
Kjersti Berg
D

octoral theses at N
TN

U
, 2024:231

ISBN 978-82-326-8054-2 (printed ver.)
ISBN 978-82-326-8053-5 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2024:231

Kjersti Berg

Local energy communities
Member benefits and grid impact under 
various regulatory frameworks

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f 
Ph

ilo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 

an
d 

El
ec

tr
ic

al
 E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f E
le

ct
ri

c 
Po

w
er

 E
ng

in
ee

ri
ng



Local energy communities
Member benefits and grid impact under 
various regulatory frameworks

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2024

Norwegian University of Science and Technology
Faculty of Information Technology 
and Electrical Engineering
Department of Electric Power Engineering

Kjersti Berg



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology 
and Electrical Engineering
Department of Electric Power Engineering

© Kjersti Berg

ISBN 978-82-326-8054-2 (printed ver.)
ISBN 978-82-326-8053-5 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2024:231

Printed by Skipnes Kommunikasjon AS 

NO - 1598



Preface

The presented research was carried out at the Department of Electric Power Engi-
neering in the Electricity Markets and Systems Planning group at the Norwegian
University of Science and Technology (NTNU). The main supervisor was Hossein
Farahmand. Magnus Korp̊as (NTNU) and Merkebu Zenebe Degefa (SINTEF
Energy Research) were co-supervisors.

The research was conducted between June 2021 and March 2024, mainly situated
in Trondheim, Norway. I also had a three-month research stay during spring
2023 at Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. The work
has been done within the research project FINE (Flexible Integration of Local
Energy Communities into the Norwegian Electricity Distribution grid), which is
associated with FME CINELDI. The aim of the FINE project is to investigate
how local energy communities can be flexibly integrated into the Norwegian power
grid [1].

This thesis is a paper-collection, consisting of published or submitted confer-
ence and journal articles. The thesis provides a context for the different works,
summarises the articles, and presents the main conclusions.
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Summary

Due to global warming, there is a need to electrify fossil fuel processes and increase
the amount of renewable energy. A way to include citizens in this green shift is
by making it easier to invest in renewable technology and share electricity locally.
This can be done through the formation of energy communities, whose purpose is
to provide environmental, economic or social community benefits for its members
or to the local area. Energy communities can therefore have different goals, such
as cost savings, CO2 emission reduction or increased locally produced renewable
energy.

Although energy communities might prove to bring economic and social benefits
for the members, it is not clear how they will impact the distribution grid
where they are located. The distribution grid is a crucial part of reaching our
climate goals, since we need more electrification and distributed renewable energy
production. Furthermore, the regulation for energy communities has not yet been
fully developed in European countries. To ensure that the new regulations give the
right incentives and do not induce stress on the grid, there is a need to investigate
how the energy communities impact it. Proposed regulatory frameworks such as
collective self-consumption or local collective grid tariffs might reduce the costs
for the members but could potentially increase system costs.

The aim of this thesis is to investigate the member benefits of forming local
energy communities, and how they will impact the distribution grid, under
various regulatory frameworks. This is done by formulating optimisation models
for minimising energy community costs when subject to different price signals.
Further, how different cases impact the grid, particularly the peak demand, is
investigated. The optimisation models in this research cover both operation and
investment problems for various technologies present in the energy community
— PV generation, battery storage, thermal storage and shiftable loads; various
members – residential, commercial and industrial; volumetric and capacity-based
grid tariffs; and two regulatory frameworks — local collective grid tariff and
collective self-consumption.

The findings of this PhD research give valuable insights for different stakeholders,
which can further be used to develop country-specific regulations for energy
communities. The regulator can observe how local collective grid tariffs and
collective self-consumption impact the peak load of energy communities and how
this relates to cost reduction under different grid tariffs. The most interesting
finding, in that sense, is that capacity-based grid tariffs do not always lead to
peak demand reduction. Members of energy communities, or other end-users
considering forming them, can observe that battery energy storage systems are for
the most part too expensive and that thermal energy storage should be prioritised
if cost reduction is the most important motivation, and a part of the demand
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is thermal. Although expensive, battery systems can be valuable if the energy
community wants to reduce CO2 emissions and increase self-consumption. Smart
control of shiftable loads such as domestic hot water tanks and space heating are
also flexibility resources that should be investigated before investing in battery
energy storage systems. Distribution system operators and regulators should note
that local collective grid tariffs can be an effective tool to reduce peak demand in
the grid if combined with a capacity-based grid tariff. Energy communities are a
flexible resource that can both create and solve problems in the grid, depending on
which assets are present and which price signals they respond to. On a larger scale,
the increased knowledge about energy communities can contribute to facilitating
the integration of renewable energy resources and electrification as a means to
reach our climate goals in a socio-economic way.
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Chapter 1: Introduction

1 Introduction

This chapter first provides a motivation for the PhD project. Next, the research
gaps addressed in the work are elaborated, followed by a presentation of the
research questions and the scope of the work. Subsequently, the publications that
constitute the thesis are listed along with publications that have been published
through the PhD research but are excluded from the thesis. Finally, the outline
of the thesis is presented.

1.1 Motivation

Due to global warming, there is a need to electrify fossil fuel processes and increase
the amount of renewable energy. A way to include citizens in this green shift is
by making it easier to invest in renewable technology and share electricity locally.
This can be done through the formation of energy communities, whose purpose is
to provide environmental, economic or social community benefits for its members
or the local area [2,3]. Energy communities can therefore have different goals, such
as cost savings, CO2 emission reduction or increased locally produced renewable
energy [4].

Since energy communities mostly consist of end-users, they will for the most part
be situated in the distribution grid. The distribution grid is a crucial part in
reaching our climate goals, since we need more electrification and distributed
renewable energy production [5,6]. The grid is, however, already at its capacity
limit in many places due to intensive electrification [7]. Increased electrification
and distributed energy resources such as photovoltaic (PV) generation may lead
to several problems in the grid, such as increased losses, congestion, breaches of
voltage limits and power quality problems [8–12]. Upgrading the grid is costly
and takes a long time; therefore, it is important to reduce the stress on the grid
as much as possible. Energy communities might, in the worst case, incur extra
costs on the system [13], for instance, by increasing peak demand [14].

Energy communities are also a potential resource in the grid, since it is a way of
organising several customers with flexible resources [15]. If the community has
a community manager, this would also lead to the distribution system operator
(DSO) only having one actor to communicate with. Aggregating and organising
flexible resources in the distribution grid can help relieve the grid of capacity or
voltage problems [16,17], which again can defer grid upgrades that take long to
execute [18].

1



Chapter 1: Introduction

Regulatory frameworks for energy communities encompass a set of guidelines
and policies designed to govern the establishment, operation, and interaction of
collective energy initiatives. They are, however, not in place in most European
countries. To ensure that the new regulations on energy communities give the
right incentives, there is a need to investigate how they impact the grid. Each EU
member country is responsible for forming a regulation of energy communities.
Several countries have started with collective self-consumption schemes, and other
countries are investigating local grid tariffs [19]. To ensure a good future regulation
of energy communities, different cases must be analysed. This will shed light on
how the framework can reward energy community operation that does not impose
new challenges on the grid, or even relieves the grid of problems.

1.2 Research gaps

There are two main gaps that this research aims to address. The first is related
to energy community modelling. Most energy community studies have focused
on households and not included other members such as commercial buildings or
industrial consumers [20,21]. Energy communities can consist of several customer
types, which is important to consider both in terms of member benefits and grid
impact. The distribution of economic benefits among members is also a topic
that requires further investigation [20]. Furthermore, most research on energy
communities focuses on PV and battery systems [20]. Although the costs of battery
systems are decreasing, they are still expensive and might not be profitable to
invest in. It is therefore crucial also to investigate other flexibility assets, such
as thermal energy storage and shiftable loads. Many studies also neglect cyclic
battery degradation when modelling battery systems in optimisation models [4],
leading to aggressive battery charging and discharging when responding to price
signals. Such operation of the battery system might lead to severe ageing, reducing
its lifetime significantly [22]. This is not necessarily captured in simple models,
which restrict upper and lower limits of state-of-charge, thus, more detailed models
for cyclic battery degradation should be considered when including batteries in
optimisation models.

Depending on the country investigated, energy communities will also have very
different characteristics, in terms of solar irradiance, load profiles, spot prices and
CO2 emissions. Many energy community studies are performed for countries that
already have a significant number of communities [20]. There is, however, still a
need to investigate various countries in order to give valuable input on how the
regulation of energy communities can lead to different results depending on the
country.

The second research gap is related to the distribution grid impact of energy
communities. Until now, most research on energy communities has focused on

2



Chapter 1: Introduction

societal participation in a community and benefits for members through reduced
costs. Thus, the grid impact has been neglected [4], and studies on the synergies
between energy communities and grid services are limited [20]. Although energy
communities might bring economic and social benefits for their members, it is not
known how they will impact the distribution grids where they are located. Energy
communities can potentially collaborate with the DSO, but not many studies
have investigated this topic [4]. Community storage might be a valuable asset in
distribution grids with voltage problems [23], but there is a need to understand
how much the DSO should remunerate the energy community for providing such
a service, since it leads to non-optimal battery operation.

When optimising energy community operation with the objective to minimise costs,
all price signals play an important part. Hence, the assumptions made regarding
regulatory frameworks will heavily impact the results. Given that the regulation is
in many countries immature [24], it is important to investigate proposed regulatory
frameworks in order to understand how, i.e., grid tariffs, virtual metering and
collective tariffs change the operation of flexible assets, and thereby the impact on
the distribution grid. Also, since forming energy communities often leads to cost
savings for the members, it should be clear what these cost savings stem from
in order to understand whether they come from a reduction in wholesale market
costs, taxes or grid tariff costs.

1.3 Research questions

This PhD work addresses the research gaps within the topic of interaction between
local energy communities and distribution grids. The main aim is to investigate
the member benefits of forming local energy communities, and how they will
impact the distribution grid under various regulatory frameworks. This is achieved
by answering three main research questions:

3
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RQ1 What are the member benefits of forming energy communities?

a How are operational costs, self-consumption and CO2 emissions
impacted by PV generation, flexible assets and members in the
energy community across different regions?

b What is the economic feasibility of an energy community investing
in batteries and thermal storage, and how do these energy storage
systems interact?

c What is the impact of including cyclic battery degradation in
energy community optimisation?

d How can costs be distributed between members in an energy
community?

RQ2 How will energy communities impact the distribution grid?

a How is the grid exchange impacted by PV generation, flexible
resources and members in the energy community across different
regions?

b Does a capacity-based grid tariff always lead to a lower peak
demand, compared to the volumetric grid tariff? What is the
largest impact on cost savings?

c How can energy communities cooperate with the DSO to solve
voltage problems, and how much should the energy community
be remunerated for this service?

RQ3 What are the benefits and challenges of local collective grid tariffs and
collective self-consumption as regulatory frameworks?

1.4 Scope of research

The optimisation models described in this thesis aim to optimise energy community
operation and investment, and therefore distribution grid planning is considered
out of the scope. The optimisation models are deterministic and assume perfect
foresight, and sensitivity analyses have been performed to investigate the uncer-
tainty of the results. All cases are run for one year, to quantify annual costs and
grid exchange. This makes it possible to investigate the seasonal variations of
PV generation and load, which is quite significant in Norway. The data used
in the case studies are of hourly resolution, leading to hourly results from the
optimisation models, and more dynamic results for, i.e., energy storage operation
being out of scope.

Since this PhD work is a part of the FINE project, which aims to investigate

4
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the integration of local energy communities in Norway, the data used are mainly
for Norwegian case studies. Two case studies are based on real measurements
from customers: a housing cooperation and an industrial consumer. One case
study in Spain is also included to investigate how different geographical areas,
with other conditions for spot market prices, solar irradiance and load profiles,
impact the results. All case studies have focused on local energy communities,
with a limited geographical span, to be able to quantify the impact they might
have on the distribution grid.

Grid tariffs are the charges imposed by the DSO for using the electrical grid, and
they play a crucial role in shaping the economic viability of energy communities.
In this work, both volumetric and capacity-based tariffs are used. The volumetric
tariff used in this work is flat, or depends on the season and hour of the day. The
capacity-based tariff1 used in this work is based on the measured monthly peak
and is either stepwise or linear.

In this work, optimisation is for the most part assumed to be collaborative,
meaning that the optimisation is solved centrally, and a community manager is
envisioned to optimise the use of common assets. When a local collective grid
tariff is assumed, all members collaborate to reach the best outcome for the energy
community as a whole, and the costs will be redistributed among the members
afterwards. Local electricity markets, peer-to-peer trading and game theory have
not been investigated in this work.

1.5 List of publications

The following papers constitute this thesis and can be found in the appendix.

I. A. Hernandez-Matheus, M. Löschenbrand, K. Berg, I. Fuchs, M. Aragüés-
Peñalba, E. Bullich-Massagué, and A. Sumper, “A systematic review of
machine learning techniques related to local energy communities,” Renewable
and Sustainable Energy Reviews, vol. 170, p. 112651, Dec. 2022. http:

//dx.doi.org/10.1016/j.rser.2022.112651

II. K. Berg, S. Bjarghov, R. Rana, and H. Farahmand, “The impact of degra-
dation on the investment and operation of a community battery for mul-
tiple services,” in 2022 18th International Conference on the European
Energy Market (EEM), Sep. 2022, pp. 1–8. http://dx.doi.org/10.1109/
EEM54602.2022.9921037

III. K. Berg, R. Rana, H. Taxt, and M. F. Dynge, “Economic assessment and grid
impact of different sharing keys in collective self-consumption,” Submitted

1Also called demand charges or measured capacity
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to conference.

IV. K. Berg, V. H. Lenes, and K. B. Lindberg, “Optimal control of domestic
hot water tanks in a housing cooperative - benefits for the grid,” in 2023
IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE),
Oct. 2023, pp. 1–5. http://dx.doi.org/10.1109/ISGTEUROPE56780.

2023.10407406

V. K. Berg, S. S. Foslie, and H. Farahmand, “Industrial energy communities:
Energy storage investment, grid impact and cost distribution,” Under
review.

VI. K. Berg, A. Hernandez-Matheus, M. Aragüés Peñalba, E. Bullich-Massagué,
and H. Farahmand, “Load configuration impact on energy community and
distribution grid: Quantifying costs, emissions and grid exchange,” Applied
Energy, vol. 363, p. 123060, Jun. 2024. http://dx.doi.org/10.1016/j.
apenergy.2024.123060

VII. K. Berg, R. Rana, and H. Farahmand, “Quantifying the benefits of shared
battery in a DSO-energy community cooperation,” Applied Energy, vol. 343,
p. 121105, Aug. 2023. http://dx.doi.org/10.1016/j.apenergy.2023.

121105

The following papers have been published during the PhD, but are not included
in the thesis due to minor contributions or their being outside the scope of the
thesis:

• R. Rana, K. Berg, M. Z. Degefa, and M. Löschenbrand, “Modelling and
simulation approaches for local energy community integrated distribution
networks,” IEEE Access, vol. 10, pp. 3775–3789, Jan. 2022. http://dx.

doi.org/10.1109/ACCESS.2022.3140237

• K. Berg and M. Löschenbrand, “A data set of a Norwegian energy commu-
nity,” Data in Brief, vol. 40, p. 107683, Feb. 2022. http://dx.doi.org/
10.1016/j.dib.2021.107683

• M. F. Dynge, K. Berg, S. Bjarghov, and Ü. Cali, “Local electricity market
pricing mechanisms’ impact on welfare distribution, privacy and trans-
parency,” Applied Energy, vol. 341, p. 121112, Jul. 2023. http://dx.doi.
org/10.1016/j.apenergy.2023.121112

• A. Hernandez-Matheus, K. Berg, V. Gadelha, M. Aragüés-Peñalba, E.
Bullich-Massagué, and S. Galceran-Arellano, “Congestion forecast framework
based on probabilistic power flow and machine learning for smart distribution
grids,” International Journal of Electrical Power & Energy Systems, vol.
156, p. 109695, Feb. 2024. http://dx.doi.org/10.1016/j.ijepes.2023.
109695
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1.6 Structure of thesis

This thesis is structured as follows. Chapter 2 provides a background for local
energy communities in the distribution grid. Chapter 3 describes the papers that
constitute the thesis, and their contributions with regard to the research questions.
Finally, Chapter 4 gives concluding remarks and suggestions for future work. All
publications are printed at the end of the thesis.
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Chapter 2: Background

2 Background

Before investigating the research questions, a background on energy communities
and their impact on the distribution grid is given in this chapter. First, the
concept of local energy communities is presented to give context to the benefits
that the members may receive from participating. Next, to understand the
impact local energy communities might have on the distribution grid, various
regulatory frameworks are presented along with an explanation of the DSO’s need
for flexibility.

2.1 Local energy communities

This section first provides the European definitions for energy communities. Next,
the current status of energy communities is given, highlighting the members
and assets that are typically present, and the motivation for members to form
energy communities. Finally, the general approach for the energy community
optimisation models is presented.

2.1.1 Energy community definitions

The EU has issued two directives with official definitions for energy communities:
‘Renewable Energy Community’ (REC) [2] and ‘Citizen Energy Community’
(CEC) [3]. These definitions are listed in Table 2.1. Member states must revise
national laws to comply with the EU rules, and therefore, they must develop
national-level definitions for citizen and renewable energy communities. The
differences between the two definitions were investigated in [25], where the authors
highlighted that renewable energy communities have certain characteristics that
are not present in citizen energy communities, such as a specific geographical scope
owing to the required proximity to renewable energy projects. Also, unlike the
renewable energy community, a citizen energy community is technology-neutral
and can therefore incorporate both renewable and conventional sources of electrical
energy. In the general discussion, however, there is little or no differentiation
made between the two definitions, where the term energy communities is mostly
used [17,26].

A uniform definition of an energy community does not exist in the literature, and
it is up to each member country to define their own national laws from the EU
directives. An energy community can therefore mean different things, depending

9



Chapter 2: Background

on the context and country. The term local energy community is not used in
any directive, but is mostly used to highlight an emphasis on the geographical
limitation of the community.

Table 2.1: Comparison of definitions of Renewable and Citizen energy community

Topic Renewable energy community [2] Citizen energy community [3]

Participation,
control and
members

“which, in accordance with the ap-
plicable national law, is based on
open and voluntary participation, is
autonomous, and is effectively con-
trolled by shareholders or members
that are located in the proximity of
the renewable energy projects that
are owned and developed by that
legal entity”

“is based on voluntary and open
participation and is effectively con-
trolled by members or shareholders
that are natural persons, local au-
thorities, including municipalities,
or small enterprises”

“the shareholders or members of
which are natural persons, SMEs
[small and medium-sized enter-
prises] or local authorities, including
municipalities”

“may engage in generation, includ-
ing from renewable sources, distri-
bution, supply, consumption, aggre-
gation, energy storage, energy effi-
ciency services or charging services
for electric vehicles or provide other
energy services to its members or
shareholders”

Purpose “the primary purpose of which is
to provide environmental, economic
or social community benefits for its
shareholders or members or for the
local areas where it operates, rather
than financial profits”

“has for its primary purpose to pro-
vide environmental, economic, or so-
cial community benefits to its mem-
bers or shareholders or to the local
areas where it operates rather than
to generate financial profits”

2.1.2 Current status: members and assets

As seen in the energy community definitions, members can be natural persons,
small and medium-sized enterprises or local authorities. This comprises, i.e.,
single houses, apartment blocks, municipality buildings, smaller industry facilities
or commercial buildings. Therefore, the members will have different electricity
consumption, investment capabilities and goals. Furthermore, different energy
generation and storage assets are used in different countries, as reported by [27].
In Austria, Switzerland and Italy, hydropower plants and biomass district heating
plants are common, while Sweden and Finland have many energy communities
with biomass district heating. Most of Germany, Spain and France use solar
energy. Wind energy is also commonly used in the Netherlands and Denmark.
The authors of [27] also found that the technology in the energy community is
connected with the size of the community: i.e., biomass/biogas district heating
communities and wind communities require larger investments, and therefore also
have more members. In [25], solar and wind technology were found to be the most
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Chapter 2: Background

commonly used in energy community projects, followed by biomass and biogas.

Research has for the most part focused on PV and battery systems, while wind,
electric vehicles and biomass are rarely considered [20]. Costs of both PV systems
and batteries have declined significantly over the last years, and lithium-ion battery
costs are projected to keep declining until 2030 [28]. Lithium-ion batteries can,
however, age quickly due to cyclic degradation, and therefore the operation of the
batteries will affect the lifetime and costs [29]. In addition to energy storage, smart
control of loads is also an important flexibility resource in energy communities [30].
Shifting existing loads can be more economic than investing in new technology
such as energy storage, although it does require a home energy management
system. Examples of shiftable/flexible loads at the residential level are space
heating, domestic hot water tanks or heating, ventilation and air conditioning
systems [15]. The residential load is, however, highly stochastic, as it depends on
the behaviour and habits of the residents. Industrial and commercial consumers
might have more predictable load, and more to gain from shifting loads with
high peaks. It is, however, often important that their processes are not interfered
with, as this could cause them to lose profit. Industrial consumers with thermal
processes may also benefit from investing in thermal energy storage as a flexible
resource.

Figure 2.1: Visualisation of a local energy community, from [31].

An important part of energy communities are the shared assets. On the community
level, members can jointly invest in shared generation such as PV panels and wind
turbines, or flexible loads like shared electric vehicle chargers. Energy storage,
such as battery energy storage systems or thermal storage systems, can be used
to, for instance, increase the self-consumption of locally produced electricity [14].

11



Chapter 2: Background

Joint investments are more economical due to economies of scale [28, 32], and
several studies have shown that community batteries are more economic than
individual batteries placed at each member’s location [23, 33, 34]. In addition
to these shared assets, each member might have invested in individual assets
such as electric vehicles, rooftop PV generation, energy storages or home energy
management systems for shiftable loads. Figure 2.1 shows a visualisation of a
local energy community, with an individual level and a community level, situated
in the larger power system.

Ref. [27] found that there are nearly 4,000 energy communities in Europe today.
They can take any form of legal entity, where the majority are cooperatives, com-
munity interest companies1 or non-profit organisations [27]. An energy community
can be structured in many ways, being controlled centrally or distributed, operat-
ing assets collaboratively or through local electricity markets [20, 36]. Depending
on the structure, other stakeholders can be aggregators, supervisors, community
managers, local market operators, etc. [20]. Figure 2.2 shows an illustration of a
collaborative energy community that is optimised centrally, where a community
manager controls the shared assets and distributes the costs and savings between
the members.

Existing markets

Community manager

Figure 2.2: Central optimisation of collaborative energy community with a com-
munity manager, from [37].

The motivation of the members to create an energy community can vary. It can,
for instance, be to reduce costs, increase the self-consumption of local production
or reduce CO2 emissions from consumed electricity [4, 20]. The review of energy
community projects in [25] showed that the most common drive was the motivation
to invest in renewable energy, and that financial motives were important but did

1From [35]: “A Community Interest Company (CIC) is a limited company, with special
additional features, created for the use of people who want to conduct a business or other
activity for community benefit, and not purely for private advantage.”
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not necessarily exclude other social and environmental motivations. A review
of energy communities in the Nordic countries [17] pointed out that the energy
mix in a country affects the motives behind joining, since energy communities
that form in countries with a high share of renewable energy will contribute less
to the energy transition. The goal of the members will affect the investment
and operation decisions made by the energy community. I.e., if the goal is to
increase self-consumption, a larger energy storage is needed than if the goal is
to reduce costs. To reduce costs, it might be more profitable to only install
renewable generation, at the drawback of being less self-sufficient in periods of
low production.

2.1.3 Modelling of energy community optimisation

In this PhD research, the optimisation problems are modelled from the energy
community perspective, with various members and assets in the various papers.
This subsection aims to give a short description of the modelling. The general
form of the optimisation models used in the work is given in (2.1)-(2.7), where
the items in blue indicate that they are not included in all papers.

Minimise energy community investment and operational costs (2.1)

Such that the following constraints are fulfilled:

Energy balance (2.2)

Capacity-based grid tariff (2.3)

Battery operation (2.4)

Battery degradation (2.5)

Thermal storage operation (2.6)

Load shifting (2.7)

All optimisation models minimise the energy community operational costs over
the course of one year. Investment problems include the annualised investment
costs of the assets considered. The operational costs comprise wholesale market
costs, grid costs (volumetric and/or capacity-based), taxes, battery degradation
costs and load shifting discomfort costs. The energy balance always includes
grid import, grid export, PV generation and load, and whether energy storage
charge/discharge and upwards/downwards load shifting are included depends on
the optimisation problem. The grid tariffs are either volumetric or capacity based.
The capacity-based tariffs are modelled with constraints that keep track of the
monthly highest peak. In some cases, this tariff is stepwise, where binary variables
are used to keep track of which step the highest monthly peak falls within. The
battery degradation model is a linear model that splits the battery into segments
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and keeps track of how many segments the battery discharges through [38]. This
discharge is multiplied with a degradation cost in the objective function, where the
cost increases with the number of segments. The degradation cost is calculated
from the future replacement cost and the cycle depth stress function of the battery.
The thermal storage systems modelled are hot water tanks, assumed to have
perfect stratification, meaning that the tank holds a uniform temperature [39].
The load shifting model is a general model that assumes that a certain percentage
of the load can be shifted in each timestep [40]. The energy shifted up and down
must be equal throughout the day. It is further assumed that this shifting is
associated with a discomfort cost, which is added to the objective function.

2.2 Energy communities’ impact on the distribu-
tion grid

Energy communities will for the most part be situated in the distribution grid, and
their impact on the distribution grid will, in addition to the assets and members,
depend on the regulatory framework. This section first gives an overview of
regulatory frameworks, before elaborating why energy communities with flexible
resources can be potential cooperation partners for the DSO. Finally, the modelling
approach for the grid interaction is described.

2.2.1 Regulatory frameworks

The cost optimal decisions for an energy community are heavily dependent on
the regulatory framework. The regulatory framework decides how the grid tariffs
are designed, whether virtual sharing of electricity is allowed, and how members
are metered (individually/aggregated). This again impacts which generation and
flexibility assets are economical to invest in, as well as their operation.

Grid tariffs

Grid tariffs are charged to grid users by the DSO to recover the costs of operation
and investment in distribution grids. The key principle of grid tariffs is to be cost-
reflective, meaning that they should accurately reflect the costs associated with
the generation, transmission, and distribution of electricity to the end-consumers.
Additionally, regulators should strive for the tariffs to achieve cost recovery, and be
non-discriminatory, transparent, predictable and simple [41]. Grid tariffs can be
formed in many different ways, but generally often consist of an energy component,
a power component and a fixed component [41]. Traditionally, smaller customers
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have had volumetric grid tariffs because of a lack of metered data, while larger
customers such as industries or commercial end-users have had capacity-based
grid tariffs [41, 42]. With the roll-out of an advanced metering infrastructure,
capacity-based tariffs are also easier to implement for residential consumers. The
form and level of household electricity tariffs today differ greatly among different
European countries (some have high network charges, while others have high
taxes) [43].

In addition to the grid tariff, consumers pay energy costs dependent on the
wholesale market and taxes.

Virtual sharing

The core of energy communities is the wish to share electricity, where the focus is
often on sharing locally produced electricity. It should, however, be noted that
as per the definition of Citizen energy communities, members do not necessarily
need to share generation, but can share, i.e., load and energy storage. One way to
share electricity is to build physical lines between the customers, and some energy
communities can be formed as microgrids, where they build their own grid which
they own and operate [44]. This is not allowed in all countries, and depends on the
rules on concessions for electricity grids [17]. I.e., in Germany, actors other than
DSOs can apply for concessions, and several energy communities manage their
own grid [17]. This is, however, expensive, and unnecessary if there already exists
a distribution grid that can be used to transfer this electricity. It also requires
knowledge and technical competence, something energy community members do
not necessarily hold. A more efficient way is to use the collective distribution grid,
which is operated and maintained by the DSO [17]. Therefore, virtual sharing
is the dominant solution in the regulatory frameworks proposed, where sharing
of electricity is purely virtual and has no connection to the physical flow. The
question remaining is how the energy community should be metered for the use
of the distribution grid while sharing electricity virtually.

Current status of regulation

As stated in [24], the European countries have very different regulations on energy
communities and collective self-consumption, and the level of maturity of the reg-
ulations differ considerably. Figure 2.3 shows three different regulations: business
as usual, collective self-consumption and local collective tariff. In the business as
usual case, renewable energy generation is connected to the grid as a producer.
The revenues from selling energy to the wholesale market can then be divided
between the members of the community afterwards. To incentivise renewable
energy production, and the local consumption of this, several countries have
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created regulations for collective self-consumption. In collective self-consumption,
each member receives a virtual generation share from a shared renewable gener-
ation asset, and therefore a new virtual demand. This virtual demand can be
used to calculate both energy charges and network charges, depending on the
regulation. Collective self-consumption is often relevant for consumers/prosumers
located in the same building or multi-apartment block [24]. Other countries are
investigating local tariffs as a way to create incentives for energy communities. A
local collective tariff means that the community is considered as one customer,
with one metering point2. Wholesale purchase and grid exchange is decided from
the aggregated import/export in that point. Costs/revenues must be redistributed
among members afterwards, for instance, by the use of Shapley value3 or on the
basis of the electricity consumed [46].

M

M

M

M

M

M

M

M

Business as usual Collective self-consumption

M

M

M

M

Local collective tariff

Figure 2.3: Examples of regulatory frameworks for PV generation in an energy
community. Orange lines indicate where metering happens, blue dashed lines
indicate the members.

The definitions of energy communities do not state a geographical boundary.
However, if the energy community is rewarded for reducing local grid impact,
it must be limited geographically. Some countries have specified geographical
boundaries [19]. For example, in Slovenia, the community is limited to the same
low-voltage transformer. In Belgium (Wallonia), local perimeters are used, which
are defined on a case-by-case basis. Other states base it on spatial limitations
from distances or administrative structures.

An overview of the regulatory status for collective self-consumption and energy
communities of European countries is given in [19]. Austria, Belgium (Wallonia)
and Italy are developing local tariffs specifically for renewable energy communities.
France, Portugal and Spain are allowing collective self-consumption initiatives to

2It does not necessarily need to be a physical connection point, as in a microgrid [44].
3The Shapley value is a concept from cooperative game theory, where the payoffs are

distributed among players in a coalitional game [45].
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use the public grid and receive specific tariffs. Ref. [17] investigated regulatory
frameworks in the Nordics, and found that in Finland, it is possible to create
cross-property energy communities if they are connected to the grid via single
connection points. Denmark has investigated local collective tariffing, enabling
tariffs tailored by the respective community’s contributions to the collective
grid [47]. The study resulted in a new regulation, which entered into force in
2023 [17]. In Norway, a collective self-consumption scheme entered into force in
October 2023 [48], where customers situated on the same property are allowed
to share up to 1 MW of renewable energy production virtually. The Norwegian
regulator has also proposed a sharing scheme of up to 5 MW where the generation
can be shared virtually with customers situated on the same property or on
neighbouring properties, as long as the customer has a tariff that reflects the
marginal losses [49].

The goals of an energy community may not necessarily align with what is beneficial
for the grid, and in the worst case, the energy community may incur extra costs
on the system [13]. Ref. [14] showed that if they are not given proper incentives,
they will significantly increase the electricity import from the electricity grid, and
thus increase the grid capacity needed. As a general rule, any savings in network
charges should reflect a value for the grid [13]. If energy communities receive a
reduction in network charges (through, i.e., local collective tariffs), they should at
least not impose new challenges on the grid. Since local, collective tariffs aggregate
several customers’ demands, it is expected that the members will experience a cost
decrease from the aggregation of load alone. Ref. [50] therefore argues that such
aggregated tariffs should be increased in level to avoid shifting costs over to other
customers. Ref. [24] states that the motivation for developing local grid tariffs
for energy communities is to ensure a cost-reflective grid tariff where they pay
for their actual contribution towards network costs. In Belgium (Wallonia and
Flanders), a cost-benefit analysis must be performed that investigates the impact
of energy communities on the distribution network, including avoided investments,
and based on this, specific tariff reductions may be applied [19]. A key challenge
is to balance the cost reduction with the grid impact. As stated in [25]: “[...]the
expected benefits of reduced grid fees due to the reduction in power flows from the
main grid may only be beneficial for the members of the community. The reason is
that such savings may transform into costs for customers elsewhere in the system,
meaning that real-cost efficiency for the overall system is not achieved”.

2.2.2 Cooperation between energy communities and DSO

The grid is dimensioned for the peak load, which often occurs in winter for countries
with low temperatures due to high heating demands [8, 51]. Grid investments
in equipment, such as lines and transformers, are costly and ultimately need
to be covered by the end-users. In grids where congestions occur in only a few
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hours over the year, due to high peak loads, utilisation of flexible resources can
be a cost-effective alternative, at least to defer the grid investment [30]. Energy
communities with flexible resources could therefore be valuable flexibility assets
for the DSO [14]. Designing a good regulatory framework might lead to the energy
communities reducing peak demand in the grid, implicitly, by responding to the
grid tariff price signals. They can also provide flexibility to the DSO explicitly,
by direct communication.

As pointed out in [25], energy communities may reduce network losses, reduce
or postpone network investments [14], and offer flexibility services and reliability.
However, to unlock the flexibility, [52] highlights that “(...) it is a necessary
precondition that flexibility is incentivised, for example via network tariffs, and
that DSOs are obliged to consider flexibility sources as an alternative to grid
expansions.” In other words, for energy community flexibility to be utilised in
the grid operation, incentives are required for both the energy communities and
the DSO.

2.2.3 Modelling of grid interaction

In this PhD research, the grid interaction is either modelled passively, where the
energy community only responds to price signals from the wholesale market and
grid tariff, or actively, where the DSO collaborates with the community. In the
passive interaction, the grid is represented by import and export variables, and
the operation of assets depends on the wholesale market price, grid tariffs, taxes
and costs of operating assets, if relevant. When the energy community is assumed
to have a local, collective grid tariff, all load and generation are summarised and
the optimisation model minimises the total, aggregated cost. Under collective
self-consumption, on the other hand, each member optimises its costs individually.

Active interaction with the DSO is modelled by including the linear DistFlow
equations made for radial distribution grids [53] in the optimisation model. When
the community battery is used to improve the voltage, a constraint is added to
keep the voltage above a certain limit. The cost difference between an optimal
operation of the community battery, and the operation when this voltage constraint
is added, is assumed to be the (minimum) remuneration from the DSO to the
energy community.
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3 Paper contributions and main
findings

This chapter provides a summary of all publications, which can be seen in Figure 3.1
together with the research questions. Paper I is left out of the figure, since this
is a review article. RQ1 and RQ3 are answered by Papers II-VII, while RQ2 is
answered by Papers III-VII. In the following sections, the main contributions
from each paper are highlighted before the research questions are answered and
discussed.

