
ing TF-IDF and Word2Vec. TF-IDF, a well-established method, converts text data
into numerical values, while Word2Vec represents a more advanced vectorization
approach, utilizing embeddings. A detailed explanation of both methods is presen-
ted in subchapter 2.3.4. In addition to using the text data, quantitative data was
also used as input to ML models. These quantitative measures included the average
length of preventative measures and the number of identified measures. The aim of
using different data as input to models was to see if quantitative data alone could
give accurate predictions, or if text data was needed. In the end, the three different
types of data were used in the training; quantitative data, TF-IDF vectorized data,
and Word2Vec embedded data.

During the ML models training, only a test set and a training set were utilized. The
reason for not using a validation set is due to class imbalance and the few positive
examples of “Good Example”. Splitting the dataset into three parts (training, val-
idation, and test) instead of two could potentially increase the difficulties associated
with class imbalance.

To prevent overfitting when only using a training set and test set, cross-validation
was employed. The cross-validation algorithm used is K-folds cross-validation with
k equal to 5, which is explained in sub-chapter 2.4.2. Pseudo code for Algorithm I:
Good Example Classification is given in Algorithm 1.
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Algorithm 1: Pseudo-code for Algorithm I: Good Example Classification

Data: Dataframe containing a list of measures, activity description, good
example variable

Result: Model performance (Accuracy, Precision, Recall, F1 Score, ROC
Curve, Confusion Matrix)

begin
/* Data Preparation and Feature Engineering */

Clean and prepare text data; Calculate text length and other numerical
features
Group and aggregate data by “rapport id”
Apply TF-IDF Vectorization and Word2Vec to process text data
Scale numerical features using MinMaxScaler
Combine text and numerical features
/* Model Training and Evaluation */

Initialize models (Random Forest, Gradient Boosting, LSTM)
for each model do

/* K-Fold Cross-Validation */

Set up K-Fold cross-validation
foreach fold do

Split data; Apply SMOTE if needed
if model is LSTM then

Tokenize and pad text sequences
Define LSTM model with Embedding, LSTM, and Dropout
layers

Fit model; Predict on test data
Calculate performance metrics; Store ROC curve data

Plot mean ROC curve; Calculate and display average metrics

/* Results Aggregation and Display */

Display aggregated confusion matrix
Print average metrics across all folds

For the hyperparameter optimization of the Good Example algorithm, random
search was selected as the preferred method. The specific parameters and ranges
used for the search, and the hyperparameters used for the Word2Vec algorithm and
LSTM are shown in Appendix E.

3.6.2 Algorithm II: Hazard Classification

The aim of the Hazard classification algorithm is to classify activity descriptions
and work operations according to possible hazards. This classification process is
represented in Equation 28.

Activity Description +Work Operation + Subject Area 7→ Hazard (28)

A challenging aspect of assigning different hazards to activities is the possibility
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of an activity containing an arbitrary amount of hazards. This type of problem is
recognized as a multi-label classification issue and needs to be addressed. In this
thesis, the multi-label classification problem is transformed into a series of binary
classification problems using binary relevance. This is described in subsection 2.4.4,
and as a consequence the model evaluates each hazard independently, classifying it
as either True or False.

Since the hazard classification algorithm must be trained separately for each of the
15 hazards, LSTM was the only classification technique used. The choice of LSTM
was made since it is viewed as a start-of-the-art approach, and had the best results
for the previous classification algorithm classifying if a sample is a “Good Example”.

The transformation of the problem into 15 distinct binary classification tasks results
in mostly imbalanced datasets. In most cases, an activity is not associated with a
specific hazard, which leads to an over-representation of negative cases. This issue
is similar to the challenges faced with the Good Example Algorithm. Therefore, the
dataset was divided into only a training set and a test set, excluding a validation
set. The reasoning is the same as for the good example algorithm, and in the same
way as that algorithm cross-validation was used to stop overfitting. In addition,
dropout and batch normalization are tools used with the LSTM model to prevent
overfitting.

There was a problem during multi-label classification tied to class imbalance. For
example, the “Falling object” class appeared ten times more often than “Drowning”,
which leads to a biased model. Usually, a threshold is set, often at 0.5, if the class
prediction is above that the sample is deemed as positive. Due to some classes
coming more frequent than others, the model became overconfident in its predictions
for classes with many samples, frequently assigning a positive label, while predicting
a negative label often for rarer hazards. To avoid this, a custom function was created
to determine unique thresholds for each hazard by optimizing the F1-score on the
training set. This approach aimed to balance the model’s predictive performance
across all types of hazards, ensuring that all hazards had positive and negative
predictions.

To hinder overfitting the hyperparameter optimization was intentionally limited.
Using extensive hyperparameter optimization could potentially improve the results,
but without a validation set, the improvements could be due to overfitting, since
the hyperparameters are optimized for the test set. Therefore there is likely room
for improvements in the model by optimizing the hyperparameters further, and this
study prioritizes a true representation of the model’s capabilities over an artificially
inflated performance.

Pseudo code of the ML model can be seen in Algorithm 2, and the hyperparameters
used to develop the Algorithms can be found in Appendix F.
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Algorithm 2: Pseudo-code for the Hazard Classification Algorithm

Data: Dataframe containing activity descriptions, work operation, list of
potential hazards

Result: Model performance (Accuracy, Precision, Recall, F1 Score, ROC
Curve, Precision-Recall Curve, Confusion Matrix)

begin
/* Preprocessing */

Tokenize text data and pad sequences
One-hot encode categorical data
Binarize target labels
/* Model Training and Evaluation */

for (train index, val index) ∈ KFold(n splits = 5) do
Split data into training and test sets
Define and compile LSTM model with Embedding, Bidirectional
LSTM, Dropout, BatchNormalization, and Dense layers
Fit model on training data using early stopping
Predict on test data
/* Metrics Calculation */

Calculate precision, recall, F-1 score, and accuracy for each label
Compute TP, TN, FP, and FN
Aggregate metrics across all folds
/* ROC Curve Analysis */

Compute and store ROC curves for each label
/* Precision-Recall Curve Analysis */

Compute and store Precision-Recall curves for each label

/* ROC and PR Curve Interpolation and Plotting */

Compute mean FPR values
for each label do

Interpolate TPR values
Compute mean AUC
Plot mean ROC curve and individual ROC curves for each fold
Interpolate precision values at common recall points
Calculate and plot mean Precision-Recall curve

/* Confusion Matrix Visualization */

for each label do
Create and display confusion matrix using heatmap

/* Results Aggregation and Display */

Compute and display average metrics for each label

3.6.3 Algorithm III: Preventative Measures Generation

The Preventative Measure generation algorithm is designed to suggest preventative
measures for given pairs of activity descriptions and hazards. This is a text-to-text
task where both input (activity description and hazard) and output (preventative
measure) are in text form. For this purpose, the transformer-based model T5 (Text-

55



to-Text Transfer Transformer), made by Google was used. This is a LLM capable
of generating highly realistic text. The latest version of T5 is called FLAN, and due
to the high computational cost associated with fine-tuning and training a LLM, the
two smallest versions were used, google/flan-t5-small and google/flan-t5-base.

There were challenges encountered with the language of the training data for the
algorithm. Initially, the model was trained on the original text, since the document-
ation states that the model is multi-lingual and capable of processing Norwegian
text. However, the early iterations of the model were confused with the Norwegian
language and produced outputs in a mix of languages. Therefore the decision to
translate the text from Norwegian to English was made. While translation can res-
ult in the loss of some information, it seems like the LLM has mostly been trained
on English data, making translation appear beneficial.

When training the model, an important decision involved determining the format of
the input data. The approach chosen was to frame the task as a Question-Answer
problem, where the “question” would consist of the activity description and hazard,
while the “answer” would consist of the corresponding preventative measure. For
this purpose, the input data was merged into a string that took the form of a
question, which can be seen in the next paragraph.

For the construction activity “Activity Description” with the
hazard “Hazard”, what preventative measure should be taken?

Before training the model the dataset was divided into three distinct subsets: a
training set, a test set, and a validation set. The test set was isolated and not
exposed to the model during the training phase. This ensures that the examples in
the Results are from data the model has never seen, providing an accurate measure
of how good the model is at generalization.

