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Abstract

Creating explicit models of dynamical systems leads to models that will be as accurate as
their assumptions. Although many physical laws are still useful for certain use cases but
may not be perfectly accurate. Using machine learning methods to learn representations
of dynamical systems can be done using much fewer assumptions about the system, but
is reliant on having enough data to be accurate. Combining machine learning methods
with prior information makes it possible to create models that are more accurate than
either method separately.

The main motivation of this master project is to investigate methods of training ma-
chine learning models on dynamical systems, while also incorporating prior information
derived from first principles to see what challenges exist. This initial investigation is then
used to apply the same techniques for other types of problems that can be especially
difficult to solve using classical methods.
The machine learning architecture called Physics Informed Neural Networks (PINNs)

is a recent method that can successfully merge prior system information with data-driven
machine learning. This master project applies PINNs to multiple different types of
dynamical systems and investigates what it takes to properly train the machine learning
models. There has been many improvements to the basic PINN training method, and
introducing causality when training has been shown to give improved results in many
cases. It also used PINNs successfully to discover dynamical systems starting from
an incomplete equation, both where the equation is known but the parameter values
are unknown, as well as the case where there is an unknown term in the equation
itself. Finally, knowledge of dynamical systems is then combined with machine learning
methods to solve optimal control problems on PDEs, as well as combinations with causal
training.
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Sammendrag

Å modellere dynamiske systemer eksplisitt vil føre til modeller som er like nøykatige som
antagelsene som gikk inn i modelleringen. Mange fysiske lover er nyttige modellerings-
verktøy for mange bruksomr̊ader, men er ikke alltid perfekte. Å bruke maskinlærings-
metoder for å lære representasjoner av dynamiske systemer kan gjøres ved å bruke mye
færre antakelser om systemet, men er avhengig av å ha nok data til å være nøyaktige.
Ved å kombinere maskinlæringsmetoder med a priori informasjon gjør det mulig å lage
modeller som er mer nøyaktige enn det man kunne f̊att til med hver metode separat.
Hovedmotivasjonen for denne masteroppgaven er å undersøke metoder for å trene

opp maskinlæringsmodeller p̊a dynamiske systemer, samtidig som man tar med tidligere
informasjon utredet fra første prinsipper for å se hvilke treningsutfordringer som eksis-
terer. Resultatene fra denne første undersøkelsen vil dermed brukes for å anvende de
samme teknikkene p̊a andre typer problemer som kan være spesielt vanskelig å løse med
klassiske metoder.
Maskinlæringsarkitekturen kalt Physics Informed Neural Networks (PINNs) er en

ganske ny metode som med klarer å kombinere a priori informasjon om systemet med
maskinlæring. Denne masteroppgaven bruker PINNs p̊a flere forskjellige typer dynamis-
ke systemer og undersøker hva som skal til for å trene maskinlæringsmodellene p̊a riktig
m̊ate. Det har kommer mange forbedringer til den mest grunnleggende treningsmetoden
for PINNs, og det å legge til kausalitet i treningen har vist å gi bedre resultater i mange
tilfeller. Den har ogs̊a brukt PINNs med suksess for å oppdage dynamiske systemer ved
å starte fra en ufullstendig ligning, b̊ade der ligningen er kjent men at parameterverdier
er ukjente, i tillegg til der det er et ukjent ledd i ligningen selv. Til slutt blir kunn-
skap om dynamiske systemer kombinert med maskinlæringsmetoder for å løse optimale
kontrollproblemer med PDEer, samt kombinasjoner med kausal trening.
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1 Introduction

1.1 Background and Motivation

Dynamical systems is an area of mathematics used for describing and modeling anything
that involves change. It has become ubiquitously used within the fields of engineering,
physics, chemistry, economy and many other applied sciences. Systems of interest can
be modeled by sets of equations that describe how the system changes over time. These
equations can then be used for investigating desired properties of the system, creating
simulations to see how the system behaves and modifying aspects to change the behavior.
Using physical laws makes it often possible to write down explicit system models starting
from first principles. The model of the system will then be a representation of the
underlying dynamics which holds for a given set of assumptions. These assumptions
must be made explicitly before the model is to be used, and can lead to simpler or more
complicated models. For example will Newton’s laws of motion be an accurate model for
most practical use cases, but Einstein’s theory of relativity proved to be a more general
and complicated model which conflicts with Newton’s laws in extreme cases.