I

A systematic review of machine learning techniques 

related to local energy communities

II

The impact of degradation on the investment and 

operation of a community battery for multiple services

VII

Quantifying the benefits of shared battery in a DSO-

Energy community cooperation

VI

Load configuration impact on energy community and 

distribution grid: Quantifying costs, emissions and grid 

exchange

IV

Optimal control of domestic hot water tanks in a 

housing cooperative - benefits for the grid

V

Industrial energy communities: Energy storage 

investment, grid impact and cost distribution

III

Economic assessment and grid impact of different 

sharing keys in collective self-consumption

RQ1 What are the member benefits of forming energy communities?

RQ3 What are the benefits and challenges of local collective grid tariffs and 

collective self-consumption as regulatory frameworks?

RQ2 How will energy communities 

impact the distribution grid?

Figure 3.1: Mapping articles and research questions
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3.1 Contributions of the papers

Table 3.1 shows an overview of the papers presented in the thesis. The papers
differ in terms of optimisation problem type, members in the community, flexible
resources in the community, grid tariff and regulatory framework.

Table 3.1: Overview of papers

Problem Members Flexible
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Grid tariff Regulatory
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II ✓ ✓ ✓ ✓ ✓
III ✓ ✓ ✓ ✓ ✓
IV ✓ ✓1 ✓ ✓ ✓
V ✓ ✓2 ✓2 ✓ ✓ ✓ ✓ ✓
VI ✓ ✓ ✓ ✓ ✓ ✓ ✓
VII ✓ ✓ ✓ ✓ ✓
1Apartment blocks
2Urban area with commercial and residential loads
3Collective self-consumption

3.1.1 Paper I: A systematic review of machine learning
techniques related to local energy communities

Paper I is a literature review of machine learning techniques related to local
energy communities. The main contributions of the article are the following:

• Conceptualisation of local energy communities from a European perspective.
• Extensive review of state-of-the-art machine learning literature associated
with local energy communities.

• Detailed applications of machine learning methods within local energy
communities.

• Evaluation of and the future outlook on machine learning methods utilised
in local energy communities.
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I contributed to the first part of the paper, where an overview of 25 existing energy
community projects was presented. We also presented a definition of a local energy
community, highlighting geographical locality, joint ownership of assets, active
members, the presence of smart communication to enable interaction between
members and community managers, and the possibility of financial transactions
between members.

There were large differences in the energy community projects. Certain projects
were organised in collectives through citizen engagement, others were registered as
companies owned by local citizens. The number of members varied greatly, from
three to 56,000 members. The stakeholders consisted of citizens, municipalities,
technology providers, DSOs, universities, local businesses, energy generation
companies and housing associations. The typical generation technologies in the
reviewed projects were PV panels, wind turbines, small-scale hydropower plants,
and thermal energy systems for heat production, typically through combined
heat and power generation, or geothermal and solar heating. Energy storage for
back-up or other grid services was realised through either diesel generators or
battery energy storage systems. These assets were observed both at the individual
level or as shared assets in the community. The motivation of the projects was
to increase renewable energy production, consume renewable energy that was
produced locally and increase self-sufficiency.

3.1.2 Paper II: The impact of degradation on the investment
and operation of a community battery for multiple
services

The aim of Paper II was to investigate how battery degradation impacts the
investment and operation of a community battery that performs multiple services
in an energy community, under two different tariff schemes – volumetric and
capacity-based1. The main contributions of the work are as follows:

• Optimisation models for investment in and the operation of shared PV
generation and battery assets in an energy community, including cyclic
degradation cost.

• Evaluation of how battery operation and degradation are impacted by two
different grid tariff schemes: volumetric and capacity-based.

• Evaluation of how the battery performs multiple services (self-consumption,
peak shaving, energy arbitrage) for the energy community when degradation
cost is included.

For this case study, the objective was to find the optimal investment of a shared PV

1Called energy tariff (ET) and demand charges (DC) in the paper.
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Table 3.2: Optimisation results

Volumetric
Volumetric

w/ deg.
Capacity

Capacity
w/ deg.

Battery capacity [kWh] 6.8 6.8 7.0 7.0
PV capacity [kWp] 25.4 24.9 0 0
Max. import [kWh/h] 35 35 35 35
Max. export [kWh/h] 10.0 8.0 0 0
Lifetime [y]b 6.3 12.1 6.0 12.2
blifetime is here calculated from the cycle lifetime of the battery,
which is 2000 cycles at full discharge [38].

and battery system for an energy community with 10 households, when the energy
community had a restriction on grid import. Cases were run for volumetric and
capacity-based tariffs, with and without degradation cost included in the objective
function. As Table 3.2 shows, the resulting battery sizes were approximately equal
for each case, since the main reason for installing the battery was to meet the
import restriction. The model did not find it profitable to invest in a PV system
when we had a capacity-based grid tariff.

When including degradation cost in the objective function, the battery assessed
whether the revenues from the service outweighed the degradation cost of the
battery cycle. Under a capacity-based grid tariff, it was profitable to do peak
shaving. Under a volumetric grid tariff, the battery gained value mainly through
self-consumption and spot price arbitrage when the price was high, despite the
degradation costs. The lifetime of the battery was significantly shortened when
degradation cost was not included in the objective function, highlighting the
need to include cyclic degradation in models that investigate the profitability in
investment and operational problems with batteries.

3.1.3 Paper III: Economic assessment and grid impact of
different sharing keys in collective self-consumption

The aim of Paper III was to investigate how the collective self-consumption
(CSC) scheme in Norway will impact the members of the energy community and
the distribution grid. The main contributions are as follows:

• Investigation of how the collective self-consumption scheme in Norway,
including two static sharing keys, affects the cost distribution in the energy
community.

• Quantification of how the collective self-consumption scheme impacts the
distribution grid when each member optimises costs with shiftable loads. The
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optimisation model includes a general load shifting model and a formulation
for a stepwise capacity-based grid tariff.

This case consisted of 423 households with a shared PV system of 1 MWp.
Table 3.3 shows the annual costs for all cases. In No CSC-E, there was no collective
self-consumption; PV production was assumed to have its own meter and all
production was directly fed to the grid. The revenue from feed-in was then divided
equally between the members of the energy community. The remaining cases have
collective self-consumption, where PV production was virtually subtracted from
the load, depending on the sharing key. For an equal key (case E), the total costs
were reduced mainly due to a reduction in spot market cost, grid energy cost and
taxes. Comparing the two sharing keys, the yearly consumption key (case YC)
led to lower spot market costs, taxes and energy revenues. When the households
were flexible (case YC-flex), the costs were even lower, since the shiftable loads
increased the self-consumption of PV generation for each household, and each
household could optimise against spot price and grid tariffs. The total costs were
then reduced by 16% compared to the reference case without PV generation, and
by 9% compared to the case without collective self-consumption.

Table 3.3: Total operational cost for energy community, split into different cost
components [ke]

Cost component Ref. No CSC-E E YC YC-flex

Spot market cost 394 394 355 350 339
Grid energy cost 79 79 68 67 66
Taxes 208 208 184 180 177
Energy revenue 0 -66 -23 -17 -14
Grid capacity cost 115 115 113 113 100

Total 796 731 698 693 668

Table 3.4 shows the annual physical grid exchange at the point of common coupling
(PCC) of the energy community. The values of cases No CSC-E, E and YC are
the same, since the load and PV generation are exactly the same. For these cases,
the maximum import remains unchanged compared to the reference case, since
the PV generation is low in winter. However, the maximum import increased
by 9.6% when the households were flexible (due to each household individually
optimising against spot price variations). Comparing this with the reduction in
grid related costs, it seems likely that the collective self-consumption scheme, with
the stepwise capacity-based grid tariffs, will lead to grid costs being shifted over
to end-users outside of the energy community.
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Table 3.4: Summary of annual grid exchange and self-consumption rate (SCR) at
PCC

Case Sum imp.
[MWh]

Sum exp.
[MWh]

Max. imp.
[MWh/h]

Max. exp.
[MWh/h]

SCR
[%]

Ref. 5,065 0 1.35 - -
No CSC-E,
E, YC

4,269 173 1.35 0.51 82

YC-flex 4,240 144 1.48 0.47 85

3.1.4 Paper IV: Optimal control of domestic hot water
tanks in a housing cooperative - benefits for the grid

The aim of Paper IV was to quantify the benefit that electric domestic hot water
tanks can give to a housing cooperative and the distribution grid by optimising
the operation of the hot water tanks. We also investigated how a local collective
grid tariff2 will impact the costs for the housing cooperative and the grid exchange.
The main contributions are as follows:

• Linear optimisation model for a housing cooperative, with PV generation
and electric vehicle charging, including shared thermal energy storage heated
by heat pumps and electric heating element.

• Quantification of reduced costs and grid exchange when operating domestic
hot water tanks optimally.

• Quantification of the differences in electricity costs and grid exchange when
optimising each apartment block in the energy community individually or
centrally.

The case studied in the paper is a housing cooperative in Norway, located north-
east of Oslo. Housing cooperatives fulfil many of the criteria of being an energy
community: they are legal entities that often share costs for investments and
maintenance of properties; they often have common assets; and they are controlled
by their members. The housing cooperative in this paper consists of six apartment
blocks, each with a shared domestic hot water tank for the residents. There is
also a common garage with electric vehicle charging and PV generation. The
apartment blocks do not have PV generation today, but this was added with
simulated data.

The total imported power to the energy community for the three cases can be seen
in Figure 3.2, showing a base (B) case with no optimal control of the domestic hot
water tanks, individual (I) optimisation of each domestic hot water tank for each

2Called aggregated net metering in the paper.
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Figure 3.2: Grid import to EC (at PCC) for all cases, week 1

apartment block, and central (C) optimisation of all domestic hot water tanks.
Peak import was highest in the base case (786 kWh/h). In Case I, individual
optimisation led to a peak import of 751 kWh/h for the energy community, which
is a reduction of 4.4% compared to Case B. In Case C, the peak import was
lowered to 703 kWh/h, when the energy community optimised all electricity
consumption and domestic hot water tanks together, including the electric vehicle
charging in the garage. Compared to Case B, this was a reduction in peak import
of 10.6%.

The local collective grid tariff led to a 2.6% cost reduction for the energy community,
compared to the base case. Sensitivity analysis showed that PV generation had
no impact on peak demand, while the capacity-based grid tariff was the main
reason for the peak demand reduction.

3.1.5 Paper V: Industrial energy communities: Energy stor-
age investment, grid impact and cost distribution

Paper V investigated the economic viability of an industrial consumer partici-
pating in an energy community with local collective tariff3. The contributions of
this paper are as follows:

• Investigation of a storage investment decision of community electrical and
thermal energy storage for an energy community with an industrial consumer
and an urban area with PV generation.

• Optimisation model of an industrial consumer participating in an energy

3Called aggregated net metering in the paper.
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community. The case study includes real, hourly measurements for one year
from the industrial consumer and the distribution grid.

• Study of the incentives for the industrial consumer to participate in the
energy community by assessing equitable methods for distributing costs.

The results showed that in an industrial energy community with thermal demand,
thermal storage was the most favourable storage option, due to lower investment
costs than a battery system. Furthermore, we found that optimising the storage
sizes for the whole energy community led to a cost reduction of 1.8%, while
the maximum import was reduced by 5%, compared to the reference case. The
optimal thermal storage size when optimising for the energy community was 16%
higher than the optimal thermal storage size when optimising for the industrial
consumer alone. It was not economically viable to invest in a battery system for
either of the cases.

The sensitivity analysis (Figure 3.3) showed that battery system investment costs
must decline significantly for it to be a competitive option compared to thermal
storage. The model only invested in a battery system when the investment cost
was 150 e/kWh or lower. Therefore, in industrial energy communities with
thermal demand, these results support the conclusion that thermal storage should
be invested in where possible before considering investing in battery systems.

Figure 3.3: Heatmap of battery system (BESS) size, thermal storage (TES)
size, reduction in total costs and reduction in maximum import to the energy
community as function of thermal storage and battery system investment costs.
White colour means no storage investment.

Table 3.5 shows that the cost distribution method heavily impacted whether it was
economically attractive for the industry consumer to join the energy community.
Originally, the operating costs were 1,030 ke and 3,009 ke for the industry
consumer and the urban area load, respectively. The costs for the industrial
consumer increased if flat energy pricing or non-coincident peak methods were
used. Using the coincident peak method, the industry was rewarded for lowering
its individual peak (using storage) when the system peak was occurring. The
downside was that the urban area experienced increased costs compared to the
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reference case, since it was not rewarded for what the storage systems were doing
as they were placed at the industry consumer’s location. Only the Shapley value
method reduced costs for both the industrial consumer and the urban area. The
drawback of this method is that the cost for the industry consumer and the urban
area, if they did not join the energy community, needs to be known, while the
other methods only rely on smart meter data.

Table 3.5: Redistribution of operating costs [ke]

Method Industry Urban area

Flat energy pricing 1,039 2,929
Coincident peak 513 3,454
Non-coincident peak 1,037 2,931
Shapley value 979 2,989

3.1.6 Paper VI: Load configuration impact on energy com-
munity and distribution grid: Quantifying costs, emis-
sions and grid exchange

The aim of Paper VI was to investigate the energy community benefits and grid
impact for different member configurations. The main contributions of this article
are as follows:

• Investigation of energy communities with three different load configurations:
residential, commercial and mixed. Grid impact is quantified through
maximum import to and export from the energy community.

• Insight into the use of different flexible resources in the energy community,
and the interaction among technologies — PV, community battery, and
shiftable loads — by systematically excluding each one from the optimisation.

• Comprehensive comparison of the aforementioned grid impact with the
energy community benefits of costs, self-consumption and CO2 emissions
for all load configurations.

• Case studies are run for two countries, Norway and Spain, to gain insight
into how the seasonal variations in load and PV generation impact the
results.

Table 3.6 shows a summary of the energy community benefits and grid impact for
the different load configurations, where each result is given a score of low, medium
or high depending on the percentage change from the reference case. As the table
clearly shows, the Spanish energy communities have a much better outcome in
terms of cost reduction, emissions reduction and grid impact. Residential energy
communities had a superior outcome in terms of cost reduction and emissions
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Table 3.6: Summary of optimisation results per load configuration

Energy community benefit Grid benefit

Norway SCR Cost Emissions Max. export Max. import

Residential Low Low Low Low Low
Commercial High Low Low Medium Medium
Mixed Medium Low Low Medium Low

Spain SCR Cost Emissions Max. export Max. import

Residential Low High High Low Medium
Commercial High Medium Medium Medium High
Mixed High Medium Medium High High

reduction. In Norway, the commercial load configuration obtains the best result,
both in terms of energy community benefit and grid impact. This is mainly due
to a high self-consumption rate, and relatively low grid impact. The Norwegian
residential and mixed energy community led to higher maximum import because of
battery charging. Residential loads were the least grid-friendly for both countries,
due to a lower correlation between load and PV generation than the other load
configurations.

(a) Total operating cost. (b) Maximum import.

Figure 3.4: Comparison for all cases, where technologies have been systematically
excluded (i.e., case PVbattery does not include load shifting).

PV generation was the main driver for reducing costs for both countries and all
load configurations (see Figure 3.4a). The flexibility resources, shiftable loads and
battery system, only led to a marginal further reduction of costs when combined
with PV generation. Considering the high investment cost of battery system
technologies, these results indicate that the operational cost reduction achieved
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through batteries is not significant enough to justify their adoption within the
energy community, if the motivation is to reduce costs. Appendix A shows
additional plots of the sensitivity analysis, which were not included in the paper.
The figures show that the residential loads had the highest maximum export and
the lowest self-consumption rate for all technology combinations. Figure 3.4b
shows the maximum import when excluding technologies. We see that batteries
heavily increase the maximum import in residential and mixed Norwegian energy
communities. This impact cannot be seen for the Spanish energy communities.

3.1.7 Paper VII: Quantifying the benefits of shared battery
in a DSO-energy community cooperation

The primary objective of Paper VII was to quantify the benefits of using
community-owned battery storage for an energy community and a DSO. The
electricity and degradation costs for the energy community were estimated by
running an optimisation model with and without voltage constraints. The main
contributions of this paper include:

• A linear optimisation model that minimises the electricity and degradation
costs for an energy community. The optimisation model includes linear
battery degradation equations, which ensures that degradation costs are ac-
counted for while maintaining a low complexity of the optimisation problem.
The case studies show how the community-owned battery is used differently
when voltage constraints are considered.

• Quantification of how much the DSO should remunerate the energy commu-
nity for the voltage service.

Figure 3.5 shows the voltages at the energy community bus (16) and the neighbour-
ing bus (17) for three cases, where in the first two cases, the energy community
optimises for itself without considering voltage constraints. In EC no deg., bat-
tery degradation cost is not included in the objective function, while in EC it
is included. In EC+DSO, both degradation cost and voltage constraints are
included. We can observe that when the degradation cost is not included (upper
graph), the battery is often charging at the same time as the voltage is below
the limit. This occurs less when the degradation cost is included (middle graph),
indicating that many of the voltage problems in the upper graph are caused by
the battery. There are, however, also many hours where the voltage is below
0.92 pu and the battery is not charging. Finally, the lower graph shows how the
battery operation is changed to keep the voltages within the voltage limit. Hence,
the battery operation affected both the voltage of the energy community bus and
the neighbouring bus. The battery caused some voltage problems due to spot
price arbitrage, mostly in the bus where the energy community was connected.
This result is of importance for customers who are connected to the same bus as
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Figure 3.5: Battery charging vs. voltages for cases EC no deg., EC and EC+DSO.

an energy community, as the community might actually create voltage problems
for itself and other customers connected to the same bus. Furthermore, we found
that a battery-friendly operation was also a grid-friendly operation, since the
voltage violations decreased when the degradation model was included in the
optimisation.

Moreover, our results showed that the cost difference for the energy community,
and thereby the remuneration needed from the DSO, was very low. It amounted
to 15 e per year, which equals 0.12%. The sensitivity analysis showed a range
of 9-21 e in remuneration per year, where the battery replacement cost was the
most sensitive parameter. The sensitivity analysis also showed that increasing
the PV size did not reduce voltage violations and that it had little impact on the
remuneration from the DSO. Also, for lower battery sizes, the battery system was
not able to provide the service to the DSO at all hours. The degradation cost
had a major part in the remuneration from the DSO. If battery degradation cost
would not be considered, the energy community would be remunerated less than
their real cost of providing this service.
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3.2 RQ1 What are the member benefits of form-
ing energy communities?

a) How are operational costs, self-consumption and CO2 emission
impacted by PV generation, flexible assets and members in the energy
community across different regions?

The different papers included the following assets: rooftop PV panels, battery
energy storage, thermal energy storage and shiftable loads.

Regarding operational cost reduction, a general finding from all papers is that
PV generation was the main cost driver. It is, however, not necessarily profitable
to invest in PV systems in regions with low solar irradiation. In Paper II, the
optimisation model did not invest in PV generation when the grid tariff was
capacity-based, since the PV generation did not contribute enough to reduce the
monthly peak demand. The data used in this paper was, however, for Mid-Norway,
where the solar irradiance is quite low. With respect to flexibility resources, it was
found that existing domestic hot water tanks in, i.e., apartment blocks (Paper
IV) is a low-hanging fruit. However, this requires smart control of the hot water
tanks. Furthermore, it was shown that battery systems do not lead to significant
cost reductions, compared to the investment cost needed, in Norwegian cases.
Load shifting, on the other hand, was shown to give a similar operational cost
reduction to batteries in Paper VI.

Self-consumption was increased in the energy communities with batteries. Paper
VI also showed that shiftable loads led to an approximate equal self-consumption
rate as batteries for commercial and mixed loads. Here, the batteries were sized to
ensure a certain self-consumption, while the load shifting percentage was assumed
to be 20%. For residential loads, the battery gave a higher self-consumption rate
than load shifting for both Norwegian and Spanish energy communities.

In terms of CO2 emissions, Paper VI showed that PV generation was the
main driver for emission reduction. Battery systems only led to slightly lower
CO2 emissions in Norwegian energy communities, compared to only having PV
generation. Shiftable loads were a good alternative to battery systems, as they
obtained almost equal reduction in CO2 emissions when combined with PV
generation. The results for Spanish energy communities also showed similar
results for battery and load shifting together with PV generation.

When comparing flexible resources, it should be noted that the shiftable loads were
modelled through a general load shifting model, which assumes that it is possible
to shift 20% of the load in each hour. This shiftable load can be, i.e., domestic
hot water tanks or space heating. The load shifted up and down must be equal
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throughout the day, and it is assumed that this load is shifted with a discomfort
cost, which is added to the objective function. In addition to this, the houses
would also require some smart control/home energy management system, a cost
which has not been included. When comparing shiftable loads and batteries, they
are very different in terms of predictability/stochasticity. The battery is there for
the sole purpose of charging and discharging when it is optimal. The domestic
hot water tanks and space heating are highly dependent on the behaviour of the
residents. Therefore, in actual operation, there would need to be good forecasts
for these optimisation schedules to work.

Paper VI showed that various member configurations in Norwegian energy
communities (residential, commercial and mixed loads) had a similar operational
cost reduction (25%) and CO2 emission reduction (24%). In the Spanish energy
communities, there was significantly more to gain both in terms of operational
cost reduction and emission reduction, where residential loads obtained a 70%
cost reduction and a 64% emissions reduction. In Norway, the commercial loads
had the highest self-consumption, since the load corresponded better with PV
generation. In Spain, the mixed loads had the highest self-consumption. A better
correlation between PV generation and load also led to a smaller battery need,
which in turn reduces the investment costs for the energy community.

b) What is the economic feasibility of an energy community investing
in batteries and thermal storage, and how do these energy storage
systems interact?

According to Paper V, it was more profitable to invest in thermal storage than
battery storage, and the sensitivity analysis showed that battery storage costs
would need to decline significantly for it to be competitive when there is an option
to install a thermal energy storage. To install a thermal storage, the presence of
some thermal demand is required, i.e., something that the thermal storage can be
used for. Therefore, a combination of the two storage systems might prove to be
the optimal solution, depending on the energy community’s demand.

In the investment problem in Paper II, costs did not decide the battery size,
as the battery was installed to avoid breaching the grid limit. Without the grid
restriction, the model did not deem it profitable to invest in a battery system.
Hence, community batteries in Norway are only profitable for residential loads
if they serve an additional purpose other than minimising costs (in this case, to
keep the load within a certain limit).
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c) What is the impact of cyclic battery degradation in energy community
optimisation?

When cyclic battery degradation models were used, the optimal battery operation
changed drastically, and the battery lifetime was approx. halved (in Paper II).
Also in Paper VII, we saw that including a degradation model had a large impact
on the battery operation, and whether the model found it profitable to do spot
price arbitrage. In this study, the grid tariff was volumetric, leading the model
to place more emphasis on the spot price variations. Batteries that optimise
based on spot price, without any restriction on battery health, react to nearly all
variations in spot price and therefore age faster.

d) How can costs be distributed between members in an energy com-
munity?

In Paper III, we investigated sharing PV generation through two static sharing
keys: one equal and one yearly consumption-based. The individual cost reduction
heavily depended on the PV sharing key used. The equal sharing key favoured
houses with low energy consumption, while the yearly consumption-based sharing
key favoured houses with high yearly consumption. Which one is best depends on
the definition of fairness: does the energy community want the cost distribution
to be equitable (you get as per what you bring), or equal (everyone gets the same).
This should also be seen in connection with the contribution to the investment
cost of the PV systems.

In Paper V, the total costs were reduced when the industrial consumer formed
an energy community with the urban area. When redistributing these costs, we
saw that the only method that led to a decrease in costs for both the industrial
consumer and the urban area was the Shapley value. Redistributing costs based
on other methods, such as peak load or yearly consumption, gave an increase in
costs for one of the participants, and proved to be a poor way of redistributing
the costs when a local collective grid tariff is assumed. This is because one actor
can end up being punished for increasing its individual peak, although it reduces
the aggregated energy community peak.

To summarise, it is evident that the sharing key and method for the redistribution
of costs has a great impact on the economy of the members. Although the main
motivation to join an energy community might be non-economical, the members
should experience the cost distribution to be fair, as it will be difficult to recruit
members if they are worse off economically. The redistribution could be directly
connected to the investment cost of the assets; however, this would exclude
households with a low-income. It is therefore important that the social aspects of
the energy community are also considered in this question.

33



Chapter 3: Paper contributions and main findings

3.3 RQ2 How will energy communities impact
the distribution grid?

a) How is the grid exchange impacted by PV generation, flexible assets
and members in the energy community across different regions?

All these case studies included PV generation as the renewable generation tech-
nology. A general finding, across all articles, is that PV generation alone does
not contribute to reduced peak demand. Although case dependent, and input
dependent, it should also be noted that none of the case studies found a very high
peak export from the PV generation. This is especially true for the case study in
Paper IV, where we looked at apartment blocks, since the roof area will always
be low compared to the load.

Flexible households led to a 9% increase in maximum import in Paper III.
This happened because each house was shifting load individually within their
capacity-based tariff step, and all responded to a low spot price the same hour.
When load shifting was used in Paper VI, the peak load was unchanged.

In Paper IV, we saw that the optimisation of hot water tanks led to lower
peak demand. The central optimisation of all domestic hot water tanks in the
apartment blocks gave a decrease in peak import of 10.6%, compared to the base
case, and also a small reduction in peak export. In Paper V, the investment in
thermal energy storage led to the peak demand of the industrial energy community
being reduced by 5.1%, mainly due to the incentive from the capacity-based grid
tariff. Interestingly, the peak demand at the transformer level was reduced by
3.1% when the industrial consumer was optimising alone. Therefore, the grid
already had some benefit from the storage investment without a local collective
grid tariff.

In Paper VI, the battery created new peaks when the spot price was low
because of a volumetric grid tariff. For Norwegian energy communities, we
saw that the maximum import increased significantly because of the battery
operation responding to spot price variations. Interestingly, this was not the
case for the Spanish energy communities. Paper VII found that the community
battery created more undervoltage problems, because the energy community
had a volumetric grid tariff and spot price was the dominant price signal in the
optimisation. We found that a battery-friendly operation was more grid-friendly,
because when the battery degradation model was included, it reduced the amount
of undervoltage problems due to the optimisation model being more restrictive
on charging. From these results, it became evident that the way degradation is
taken into account has a large impact on how community battery systems impact
the grid.
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To summarise, it seems that it is the grid tariff that has the highest impact on
the grid exchange, not the technology itself.

In Paper VI, we compared residential, commercial and mixed energy communities.
To begin with, they were all scaled to meet the same peak load, for comparison
purposes. The load profiles correlated differently with the PV generation. The
residential loads had the lowest correlation between PV generation and demand,
and therefore they required the largest battery to ensure a certain level of self-
consumption. As already discussed, batteries under volumetric grid tariffs in
Norway mainly respond to spot price variations, and therefore lead to high peaks
when spot price is low. The low correlation between load and PV generation also
led to the residential loads having the highest maximum export.

b) Does a capacity-based grid tariff always lead to a lower peak demand,
compared to the volumetric grid tariff? What is the largest impact on
cost savings?

As previously discussed, a volumetric grid tariff leads to the flexible resources
targeting low spot price hours, while a capacity-based tariff dominates the spot
market cost and incentivises lower peak demand. One exception was shown in
Paper III, when a stepwise capacity-based grid tariff was used in collective
self-consumption. The steps in the tariff leave room for spot price arbitrage, which
might lead to new load spikes when each member is optimising individually.

The other papers with capacity-based grid tariffs always showed that energy
communities led to a lower peak demand, because a local collective grid tariff was
assumed, leading to an incentive to lower aggregate demand. If the future spot
prices increase in level and variability/fluctuation, a relevant question is what
happens if the spot price becomes more dominant than the capacity-based grid
tariff? Sensitivity analysis on spot market prices in Paper V, where we have a
capacity-based grid tariff, showed that a higher spot price level (multiplied with
5) decreased the maximum import, because the increased spot prices made it
profitable to invest in a larger storage, which then could be used to lower the
peak even further. However, this did not occur for all sensitivities of spot price
levels. For instance, the maximum import did not decrease when the spot price
level was multiplied with 3. This analysis showed the complexity of the constant
trade-off between the different costs in the objective function: the energy storage
investment cost, the spot price and energy grid tariff costs, the monthly peak grid
tariff cost and the remuneration from the feed-in. In Paper VII, which had a
volumetric grid tariff, we saw that an increased spot price led to more voltage
violations due to it being even more profitable to do arbitrage, and therefore the
battery charged/discharged more heavily.

Both in Paper III and Paper IV, the different cost components were reported.
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In Paper III, the cost reduction stemmed from a reduction in spot market cost,
grid energy cost, taxes and grid capacity cost. In Paper IV, the total costs
were mainly reduced due to a reduction in capacity-based grid tariff costs. As
discussed in RQ2, the peak load was reduced in Paper IV, while the peak load
increased in Paper III. Hence, there is not always a connection between the grid
cost reduction and the peak load reduction. As discussed in Chapter 2, this could
lead to energy communities shifting costs over to other grid customers. These
findings are supported by [14], where the authors found that net metering of taxes
and grid tariffs increase self-consumption but do not affect the peak import of
electricity.

c) How can energy communities cooperate with the DSO to solve
voltage problems, and how much should the energy community be
remunerated for this service?

As already discussed, energy communities can resolve grid problems implicitly by
reducing peak import. This is especially true when we assume a local collective
that is capacity-based, since this gives incentive to reduce the aggregate peak
load.

Paper VII showed how an energy community could resolve grid problems ex-
plicitly. We investigated how it could cooperate with the DSO by providing
voltage support when the voltage went below a limit. In some hours, the battery
was resolving a problem, while in other hours it was merely avoiding creating a
problem. This is also connected to how the battery degradation was accounted for
in the optimisation model: if degradation was not considered, the battery created
more voltage problems.

When the battery was used to improve the voltage in the distribution grid,
the remuneration needed was found to be quite low (at the most 21e in the
sensitivity analysis). The actual remuneration would be higher than this, as
this only represents the cost difference observed by the energy community when
buying electricity at non-optimal times and the degradation cost from changing
the battery operation. In any case, if energy communities invest in community
batteries, it seems like a good option to rent this battery out to the DSO in hours
of need. The practicalities around this would need to be sorted, as there would
need to be a forecast of load, and perhaps the DSO would like to reserve the
battery for a day or more to be sure that it is available when needed. However,
the sensitivity analysis showed that the battery size must be considered, so that
it is large enough to maintain the voltage within the standard range. Given the
existing high investment costs for batteries, a joint investment between the energy
community and the DSO emerges as a potential solution. In this proposed model,
the energy community would invest in the energy capacity they need, while the
DSO would bear the cost of the additional energy capacity necessary for improving
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the grid voltage.

3.4 RQ3 What are the benefits and challenges
of local collective grid tariffs and collective
self-consumption as regulatory frameworks?

A local collective grid tariff means that all members get one common tariff, which
means that the energy community is incentivised to reduce their common load.
The cost reduction stems from a reduction in taxes, grid tariff and spot market
cost. As seen in RQ2, in a collective self-consumption scheme, each household
optimises individually (non-collaborative), and therefore does not necessarily
reduce their aggregate load, even if a capacity-based grid tariff is used. A similar
finding was presented in [54], where it was shown that individual tariffs have a
reduced capability to reduce peak load, since each member optimises individually.

The challenge with local collective grid tariffs is that the costs savings need to be
redistributed among the members after optimisation. Paper V investigated this
and found that the way the costs are redistributed heavily impacts the profitability
for members to join the community. Depending on the cost distribution method,
some members could benefit way more than others, and the energy community
would therefore need to decide what they perceive as a fair distribution. Further-
more, a local collective grid tariff does not necessarily resolve grid problems if the
spot market price gives a stronger price signal than the grid tariff. A collective
grid tariff also requires that all members of the energy community cooperate,
which might be difficult to organise in practise. The benefit of a local collective
grid tariff is that it gives an incentive to install community storage for peak
demand reduction, especially if the community has a capacity-based grid tariff.
The collective self-consumption scheme studied in Paper III showed that the
individual members did not have an incentive to lower aggregated peak demand.

In Paper IV, we compared a central optimisation of several apartment blocks,
with individual optimisation for each apartment block. This can be a view of how
the aggregation, and local collective grid tariff, plays out. When we optimised
for the whole energy community, the peak demand was reduced by 10%, whereas
when we optimised individually, it was reduced by 4%. One main reason for this
higher reduction in peak demand is that when we optimise centrally, all parts
of the energy community can be included. In this case, this was the common
garage with electric vehicle charging and PV generation. When we optimised each
apartment block individually, the garage had no way of contributing to the whole
community, as it was metered separately. When optimised centrally, the hot water
tanks could adjust their operation to the garage’s electric vehicle charging and
PV generation.
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3.5 Further discussion and main takeaways

The results from this PhD work must be seen in light of optimal investment and
operational decisions. Energy communities with professional actors (industry
consumers and commercial businesses) are expected to have a higher focus on cost
minimisation and technology to ensure optimal scheduling of assets, in part because
it requires technical competence to understand why, i.e., a battery should be
operated in a certain way. Energy communities with residential members might be
less likely to focus on this, where the aim might be less driven by cost minimisation,
and more by the social and environmental aspects of providing themselves and
their neighbours with renewable energy. Regardless of the motivation, if the assets
used in energy communities are programmed to do what is considered to be cost
optimal, and they operate automatically, this PhD work shows that the regulatory
frameworks, i.e., the price signals, have a great influence on how this in the end
impacts the distribution grid.

The findings in this PhD research have implications for various stakeholders:
energy community members, regulators and DSOs. For the members, it is evident
that not all technologies are profitable to invest in. It is crucial to agree on
what the motivation for forming the energy community is, before the technology
is decided. If cost reduction is important, then PV generation together with
existing hot water tanks has been shown to be a good solution. Smart control
of shiftable loads in buildings is also a low-hanging fruit. If self-consumption,
or self-sufficiency, is important, then battery energy storage systems are more
reliable and robust than shiftable loads. Members of energy communities, or
other end-users considering forming them, can observe that battery energy storage
systems are currently too expensive. Thermal energy storage should therefore be
prioritised if cost reduction is an important motivation. If the energy community
wants to reduce CO2 emissions and increase self-consumption, battery systems
can be valuable assets. Smart control of shiftable loads such as domestic hot water
tanks and space heating are also flexibility resources that should be considered
before investing in expensive battery energy storage systems. Note that there are
other technologies that have not been addressed in this research, such as smart
control of electric vehicle chargers or seasonal storage.

