Femoral Nailing in a Porcine Model Causes Bone Marrow Emboli in the Lungs and Systemic Emboli in the Heart and Brain

Steinar Kristiansen, MD, Anders Hagen Jarmund, MSc, Jonas Hilmo, MD, Tom Eirik Mollnes, MD, PhD, Martin Leth-Olsen, MD, Siri Ann Nyrnes, MD, PhD, Bent Aksel Nilsen, RN, Renathe Henriksen Grønli, MSc, Bjørn Ove Faldaas, MSc, Benjamin Storm, MD, PhD, Arild Espenes, DVM, PhD, and Erik Waage Nielsen, MD, PhD

Background: Shaft fractures of the femur are commonly treated with intramedullary nailing, which can release bone marrow emboli into the bloodstream. Emboli can travel to the lungs, impairing gas exchange and causing inflammation. Occasionally, emboli traverse from the pulmonary to the systemic circulation, hindering perfusion and resulting in injuries such as heart and brain infarctions, known as fat embolism syndrome. We studied the extent of systemic bone marrow embolization in a pig model.

Methods: Twelve anesthetized pigs underwent bilateral intramedullary nailing of the femur, while 3 animals served as sham controls. Monitoring included transesophageal echocardiography (TEE), pulse oximetry, electrocardiography, arterial blood pressure measurement, and blood gas and troponin-I analysis. After surgery, animals were monitored for 240 minutes before euthanasia. Post mortem, the heart, lungs, and brain were biopsied.

Results: Bone marrow emboli were found in the heart and lungs of all 12 of the pigs that underwent intramedullary nailing and in the brains of 11 of them. No emboli were found in the sham group. The pigs subjected to intramedullary nailing exhibited significant hypoxia (PaO2/FiO2 ratio, 410 mm Hg [95% confidence interval (CI), 310 to 510]) compared with the sham group (594 mm Hg [95% CI, 528 to 660]). The nailing group exhibited ST-segment alterations consistent with myocardial ischemia and a significant increase in the troponin-I level compared with the sham group (1,580 ng/L [95% CI, 0 to 3,456] versus 241 ng/L [95% CI, 0 to 625] at the 240-minute time point; p = 0.005). TEE detected emboli in the right ventricular outflow tract, but not systemically, in the nailing group.

Conclusions: Bilateral intramedullary nailing caused bone marrow emboli in the lungs and systemic emboli in the heart and brain in this pig model. The observed clinical manifestations were consistent with coronary and pulmonary emboli. TEE detected pulmonary but not systemic embolization.

Clinical Relevance: Femoral intramedullary nailing in humans is likely to result in embolization as described in our pig model. Focused monitoring is necessary for detection of fat embolism syndrome. Absence of visual emboli in the left ventricle on TEE does not exclude the occurrence of systemic bone marrow emboli.

Disclosure: The study received funding from Helse Nord, the Odd Berg Group, The Royal Norwegian Society of Sciences and Letters, and the Blix Family Fund. The Article Processing Charge for open access publication was funded by The Arctic University of Norway (UIT). The Disclosure of Potential Conflicts of Interest forms are provided with the online version of the article (http://links.lww.com/JBJSOA/A606).

Copyright © 2024 The Authors. Published by The Journal of Bone and Joint Surgery, Incorporated. All rights reserved. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

JBJS Open Access • 2024:e23.00128. http://dx.doi.org/10.2106/JBJS.OA.23.00128 openaccess.jbjs.org 1
inflammation, neurological symptoms, petechiae, and respiratory failure. Cerebral magnetic resonance imaging (MRI) with susceptibility- and diffusion-weighted images is definitive for diagnosing cerebral bone marrow emboli\(^\text{4,18-20}\). Perioperative transesophageal echocardiography (TEE) can detect emboli\(^\text{15-26}\) but is rarely used during orthopaedic surgery. Histopathological examination, including oil red-O staining, detects emboli in tissue biopsy specimens\(^\text{27}\). Systemic embolization during orthopaedic surgery has been reported\(^\text{10,11,28-30}\) but has to our knowledge not been systematically examined. Therefore, we assessed the extent of systemic embolization during intramedullary nailing in a pig model using assessment of clinical deterioration, TEE, electrocardiography (ECG), and postmortem biopsies.