The field of machine learning has become very popular in recent times because of an
increased amount of both data and computational power. Machine learning makes it
possible for computers to learn from data in order to solve specific problems. This is
often accomplished by making the computer create its own internal model of the problem
it is trying to solve. Machine learning has already been used extensively for modeling
dynamical systems in various ways, which can be particularly useful for systems where
it is difficult to write down explicit equations. Playing board games like Chess, or
understanding and generating language are both examples of problems where writing
down governing equations are challenging.
An interesting problem is then if it is possible to combine the two approaches, where

both explicit equations based on first principles are combined with internally learned
representations from data to create models that capture reality in a better and more
efficient way than either methods separately.

1.2 Contribution

This project explores the potential of using machine learning approaches for learning
models of complicated dynamical systems, while also incorporating prior knowledge of
the systems derived from first principles. An investigation into what systems are easy
to learn and which are more difficult, as well as how to formulate the machine learning
problem correctly and efficiently. The main focus is on a deep learning architecture
called Physics Informed Neural Networks, which will be explained later in more detail.
This information gained from this initial investigation is then put to use by applying

these techniques in clever ways to more complicated problems that might not be eas-
ily solved with classical methods. Problems from data-driven discovery of dynamical
systems and optimal control of systems governed by partial differential equations are of
particular interest.

1



1 Introduction

1.3 Research Questions

A set of research questions are formulated explicitly, to be used for guiding the project
in the intended direction.

• What is the state of the art of modeling dynamical systems by combining prior
information with machine learning?

• How are machine learning approaches used for data-driven discovery of dynamical
systems when starting from incomplete models?

• How can knowledge of dynamical systems be combined with machine learning
approaches to find optimal control policies?

1.4 Structure of the Thesis

• Chapter 1 - Introduction: Gives an overview of the main motivations behind the
project work, and formulates a set of research objectives.

• Chapter 2 - Theory: Presents the background theory necessary to understand the
rest of the project work. Also contains an overview of the current literature.

• Chapter 3 - Method: Includes an explanation and motivation of each individual
experiment, along with the necessary details in order to reproduce the results.

• Chapter 4 - Results and Discussion: Shows the results from each experiment pre-
sented in the method chapter, and discusses the relevance and meaning of each
result.

• Chapter 5 - Conclusion and Further Work: Wraps the experimental results back
in with the research objectives presented in the introduction, and comes up with
further ideas worth investigating.

2



2 Theory

2.1 Machine Learning

2.1.1 Introduction

Machine learning is a subfield of artificial intelligence consisting of algorithms that makes
computers able to learn to solve problems from data, in contrast to being programmed
directly. Artificial intelligence is a wider field about making computers solve complex
problems. Machine learning methods are often useful when it is difficult to create explicit
models, unlike for example expert systems using handcrafted rules. Machine learning
has become ubiquitous in modern computing with the rise of the internet and larger
datasets that allows more sophisticated models to be trained. They are used for many
different types of problems, some examples include email spam filtering, recommendation
systems for online stores, internet search engines, vision systems for autonomous vehicles,
chatbots and playing games like chess.

Machine learning was first named by Arthur Samuel in 1959 [1] when he developed a
learning algorithm that made a computer able to play the game of checkers. The system
consisted of a minimax search algorithm combined with a learned evaluation function.
The evaluation function was a linear combination of manually defined board parameters
with adjustable weights, where the weights were updated after a win or a loss.
An even earlier example of a machine learning algorithm was developed by Frank

Rosenblatt in 1957 [2]. He created a model known as the perceptron, that performed
binary classification. It was inspired by the computational model of biological neurons
from McCulloch and Pitts from 1943 [3], which formulated that biological neural net-
works are able to learn things by adjusting the connection strength between the neurons
in the network. Rosenblatt’s perceptron consisted of multiple input neurons connected
to one output neuron, where each connection had an associated weight that could be
updated from training data. It also had a nonlinear activation function that worked as
a thresholding mechanism.

3



2 Theory

Figure 2.1: Visualization of a perceptron model.