The model was trained using IDUN, a supercomputer at NTNU. The processing was
allocated to the CPU queue, and the runtime of the small model was 13:59:15, while
the base model recorded a run time of 35:38:43. The training involved fine-tuning
the T5 model to adapt to the specific task of generating preventative measures,
described in more detail in subsection 2.5.4. After that, the fine-tuned model was
employed to produce responses to the test data.

Pseudo code for the preventative measures generation algorithm can be seen in
Algorithm 3, and the hyperparameters used to create the Algorithm can be found
in Appendix G.
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Algorithm 3: Pseudo-code for Algorithm III: Preventative Measures Gen-
eration
Data: Dataframe containing activity descriptions, hazard and list of

preventive measures
Result: Generated measures for given activities and hazards
begin

/* Data Preparation */

Load dataset
Clean text data
Translate all text data
/* Model Initialization */

Initialize T5 Tokenizer and T5 Model
/* Data Preprocessing */

Define a function to format prompts
Apply the function to create new text data
Split data into training, validation, and testing sets
/* Tokenization and Dataset Preparation */

Tokenize training and validation datasets
Prepare datasets for training and evaluation
/* Training Configuration */

Set training arguments like epochs, batch size, logging, and evaluation
strategy
/* Model Training */

Initialize a Trainer with the model, tokenizer, and datasets
Fine-tune the model on the training dataset
/* Model Saving */

Save the fine-tuned model and tokenizer
/* Model Loading for Prediction */

Load the saved model and tokenizer
/* Prediction */

Define a function to generate predictions in batches
Apply the function to the test dataset to get predicted measures
/* Result Compilation */

Add predicted measures to the test dataset
Save the test dataset with predictions to a CSV file

57



4 Results

This section presents the results of the research. Initially, the results of the good
example algorithm are presented, where the algorithm tries to predict if a JSA can
be considered a good example or not. Then the results of making a ML algorithm
to identify hazards given the description of an activity will be presented. The last
section will delve into the results of the preventive measures generation algorithm,
which suggests safety measures in response to identified hazards.

4.1 Algorithm I: Good Example Classification

In this subsection, the predictions of the good example algorithm will be presented.
The performance of the “Good Example” algorithm is presented in Table 16, which
compares the performance of various ML models and data processing techniques.
The model with the highest accuracy is uses RF with TF-IDF, and employs weights
to address class imbalance. Since the F1-score is 0, it is clear that the model achieves
that accuracy by predicting mostly “False” for all entries.

Given this imbalance, the F1-score emerges as the best metric for evaluating model
performance, since it balances the Precision and Recall. The results show that
the LSTM model outperforms all the other models when looking at the F1-score.
Suggesting that DL methods have an edge over more traditional methods when
working with text data.

It is interesting to note that models using quantitative data outperform those using
text data when using GB and RF models. Another observation that can be made
by looking at Table 16 is that the overall performance is poor. It seems like the
models struggle to accurately label JSA as a “Good Example” or not.

ML Data Balance Accuracy Precision Recall F1-score

RF Quant weights 0.9304 0.0786 0.0786 0.0727

GB Quant SMOTE 0.9012 0.1155 0.1821 0.1398

GB TF-IDF SMOTE 0.9478 0.0 0.0 0.0

RF TF-IDF weights 0.9497 0.0 0.0 0.0

RF Word2vec weights 0.9458 0.0 0.0 0.0

RF Word2vec SMOTE 0.9188 0.0364 0.1 0.0533

GB Word2vec SMOTE 0.8937 0.02 0.05 0.0286

LSTM Keras weights 0.9284 0.1515 0.3400 0.1873

Table 16: Performance Metrics of Models Predicting “Good Example” Variable

In Table 17 the confusion matrix for the “Good Example” algorithm is presented
across different ML models, and using different preprocessing techniques. The res-
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ults indicate that the LSTM model, which processes text data, outperforms other
techniques. The table shows that TF-IDF vectorization gives the least effective res-
ults. When excluding LSTM from the comparison, models using quantitative data
show a better performance over using vectorization techniques and text data.

ML Data Balance TP TN FP FN

RF Quant weights 2 479 13 23

GB Quant SMOTE 5 461 31 20

GB TF-IDF SMOTE 0 490 2 25

RF TF-IDF weights 0 491 1 25

RF Word2vec weights 0 489 3 25

RF Word2vec SMOTE 2 473 19 23

GB Word2vec SMOTE 1 461 31 24

LSTM Keras weights 6 474 18 19

Table 17: Confusion Matrix Results for “Good Example” Prediction

The performance of the “Good Example” classification can be visualised through
ROC curves, as shown in Figure 27. The ROC curve shows the TPR against the
FPR at different thresholds and is described in detail in sub-chapter 2.4.3.

When GB and RF are used the models achieve an AUC-ROC curve of around
0.50, suggesting that these model’s performance is not much better than random
chance. The only model that clearly outperforms random guessing is LSTM which
demonstrates a better performance with a AUC of 0.69, shown in subfigure 27h.
These results align with the idea of DL models, being better at capturing complex
patterns in textual data compared to ensemble ML algorithms.
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(a) Using RF, Quantitative Data, and
Weights

(b) Using GB, Quantitative data, and
SMOTE

(c) Using GB, TF-IDF data, and SMOTE (d) Using RF, TF-IDF data, and weights

(e) Using RF, word2vec vectorization, and
SMOTE

(f) Using GB, Word2vec vectorization, and
SMOTE

(g) Using RF, word2vec data, and weights (h) Using LSTM with weights

Figure 27: Combined ROC Curves
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4.2 Algorithm II: Hazard Classification

In this section, the results of classifying hazards using activity descriptions are
presented. In Table 18, the results of trying various methods can be seen. The
“simple” model refers to a basic LSTM model, which is also the architecture used
for every model except the complex model. The hyperparameters of both models can
be found in Appendix F. The “Thresh” model refers to a model where the paramet-
ers used to calculate the optimal thresholds are altered, as discussed in subsection
3.6.2. Stemming refers to a model employing stemming, “NaN for others” refers
to a model which filled work operations categorized as “others”, as NaN, while the
complex model denotes a more sophisticated LSTM architecture. Macro and Micro
are denoted as respectively Mac. and Mic. in the table.

Using the F1-scores from Table 18 as the main performance metrics, suggests that
altering the function for setting thresholds does not increase the overall performance
of the model. Stemming the text data had a negligible effect, slightly improving the
results. Filling work operations labeled as “others” with “NaN”, did not have a
positive effect on the results. A noticeable improvement is seen when using the
complex LSTM architecture. Given the substantial increase in performance the
“Complex model” is used as the primary model explored for further discussion in
this subsection.

Model Mac. acc. Mac. prec. Mac. recall Mac. F1 Mic. prec. Mic. recall Mic. F1

Simple model 0.6846 0.2338 0.6022 0.3085 0.2843 0.7537 0.4128

Thresh(0.3, 0.2) 0.7382 0.2480 0.4267 0.2679 0.2758 0.4795 0.3502

Thresh(0.5, 0.1) 0.6852 0.2309 0.5967 0.3068 0.2789 0.7187 0.4018

Stemming 0.6865 0.2382 0.5918 0.3090 0.2871 0.7623 0.4171

NaN for others 0.6785 0.2340 0.6049 0.3079 0.2803 0.7561 0.4090

Complex model 0.8127 0.4097 0.4684 0.3926 0.4145 0.6628 0.5100

Table 18: Performance Metrics from Different Models Classifying Hazards

In Table 19 the performance of each hazard type can be seen, with the original
Norwegian names of the hazard being available in Appendix C. Analysis of the
table shows that hazards that occur less frequently in the dataset tend to have
a higher accuracy, and lower F1-scores compared to more frequent hazards. The
reason for this is because the algorithm often guesses “false” for rare hazards, which
inflates the accuracy, while the model has few positive examples making it harder
to find true cases, which is reflected in the F1-scores. Generally, the model shows
good performance across most hazards, indicating that the model is significantly
more effective than random guessing.