Materials and Methods

Animals

Our study included 15 specific pathogen-free Norwegian Landrace pigs (average weight, 27.0 kg; standard deviation [SD], 4 kg); 12 underwent intramedullary reaming and nailing and 3 served as sham controls (Fig. 1). Exclusion criteria were preexisting disease, unexpected complications unrelated to the intramedullary nailing, and a patent foramen ovale; no animals were excluded. The study was approved by the Norwegian Animal Welfare Committee (FOTS-ID#19803) and European Union directive 2010/63/EU.

Instrumentation, Anesthesia, and Monitoring

An overview of the instrumentation used for the intramedullary nailing is provided in Figure 2. All 15 pigs were anesthetized using intramuscular azaperone (40 mg), ketamine (500 mg), and atropine (0.5 mg). A peripheral venous catheter was placed in an ear vein bilaterally. Pentobarbital was titrated to maintain...
spontaneous breathing and sufficient anesthesia. We intubated the pigs endotracheally using a 7.0-mm-outter-diameter tube.

We maintained anesthesia with intravenous morphine (2 mg/kg/hr), midazolam (0.15 mg/kg/hr), and pentobarbital (4 mg/kg/hr). The animals were ventilated with a tidal volume of 10 to 13 mL/kg, respiratory rate of 20 to 24/min, and positive end-expiratory pressure of 5 cm H2O. Ventilation was titrated to a pH of 7.4 ± 0.5, and the fraction of inspired oxygen (FiO2) was adjusted to maintain the arterial pulse oximetry saturation (SpO2) above 90%. Ringer acetate solution was infused (8 to 10 mL/kg/hr). When the mean arterial pressure (MAP) dropped below 50 mm Hg, we administered 2-mL/kg boluses of Ringer acetate solution and a noradrenaline infusion was started at 0.05 μg/kg/min and titrated to achieve an MAP above 50 mm Hg. Noradrenaline (1 μg/kg) was administered if the MAP dropped below 45 mm Hg.

We placed a 4-Fr 8-cm arterial catheter (PiCCO; Pulsion/Getinge) in the right carotid artery and a 7-Fr 15-cm central venous catheter (Certoix Trio; B. Braun) in the right external jugular vein with an ultrasound-guided technique. A heparin flush solution (2.5 IU/mL) was used to avoid coagulation. We placed a suprapubic catheter with a temperature sensor in the bladder. A pediatric 9-T TEE probe (GE Healthcare) was positioned in the upper esophageal position and connected to an echocardiography machine (Vivid 7; GE Vingmed). We installed a NeoDoppler ultrasound probe (NeoDoppler research setup31, Norwegian University of Science and Technology) after an approximately 1 x 2-cm trepanation for monitoring cerebral blood flow. We used 6-lead ECG with monitoring of ST-segment changes, SpO2, end-tidal CO2, and continuous invasive arterial and central venous pressures (IntelliVue MP70; Phillips) to monitor for ischemia, defined as at least 1 of the following: (1) ST-segment depression exceeding 1 mm at the J point in ≥2 contiguous leads, (2) ST-segment elevation exceeding 1 mm at the J point in ≥2 contiguous limb leads, and/or (3) ST-segment elevation exceeding 2 mm in ≥2 contiguous precordial leads.

Preoperatively, we performed TEE with agitated saline solution to rule out a patent foramen ovale. The probe was then positioned as described by Vik et al.22 and Storm et al.23 for visualization of the aorta or left ventricular outflow tract (LVOT) and pulmonary artery or right ventricular outflow tract (RVOT) for continuous ECG. TEE was performed before, during, and after intramedullary nailing (or approximately 30 minutes after instrumentation in the sham group).

After anesthesia, instrumentation, and preoperative monitoring, the pigs were assigned to either undergo bilateral intramedullary nailing of the femur (n = 12) or not undergo surgery (sham group; n = 3). About 240 minutes after completion of the intramedullary nailing or after completion of the instrumentation in the sham group, we killed the animals by central venous injection of potassium chloride. Blood and Tissue Sampling and Analyses

Blood was collected from the carotid artery before surgery, after completion of bilateral intramedullary nailing (or 30 minutes after the arterial catheter was placed in the sham group), and 2 and 4 hours after the surgery or after arterial cannulation in the sham group.