For the DSO, the main takeaway is that grid tariffs send an important price signal
to energy communities, and that communities can be a powerful way to aggregate
customers and reduce peak demand, if given the right price signals. Local collective
grid tariffs can be an effective tool to reduce peak demand in the grid if combined
with a capacity-based grid tariff. Furthermore, energy communities are a flexible
resource that can both create and solve problems in the grid, depending on which
assets are present and which price signals they respond to. DSOs that want to
defer grid investments can investigate further how to collaborate with energy
communities to reduce voltage problems.
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Regulators can observe how local collective grid tariffs and collective self-consumption
impacts the peak load at energy communities and how this relates to the cost
reduction, under different grid tariffs. The most interesting finding, in that sense,
is that capacity-based grid tariffs do not always lead to peak demand reduction.
This could mean that collective self-consumption will shift grid costs over to other
customers in the grid. In this regard, local collective grid tariffs seem like a better
alternative for the grid, but further investigation is needed. It should, for instance,
be clarified to which extent the local collective grid tariff gives a reduction in
network charges and taxes.
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4 Conclusion

The aim of this thesis was to investigate the member benefits of forming local
energy communities, and how they will impact the distribution grid, under
various regulatory frameworks. This was done by formulating optimisation models
for minimising energy community costs when subject to different price signals.
Further, it was investigated how different cases impact the energy community
benefits and the grid, in particular peak demand. The optimisation models in
this paper collection cover both operational and investment problems, for various
technologies present in the energy community – PV generation, battery storage,
thermal storage and shiftable loads, various members – residential, commercial
and industrial, volumetric and capacity-based grid tariffs, and two regulatory
frameworks – local collective grid tariff and collective self-consumption.

4.1 Concluding remarks

With respect to how aggregated energy community benefits are impacted by
different technologies and members under different grid tariffs, it has been shown
that batteries in Norwegian residential energy communities can contribute with
increased self-consumption and reduced CO2 emissions. Batteries can become
profitable in industrial energy communities with PV generation and a capacity-
based grid tariff, if investment costs continue to decline, but they are for the
most part out-competed by thermal storage. Optimising the operation of existing
domestic thermal storage is a low-hanging fruit for energy communities that
wish to reduce costs. Household flexibility through shiftable loads lead to cost
reductions and increased self-consumption in residential energy communities, and
should be the first means of flexibility before considering battery systems.

We also investigated how energy communities will impact grid exchange when
they minimise their operating costs. The collective self-consumption scheme led
to a cost reduction, but an increase in peak import, because each household
optimises their peak load individually. When we investigated a local collective
grid tariff scheme, there was a contradiction between the cost reduction for the
energy community and the peak import when a volumetric tariff was used: the
costs declined, but the peak import increased. For a capacity-based grid tariff,
there was a correlation between the cost reduction for the energy community and
the peak import. Local collective grid tariff schemes, however, can only be in
place if regulation allows it and needs further investigation.
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It was found that energy communities can solve grid capacity problems implicitly
by responding to capacity-based grid tariffs, especially if a local collective grid
tariff scheme is allowed. They can also solve grid problems explicitly through
improving the voltage in the distribution grid by community batteries, as long as
the battery capacity is large enough. This was found to give a marginal rise in
operational costs for the energy community, which would need to be covered by
the DSO.

The findings in this PhD work give valuable insights for different stakeholders,
which can be further used to develop country-specific regulations. The regulator
can observe how local collective grid tariffs and collective self-consumption impact
the peak load at energy communities and how this relates to the cost reduction,
under different grid tariffs. The most interesting finding, in that sense, is that
capacity-based grid tariffs do not always lead to peak demand reduction. Members
of energy communities, or other end-users considering forming them, can observe
that battery energy storage systems are for the most part too expensive and
that thermal energy storage should be prioritised if cost reduction is the most
important motivation and a part of the demand is thermal. Although expensive,
battery systems can be valuable if the energy community wants to reduce CO2

emissions and increase self-consumption. Smart control of shiftable loads such
as domestic hot water tanks and space heating are also flexibility resources that
should be investigated before investing in battery energy storage systems. DSOs
and regulators should note that local collective grid tariffs can be an effective
tool to reduce peak demand in the grid if combined with a capacity-based grid
tariff. Energy communities are a flexible resource that can both create and solve
problems in the grid, depending on which assets are present and which price
signals they respond to.

4.2 Future work

Future work should investigate how to increase revenue streams to the energy
community from different grid services, both local flexibility or the participation
in frequency markets/ancillary services. This would also require the balancing of
the impact on the local distribution grid along with the ancillary service to the
transmission grid.

Papers IV and VII include electric vehicle charging, but only as a constant load.
In reality, the charging power of electric vehicles can be regulated throughout a
charging session, and the electric vehicle batteries could also be used as additional
energy capacity if needed. Electric vehicles are, however, highly stochastic: we
do not know exactly when they will be connected to the charger, and we do not
know which state of charge the batteries will have. If the energy community size
is large, it is possible to assume that a certain number of vehicles will always
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be connected to the chargers, but this is more difficult for smaller communities.
Other technologies which should be investigated in future studies, in terms of
both energy community benefits and grid impact, are seasonal storage and wind
generation.

Since energy communities might have different motivations, not only to reduce
costs, this could be weighted in multi-objective optimisation. Then each moti-
vation, such as self-consumption or CO2 reduction, can be modelled with a cost
in the objective function, which is weighed together with the actual operational
costs.

There are many steps that would need to be made before the optimisation models
presented in this work could be used for real-time control of energy communities.
This includes having good forecasts for spot price, PV generation and load, in a
higher time resolution. When it comes to investments, stochastic models could be
used to include several scenarios for prices, load and PV generation.

As this work has shown, the regulatory framework is highly uncertain and impacts
the profitability of the energy community and the distribution grid. Therefore,
it is important to keep investigating regulatory frameworks for various energy
community types, in terms of members and technologies, as well as the impact
they might have on the grid planning and network cost distribution.
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E. Bullich-Massagué, and A. Sumper, “A systematic review of machine learning
techniques related to local energy communities,” Renewable and Sustainable
Energy Reviews, vol. 170, p. 112651, Dec. 2022. http://dx.doi.org/10.1016/
j.rser.2022.112651

1See https://creativecommons.org/licenses/by/4.0/ for license details.

55



Renewable and Sustainable Energy Reviews 170 (2022) 112651

1364-0321/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Review article

A systematic review of machine learning techniques related to local energy
communities
Alejandro Hernandez-Matheus a,∗, Markus Löschenbrand b, Kjersti Berg b,c, Ida Fuchs c,
Mònica Aragüés-Peñalba a, Eduard Bullich-Massagué a, Andreas Sumper a

a Centre d’Innovacin Tecnológica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department dEnginyeria Elèctrica, Universitat Politècnica de Catalunya,
UPC, Av. Diagonal 647, Pl. 2., Barcelona, 08028, Catalunya, Spain
b Department of Energy Systems, SINTEF Energy Research, Sem Sælands vei 11, Trondheim 7034, Norway
c Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), O. S. Bragstads plass 2E, Trondheim 7034, Norway

A R T I C L E I N F O

Keywords:
Local energy communities
Machine learning
Energy decentralisation
Energy forecasting
Energy management systems
Energy transactions

A B S T R A C T

In recent years, digitalisation has rendered machine learning a key tool for improving processes in several
sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based
on statistical learning theory and employed as a tool to exploit the data generated by the power system and its
users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution
grid. These communities may operate differently depending on their objectives and the potential service the
community wants to offer to the distribution system operator. This paper presents the conceptualisation of a
local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive
literature review of machine learning algorithms for local energy community applications was conducted,
and these algorithms were categorised according to forecasting, storage optimisation, energy management
systems, power stability and quality, security, and energy transactions. The main algorithms reported in the
literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms.
The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting
tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.

1. Introduction

Recent technological developments in renewable energy have en-
abled a shift in the energy generation capacity closer to the con-
sumption. This evolution has led to a decentralisation process that is
required for the coordination of generation and demand in electric
power systems. A part of this process involves the management of a
greater number of active consumers and so-called prosumers, i.e., con-
sumers who also produce electricity in the grid. Consequently, the
energy sector is transitioning towards a more decentralised control
owing to these prosumers and active consumers, who cooperate for
the management and control of storage systems and flexible demand.
A resulting framework attempting to solve the challenges associated
with this decentralisation is that of local energy communities (LECs)
representing local, self-organising entities that operate autonomously
or semi-autonomously within an electricity grid [1]. The shift towards
a more community-focused approach from a traditionally centralised

∗ Corresponding author at: Centre d’Innovacin Tecnológica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department dEnginyeria Elèctrica,
Universitat Politècnica de Catalunya, UPC, Av. Diagonal 647, Pl. 2., Barcelona, 08028, Catalunya, Spain.

E-mail address: alejandro.hernandez.matheus@upc.edu (A. Hernandez-Matheus).

power system is further amplified by the increasing digitalisation of
these systems, for example, in terms of the metering and control
of energy. In this context, recently popularised technologies such as
distributed ledgers [2], big data applications and artificial intelligence
have shown promising results for shaping the future of decentralised
power systems [3].

This paper focuses on the recently growing field of machine learn-
ing, which is a subcategory of the research field of artificial intelligence.
Machine learning is based on the development of computer systems
that can learn from data without explicitly following instructions. This
learning is achieved via algorithms and statistical models to analyse
and draw inferences from the data patterns. In several research fields
such as those of medicine and finance, machine learning has been used
to solve high-complexity problems. Moreover, community-based power
systems are no exception to the advent of machine learning [4]. This
study aims to discover a relationship between the operation of LECs and
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existing machine learning algorithms on the basis of recent research
reported in the literature.

1.1. Research questions and contributions

This study aims to provide a systematic review on the state-of-the-
art of machine learning that are applicable for LECs. Towards this
end, an in-depth discussion and conceptualisation has been provided
to answer the following question: ‘what constitutes as a local en-
ergy community?’ ; the LEC characteristics have been defined from
the perspective of European electricity systems. Following this general
conceptualisation, an extensive review was conducted on the basis of
the previously derived characteristics of LECs to answer the following
question: ‘which machine learning literature is related to local energy
communities’ . Eventually, an answer has been presented to the follow-
ing question: ‘what future trends and conclusions can be drawn from
machine learning utilised in local energy communities?’ .

In summary, the contributions of this paper are as follows:

1. A conceptualisation of LECs from a European perspective
2. An extensive review of state-of-the-art machine learning litera-

ture associated with LECs
3. Detailed applications of machine learning methods within LECs
4. An evaluation of and the future outlook on machine learning

methods that are utilised in LECs

1.2. Outline

This paper is structured as follows: In Section 2, LEC definitions
within regulatory frameworks and existing community-based energy
projects are presented. Furthermore, the criteria for conceptualising an
LEC are explored in detail. In Section 3 a meta-review of the associated
literature, aiming to better contextualise the present work with respect
to the existing literature reviews, is presented. In Section 4, an initial
overview of the different machine learning tasks and techniques are
listed. Furthermore, the different practical applications of machine
learning in LECs have been analysed, and a structured evaluation of
these applications is presented in Section 5. Finally, a summary of the
main research findings as well as an outline of current developments,
potential trends in the future, and suggestions for further research
direction are presented in Section 6.

2. Local energy communities

Although it has been indirectly defined in literature, for example,
the general definition within the regulatory framework of the Euro-
pean Union (EU) for energy communities, to the best of the authors’
knowledge, no direct definition of LEC has been reported in the relevant
literature. To close this research gap, the authors of this study analysed
25 existing community-based energy projects on the basis of two EU
regulatory definitions of energy communities. Accordingly, a definition
of an LEC is presented in this study. This definition serves as the
foundation for the identification of the areas of application for machine
learning methods.

2.1. Classification of local energy communities

In the existing literature, an LEC has been perceived mainly as
a technical rather than a structural concept. However, the definition
of an LEC extends beyond purely technical, social, and organisational
aspects [5]. In a study [6], the authors analysed different approaches
and terms for the integration of local energy systems into a larger
centralised energy system. They investigated community microgrids,
virtual power plants, energy hubs, prosumer community groups, com-
munity energy systems, and integrated community energy systems.
Subsequently, the authors introduced a comprehensive concept for

integrated community energy systems, which is similar to the concept
of LEC and is presented in Section 2.2. In another study [7], the
authors defined ‘clean energy communities’ as social and organisational
structures that are formed to achieve the specific goals of its members,
primarily in terms of clean energy production, consumption, supply,
and distribution. They analysed the long-term dynamics and possible
pathways of the transition from centralised to decentralised systems in
the energy sector as well as the co-evolution of energy systems and
energy communities. This study aims to explore the manner in which
different machine learning techniques can assist in the operation of
LECs and optimisation of their local energy systems. As presented in
the following sections, the foundation for a framework for LECs has
been established on the basis of two different definitions within the
EU regulatory framework and analyses of 25 existing community-based
energy projects.

2.1.1. Regulatory definitions
As mentioned, the EU has issued two directives with official defi-

nitions that are proximate to those of LECs: ‘Renewable Energy Com-
munity’ (REC) [8] and ‘Citizen Energy Community’ (CEC) [9]. These
definitions are listed in Table 1. Member states must revise national
laws to comply with the EU rules, and therefore, they must develop
national-level definitions for citizen and renewable energy communi-
ties.

The specific differences between citizen and renewable energy com-
munities are further explored in detail in the literature [1]. The authors
explored renewable energy communities to showcase certain charac-
teristics that are not inherited by the citizen energy communities: a
specific geographical scope owing to the required proximity to renew-
able energy projects, a more restricted membership, i.e., participants
cannot join the renewable energy community as their primary eco-
nomic activity, a need for autonomy from individual participants or
stakeholders, and the possibility of grid control by enterprises located
in the proximity of the renewable energy project. Furthermore, unlike
the renewable energy community, a citizen energy community gener-
ally follows technology-neutral policies, and thus, it incorporates both
renewable and conventional sources of electrical energy.

2.1.2. Existing energy community projects
A review of functional energy communities in Europe was per-

formed to identify the characteristics of an LEC. The following key-
words were used to search for energy community projects (Oct. 2020):
‘energy community’, ‘renewable energy community’, ‘citizen energy
community’, ‘local energy market’, ‘electric energy community’, ‘micro-
grid’, ‘renewable energy market’, ‘local energy system’, ‘micro energy
system’, ‘zero emission neighbourhood’, ‘smart neighbourhood’, and
‘micro markets’. This search resulted in approximately 200 projects, 60
of which were investigated in more detail in this study. For a project
to be included in the review, it had to: (a) fit the definitions of citizen
and/or renewable energy communities, (b) focus on electrical energy
systems, and (c) possess sufficient information regarding the structure,
stakeholders, technology, and motivation of the project. By applying
these criteria, the initial number of 60 projects was reduced to the
25 projects that are listed in Table 2. The research findings on the
structure, stakeholders, technology, and motivation of the 25 projects
are detailed herein.

Structure
In terms of composition, an energy community can be distinguished

by its physical and organisational structure. The physical structure
involves the geographical area and location of the grid as well as the
electrical grid topology. In contrast, an energy community’s organisa-
tional structure can be categorised into seven types, as described in
the relevant literature [1]: energy cooperatives, limited partnerships,
community trusts and foundations, housing associations, non-profit
customer-owned enterprises, public–private partnerships and public
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Table 1
Comparison of definitions of renewable and citizen energy community.

Renewable energy community [8] Citizen energy community [9]

(a) ‘‘which, in accordance with the applicable national law, is based
on open and voluntary participation, is autonomous, and is
effectively controlled by shareholders or members that are located
in the proximity of the renewable energy projects that are owned
and developed by that legal entity’’;

(a) ‘‘is based on voluntary and open participation and is effectively
controlled by members or shareholders that are natural persons,
local authorities, including municipalities, or small enterprises’’;

(b) ‘‘the shareholders or members of which are natural persons,
SMEs [small and medium-sized enterprises] or local authorities,
including municipalities’’; and

(b) ‘‘has for its primary purpose to provide environmental,
economic, or social community benefits to its members or
shareholders or to the local areas where it operates rather than to
generate financial profits’’; and

(c) ‘‘the primary purpose of which is to provide environmental,
economic or social community benefits for its shareholders or
members or for the local areas where it operates, rather than
financial profits’’

(c) ‘‘may engage in generation, including from renewable sources,
distribution, supply, consumption, aggregation, energy storage,
energy efficiency services or charging services for electric vehicles
or provide other energy services to its members or shareholders’’

Table 2
Existing energy community projects.

Project Country Motivation Participants

BeauVent [1] Belgium Increase renewable energy production >5000
Courant d’Air [10] Belgium Provide renewable energy to consumers >2000
Ecopower [11] Belgium Increase renewable and local energy production 56,000
Svalin Energy Collective [12] Denmark Increase renewable and local energy production, reduce climate impact 20 households
Cornwall Local Energy Market [13] England Test market-based flexibility provision, reduce climate impact 100 households, 100 businesses
Larsmo Vindkraft Ab [14] Finland Increase renewable and local energy production, lower costs 200
Enercoop [15] France Increase renewable energy production, lower costs 92,000
Fermes de Figeac [16] France Increased income for members 321
Jühnde Bioenergiedorf [17] Germany Local solutions for solving climate change 660
Elektrizitätswerke Schönau [18] Germany Increase renewable energy production, energy democratisation 185,000
Sprakebüll Village [19] Germany Increase renewable energy production, self-sufficiency 247
Wildspoldsried microgrid [20] Germany Self-sufficiency with renewable energy, research on microgrids 2500
Aran Islands Energy Cooperative [14] Ireland Self-sufficiency with renewable energy, research on microgrids 100 stakeholders
Erris Energy Community [21] Ireland Energy efficiency, increase renewable energy production, community aspect Unspecified
Amelander Energie Coöperatie [22] Netherlands Self-sufficiency, increase renewable energy production 286
Brattøra [23] Norway Energy efficiency, positive energy block 3 office buildings
Elnett21 [24] Norway Reduce fossil fuels in transport and enterprises, avoid grid congestion Port, airport, businesses
Spoldzielnia Nasza Energia [1] Poland Energy independency, lower costs 300
Slupsk pilot [1] Poland Energy poverty, reduce air pollution 200 households
Edinburgh Community Solar [25] Scotland Reduce climate change, energy poverty, energy security 540
Isle of Eigg [26] Scotland Increase renewable energy, lower costs 96
BRF Lyckansberg [27] Sweden Local renewable energy production, export surplus electricity 85 apartments
Farmarenergi Eslöv [28] Sweden Reduce fossil fuels 9 farmers
Simris Energy System [29] Sweden Increase renewable and local energy production, avoid congestion 140 households
Quartierstrom [30] Switzerland Local market to balance power from renewable energy 37 households

utility companies. A review of the 25 community projects revealed
numerous organisational structures. Certain projects, such as Svalin [1]
and the Isle of Eigg [31] are organised in collectives through citi-
zen engagement with the social aspects of sharing at its core. Other
projects were registered as companies owned by local citizens, such as
Amelander [32] and Jühnde [1]. As displayed in Table 2, the number
of members in these projects greatly vary, with three members in
Brattøra [23], and 56,000 members in Ecopower [11]. Furthermore, a
few of these projects have emerged from scientific research and are not
initiated by citizen participants.

In certain studies [32,33], researchers investigated the importance
of social and organisational aspects in energy communities. Reportedly,
factors such as a shared vision, the level of activity in the community,
the type of organisation, and the organisation’s affiliations on local,
regional, or national levels can significantly influence the success of
the energy community.

Stakeholders
Stakeholders in an energy community can either serve as active par-

ticipants forming the energy community or passive actors with invested
interests in the project. Within the 25 aforementioned projects, the
stakeholders comprise citizens, municipalities, technology providers,
distribution system operators (DSOs), universities, local businesses,
energy generation companies, and housing associations. In addition to
the aforementioned examples, the relevant literature [34] lists research

centres, consultancies, information and communications technology
(ICT), telecommunication companies, utilities and engineering service
providers, retail companies, transmission system operators (TSOs), in-
dustry organisations, real estate developers, energy service providers,
public utilities, energy cooperatives, and transport solution companies
as potential stakeholders.

Generation, load, storage and flexible resources
For the reviewed projects, the typical generation technologies in

energy communities comprise photovoltaic (PV) panels, wind turbines,
small-scale hydropower plants, and combined heat and power plants.
Additionally, thermal energy systems for heat production are incorpo-
rated in most of the reviewed communities, typically through combined
heat and power generation, or geothermal and solar heating. Energy
storage for back-up or other grid services was realised through ei-
ther diesel generators or battery-based energy storage systems. These
generation and storage technologies can be observed either at the
household level or as shared assets in the community. The various types
of load sources in these 25 reviewed energy community projects were
categorised as households, prosumers, office buildings, industry/farms,
and public buildings. The yearly load demands of these categories differ
on daily and seasonal scales. Typical flexible resources available within
load categories comprise electric vehicles (EVs), heat pumps, and water
boilers. Optimal control of these flexible resources and energy storage
systems is crucial to minimise the energy costs of the community.
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An energy management system will be required by the community
to control its flexible resources, through which the community can
ultimately decide the period and manner of energy utilisation, thereby
lowering the overall energy costs.

Motivation and benefits
The energy community projects, reviewed in this study, address

environmental concerns and the related goal of increasing the share of
renewable energy, which comprise the core motivation for establishing
an energy community. For example, both BeauVent [1] and Sprake-
büll [19] aimed to achieve 100% renewable energy production in the
community, whereas Svalin [12] aimed to consume renewable energy
that was entirely produced locally. Similarly, the common motivation
behind energy community projects involves further investment in sus-
tainable energy infrastructure for the community [1]. Furthermore,
several projects such as Amelander [22], Aran [14] and Wildpoldsried
microgrid [20] have highlighted the importance of self-sufficiency. Such
requirements for self-sufficiency may be motivated by economics, se-
curity of supply (especially relevant in energy communities, which are
microgrids), or a demand for greater transparency regarding the origin
of the consumed electricity.

The economic incentives of communities typically lead to reduced
wholesale market expenses owing to increased self-consumption of
locally produced energy, revenue generation through feed-in of excess
power generation, or a reduction in costs to the DSO owing to a lowered
peak power consumption (caused by load shifting). Certain energy
communities provide balancing and frequency control services to the
TSO, such as the Cornwall Local Energy Market [13] and Wildpolsried
microgrid [20].

2.2. Definition of a local energy community

As detailed in Section 2.1, the regulatory definitions and review
of existing energy community projects facilitate the establishment of a
definition of an LEC. This definition can be achieved by incorporating
the five criteria that are fundamental to an energy community, which
can be referred to as an LEC:

1. Locality: The community should possess a large proportion of
local investment and ownership and be managed locally. A
community is located within a defined geographical area and is
typically connected at the distribution-grid level.

2. Energy sustainability: The community or its members fully
or partially own the process of renewable energy generation,
energy storage, EV chargers, or other relevant assets or infras-
tructure. These assets and infrastructure are shared by the com-
munity; from an energy system perspective, they are established
at a single customer location.

3. Community engagement: Most of the participants are active
members of the community, i.e., they are invested in the energy-
related assets and provide flexible demand options. The main
objective of the community is not profit-oriented; however, it
aims to provide environmental, economic, or social benefits
for its members/shareholders and/or the local area where it
operates. The community participants may be individuals, small-
and medium-sized enterprises, or local authorities, including
municipalities.

4. ICT: The community possesses ICT infrastructure of varying de-
grees. Typically, this includes smart meters and communication,
control, and energy management systems. Such infrastructure
can enable the flexible operation and optimisation of the local
system and facilitate interaction with national power systems in
the form of transmission grids and wholesale electricity markets.

5. Transactions: The community allows for energy-related finan-
cial transactions amongst its members. This feature is generally
implemented in local energy markets; however, such a feature
is not mandatory. The transactions conducted not only consist

of local transactions but also include transactions between the
community and the national power system, for example, via
wholesale electricity markets.

Criteria 1, 2, and 3 are closely related to the definitions of citizen and
renewable energy communities. Criterion 4 indicates that an energy
community must exercise some degree of ICT technology for the control
of assets, communication amongst its members, and data collection.
According to Criterion 5, a mechanism is required to share the energy-
related costs and benefits amongst the members in the community.
Table 3 depicts the relationship between the criteria defined for the
applications, which are further detailed in Section 5.

To summarise this definition, an LEC is illustrated in Fig. 1 as a part
of the larger power system.

3. Associated literature reviews

On the basis of the definition of an LEC provided in Section 2.2,
a recent body of literature reviews associated with the topic has been
identified, as listed in Table 4. The associated literature reviews were
selected according to their relevance to the topic of LECs by consider-
ing the commonalities in the fundamental criteria established in the
previous section. The exception to this has been reported in several
studies [50–52], which possesses no direct relation but relates tangen-
tially to locality and ICT infrastructure. The associated methods are
explored in detail in the following section.

A range of literature reviews specialise in topics related to LEC;
however, they do not specifically focus on local applications. Within
the topic of forecasting, in a review [35] recurrent neural network
models focusing on the specific problem of solar power forecasting were
analysed with data from the South Korean power grid. Furthermore,
an overview of deep learning in renewable electricity forecasting has
been reported [37]. A review [39] specifically focused on time-series
drift in terms of flexibility in power system flexibility, whereas another
review [40] explored load forecasting from short to long term periods.
Most of reviews of energy management systems highlight the topic
of locality, except for the review [48] which presents a general view
on reinforcement learning and its application in problems concerning
power system control, and excluding the review [42] that explores
energy storage and EVs. With regard to the protection, stability and
quality of power systems, none of the reviews consider locality. In a
review [50], methods such as support vector machines, neural networks
and genetic algorithms were analysed in the context of fault detection.
Moreover, deep learning has been analysed in the context of power
quality [51]. Furthermore, the review [52] explores applications of
machine learning in reliability assessment and control (specifically on
the topics of security assessment, emergency control, preventive con-
trol, error measurement and power flow predictions). Most reviews of
machine learning in smart grids do not consider locality. The emerging
importance of machine learning and autonomous control in power sys-
tems has been reported [53]; although the review was not specifically
focused on decentralised solutions, the reported topics were strongly
related to such solutions. Furthermore, machine learning in smart grids
has been analysed with a focus on data and data security [54]. The
relevance of artificial intelligence to sustainable energy systems has
been investigated in a general context [56]. In a review [55] machine
learning in power systems has been investigated with a focus on topics
such as forecasting, failure analysis, demand side management, and
cyber security. Additionally, a review of the last decade of machine
learning in power systems has been established [4].

The remaining related literature reviews focus on the subcategories
of the field of machine learning. Reinforcement learning is a core
topic in studies that focus on control aspects. The Markov decision
process, i.e., the heating and storage of heat in water boilers, has been
explored, and Q-learning has been identified as the state-of-the-art for
dealing with control in such decision processes [43]. Researches [44]
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Table 3
Value matrix criteria—applications.

Application Locality Energy sustainability Community ICT Transactions

Forecasting

Generates information for
short-term planning of the
resources in the LEC

The individual and
community assets are
optimally managed by
having information of
future DER and related
asset behaviour (such as
storage)

Individuals can better
coordinate with better
prediction on their demand
and supply

A condition for data
security in forecasting
systems

Energy and price
forecasting provides
operational inputs allowing
the LEC to conduct an
optimised economic
dispatch

Storage
optimisation

Enables localised storage as a grid asset,
increases self-consumption of local
renewable resources in the LEC

Storage assets are
coordinated with other
assets in the community
and investments can be
shared

Automated control of the
storage system and
associated information
streams

Local assets interact with
the larger power grid via
wholesale markets, e.g. in
form of virtual power
plants

Demand
response

Decentralised demand
response becomes a
feasible asset in the power
system

Time-flexible demand can
increase the consumption
of intermittent renewable
energy in the community

Demand response can be
aggregated and
coordinated with other
community members

Local assets interact with
the larger power grid via
wholesale markets. e.g. as
virtual power plants

Energy
management
system

Decentralised coordination
of resources

More optimal coordination
provides more efficient
utilisation of renewable
energy and lowers
emissions

Provides the sense of
common welfare and a
central coordination point
within an LEC

Data storage and
monitoring systems
constitute the core of an
EMS

Power quality,
stability and
security

Practices that secure
proper functioning and
handling of the equipment
owned in the LEC

Towards energy
sustainability goals, energy
generated and dispatched
from LEC has to comply
with the quality standards
of power grids

Akin to centralised power
systems, in decentralised
systems such as LEC, the
grid remains a shared asset

Grid data collection,
maintenance and security

-

Energy
transactions

Transactions are moved to
the local level, consumers
and prosumers financially
interact with each other
within an LEC

Local markets trade mainly
local, renewable generation

Transactions within a
community lead to higher
level of self-consumption

LEC members are able to
make better informed
decisions about the
sourcing of their energy
supply; because to
information sensitivity,
transactions must also be
secure

Local markets are
integrated into wholesale
markets and also have to
provide proper
supply/demand on
balancing and regulating
markets

Fig. 1. Visualisation of a local energy community in the larger power system. The local energy community consists of two levels: the community and the individual level. The
individual level consists of the participants in the community, such as residential consumers, prosumers, and enterprises. The participants own individual assets such as EVs, PV
panels and batteries. Moreover, the ICT infrastructure, such as smart meters and energy management systems, are also incorporated into this system. The community level consists
of shared assets, such as community-owned PV panels, wind turbines, batteries and charging stations for EVs.

approached the topic from the perspective of building management
and discussed the real-world challenges involved in the implementation
of reinforcement-learning frameworks. Similarly, control problems in

buildings have been addressed through reinforcement learning, focus-
ing on demand response control [45] and the latter focusing on its
practical applications [46]. Another literature review focusing on the
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Table 4
Literature reviews on machine learning applied on associated topics.

Source Year Topic Locality Energy sustainability Community engagement ICT Transactions

Forecasting

[35] 2019 PV generation forecasting x ✓ x x x
[36] 2019 PV generation forecasting ✓ ✓ x x x
[37] 2019 Renewable energy forecasting x ✓ x x x
[38] 2019 Load prediction with smart meter data ✓ ✓ x ✓ x
[39] 2020 Forecasting of flexible resources x ✓ x x x
[40] 2020 Load forecasting x ✓ x x x

Energy management system

[41] 2020 Battery state estimation ✓ ✓ x ✓ x
[42] 2020 Battery control methods x x ✓ x ✓
[43] 2018 Water heater control ✓ x ✓ x x
[44] 2019 Energy management systems of buildings ✓ ✓ ✓ x x
[45] 2021 Energy management of appliances in buildings ✓ x ✓ x x
[46] 2019 Demand response control ✓ x ✓ x x
[47] 2020 Demand response ✓ x ✓ x x
[48] 2019 General control problems in power systems x x ✓ x ✓
[49] 2020 EV flexibility ✓ x ✓ x x

Power system protection, stability and quality

[50] 2017 Fault detection ∼ x x ∼ x
[51] 2019 Power quality analysis x x x ∼ x
[52] 2020 Reliability assessment and control x x x ∼ x

Machine learning in smart grids

[53] 2019 Role of machine learning in power systems x x x ✓ x
[54] 2019 Machine learning in smart grids x x x ✓ x
[55] 2020 Machine learning in smart grids x ✓ ✓ ✓ x
[4] 2020 Deep learning in smart grids x ✓ x ✓ ✓
[56] 2020 Sustainable development x ✓ x x x
[57] 2020 Distributed smart grids ✓ x ✓ x x

[*] – Local energy communities ✓ ✓ ✓ ✓ ✓

* this paper, ✓related, ∼ tangentially related.

subcategory of supervised learning has been reported [41], focusing
on methods dealing with battery state estimations, namely Markov
process- based methodologies such as Kalman filters.

Compared to these sources, literature reviews focusing on local ap-
plications and considering multiple subcategories of machine learning
focus on specific problems. A review of applications, utilising smart
meter data, such as load forecasting and related issues, including
screening for energy theft and demand response forecasting, has been
reported in the literature [38]. Additionally, solar energy predictions
in microgrids have been surveyed [36], and the demand response
and associated methods for operation, prediction, and segmentation
have been highlighted [47]. Finally, a method for charging demand
prediction of electric vehicles have been reported in literature [49].

In terms of the existing literature, a prior research has been re-
ported, which is most relevant to this study [57]. However, the prior re-
search focuses on single assets, especially energy management systems,
whereas the present study focuses on energy communities, especially
LECs, as an integrative unit. Although these approaches overlap, the
research presented herein will dive deeper into specific applications
such as agent-based coordination and classification from a communal
perspective.

4. Machine learning methods

This section provides a short introduction to machine learning and
its main categories as well as the main topics related to LECs, which
were revealed in literature review performed in Section 3.

Popularised by a study [58], machine learning algorithms are tradi-
tionally classified into three main categories: (a) Supervised Learning,
(b) Unsupervised Learning, and (c) Reinforcement Learning. The three
categories, with their respective associated algorithms, are illustrate in
Fig. 2. The essence of these classifications lies in the interaction of the
algorithms with the data and environment. A comprehensive review of
these methods and associated concepts have been reported in [59].

Supervised Learning algorithms are supplied with knowledge per-
taining to the data in the form of so-called labels and are used to predict
new and unknown data labels. This process can occur in the form
of tasks such as classification, where labels represent categories, and
regression tasks where the labels represent the values to be predicted.
In this study, the regression tasks are referred from traditional linear
regression, advanced models such as Lasso regression, or Ridge regres-
sion to models such as support vector machines, a method that can be
fit on nonlinear data sets. In the context of LECs, regression methods
are primarily used to predict and forecast of uncertain parameters.
This forecast applies to both the demand side (e.g. household loads
or utilisation of devices) and the supply side (e.g. available PV capac-
ity) [60,61]. However, classification problems rely on prediction tasks
for categorical or qualitative outputs [59]. Consequently, classification
methods are generally used in scenarios wherein the problem involves
the detection of specific cases in datasets on the basis of historical
examples. The main applications of such methods related to LECs
comprise fault detection and error classification [62].

Finally, probabilistic tasks refer to methods that consider uncer-
tainty in the data not only to optimise the expected value but also to
infer the distribution of such uncertainty. A simple example is provided
by the probabilistic form of regression, such as Bayesian regression.
Applications of probabilistic methods in LECs include the fitting of
stochastic processes or determination of the parameters of distributions
for renewable energy installations, household loads, or usage patterns
of electric vehicles and electric devices.

Deep learning, commonly referred to as a neural network, can per-
form any of the aforementioned tasks. These methods employ function
approximations consisting of stacks of differentiable linear regression
‘layers’ and nonlinear ‘activation functions’. Hence, neural networks are
built with different configurations of layers to solve the problem and
handle the nonlinearities of such problems. Such models are widely
used in LECs, including neural networks for forecasts [63] and pre-
dictions of deep learning models for optimal control [4,64]. A more
in-depth discussion on deep learning topics has been reported in [65].
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Fig. 2. Machine learning methods and algorithms.

In contrast to supervised learning, unsupervised learning aims to
describe associations and patterns between unlabelled input data [59].
Clustering techniques aim to find commonalities in data sets and clas-
sify the closest data points as clusters. In the context of LECs, clustering
methods are primarily found in applications for load profiling and
segmentation.

The last category, reinforcement learning (RL), from the other two
categories. It not only passively observes and labels the data but also
exerts active control on a given system. A common textbook source for
RL algorithm is provided [66]. However, in the traditional literature
on electrical engineering, these RL algorithms have also been referred
to in the context of optimal control under the name of ‘approximate
dynamic programming’. Further background information on this topic
is currently available [67].