Figures 28 and 29 show the ROC curves for the classification of various hazards.
The model has its best performance with the “drowning” hazard, achieving anAUC
of 0.91. The model also demonstrates a strong performance when classifying less
frequent hazards, such as “dust, smoke, gases, and toxic substances” (0.78 AUC),
and “high pressure, splash hazards” (0.78 AUC).
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Hazard Accuracy Precision Recall F1-score

Moving hazards/ entrapment risks 0.5415 0.4471 0.8769 0.5899

Fire, explosion 0.9233 0.5356 0.3071 0.3603

Drowning 0.9678 0.6864 0.4962 0.5622

Electrical shocks 0.8775 0.4127 0.3852 0.3938

Fall from a height 0.6909 0.5794 0.8024 0.6716

Falling object 0.6206 0.5827 0.9010 0.7073

Risk of tripping or slipping 0.8760 0.5029 0.2459 0.2396

High pressure, splash hazard 0.9097 0.4501 0.3249 0.2922

Structural failure 0.7700 0.2954 0.4026 0.2787

Collision 0.6733 0.3384 0.5902 0.4183

Sharp objects (cuts, stabs) 0.9009 0.3144 0.3075 0.2445

Dust, smoke, gases, toxic substances 0.9492 0.5762 0.2834 0.3530

Heavy lifting/heavy materials 0.8199 0.2221 0.3413 0.2519

Emissions/pollution 0.8944 0.3077 0.2963 0.2514

Weather conditions (wind, cold, fog) 0.8340 0.1994 0.4002 0.2622

Table 19: Performance Metrics for Predicting Every Hazard Using Complex Model

On the other hand, the model struggles more with certain types of hazards, such as
“trip and slip” hazards, and “heavy lifts”. This indicates that the models accuracy
is not tied to the number of occurrences, but that it can be effective at identifying
hazards both a high and low number of occurrences.

Overall, the ROC curves suggest that the model is good at hazard classification.
The ability to accurately classify hazards is promising, and it shows potential for a
ML tool to be useful when doing JSAs.
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(a) Moving objects/crushing hazards (b) Fire, explosion

(c) Drowning (d) Electrical shocks

(e) Fall from height (f) Falling object

(g) Risk of tripping or slipping (h) High-pressure hazards/ splash risks

Figure 28: ROC Curves for Hazard Identification - Set A
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(a) Collision (b) Sharp object hazards (cuts, punctures)

(c) Dust, smoke, gases, toxic substances (d) Heavy lifting/heavy materials

(e) Emissions/pollution (f) Weather conditions (wind, cold, fog)

Figure 29: ROC Curves for Hazard Identification - Set B
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Figures 30 and 31 show the PR curves for every hazard classified, looking at the
trade-off between precision and recall for different thresholds. The PR curve is
described in more detail in sub-chapter 2.4.3. The PR curve is often looked at as
particularly important for imbalanced datasets, which makes it especially interesting
here.

In both figures, the Average Precision (AP) is the metric denoted, showing the
model’s average precision across all levels of recall. The “no skill” line shows the
performance against random guessing. Hazards with more frequent occurrences have
a higher laying “no skill” line and therefore tend to have an AP score that is higher
than hazards with fewer instances. The “Falling object” hazard achieves the highest
AP score with 0.73, indicating that the model has a strong ability to predict this
hazard.

For the most part, it seems that hazards that have a high performing ROC curve
tend to have a high performing PR curve. Overall the results of the PR curves seem
promising, and the model seems accurate in predicting hazards.
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(a) Moving objects/crushing hazards (b) Fire, explosion

(c) Drowning (d) Electrical shocks

(e) Fall from a height (f) Falling object

(g) Risk of tripping or slipping (h) High-pressure hazards

Figure 30: Precision-Recall Curves for Hazard Identification - Set A
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(a) Collisions/vehicular impact (b) Sharp object hazards

(c) Dust, smoke, gases, toxic substances (d) Heavy lifting/heavy materials

(e) Emissions/pollution (f) Weather conditions (wind, cold, fog)

Figure 31: Precision-Recall Curves for Hazard Identification - Set B
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Table 20 shows the instances where the hazard classification algorithm displays
high confidence in its predictions, but the classification ultimately is incorrect. The
text in Table 20 is translated, and the table with the original Norwegian text can
be found in Appendix H. These instances can provide valuable information about
which mistakes are made by the ML algorithm, and give a deeper insight into the
data. The table shows the hazard classified by the algorithm with its certainty, in
addition to the hazards given by human evaluators. It is observed that the model
often has a higher certainty for the labels where there are many occurrences and has
a lower certainty for hazards with fewer occurrences.

The results from Table 20 is interesting. The author has more expertise in the field
of computer science compared to construction safety, so caution should be advised
when interpreting the results. Some of the hazards identified by the model, despite
being classified as incorrect, could represent actual risks. If that is correct, the
table seems to suggest that the model has avoided overfitting and has an ability to
generalize and make predictions independently of examples it was trained on.
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Activity description Label By algorithm Certainty Actual label

Assembly of 4 sandwich walls in axis B1,
the elements should be mounted on a cast-
in-place wall 6.8 meters above ground level.
Planned assembly 02.03.22.

Moving Objects/Pinch
Hazard

0.8485 Falling object

We will be blasting rock towards the building
(approx 8 m high) where the rock is about 1-
2 m from the building, where we will blast
with a 4 m bench height. The most critical
place is secured with drill rods.

Fire, Explosion 0.5115 Moving Objects/Pinch
Hazard, Fall from
Height, Falling Object,
High Pressure, Splash
Hazard

After blasting, cracks have formed in the wall
against existing tanks, this will be removed
on behalf of the client.

Fire, Explosion 0.3962 Fall from Height,
Moving Objects/Pinch
Hazard

[Anonymized] has been tasked with filling a
canal inside [Anonymized], where we will lay
1200btg at -0.70 and install 3 manholes.

Drowning 0.8204 Moving Objects/Pinch
Hazard, Dust, Smoke,
Gases, Toxic Sub-
stances, Emis-
sions/Pollution

Blasting of trench/road under and along
high-voltage power lines. [Anonymized] owns
the high-voltage line that carries 420kV. The
trench is about 70 meters. Two layers and 18
mats will be laid to prevent stone scattering.
The blasts will be adjusted according to the
conditions with the water dams. There will
be a number of small blasts.

Electric Shock 0.7540 Falling Object, High
Pressure, Splash
Hazard, Moving Ob-
jects/Pinch Hazard

The work will partly take place on scaffolding
and atop a glass roof. Glass is to be adjusted
in carrying profiles and secured with clamp-
ing strips/profiles. In addition, a profile is to
be mounted at the front of the glass roof from
the scaffolding. The glass has already been
hoisted into place and lies down in the car-
rying profiles. Plates are to be laid on top of
the carrying profiles to walk on when clamp-
ing strips are to be mounted.

Fall from Height 0.9257 Trip or Slip Hazard,
Falling Object

Installation of a ventilation unit on the roof of
building A, the unit is lifted onto the founda-
tion built on the roof. Each section of the unit
is assembled together and then side-shifted
into place by [Anonymized].

Falling Object 0.9897 Moving Objects/Pinch
Hazard

Excavators to work near gas pipeline. Every-
one must be aware of the procedure in case
of a gas leak.

High Pressure, Splash
Hazard

0.4585 Fire, Explosion

Installation of steel beams for supporting
modules

Structural Failure 0.7466 Falling Object, Colli-
sion/Impact, Weather
Conditions (wind, cold,
fog)

Onboarding/offloading and tipping from flat
barge to sea

Collision/Impact 0.7720 Drowning

Cutting down bushes and trees and running
through a compost shredder

Sharp Object (cut,
puncture)

0.7862 Falling Object, Moving
Objects/Pinch Hazard

Safe work with spiking and other work in the
base tunnel

Dust, Smoke, Gases,
Toxic Substances

0.8353 Fire, Explosion

Walls must be turned with tower crane and
mobile crane

Heavy Lifting/Heavy
Materials

0.8664 Structural Failure,
Moving Objects/Pinch
Hazard

Plastering in sea, in front of quay Emissions/Pollution 0.6845 Drowning, Moving Ob-
jects/Pinch Hazard

Installation and hoisting of steel beams Weather Conditions
(wind, cold, fog)

0.7712 Dust, Smoke, Gases,
Toxic Substances

Table 20: The Most Confident Misclassifications by the Model

Figure 32 presents a series of confusion matrices for every hazard in the dataset.
Each matrix is divided into four categories: TP, TN, FP, and FN, showing the
performance of the model comprehensively.
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Figure 32: Collection of Confusion Matrices for Hazard Identification

This figure clearly illustrates a heavy class imbalance, with most of the actual in-
stances being “negative”. “Moving objects”, “Falling”, and “Falling objects” is the
three hazards that occur most often. The model tends to have many FNs for classes
with frequently occurring hazards. For less frequent hazards, the distribution of
Type 1 and Type 2 errors is more balanced. The hazards have a different balance
of classes, which creates the challenge of setting a suitable threshold for different
hazards.