In 1969 the influential book called Perceptrons by Minsky and Papert[4] showed math-
ematically that the perceptron model was severely limited in what functions could be
represented. The conclusion was that the data had to be possible to linearly separate,
which essentially means that it must be possible to place a hyperplane in between the
datapoints. The XOR function is a simple example of a function that is not linearly
separable. The solution to learn such problems was to add additional layers of neurons
with weights prior to the input layer, resulting in the model known as the Multi-Layered
Perceptron (MLP). The backpropagation algorithm developed by Rumelhart, Hinton
and Williams in 1986 [5] made it possible to train MLPs using gradient descent type
algorithms commonly used in numerical optimization problems.

2.1.2 Overview

Machine learning consists of three fundamental components. The first is the dataset
which is essential to properly learn the desired task. More recently the emphasis on
better quality data combined with higher quantities has proven to be more efficient
instead of coming up with new learning algorithms or models. The second component
is the model, which is a mathematical equation that describes how to apply the data in
order to make use of it. The model can also contain a set of learnable parameters. The
final component is the learning algorithm that describes how the model with parameters
is changed when training on the data.
One of the most widely used rigorous definitions of machine learning is the one from

Tom Mitchell [6]. It states: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.”
It is common to separate machine learning into three smaller categories depending

on how the learning is done, which are called supervised learning, unsupervised learning
and reinforcement learning. Supervised learning might be the most commonly applicable
type of machine learning and consists of problems where the goal is to learn a mapping
from an input to an output. This is achieved by training on a dataset containing both
input data and corresponding labels or target values. The two main types of supervised

4



2 Theory

learning are called regression and classification. Regression is what happens when the
input data maps continuously to some output values and the goal is to approximate
the underlying function. Classification is what happens when the output values have a
discrete and finite domain, and while it might look like a discrete version of regression it
will often rely on different types of learning algorithms. A typical regression problem can
be to predict some value based on previously collected values, for example in predicting
stock prices in finance based on historical data. A typical classification problem can
be to determine what class a certain input belongs to, for example detecting fraudulent
bank transactions automatically.
Unsupervised learning is about learning things from data without any labels or target

values. There can be multiple goals with learning unsupervised. Some of the most
common applications are trying to find patterns and structures in the underlying dataset
through for example a clustering algorithm like k-means. Another application is to
learn better representations or features of the data, for example for the purposes of
dimensionality reduction and data compression through Principal Component Analysis
(PCA), or as input to another learning algorithm often through autoencoders. The last
example of using unsupervised features as input is particularly useful when the dataset is
partially labeled, meaning only some of the input data has corresponding labels in what
is called semi-supervised learning. The concept of features learned in an unsupervised
way is also highly applicable to generative models for both text [7] and images [8] as it
is often easier for a model to train on features already determined by another model.
The compressed feature space is in this case often called a latent space. In comparison,
training generative image models directly on raw pixel values can often make the training
process significantly longer and more expensive in terms of compute.
The final category of reinforcement learning deals with problems where the goal is to

train an agent to interact with an environment in order to accomplish specific tasks. It
has a lot of overlap with control theory in its goals, as the environment and agent often
can be modeled together as a dynamical system. The difference comes from that in
reinforcement learning the input function is learned while it is often manually designed
to meet certain requirements in control theory. According to Sutton, Barto and Williams
[9], reinforcement learning can be interpreted as a form of direct adaptive optimal control.
Optimal control means that the dynamical system together with its input satisfies some
optimality conditions. Direct adaptive control means that the structure and parametric
values of the controller input function is learned as an online problem. The way learning
is done in reinforcement learning is by making the agent explore and experiment with
certain degrees of randomness and getting rewards based on how capable it is of solving
its designated tasks. The reward is then used to update the control law. One of the
advantages of reinforcement learning over classical control theory is that it does not rely
on creating models of the system first, which also means that it can be applied to many
other types of systems. One of the first examples of playing games was TD-Gammon
[10] which used reinforcement learning to play backgammon. More recently, DeepMind
used reinforcement learning with the MuZero model [11] where it is able to both learn
optimal strategies as well as the rules of the game, thus giving it the ability to play any
game with enough training.