5. Applications in the operation of local energy communities

The literature review presented in Table 4 demonstrates the range
of potential applications of machine learning within microgrids, smart
grids and other energy communities. However, considering the criteria
in the definition of an LEC, as depicted in Section 2, applications
such as forecasting, energy management system, power system pro-
tection, stability, quality, and optimisation and energy transactions
have been selected as a result of a categorisation of the discovered
literature associated with the aforementioned topics. The following
section presents the analyses and further classification of the studies
and models targeted specifically at the aforementioned applications
related to LECs.

5.1. Forecasting

Forecasting is the process of predicting a variable in the future by
analysing historical data trends. Demand and generation forecasting
are of great importance to the system operators of electrical grids.
The frequency of occurrence of the algorithms that were used in the
reviewed studies for each forecast application is illustrated in Fig. 3.

Forecasting studies are commonly classified to their time horizon
prediction: short-term, medium-term, and long-term [57]. However,
certain studies approach the problem on a very short-term horizon [61,
68]. The forecasting interval depends on the purpose on the fore-
cast. For daily operation tasks, very short-term and short-term are the

Table 5
Forecast time horizons.

Forecast horizon Time interval

Very short-term 1 s to less than 1 h
Short-term Few minutes to few days
Medium-term Few days to few months
Long-term Months, quarters, years

required time horizon, whereas for grid planning and investment evalu-
ation, a long-term horizon is preferred [40]. Table 6 shows the machine
learning algorithms in the literature review for different forecast tasks
classified according to time horizons listed in Table 5.

5.1.1. Demand forecasting
The literature on demand forecasting represents the largest share

of the recent literature on energy forecasting. This is because of the
increased uncertainty in the operation owing to the addition of new
actors to the energy system, such as prosumers or new assets, which can
act as flexible loads and shift or reduce their consumption during spe-
cific periods [48]. An accurate prediction of demand helps to improve
the operation of an LEC [97,98]. For LECs with controllable loads,
several control strategies rely on an accurate forecasting model [99].

Demand forecasting can be performed at individual, community,
or asset level facilitated by the data gathering ability of smart meters
and ICT infrastructure. In terms of the asset level, machine learning
regression models such as K-nearest neighbours (KNN), decision trees
and neural networks (NNs) have been explored to accurately predict
the consumption of two machine tools in a factory in a very short-term
horizon [68]. A combination of an autoregressive integrated moving
average (ARIMA) model with a nonlinear support vector machine
(SVM) has been used to predict the electrical consumption of an air
conditioner by employing the data retrieved from smart meters [81].
Similarly, [80] compared linear models, linear and nonlinear SVMs,
and NNs to predict annual heating and cooling loads in residential
spaces in a long-term prediction task; the optimal results were obtained
using nonlinear SVMs.

At individual level, researches [73] approached the short-term fore-
cast of the energy consumption of three households in a nanogrid via
smart meter data by reviewing several supervised learning algorithms.
Refs. [74,76] have discussed on the high volatility and uncertainty
of residential load profiles; Long short-term memory neural networks
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Fig. 3. Machine learning techniques used for forecasting in literature.

Table 6
Machine learning (ML) techniques for forecasting.

Forecast topic Task ML Algorithm Forecast horizon Year Source

Demand
forecasting

Load curve

SVM Short term, medium term 2021 [69]
Hybrid models Short term, long term 2020 [70]
CNN Short term 2019 [71]
LSTM Short term 2020 [72]

Households

Various Short term 2020 [73]
Linear models Short term 2018 [74]
Various medium term 2020 [75]
LSTM, SVM Short term 2019 [76]
LSTM Short term 2018 [77]

Households and SME Markov Model Short term 2019 [78]
Appliances LSTM Short term 2020 [79]
Residential space heating and cooling loads CNN Long term 2020 [80]
Machine tools SVM, NN Very short term 2020 [68]
Power demand for different facilities LSTM Short term, long term 2020 [63]
AC energy consumption LSTM Short term 2019 [81]
Rural microgrid NN Short term 2020 [82]

Renewable
energy
forecasting

PV generation
LSTM Short term 2019, 2020 [83,84]
Various Short term 2019 [85]
Various Various 2019 [61]

PV generation, wind generation and demand NARX NN Short term 2019 [86]
Wind forecasting Various Various 2020 [87]

Flexibility
forecasting

Demand side
flexibility

LSTM - MILP Short term 2021 [88]
Boosted decision trees Short term, medium term 2020 [89]
GLME Medium term 2019 [90]
Decision trees – 2021 [91]

EV charging demand prediction Boosted decision trees – 2020 [49]
EV charging navigation Q-learning – 2020 [92]

Price forecasting

Price forecasting Turkish market Various Short term 2018 [93]
Price forecasting Iberian market NN Short term 2018 [94]
Price forecasting EPEX Various Short term, long term 2019 [95]

Various Price, generation, demand Various Short term 2021 [96]

(LSTMS) were used to obtain short-term household forecasts, yielding
minimal prediction errors.

At community level, load forecasts are usually performed by con-
sidering aggregated load. For example, different algorithms have been
used to forecast one day-ahead energy consumption in a residential
building [77]. The authors first reviewed several single algorithms and
subsequently combined these algorithms with an optimisation tech-
nique, thereby achieving improved results with the latter technique.
Ref. [63] forecasted short-term and long-term energy consumption of
different buildings, ranging from a residential to a factory and hospital,
and the challenges of each profile have been reported. The authors
compare mixed-data sampling method with LSTMs and a combination
of both methods, resulting in a more accurate result.

In contrast to deterministic methods, probabilistic methods have
been applied in certain studies. These methods extend the capabilities
of the deterministic model by quantifying the uncertainty factors in

the load forecasting task. As exemplified in [71], the authors trained
recurrent neural networks (RNNs) using a probabilistic objective func-
tion to forecast the day-ahead load consumption. Probabilistic output
prediction provides information on risk and related scenarios for de-
cision making in the operation planning of the energy system [78].
Moreover, a semi-hidden Markov model have been developed to predict
short-term consumption of home appliances [79].

5.1.2. Renewable generation forecasting
Most LECs will have renewable energy sources to fulfil their energy

needs and sustainability goals. Accordingly, the nature of these energy
generation sources results in a significant level of uncertainty in the
energy supply [37,100]. An example has been reported [101], wherein
multiple methods were reviewed, including nonlinear autoregressive
exogenous neural networks (NARX NN), Gaussian process regression,
and SVM, to forecast the behaviour of wind generation, PV generation,
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and demand for households. The authors assessed the inputs needed for
each predictive task and highlighted the NARX NN as a robust model
for wind and PV generation by conducting a sensitivity analysis. As
reported in the literature [96], the results for wind generation forecasts
were improved through the incorporation of exogenous information
when comparing deterministic and probabilistic methods. Similarly,
NARX NNs have been used [102,103] for wind and PV generation.

As mentioned in Section 2.1, PV generation is one of the most
popular technologies for the generation of renewable energy in house-
holds and communities. Therefore, a number of studies have focused
on this particular application. For instance, the statistical and machine
learning methods for PV generation forecast have been comparatively
analysed [61]. Finally, the authors compared a hybrid combination of
two methods and an optimisation theorem, concluding hybrid methods
increase the forecasting accuracy by adding benefits of individual meth-
ods. The performances of several machine learning algorithms have
been analysed to predict the PV generation for a power plant [85]; the
importance of input data, such as weather, for the prediction perfor-
mance has been analysed to predict of PV generation for a power plant.
The optimal results were obtained using random forest. RNNs have
been extensively explored in the literature for forecast tasks concerning
PV generation; for example, LSTMs have been implemented to predict
the output power of different PV generation plants for a short-term time
horizon [83,84].

5.1.3. Flexibility forecasting
From a prosumer’s perspective, flexibility can be defined as the

ability to modulate generation/consumption behaviour via an external
signal, such as a change in the energy price [104]. Flexibility is a
service that can be provided within the LEC at both household and
community levels (refer to Fig. 1). Flexibility forecasting is based
on load forecasting, considering the available flexibility sources [90].
Accurate flexibility estimation allows the LEC and its participants to
generate revenue by selling flexibility to a system operator, such as
Cornwall Local Energy Market [13]. In accordance with the classification
reported in [105], flexible assets can be classified as demand side,
supply side, and storage assets. This section focuses on the demand side
flexibility and storage.

For flexibility estimation, [88] the economic optimisation of an
energy management system has been attempted in an urban microgrid,
considering the flexibility of ancillary services. The load consumption
forecast was performed using LSTM. Furthermore, mixed integer linear
programming (MILP) was used to optimise the energy dispatch in the
day-ahead operation of the microgrid with three different types of
loads: building, smart homes with and without available PV capacity,
and differently clustered loads. In another study [89], the authors
forecast the loads’ total consumption and flexibility using boosted trees
for both day-ahead and week-ahead time horizons in a commercial
building. In a study [90], the flexibility was calculated for a single
household for one month using generalised linear mixed-effect mod-
els (GLMM). The present study also analyses the flexibility at the
household asset level.

With the novel vehicle-to-grid (V2G) technology, EV charging sta-
tions in the grid serve as a flexible asset. V2G can operate as an avail-
able energy storage device, thereby acting as a flexibility source [106].
In addition, they can be considered as a mobile energy storage sys-
tem [105]. Therefore, they are also subject of study for forecasting
flexibility calculations. To this end [49], prediction methods for the
EV charging demand during charging sessions have been studied to
optimise the management of the electric grid. Models such as linear re-
gression, boosted decision trees, random forest, and SVM were used to
predict the charging demand of EVs for flexibility predictions. Ref. [92]
proposes a storage optimisation problem for EVs incorporating uncer-
tainty caused by traffic solved by a RL model-free Q-learning algorithm.
The use of decision trees has been evaluated for flexibility-based oper-
ational planning dispatch in a microgrid system connected to the grid,

with storage, renewable generation, critical loads, and an industrial
controller [91]. The authors comment on the feasibility of implement-
ing decision tree-based rule programming in a PLC-based controller and
highlight its interpretability in the dispatch rules compared to other
state-of-the-art alternatives such as NNs.

5.1.4. Electricity price forecasting
Electricity price forecasting is an application for both community

and peer-to-peer market-level configurations. A forecast of the energy
price at a specific time in the future provides valuable information
for handling load consumption and flexibility more efficiently [107].
Moreover, price forecasting helps to create optimised programs to
efficiently dispatch the energy within the LEC, by supporting efficient
resource scheduling decisions [57]. In this section, although most of the
studies focus on centralised energy markets, they are highly relevant for
LECs.

Most of the studies on LECs focus on the day-ahead electricity price
forecasting. The price forecasting has been analysed in the Turkish
day-ahead market using an RNN, and the method was compared with
several other NN architectures [93]. The optimal results were obtained
using the gated recurrent unit configuration of RNN. The authors high-
light the capabilities of this algorithm to capture spikes and volatility.
Similarly, scholars [94] implemented a regression technique using NN
to predict day-ahead prices in the Iberian electricity market. Addition-
ally, researches [95] approached electricity price forecasting for both
day-ahead and a four-week time horizon in EPEX1 in Germany/Austria.
Reportedly, amongst the algorithms tested, the optimal results were
achieved using NNs.

5.2. Energy management systems

An optimised energy management system allows efficient energy
consumption scheduling through the coordination of the assets in the
system, such as PV generation, storage, EVs, and flexible loads via
demand response programs. As reported in the existing literature [104,
108], an energy management system can be used to process price
signals and perform cost-efficient dispatch within a wholesale market
framework. Furthermore, the relevant literature indicates that data-
driven algorithms support automatic optimisation of energy manage-
ment systems at both individual and community levels. The distribution
of machine learning techniques in the reviewed literature for energy
management system is displayed Fig. 4.

5.2.1. Energy management system and control
The majority of the studies focus on the energy management op-

timisation by data-driven algorithms. As reported in [109], an energy
management system has been developed using stochastic processes for
an islanded microgrid. Additionally, researches in [110] exposed a
method which optimises the power exchanged with the utility through
a probabilistic approach using a Gaussian process model and model
predictive control for interconnected microgrids. Supervised learning
algorithm algorithms were used by researches [111], who presented
a multi-agent day-ahead energy management system of a microgrid
incorporating various methods from machine learning and operations
research. Specifically, it demonstrates the incorporation of forecasting
via RNNs and convolutional neural networks (CNNs) into distributed
optimisation via the alternate direction method of multipliers. Fur-
thermore, a framework has been introduced to optimise the cost of
networked microgrids featuring wind turbine generation, EV charging,
and battery storage [112]. The output power of the wind turbines is
predicted via SVM and a battery optimisation algorithm is used to find

1 European Power Exchange SE is an electric power exchange operat-
ing in Austria, Belgium, Denmark, Finland, France, Germany, Great Britain,
Luxembourg, the Netherlands, Norway, Sweden and Switzerland.
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Fig. 4. Machine learning techniques in literature for energy management system.

Table 7
Machine learning (ML) techniques for energy management system and control.

Task ML Algorithm Level Year Source

Energy management system
optimisation

Alternated Method of Multipliers Microgrid 2019 [111]
Q-learning Household 2020 [114]
MDP, RNN Microgrid 2019 [115]
SVM Microgrid 2021 [112]
MDP Microgrid 2021 [116]
DQN Microgrid 2020 [117]
Stochastic processes Islanded microgrid 2021 [109]
DQN Microgrid 2020 [118]
Linear reward interaction Islanded microgrid 2020 [119]

Energy management system optimisation —flexible demand Actor Critic Microgrid 2020 [120]

Energy management system optimisation —HVACs units Policy Gradients Building 2021 [121]

Energy management system optimisation —EVs Various Smart grid 2019 [113]

Non-intrusive load monitoring
NN, KNN Household 2019 [122]
Hidden Markov model Household 2019 [123]
CNN Household 2019 [124]

Energy share optimisation DQN Building 2018 [125]
Gaussian process Interconnected microgrids 2021 [110]

Energy data mining CNN Household 2019 [126]
Optimisation techniques Household 2019 [127]

Topology identification LSTMs Household 2020 [128]

the optimal power dispatch for batteries and EVs. Focusing on EVs,
researches in [113] reviewed the optimisation of EV charging sessions
by considering the vehicle’s state of charge with the objective of reduc-
ing charging costs. Several machine learning algorithms were tested
in this study; the results indicate that deep neural networks provide
solutions proximate to the global minimum owing to the complexity of
such an algorithm. A literature review of machine learning algorithms
for energy management systems and controls for different application
levels is presented in Table 7.

For RL approaches, scholars [117,118] used deep Q-learning (DQN)
to optimise operation of the elements connected to the EMS. Another
model-free approach reported in the literature featured an Actor–critic
approach to coordinate flexible demand, generation, and storage in a
real-time application [120]. In addition, the utilisation of determinis-
tic policy gradients has been reported for the optimisation of agents
comprising heating, ventilation, and air conditioning units [129]. The
solution was demonstrated in a case study, suggesting an improvement
over classical rule-based policies or discontinuous deep reinforcement
learning in the form of Q-learning.

Nonintrusive load monitoring is a technique used to segment the
energy consumption into patterns and identify the behind-the-meter
loads. In the context of LECs, this method was applied to identify

home appliances and consumption patterns. A hidden Markov model
approach has been presented to identify individual load sources of
various types in a single aggregated load time series, focusing on
online (i.e., real-time) applications [123]. Similarly, several machine
learning algorithms have been reviewed to perform a non-intrusive
load-monitoring task using a home energy management system [122].
As reported in the literature [126,127] sociodemographic information
was extrapolated from home energy management systems and smart
meter data via clustering techniques, such as KNN, and classifiers, such
as SVM.

5.2.2. Energy storage
Energy storage systems are used in LECs to balance energy over

multiple periods of operation. These assets provide opportunities for the
shifting of loads from peak to baseload periods and the integration of
intermittent renewable energy [130]. As [131] storage systems may be-
come essential assets in future LEC projects, such assets are crucial for
the day-to-day operation of an LEC, focusing on flexibility and energy
sources in islanded microgrids. The principle of optimal dispatching is
at the core of these operations. The field of machine learning comprises
a range of deep reinforcement learning (DRL) methods, which are the
prevalent methods applied to energy storage applications, as indicated
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Table 8
Machine learning (ML) techniques for energy storage optimisation.

Task ML Algorithm Year Source

Battery dispatch optimisation w/PV

MC Tree search 2020 [133]
DQN 2016 [134]
Q-learning 2016 [135]
PPO 2020 [60]

Battery dispatch optimisation

Decision trees 2020 [100]
Double DQN 2020 [136]
Q-learning 2020 [137]
DQN 2020 [138]
MC methods 2020 [129]

Transactional charging Q-learning 2020 [139]

in recent literature. Such DRL methods can be used to develop a
control function, represented via a Q-function that can handle large
search spaces for dynamic problems such as optimal storage [132]. The
algorithms reported in recent literature to address storage optimisation
problems in power systems, which are similar to those in LECs, are
listed in Table 8.

Q-learning has become a method of reference for research on most
battery storage optimisation, as is the case in [137]. Similarly, [138]
applied DQN to an islanded microgrid. The authors used a CNN ar-
chitecture to predict Q-values, arguing the chosen convolutional ar-
chitecture for its simplicity and good performance. In contrast, [136]
used a double-DQN to address the uncertainty in the microgrid system
for both grid-connected and islanded modes. The authors highlighted
that the chosen method mitigates the overestimation that a single
Q-value estimator can generate in the results. In contrast, [129] ap-
proached the DSO’s optimisation retail pricing strategy problem with a
RL Monte-Carlo method in a simulated multi-microgrid system.

Q-learning has also been used to solve the complexity caused by
PV generation in the microgrid [134,135]. Other model-free methods,
such as the Monte-Carlo tree search algorithm, have been implemented
as solutions to reduce the computational burden involved for solving
the stochastic dispatch of battery storage during PV generation [133].
Similarly, as reported in the literature [60], a policy gradient method,
namely the proximal policy approximation (PPO) has been established.
The PPO agent maximises the accumulated net revenue of the system
by successfully adapting to the PV uncertainties and market signals. The
PPO agent outperformed the other tested algorithms, such as the deep
deterministic policy gradient, Actor–critic, and double-DQN algorithms.

5.2.3. Optimal demand response
Demand response is defined, according to the Federal Energy Regu-

latory Commission, as ‘‘changes in electric usage by end-use customers
from their normal consumption patterns in response to changes in the
price of electricity over time, or to incentive payments designed to
induce lower electricity use at times of high wholesale market prices
or when system reliability is jeopardised’’ [140]. Accordingly, the
demand response can be used as a strategy to manage controllable loads
when this is beneficial to the user. Data-driven approaches to optimise
demand response strategies have been presented in the literature. The
machine learning techniques for demand response applications are
listed in Table 9. Similarly, for storage problems, RL is generally used
to handle the optimal demand response. Most studies have sought a
reduction strategy for energy costs. For instance, Q-learning has been
applied to determine the optimal hour-ahead consumption of several
appliances, such as time-shifting loads, non-controllable loads, and EVs,
considering future electricity prices and PV generation trends [114].
Moreover, as reported in [141], DQN has been used for dynamic control
of residential loads. A deterministic policy gradient has been employed
for the optimal load schedule [142], whereas in another study [143],
an Actor–critic approach was used. In contrast to previous model-free
algorithms, researchers [144] applied a model-based adjustment to the
traditional Q-learning algorithm, thereby improving the performance
over traditional model-free learning.

Pricing models have also been explored for the development of effi-
cient demand response programs. A study [146] aimed to approximate
the impact of time-of-use pricing on-demand response via the clustering
of smart meter usage data into various profiles, whilst considering the
uncertainty. With a similar objective, scholars [147] used stochastic
processes to incorporate uncertainty in the pricing demand response
to maximise the risk-sensitive revenue derived by the DSO. Another al-
gorithm [149] utilised the time-of-use tariffs to control the demand re-
sponse within a Markov decision process with binary action spaces. This
dynamic operation problem was thereafter solved via deep-duelling
Q-learning. For a real-time approach, researchers [150] utilised trust
region policy optimisation to address the dynamic scheduling problem
of batteries and demand response. The authors demonstrated the su-
periority of the algorithm compared to the traditional DQN and deep
deterministic policy gradient within a practical case study, wherein
various residential appliances were considered.

5.3. Power system protection, stability, quality and optimisation

Either when operating in islanded mode or when connected to the
grid, LECs may experience stability issues owing to weak interconnec-
tion points or insufficient capacity of distribution lines to handle the bi-
lateral power flows from renewable sources of energy generation [153].
Hence, the importance of fast location of faults and post-fault decision
making can be supported by intelligent computation programs on the
basis of machine learning, leveraging the ICT measurements as the
input. In the literature, different approaches to assist power system
protection, stability, quality, and optimisation for smart grids and
microgrids exist, and these approaches are of great interest for the
operation of LECs. This section broaches the literature on LEC system
adequacy and security applications, including cybersecurity concerns.
Fig. 5 illustrates the occurrence of a particular machine-learning tech-
nique in the reviewed literature used for power system protection,
stability, quality, and optimisation. The machine learning algorithms
for each application are summarised in Table 10.

5.3.1. Protection and fault monitoring
The secure operation of the energy service in the presence of a

fault is crucial for the security of the LEC [52]. Thus, identifying these
faults is an important task for LEC control systems, and historically, the
relevant research have focused on faster and more accurate methods to
identify fault events in the grid. This is achieved via historical and real-
time measurements as input data for the machine learning algorithms,
aiming to increase the likelihood of an appropriate response for the
grid’s protection control system.

Most studies approach the problem of fault event identification as
a supervised classification learning problem via training data-driven
algorithms and correlating features given by measurements of a pre-
specified type of fault. Researchers [154,159] have applied different
ensemble methods, such as random forest and boosting techniques,
to classify faults in a microgrid context. Furthermore, the multi-class
classification problem of fault detection in PV arrays has been analysed
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Table 9
Machine learning (ML) techniques for demand response.

Task ML Algorithm Level Year Source

Demand response

Actor critic Household 2018 [143]
RL model-based Microgrid 2016 [144]
Policy gradient 2021 [142]
DQN Household 2018 [141]
Anomaly detection algorithm 2021 [145]

Demand response pricing models Deep embedded clustering Household 2019 [146]
Stochastic processes Electric utility 2018 [147]

Demand response energy efficiency Q-learning Building 2019 [148]

Demand response control considering tariffs Duelling Q-learning Smart grid 2020 [149]

Demand response in real time Trust region policy optimisation Household 2020 [150]

Decentralised demand control Q-learning Household 2015, 2020 [114,151]
Q-learning Buildings 2020 [152]

Table 10
Machine learning (ML) techniques for power system protection, stability, quality and optimisation.

Topic Task ML Algorithm Level Year Source

Protection and fault
monitoring

Fault detection

Boosted decision trees Smart grid 2020 [154]
CNN Smart grid 2020 [155]
NNs energy grid 2020 [156]
NNs, SVM Microgrid 2020 [157]
Boosted decision trees Microgrid 2021 [158]
Random forest Microgrid 2020 [159]
SVM Smart grid 2019 [160]

Line fault detection and location NNs, SVM Microgrid 2019 [161]
Fault detection PV arrays Random forest Microgrid 2018 [162]
Fault detection generators SVM Microgrid 2020 [163]
Line fault detection NNs Microgrid 2017 [62]

Stability

Harmonic voltage estimation LSTM Unbalanced distribution grid 2020 [164]
Dynamic event detection NNs, decision trees, K-NN classifiers Microgrid 2018 [165]
Load shedding Duelling deep Q-learning Islanded microgrid 2021 [166]

Power quality

Power quality disturbances detection CNN Microgrid 2020 [167]
Power quality disturbances CNN Microgrid 2020 [167]
Volt-var control Actor–Critic Smart grid 2020 [168]

Optimal power flow

Simulate uncertain variables Markov processes Household 2020 [169]
Wind power integration uncertainty Bayesian inference Microgrid 2020 [170]
Simulate uncertain variables Bayesian inference – 2020 [171]
Simulate decentralised OPF problem Linear regression – 2020 [172]

Cyber security

Cyber attack identification

LSTM-LUBE Microgrid 2021 [173]
LUBE-MSOS Microgrid 2021 [174]
Markov decision process Smart grid 2018 [175]
Bayesian networks Smart grid 2019 [176]

Electricity theft identification RNN-GRU Distribution grid 2020 [177]
FDI attack detention Various Smart grid 2016 [178]

Fig. 5. Machine learning techniques in literature for power system protection, stability, quality, and optimisation.

using a random forest with a majority voting decision on the final
ensemble algorithm [162]. Similarly, faults in generators present in a
microgrid have been analysed using an SVM [163].

Nonlinear methods have shown the potential to deal with high-
complexity classification tasks by determining strong relationships
amongst the features extracted from the voltage and current signals.
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For instance, a general overview of the fault detection task in mi-
crogrids has been provided, whilst focusing on nonlinear classifiers,
and a comparative study of NNs and SVMs has been conducted [157].
Scholars [62] proposed a microgrid protection scheme that analyses
different classifiers, such as naive Bayes, SVMs, and NNs, highlighting
NNs performance over the rest of the classifiers. In a similar context,
a microgrid protection scheme has been proposed using line voltage
and currents to train the NN to detect faults and an SVM for fault loca-
tion [161]. In addition, a CNN has been suggested for classifying earth
faults and faulty feeders on the basis of signals obtained from smart
meters [155]; reportedly, the CNN can detect features in the input
dataset and provide accurate results using minimal signal processing
techniques.

Researchers [158] have proposed an in-depth analysis of fault cur-
rent tracing via the decomposition of current signals with wavelet
transforms to obtain three-phase line currents and zero-component
signals. This paper proposes the utilisation of these signals as the input
for optimised decision trees to classify fault types and faulty phases,
considering the short detection time and real-time application of the
proposed methodology. Moreover, scholars [156] approached fault
detection by analysing power signals and proposed applying anomaly
detection in the form of NNs classifiers.

5.3.2. Stability
During normal operation of the LEC, grid congestions may arise

due to sudden change in generation/consumption and weather events.
The ability of the network to maintain voltage magnitudes, voltage
angles, and inadequate frequency values is what is referred to as system
stability. Therefore, post-fault decision making is another contributing
factor in maintaining the grid stability in LECs. The identification
of various events has been explored for a microgrid with several
sources of energy generation [165]. The explored events include the
identification of starting generators, introduction to fault, post-fault
stability, operating point, fault clearance, and post-fault transient state.
The suggested multi-classifier methods are random forests featuring
bagging techniques, NN, and KNN. According to the authors, the further
addition of extracted features to the time-series data improved the
identification of all events.

Post-fault or preventive measures are required to maintain the grid
stability following event detection. In this regard, emergency load
shedding under different disturbance scenarios have been addressed
as a Markov decision problem, and duelling deep Q-learning has been
employed in an islanded microgrid [166].

5.3.3. Power quality
Power quality also refers to the voltage quality. Thus, this parameter

is used to analyse the presence of harmonics and the maintenance of
operational parameters within the recommended regulations. Power
quality issues can interrupt operation, damage equipment, and gen-
erate unpredictable behaviour in the controllers. The need for fast
methods to detect power-quality issues is increasing because of new
energy technologies involving power electronics [51]. Most of the
studies associated with LECs present signal analysis of voltage and/or
current measurements to classify disturbances in the grid as the main
applications of machine learning in this problem.

Accordingly, researchers [167] have proposed a CNN that was
trained to identify and classify power quality disturbances from a
voltage signal dataset consisting of harmonics, voltage swell, voltage
sags, and flicker. In another study, scholars [168] proposed an actor–
critic topology to manage the load injections of controllable devices
within a microgrid, aiming at decentralised voltage control. Moreover,
a method for harmonic state estimation has been reported in the litera-
ture [164], which was applied to smart meter data collected within an
unbalanced distribution grid. The authors used an LSTM to determine
power consumption and finally detected harmonic sources within the
grid with a sparse Bayesian learning estimator.

5.3.4. Optimal power flow
To ensure the secure operation of the power system, power flows

need to satisfy stability limits, such as voltage limits. The guaranteed
optimisation of these power flows ensures the steady-state operation
of the system whilst minimising a specific objective function. To this
end, the other machine learning applications, which were reported
in the literature, focus on the study of the efficient computation of
power flows, with data-driven methods serving as an alternative to
traditional numerical methods. For example, scholars [172] suggested
a mechanism to decentralise the solution of optimal power flows using
machine learning by solving several cases under different parameters
to build a dataset that allows regression of unsolved optimal points
pertaining to the power flow problem.

Similarly, several studies have proposed machine-learning tech-
niques to study probabilistic power flows. In a study [171], varia-
tional Bayesian inference was used to approximate probabilistic op-
timal power flows, thereby addressing wind generation and load un-
certainties. Furthermore, the result from a study [170] supports the
integration of wind power in a microgrid, considering an AC opti-
mal power flow formulation. This was achieved by incorporating the
uncertainty into the balancing equations. The resulting problem was
formulated as a stochastic optimisation problem and solved via multi-
objective Bayesian learning. In another study [169], the authors utilised
Markov processes to simulate uncertain components such as household
loads or weather patterns.

5.3.5. Cyber security
Recently, cybersecurity in the context of power systems has be-

come increasingly important owing to the rise of digitalisation and
associated risks, such as breaches by third parties. Regardless of the
smart infrastructure at both the on-grid and household levels, LECs
are not insulated from these risks [179]. In recent studies, data-driven
models relying on machine learning have proposed solutions to security
challenges on a more local level. Accordingly, the use of power flow
equations combined with time-series prediction models has been pro-
posed to identify manipulated meter readings at the distribution grid
level [177]. Furthermore, the authors compared traditional models,
such as ARIMA, with RNNs. In addition, scholars [173,174] used an
LSTM with lower and upper bound estimates (LSTM-LUBE) to detect
cyberattacks in microgrids. RL was used in a study [175] to detect cy-
berattacks in smart grids. The problem was formulated as a model-free
partially observable Markov decision problem.

Although the advantages of this method have been demonstrated,
the authors remark on the implementation of deep RL as an improve-
ment. Another approach was reported in a study [176], which used
dynamic Bayesian networks and a restricted Boltzmann machine to
detect unobservable cyberattacks. Furthermore, false data injection
detection (FDI) have been formulated as a supervised learning prob-
lem [178]. Various classifiers are compared including the KNN, NNs,
and SVM algorithms for different grid sizes. AdaBoost and multiple
kernel learning were also employed as decision and feature levels;
reportedly, these fusion algorithms are less sensitive in terms of grid
size.

5.4. Energy transactions

Concerning the transactional activities of energy systems, data-
driven algorithms have shown suitability for application in trading
programs and as tools to study, analyse, and optimise participant be-
haviour in local energy markets regardless of the market configuration
in the LEC. Emerging blockchain technologies enable trading plat-
forms for LEC participant transactions in peer-to-peer market configu-
rations [104]. The machine learning algorithms reported in the recent
literature for energy transaction applications are listed in Table 11.

RL is the architecture chosen for research to generate goal-oriented
trading strategies. For example, researchers [180,182] applied
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Table 11
Machine learning (ML) techniques for energy transactions.

Task ML Algorithm Level Year Source

Trading strategies

Q-learning Microgrid 2017 [180]
DQN LEM 2018 [181]
Q-learning Distribution grid 2019 [182]
DQN Microgrid 2019 [183]

Energy-supply game with economic
dispatch and demand response

Q-learning Smart grid 2017 [184]

Peer-to-peer transactions Fuzzy Q-learning Energy community 2019 [185]
Trading strategy, reduce plant schedule DQN Microgrid 2019 [186]
Trading strategies real time DQN Microgrid 2018 [187]
Blockchain platform RNN Smart grid 2021 [188]

Q-learning algorithms to develop efficient trading strategies in local
energy markets, aiming to facilitate trading amongst participants and
maximising utility for agents in the local energy market. Similarly,
scholars [181] sought to model participants’ trading behaviour by
implementing a DQN algorithm. Furthermore, explored a CNN-DQN
incremental RL algorithm has been explored by storing transition
samples from training, a so-called experience replay procedure, thereby
enabling high data efficiency by reusing the samples [182]. In a
study, [186] the authors implemented DRL for energy trading within a
microgrid, aiming to optimise the schedule of the virtual power plant,
considering the availability of wind power and batteries.

Peer-to-peer market structures are currently being developed using
blockchain technology. Blockchain applications for this type of mar-
ket have been reviewed in detail [104], whilst scholars [188] have
explored a blockchain-enabled peer-to-peer energy-trading platform
with the integration of machine learning. The development of trading
strategies in a peer-to-peer market has been explored in a study [183],
which focuses on the development of a trading model for the micro-
grid market using DQN to overcome the challenges of dealing with
uncertain variables, such as renewable generation and load demand,
thereby obtaining revenues considering seasonal changes. Furthermore,
fuzzy Q-learning has been used to address continuous space-state prob-
lems [185], considering a large number of scenarios in an energy
trading process.

Researchers [187] generated a bidding strategy to maximise rev-
enues in a microgrid featuring flexible and non-flexible consumption,
storage, and solar generation for a real-time trading horizon. The strat-
egy was developed using a DQN algorithm that considers a tractable
state-action set.

6. Conclusions

6.1. Summary of findings

In this study, a definition of local energy communities was de-
rived on the basis of European legislation and practical examples of
community-based energy projects. The proposed definition identified
the traits of locality, energy sustainability, community engagement,
information and communication technology, and transactions as the
key traits for such an energy community. Based on this, related lit-
erature reviews and recent publications on machine learning methods
were identified, specifically in the key areas of energy management
systems, asset forecasting, power quality, stability, security, and opti-
mal control of storage and demand response. Furthermore, the present
study presented an overview of the three main categories of machine
learning. Specifically, for reinforcement learning, supervised learning,
and unsupervised learning, the specific methods applied to each of the
identified application areas were detailed in this study. Accordingly, an
analysis of the state-of-the-art techniques of each application was at the
core of this study. Fig. 6 maps the literature on machine learning areas
and techniques presented in the subsequent sections to the previously
introduced components of LECs by classifying each source according to
the four dimensions of technique, category, application, and criterion.

This analysis revealed the bulk of the literature on machine learning
in local energy communities provided by recurrent neural networks
that were applied to forecasting problems. In addition, demand re-
sponse and storage control problems were solved via reinforcement
learning, specifically pure value function approximation techniques in
the form of Q-learning. Similarly, reinforcement learning was prevalent
in the transaction tasks.

In general, several nonlinear methods, ranging from tree-based to
deep learning-based methods, can be observed in recent publications,
independent of the application. In contrast, this review revealed a lack
of literature on probabilistic tasks and reinforcement learning methods
that considered policy function approximations with or without the
value function approximations. This finding will inform the future
research direction.

6.2. Proposal for future work

The goals and implementation of local energy communities appear
to revolve around the uncertainty created by the individualistic com-
munity participants and a high share of renewable energy. One result
is the increasing uncertainty. Whereas most of the machine learning
methods identified in this study do not consider such uncertainty as
a core aspect, such uncertainty is considered for the applications of
local energy communities. Consequently, a gap in the literature can be
observed, which treats uncertainty as a central aspect, especially from a
systems perspective in related control algorithms, energy management
systems, and forecasting methods.