4.3 Algorithm III: Preventative Measures Generation

In this subsection, the results of the generative text algorithm made to propose pre-
ventive measures are shown. The text-to-text model was trained over 52 iterations
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for both versions trained. Figure 33 depicts the model’s evaluation loss at each
training iteration for both the small model and the base model. Initially, there is a
fast decline in evaluation loss, before the rate of improvement flattens out. This sug-
gests that the model learns quickly at the start and that the learning falls over each
iteration. Learning slowing down is common in ML and could show that the model
is approaching its learning capacity given the current data and model architecture.

The models have a different training behavior. It seems like the base model reaches
a plateau in its learning curve quicker than the smaller model. This suggests that
the base model is able to learn and converge quicker to a solution. Each step in
training of the base model takes more time, this means that the number of steps
is not an indicator of the actual time spent in training. The plot suggests that the
base model could be trained for fewer steps possibly achieving similar performance.

(a) T5 Small Model (b) T5 Base Model

Figure 33: Validation Loss per Training Step for T5 Models

Table 21 displays eight randomly selected samples from the test set, showing the
model’s generated preventive measures using the base model. These samples are not
given to the model during its training phase and are unseen to the model. Table 21
reveals that the AI model is able to generate measures that make somewhat sense
to the activity and hazard. The model can identify items such as a “fall protection
harness” and “life jacket” which is consistent with the actual preventive measures.

It can be observed that the model often repeats the activity description instead of
proposing a concrete and actionable measure. For instance, using the hazard “work
in closed spaces/ lack of oxygen”, the models response is “Work in closed spaces/
lack of oxygen must be stopped”, only repeating the problem without any practical
solution or preventive action. In addition, the model’s generated measures often
lack detail and are short, vague, and generic. The human-written measures are
comprehensive and descriptive, compared to the AI-generated measures.
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Activity Hazard Actual measure AI predicted Meas-
ure

At the bottom of the atrium several
parallel works can take place which can
affect each other and create dangers
Work in area 1 under level 3 and work
in the atrium opening area 2 Subjects
who work in close proximity to each
other and pose a risk must carry out
SJA adapt to their tasks and have con-
trol over the risks

Fall from a height When using a laundry basket
a fall harness must be used in
the hook point on the basket
Workers must have received
training in washing baskets be-
fore use

Use a fall protec-
tion harness

Installation of piles near the railway
approx 27m

Electric shocks Lifted with a truck crane do
not lift against the railway the
pile is no longer than 8 metres
the lift will not be higher than
9m

Ensure that there
are no electrical
shocks in the area

Remaining work in [Anonymized] in-
stalls two sensors [Anonymized] at-
taches the valve and removes blockage
in the sump

Work in closed
spaces/lack of
oxygen

Always two people when work-
ing in the sump

Work in closed
spaces/lack of
oxygen must be
stopped

Sheet piles must be frost insulated us-
ing winter mats 3 6 and 9m Played on
the top back side of sheet piles and at
the bottom of sheet piles foot girders
Certain areas have been blasted out
cutting 2 m from footings

Fall from a height start by only attaching winter
mats to the back side of the
batten and ease over to the
front side when attaching bat-
tens down to footings cables
are attached along the pile as
a fall block that can be secured
in so you can move along the
pile

Use a fall protec-
tion harness

Dismantling of scaffold construction in
the atrium area with many simultan-
eous activities Transport of scaffold-
ing parts to unloading zone 1 for re-
moval Applies to works for subjects
with tasks that have not been possible
to carry out get to before

Falling object Secure tools and materials
from falling down Placement

Ensure that the
scaffolding is se-
cured in the atrium
area

Sawing trees at boreholes 2 Sharp object (cut,
stab)

Saw trousers helmet with visor
and gloves

Use of a sledge-
hammer

The heaviest windows weigh 280 kg
and must be lifted into place with a
tower crane The windows are raised
with straps around the frame of the
window and the straps are secured
so that it does not slip off the win-
dow with possibly straps and screws
The window is lifted down to the cor-
rect position between the stile and the
facade The vidue is secured by lower-
ing When the window comes down
to the correct position this is placed
on blocks and the window is set in
place Bricks are mounted on the inside
against which the window stops at the
top Straps are removed and the win-
dow is attached secured with blocks

Moving ob-
jects/trap hazard

Block off the area The window is lif-
ted into place with
straps around the
frame of the win-
dow

Filling masses into the sea for a new
quay

Drowning Lifejackets must be worn by
drivers of machines and trucks
Lifebuoy on land Marker on
machines and cars Area light-
ing

Use of a life jacket

Table 21: Eight Randomly Selected AI-Generated Preventive Measures Using T5
Base Model
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5 Discussion

This section provides a comprehensive discussion of the conducted research. It delves
into the results of the different ML models, and the challenges encountered during
the development of these algorithms, in addition to their practical implications in
real-world scenarios.

5.1 Discussion of JSA Quality Classification Algorithm

This research developed a ML classification model designed to assess if a JSA can
be considered a “Good Example”. The motivation for creating the model is to
explore the potential of using ML as a tool to assess the quality of JSAs, potentially
functioning as a leading safety indicator in construction projects. The key findings
are that LSTM achieved the best results, indicating that it is possible to create a
ML model rating the quality of a JSA if trained correctly with data of high quality.

5.1.1 Algorithm Performance

Results presented in Table 17 show that the LSTM model outperforms the other
models. This superiority led to the use of LSTM and DL techniques in the sub-
sequent development of the following algorithm, since all algorithms use text data
as input in this research. The LSTM model, further explained in subsection 3.6.1,
shows that it is able to classify significantly better than random guessing, even
though its effectiveness remains moderate.

The performance of the traditional ML algorithms, RF and GB, performs about as
good as random guessing, seen in Figure 27. This outcome reveals the limitation
of these traditional ML methods, particularly in handling sequential data. Unlike
LSTM, RF and GB have not been developed specifically for processing sequential
data, which makes them worse at interpreting textual semantic meaning. As seen
in Table 16, their performance improves when using quantitative data, indicating
a correlation between the number and the average length of identified preventive
measures and the quality of the JSA. This observation suggests that traditional ML
algorithms struggle with capturing the semantic meaning of textual data.

As described in section 3.4.6, there seems to be a relationship between the number of
identified measures, and the measures lengths, with the quality of the JSA. It seems
logical that the quality of a JSA increases with each preventive measure identified.
In addition, it seems possible that the length of a measure may be an indicator of
how detailed the measure is, potentially improving the overall JSA quality.

Analysing Figure 27 reveals that the overall performance of the algorithms is mod-
est. The LSTM model outperforms random guessing slightly, and the result of the
model’s other algorithms is just as good as random guessing. This observation raises
questions regarding the suitability of ML as a tool to assess the quality of JSAs.
The underlying reasons for the limited performance will be further explored in the
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following subsection.

5.1.2 Limitations and Future Research

The moderate performance of the models in assessing JSA quality can largely be
explained by the quality of the data used. A key challenge is the scarcity of samples
labeled as “Good Examples”. In total, only 1.3% of all samples, 7.3%, when exclud-
ing NaN labels, are marked as “Good Examples”, as detailed in subsection 3.4.6.
This scarcity makes the model tasked with detecting anomalies, and the model is
subsequently not trained on a rich set of positive examples, which clearly has a
negative effect on the performance of the ML algorithm.