We sampled a total of 75 mL of blood per animal, using a Vacutainer (BD) closed vacuum system and serum tubes with clot activator and gel (VACUETTE; Greiner Bio-One) for serum samples, and a SafePICO syringe with heparin (Radiometer) for arterial blood gas analysis. To avoid pre-analysis heparin contamination from the line flush solution, 4 mL of blood was withdrawn and discarded before sampling. After 30 minutes of clotting, the serum was centrifuged at 2,000 x g for 10 minutes, transferred to cryotubes, and stored at −80°C for analysis. Arterial blood gases were analyzed immediately.

We analyzed troponin-I levels using an Atellica IM analyzer (Siemens Healthineers, Siemens Healthcare) and arterial blood gases using an ABL80 FLEX blood gas analyzer (Radiometer).

Post mortem, we biopsied the lungs, heart, and brain, and examined for an intracardiac shunt.

Orthopaedic Surgery

An orthopaedic surgeon performed all orthopaedic procedures. With the pigs in a lateral position, a longitudinal incision was made from approximately 5 cm distal to 5 cm proximal to the proximal border of the femur. The trochanteric fossa was identified, and the medullary canal was opened with a drill bit. A guidewire was inserted, and the canal was opened with an entry reamer (Bixcut IM Reamer; Stryker). Sequential reaming was performed from 6.5 to 11 or 11.5 mm in increasing increments of 0.5 mm. A trochanteric antegrade nail (TRIGEN TAN; Smith & Nephew) with a diameter of 10 mm was cut to a length of 15 cm, longer than the femur for easy removal. The distal part of the nail was then inserted. The incision was closed with a stapler, and the procedure was repeated on the contralateral side.

Histopathological Analyses

Tissue samples of the brain, lungs, and heart measuring 1 x 1 x 0.3 cm were frozen in optimal cutting temperature (O.C.T.) compound (Tissue-Tek; Sakura) on dry ice. Tissue slices of 8 μg were cut at −20°C using a Leica CM1950 cryostat (Leica Biosystems). The slices were mounted on SuperFrost Plus slides (Epredia) and air-dried, fixed with 4% neutral buffered formalin mixed with 63% ethanol for 5 minutes, dipped in 60% isopropanol for 2 minutes, and incubated in a 0.3% solution of oil red O (Sigma-Aldrich) (6 mL of 0.5% oil red O diluted with 4 mL of H2O2) for 10 minutes.

After incubation, samples were rinsed in 60% isopropanol and counterstained with Mayer’s hematoxylin solution (Sigma-Aldrich) for 5 minutes, rinsed for 10 minutes under running tap water, and mounted with glycerol jelly. Images of oil red O-stained samples were captured using a Nikon DS-Fi3 camera (Nikon Systems) installed on a Nikon ECLIPSE Ci light microscope. The images were processed using NIS-Elements (Nikon).

We defined a positive biopsy as ≥2 intravascular or perivascular emboli stained with oil red O in the same section.
Power Calculation

We expected systemic bone marrow emboli in 70% of the pigs in the intramedullary nailing group and none in the sham group. Aiming for a power of 80%, an alpha of 5%, a beta of 20%, and an enrollment ratio of 0.3, we determined that allocation of 12 animals to the nailing group and 4 to the sham group (16 animals in total) was needed. However, we considered 3 animals sufficient for the sham group as bone marrow emboli are unlikely in animals that do not undergo an operation.

Statistical Analysis

Data are presented as the mean with the 95% confidence interval (CI). The lower CI limit for biological data, where the true mean cannot be below zero, was bounded at zero. We
analyzed group differences using the Student unpaired t test or mixed models. *P < 0.05 was considered significant.

Results

Bone marrow emboli were found in histopathological examinations of the lungs and hearts in all 12 pigs in the intramedullary nailing group and in the brains of 11 of them (Fig. 3). TEE showed bone marrow emboli in the RVOT during intramedullary reaming and nailing (Fig. 4) in all 12 pigs. No emboli were found in the pigs in the sham group.

On TEE, embolization was most intense during the reaming and nailing procedures, and the intensity gradually decreased before ceasing after the procedures were finalized. Emboli were visible on TEE before clinical deterioration, whereas no emboli were detected in the LVOT or aorta.