Another consequence of an individualistic community participation
and the transition of the traditional market to a more decentralised
market is the need for a faster response from individual participants
and their assets. Large, centrally controlled systems might be too slow
to operate in real-time, and thus require resource-intensive and in-
depth scheduling and optimisation activities to optimally schedule and
dispatch whilst still maintaining the system between the operational
bounds. In contrast, a decentralised system can provide flexibility prox-
imate to real-time and offer a more granular resolution than discrete
decision frameworks such as Q-learning. This can be achieved using
the aforementioned policy of approximation methods.

The findings from the literature review suggest that nonlinear
methods outperform linear methods in terms of both solution time
and quality. This discovery suggests a trend towards neural-network-
based methods combined with modern, state-of-the-art hardware. Pre-
sumably, these nonlinear methods will gradually be introduced into
other traditional power-system applications. A nonlinear method that
is yet under-represented in local energy communities is the deep
Markov model, i.e., neural network-based formulations of traditional
hidden Markov models. Another example of such a method is the
traditional nonlinear auto-regression. Because most forecasting tasks
are conducted via recurrent neural networks or convolutional neural
networks, both these representative nonlinear methods require itera-
tive approaches and thus do not scale as effectively as non-iterative
autoregressive processes.

Finally, a fundamental component that is yet to be applied to local
energy communities is the analysis of interactions and social aspects
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Fig. 6. LEC criteria and corresponding machine learning techniques.

using nonlinear methods. In particular, game-theoretic models and
system analysis are not well-represented in the literature; however,
they appear to rely on traditional methods and provide opportunities to
build on the state-of-the-art methods of other applications, as presented
in this paper.
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Abstract—The emergence of local energy communities (LECs)
introduces new concepts and dynamics to the operations of
distribution grids. An important part of LECs is the shared
ownership or control of assets such as photovoltaic systems and
batteries. The aim of this article is to investigate how degradation
impacts the investment and operation of a community battery
which performs multiple services in a LEC. Two different
grid tariffs are investigated: energy-based and demand charges.
The case study set in Norway 2030 shows that the lifetime
of the battery is significantly shortened when not considering
degradation, highlighting the need to include cyclic degradation
in models that investigates the profitability in investment and
operational problems with batteries. In the case of a demand
charge grid tariff, the expected lifetime was shortened by 6 years.

Index Terms—Local energy community, Energy management
system, Battery degradation, Grid tariffs

I. INTRODUCTION

Local energy communities (LECs) are emerging as a way
for prosumers and consumers to be actively engaged in using
locally produced energy sources, while being connected to
the distribution network. The members of a LEC often have
shared ownership and control of assets such as community
photovoltaics (PV) and community batteries [1]. Studies such
as [1], [2] have shown that community-owned batteries are
better for relieving the grid through peak shaving or self-
consumption, compared to individually owned batteries.

Although there is no fuel cost related to batteries, there is
still a cost of using them as the lifetime is limited. However,
this is often ignored in literature, resulting in sub-optimal oper-
ation of batteries which in reality has high, non-counted costs.
When included, optimal operation of batteries participating in
day-head and reserve markets changes significantly [3]. The
need for proper degradation modeling when participating in
electricity markets with batteries has resulted in new methods
to consider the cycle ageing mechanisms of lithium-ion (Li-
ion) batteries, mostly based on factoring the cycle ageing
[4], [5]. This type of approach has been suggested in multi-
market optimisation [6], which are also relevant for LECs
as the battery is meant to provide multiple services, such

This work has been supported by the consortium of the research project
”FINE - Flexible Integration of Local Energy Communities into the Nor-
wegian Electricity Distribution System” (308833), funded by the Research
Council of Norway.

as arbitrage, self-consumption and reducing peak imports. A
shared community battery for reducing costs while providing
ancillary services was proposed in [7], but focuses more on
participation in balancing markets. Ref. [8] studies how to
maximise investment returns of a battery while considering a
cyclic degradation cost, but the battery is grid-connected and
not in a LEC. Ref. [9] presents a techno-economic optimisation
model to analyse the economic viability of a PV-battery system
for different residential customer groups. However, cyclic
degradation of the battery is not considered, only calendaric
degradation. Our hypothesis is that cyclic degradation of the
battery must be included in an investment and operational
problem because it will affect the investment decisions and
the expected lifetime of the battery.

The aim of this article is to investigate how battery degra-
dation impacts the investment and operation of a community
battery which performs multiple services in a LEC (reduce
peak import, arbitrage, peak shaving, self-consumption). The
main contributions of the work presented in this article are:

• Optimisation models for investment and operation of
shared PV and battery system in a LEC, including cyclic
degradation cost.

• Evaluation of how two different grid tariff schemes
impact battery operation and degradation.

• Evaluation of how the battery performs multiple services
for the LEC when degradation cost is included.

II. METHOD

This section describes the optimisation models developed.
The objective is to minimise both the investment costs of a
shared PV system and battery, as well as operational costs
related to electricity for the LEC, as illustrated in Fig. 1. It
is assumed that the LEC shares the investment costs and the
electricity costs.

A. Optimisation models

There are four cases as shown in Fig. 2, where each case
refers to an optimisation model. In the energy tariff (ET) cases,
the LEC has an energy-based grid tariff, where the LEC pays
a grid tariff only based on the energy imported. In the demand
charges (DC) cases, the LEC has a demand charge grid tariff
which is often used for commercial buildings in Norway. The



Fig. 1. Overview of LEC with shared PV and battery system

cost each month is decided from the monthly peak power, see
[10] for more details.

Fig. 2. Overview of cases

1) ET case: The ET case does not consider degradation.
The model is shown in (1a)-(1l), see the nomenclature for
an explanation of the variables and parameters. Eq. (1a) is
the objective of the model, which minimises investment and
operational costs. Eq. (1b) is the power balance, (1c) restrict
the installed PV power, while (1d) and (1e) restrict the import
from the grid. The power balance includes a curtailment
variable to ensure feasibility in cases where the excess PV
power exceeds the export limit. Eqs. (1f)-(1h) are state-of-
charge (SOC) constraints for the battery. Eqs. (1i)-(1j) restrict
the charge and discharge to be lower than available energy
in the battery, and it is assumed that the power rating of the
battery is equal to the battery capacity rating (C-rate of 1).

min CBCRFBeB + CPV CRFPV pPV

+
∑

t

[
(Cspot

t + Ctar,e)pimp
t − Cspot

t pexpt

]
(1a)

PD
t − pPV PPV

t + pexpt − pimp
t + pcht

− pdischt + pPV,c
t = 0 ∀t (1b)

pPV ≤ PPV,max (1c)

pimp
t ≤ P imp,max ∀t (1d)

pexpt ≤ P exp,max ∀t (1e)

soct = soct−1 + ηpcht − 1
η
pdischt ∀t > 0 (1f)

soct = socT + ηpcht − 1
η
pdischt ∀t = 0 (1g)

soct ≤ eB ∀t (1h)

pcht ≤ eB ∀t (1i)

pdischt ≤ eB ∀t (1j)

eB , pPV ≥ 0 (1k)

pimp
t , pexpt , pcht , pdischt , soct, p

PV,c
t ≥ 0 ∀t (1l)

2) ET deg. case: The ET deg. case considers degradation.
Here, the model from the ET case is modified by adding a
degradation cost to the objective function as shown in (2).

min CBCRFBeB + CPV CRFPV pPV

+
∑

t

[
(Cspot

t + Ctar,e)pimp
t − Cspot

t pexpt

]
+

∑

t

βdeg
t (2)

Constraints (3a)-(3g) for battery degradation and non-
negativity are added as described in [5], [11].

βdeg
t =

∑

j

Cdeg
j pdisch,segjt ∀t (3a)

pch,t =
∑

j

pch,segjt ∀t (3b)

pdischt =
∑

j

pdisch,segjt ∀t (3c)

socsegjt ≤ eB

J
∀j, t (3d)

socsegjt = socsegjt−1 + ηpch,segjt − 1
η
pdisch,segjt ∀j, t > 0 (3e)

socsegjt = socsegjT + ηpch,segjt − 1
η
pdisch,segjt ∀j, t = 0 (3f)

pch,segjt , pdisch,segjt , socsegjt ≥ 0 ∀j, t (3g)

3) DC case: In the DC case, degradation is not considered.
The model from the ET case is modified by adding a monthly
demand charge to the objective function as shown in (4a).
Also, constraints (4b)-(4c) are added.

min CBCRFBeB + CPV CRFPV pPV (4a)

+
∑

t

[
(Cspot

t + Ctar,e)pimp
t − Cspot

t pexpt

]
+

∑

m

pmax
m Ctar,d

m

pimp
t ≤ pmax

m ∀t (4b)
pmax
m ≥ 0 ∀m (4c)

4) DC deg. case: In the DC deg. case, degradation is
considered. The model is equal to the DC case, except the
objective function is replaced with (5).

min CBCRFBeB + CPV CRFPV pPV

+
∑

t

[
(Cspot

t + Ctar,e)pimp
t − Cspot

t pexpt

]

+
∑

t

βdeg
t +

∑

m

pmax
m Ctar,d

m (5)

B. Battery specifications and degradation
The battery system is assumed to be a Li-ion nickel man-

ganese cobalt (NMC) battery which follows the following
cycle depth stress function [5], [12]:

Φ(δ) = (5.24 · 10−4)δ2.03 (6)

where Φ is the cycle depth stress and δ is the cycle depth. The
degradation cost is then found from [5]:

Cdeg
j =

CB,rep

η
(∆Φ(δj)) (7)

where CB,rep is the replacement cost of the battery in
NOK/kWh and ∆Φ(δj) is the size of the cycle depth of
segment j in %.



C. Annualised investment costs
Since the cases are run for one year, the investment costs for

the battery system is annualised by a capital recovery factor:

CRFB =
i(1 + i)n

B

(1 + i)nB − 1
(8)

where nB is the lifetime of the battery in years, and i is
the interest rate. The investment cost for the PV system is
annualised in the same manner.

III. CASE STUDY

The case study is set to Norway in 2030. Demand and PV
production data are based on hourly data from 2015 while
the spot price level and installation costs for PV and battery
are based on cost projections for 2030. Total demand for the
ten households in the LEC is shown in Fig. 3, based on the
normalised household data described in [13] multiplied with a
peak load of 6 kWh/h. It is assumed that there is a restriction
on the distribution grid where the LEC is connected, leading
to an import limit of 35 kWh/h as indicated in the figure.
Without the battery, this limit would be violated in ten hours
of the year.
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Fig. 3. Total demand of households in LEC and normalized PV production.
Dashed line shows import limit of 35 kWh/h.

TABLE I
INPUT (SAME FOR ALL CASES)

Parameter Value Unit

P imp,max, P exp,max 35 kWh/h
η 0.95 -
i 0.051 %
CB 2000 [14]a NOK/kWh
CPV 8000 [15]b NOK/kWp
CB,rep CRFBCB NOK/kWh
nPV 30 years
nB 10 years

a IRENA projections for Li-ion NMC batteries in 2030 are approx.
200 USD/kWh, which corresponds to 1975 NOK/kWh
b IRENA projections for PV system costs in 2030 are in the range of
340-834 USD/kW, which corresponds to 3358-8200 NOK/kW

Tab. I summarises the input which is the same for all
cases. The PV panels have the specifications from [16], and
an assumed efficiency of 0.95. The power output from the
PV system is calculated from irradiance and temperature data

for Maere, Norway, as explained in more detail in [13]. The
replacement cost for the battery, used to find the degradation
cost in (7), is assumed to be the annualised investment cost of
the battery since the analysis is carried out over one year. Fig.
4 illustrates the idea behind this assumption. For this case
study, the battery degradation cycle depth stress function is
linearised by four segments.

Fig. 4. Replacement cost as degradation cost

It is assumed that the spot prices in 2030 will be higher
than the prices for 2015. The average spot price in 2015 was
0.19 NOK/kWh, while the future scenarios for spot prices in
Norway are assumed to have an average of 0.52 NOK/kWh
[17]. Therefore, the spot prices for NO3 prize zone in Norway
for 2015 were multiplied with 2.75. The resulting electricity
spot price used in the case studies, including VAT (25 %), is
shown in Fig. 5.
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Fig. 5. Projected spot price for 2030 including VAT (25 %)

The grid tariffs are based on tariffs from the Norwegian
DSO Tensio TN [18]: The ET case has an energy tariff, Ctar,e,
of 0.4126 NOK/kWh and no demand charge. The DC case has
an energy tariff, Ctar,e, of 0.2564 NOK/kWh and a demand
charge, Ctar,D, of 89 NOK/kW-peak in winter months (Nov.-
Feb.) and 13 NOK/kW-peak in summer months (May-Oct.).
These numbers include consumption tax and VAT (25%).

IV. RESULTS AND DISCUSSION

This section shows the results for the four cases when run
for one year with hourly time-resolution.

A. Battery operation and degradation

Fig. 6 shows the battery operation in January for ET deg.
and DC deg. cases. Due to the demand charges grid tariff,
the battery peak shaves demand above 31.4 kWh/h, indicated
by the dashed line. The plots for SOC and degradation cost
indicate that the battery finds profitability in peak shaving
in the DC deg. case, even though this amounts to a higher
degradation cost.
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Fig. 6. ET deg. and DC deg. cases in January

Fig. 7 shows the battery operation in October for cases DC
and DC deg. The battery peak shaves demand above 22.7
kWh/h, indicated by the dashed line. In the DC case, the
battery is doing arbitrage on the spot price in almost all hours
where there is a variation in the price. In the DC deg. case,
the battery is more restrictive to when it responds to price
variations, because it does not find it profitable to do arbitrage
on small price variations when it leads to a high degradation
cost.
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Fig. 7. DC and DC deg. case for October

Fig. 8 shows the battery operation for ET and ET deg. cases

for one week in June. In the ET deg. case, the battery does not
prioritise to charge all of the excess PV power and therefore
exports some energy during the first day. When looking closely
at the hours of export, we see that the battery balances some
of the PV production but not all. This is due to the non-
linear degradation cost of using the battery. Essentially, the
battery ”fuel cost” is low enough for balancing using shallow
cycles, but only using the cheapest segments of the battery.
This preservation of battery lifetime is not captured in the ET
case, which is an important feature of the degradation model.
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Fig. 8. ET and ET deg. cases for 8.-14. June

Fig. 9 shows the battery operation in December for ET and
ET deg. case. The battery peak shaves the demand to meet the
import limit of 35 kWh/h. It can also be seen that the battery
operation of ET and ET deg. agree when there is very little
spot price variation from hour 8100-8190.

Fig. 10 shows the accumulated degradation costs for all
cases. As expected, the degradation cost is increasing much
faster when degradation is not considered. Cases ET and DC
show a clear distinction between the two grid tariffs. After
approx. hour 500, the utilisation of the battery in the DC case
is higher compared to the ET case. This is caused by the
difference in grid tariffs along with the fact that the ET case
has PV production. After approx. hour 3400, the degradation
cost for the ET case is increasing faster than for the DC case,
due to self-consumption of PV power and the fact that demand
charges are lower in the summer months. At approx. 5800
hours the two cases are almost at the same level, until the DC
case again increases faster due to higher demand charges in
the winter months, in addition to almost no excess power from
the PV system in the ET case. When looking at the cases ET
deg. and DC deg. (dashed lines), they follow the same trend
as the cases without degradation, except for one thing: they
actually cross at hour 5300. This is because the ET deg. case is
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Fig. 9. ET and ET deg. cases for December

maximising self-consumption of PV power and doing arbitrage
while the spot price is around 1.0 and 1.5 NOK/kWh (see Fig.
5).
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Fig. 10. Accumulated degradation costs for each case, with and without
degradation

B. Yearly summary

Tab. II shows the results for all cases. The battery size is
approx. equal, 6.8 and 7.0 kWh, and for this case study the
main reason for installing a battery is to meet the restriction
on grid import. The model did not find it profitable to invest
in a PV system for the cases DC and DC deg. This difference
in PV investment reflects on the results for grid exchange,
where there is approx. 14,000 kWh more import from the
grid in the DC case compared to ET case. A significant
reason for the lack of PV investments under demand charges,
is that self-consumption saves less in terms of grid tariffs,
as the energy term is much lower. Although the number of
cycles are relatively similar between cases ET deg. and DC
deg., the reasons are different. Under demand charges, it is
profitable to avoid peak loads to save on the costly peak

import hours, whereas energy-based tariffs has little incentive
for peak shaving, but rather benefits from self-consumption
of PV production. Essentially, the grid tariff structure impacts
heavily which services the battery finds profitable.

The number of full cycles in the ET case is 1.9 times higher
than the ET deg. case. Subsequently, if we assume that the
battery lifetime is 2,000 cycles at full discharge cycles, the
lifetime of the battery is almost halved. The other cases show
the same result, with slightly different numbers. In any case, it
is an understatement to say that the degradation heavily affects
the lifetime of the battery.

TABLE II
COMPARING CASES

Cost ET ET deg. DC DC deg.

eB 6.8 6.8 7.0 7.0
pPV 25.4 24.9 0 0∑

pimp 131,853 131,994 145,986 145,869∑
pexp 402 358 0 0

max. pimp 35 35 35 35
max. pexp 10.0 8.0 0 0∑

pch 2,152 1,124 2,348 1,152∑
pdisch 1,942 1,014 2,119 1,040

no. of cyclesa 317 165 334 164
lifetime [y]b 6.3 12.1 6.0 12.2

ano. of cycles is here calculated in a simplified manner, by
∑

pdisch

eB
blifetime is here calculated from the cycle lifetime of the battery, which
is 2000 cycles at full discharge [5]

V. CONCLUSION

The aim of this article was to investigate how battery degra-
dation impacts the investment and operation of a community
battery which performs multiple services. Optimisation models
have been developed for energy-based and demand charge grid
tariffs, with and without considering battery degradation.

When including degradation cost, the battery assesses
whether or not the revenues from the service outweighs the
degradation cost of the battery cycle. Under demand charges,
the battery finds it profitable to do peak shaving. In the energy-
based tariff cases, the battery gains value mainly through self-
consumption and spot price arbitrage when the price is high,
despite the degradation costs.

The lifetime of the battery is significantly shortened when
not considering degradation, highlighting the need to include
cyclic degradation in models that investigate the profitability in
investment and operational problems with batteries. For both
grid tariffs, the expected lifetime was shortened by approx. 6
years when not considering degradation.

Future work includes further development of the degrada-
tion model, case studies on LECs with different types of load
profiles, and investigation of how the battery operation affects
the distribution grid voltage.
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NOMENCLATURE

Parameters

δ Cycle depth [%]
∆Φ(δj) Size of cycle depth of segment j [%]
η Battery efficiency
CB Investment cost of battery [NOK/kWh]
CB,rep Replacement cost of battery [NOK/kWh]
Cdeg

j Degradation cost for segment j
CPV Investment cost of PV [NOK/kWp]
Cspot

t Electricity spot price in hour t [NOK/kWh]
Ctar,d

m Demand charge grid tariff for month m [NOK/kW]
Ctar,e Energy based grid tariff [NOK/kWh]
CRFB Capacity recovery factor battery
CRFPV Capacity recovery factor battery
i Interest rate
nB Lifetime of battery [y]
nPV Lifetime of PV system [y]
PD
t Demand households in hour t [kWh/h]

P exp,max Grid export limit [kWh/h]
P imp,max Grid import limit [kWh/h]
PPV,max Maximum PV size [kWp]
PPV
t PV production in hour t [kWh/kWp]

Indices
J Number of segments
j degradation segment
m month
T Last hour of year [t]
t hour
y year
Variables
βdeg
t Battery degradation cost in hour t [NOK]

eB Energy capacity of battery [kWh]
pch,segjt Battery charging for segment j in hour t [kWh/h]
pcht Battery charging in hour t [kWh/h]
pdich,segjt Battery discharging for segment j in hour t [kWh/h]
pdischt Battery discharging in hour t [kWh/h]
pexpt Export to grid in hour t [kWh/h]
pimp
t Import from grid in hour t [kWh/h]

pmax
m Maximum import from grid in month m [kWh/h]

pPV,c
t Curtailed energy in hour t [kWh/h]

pPV Size of PV system [kWp]
socsegjt Battery state of charge for segment j in hour t [kWh]
soct Battery state of charge in hour t [kWh]

APPENDIX

A. Yearly plots

Fig. 11 shows the results from ET case.
Fig. 12 shows the results from ET deg. case.
Fig. 13 shows the results from DC case.
Fig. 14 shows the results from DC deg. case.

B. Costs

Fig. 15 shows the yearly degradation cost for all cases.
Tab. III shows the resulting costs for all cases.



Fig. 11. ET case

Fig. 12. ET deg. case

Fig. 13. DC case

Fig. 14. DC deg. case
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Fig. 15. Comparing degradation cost for cases

TABLE III
COMPARING CASES - COSTS [NOK]

Cost ET ET deg. DC DC deg.

Ann. cost battery 1,769 1,769 1,829 1,829
Ann. cost PV 13,346 13,083 0 0
Energy cost 129,281 129,551 119,150 119,198
Demand cost 0 0 17,654 17,654
Degr. costa 278 114 302 109
Objective function 163,151 163,321 159,063 159,239

a The degradation cost is reported for all cases, but is only included
in the objective function for cases ET deg. and DC deg.
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Optimal control of domestic hot water tanks in a
housing cooperative - benefits for the grid

Kjersti Berg, Vemund H. Lenes, Karen B. Lindberg
Dept. of Electric Energy, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract—Energy communities (ECs) are emerging, and there
is a need to understand how they will impact the distribution grid.
One example of ECs in Norway today are housing cooperations
with common assets such as thermal energy storage. This paper
aims to quantify the benefit electric domestic hot water (DHW)
tanks can give to a housing cooperative and the distribution grid.
A real housing cooperative in Norway with six apartment blocks,
roof-top PV and a common electric vehicle garage is investigated
in three cases: a base case with no optimisation of the DHW
tanks; individual optimisation of DHW tanks in each apartment
block; and central optimisation of all DHW tanks in the housing
cooperative as an EC with aggregated net metering. Compared to
the base case, individual optimisation leads to a 4.4% reduction in
peak demand, while central optimising leads to a 10.6% reduction
in peak demand. With central optimisation, the electricity costs
are reduced by 2.6%, mainly due to a reduction in the demand
charge electricity grid tariff. If the demand charges are omitted
from the objective function, central optimisation yields a higher
peak demand compared to individual optimisation.

Index Terms—housing cooperative, hot water tank, aggregated
net metering, grid impact, energy community

I. INTRODUCTION

Energy communities (ECs) are emerging as a way to in-
crease local energy production by common investments in and
ownership of assets such as energy storage. As the distribution
grid is facing an increase in load and distributed production
in the years to come, it is important to utilise flexibility and
reduce peak demand wherever possible. ECs with common
assets can be a way to achieve this.

Since ECs should be controlled by its members, housing
cooperatives might be the closest to ECs that exists in Norway
today. Housing cooperatives are legal entities of one or several
apartment blocks that often share costs for investments and
maintenance of properties, and they might have common assets
such as electric vehicle (EV) chargers and thermal energy
storage for tap water and/or space heating. However, hous-
ing cooperatives with several apartment blocks are metered
separately, and they therefore do not have an incentive today
to reduce the aggregated peak load.

Studies have shown that domestic roof-top PV, electric
domestic hot water (DHW) tanks and heat pumps (HPs) can

This work was supported by the Research Council of Norway and the
partners of the FINE project (project no. 308833). This paper has been written
using data from the H2020 GreenCharge project (greencharge2020.eu). The
authors of this paper, on behalf of the GreenCharge consortium, acknowledge
the European Union and the Horizon 2020 Research and Innovation Frame-
work Programme for funding the project (grant agreement no. 769016).

be used to reduce electricity costs and CO2 emissions in
dwellings [1]–[5]. Furthermore, community-owned storage re-
duces costs compared to individual storage, due to economies
of scale and aggregation [6], and it has been shown that
thermal energy storage can be used in ECs for peak shaving
[6]. These assets can also reduce peak load demand from
the grid [7], [8]. Ref. [9] optimised PV-coupled HPs, with
and without electricity and heat storage, and found that both
electricity and heat storage have benefits for the grid as long
as there is a capacity-based grid tariff.

The aim of this paper is to quantify the benefit that electric
DHW tanks can give to a housing cooperative and the distri-
bution grid by optimising the operation of the DHW tanks.
We also investigate how aggregated net metering will impact
the costs for the housing cooperative and the grid exchange.
The main contributions are:

• linear optimisation model for a housing cooperative, with
PV and EV charging, including a thermal energy storage
heated by HPs and electric heating element

• quantification of reduced costs and grid exchange when
operating DHW tanks optimally

• quantification of the differences in electricity costs and
grid exchange when optimizing each apartment block in
the EC individually or centrally

II. METHOD AND CASE STUDY

Fig. 1 shows the concept of the paper. The case study is
Røverkollen housing cooperative in Norway, which is located
north-east of Oslo. It consists of six apartment blocks, each
with common DHW tanks used for tap water which can be
heated by air-source HPs and electric heating elements. The
apartments are heated with electric space heating [8]. There
is also a common garage with electric vehicle (EV) charging
and photovoltaic (PV) production. There is no rooftop PV on
the apartment blocks today, but this has been included in this
case study. Three cases are compared:

1) Case B: Base case where there is no optimisation of
the DHW tanks, and it is assumed that the electricity
demand for DHW is imported from the grid directly
(no storage). All apartments have electricity demand for
lighting, appliances and electric space heating1, and a
synthetic PV production profile is included. The garage
net demand is added when calculating the grid exchange
at the point of common coupling (PCC).

1This is further referred to as el. demand979-8-3503-9678-2/23/$31.00 ©2023 IEEE ©



Fig. 1. Paper concept. Orange squares show the individual optimisation for each apartment block in Case I. Blue square shows the optimisation for the whole
EC, including the garage with EVs, in Case C. Apartment buildings 1 and 2 are combined due to GDPR.

2) Case I: Individual optimisation of the DHW tanks in each
apartment block. The garage net demand is added after
the optimisation when calculating the grid exchange at
the PCC.

3) Case C: Central optimisation of all DHW tanks for the
whole EC, including the garage net demand.

Due to GDPR, the measured data for apartment blocks 1 and
2 are aggregated.

A. Optimisation model

The optimisation model is shown in (1a)-(1m) and the
variables and parameters are given in Tabs. I, II and III.

min
∑

m

Cdc
m γpdcm +

∑

t

[
(Cspot

t + Cet (1a)

+ Cfee)γpimp
t − (Cspot

t + CRem)pexpt )
]

pimp
t − pexpt = P d

t − P pv
t + phpt + pht ∀t (1b)

pimp
t ≤ pdcm ∀t (1c)

phpt =
qhpt

COPt
∀t (1d)

pht = qht ∀t (1e)

phpt ≤ NhpPhp ∀t (1f)

pht ≤ Ph ∀t (1g)

qlosst = U ·A ·Nwt(
et

V · cp
+ T 0 − T amb

t ) ∀t (1h)

et = E t = 0 (1i)

et = et−1 + qhpt + qht −Qd
t − qlosst ∀t > 0 (1j)

E ≤ et ≤ E ∀t (1k)

pimp
t , pexpt , phpt , pht , q

hp, qh, qloss, et ≥ 0 ∀t (1l)

pdcm ≥ 0 ∀m (1m)

The objective is to minimise total costs for electricity, consist-
ing of demand charge grid tariff2, energy grid tariff, electricity
fee, spot price, and remuneration for loss reduction. In Case
B/I, the input for demand, production, and characteristics of

2The demand charge grid tariff is calculated from the monthly peak demand
(hourly) and is further referred to as only demand charges.

the DHW tanks are given for one apartment block. In Case C,
the input is the aggregated demand, production, and sum of
all DHW tanks for the EC. (1b) is the power balance for the
connection point, which is the apartment block in Case B/I,
and the PCC in Case C. The equation includes the imported
and exported power, the el. demand in the apartment blocks
(and garage in Case C), PV production of the apartment blocks
(and garage in Case C), the HP power, and the heating element
power. (1c) keeps track of the highest monthly electricity
consumption, which is used to calculate the demand charges.
(1d)-(1g) are the constraints of the HP and heating element
which heat the DHW tank. (1h)-(1k) determine the loss and
state-of-energy of the tank. The DHW tank is modelled as a
one-mass model and therefore assumes a uniform temperature
in the tank.

TABLE I
VARIABLES

Variable Explanation

pdcm Peak el. import in month m [kWh/h]
pimp
t Imported power in hour t [kWh/h]

pexpt Exported power in hour t [kWh/h]
phpt HP el. consumption in hour t [kWh/h]
qhpt HP thermal output in hour t [kWh/h]
pht Heating element el. consumption in hour t [kWh/h]
qht Heating element thermal output in hour t [kWh/h]
qlosst DHW tank thermal loss in hour t [kWh]
et Energy in tank in hour t [kWh]
t, m hour, month

The DHW demand in kWh/h is found from Qd = Qv ·
cp · (T out − T 0), where Qv is the DHW demand in L/h. The
coefficient of performance (COP) of the HP is calculated as
COPt = Qdel/Php, where Qdel is delivered heat at given
temperature differences and Php is rated power. The HP has a
heat capacity of 6 kW and 2 kW when the outdoor temperature
is 22°C and 0°C, respectively3:

COPt =





1.1, Tt < 0◦C
1.1 + 0.1(T − Tt), 0◦C < Tt < 22◦C
3.3, Tt > 22◦C

(2)

3The COP is assumed linear between the operating points and constant
outside.



TABLE II
PARAMETERS

Parameter Explanation Value

γ Value-added tax (VAT) 1.25
Cdc

m Demand charge in month m
excl. VAT

7.2 C/kW in Oct-Mar and
3.2 C/kW in Apr-Sep [10]

Cet Energy tariff excl. VAT 0.005 C/kWh [10]
Cfee Electricity fee 0.01584 C/kWh [10]
CRem Remuneration from DSO for

loss reduction
0.005 C/kWh [10]

U Thermal transmittance 0.00091 W/(m2·K)
A Surface area of DHW tank 5.72 m2

V Volume of DHW tank 400 L
cp Specific heat capacity water 1.16 · 10−3 kWh/(L·K)
COPt Coefficient of performance of

HP
Php HP max. power 1.818 kW
T 0, T out Temperature of water into tank

(reference) and out of tank
9 °C, 40 °C

Tamb Ambient temperature 20 °C
T , T Min. and max. temperature in

tank
60 °C, 80 °C

E Max. energy in tank kWh
E Min. energy in tank kWh
Cspot

t Electricity spot price time series [C/kWh]
P d
t Electricity demand time series [kWh/h]

P pv
t PV generation time series [kWh/h]

Qd
t , Qv

t DHW demand in energy and
volume

energy [kWh/h] and vol-
ume [L/h] time series

Tt Temperature time series [°C]

B. Input data

All input data is given in hourly resolution for the year
2021. Tab. III shows the characteristics for the cases. As the
table shows, the number of HPs and DHW tanks, and max.
of the heating element are summed in Case C. The max. PV
production, el. demand and DHW demand in Case C is a
lower value than the sum of all buildings in Cases B/I since
the peaks do not occur in the same hour. Fig. 2 shows the
apartment load and garage net load in week 1. It should be
noted that el. consumption for common areas in the apartment
buildings is excluded in this study due to lack of data. Fig. 3
shows the DHW demand in week 1.

Fig. 2. Load for individual apartments within each apartment block (A1 to
A6) and net load for garage, week 1

Synthetic PV profiles for the apartment blocks are created
from PVsyst based on the available roof area, a 10° tilt,
orientation (east/west), and shading4. Fig. 4 shows the yearly
input data for the EC. We can see that the apartment el.

4Installed PV capacity is assumed to be 34.2 kWp for A2, A4 and A6, and
50.24 kWp for A1, A3 and A5.

Fig. 3. DHW consumption for individual apartments within each apartment
block (A1 to A6), week 1

demand has the major part of the total electricity demand,
whereas the DHW demand is quite even throughout the year.
Also, there is very little PV production in winter. When
adding all demand together, the peak demand is 788 kWh/h
and occurs in hour 162 (week 1), when the DHW demand
constitutes 88 kWh/h. The electricity spot price used is from

Fig. 4. Yearly apartment load, PV production, DHW demand for the entire
EC and garage import/export

NO1 2019, increased to an average level of 0.058 EUR/kWh
to represent the future expected spot price [11]. The energy
tariff, electricity fee, loss remuneration, and demand charges
are given in Tab. II. Synthetic, stochastic consumption profiles
of DHW were created based on an extension of the model
in [12], [13]. DHW consumption profiles are created based
on Markov chains, flow rate data, number of apartments and
number of residents5. The number of residents is estimated
based on [14], which reports that 52% live alone and 22% live
with children. Due to the size of the apartments, the following
assumption is made: 50% apartments for a single person, 30%
two people and 20% three people.

III. RESULTS AND DISCUSSION

This section presents the DHW tank operation, yearly costs
and grid exchange for all cases. We also show how the results
change if there is no PV on the apartment blocks or if the EC
does not pay demand charges.

A. DHW tank operation

The main decision variables in the optimisation model are
the electricity consumption of the HP and the heating element.
Fig. 5 shows the operation of the DHW tank for the EC for
Case C in week 1. This week is chosen since it has the highest
peak demand. In the upper figure, we observe that the DHW
demand (blue line) is mainly covered by the HP (orange bars),

5Parameters for creating profiles are: Shower: 10 L/min, 4 min. duration.
Bath: 16 L/min, 6 min. duration. Misc.: 4 L/min, 2 min. duration.



TABLE III
INPUT CHARACTERISTICS FOR EACH APARTMENT BLOCK AND GARAGE

Case Building # HPs, Nhp # DHW
tanks, Nwt*

Max. heating ele-
ment [kW], Ph

Max. PV produc-
tion [kWh/h], P pv

#
residents

Max. el. import
[kWh/h], P d

Max. DHW de-
mand [kWh/h], Qd

B/I

1+2 3+1 6+3 28+14 39+26 52+18 173 60
3 2 4 28 40 40 104 35
4 3 6 28 26 54 156 43
5 3 6 28 40 52 122 47
6 2 4 28 25 30 69 29
garage - - - 47 - 156 -

C all 14 29 154 229 246 701 174
*In Case B, there are no DHW tanks.

while the heating element (green bars) is used in hours of high
demand. The lower graph shows the temperature and energy
state of the DHW tank, where we can see that the temperature
in the tank reaches the max. temperature on several days of
the week.

Fig. 5. DHW tank operation in Case C, week 1

Fig. 6 shows the import to the EC at the PCC split in the
different el. consumption for Case C in week 1. The apartment
el. demand (green) has the largest share of the load by far, and
the EV charging in the garage (purple) also contributes to the
peaks. The el. consumption of the HP (yellow) and the heating
element (blue) correspond to Fig. 5.