Additionally, the integrity of the samples labeled as “Good Examples” is question-
able. For instance, a JSA labeled as a good example had one preventative measure,
which was ”Use common sense”. This raises concerns whether some of the samples
labeled as good examples are accurately labeled. Despite most “Good Example”
labels seeming to be appropriate, the presence of mislabeled examples will confuse
and hinder learning for the ML model.

Constructing a better dataset both in terms of size and quality is essential to im-
proving ML model performance. Expanding the dataset poses new challenges, there
is a need for expert evaluation to accurately label JSA by its quality. The capabilit-
ies of any ML model are strongly tied to the quality of its training data. Therefore
using a safety expert in labeling JSA documents is a crucial step for ensuring better
performance of ML algorithms.

Previous research has mostly focused on creating ML model that uses leading safety
indicators to predict lagging safety indicators, as seen in 2.2. However, this thesis
tries to predict the quality of JSA, a leading safety indicator itself. A premise for this
algorithm to be effective is a significant correlation between the quality of JSA and
lagging indicators such as the frequency of accidents during construction activities.
An aspect of future research is to investigate the relationship between the quality
of JSA, as assessed by safety experts, and the actual risk of injuries and accidents
associated with the respective activity.

A potential improvement for future models involves transitioning from a classific-
ation approach to a regression approach. When thinking of JSA quality it seems
logical to represent the quality as a continuous scale, and not as one out of two
states. Therefore framing the problem as a regression problem, and rating the JSA
quality on a scale from 1 to 5, may provide a more nuanced understanding of the
actual quality of the JSA. A regression-based approach would take into considera-
tion the varying degree of quality in JSA, enabling models to capture distinctions
more easily than a binary classification system.

74



5.1.3 Practical Implications

The development of a ML tool to assess the quality of JSA could be a valuable
instrument in construction safety. Using injury reports opens the possibility to
examine the correlation between JSA quality and occurrence of accidents for those
activities. The usefulness of a model would depend on a correlation between high
JSA quality and reduced accident rates. By establishing this connection, the model
would be able to bridge the gap between a leading indicator, JSA quality, and lagging
indicators such as injury occurrences. The model would then be able to enhance
safety performance by identifying JSAs of low quality.

Implementing an ML-based system to evaluate the quality of JSAs could offer valu-
able feedback to the authors of the JSA. For instance, a potential system could
require a JSA to achieve a score over a fixed threshold to be accepted. However, the
“black-box” nature of many ML algorithms could be a challenge, since the algorithm
offers no feedback to the user other than a classification or a score. This limitation
makes it challenging for the user to improve the quality of the JSA since the user
does not have concrete points for improvement. To address this issue, future systems
could try to integrate generative AI models that can give textual feedback on ways
to improve the JSA quality.

Additionally, integrating a system that assesses the quality of JSA could enable nu-
anced analysis. With additional data connected to the JSA, it could reveal patterns
such as some departments producing lower quality JSAs compared to other depart-
ments. Such insight can be useful in identifying areas of improvement. Overall,
the utilization of a ML tool to assess the JSA quality could have a positive effect
on safety management, providing well-informed workers and hopefully creating a
culture of continuous improvement in safety standards.

5.2 Discussion of Hazard Classification in JSA

This subsection discusses the performance, limitations, and practical implications
of the ML algorithm developed for identifying potential hazards. The model shows
effectiveness in classifying various hazards, with a ROC-AUC spanning from 0.60 to
0.91 depending on the hazard. This suggests that ML has the possibility to enhance
workplace safety by helping to identify hazards.

5.2.1 Evaluation of Classification Performance

The performance of the hazard classification algorithm, using activity description
and work operation, appears promising. The complex LSTM model has an accuracy
of 0.8127, a macro and micro F1 of 0.3926 and 0.5100, respectively, as seen in Table
18. The observed high accuracy stems from the class imbalance present in the data-
set, where most activities are labeled as “False” for a given hazard. Consequently,
this imbalance highlights the importance of the F1-score as a particularly relevant
performance metric, as discussed in section 2.4.3. Another observation is the model’s
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tendency towards a higher recall in comparison to precision, which indicates that
the model is more effective at identifying positive samples, while at the same time
generating some FPs.

The ML model’s performance shows variability when classifying different hazards.
As depicted in Figures 28 and 29, the ROC-AUC spans from 0.60 for slip hazards
to 0.91 for drowning hazards. This variation in performance could be linked to the
specificity of the hazard. For example, in predicting the hazard “drowning”, the
model can search for words such as “sea” and “water”, which it might find closely
correlated with the hazard. In contrast, “slip hazard” hazard might be harder to
classify due to fewer distinct words being closely associated with the hazard. This
suggests that ML algorithm is more suitable to classify hazards with clear and
distinct indicators while being less effective when dealing with more obscure and
context-dependent hazards.

In comparison to other studies like Chi et al., 2014, which also categorize hazards,
the algorithm designed in this thesis demonstrates superior performance. Chi et al.,
2014 uses mainly precision and recall as performance measures, but by combining
these metrics the F1-score can be calculated as seen in section 2.4.3. For instance,
their F1-score for classifying falls from height is 0.039. In contrast, the algorithm
developed in this thesis achieves a considerably higher F1-score of 0.6716 for the
same hazard, as detailed in Table 19. When looking at the classification of the
“Heavy Equipment”, a hazard where Chi et al., 2014 achieved better results with
an F1-score of 0.245, compared to this thesis 0.2519. For this hazard, it seems like
the performance of both models is more comparable. The performance classifying
different hazards varies more in Chi et al., 2014, compared to this thesis, but it seems
like the models developed in this research tend to outperform Chi et al., 2014. This
observation can likely be attributed to the significant advancements in ML and NLP
techniques over the past decade. The rapid development of these technologies has
enhanced the capabilities of ML methods, and it seems like incorporating ML tools
in the JSA creation process is more beneficial now than previously.

Table 20 presents an insight into the model’s mislabelings, offering a deeper un-
derstanding of the model’s limitations. Analysing these mislabelings there seem to
be different causes for them. In some cases, it seems like multiple hazards could
have been applicable to an activity. For instance, in the first sample where “moving
object” is identified as a hazard by the human author, the ML model classifies it
as a “falling object” hazard. These hazards overlap, and any “falling object” can
be considered a “moving object”, and these hazards are strongly correlated as seen
in Figure 20. Because of this, the ML algorithm and human authors classify dif-
ferently, and it could be considered to combine the two hazards into one hazard.
Furthermore, the ML model seems to struggle to understand the full context of the
construction activity in some cases. For instance, in the third row of Table 20, a
problem has occurred as the result of previous blasting. The ML algorithms recog-
nize the word “blasting” and automatically want to classify it as a “Fire, Blasting”
hazard. In this case, the ML algorithm does not fully understand the context of
the activity description and therefore, wrongly identifies the hazard. The model not
fully understanding the context of the task at hand is a recurring issue in several of
the observations.
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Additionally, Table 20 highlights potential challenges encountered by JSA authors
in accurately identifying hazards. Looking at multiple samples in Table 20 reveals
that certain hazards might have been overlooked by JSA authors. Direct comparison
between the ML model’s performance and human accuracy is difficult due to human
errors possibly being present in the test set. The model seems to possibly identify
hazards overlooked by human evaluators. If the observation is correct, the possibility
of utilizing a hybrid system to identify hazards opens up. The system could integrate
human expertise with a ML algorithm, which could potentially outperform either
method used in isolation, enhancing hazard identification within the JSA process.

5.2.2 Limitations

One challenge encountered in the development of the ML model for hazard clas-
sification was finding a threshold suitable across different hazards. This problem
stemmed from the fact that the model generally produced higher certainty levels for
often occurring hazards while producing lower certainty for less common hazards.
Consequently, the model tended to overpredict frequent hazards and rarely identify
rare hazards. To address this issue, a function was developed, setting a unique
threshold for each hazard, and optimizing the F1-score for each hazard separately.
This resulted in less frequent hazards requiring a lower threshold to be classified
compared to more common hazards. This threshold setting highlights the trade-off
between precision and recall, which is discussed in 2.4.3.