TABLE I PaO₂/FiO₂ Ratio, MAP, and Troponin-I Levels*

<table>
<thead>
<tr>
<th></th>
<th>Mean (95% CI)</th>
<th>Sham (N = 3)</th>
<th>Intramedullary Nailing (N = 12)</th>
<th>Difference Between Intramedullary Nailing and Sham</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO₂/FiO₂ ratio (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 minutes preop.</td>
<td>539 (429 to 649)</td>
<td>517 (427 to 606)</td>
<td>−22 (−223 to 189)</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>30 minutes postop.</td>
<td>594 (528 to 660)</td>
<td>410 (310 to 510)</td>
<td>−184 (−318 to −51)</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 minutes preop.</td>
<td>62 (52 to 69)</td>
<td>69 (62 to 77)</td>
<td>7 (0 to 26)</td>
<td>0.751</td>
<td></td>
</tr>
<tr>
<td>0 to 30 minutes postop.</td>
<td>70 (65 to 72)</td>
<td>66 (61 to 72)</td>
<td>4 (0 to 16)</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td>Troponin-I level (ng/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 minutes preop.</td>
<td>162 (0 to 380)</td>
<td>350 (183 to 518)</td>
<td>188 (−153 to 529)</td>
<td>0.256</td>
<td></td>
</tr>
<tr>
<td>240 minutes postop.</td>
<td>241 (0 to 625)</td>
<td>1,580 (0 to 3,456)</td>
<td>1,339 (1,196 to 1,470)</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

*Preop. and postop. refer to before and after completed instrumentation in the sham group.
Clinical Manifestations of Bone Marrow Emboli

Respiration and Ventilation

After arterial cannulation (30 minutes preoperatively), the PaO2/FiO2 ratio (partial pressure of oxygen in arterial blood relative to FiO2) was 517 mm Hg (95% CI, 427 to 606) in the intramedullary nailing group compared with 539 mm Hg (95% CI, 429 to 649) in the sham group, a difference of −22 mm Hg (95% CI, −223 to 189; p = 0.826). After nailing, the PaO2/FiO2 ratio was 410 mm Hg (95% CI, 310 to 510) versus 594 mm Hg (95% CI, 528 to 660) in the sham group, a difference of −184 mm Hg (95% CI, −318 to −51; p = 0.011). End-tidal CO2 did not differ significantly between the groups.

Hemodynamics and Cardiac Injury

Only animals exposed to intramedullary nailing experienced hemodynamic insults, including hypotension, ECG changes, and elevation of the troponin-I level (Table I). The preoperative MAP was 69 mm Hg (95% CI, 62 to 77) in the intramedullary nailing group and 62 mm Hg (95% CI, 52 to 69) in the sham group. There was no significant difference in the postoperative MAPs between the groups. However, 3 of the 12 experimental pigs exhibited an MAP below 35 mm Hg, with the lowest MAP in a single pig being 31 mm Hg and occurring 22 minutes after intramedullary nailing. These 3 pigs were treated with fluid and noradrenaline, which rapidly achieved an MAP above 50 mm Hg.

Four of the 12 pigs exhibited ST-segment elevation of >2 mm at the J point, indicative of myocardial ischemia, in leads II, III, and aVL. A clinically relevant change in the ST segment occurred as early as 4 minutes after initiation of reaming and persisted for an average of 26 minutes (95% CI, 15 to 37) (Fig. 5). One pig had persistent ECG signs of ischemia, and 2 had ST-segment depression of >1 mm in leads aVL and aVR, consistent with subendocardial ischemia.

The troponin-I level before intramedullary nailing averaged 350 ng/L (95% CI, 183 to 518), increasing to 1,380 ng/L (95% CI, 0 to 3,456) 240 minutes postoperatively (Fig. 5). In the sham animals, the troponin-I level averaged 162 ng/L (95% CI, 0 to 380) in the first sample taken after arterial cannulation and increased to 241 ng/L (95% CI, 0 to 625) after 240 minutes. The troponin-I level was significantly higher in the intramedullary nailing group compared with the sham group at all sampling points after the start of surgery (p = 0.040).

Six of the 12 pigs exposed to intramedullary reaming had a >50% increase in the troponin-I level between the first preoperative sample and the last sample taken 240 minutes after surgery, indicating myocardial infarction.

Discussion

Bilateral intramedullary nailing consistently caused bone marrow emboli in the lungs and heart in all 12 of the pigs in our experimental group and in the cerebral arteries of all but 1. Clinical findings indicated coronary and pulmonary emboli. This study highlights that bone marrow emboli can bypass the lungs and spread systemically to the heart and brain, a finding that is supported by previous evidence of physiological shunts in humans.