Fig. 6. Grid exchange for EC in Case C, week 1

The total imported power to the EC for the three cases can
be seen in Fig. 7. Peak import is highest in Case B (785.6
kWh/h). In Case I, the DHW tanks are optimised individually
for each apartment block, leading to a peak import of 751.1
kWh/h for the EC (reduction of 4.4% compared to Case B). In

Case C, the peak import is lowered to 702.7 kWh/h, when the
EC optimises all el. consumption and DHW tanks together,
including the EV charging in the garage. Compared to Case
B, this amounts to a reduction in peak import of 10.6%.

Fig. 7. Grid import to EC (at PCC) for all cases, week 1

B. Yearly grid exchange and costs for all cases

The yearly results are given in Tab. IV. The max. import
occurs in week 1 as previously shown in Fig. 7. The sum of
imported power to the EC is highest in Case I, followed by
Case C, and then Case B. The max. exported power from the
EC is 72.1 kWh/h for Cases I and C, and 83.1 for Case B.
Compared to Case B, the electricity costs are reduced by 1.5%
in Case I and 2.6% in Case C. Hence, if the EC could have
aggregated net metering at the PCC and activated smart DHW
controls, it could reduce its annual electricity costs by 2.6%
and the peak demand by 10.6%.

TABLE IV
YEARLY RESULTS - COMPARING CASES

max [kWh/h] sum [kWh]
case imp exp imp exp tot cost [C]

B 785.6 83.1 2,448,526 6,769 301,279
I 751.1 72.1 2,464,108 4,737 296,887
C 702.7 72.1 2,463,158 4,275 293,300

Tab. V shows a breakdown of the costs for all cases. elCost
denotes all electricity costs excluding demand charges, demCh
denotes the demand charges and elRev denotes the revenue
from exported electricity. The cost reduction observed in Tab.
IV is mainly due to reduced demand charges. Electricity
revenue is also reduced, as more PV production is consumed



within the EC. The electricity cost follows the same trend as
the sum of imported power, hence being the highest in Case
I, followed by Case B and then Case C.

TABLE V
YEARLY RESULTS - BREAKDOWN OF TOTAL COSTS AND RATES

case elCost
[C]

demCh
[C]

elRev
[C]

SCR
[%]

SSR
[%]

B 255,110 47,951 1,783 96.7 7.5
I 256,458 42,087 1,658 97.7 7.5
C 254,924 38,624 248 97.9 7.6

The self-sufficiency rate (SSR) and the self-consumption
rate (SCR)6 for the EC are also reported in Tab. V. In general,
the SCR is high (above 96%), while the SSR is quite low (7%),
due to the low share of PV.

C. PV and demand charges impact on results

Tab. VI shows the results if there is no PV on the apartment
blocks, and if the demand charges are removed from the
objective. Comparing the original results with no PV shows
that the PV has no impact on the max. import. Furthermore,
the costs are higher since the EC naturally needs to import
more electricity from the grid. When demand charges are
omitted from the objective, the total costs decrease in all cases,
as expected. Also, the max. import increases in Cases I and
C, to 830.2 and 841.4 kWh/h, respectively. Hence, demand
charges are an important part of incentivising peak demand
reduction. This case study shows that if they are omitted,
central optimisation and aggregated net demand would lead
to higher peak demand.

TABLE VI
SENSITIVITY ANALYSIS ON YEARLY COSTS AND GRID EXCHANGE

case max. imp [kWh/h] max. exp [kWh/h] cost [C]

original
B 785.6 83.1 301,279
I 751.1 72.1 296,887
C 702.7 72.1 293,300

no PV B 785.6 0 318,940
I 751.1 0 314,547
C 702.7 0 312,953

no demCh B 785.6 83.1 254,616
I 830.2 72.1 253,327
C 841.4 72.1 254,737

IV. CONCLUSION

The aim of this paper was to quantify the benefit that DHW
tanks can give to a housing cooperative and the distribution
grid by optimising the operation of the DHW tanks. The results
showed that central optimisation could give a 10.6% reduction
in peak demand, as well as a 2.6% cost reduction for the
EC, compared to the base case with no storage. Removing
PV had no impact on peak demand, while removing demand
charges from the objective led to an increase in peak demand
when optimising the DHW tanks. The exported power from
the EC was relatively low in all cases, compared to the

6The import and export of the garage are considered as load and production
since we do not have data on PV production and load separately.

imported power. Therefore, it might seem that roof-top PV on
apartment blocks is unlikely to create overvoltage problems
in the grid, since the local production is low compared to the
demand. It should be noted that in this paper, only DHW tanks
are considered as flexible assets. In reality, it would also be
possible to control EV charging and space heating, and thereby
reduce the peak load further and/or increase the SSR and SCR
for the EC. Possible future work includes modeling the DHW
tank with temperature stratification.
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A B S T R A C T

Energy communities are emerging across Europe, and each country is currently in the process of forming
regulations for their integration into the electricity grid. The efficacy of energy communities depends upon
various factors, including member demographics, technological aspects, load profiles, solar irradiation, and
spot prices within the community’s geographical location. Notably, existing studies on energy communities
predominantly focus on residential load profiles, with limited exploration into their impact on the distribution
grid. This article aims to contribute to the existing literature by investigating the benefits of energy commu-
nities and their grid impact under diverse member configurations. Our approach involves the development
of an optimisation model incorporating battery energy storage and shiftable loads, aimed at minimising
the operational costs of energy communities over a one-year period. Case studies in Norway and Spain,
with different load configurations: residential, commercial, and mixed load, are undertaken, utilising real
hourly measurements to identify operational variations influenced by geographical location and seasonal
fluctuations in load and photovoltaic (PV) generation. Additionally, we quantify the costs, CO2 emissions,
and self-consumption rates for energy communities. Furthermore, we assess the distribution grid impact in
terms of import and export dynamics. The results underscore the substantial influence of load configurations
on member benefits and distribution grid impacts, attributable to the inherent correlation between load and PV
generation. In the context of energy community benefits, commercial loads demonstrate the best outcomes in
Norway, whereas residential loads exhibit superior results in Spain. Conversely, concerning distribution grid
impact, commercial loads prove most advantageous in Norway, while mixed loads yield the best results in
Spain. Overall, our findings indicate that Spanish energy communities consistently achieve more substantial
reductions in costs and CO2 emissions compared to their Norwegian counterparts, irrespective of the load
configuration. This study contributes valuable insights for policymakers, researchers, and industry stakeholders
involved in the development and regulation of energy communities across Europe.

1. Introduction

Energy communities are the subject of increased attention in Europe
since the release of the two directives allowing regulatory adjustments
for the formation of ‘Renewable Energy Communities’ [1] and ‘Citi-
zen Energy Communities’ [2]. Energy communities can vary in size,
members, available technologies and extent [3,4]. They may also have
different objectives, i.e. maximise self-consumption, reduce total costs,
or reduce CO2 emissions related to electricity consumption [4].

The distribution grid is under stress in the following years, due to
increased electrification and distributed energy resources, which can
lead to voltage problems and congestion. As energy communities are

∗ Corresponding author.
E-mail address: kjersti.berg@ntnu.no (K. Berg).

still a new concept, there is a need to understand their behaviour
and their impact in the distribution grid. Most studies on energy
communities have until now focused merely on the energy community
benefits, such as costs, emission reduction and self-consumption. Very
few have investigated how the energy communities impact the distri-
bution grid [4]. One exception is [5], which showed that shared assets
such as community batteries can introduce voltage problems when their
dispatch is decided by optimisation models, due to spot price arbitrage.

The directives state that energy communities can consist of individu-
als and small- and medium-sized enterprises, as long as the community
gives benefit to the members and/or the local area. Despite this, the
majority of energy community studies use residential load profiles.

https://doi.org/10.1016/j.apenergy.2024.123060
Received 30 January 2024; Received in revised form 4 March 2024; Accepted 16 March 2024
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Table 1
Related literature on energy communities with different load configurations compared to this article.

Ref. Optimisation Load profiles Country Member benefit Grid impact Flexible resource

[8] ✓1 Urban, industrial Spain Cost, SCR – Battery
[12] – Residential, commercial Portugal Cost, SCR – Battery
[13] ✓ Residential, commercial Spain Cost, SCR, emissions – Battery
[14] – Residential, school Portugal Cost, SCR, emissions – Battery
[15] ✓ Residential, commercial Austria Cost – Battery, hot water tank
[16] – Residential UK Cost, SCR ✓ –
[17] ✓ Urban, rural2 Italy SCR ✓ Battery
[18] ✓ Residential, commercial Germany Cost, SCR ✓ Battery
[19] ✓ Residential, commercial Germany Cost, SCR ✓ Battery, shiftable loads

This paper ✓ Residential, commercial Norway, Spain Cost, SCR, emissions ✓ Battery, shiftable loads

1 No information about optimisation model.
2 Medium-voltage load profiles, customer types are not specified.

Since energy communities can consist of many different members, it
is important to investigate different load profiles. Aligning demand
and generation profiles can lead to an increased cost reduction [6].
Commercial consumers, with distinct daily and weekly consumption
patterns compared to residential consumers, may have varied correla-
tions with PV generation, resulting in different grid impacts in terms of
export and import.

Energy communities, incorporating flexible resources like energy
storage and optimising for costs, are further influenced by the country’s
spot price, shaping their operation and, consequently, grid impact. The
characteristics and operation of energy communities vary significantly
across different European countries [7]. To address this diversity in
European energy communities, we investigate case studies for two
countries with low numbers of energy communities and PV installa-
tions [8–10]: Norway and Spain. These countries differ significantly
in both electricity use and solar irradiance, i.e. the average annual
electricity use per dwelling for Norway is 16 MWh, while it is 4 MWh
for Spain [11].

The aim of this article is to investigate the energy community
benefits and grid impact for different member configurations. We aim
to answer the following questions:

• How do energy communities with different member types, and
therefore different load profiles, impact the grid?

• How do different technologies impact the operation of the energy
community?

• How does the grid impact relate to the energy community ben-
efits of reduced costs, reduced CO2 emissions and increased self-
consumption?

• What is the impact of country-specific characteristics, seasonal
variations and different technologies on the energy community
benefits and grid impact?

1.1. Related literature

Several studies have investigated different load profiles in energy
communities, without quantifying the grid impact [8,12–15]. Ref. [8]
analysed and estimated the electricity generation potential of energy
communities in both urban and industrial areas in Spain. The authors
concluded that the industrial sector offers an opportunity for deploying
renewable energy resources to supply a mixed area, suggesting that
adding PV panels to public buildings can be a strategy to meet resi-
dential energy demand. Regarding the aggregation of customer loads in
an energy community, [12] evaluated the impact of load aggregation
with regard to self-consumption for households and small businesses.
The authors concluded that aggregation of electricity consumption,
from different users with different consumption profiles, leads to an
improvement in the collective load diagram, meaning that the load was
better adapted to the PV generation profile and thereby also reduced
the need for additional energy storage. In addition to not focusing on
the grid impact, neither of these studies quantified emissions, nor did
they include other flexible resources than batteries.

Refs. [13,14] are examples of literature that did quantify both costs
and emissions. Ref. [13] looked at optimisation of local energy com-
munities in Spain. It compared residential and commercial loads and
numbers of loads. The authors found that it is only advisable to install
storage to increase the degree of self-consumption, and not to reduce
costs or emissions. Furthermore, the best financial and environmental
results were obtained for large communities with 75% residential con-
sumption. In [14], a modelling framework was developed to assess the
potential of energy community creation. Three cases were considered
for different buildings (households, apartment blocks and schools). It
was concluded that both environmental and economic benefits were
greater when considering energy communities with diverse load pro-
files (residential and school), since higher self-sufficiency results were
achieved due to the sharing rates through buildings. These studies did
not, however, quantify the grid impact of the energy communities, and
they did not investigate other flexible resources than batteries. A paper
that did include other flexible resources than batteries is [15]. The
authors investigated the profitability and optimal installation capacities
of PV systems for energy communities with different building types,
including battery systems and hot water storage. The authors found that
different load profiles bring synergy effects, and therefore higher cost-
saving potential. They also found that battery and hot water storage,
which complement PV systems and heat pumps, only marginally con-
tributed to saving energy costs. The authors did not, however, quantify
the grid impact of the energy communities.

As stated in [4], there is limited literature focusing on how en-
ergy communities affect the distribution grid. Exceptions are [16–19].
Ref. [16] analysed the configuration of a solar energy community. The
authors found that various prosumer ratios, community sizes and PV
sizes impacted the grid, where medium and large energy communities
led to the need for grid infrastructure upgrades. However, the study
only included residential load profiles, and did not consider any flexible
resources such as batteries or shiftable loads. Ref. [17] investigated the
grid impact of urban and rural Italian energy communities. The authors
found that maximising self-consumption led to a lower grid impact
than when the objective was to achieve a net-zero energy balance. The
study did not include the operational costs or emissions for the energy
community. Refs. [18,19] included residential and commercial loads.
Ref. [18] investigated the optimal sizing of PV and battery systems and
different optimisation strategies. The authors found that when energy
communities maximised economic benefit, the grid line loading was the
highest, due to the battery doing energy arbitrage. The optimisation
model did not, however, include flexible sources such as load shifting.
In [19], the authors investigated how energy communities can change
their operation to reduce peak power exchange. Similarly to this paper,
the authors included PV, battery and shiftable loads. The authors found
that a grid-friendly operation could reduce peak power with up to
55%. Neither of these studies, however, included a battery degradation
model, nor quantified the CO2 emissions reduction. Table 1 summarises
the relevant literature, highlighting the differences from this work.
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1.2. Research gap and contributions

The main research gaps identified are as follows: There is little lit-
erature on grid impact arising from energy communities. Furthermore,
most studies consider battery systems as the only flexible resource in
energy communities, thereby disregarding more cost-effective options
such as shiftable loads. If battery systems are included, they most
often do not include a cyclic degradation model, leading to unreal-
istically low costs for battery operation. Few studies investigate the
CO2 emission reduction from energy communities, despite its potential
significance as a motivating factor for community members. Moreover,
many studies of energy communities do not use real datasets, but
synthetic data, and limited simulation time periods, such as one day
or week of the year [16]]. This temporal constraint proves inadequate
when studying countries with high seasonal variations in electricity
demand and solar irradiance. Finally, none of the literature on various
load configurations in energy communities includes a country compar-
ison, highlighting how different solar irradiance, load and spot prices
impact the results. This comparative analysis is particularly important
to clarify how regulations on energy communities can lead to different
results for European countries

The main contributions of this article are as follows:

• Investigation of energy communities with three different load
configurations: residential, commercial and mixed. Grid impact
is quantified through maximum import to and export from the
energy community.

• Study the optimal operation of energy communities by incor-
porating a community battery with a degradation model, and
shiftable loads. This approach provides insight into the use of
different flexible resources in the energy community. We also
explore the interaction among technologies – PV, community
battery, and shiftable loads – by systematically excluding each
one from the optimisation.

• A comprehensive comparison of the aforementioned grid impact
with the energy community benefits of costs, self-consumption
and CO2 emissions for all load configurations. A sensitivity anal-
ysis on the ratio of commercial and residential loads in the mixed
load configuration is also performed.

• Case studies are run for two countries, Norway and Spain, to get
insight into how the seasonal variations in load and PV impact
the results. Real, hourly measurements for one year are used as
input data. We investigate the impact of battery size, PV size, spot
price level, grid tariff and load shifting percentage.

The novelty of this paper stems from quantifying both the member
benefits and the grid impact of energy communities while varying
several dimensions: technology present in the energy community, mem-
bers of the energy community and location. This analysis provides a
comprehensive perspective on the potential influence of energy com-
munities on the distribution grid. Such insights are instrumental in
the formulation of well-informed policies and regulations on energy
communities. Furthermore, we quantify the CO2 emissions reduction,
which is an important motivation in many energy communities, albeit
frequently overlooked. Another important novelty of the paper is the
direct comparison between two European countries, where the peak
demand of the energy communities is the same, but the PV production,
load profiles and spot prices are country-dependent.

1.3. Outline of paper

The outline of the paper is as follows: In Section 2, the methodology
of the paper is described. Section 3 describes the input parameters
used for the case studies of the two countries. Section 4 shows the
results of the optimisation, together with a sensitivity analysis of input
parameters, and an analysis of the technologies present in the energy
community, followed by a discussion. In Section 5, the concluding
remarks are given.

2. Method

The following subsections describe the equations of the optimisation
model and how the battery energy storage system is sized. Fig. 1 shows
the overall paper concept.

2.1. Optimisation model

The optimisation model is given in (1)–(21). The objective of the
optimisation is to minimise the total costs for the energy commu-
nity, where the decision variables are the grid import and export,
battery discharging and load shifting. For simplicity and to achieve
a fair comparison, identical grid tariffs are set for both countries, to
avoid modelling country-specific conditions. We assume that the energy
community has a common grid tariff, decided from the aggregated
import to and export from the energy community. The objective func-
tion therefore consists of the following costs and revenues: Costs of
importing electricity due to spot market price (𝐶𝑠𝑝𝑜𝑡

𝑡 ) and a uniform,
volumetric grid tariff (𝐶 𝑡𝑎𝑟), revenues from exporting electricity due to
spot market price and remuneration from the DSO (𝑅𝑔𝑟𝑖𝑑), discomfort
cost for shifting load (𝐶𝑠ℎ) and degradation cost for using battery
(𝐶𝑑𝑒𝑔

𝑠 ):

min
∑
𝑡

[
(𝐶𝑠𝑝𝑜𝑡

𝑡 + 𝐶𝑔𝑟𝑖𝑑 )𝑝𝑖𝑚𝑝𝑡 − (𝐶𝑠𝑝𝑜𝑡
𝑡 + 𝑅𝑔𝑟𝑖𝑑 ) ⋅ 𝑝𝑒𝑥𝑝𝑡

+ 𝐶𝑠ℎ𝑝𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 +

∑
𝑠
𝐶𝑑𝑒𝑔
𝑠 𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠𝑡

]
(1)

(2) denotes the energy balance at the point of common coupling for
the energy community in every hour, where the grid import (𝑝𝑖𝑚𝑝𝑡 ) mi-
nus export (𝑝𝑒𝑥𝑝𝑡 ) must equal the aggregated demand (𝑃𝐷

𝑡 ), aggregated
PV generation (𝑃 𝑃𝑉

𝑡 ), battery charging (𝑝𝑐ℎ𝑡 ) and discharging (𝑝𝑑𝑖𝑠𝑐ℎ𝑡 ),
and upwards (𝑝𝑠ℎ,𝑢𝑝𝑡 ) and downwards (𝑝𝑠ℎ,𝑑𝑜𝑤𝑛

𝑡 ) load shifting:

𝑝𝑖𝑚𝑝𝑡 − 𝑝𝑒𝑥𝑝𝑡 = 𝑃𝐷
𝑡 − 𝑃 𝑃𝑉

𝑡 + 𝑝𝑐ℎ𝑡 − 𝑝𝑑𝑖𝑠𝑐ℎ𝑡

+ 𝑝𝑠ℎ,𝑢𝑝𝑡 − 𝑝𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 ∀𝑡 (2)

The constraints for battery charging, discharging and state-of-charge
(SOC) are given in (3)–(8). Since the optimisation model is determin-
istic and has perfect foresight, (6) is included to limit the possible
planning of the battery scheduling. This constraint ensures that the
battery SOC is the same at the beginning of each week (𝑤).

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 + 𝜂𝑝𝑐ℎ𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ
𝑡 ∀𝑡 > 0 (3)

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑇 + 𝜂𝑝𝑐ℎ𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ
𝑡 𝑡 = 0 (4)

𝑠𝑜𝑐𝑡 ≤ 𝐸𝐵 ∀𝑡 (5)

𝑠𝑜𝑐𝑤 = 𝑠𝑜𝑐𝑤+1 𝑤 ∈ 𝑊 (6)

𝑝𝑐ℎ𝑡 ≤ 𝐸𝐵𝑅𝑃𝐸 ∀𝑡 (7)

𝑝𝑑𝑖𝑠𝑐ℎ𝑡 ≤ 𝐸𝐵𝑅𝑃𝐸 ∀𝑡 (8)

Eqs. (9)–(13) describes the battery degradation constraints. These
constraints are based on the model presented in [20], and are a way for
the optimisation model to account for the cyclic degradation imposed
on the battery for different discharging powers. The battery is therefore
divided into segments (𝑆), where discharging through each segment
has a cost which is connected to the replacement cost of the battery.
The more segments the battery discharges through, the higher the
degradation cost.

𝑝𝑐ℎ𝑡 =
∑
𝑠
𝑝𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 ∀𝑡 (9)

𝑝𝑑𝑖𝑠𝑐ℎ𝑡 =
∑
𝑠
𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 ∀𝑡 (10)

𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑡 ≤ 𝐸𝐵∕𝑆 ∀𝑠, 𝑡 (11)

𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑡 = 𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑡−1 + 𝜂𝑝𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔
𝑠𝑡 ∀𝑠, 𝑡 > 0 (12)
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Fig. 1. Paper concept: different load configurations and technologies in energy community and their impact on the distribution grid.

𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑡 = 𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑇 + 𝜂𝑝𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔
𝑠𝑡 ∀𝑠, 𝑡 = 0 (13)

The degradation cost for each segment 𝑠 is then found from [20]:

𝐶𝑑𝑒𝑔
𝑠 = 𝐶𝐵

𝜂
⋅ 𝛥𝛷(𝛿) (14)

where 𝐶𝐵 is the battery replacement cost in €/kWh, 𝜂 is the battery
efficiency and 𝛷 is the cycle depth stress function of the battery type.
Hence, the battery degradation cost depends on the battery technology,
which will be explained in further detail in Section 3.

The load shifting constraints are given in (15)–(19). These con-
straints are based on [21], which has developed a general model for
load shifting, assuming that it is possible to shift up to a certain
percentage, 𝑆𝑚𝑎𝑥, of the load. In every hour, the model can reduce or
increase the load, as long as the total amount of energy shifted is the
same at the end of the day (𝑑).

𝑝𝑠ℎ,𝑢𝑝𝑡 ≤ 𝑆𝑚𝑎𝑥𝑃𝐷
𝑡 ∀𝑡 (15)

𝑝𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 ≤ 𝑆𝑚𝑎𝑥𝑃𝐷

𝑡 ∀𝑡 (16)

𝑒𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 = 𝑒𝑠ℎ,𝑑𝑜𝑤𝑛

𝑡−1 + 𝑝𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 ∀𝑡 > 0 (17)

𝑒𝑠ℎ,𝑢𝑝𝑡 = 𝑒𝑠ℎ,𝑢𝑝𝑡−1 + 𝑝𝑠ℎ,𝑢𝑝𝑡 ∀𝑡 > 0 (18)

𝑒𝑠ℎ,𝑢𝑝𝑑 = 𝑒𝑠ℎ,𝑑𝑜𝑤𝑛
𝑑 𝑑 ∈ 𝐷 (19)

(20)–(21) shows the non-negativity constraints.

𝑝𝑒𝑥𝑝𝑡 , 𝑝𝑖𝑚𝑝𝑡 , 𝑝𝑐ℎ𝑡 , 𝑝𝑑𝑖𝑠𝑐ℎ𝑡 , 𝑠𝑜𝑐𝑡,

𝑝𝑠ℎ,𝑢𝑝𝑡 , 𝑝𝑠ℎ,𝑑𝑜𝑤𝑛
𝑡 , 𝑒𝑠ℎ,𝑑𝑜𝑤𝑛

𝑡 , 𝑒𝑠ℎ,𝑢𝑝𝑡 ≥ 0 ∀𝑡 (20)

𝑝𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 , 𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠𝑡 , 𝑠𝑜𝑐𝑠𝑒𝑔𝑠𝑡 ≥ 0 ∀𝑠, 𝑡 (21)

2.2. SCR

The annual collective self-consumption rate (SCR) is calculated as:

PV generation consumed in energy community
Total PV generated (22)

2.3. Annualised investment costs for PV generation and battery system

The annualised investment costs are found by multiplying with the
capital recovery factor:

𝐶𝑅𝐹 = 𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
(23)

where 𝑖 is the interest rate and 𝑛 is the lifetime in years.

Table 2
Data input for each country.

Data Norway Spain

Household load
profiles

Measurements,
Oslo area, 2021
[24]

Measurements,
Spain, 2019 [25]

Office and shop
load profiles

Synthetic
profiles PROFet,
2021 [26,27]

Measurements,
Spain, 2019 [25]

PV generation
profiles

Renewables
Ninja, Oslo,
2019 [28]

Renewables
Ninja, Madrid,
2019 [28]

Spot market
prices

NO1, Nord Pool,
2019 [29]

Spain, OMIE,
2019 [30]

CO2 emission
equivalents

ElectricityMaps
[31]

ElectricityMaps
[31]

2.4. Sizing battery energy and power capacity

We determine the capacity of the shared battery energy storage
system using a rule-based approach with the goal of enhancing the
self-consumption of PV generation. The battery is sized by following
the method proposed in [22]. The daily energy export is quantified
and the battery energy capacity is assumed to be a percentile of that
value. This method ensures an efficient rule-based sizing of the battery,
avoiding unrealistic investments for the energy community’s storage
system [23]. The power capacity of the battery system is set to be
equivalent to the maximum hourly export over the year.

3. Data input analysis and case study

This section details the case study for both countries and the data
collected for each case. Table 2 shows the data input for each country
and Table 3 shows the input parameters for the optimisation.

3.1. Load profiles

The Norwegian load profiles for residential loads are retrieved
from [34], which is a dataset containing hourly, real measurements
from the Oslo region for 2021. The PROFet tool [26,27] is used for
the commercial loads. The load profiles for Spain are taken from [25],
which is a dataset from Spain containing hourly, real measurements for
2019 for several customer groups. Detailed information about the load
profiles can be found in A. Fig. 2 shows the normalised daily average
consumption over the year for all datasets to show how the trend over
the year varies for each country and each load type. Note that this
figure shows the original datasets for offices, shops and households,
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Table 3
Input parameters for optimisation.

Parameter Value

Maximum load shift 20% [21]
Total PV size 33.3 ⋅ 1.25 = 42 kWp
Battery investment cost, 𝐶𝐵 200 €/kWh [32]
PV investment cost 800 €/kWp [33]
Interest rate 5.1%
Lifetime battery system 15 years [32]
Lifetime PV system 30 years [33]
Grid tariff, 𝐶𝑔𝑟𝑖𝑑 0.0448 €/kWh
Grid remuneration, 𝑅𝑔𝑟𝑖𝑑 0.006 €/kWh
Battery percentile of daily export 75
Battery power max. hourly export
Battery degradation segments, 𝑆 8
Load shifting discomfort cost, 𝐶𝑠ℎ 0.02 €/kWh [21]
Commercial ratio (for mixed loads) 0.5

Fig. 2. Daily average electricity consumption for each load type.

Table 4
Reference weeks.

Country Week Dates

Norway Winter 18–24 Jan 2021
Summer 21–27 June 2021

Spain Winter 14–20 Jan 2019
Summer 17–23 June 2019

which later is used to create the residential, commercial and mixed load
configurations. In Norway, electricity consumption is always highest in
winter and lowest during summer. In Spain, on the other hand, the
electricity consumption remains at a similar level during the winter
and summer months, but the average consumption profile tends to be
higher in the summer months, primarily because of the increased use
of cooling systems.

As seen in Fig. 2, there are great differences between summer and
winter for the two countries due to outdoor temperature. Two reference
weeks have therefore been chosen to effectively illustrate the differ-
ences in seasonal load profiles; see Table 4. The third week of January
and the third week of June are chosen since there are no holidays in
either country during these weeks. To illustrate the differences in the
daily profiles, Fig. 3 shows the normalised mean load profile (divided
by the maximum hourly load of the year) for the winter reference week.
The mean is not calculated for offices and shops in Norway, since we
only have one synthetic profile instead of a cluster of profiles. Fig. 3
shows that offices and shops have a significant reduction in electricity

Fig. 3. Normalised, mean load profiles winter week.

consumption during the weekend in both countries. Looking at the
hourly consumption within a day, we see that households in Norway
and Spain have similar trends with two peaks, where the afternoon
peak is the highest. In Norway, the consumption trends for office and
shop are similar, with the peak during midday. In Spain, the profiles
for offices and shops usually have two peaks during the day, where the
morning peak is the highest.

Given that the focus of this study is the overall benefits for the
energy community and the impact on the distribution grid, aggregated
load profiles are used as input to the optimisation model. The ag-
gregated load profile of the energy community is created by picking
random load profiles until the load limit of 33.3 kW is reached. This
load limit is taken from the European CIGRE LV grid [35], and is
merely used to have a common load limit for all cases. For the mixed
load configuration, the ratio of commercial load profiles is set to be
half of the total load, meaning that we first stack commercial load
profiles until we reach 16.65 kW, and then add residential profiles
until we reach the load limit. This ratio of commercial load profiles
is investigated further in the sensitivity analysis in Section 4.4.2.

3.2. PV generation profiles

Hourly PV generation profiles for 1 kWp for one year were taken
from Renewables Ninja [28] for the Oslo and Madrid locations. Further,
the profiles were upscaled with a factor of 1.25 times the power limit
at the connection bus of the energy community, which amounts to
a PV size of 42 kWp. We therefore maintain the seasonal differences
between the countries, while keeping the PV generation size equal for
comparison purposes. We investigate other PV sizes in the sensitivity
analysis described in Section 4.4.2. In this work, we do not consider
how this PV generation is distributed within the energy community, as
we focus primarily on the aggregated impact on the distribution grid.

Since it is not realistic that all PV panels would be facing directly
south, it is assumed that 1/3 of the panels are oriented south, 1/3 south-
east and 1/3 south-west, as mentioned in Section 2. For households,
the tilt of the panels is assumed to be 40◦ for Norway, and 36◦ for
Spain [36]. For offices and shops, the roofs are assumed to be flat (0◦

tilt).

3.3. Grid tariff and electricity prices

Since grid tariffs are changing constantly and heavily impact the re-
sults of the optimisation, we choose a basic grid tariff as a foundational
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Fig. 4. Spot prices 2019 for price areas Norway-NO1 and Spain.

Fig. 5. CO2eq emissions for Norway and Spain, 2019 [31].

reference point. This choice allows for easier comparison between the
two countries. Therefore, we assume that the energy community pays
a uniform, volumetric grid tariff (assumed to be 0.0448 €/kWh [37]),
in addition to the spot market area price. We further assume that the
energy community receives a uniform, volumetric remuneration for
export of 0.006 €/kWh [38] in addition to the spot market price.

Although the load and PV data for Norway pertain to the year 2021,
we use the day-ahead electricity spot market prices for year 2019, since
2021 witnessed exceptionally high prices towards the end of the year,
primarily driven by soaring gas prices in Europe. The spot market price
for Norway is then shifted to match the weekdays of the load and PV
generation in 2021. The spot prices can be seen in Fig. 4, where we can
observe that the Norwegian spot price for bidding zone NO11 in general
is lower (with an average price of 0.04 €/kWh) than the spot price for
Spain (an average price of 0.05 €/kWh). Furthermore, the spot price
in Spain has greater variation than the spot price in Norway. A value
added tax of 25% is added for spot price and grid tariff.

It is assumed that the energy community has aggregated net meter-
ing, meaning that the aggregated net electricity consumption and gen-
eration for each hour is used to calculate the costs and revenues. The
allocation of these costs and revenues within the energy community
falls outside the scope of this paper.

3.4. Co2 emissions

The CO2 emission equivalents (Carbon intensity average) are re-
trieved from [31] for both countries and are shown in Fig. 5. The year
2019 is used for both countries, to match the electricity spot market
price used.

3.5. Battery degradation cost

The battery in this study is assumed to be a nickel manganese cobalt
(NMC) lithium-ion battery, where the cycle depth stress function is

1 Norway is divided into 5 different bidding zones, where Oslo is in NO1.

Table 5
Load characteristics (max. in [kWh/h] and sum in [kWh]).

Country Residential Commercial Mixed

Norway
max. 34.3 33.5 35.7
sum 118,164 119,773 133,914
CF 0.71 1 0.73

Spain
max. 34.8 36.7 35.5
sum 85,877 118,942 135,556
CF 0.34 0.43 0.30

Table 6
Correlation coefficients for load and PV generation.

Country Residential Commercial Mixed

Norway −0.28 0.04 −0.19
Spain 0.34 0.45 0.45

defined as [39]:

𝛷(𝛿) = 5.24 ⋅ 10−4 ⋅ 𝛿2.03 (24)

where 𝛿 is the cycle depth of the battery.

4. Optimisation results and discussion

In this section, we show the optimisation results for various load
configurations (residential, commercial and mixed) across two coun-
tries (Norway and Spain). Firstly, we show the characteristics of the
aggregated load profiles and the battery energy and power sizes. Sec-
ondly, we show how the battery operation and load shifting impact
the optimisation results in two reference weeks. Thirdly, the annual
results for the energy community and grid are given. Subsequently,
three sensitivity analyses are presented, where input parameters are
altered and specific technologies are excluded. Finally, the limitations
of the study are discussed.

The optimisation model is formulated as a deterministic linear
program, and is implemented in Python/Pyomo [40], using Gurobi [41]
as solver.

4.1. Pre-optimisation

The aggregated load profiles for the energy community have the
characteristics as given in Table 5. Even though the load profiles
have approximately the same peak, the yearly consumption in Norway
is much higher than in Spain for residential and commercial load
configurations. It can also be seen that the coincidence factor (CF)2 in
Norway is much higher than in Spain. Hence, the peaks of the different
loads in Spain are distributed more evenly than in Norway.

Table 6 shows the load and PV generation correlation coefficients
for all load configurations in both countries. In Norway, the load and
PV generation are negatively correlated for residential and mixed load
configurations, while they are slightly positive for commercial loads.
This can be explained by Fig. 3, where we see that the daily profile
of the commercial loads shows a higher consumption in the middle of
the day, when the PV generation is the highest. This stands in contrast
to Spain, where all load configurations show a positive correlation
between load and PV generation, ranging from 0.34 to 0.45. This
follows the seasonal load shown in Fig. 2, where we see that the
consumption in Spain increases in summer, when PV generation is high.

The battery size is determined before the optimisation on the basis
of daily exported energy, as explained in Section 2.4. Table 7 shows
the battery energy and power capacities for each load configuration.
In general, we see that the energy capacities are larger for Norway,

2 Coincidence factor is calculated as the maximum total load divided by the
sum of individual maximum load.
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Table 7
Battery energy and power capacity for each load config. (kWh/kW).

Country Residential Commercial Mixed

Norway 132/28 73/21 91/23
Spain 127/28 66/23 59/20

Fig. 6. Grid exchange residential winter week.

compared to Spain, and that residential is the load configuration that
always has the highest capacity within the country. In Norway, the
highest energy capacity is 132 kWh for residential loads, and the lowest
is 73 kWh for commercial loads. In Spain, the highest energy capacity
is 127 kWh for residential loads, and the lowest is 59 kWh for mixed
loads.