Performance metrics such as accuracy, recall, and confusion matrices consider the
Precision-Recall trade-off. On the other hand, plots like the ROC curve and PR
curves offer a comprehensive view of how the model will perform across various
thresholds. These curves are helpful to understand the behavior of the model and
can be used to find an appropriate balance between Precision and Recall. Balancing
both is important to identify both rare and frequent hazards while balancing the
number of FPs and FNs in an appropriate manner. In this research, the balance
was tackled by optimizing the F1-score, which seems like an appropriate strategy as
it ensures equal emphasis on both precision and recall.

The selection of LSTM as the model employed was made due to its historical re-
cognition as a SOTA model for processing sequential data. However, due to the
rapid developments in DL there has been introduced new SOTA models utilizing
the attention mechanism, showing promising results in classification tasks using tex-
tual data. These developments indicate that a Transformer-based model potentially
could outperform the LSTM model used in this thesis. Some newer LSTM models
even incorporate the attention mechanism enabling focused processing of text seg-
ments. Given the fast-moving technological frontier within DL, it is possible that
newer models could offer an enhanced performance.

Further, there is potential for more intensive optimization of hyperparameters and to
utilize larger and more complex LSTM networks. As explained in section 3.6.2, only
a training and test set was used, due to the limited number of positive samples. This
constraint increases the risk of overfitting, leading to no extensive hyperparameter
optimization. The decision was made to prioritize realistic results over inflated
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results. Regardless, this opens up the possibility of optimizing hyperparameters
more heavily and possibly creating deeper networks for hazard classification, which
potentially could improve the performance.

5.2.3 Practical Implications

The integration of a ML system to enhance hazard identification during a JSA is a
promising concept. The model developed in this research seems to have the potential
to detect some hazards that humans overlook. In a potential implementation, the
JSA team would initially describe the activity and identify hazards themselves.
Following this, the activity description could be sent to a ML system, which evaluates
the probability of potential hazards. If the system identifies a hazard over a certain
threshold, which the JSA team has not recognized, the hazard could be suggested
for further evaluation by the JSA team, which then could decide if the proposed
hazard is correctly identified.

This approach could potentially enhance hazard identification since the ML model
might identify hazards overlooked by humans. Assuming this system improves haz-
ard identification, a new ML model could be trained using data that ML helped
label, enabling continuous learning and improvement of the system. Implementing
a system like this could modernize the JSA process, helping the process become
more data-driven. A potential system should be a tool for safety experts, helping
them identify hazards, instead of replacing them.

5.3 Discussion of Preventative Measures Generation

This subsection delves into the performance, limitations, and potential of the gen-
erative AI model used to propose preventive measures. The key finding is that
generative AI has the potential to help propose measures to activities in construc-
tion activities, but that the quality of the measures generated currently falls short
compared to measures created by human experts.

5.3.1 Model Performance

The comparison between the preventive measures generated by a LLM and those
written by humans reveals mixed results. The LLM successfully identifies basic
measures relevant to a certain hazard, for instance recommending a fall protection
harness for height-related risks. However, the model lacks the nuanced and detailed
context often provided by human authors, which often makes the responses generic,
compared to more specific human measures. As a result the AI model struggles
to provide as clear and descriptive actionable steps as human experts to mitigate
hazards.

In some cases, the LLM exhibits a “creative” tendency to address hazards. For
example in row 6 in Table 21, the model suggests using a sledgehammer instead of
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a saw to cut a tree to mitigate the risk of a sharp object. While using a sledgeham-
mer would technically mitigate the risk of sharp objects, it would be impractical
for solving the task of cutting a tree. As shown in subsection 2.5.4, the model is
sequentially generating words with the highest probability, without having any deep
understanding of the task at hand.

Figure 33 shows the training process of both models. The base model training, which
lasted over 30 hours running on IDUN, seems to reach a plateau relatively early in
the learning phase. The observation that both model do not improve in performance
after a certain point in their training, indicates the potential of reducing the training
duration. In addition, it could mean that a larger model trained for the same time
as the base model could yield better results.

5.3.2 Challenges and Limitations

The effectiveness of the generative AI model is linked with the size of the model
used. Initially, the “small” model was used resulting in a low quality of the meas-
ures being generated. As a consequence, the “base” model was employed, leading
to a significant improvement in performance, even though the training time and
computational demands increased significantly. Larger models such as the “large”,
“XL”, and “XXL” of T5 could potentially improve the output of the model, but this
would require a large amount of training and vast computational resources, possibly
taking days or even weeks to train.

Another method for creating better models might be to use patented models such as
GPT and PaLM. These models are developed by major tech companies and are at the
forefront of AI development. Using these models could potentially generate better
and more sophisticated output. These models are not open-source, meaning only
the owning company knows exactly how they operate, and this restricts you from
being able to train models locally. Running models on their external servers might
cost money, and it raises concerns regarding data privacy and GDPR compliance.
Personally sensitive data should not be sent to third parties, and therefore the
only viable option for this thesis is to train open-source LLMs locally on personal
computing resources and NTNU’s servers.

A problem with a generative AI tool in generating preventive measures is removing
the human element of the JSAs creation. A part of the effectiveness of a JSA
is that the authors are supposed to reflect on measures and hazardous activities.
Removing the human-driven process with an AI-driven process could potentially
decrease the sense of awareness of workers, and remove a sense of responsibility.
This could potentially impact the safety awareness of the workers at a construction
site negatively.

Furthermore, the use of AI tools in safety management raises ethical and legal
concerns. For instance, if an AI-system fails to identify a hazard or the preventive
measure is insufficient, and someone is injured, determining the accountable person
or entity becomes difficult. The legal implications of someone being injured in an
environment using AI-safety tools, must remain largely unexplored since the field is
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recently developed.

5.3.3 Practical Application and Potential

The model developed in this thesis for generating preventive measures in JSA shows
a way generative AI can be used in construction safety. However, the measures
generated in this thesis would have limited value in a JSA process. The model often
repeats the activity description or suggests a relatively obvious measure likely to
be proposed by a human expert. This indicates that a generative AI model in this
form, would not give a significant amount of value to the JSA creation process today
based on this research’s model.

Despite mixed results, the model shows the potential of generative AI enhancing
safety in construction projects. As AI technology develops, it is expected that AI
models will improve and increase their capability to provide insightful and contex-
tually relevant safety measures. At a certain point in time, AI model will reach a
point, where the models has the possibility to be a valuable tool in the JSA creation
process.

In the future, a model could be created to produce multiple preventive measures
using an activity description and a hazard. The JSA author could then review the
AI-generated measures, and select the relevant measures. This approach could help
the JSA author identify non-obvious preventive measures.

To summarize, the current generative AI model might not be the sole solution to
creating better JSA, but it marks an interesting and promising direction for future
AI-assisted safety management. With further advancements and research within the
field, AI-assistance has the potential to possibly become a valuable tool for future
construction safety workers.
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6 Conclusion

The objective of the research was to look into how JSA-data can be utilized with
the use of AI to enhance safety performance. For that purpose, three different ML
algorithms were developed. In the conclusion each research question is addressed in
a paragraph with its belonging algorithm before future work is delved into.

6.1 Findings

The first research question regards the utilization of ML algorithms to measure the
quality of JSA. Multiple ML algorithms were used to classify JSA as either exem-
plary or not. The variable “Good Example” which labels a JSA as exemplary was
used for training. The algorithm using LSTM demonstrated a moderate yet prom-
ising capability to distinguish between JSA of low and high quality, outperforming
traditional ML approaches such as RF and GB. The model’s performance was re-
stricted by challenges regarding data scarcity and quality. The insights gained show
that ML techniques can be utilized to assess JSA quality, and reveal the import-
ance of high-quality, and well-labeled datasets when training ML algorithms. The
practical implications of this algorithm could be a ML-based JSA quality assess-
ment tool that can be deployed in real-time. The research highlights the need for
further improvement of the data collection processes to realize the potential of AI.
Further research should look into the correlation between JSA quality, as assessed
by ML models, and the actual safety outcomes. In addition to this using a regression
approach, predicting a floating number instead of a class, could potentially offer a
more nuanced understanding of JSA quality.