In our model, pigs exhibited clinical deterioration due to pulmonary and systemic emboli, resulting in hypoxia, hypotension, and myocardial infarction. These findings align with existing literature, supporting close monitoring during orthopaedic surgery, particularly surgery involving long bones. Our findings indicate that combining perioperative ECG with postoperative measurement of troponin-I levels may provide warning of systemic bone marrow embolization. If a patient undergoing orthopaedic surgery develops hypoxia, hypotension, or ECG changes indicative of acute ischemia, bone marrow embolization should be suspected.

Brain infarction resulting from bone marrow emboli was detected in 11 of the 12 pigs that underwent intramedullary nailing but could not be correlated with neurological symptoms as those were masked by anesthesia. The extent of organ damage likely depended on the amount of emboli passing through the pulmonary vasculature, reaching vital organs.

Perioperative TEE detected emboli on the right side of the heart but not the left, contrary to postmortem findings of systemic emboli. TEE detects right-sided emboli during orthopaedic surgery with high sensitivity and sound with frequency modulation may have more promise in distinguishing visual characteristics. They were observed with frequency modulation may have more promise for detecting systemic perioperative bone marrow emboli in the heart, aorta, or neck vessels.

Regardless of whether systemic embolic passage through the lungs occurs via arteriovenous shunts or through capillaries, TEE should detect emboli in the pulmonary vein or aorta. However, we were unable to visually detect aortic emboli, even in pigs with significant emboli in the RVOT, suggesting that most emboli were trapped in pulmonary vasculature.

Although not visible on TEE during the experiments, we found emboli in both heart and brain tissue during postmortem examinations. This suggests that emboli can move systemically without intracardiac shunts, as has been also suggested by other studies. The failure to detect the systemic embolization using TEE indicates that TEE may not be the optimal modality for this purpose.

High-intensity transient signals shown by perioperative TEE have limitations with regard to distinguishing embolus types. Such signals may represent blood clots, air bubbles, bone marrow emboli, or a combination. However, in our study, bone marrow emboli seemed to have some distinguishing visual characteristics. They were observed before fluid boluses and had a different distribution pattern compared with that of blood clots and air bubbles, as has been described by others. Transcranial Doppler ultrasound with frequency modulation may have more promise for detecting systemic perioperative bone marrow emboli in the heart, aorta, or neck vessels.

The risk of severe multiorgan failure in patients with fat and bone marrow emboli is influenced by immunological factors, embolic burden, affected organs, and compensatory capacity. Perioperative warning signs include ST-segment changes...
on ECG, hypotension, and neurological changes. Early detection is crucial as supportive treatment may improve outcomes. Susceptibility-weighted MRI is advisable for patients exhibiting neurological changes, and transfer to a neurosurgical center is warranted if increased intracranial pressure is suspected. Early diagnosis may improve survival through organ support and, if indicated, neurological decompression. These measures may have contributed to the reduced mortality found in recent compared with older studies.

There is no effective pharmacological treatment for fat embolism syndrome following systemic bone marrow embolization, but early fracture fixation combined with embolus-reducing orthogonal techniques may be preventive. Continuous suction and lavage of the medullary canal can reduce embolic burden, and measures lowering pressure during reaming may decrease emboli.

As observed in our pig model, systemic embolization during femoral nailing is more common than previously thought. The perceived rarity of this condition may be due to insufficient detection methods. Comprehensive clinical studies combining perioperative monitoring, imaging, and neurophysiological testing are needed to improve detection rates and understand implications in patients.

Our study had limitations, including a limited observation time in a small sample. Thus, although systemic emboli were observed in all 12 pigs that underwent intramedullary nailing, the clinical relevance could not be fully elucidated under these constraints. Prolonged observation is necessary to detect complications such as heart failure and cerebral herniation. Also, we conducted extensive histopathological analyses but lacked resources for quantitative analysis correlating embolic burden with clinical outcomes.

In conclusion, bilateral femoral intramedullary nailing resulted in clinical lung and systemic emboli, confirmed by biopsies, in all of the animals in our experimental group. TEE is crucial as supportive treatment may improve outcomes.

Studies are needed to assess strategies for reducing bone marrow emboli and evaluating perioperative and postoperative monitoring and diagnostics.

References

Femoral Nailing in a Porcine Model Causes Bone Marrow Emboli in the Lungs, Heart, and Brain