4.2. Optimisation results — reference weeks

In this section, we display the results for the residential load config-
uration for the reference weeks, to showcase how the battery operation
and load shifting impact the results.

Fig. 6 shows the grid exchange (black line) for residential loads
in the winter week. We see that for Norway, there is no export in
winter due to the low PV generation (yellow area) and high demand
(blue area). The battery (red area) is used for 14 h for price arbitrage,
charging when the spot price is low and discharging when the price
is high. The charging causes four new load spikes, which exceeds the
original load peak of 33.3 kW. Load is being shifted for 82 h (green
area). For Spain, the PV generation covers more of the load, and also
leads to export in the weekend. The battery is used for 26 h to charge
excess PV generation and discharge at hours with high spot prices,
while load is shifted in 67 h. Note that the battery in Norway is slightly
larger than in Spain (see Table 7).

Fig. 7 shows the grid exchange for residential loads in the summer
week. Both countries are exporting power due to excess PV generation,
and there is more export from the energy community in Norway than
in Spain. This is rather counter-intuitive, following the countries’ solar
irradiance, but the reason is that the demand in Norway is low during
the summer, compared to Spain (see Fig. 2). When the load is low
throughout the day, it is difficult for the battery or shiftable loads to
shift PV generation to other hours, and therefore this leads to high
export. The battery is used more often in Norway (79 h) compared to
Spain (63 h). Load is shifted in 151 h in Norway, and 159 h in Spain.

Fig. 8 shows the grid exchange for all load configurations in the
winter reference week. The load is higher in Norway for all load

Fig. 7. Grid exchange residential summer week.

Fig. 8. Grid exchange comparison for all load configurations, winter week.

configurations, and there is no export. For Spain, on the other hand,
there is export in the weekend. The load spikes due to battery charging
are highest for residential loads in Norway.

Fig. 9 shows the grid exchange in the summer reference week. We
can see the same trend as in Fig. 7, where the export is much higher
for Norway than for Spain. The commercial loads have the least export
in Norway, while in Spain it is the mixed loads. This is supported by
the finding in Table 6.

4.3. Optimisation results — annual impact on energy community and
distribution grid

This section summarises the annual results of the optimisation to
give an overview of the impact of the load, PV generation, battery oper-
ation and shiftable loads on the energy community and the distribution
grid. Case ref. denotes the reference case where there is only load, and
no PV generation, battery system or load shifting. Case opt. denotes the
main case where all technologies are present in the optimisation model.
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Fig. 9. Grid exchange comparison for all load configurations, summer week.

Table 8
Annual energy community costs, emissions and SCR, Norway.

Case Residential Commercial Mixed

Op. costs [€] ref. 11,451 11,425 12,879
opt. 8437 8457 9785

Tot. em. [kgCO2] ref 4305 4194 4791
opt. 3315 3137 3705

SCR [%] opt. 76 91 88

Table 9
Annual energy community costs, emissions and SCR, Spain.

Case Residential Commercial Mixed

Op. costs [€] ref. 9192 12,516 14,341
opt. 2753 6095 7451

Tot. em. [kgCO2] ref. 20,393 28,117 32,130
opt. 7335 14,142 17,051

SCR [%] opt. 78 93 95

4.3.1. Impact on the energy community
We here quantify the benefits for the energy community, in terms

of annual costs, SCR and CO2 emissions from imported electricity, as
shown in Table 8 and Table 9.

The costs in Norway when optimising, compared to the reference
case, are decreased by 26%, 26% and 24% for residential, commercial
and mixed loads, respectively. For Spain, on the other hand, the story is
quite different. Table 9 shows a cost reduction of 70%, 51% and 48%,
for residential, commercial and mixed loads, respectively. Hence, there
is more to gain economically from optimisation of common flexible
assets in Spain, than in Norway, and residential loads have the most
to gain.

The reduction in CO2 emissions is around 24% for all load con-
figurations for Norway. Spain, on the other hand, has much higher
reductions, with the highest at 64% for residential loads, followed
by 50% for commercial and 47% for mixed loads. Hence, concern-
ing emission reductions, the potential benefits of establishing energy
communities appear greater in Spain compared to Norway. It is worth
mentioning that Spain has significantly higher CO2 emissions overall,
primarily attributable to the energy mix of imported electricity, as
illustrated in Fig. 5.

In Norway, commercial loads have the highest SCR (91%), followed
by mixed (88%) and residential (76%). In Spain, on the other hand,

Table 10
Breakdown of costs for Norway, Case opt. [€].

Cost Residential Commercial Mixed

Battery degradation 119 41 64
El. cost 8654 8491 9848
El. revenue −394 −121 −184
Shift discomfort 57 46 56

Ann. PV system 2191 2191 2191
Ann. battery system 2561 1416 1765

Table 11
Breakdown of costs for Spain, Case opt. [€].

Cost Residential Commercial Mixed

Battery degradation 241 93 79
El. cost 3240 6113 7417
El. revenue −853 −238 −172
Shift discomfort 125 127 127

Ann. PV system 2191 2191 2191
Ann. battery system 2464 1280 1145

Table 12
Grid exchange, Norway.

Case Residential Commercial Mixed

Max. import [kWh/h] ref. 34 34 36
opt. 59 36 48

Max. export [kWh/h] ref. 0 0 0
opt. 27 20 22

Table 13
Grid exchange, Spain.

Case Residential Commercial Mixed

Max. import [kWh/h] ref. 35 37 35
opt. 36 36 35

Max. export [kWh/h] ref. 0 0 0
opt. 26 20 17

mixed loads have the highest SCR (95%), followed by commercial
(93%) and residential (78%).

Table 10 and Table 11 give a breakdown of the costs. Residential
loads in Spain gain more revenue from exporting electricity than in
Norway, due to the higher spot prices. It can also be noted that
the electricity costs in Norway are significantly higher than in Spain,
which can be explained by Table 5, which shows that the yearly
electricity consumption is higher in Norway, despite the peak load
being approximately the same. The degradation cost is a measure of
how much the battery is used and how profitable the model considers
the battery use to be. The degradation cost is higher for Spain for all
load configurations, compared to Norway, indicating that the model
considers the battery to be more profitable in Spain than in Norway.
This behaviour is linked to the higher level and variability of the spot
price (see Fig. 4). The shift cost is a measure of how often the model
decides to shift load, at a discomfort cost. In general, the shift cost is
higher in Spain than in Norway. Just as for the battery, this means
that the model finds it more profitable to shift load in Spain than
in Norway, due to the higher spot prices. The table also shows the
annualised investment costs of the PV and battery systems, which are
not accounted for in the optimisation model. The annualised battery
costs are slightly higher in Norway, since the battery sizes are larger
when the battery is sized on the basis of self-consumption (see Table 7).

4.3.2. Impact on the distribution grid
We here quantify the impact on the distribution grid by maximum

import and export as shown in Table 12 and Table 13.
For Norway, the maximum import increased by 74% for residential

loads and 33% for mixed loads, when comparing the optimisation to
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Table 14
Summary of optimisation results per load configuration.

Norway Energy community benefit Grid benefit

SCR Cost Emissions Max. export Max. import

Residential Low Low Low Low Low
Commercial High Low Low Medium Medium
Mixed Medium Low Low Medium Low

Spain SCR Cost Emissions Max. export Max. import

Residential Low High High Low Medium
Commercial High Medium Medium Medium High
Mixed High Medium Medium High High

the reference case. This is due to battery charging when the spot price
is low, causing new load spikes in winter. For commercial loads, the
maximum import was increased by 6%. For Spain, the maximum import
was only increased by 3% for residential loads. For the commercial
loads, it was reduced by 3%, while it remained unchanged for the
mixed loads.

The maximum export is zero in the reference case, since there
is no PV generation or battery present. The maximum export is ap-
proximately the same for residential loads in Norway (27 kWh/h)
and Spain (26 kWh/h). It is noteworthy that mixed loads have the
lowest maximum export for Spain (17 kWh/h). To summarise, the grid
experiences the highest maximum import and export for residential
loads in Norway. Interestingly, this happens even though the battery
size for residential loads is approximately the same as for Spain (see
Table 7).

Since the load profiles are chosen randomly from a larger dataset,
a validation of the optimisation results has been carried out, as ex-
plained in B. The results show that the optimisation results obtained
are representative for the whole dataset.

4.3.3. Summary of energy community benefit and grid impact
Table 14 shows a summary of the energy community benefits and

grid impact for the different load configurations, where each result is
given a score of low, medium or high depending on the percentage
change from the reference case. As the table clearly shows, the Spanish
energy communities have a much better outcome in terms of cost
reduction, emissions reduction and grid impact. In Norway, the best
load configuration, both in terms of energy community benefit and grid
impact, is the commercial energy community. This is mainly due to a
high SCR, and relatively low grid impact. In Spain, the mixed energy
community gives the highest grid benefit, since maximum import is not
increased and maximum export is relatively low. In terms of energy
community benefit, the residential energy community has the highest
overall benefit due to emission reduction and cost reduction, although
it has a relatively low SCR.

4.4. Sensitivity analyses

Three sensitivity analyses are performed: First, we investigate the
ratio of commercial and residential loads in the mixed load config-
uration. Second, we vary selected input parameters to the optimisa-
tion model. Third, the optimisation model was run without certain
technologies present.

4.4.1. Changing mixed load ratio
The mixed loads had a ratio of commercial loads equal to 0.5 in

the original results. In Table 15, we compare the energy community
costs and maximum import from the grid for different ratios. The
maximum import shows a clear trend for both countries: a low share
of commercial loads (and therefore a high share of residential loads)
gives a high maximum import. This can be explained by the annualised
investment costs for PV and battery system, which in general is higher
when the ratio is low, meaning that a larger battery is required to
increase self-consumption. The op. costs, on the other hand, do not
show the same picture, and it seems more arbitrary which load ratio
gives the best outcome. The SCR also increases with increasing share
of commercial load profiles. Overall, these results indicate, for both
countries, that a higher share of commercial load profiles lead to higher
self-consumption rate, lower maximum import, lower battery sizes, but
not necessarily lower operating costs.

4.4.2. Changing optimisation input parameters
A sensitivity analysis was conducted to assess how the input pa-

rameters affect the optimisation results for the energy community. The
sensitivity analysis is a local, one-at-a-time analysis, meaning that one
parameter is changed, while keeping the other parameters fixed [42].

Table 16 shows the results for the residential load configuration.
The results are given in percentage change from the original optimisa-
tion results presented in Section 4.3. For Norway, maximum import is
sensitive to the battery percentile and PV factor. Both these parameters
impact the size or use of the battery, and thereby also the demand peaks
from charging the battery. The load shifting percentage also has an
impact on the maximum import, since a higher load shifting potential
lets the model shift load to specific hours when the spot price is low.
Emissions, on the other hand, show marginal sensitivity to any of the
parameters (<4% change). Finally, it can be observed that all results
are linearly correlated to the PV factor.

The costs are sensitive to the spot price level and grid tariff for both
countries. The PV factor has a much higher impact on costs in Spain,
compared to Norway. Also, almost all parameters present a relevant
effect on the total emissions in Spain, which cannot be seen for Norway.
Another difference between the countries is that the maximum import
in Spain appears to be unaffected by any of the parameters, in contrast
to Norway. It is interesting that the increase in spot price level does not
impact the SCR in any of the countries. This suggests that the model is
already mostly optimising based on the spot price level, given that the
grid tariff is uniform.

The sensitivity results for commercial and mixed loads support the
same overall conclusions, with some slight differences. For commercial
loads in Norway, the maximum import is mostly impacted by PV factor
and the spot price level. For commercial loads in Spain, the maximum
export is more sensitive to the load shifting percentage. For mixed load
configuration, the results for Norway are quite similar to the residential
loads. In Spain, the main difference from the other load configurations
is that maximum import is hardly affected by any parameter.

4.4.3. Technology impact
Since energy communities might not have implemented all different

technologies, we here investigate how the costs, emissions and grid

Table 15
Costs and maximum import for different commercial load ratios in mixed load configuration.

Ratio Norway Spain

Op. cost [€] Max. import [kWh/h] SCR [%] Inv. cost [€] Op. cost [€] Max. import [kWh/h] SCR [%] Inv. cost [€]

0.1 9669 58 81 4441 3208 36 80 4480
0.3 11,801 56 87 3976 6591 34 93 3549
0.5 9785 48 88 3956 7451 35 95 3336
0.7 9259 42 90 3724 5913 33 92 3646
0.9 9484 41 91 3646 6350 32 94 3452
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Table 16
Sensitivity analysis for residential loads in % of original results.

Parameter1 Norway Spain

Value op. cost max. imp. max. exp. tot. em. SCR op. cost max. imp. max. exp. tot. em. SCR

Battery percentile [–] 25 1 −34 0 3 −12 5 −4 0 15 −9
50 0 −14 0 1 −6 2 −4 0 7 −4

PV factor [–] 1 6 −10 −24 4 7 37 −4 −24 22 9
1.5 −6 10 23 −3 −7 −35 5 25 −18 −8

Spot price level [–] 1.5 26 0 0 0 0 19 0 0 −1 0
2 52 0 0 0 0 38 0 0 −3 1

Grid tariff [€/kWh] 0.03 −16 0 0 2 −7 −18 0 0 11 −7
0.06 16 0 0 0 1 17 0 0 −3 2

Load shifting percentage [%] 30 0 4 −1 −1 2 −3 2 −2 −7 4
40 −1 9 −2 −1 4 −6 4 −4 −14 7

1 Original values: battery percentile 75, PV factor 1.25, spot price level 1, grid tariff 0.0448 €/kWh, load shifting percentage 20%.

Table 17
Cases.

Case PV generation Battery Shiftable loads

ref. – – –
opt. ✓ ✓ ✓

onlyPV ✓ – –
onlyShift – – ✓
PVbattery ✓ ✓ –
PVshift ✓ – ✓

import change if we remove certain technologies from the optimisation.
Table 17 gives an overview of the different cases.

Total costs follow the same trend in Spain, irrespective of load
configuration, as seen in Fig. 10. onlyPV and PVshift have the lowest
costs, followed by PVbattery and opt, while onlyShift and ref have the
highest costs. In Norway, on the other hand, lower costs compared to
the reference case are only obtained for cases onlyPV, onlyShift and
PVshift. The trend is similar in Norway, although the cost reduction is
not as high as for Spain. We can therefore conclude that PV generation
is the main driver for reducing costs for both countries and all load con-
figurations. The flexibility resources, shiftable loads and battery system,
only lead to a marginal further reduction of costs. Considering the high
cost of battery system technologies, compared to load shifting, which
only requires a home energy management system, these results indicate
that the cost reduction achieved through batteries is not significant
enough to justify their adoption within the energy community, if the
motivation is to reduce costs.

Fig. 11 shows that commercial and mixed load configurations obtain
lower CO2 emissions in PVshift than in PVbattery, for both countries.
Hence, energy communities with PV generation and shiftable loads ex-
perience higher emission reductions compared to those with PV systems
and batteries. This might seem contradictory — logically, a battery of
62–91 kWh should be able to provide more flexibility than load shifting
maximum 20% of 33.3 kWh/h, which amounts to 6.65 kWh/h. This
can be explained by the tariff design. When the cost components in
the optimisation model are based on a uniform, volumetric grid tariff
with a varying spot price, the optimisation model often chooses to
use the battery for energy arbitrage. This strategy does not necessarily
coincide with low/high CO2 emissions, and therefore the battery does
not necessarily contribute to reducing the CO2 emissions as much as
it could. In contrast, the residential configuration has the lowest CO2
emissions for PVbattery. Load shifting (onlyShift) has almost no impact
on total costs or CO2 emissions, as can be seen in Fig. 10 and Fig. 11.
Load shifting must be combined with PV generation (PVshift) to have
a visible impact on costs and CO2 emissions.

Fig. 12 shows that maximum import is almost equal for all cases and
load configurations, with the following exceptions: opt. and PVbattery,

Fig. 10. Total cost comparison for all cases.

Fig. 11. CO2 emissions comparison for all cases.

the cases with a battery, lead to a significant increase for residential
and mixed load configurations in Norway. Consequently, it becomes
evident that the battery is responsible for the increase in import, due to
spot price arbitrage. It is interesting that the commercial loads do not
experience the same increase in maximum import. This is connected
to the limited utilisation of the battery system, as demonstrated in
Table 10, where the spot price variation is not significant enough for
the optimisation model to choose to use the battery for arbitrage.
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Fig. 12. Maximum import for all cases.

4.5. Assumptions and simplifications

In the course of this study, several assumptions were made to ensure
equitable comparisons across cases involving two countries and distinct
setups. The purpose of this section is to elaborate on these assumptions,
providing clarity for the interpretation of the results.

The choice of grid tariffs is a central assumption in an optimisation
model that minimises costs. One option considered was to use country-
specific grid tariffs, which would make it difficult to compare the two
countries and the technologies present in the energy community. Since
the main focus of this article is not to compare grid tariffs, we chose
to adopt a more straightforward approach in modelling grid tariffs, to
enhance the interpretability of the optimisation results. A different grid
tariff would certainly have led to different results. In Spain, it is not
common to have contracts that follow the spot market price, but rather
a time-of-use tariff. We would expect that such a tariff would lead to
the flexibility resources being used to target the hours of low tariffs and
avoid the hours of higher tariffs. If we had applied a grid tariff structure
based on monthly peak demand charges, a common practice in Norway,
we would have observed a more substantial decrease in maximum
imports when utilising the flexibility resources. This would stand in
contrast to the results obtained, where the battery is actually causing
new load spikes, and stresses the need for accurate grid tariffs to give
the right incentives to energy communities with flexibility resources.

The load profiles of shops and offices in Norway are synthetic
profiles, as measured data for these building types was not publicly
accessible. A random noise signal was added to these synthetic profiles
to represent a more realistic load profile.

Furthermore, aggregated net metering is assumed in this study.
Considering members of the energy community to be optimising in-
dividually, instead of centrally, would also lead to different results,
depending on the PV generation installed at each member and the load
shifting potential. This would also require an assumption concerning
how the battery energy should be divided between all members, raising
concerns about equity in the process.

5. Conclusion

The aim of this article was to investigate the energy community
benefits and grid impact for different member configurations. Our
methodology was based on running an optimisation model for one year
of energy community operation for three different load configurations:
residential, commercial and mixed for case studies in Norway and
Spain.

The most grid-friendly load configurations were commercial loads in
Norway and mixed loads in Spain. Residential loads were the least grid-
friendly for both countries, due to the low correlation between load and

PV generation, and therefore the need for a large battery. Maximum
import increased by 3% and 74% for residential Spanish and Norwegian
energy communities, respectively. The sensitivity analysis revealed that
the ratio of commercial and residential load profiles in the mixed load
configuration had a significant impact on the results, where a high ratio
of commercial loads in general gave higher SCR and lower maximum
import, but not necessarily lower costs.

PV generation emerged as a key technology for cost reduction across
all load configurations in both countries. Additionally, the sensitivity
analysis shed light on the comparable efficacy of load shifting and
battery storage systems, emphasising that load shifting may be a more
economically viable alternative. The sensitivity analysis also identified
the impact of spot price levels on operational costs, particularly in
Spain, and the substantial influence of battery size on maximum import
in Norway.

The largest energy community benefits were obtained for com-
mercial loads in Norway and residential loads in Spain. Both the
operational costs and emissions reductions differed significantly be-
tween the countries. The Norwegian commercial loads had a 26% cost
reduction and a 24% emissions reduction, while Spanish residential
loads had a 70% cost reduction and a 64% emissions reduction. Al-
though the operational costs for the residential energy community were
reduced, the maximum import increased, showing that a cost optimal
operation for energy communities can lead to a negative grid impact.

In light of these insights, future work could consider investigating
power flow dynamics within the distribution grid and assessing their
broader impact on other customers. This will lead to a more nuanced
understanding of the dynamics between energy community benefits
and grid impacts, ultimately paving the way for more informed and
effective grid integration of energy communities. Another avenue for
future research lies in investigating the distribution of operational
costs and investment costs among the members of the community. The
equitable allocation of financial responsibilities within energy commu-
nities can offer valuable insights into their sustainable development and
management.
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Table B.18
Validation of random sampling of residential loads, Norway.

Ref. (no technologies) Optimisation

Cost Max. imp. Tot. em. Cost Max. imp. Max. exp. Battery size Tot. em. SCR
[€] [kWh/h] [kgCO2] [€] [kWh/h] [kWh/h] [kWh] [kgCO2] [%]

Mean 11,822 37 4,423 8,717 56 26 117 3,375 80
SD 861 3 324 815 4 2 10 299 3
CV 7.29% 8.15% 7.30% 9.34% 7.34% 5.95% 8.59% 8.86% 3.51%

Orig. result 11,452 34 4,305 8,441 59 27 131 3,317 76
z-score −0.43 −0.74 −0.36 −0.34 0.68 0.71 1.40 −0.19 −1.55

Table B.19
Validation of random sampling of residential loads, Spain.

Ref. (no technologies) Optimisation

Cost Max. imp. Tot. em. Cost Max. imp. Max. exp. Battery size Tot. em. SCR
[€] [kWh/h] [kgCO2] [€] [kWh/h] [kWh/h] [kWh] [kgCO2] [%]

Mean 11,899 34 26,502 5145 34 21 97 12,303 86
SD 1898 1 4249 1652 3 3 21 3412 6
CV 15.95% 2.22% 16.03% 32.11% 8.25% 14.37% 21.17% 27.74% 6.80%

Orig. result 9192 35 20,393 2760 36 26 127 7342 78
z-score −1.43 0.90 −1.44 −1.44 0.54 1.86 1.46 −1.45 −1.25

Appendix A. Load profiles input data

A.1. Norway

The Norwegian dataset originates from a survey of households in
different regions of Norway [34]. It contains hourly electricity con-
sumption in kWh, in addition to information regarding e.g. heating,
electric vehicles, and PV systems. To narrow the scope and amount of
profiles, the dataset was filtered based on the following characteristics:

• Location and year: Oslo metropolitan area, 2021
• Heating options include heat pumps, electric ovens and floor

heating. Alternative heating methods like district heating were
excluded from consideration.

• PV generation and EVs discarded.

When filtering the dataset based on these characteristics, we were
left with 423 households, with the following residence types: 246
apartment blocks, 77 townhouses or chain houses, 64 detached houses,
20 semi-detached houses and 16 others.

The synthetic load profiles for offices and shops were created using
the PROFet tool [26,27]. The tool takes the input of year, location,
heating type and square meters, and uses temperature data to estimate
the electricity consumption. The input given to the tool for creating
profiles for office and shop was: the year 2021, location Oslo, heating
type electric, and floor area 225 m2 for commercial load configuration.
Since the synthetic profiles given by the tool are smooth, random,
uniform noise of ± 5% was added to the profile to symbolise a more
realistic consumption pattern.

A.2. Spain

The electricity consumption profiles for Spain were taken from [25].
The dataset comprises hourly electricity consumption for 499 customers
in Spain in 2019, alongside corresponding temperature values based on
the location of each customer’s postcode. The consumption profiles are
categorised into 68 distinct types of customers, ranging from house-
holds, schools and shops, to industries, among others. The dataset was
filtered by separating the profiles for households, offices and shops.
Furthermore, we excluded profiles with consumption peaks: higher
than 18 kW for households and higher than 20 kW for shops and offices.
This was done to ensure that the aggregated load profiles would not
exceed the peak load limit.

Appendix B. Load profiles cross-validation

In this section, we present an analysis performed to evaluate the
variation in the results of the optimisation, considering that the load
profiles are chosen randomly from a larger dataset. This has been done
by repeating the random selection of the load profiles available in the
data set for the residential load configuration case 10 times. The results
are shown in Tables B.18 and B.19, for Spain and Norway, respectively.
The tables report the mean, standard deviation (SD), coefficient of
variation (CV), and z-score [43]. The z-score is used to calculate the
difference between these results compared to the original results, which
are presented in Section 4 (‘‘orig. result’’). The results are considered
representative if the z-score is within ±2 [44].

From Table B.19, we can observe that there is a greater variation
in the results for Spain. This might be due to the large number of
profiles available for Spain. However, the results reported in Section 4
are consistent with the results obtained in this validation, as confirmed
by a maximum z-score of 1.86 in the maximum export value. In the case
of Norway, as seen in Table B.18, there is less variation, which can be
attributed to a smaller dataset. Again, following the z-score values with
an absolute maximum of 1.55, the values reported in Section 4 align
with these results.
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A B S T R A C T

Local energy communities are forming as a way for prosumers and consumers to invest in distributed renewable
energy sources, community storage and share electricity. Meanwhile, several distribution grids have voltage
problems at certain hours of the year. Local energy communities consisting of generation and storage units
might be valuable flexible assets that the distribution system operator (DSO) can make use of. This article
aims to study how a battery in an energy community can provide services to the distribution grid, by creating
a linear optimisation model which includes power flow constraints and a battery degradation model. First, we
investigate how the battery operation of an energy community impacts the voltage in the nearby buses. We find
that when including the degradation model, the voltage limits are violated much less than when not including
the degradation model. Next, we investigate how the battery operation differs when the energy community
cooperates with an active DSO to share the battery use, and quantify how much the DSO should remunerate
the energy community. We find that the energy community should get 15 e per year due to an increase in
electricity and degradation costs, which equals an increase of 0.12%, compared to when the community is
not providing a service. Finally, a sensitivity analysis is performed to determine which parameters are more
important to consider. We find that voltage violations in the grid are sensitive to the battery replacement cost,
electric vehicle charging peak and the average spot price, while the remuneration from the DSO is sensitive to
the battery replacement cost. For small battery sizes and a low power-to-energy ratio, the community is not
able to improve the voltage at all hours of the year.
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Nomenclature

Parameters

𝛿 Cycle depth [%]
𝜂 Battery charge and discharge efficiency [–]
𝛷(𝛿) Cycle depth stress function of battery [%]
𝐶𝐵,𝑟𝑒𝑝 Replacement cost of battery [e/kWh]
𝐶𝑠𝑝𝑜𝑡
𝑡 Electricity spot price in hour 𝑡 [e/kWh]

𝐶 𝑡𝑎𝑟 Volumetric grid tariff [e/kWh]
𝐸𝐵 Energy capacity of battery [kWh]
𝑃𝐷
𝑗,𝑡 Active power demand at bus 𝑗 in hour 𝑡

[kWh/h]
𝑃 𝑃𝑉
𝑗,𝑡 PV production at bus 𝑗 in hour 𝑡 [kWh/h]

𝑄𝐷
𝑗,𝑡 Reactive power demand at bus 𝑗 in hour 𝑡

[kVArh/h]
𝑅𝑃𝐸 Power-to-energy ratio of battery [–]
𝑅𝑖𝑗 Resistance of line between bus 𝑖 and 𝑗 [Ω]
𝑋𝑖𝑗 Reactance of line between bus 𝑖 and 𝑗 [Ω]

Indices and sets

𝐵 Set of buses where voltage constraint
should be enforced

𝑖, 𝑗 bus
𝑆 Number of segments
𝑠 degradation segment
𝑇 Last hour of year
𝑡 hour

Variables

𝐶𝑑𝑒𝑔
𝑠 Battery degradation cost for segment 𝑠 [e]

𝑝𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 Battery charging for segment 𝑠 in hour 𝑡
[kWh/h]

𝑝𝑐ℎ𝑡 Battery charging in hour 𝑡 [kWh/h]
𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 Battery discharging for segment 𝑠 in hour 𝑡

[kWh/h]
𝑝𝑑𝑖𝑠𝑐ℎ𝑡 Battery discharging in hour 𝑡 [kWh/h]
𝑝𝑒𝑥𝑝𝑡 Export to grid from EC bus in hour 𝑡

[kWh/h]
𝑝𝑖𝑗,𝑡 Active power flow between bus 𝑖 and bus 𝑗

in hour 𝑡 [kWh/h]
𝑞𝑖𝑗,𝑡 Reactive power flow between bus 𝑖 and bus

𝑗 in hour 𝑡 [kVArh/h]
𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡 Battery state of charge for segment 𝑠 in

hour 𝑡 [kWh]
𝑠𝑜𝑐𝑡 Battery state of charge in hour 𝑡 [kWh]
𝑣𝑖,𝑡 Voltage at bus 𝑖 in hour 𝑡 [pu]

1. Introduction

The electricity distribution grid is changing as distributed energy
resources are increasing in popularity and households are becoming
active prosumers. A way for prosumers to organise and share electricity
is by forming energy communities. As described in EU directives regard-
ing Citizen and Renewable energy communities [1,2], the members of
an energy community should be active, and the main objective of the
community should not be to make profit, but rather to provide environ-
mental, economic or social benefits for its members. A primary aspect of
energy communities is collective assets such as storage systems, which
the literature has demonstrated are more cost-effective than individual
storage units [3,4].

Studies on energy communities have shown that photovoltaic (PV)
panels and batteries are popular technologies in energy communi-
ties [5,6], as installation costs continue to decline. An increasing num-
ber of households in Norway are currently investing in PV panels
owing to the increase in electricity prices over the previous year, as
the electricity costs in Norway have historically been relatively low.
Furthermore, the Norwegian Energy Regulatory Authority (NVE-RME)
has proposed to change the regulation regarding sharing of electricity
within properties [7], enabling houses and apartments located at the
same property to share electricity generation up to 500 kW. With
this proposition, sharing of electricity will also be possible in Norway,
potentially leading to the formation of more energy communities.
Additionally, since 2022, housing cooperatives in Norway are obliged
to install electric vehicle (EV) chargers if requested by the residents [8].

The Norwegian distribution grid has many rural areas and long
distances due to sparsely populated areas (Norway has a population
density of 14 inhabitants/km2). Rural feeders tend to have a high
resistive characteristic, and in some cases, problems with over- or
under-voltages breaching the limits of +/- 10% of nominal voltage
(EN50160 standard) [9]. In some cases, the voltage is violated even
though the households connected to the feeder are not exceeding
their allowed import or export. In these cases, the distribution system
operator (DSO) is responsible for improving the voltage quality, tradi-
tionally by upgrading lines and/or transformers. Furthermore, since the
majority of household electricity use in Norway is due to electric heat-
ing [10], voltage limits are usually violated in only a few hours of the
year when the outdoor temperature is especially low. In these hours, an
active DSO could acquire flexibility services from households instead
of reinforcing the grid, or at least to defer the grid reinforcement.
Studies have investigated how grid-connected batteries operated by a
DSO can improve the voltage [11–13]. However, EU legislation states
that ‘‘Distribution system operators shall not own, develop, manage
or operate energy storage facilities’’ [2]. Moreover, it would require
the DSO to invest in an asset which is utilised only for some hours
of the year. In this article, we investigate how an existing battery
system owned by an energy community can improve the distribution
grid voltage by providing a service to the DSO.

Energy communities can be an effective way for the DSO to acquire
flexibility in hours where there are voltage problems. Flexible resources
in energy communities can be manifold, from energy storage systems
like hot water tanks to demand side responses such as shiftable loads
or EV charging [14]. Both hot water tanks and shiftable loads are
dependent on household demand, while EVs are stochastic in nature
due to their mobility. Hence, their flexibility potential in a given hour
is uncertain. Therefore, in this study, we focus on stationary battery
storage, which has the advantage of being available at all hours.

Recently, power systems research has shown an increased interest
in battery degradation due to the increased deployment of lithium-
ion batteries [15–17]. Cyclic battery degradation depends on multiple
factors, such as C-rate, temperature, depth-of-discharge, and average
state-of-charge (SOC) [18]. Detailed degradation models are often non-
linear and lead to a high computational burden when combined with
optimisation models [19]. Therefore, many optimisation studies in
power systems neglect battery degradation [5] or use linear power-
energy models [19]. Such models often use a constraint-based approach
where for instance, power, number of cycles per day, depth of dis-
charge, and/or maximum and minimum SOC are constrained, leading
to non-optimal solutions [20]. In the context of energy communities,
examples of studies which include such constraints are [21–23]. If
cyclic degradation is disregarded in optimisation models that minimise
cost, the battery often charges and discharges heavily to perform energy
arbitrage, which in practise would lead to a much lower lifetime [24,
25]. One way to account for the cyclic degradation, while keeping the
optimisation model linear, is to add a degradation cost in the objective
function [19]. In this article, we investigate how an energy community
and a DSO can cooperate to improve the voltage profile of a distribution
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Table 1
Relevant literature on distribution grid impact from energy communities.

Ref. Grid impact Service to DSO Battery Battery degradation model Power flow analysis

[4] ✓ ✓ community ✓ ✓
[40] ✓ ✓ community ✓ X
[39] ✓ ✓ community X X
[38] ✓ ✓ community X ✓
[21] ✓ X community Xa X
[32] ✓ X X X X
[22] ✓ X individual Xa ✓
[23] ✓ Xb individual Xa ✓
[31] ✓ ✓c X X ✓

ahas limits on SOC.
bservice to reserve market.
cincludes network constraints in market clearing.

grid - and how much the DSO should remunerate the energy community
for this service. If the change in battery operation contributes to battery
degradation, it should be accounted for when calculating how much the
DSO should remunerate the energy community for providing the grid
service.

1.1. Related literature

According to [5,26], there is limited literature focusing on how
energy communities and PV-battery systems affect the distribution grid.
Until now, most studies on energy communities have primarily focused
on the sizing and siting of PV and battery systems [21,27–29], market
designs [22,30,31], or the difference between individual and shared
assets [3,32–37]. Few of these studies [21,22,32] have investigated
how energy communities impact the grid, but not specifically focused
on how the energy community operation can be changed to provide
a grid service. One exception is [31], where a peer-to-peer market
is cleared with grid constraints. Other studies, such as [23], do not
investigate how the community can provide a local service, but rather
services to the balancing reserve markets while considering congestions
in the distribution grid.

A limited number of studies [4,38–40] have investigated how an
energy community can improve the distribution grid voltage in coop-
eration with the DSO. Two ownership models of a community battery
were compared in [40], where they found that the economic and en-
vironmental performance was slightly worse when there was a shared
ownership of the battery between an aggregator and a DSO, compared
to single ownership by the aggregator, but the differences were small.
This study included a degradation model for the battery but did not
consider power flow equations. Ref. [38] found that a community
performing peak shaving helped reduce grid loading by up to 58%,
compared to when the community was minimising its costs. The costs
increased by only 0.3%. The battery model did not, however, include
degradation.

Ref. [39] investigated the operation of flexible assets in energy
communities and found that a grid-friendly strategy achieved a peak-
power reduction of up to 55%. They also found that the cost difference
between maximising economic benefits and the grid-friendly strat-
egy was very low and therefore concluded that energy communities
might be a cost-effective way to defer future grid reinforcements.
They neglected both a degradation model for the battery and power
flow equations. Ref. [4] studied how an energy community of 200
households could improve the voltage in the distribution grid, including
degradation modelling. The battery operation was heuristic-based for
self-consumption maximisation, and the main aim of the article was
to investigate how to distribute energy use of shared assets among
the community members. When comparing the annual bills of the
community with and without grid constraints, they found an increase
of 1874 £.