The second research question explores the application of ML for the identification
of potential hazards during construction activities. For this purpose a LSTM model
was developed, using multi-label classification of activity descriptions and work op-
eration, demonstrating promising results in detecting a wide variety of potential
hazards in construction activities. The performance of the ML algorithm varies
with the type of hazard being classified, where the ROC-AUC spans from 0.60 to
0.90 for different hazards. Compared to prior studies, this model shows an enhanced
capability for hazard classification. However, it seems like the model struggles with
contextually understanding certain activities, and therefore mislabels them. The
practical implications of integrating such an ML system into the JSA process could
be beneficial, offering a data-driven approach for detecting potential hazards. The
results indicate the ML model is capable of detecting hazards that may be overlooked
by humans, making it a possible tool used by safety experts. Since the model might
mislabel hazards humans would not, the tool should work as a tool for quality as-
surance of human work rather than acting as a replacement, possibly helping the
JSA creation process.

Lastly, the third research question investigates how generative AI can be used to
propose preventive measures for identified hazards. The research approaches this
problem by fine-tuning a generative AI model using activity descriptions, hazards,
and the corresponding preventive measures. The results show that generative AI
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models are capable of being trained to propose relevant and practical preventive
measures. A weakness of the model is that the proposed measures often are generic
and lack details compared to measures written by human authors. In addition,
the model occasionally proposes unconventional solutions, which could mitigate the
hazard, but are impractical in solving the task at hand. Despite these challenges,
the research showcases the potential of using generative AI to enhance construction
safety. As AI technology advances, it is expected that AI models will be able to
propose more insightful, and contextually relevant measures. This progression could
make generative AI models a valuable tool for future safety management in the
construction industry.

6.2 Further Work

This section suggests potential directions for future work. The following suggestions
could help build upon and extend the research in this thesis:

• Exploring alternative ML models for Classification: While LSTM was
the chosen model for classification tasks in this thesis, the rapid development
of other text classification models suggests that another model possibly could
offer a superior performance.

• Exploring Other LLM Models: T5 was chosen as the LLM employed in
this thesis, but exploring larger variants of T5 or other open-source LLMs could
possibly yield better results. Furthermore, using non open-source models such
as GPT could potentially improve the results.

• Incorporating ML Tools into the JSA Process: An interesting aspect of
future work is to delve deeper into the integration of AI-driven tools into the
JSA workflow. There are possibilities to look into how a ML indicator of JSA
quality can be incorporated into the JSA process. In addition to integrating
hazard identification and preventive measure proposals into the JSA process.

• Expanding Datasets Used in the Study: The datasets, especially the one
used to evaluate JSA quality, suffer from its limited size. Gathering a larger
dataset could improve the model’s performance. The quality of the JSA should
be assessed by safety experts. Using a scale ranging from 1 to 5, instead of
binary classification, could lead to a more nuanced indicator for measuring
JSA.

• Examining the Relationship between JSA Quality and Lagging In-
dicators:

Investigating the correlation between JSA quality and lagging indicators, such
as accident rate, is necessary to determine the effectiveness of a tool assessing
JSA quality. Analyzing this relationship would provide valuable insight into
the possible effectiveness of the ML tool.
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Appendix

A Appendix Exhibit A - Laws from The Norwegian Labour
Inspection Authority

§ 3-2. Særskilte forholdsregler for å ivareta sikkerheten

(3) Hvis det skal utføres arbeid som kan innebære særlig fare for liv eller
helse, skal det utarbeides en skriftlig instruks om hvordan arbeidet
skal utføres og hvilke sikkerhetstiltak som skal iverksettes.

§ 10-4. Krav til utstyrsspesifikk opplæring

Arbeidsgiver skal sørge for at arbeidstaker f̊ar nødvendig opplæring p̊a det
spesifikke arbeidsutstyret vedkommende skal bruke. Opplæringen skal tilpasses
arbeidsutstyrets art og sikre at arbeidstakeren kan bruke arbeidsutstyret p̊a
en forsvarlig m̊ate. Det skal dokumenteres skriftlig hvilket arbeidsutstyr det
er gitt opplæring p̊a, hvem som har gitt opplæringen og hvem som har f̊att
opplæring.
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B Appendix Exhibit B - Translations of Work Operations

Original Norwegian words Translated English

Annet - definer Other - define

Løfteoperasjoner Lifting operations

Riggarbeider Rig work

R̊abygg/prefab. Shell construction/ prefabrication

Grunnarbeider Foundation work

Tett bygg/fasader Dense buildings/facades

Grøfter/kummer/rør Shafts/wells/pipes

Innvendige arbeider Interior works

Sprengning/masseforflytning Blasting/mass transfer

Betongarbeider Concrete work

Bruer/kaier Bridges/quays

Tunneler Tunnels

Utomhusarbeider Outdoor work

Riving og/eller sanering Demolition and/or remediation
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C Appendix Exhibit C - Translation of Hazards

Actual Norwegian words Translated English

Fallende gjenstand Falling object

Bevegelige gjenstander/klemfare Moving objects/crushing hazards

Fall fra høyde Fall from height

Sammenstøt/p̊akjørsel Collision

Elektriske støt Electrical shocks

Konstruksjonssvikt Structural failure

Tunge løft/tunge materialer Heavy lifting/heavy materials

Brann, eksplosjon Fire, explosion

Høyt trykk, sprutfare High-pressure hazards/splash risks

Fare for å snuble eller skli Risk of tripping or slipping

Værforhold (vind, kulde, t̊ake) Weather conditions (wind, cold, fog)

Drukning Drowning

Støv, røyk, gasser, giftige stoffer Dust, smoke, gases, toxic substances

Utslipp/forurensning Emissions/pollution

Skarp gjenstand (kutt, stikk) Sharp object hazards (cuts, punctures)

Støy, vibrasjon Noise, vibration

Arbeid i lukkede rom/oksygenmangel Confined space work/oxygen deficiency hazards

Biologisk helsefare Biological health hazard

Kollaps av gravegrop Collapse of excavation pit

Overflater med høy/lav temperatur Surfaces with extreme temperatures (high/ low)
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D Appendix Exhibit D - Translation of JSA causes

Norwegian words Translated English

Konsekvensen er alvorlig dersom det skjer
noe galt

The consequences are serious if something
goes wrong

Arbeidet innebærer risiko for
helseskade/skade

The work poses a health or injury risk

Ulykker/uønskede hendelser har skjedd
tidligere ved tilsvarende aktiviteter

Accidents or unintended incidents have
occurred in the past during similar activ-
ities

Aktiviteten er ny og ukjent The activity is new and unknown

Folk som ikke kjenner hverandre skal
utføre en kritisk jobb sammen

Individuals unfamiliar with each other
must collaborate on a critical task

Forutsetninger for aktiviteten er endret
(værforhold, tid, rekkefølge, andre aktiv-
iteter i nærheten)

The conditions for the activity have
changed (weather conditions, time, se-
quence, other nearby activities)

Arbeidet medfører avvik/endringer fra be-
skrivelser i prosedyrer og planer

The work deviates or changes from the es-
tablished procedures and plans

Behov for å gi og dokumentere ut-
styrtspesifikk opplæring

There is a need to provide and document
training specific to the equipment

Annet... Other...

Behov for å gi dokumentert-/ utstyrtspesi-
fikk opplæring

Need to provide documented/equipment-
specific training

Translation of reasons to make JSA
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E Appendix Exhibit E - Hyperparameteres for Good Ex-
ample Algorithm

Model Hyperparameters Values

Random Forest

n estimators [10, 50, 100, 200]
max depth [None, 10, 20, 30]

min samples split [2, 5, 10]
min samples leaf [1, 2, 4]

bootstrap [True, False]
criterion Gini

Gradient Boosting

n estimators [50, 100, 200, 300]
learning rate [0.01, 0.05, 0.1, 0.5]
max depth [3, 4, 5, 6]
max features [’auto’, ’sqrt’, ’log2’, None]

loss log loss

LSTM

loss ’binary crossentropy’
optimizer ’adam’

embedding size 32
units 128

activation ’sigmoid’
early stopping (monitor=’loss’, patience = 3)

word 2 vec
vector size 200
window 5

min count 1

Hyperparameter Optimization Ranges in the Good Example Algorithm
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F Appendix Exhibit F - Hyperparameters for Hazard Clas-
sification Model

Model Component Hyperparameters/Settings Values

Categorical Encoding
Work operation OneHotEncoder()
Subject area OneHotEncoder()
Hazards Multi Label Binarizer (mlb)

Data Splitting
Test Size 0.2

Training Size 0.8
Random State 42

LSTM Model
Embedding Dimension 100

LSTM Units 64

Categorical Inputs
Dense Layer Units 32
Activation Function relu

Layers
Dense Layer Units 128

Output Activation Function sigmoid

Model Compilation
Loss Function binary crossentropy
Optimizer adam
Metrics accuracy, weighted accuracy

Model Training
Epochs 10

Batch Size 32

Hyperparameters and Settings for Simplified Hazard Classification Model

Model Component Hyperparameters Values

General
Test Size 0.2

Training Size 0.8
Random State 42

Number of Folds (KFold) 5

LSTM Model
Embedding Dimension 200

LSTM Units 64

Categorical Inputs
Dense Layer Units 32
Activation Function relu

Concatenation Layer
Dense Layer Units (Layer 1) 128
Dense Layer Units (Layer 2) 64
Activation (Layer 1 and 2) relu

Dropout Rate 0.5

Model Training
Loss Function binary crossentropy
Optimizer adam
Metrics accuracy, weighted accuracy

Training Parameters
Epochs 10

Batch Size 32

Hyperparameters for Complex Hazard Classification Model
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G Appendix Exhibit G - Hyperparameters for Preventative
Measures Generation

Model Hyperparameters Values

T5 Model

Model type Base
Training data 70%
Validation data 20%

Test data 10%
Tokenizer max length 150
Tokenizer truncation True
Tokenizer padding max length

T5 Training Args
num train epochs 3

per device train batch size 32
per device eval batch size 64

Prediction Generation
max length 300
num beams 6

early stopping True

Hyperparameters for Training T5 Model
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H Appendix Exhibit H - Original language: Most Confident
Misclassifications

Activity description Label By algorithm Certainty Actual label

Montasje av 4 stk sandwichvegger i akse B1,
elementene skal monteres p̊a plasstøptvegg
6,8 meter over gulv p̊a grunn. planlagt
montasje 02.03.22.

Bevegelige gjen-
stander/klemfare

0.8485 Fallende gjenstand

Vi skal sprenge ned fjell mot bygg (ca 8 m
høgt) der fjellet er ca 1-2 m fra bygg, der vi
salver at vi tar 4 m pallhøyde. Mest kritisk
plass er sikret med borstenger.

Brann, eksplosjon 0.5115 Bevegelige gjen-
stander/klemfare, Fall
fra høyde, Fallende
gjenstand, Høyt trykk,
sprutfare

Etter sprengning har det dannet seg sprek-
ker i mur mot eksisterende tanker, denne skal
fjernes p̊a oppdrag fra byggherre.

Brann, eksplosjon 0.3962 Fall fra høyde,
Bevegelige gjen-
stander/klemfare

Vs har f̊att i oppdrag og fylle kanal inne p̊a
[Anonymized], her skal vi legge 1200btg p̊a -
0,70 og montere 3 kummer.

Drukning 0.8204 Bevegelige gjen-
stander/klemfare,
Støv, røyk, gasser,
giftige stoffer,
Utslipp/forurensning

Sprengning av grøft/vei under og langs
høyspentledning. [Anonymized] er eier av
høyspentledningen som fører 420kV. Grøften
er ca 70 meter. Det blir lagt 2 lag og 18 mat-
ter for å forhindre spredning av stein. Salvene
blir justert etter forholdene med vanndam-
mene. Det blir en del små salver.

Elektriske støt 0.7540 Fallende gjenstand,
Høyt trykk, sprutfare,
Bevegelige gjen-
stander/klemfare

Arbeidet skal foreg̊a delvis p̊a stillas og opp̊a
glasstak. Glass skal justeres i bære profiler
og sikres med klemmlister/profiler. I tillegg
skal det monteres profil i front av glasstak fra
stillaset. Glass er allerede heis p̊a plass og
ligger nede i bæreprofilene. Opp̊a bærepro-
filene skal det legges plater for å g̊a p̊a n̊ar
klemlister skal monteres.

Fall fra høyde 0.9257 Fare for å snuble eller
skli, Fallende gjen-
stand

Montering av ventilasjons aggrigat p̊a taket
av bygg A, Aggrigatet løftes opp p̊a funda-
mentet som er bygget p̊a taket. Hver seksjon
av aggrigatet monteres sammen og deretter
settes dette sammen og sideforskyves p̊a plass
av KBS.

Fallende gjenstand 0.9897 Bevegelige gjen-
stander/klemfare

Graver skal arbeide nær gassledning. Alle må
være klar over prosedyre dersom gasslekkasje
oppst̊ar.

Høyt trykk, sprutfare 0.4585 Brann, eksplosjon

Montering av st̊albjelker for bæring av mod-
uler

Konstruksjonssvikt 0.7466 Fallende gjen-
stand, Sam-
menstøt/p̊akjørsel,
Værforhold (vind,
kulde, t̊ake)

Ombordkjøring/ilandkjøring og tipping fra
flatlekter til sjø

Sammenstøt/p̊akjørsel 0.7720 Drukning

Sage ned busker og trær og kjøre gjennom
kompostkvern

Skarp gjenstand (kutt,
stikk)

0.7862 Fallende gjenstand,
Bevegelige gjen-
stander/klemfare

Sikkert arbeid med pigging og annet arbeid i
s̊ale tunnel

Støv, røyk, gasser,
giftige stoffer

0.8353 Brann, eksplosjon

Vegger må vendes med t̊arnkran og mo-
bilkran

Tunge løft/tunge ma-
terialer

0.8664 Konstruksjonssvikt,
Bevegelige gjen-
stander/klemfare

Plastring i sjø, foran Kai Utslipp/forurensning 0.6845 Drukning, Bevegelige
gjenstander/klemfare

Montering og heising av st̊albjelker Værforhold (vind,
kulde, t̊ake)

0.7712 Støv, røyk, gasser,
giftige stoffer

The Most Confident Misclassifications by the Model - Original Norwegian text

97




	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Research Questions
	Project Scope
	Structure of Thesis

	Theory
	Health, Safety and Environment in the Construction Industry
	Hazards in Construction Projects
	Safety Indicators
	Job Safety Analysis
	Using data within HSE in Constructions Projects

	Machine Learning in Construction Safety
	Natural Language Processing
	Tokenization
	Stopword Removal
	Normalization Techniques
	Vectorization

	Machine Learning
	Training, Test, and Validation Datasets
	Cross-Validation
	Performance Measures - Classification
	Multi-Label Classification
	Class Imbalance

	Deep Learning
	Artificial Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Transformers and the Attention Mechanism


	Methodology
	Literature Review
	DiSCo Project
	Confidentiality and GDPR
	Exploratory Data Analysis
	Project Data
	JSA-Report Data
	Hazards Data
	Preventive Measures Data
	Causes of Creating JSA
	The Good Example Variable

	Data Cleaning
	JSA-Reports Data
	Preventive Measures
	Hazards Data

	Machine Learning
	Algorithm I: Good Example Classification
	Algorithm II: Hazard Classification
	Algorithm III: Preventative Measures Generation


	Results
	Algorithm I: Good Example Classification
	Algorithm II: Hazard Classification
	Algorithm III: Preventative Measures Generation

	Discussion
	Discussion of JSA Quality Classification Algorithm
	Algorithm Performance
	Limitations and Future Research
	Practical Implications

	Discussion of Hazard Classification in JSA
	Evaluation of Classification Performance
	Limitations
	Practical Implications

	Discussion of Preventative Measures Generation
	Model Performance
	Challenges and Limitations
	Practical Application and Potential


	Conclusion
	Findings
	Further Work

	Reference List
	Appendix
	Appendix Exhibit A - Laws from The Norwegian Labour Inspection Authority
	Appendix Exhibit B - Translations of Work Operations
	Appendix Exhibit C - Translation of Hazards
	Appendix Exhibit D - Translation of JSA causes
	Appendix Exhibit E - Hyperparameteres for Good Example Algorithm
	Appendix Exhibit F - Hyperparameters for Hazard Classification Model
	Appendix Exhibit G - Hyperparameters for Preventative Measures Generation
	Appendix Exhibit H - Original language: Most Confident Misclassifications