1.2. Contributions

To summarise the relevant literature and compare it to this article,
Table 1 presents whether the references consider grid impact, service
to the DSO, community battery, battery degradation model or power
flow constraints. The primary objective of this article is to quantify the
benefits of using community-owned battery storage for an energy com-
munity and a DSO. The electricity and degradation costs for the energy
community are estimated by running an optimisation model with and
without voltage constraints. This study examines a whole year, allowing
a broader spectrum of analysis due to seasonal variations of load and
PV in weeks, days and hours. Hence, the approach described here can
give insights to both operation and planning of energy communities. A
sensitivity analysis is performed to identify which parameters have the
prominent impact on the remuneration from the DSO. In summary, the
main contributions of this paper include:

• The paper presents a linear optimisation model which minimises
the electricity and degradation costs for an energy community.
The optimisation model includes linear battery degradation equa-
tions, which ensures that degradation costs are accounted for
while maintaining a low complexity of the optimisation problem.
The case studies show how the community-owned battery is used
differently when voltage constraints are considered.

• The proposed model provides new insights for quantifying how
much the DSO should remunerate the energy community for the
voltage service.

1.3. Outline of article

The outline of this article is as follows: First, Section 2 explains the
linear optimisation model created for this work. Section 3 explains the
various input of the Norwegian case study used to showcase the model.
Section 4 shows and discusses the main results from the case study,
highlighting the impact of the degradation model and the service to
the DSO. Finally, Section 5 concludes the article.

2. Method

Fig. 1 shows an overview of the input to and output from the
optimisation model. The model takes the following input: hourly active
and reactive load for each bus, hourly normalised PV production in
each bus and the size of the PV system, and the hourly electricity spot
price. Furthermore, the size and the power-to-energy (P2E) ratio of
the community battery system must be specified, along with the grid
tariff for the energy community. The battery degradation cost and the
number of degradation segments are also given as an input as further
explained in Section 2.3. Finally, the grid topology and resistance (R)
and reactance (X) of the grid must be specified. The optimisation model
then minimises the costs of the energy community, due to power flow
and battery constraints. The model also includes optional constraints
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Fig. 1. Overview of input to and output from the optimisation model. The battery degradation and voltage constraints are marked in blue as they are not included in some of
the cases.

for battery degradation and voltage limits, depending on the case,
which will be further explained in Section 3. The model outputs the
battery operation, the voltage and line flow of the grid, the import
to and export from the energy community, the electricity costs of the
community and the degradation cost of the battery.

2.1. Optimisation model

The optimisation model is shown in (1a)–(1t), see the nomenclature
for an explanation of the variables and parameters. Perfect foresight is
assumed, and the model is deterministic. (1a) is the objective of the
model, which is to minimise operational costs related to electricity for
the energy community and degradation cost of the battery. Import of
electricity has a spot price, value-added tax (VAT) and a grid tariff,
while it is assumed that the community can sell electricity for the spot
price (as is the regulation in Norway).

Since the original AC power flow equations result in non-convex
optimisation problems, the equations are often linearised or relaxed
(through for instance semidefinite or second-order-cone programming)
[41,42]. One common way to linearise is using the linear DistFlow
(LinDistFlow) equations made for radial distribution grids [43]. The
LinDistFlow equations assume that the line losses are negligible and
have been shown to model power networks with satisfactory accu-
racy [44,45]. Constraints (1b)–(1g) cover the LinDistFlow constraints.
(1b) describes the electricity produced and consumed in the bus of the
energy community, while (1c) describes the same, but for the remaining
buses. Note that since the objective requires separate variables for
import and export, the line connected to the energy community (EC) is
split into an import variable, 𝑝𝑖𝑗,𝑡 for j=EC bus, and an export variable,
𝑝𝑒𝑥𝑝𝑡 . This also requires a separate constraint depending on if the line in
question is connected to the energy community (1d). (1e) describes the
reactive power produced and consumed in each bus. (1f) describes the
voltage dependence on the line resistance and reactance, where (1g)
covers the EC bus.

Constraints (1h)–(1l) are constraints for the battery operation. (1h)–
(1j) relate the SOC with the previous hour and the amount of electricity
charged and discharged. The SOC of the final hour is set equal to the
first hour. (1k)–(1l) restrict the charge and discharge to be lower than
the battery inverter capacity, which is determined by the P2E ratio of
the battery system, 𝑅𝑃𝐸 .

Constraints (1m)–(1q) for cyclic battery degradation are added as
described in [46]. Each battery segment, 𝑠, has a cost which makes
it more expensive the more segments the battery discharges through.
This cost is added to the objective function to penalise heavy use of the
battery. It ensures that the battery does not do arbitrage on very small
price variations or discharge with high power, which would cause more
harm to the battery in terms of a lower lifetime than benefit in terms
of electricity cost savings. This model is chosen since it is piecewise
linear.

Finally, (1r)–(1t) show the non-negativity constraints (see Box I).

Table 2
Case overview.

Case Battery degradation
cost included in
objective function?

Voltage requirement
included?

No battery X X
EC ✓ X
EC no deg. X X
EC+DSO ✓ ✓
EC+DSO no deg. X ✓

2.2. Energy community providing service to DSO

For cases where the battery is also utilised to provide a service to
the DSO, the following constraint is included:

𝑉 2
𝑖 ≤ 𝑣𝑖,𝑡 ≤ 𝑉

2
𝑖 𝑖 ∈ 𝐵,∀𝑡 (2)

where B is the set of buses where this voltage requirement must be
fulfilled.

2.3. Battery degradation model

The battery degradation cost is found from [46]:

𝐶𝑑𝑒𝑔
𝑠 = 𝐶𝐵,𝑟𝑒𝑝

𝜂
(𝛥𝛷(𝛿𝑠)) (3)

where 𝐶𝐵,𝑟𝑒𝑝 is the replacement cost of the battery in e/kWh and 𝛥𝛷(𝛿𝑠)
is the stress due to the cycle depth 𝛿𝑠 of segment 𝑠 in %.

3. Case

This section explains the Norwegian case study used to showcase
the optimisation model. Four cases are run, as shown in Table 2. Case
No battery is used as a reference case where the battery size is set to
0. In case EC (energy community), the battery is used to minimise the
energy community’s costs without enforcing constraint (2). Case EC no
deg. is similar to case EC, however the degradation cost, ∑𝑠 𝐶

𝑑𝑒𝑔
𝑠 𝑝𝑑𝑖𝑠𝑐ℎ𝑠,𝑡 ,

is removed from the objective function. In case EC+DSO, the battery is
now used to minimise costs for the energy community and to improve
the voltage, hence constraint (2) is now included. Case EC+DSO no
deg. is similar to case EC+DSO, however, the degradation cost is not
considered in the objective function.

3.1. Input

Table 3 shows the input parameters. The following subsections
describe the grid, household demand, PV production, spot prices and
degradation cost input.
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Objective:

min
∑
𝑡

[
(𝐶𝑠𝑝𝑜𝑡

𝑡 + 𝐶 𝑡𝑎𝑟)𝑝𝑖𝑚𝑝𝐸𝐶𝑙𝑖𝑛𝑒,𝑡 − 𝐶𝑠𝑝𝑜𝑡
𝑡 𝑝𝑒𝑥𝑝𝑡 +

∑
𝑠
𝐶𝑑𝑒𝑔
𝑠 𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡

]
(1a)

Power flow constraints:

𝑝𝑖𝑗,𝑡 − 𝑝𝑒𝑥𝑝𝑡 =
∑

𝑘∶𝑗→𝑘
𝑝𝑗𝑘,𝑡 + 𝑃𝐷

𝑗,𝑡 − 𝑃 𝑃𝑉
𝑗,𝑡 + 𝑝𝑐ℎ𝑡 − 𝑝𝑑𝑖𝑠𝑐ℎ𝑡 𝑗 = EC bus,∀𝑡 (1b)

𝑝𝑖𝑗,𝑡 =
∑

𝑘∶𝑗→𝑘
𝑝𝑗𝑘,𝑡 + 𝑃𝐷

𝑗,𝑡 ∀𝑗 ≠ EC bus, 𝑡 (1c)

𝑝𝑖𝑗,𝑡 =
∑

𝑘∶𝑗→𝑘
𝑝𝑗𝑘,𝑡 − 𝑝𝑒𝑥𝑝𝑡 + 𝑃𝐷

𝑗,𝑡 ∀𝑘 = EC bus, 𝑡 (1d)

𝑞𝑖𝑗,𝑡 =
∑

𝑘∶𝑗→𝑘
𝑞𝑗𝑘,𝑡 +𝑄𝐷

𝑗,𝑡 ∀𝑗, 𝑡 (1e)

𝑣𝑗,𝑡 = 𝑣𝑖,𝑡 − 2(𝑅𝑖𝑗𝑝𝑖𝑗,𝑡 +𝑋𝑖𝑗𝑞𝑖𝑗,𝑡) ∀𝑗 ≠ EC bus, 𝑡 (1f)

𝑣𝑗,𝑡 = 𝑣𝑖,𝑡 − 2
[
𝑅𝑖𝑗 (𝑝𝑖𝑗,𝑡 − 𝑝𝑒𝑥𝑝𝑡 ) +𝑋𝑖𝑗𝑞𝑖𝑗,𝑡

]
𝑗 = EC bus,∀𝑡 (1g)

Battery constraints:

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 + 𝜂𝑝𝑐ℎ𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ
𝑡 ∀𝑡 > 0 (1h)

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑇 + 𝜂𝑝𝑐ℎ𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ
𝑡 ∀𝑡 = 0 (1i)

𝑠𝑜𝑐𝑡 ≤ 𝐸𝐵 ∀𝑡 (1j)

𝑝𝑐ℎ𝑡 ≤ 𝐸𝐵𝑅𝑃𝐸 ∀𝑡 (1k)

𝑝𝑑𝑖𝑠𝑐ℎ𝑡 ≤ 𝐸𝐵𝑅𝑃𝐸 ∀𝑡 (1l)
Battery degradation constraints:

𝑝𝑐ℎ𝑡 =
∑
𝑠
𝑝𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 ∀𝑡 (1m)

𝑝𝑑𝑖𝑠𝑐ℎ𝑡 =
∑
𝑠
𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 ∀𝑡 (1n)

𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡 ≤ 𝐸𝐵∕𝑆 ∀𝑠, 𝑡 (1o)

𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡 = 𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡−1 + 𝜂𝑝𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔
𝑠,𝑡 ∀𝑠, 𝑡 > 0 (1p)

𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡 = 𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑇 + 𝜂𝑝𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 − 1
𝜂 𝑝

𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔
𝑠,𝑡 ∀𝑠, 𝑡 = 0 (1q)

Non-negativity constraints:

𝑝𝑒𝑥𝑝𝑡 , 𝑝𝐸𝐶𝑙𝑖𝑛𝑒,𝑡, 𝑝
𝑐ℎ
𝑡 , 𝑝𝑑𝑖𝑠𝑐ℎ𝑡 , 𝑠𝑜𝑐𝑡 ≥ 0 ∀𝑡 (1r)

𝑣𝑖,𝑡 ≥ 0 ∀𝑖, 𝑡 (1s)

𝑝𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 , 𝑝𝑑𝑖𝑠𝑐ℎ,𝑠𝑒𝑔𝑠,𝑡 , 𝑠𝑜𝑐𝑠𝑒𝑔𝑠,𝑡 ≥ 0 ∀𝑠, 𝑡 (1t)

Box I.

Table 3
Input parameters.

Parameter Value Unit

Battery efficiency, 𝜂 0.95 –
Battery replacement cost, 𝐶𝐵,𝑟𝑒𝑝 200 e/kWh
Battery size, 𝑒𝐵 120 kWh
PV size 8 kWp
No. degradation segments 8 –
Cosphi 0.99 –
EC bus 16 –
Grid tariff, 𝐶 𝑡𝑎𝑟 0.041 e/kWh
Value added tax (VAT) 0.25 –
P2E ratio, 𝑅𝑃𝐸 0.5 –
Average spot price 0.05 e/kWh
Voltage limits, 𝑉 𝑏, 𝑉 𝑏 0.92, 1.08 pu
Buses where voltage limit is enforced, 𝐵 16, 17 –

3.1.1. Modified CIGRE LV distribution network with energy community
A modified version of the residential part of the CIGRE European LV

distribution network [47] is shown in Fig. 2. There are loads connected
to buses 0, 10, 14, 15, 16 and 17. The energy community is connected
to bus 16, with household load, PV production, shared EV chargers and
a shared community battery. The R/X values and length of lines can be
found in [47]. To make the case study more similar to the Norwegian
rural distribution grids, the length of all the lines has been multiplied
with a factor of 1.9.

In cases EC+DSO and EC+DSO no deg., lower and upper voltage
limits of 0.92 pu and 1.08 pu are used for buses 16 and 17 in (2).

3.1.2. Household demand, EV charging demand and PV production
Household demand of all load buses is based on hourly normalised

data from 100 Norwegian households in 2015 [48]. Loads of the CIGRE
grid are populated by adding random profiles to each load bus, before
scaling them up to meet loads of the CIGRE European LV distribution
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Fig. 2. Modified residential CIGRE European LV distribution network.

Fig. 3. Demand and production at EC bus.

Table 4
Max. load and no. of households at buses.

Bus 10 14 15 16 17

Max. load [kWh/h] 14.25 49.4 52.25 33.25 44.65
No. of households 3 12 13 8 10

network. Maximum load and number of households per load bus can be
seen in Table 4. The aggregated load for each bus is shown in Fig. A.11.

The EV charging data is taken from a dataset on residential electric
vehicle chargers for Norwegian apartment buildings [49]. The data
used is the synthetic load profile of 7.2 kW common chargers from
Dataset 3b_Hourly EV loads - Aggregated shared. Since the dataset starts
10 January 2019 and the number of shared chargers increased through-
out the year, two modifications have been made to the dataset so that
it is consistent with the other data in the case study: only data for seven
and eight chargers are used, and the weekdays are shifted to correspond
to the weekdays of 2015. Hence, the days in the dataset between 30
May and 24 June 2019 are used and repeated throughout the year.

The PV panels have the specifications from [50], and an assumed
efficiency of 0.95. The power output from the PV system is calculated
from measured irradiance and temperature data for Mære, Norway, as
explained in more detail in [48]. The household demand, EV charging
demand and PV production at the EC bus (16) can be seen in Fig. 3.

3.1.3. Spot price and grid tariff
The spot price from price zone NO3 for 2015 is used and scaled

to match the predicted average spot price for Norway 2030 of 0.050

e/kWh [51]. The resulting spot price can be seen in Fig. 4 (excluding
VAT). The energy-based grid tariff, 𝐶 𝑡𝑎𝑟, is set to 0.04126 e/kWh from
the historical tariff of the Norwegian DSO Tensio TN [52].

3.1.4. Degradation cost
The cycle depth stress function of a lithium-ion nickel manganese

cobalt (NMC) battery is used to calculate the degradation cost [46,53]:

𝛷(𝛿) = (5.24 ⋅ 10−4)𝛿2.03 (4)

Using (3) along with a battery replacement cost of 200 e/kWh [54]
and eight segments, the degradation cost segments are calculated to be
between 0.013 and 0.2095 e/kWh as shown in Table 5.

3.2. Loss calculation

Since the LinDistFlow equations do not account for losses, a load
flow analysis is done in pandapower post-optimisation. The hourly
values for demand, generation, battery charge and discharge are given
as input for all cases, and the resulting line losses are reported.

3.3. Sensitivity

To analyse the impact of different parameters on the results, the
optimisation is run for different inputs of PV size, battery size, P2E
ratio, max. EV charging, the average spot price level and the battery
replacement cost. The input is shown in Table 6.
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Fig. 4. Electricity spot price for NO3 from 2015, scaled to an average level of 0.050 e/kWh [51].

Table 5
Degradation cost segments.

Segment, 𝑠 1 2 3 4 5 6 7 8

𝐶𝑑𝑒𝑔
𝑠 [e/kWh] 0.0130 0.0400 0.0676 0.0956 0.1238 0.1522 0.1808 0.2095

Table 6
Sensitivity input.

PV size [kWp] Battery size
[kWh]

P2E ratio EV max.
charging [kWh/h]

Average spot price
[e/kWh]

Battery replacement
cost [e/kWh]

6.48 96 0.1 17.9 0.040 100
7.2 108 0.3 20.1 0.045 150
8 120 0.5 22.3 0.050 200
8.8 132 0.7 24.6 0.055 250
9.68 144 0.9 26.8 0.060 300

4. Results and discussion

The optimisation model is run for the given case study for 8760 h.
In this section, we first illustrate how the degradation model affects the
battery operation and voltage violations. Second, we illustrate how the
battery operation changes when the community coordinates with the
DSO to keep within voltage limits. Third, we summarise the results for
the whole year and show how this service impacts the costs and battery
use for the community. Finally, we investigate how sensitive the results
are with respect to the input parameters before limitations of the study
are addressed.

4.1. Degradation model effect on battery operation

Fig. 5 shows the results for one week in January for cases EC and EC
no deg. The top graph shows the residual demand for the EC bus, with
and without the battery. The middle graph shows the battery charge,
discharge and SOC, while the lower graph shows the voltage at buses 16
and 17, which are the two buses where the voltage requirement must
be fulfilled. In Fig. 5(a), it can be seen that the battery is used in five
of the seven days even though there is no surplus energy due to low
irradiance in winter. Hence, the battery is doing arbitrage on the spot
price without considering the stress on the battery, and this leads to
several drops in voltage below the voltage limit. When the degradation
model is included, in Fig. 5(b), the battery is used a lot less, since the
variation in spot price is not high enough compared to the degradation
cost.

Fig. 6 shows the results for one week in June for cases EC and EC
no deg. In Fig. 6(a) it can be seen that the battery is charged to 100%
almost every day of the week due to a surplus of PV production. As
a result, the voltage is quite stable except for two-three hours where
the battery suddenly discharges or charges a lot, causing a spike in the
voltage. In Fig. 6(b), when the degradation model is included, a lot of
the self-produced energy from the PV generation is actually exported
because it is more profitable to spare the battery than to charge from PV

generation due to low spot price. Due to the lower usage of the battery,
the voltage varies more throughout the week but avoids the sudden
drops and spikes in voltage. Note also that the voltage is nowhere near
the maximum voltage limit of 1.08 pu, due to a high load in the grid
also in summer (ref. Fig. A.11).

4.2. Energy community coordinating with DSO

Fig. 7 illustrates the difference between cases EC (a) and EC+DSO
(b), for the last three weeks in December. Note that these two cases
both include the degradation model. From Fig. 7(a), we observe that
the voltage is below the limit for several hours and that the battery is
being used for energy arbitrage since there is no surplus energy from
the PV. In case EC+DSO, the battery keeps the voltage at buses 16 and
17 above the voltage limit at all hours, which requires only a slightly
different battery operation. Interestingly, one of the voltage drops that
should be avoided in Fig. 7(a) (at approx. hour 8600) is created by the
battery, because it is charging at maximum capacity (60 kWh/h). In
Fig. 7(b), we observe that the battery limits the charging to avoid the
voltage from dropping below 0.92 pu. In other words, the battery does
not only remove voltage problems which occur due to high load, but it
also avoids causing a voltage problem in the grid.

4.3. Yearly results of cases

Fig. 8 shows the voltages at buses 16 and 17 for cases EC no deg.,
EC and EC+DSO. Here we can observe that when not including the
degradation model (upper graph), the battery is often charging at the
same time as the voltage is below the limit. This occurs less when the
degradation model is included (middle graph), indicating that many
of the voltage problems in the upper graph are caused by the battery.
There are, however, also many hours where the voltage is below 0.92
pu and the battery is not charging. Finally, the lower graph shows how
the battery operation is changed to keep the voltages within the voltage
limit.
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Fig. 5. One week in January, comparing cases EC and EC no deg.

Fig. 6. One week in June, comparing cases EC and EC no deg.

Table 7 compares the electricity and degradation costs for all cases,
both with and without the degradation model. Note that cases EC
no deg. and EC+DSO no deg. correspond to the column named no
degradation. Comparing the reference case with case EC, the electricity
cost decreases by 267 e due to battery use, while the degradation cost
increases by 121 e. Comparing cases EC and EC+DSO, the electricity
cost increases by 5 e, and the degradation cost increases by 10 e. In
other words, the total remuneration needed from the DSO to cover the
additional costs for the energy community is 15 e per year. From the
technical results in Table 8, we observe that the voltage violations at
bus 17 is 38 h both in the reference case and in case EC. At bus 16,
however, the voltage violations increase due to the battery operation,
in addition to a lower minimum voltage.

Comparing cases EC and EC no deg., the electricity cost reduces
by 343 e, but the degradation cost increases by 2299 e. This is
connected to the battery usage shown in Table 8, where we observe
that the battery is used substantially more in case EC no deg. (3371 vs
1370 h). Not considering degradation also leads to a lower minimum

voltage of 0.872 pu due to the battery operation. Also, the voltage
is violated 184 h at bus 16, compared to 25 h when degradation is
considered. At bus 17, the voltage is violated 76 h, compared to 38 h.
This increase in voltage violations is created solely from the battery
operation, as we can compare with the reference case. All voltage
violations occur in winter (November-February) in case EC, and the
maximum voltage limit of 1.08 pu is not violated in any of the cases.
Finally, we can observe from Table 7 that case EC+DSO no deg. has
a lower degradation cost compared to case EC no deg. The reason for
this is that the battery must limit its charging and discharging when the
voltage restriction is included, which also leads to a lower degradation.

4.4. Impact on distribution grid losses

Since the LinDistFlow equations neglect line losses, a power flow
has been run in pandapower post-optimisation to determine the losses
in the distribution grid. From Table 9 we can see that the battery
decreases the losses in the grid by 51 kWh, when comparing case EC
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Fig. 7. Last three weeks in December, comparing cases EC and EC+DSO.

Fig. 8. Battery charging vs. voltages for cases EC no deg., EC and EC+DSO.

with case no battery. In case EC+DSO, when the energy community
is providing a service to the DSO, the losses are further decreased by
8 kWh. Comparing cases EC and EC no deg., we see that the losses
increase by 859 kWh when not accounting for degradation. Hence,
including degradation does not only contribute to an improved voltage
profile but also reduces losses in the grid.

4.5. Sensitivity analysis

In this section, we demonstrate the sensitivity of the results to
varying input data. The reader is referred back to Table 6 to see the
different sensitivity inputs, and all sensitivity results can be found in
Tables B.10 and B.11.

4.5.1. Voltage violations
Fig. 9 shows the hours of voltage violation at buses 16 and 17

together with the lowest voltage for the different sensitivity input.
Compared to bus 16, the voltage violations are always higher at bus
17, with 35 h as the lowest and 42 h as the highest. The most sensitive
parameter is the EV charging peak, where the number of voltage

violations ranges from 35 to 41 at bus 17. A higher EV charging peak
leads to more voltage violations, and the charging profile of the EV
is responsible for the majority of the voltage violations. The minimum
voltage is, however, quite stable at 0.908 pu.

The average spot price of 0.06 e/kWh leads to a higher number
of voltage violations compared to lower spot prices, due to more
arbitrage from the battery. However, as the graph shows, it is not
necessarily true that a lower average spot price will result in fewer
voltage violations. Similarly, a higher battery replacement cost does
not necessarily lead to a decrease in voltage violations, although that
is the trend. The lowest battery replacement cost leads to the highest
number of voltage violations and the voltage violations decrease until
a cost of 250 e/kWh. The lowest voltage decreases for higher average
spot prices but is quite stable around 0.909 pu. A battery replacement
cost of 100 e/kWh gives the lowest voltage reported, at 0.894 pu.

Furthermore, the PV size has no impact on the voltage violations
or the lowest voltage. This result is case-specific and is due to the fact
that household demand in Norway is high in winter, while the solar
irradiance is low (see Fig. 3). When the size of the battery is increased,
there is a higher charging capacity, which results in an increase in the
number of voltage violations (the P2E ratio is fixed at 0.5 when varying
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Table 7
Yearly costs for energy community [e].

Case With degradation No degradation

Electricity cost Degradation cost Electricity cost Degradation cost

No battery (ref.) 12 801 0
EC 12 534 121 12 191 2420
EC+DSO 12 539 131 12 195 2401

Difference EC and EC+DSO 5 10 4 −19

Table 8
Yearly technical results for battery and network.

Case With degradation No degradation

Battery
hours

Hours of voltage
violation at bus 16, 17

Lowest voltage
[pu]a

Battery
hours

Hours of voltage
violation at bus 16, 17

Lowest voltage
[pu]a

No battery (ref.) 0 19, 38 0.909
EC 1370 25, 38 0.908 3371 184, 76 0.872
EC+DSO 1432 0, 0 0.92 3441 0, 0 0.92

aLowest voltage means the minimum voltage at bus 16 or 17.

Table 9
Yearly total losses for the CIGRE LV grid obtained post-optimisation [kWh].

Case With degradation No degradation

No battery (ref.) 32,128
EC 32,077 32,936
EC+DSO 32,069 32,725

Difference EC and EC+DSO −8 −211

the battery size, so the charging capacity increases with the battery
size). Consequently, the lowest voltage drops to 0.90 pu for the largest
battery. The same logic follows when looking at the P2E ratio: a higher
ratio gives more voltage violations since the battery can charge with a
higher power, and the voltage drops here are as severe as for the lowest
battery replacement cost.

4.5.2. Remuneration from DSO
Fig. 10 shows the difference in cost between cases EC and EC+DSO,

which can be interpreted as the remuneration that the DSO must pay
to the community for providing this service.

The most sensitive parameter is the battery replacement cost, rang-
ing from 9 to 21 e. We also observe that the ratio between the elec-
tricity and degradation cost is changing for the different replacement
costs. A higher EV charging peak also gives a higher remuneration,
which is solely due to an increase in degradation cost. A larger battery
gives a lower remuneration, but it differs whether it is due to lower

degradation cost or electricity cost. In general, a larger battery gives
lower electricity cost, both for case EC and EC+DSO.

The average spot price always gives a remuneration of approx. 14
e, but it can be seen that the ratio between degradation and electricity
cost changes for the different spot prices. This is due to the trade-off in
the optimisation model: energy arbitrage or degradation of the battery.
When the spot price is high, the battery is willing to accept a higher
degradation cost due to higher savings in electricity cost.

For battery sizes of 96 and 108 kWh, and a P2E ratio of 0.1, the
battery system is not able to provide the service to the DSO at all hours,
and the optimisation model gives no solution. Input parameters of PV
size and P2E ratio (except for a ratio of 0.1) have a very small impact
on remuneration.

4.6. Limitations of study

In this study, we only consider a volumetric tariff, not demand
charges or other tariffs that give incentives to lower the peak demand.
This would have added an additional term in the objective function,
which would lower the peak consumption and probably lead to fewer
voltage violations.

A time resolution of one hour averages the PV production, house-
hold demand and EV charging, and therefore probably understates the
charging and discharging capacity needed from the battery system. We
expect that a higher resolution for PV production, household demand
and EV charging demand would give more voltage violations due to

Fig. 9. Number of hours where the voltage limit is violated and minimum voltage for sensitivity analysis in case EC.
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Fig. 10. Difference in yearly costs for cases EC and EC+DSO (in other words, the remuneration needed from the DSO to cover the costs for the community).

higher peaks in import and export. This would again lead to the need
for a higher P2E ratio, and perhaps energy capacity, of the battery
system to resolve the voltage problems in the grid in case EC+DSO.
Higher and more frequent peaks would lead to more charging and
discharging from the battery, which again would give a higher battery
degradation cost.

Furthermore, we have assumed a perfect foresight model, which
lets the battery operate with perfect information about the consump-
tion, production and, thereby, the voltage in the grid. The sensitivity
analysis compensates for the lack of uncertainty in our model, which
has captured the effects of different levels of spot prices, EV charging
peaks and PV size. However, the sensitivity analysis uses the same
profiles/trends and only changes the level of the profile. The future
spot price is expected to be more variable than the historical records,
affecting our results. A more variable spot price could lead to a more
significant difference in electricity costs for cases EC and EC+DSO,
meaning that the remuneration from the DSO would increase.

Finally, an energy community can consist of flexibility assets other
than battery energy storage, such as hot water tanks or load shifting,
which could impact the voltage violations and the remuneration from
the DSO. This kind of flexibility would also be less costly than a
stationary battery but has the limitation of not always being available,
as mentioned in Section 1.

5. Conclusion

The primary objective of this article was to study how an en-
ergy community and a DSO can coordinate to improve the voltage
profile in the distribution grid. This was done by using a realistic
model of community battery operation, taking into account battery
degradation.

From our results and the sensitivity analysis performed, we observed
that battery operation does affect both the voltage of the bus where it is
connected and neighbouring buses. For the case study we investigated,
the battery did actually cause some voltage problems due to arbitrage,
mostly in the bus where the energy community was connected. This
result is of importance for customers who are connected to the same
bus as an energy community, as the community might actually create
voltage problems for itself and other customers connected to the same
bus. From Table 8, we see that the degradation model has a great
impact on the voltage violations. When the battery is more restrictive
on charging and discharging to diminish the battery degradation, it also
leads to fewer spikes in voltage. Additionally, the losses in the grid are
reduced when the battery provides the grid service. In other words: a
battery-friendly operation is also a grid-friendly operation. The number

of hours of voltage violations increased by 636% at the community
bus and 100% at the neighbouring bus (17) when degradation was not
considered, compared to when it was considered.

Moreover, our results show that the cost difference for the commu-
nity, and thereby the remuneration needed from the DSO, was very
low. It amounted to 15 e per year, which equals 0.12%. This result
is similar to those reported by [4,38–40]. Ref. [38] reported a cost
increase of 0.3% when doing peak shaving (note battery degradation
was not considered), and [4] reported a cost increase of 1.6% when
including grid constraints. The sensitivity analysis showed a range of
9–21 e in remuneration per year, which equals 0.07–0.17%, where the
battery replacement cost was the most sensitive parameter.

The sensitivity analysis also showed that for some energy commu-
nity configurations, the battery size or the inverter capacity was too low
to perform the service throughout the whole year. Another interesting
finding is that the battery is not always solving a voltage problem, it
is sometimes merely avoiding creating a voltage problem. As shown in
Fig. 10, the degradation cost had the major part in the remuneration
from the DSO. If degradation cost would not be considered, the energy
community would be remunerated less than their real cost of providing
this service.

The case studied in this article was made with Norwegian data, and
the results must be interpreted with this in mind. Since Norwegian
households use electricity for space and water heating, their peak
electricity consumption is in winter, which is also when the irradi-
ance is the lowest. In summer, when the irradiance is the highest,
the consumption is much lower. This stands in contrast to Southern
European countries where households use more electricity in summer
due to cooling [55]. The sensitivity analysis showed that increasing the
PV size did not reduce voltage violations and that it had little impact
on the remuneration from the DSO. Also, there were no over-voltage
challenges, most likely due to the low share of PV in the grid. These
results could be very different for countries with different profiles for
household electricity demand and PV generation.

The practical agreement between the DSO and the energy commu-
nity has not been addressed in this study. However, a more practical
interpretation of our results is that an energy community with a sta-
tionary battery can coordinate with the DSO to improve the distribution
grid voltage, without the need for a very large remuneration. Moreover,
if this were put into effect, we would suggest that the community and
DSO collaborate together to ensure that the battery characteristics (its
energy and power capacity) would be sufficient to address the voltage
problems in the grid.
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Fig. A.11. Demand per bus. Stippled line shows the load specified by the CIGRE European LV distribution network [47].

Table B.10
Sensitivity analysis costs [e].

Case EC EC+DSO

electricity cost deg. cost electricity cost deg. cost

PV size [kWp]

6.4 13 082 101 13 086 111
7.2 12 802 112 12 807 122
8 12 534 121 12 539 131
8.8 12 278 130 12 283 140
9.6 12 032 137 12 037 147

Battery size [kWh]

96 12 569 108
108 12 552 114
120 12 534 121 12 539 131
132 12 519 127 12 524 135
144 12 504 132 12 509 141

EV charging peak [kWh/h]

17.9 12 255 121 12 260 129
20.1 12 394 121 12 399 130
22.3 12 534 121 12 539 131
24.5 12 674 121 12 679 132
26.8 12 814 121 12 819 134

Average spot price [e/kWh]

0.04 11 014 105 11 016 117
0.045 11 778 110 11 780 122
0.05 12 534 121 12 539 131
0.055 13 296 127 13 300 138
0.06 14 051 137 14 057 146

P2E ratio

0.1 12 551 110
0.3 12 534 121 12 539 131
0.5 12 534 121 12 539 131
0.7 12 534 121 12 539 131
0.9 12 534 121 12 539 131

Battery replacement cost [e/kWh]

100 12 430 138 12 431 146
150 12 502 119 12 506 127
200 12 534 121 12 539 131
250 12 585 94 12 588 109
300 12 612 84 12 614 102
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Table B.11
Sensitivity analysis technical results case EC.

Battery hours Voltage violation
hours at bus 16, 17

Lowest voltage [pu]

PV size [kWp]

6.4 1217 25, 38 0.908
7.2 1326 25, 38 0.908
8 1370 25, 38 0.908
8.8 1449 25, 38 0.908
9.6 1482 24, 38 0.908

Battery size [kWh]

96 1271 20, 37 0.909
108 1327 21, 37 0.909
120 1370 25, 38 0.908
132 1411 25, 38 0.906
144 1458 26, 39 0.9

EV charging peak [kWh/h]

17.9 1385 20, 35 0.908
20.1 1378 23, 36 0.908
22.3 1370 25, 38 0.908
24.5 1363 27, 39 0.908
26.8 1359 30, 41 0.907

Average spot price [e/kWh]

0.04 1296 22, 38 0.909
0.045 1327 22, 37 0.909
0.05 1370 25, 38 0.908
0.055 1396 26, 38 0.908
0.06 1436 27, 40 0.905

P2E ratio

0.1 1541 19, 37 0.909
0.3 1374 22, 37 0.909
0.5 1370 25, 38 0.908
0.7 1367 25, 39 0.894
0.9 1367 25, 39 0.894

Battery replacement cost [e/kWh]

100 1797 35, 42 0.894
150 1509 28, 40 0.905
200 1370 25, 38 0.908
250 1163 22, 37 0.909
300 1065 21, 38 0.909
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Appendix A: Additional sensitivity
analysis for Paper VI

A.1 Self-consumption rate

Figure A.1 shows the self-consumption rate for the energy communities in Paper
VI. It shows that when load shifting is combined with PV generation (PVshift) it
obtains approximately the same self-consumption as PV generation with a battery
(PVbattery).

Figure A.1: Comparing the self-consumption rate for various technologies in the
energy community.

A.2 Maximum export

Figure A.2 shows the maximum export for the energy communities in Paper VI.
It shows that when there is only PV generation (onlyPV ), or PV generation and
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battery (PVbattery), the export is the highest. Export is slightly lowered when
load shifting is included.

Figure A.2: Comparing the maximum export for various technologies in the energy
community.
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