2.1.3 Generalizability

When training machine learning models it is desirable that they are able to generalize
outside of the training data. This means that when presented with never before seen
data the model should still provide reasonable outputs. For example would an email
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spam detection filter not be useful if it only was reliable on emails it had already seen.
Generalizing outside the training data is what makes machine learning useful.
To measure how well a model generalizes it is common to split the dataset into two

parts: a training set and a testing set. The training set is usually where most of the
data ends up with something in the range of 60%− 80% from the full set. The model is
then trained exclusively on the training set while the performance is measured on both
the training and testing sets. If the difference in performance measure is small it means
that the model is able to generalize. However if the difference starts to increase it is said
that the model overfits on the training data which makes it less generalizable.
Overfitting is something that often happens when the model is too complex in com-

parison to the underlying data distribution. It is also possible for a model to underfit,
which can mean that the model is lacking in complexity to represent the data properly.
In this case it will generally result in poor performance on both the training and testing
set. When choosing models it is therefore desirable that they hit some sweet spot in
between underfitting and overfitting. Determining aspects of the data generation process
and making assumptions can then lead to more suitable models.
It is often desirable to train multiple different models and compare them against each

other to get the best possible model. This could be entirely different types of models,
models with different hyperparameters or models trained on separate data. Models often
contain parameters which are predetermined instead of learned called hyperparameters
which can influence the overall performance of the model. In order to properly compare
models, the training set is often split again into a new smaller training set and a validation
set. The validation set is then used for testing each model separately in order to compare
them against each other, while the final testing set is used to get the actual generalizable
performance of the selected model.

2.1.4 Deep Learning

Deep learning is a subfield inside the larger field of machine learning that is becoming
increasingly popular in recent years. Whereas in classical machine learning it is more
common to manually design the features that go into the models, deep learning instead
relies on processing raw data and learning its own feature representations. The deep
part of deep learning refers to how models usually have a hierarchy of abstraction lev-
els for the learned feature representations, where the abstraction level of the features
increases as the depth of the model increases. These features will build on the features
learned from previous layers, which makes it possible to gradually build up complicated
representations by increasing the model depth [12]. A simple example could be to train
a facial recognition model on images. In this case the shallow layers would learn features
such as edges or specific colors, while the deeper layers would combine the edges and
colors to create geometric objects followed by all the aspects needed to represent a face.
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Figure 2.2: Visualization of a simple Fully-Connected Neural Network, represented as a
directed graph.

The Multi-Layered Perceptron is perhaps the simplest example of a deep learning
based model, where each layer builds upon the output from the previous layers. Ad-
ditionally, MLPs are also one of the simplest examples of Artificial Neural Networks
(ANNs) and are often called Fully-Connected Neural Networks (FCNNs). FCNNs rep-
resent neural networks as multiple layers of nodes where each node in one layer is con-
nected to every node in the subsequent layer. This allows for a compact representation of
the forward pass using matrix multiplications denoting the connection strength between
nodes. The general form of an FCNN can be expressed as:

z1 =ϕ1(W1x+ b1)

z2 =ϕ2(W1z1 + b2)

...

zk =ϕk(Wkzk−1 + bk)

(2.1)

with input x ∈ RN , output zk ∈ RM and intermediate hidden outputs zi. The weight
matrices Wi and bias vectors bi are learnable parameters of the neural network which
transform the state layerwise. The ϕi are called activation functions and are applied
at the end of each layer in order to introduce nonlinearity in the function representa-
tion. Without nonlinear activation functions it would severely limit the representation
capabilities of neural networks. Some common examples of activation functions include
the sigmoid function: σ(x) = 1

1+e−x , tanh(x) and the Rectified Linear Unit (ReLU):
ϕ(x) = max(x, 0). Many other types of activation functions also exist but what many
have in common is that they are nonlinear and that they somehow restrict the input
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variables to some smaller domain. The choice of activation functions can be considered
as hyperparameters and are chosen before the training process begins. Which activa-
tion function to use can often be dependent on the problem in order to exploit certain
properties. Likewise, the number of layers and the number of hidden units are also
hyperparameters determined before.
The universal approximation theorem [13] states very simplified that neural networks

are able to represent any mapping, assuming that the network is complex enough. Being
complex enough is dependent on having a combination of enough layers to represent the
given abstraction level, as well as having enough nodes at each layer to represent those
specific features. Stated differently, this means that for any given problem there exists
some network structure combined with a set of parameter values that can represent the
desired mapping up to a given approximation accuracy. However, this theorem does not
give any method to discover that network.
Deep learning methods instead rely on solving a numerical optimization problem in

order to fit the network to the data from the mapping. This optimization method does
not guarantee that the network becomes perfectly accurate, but it does often work well
in practice. To do this it is necessary to define an objective function for the optimization
problem, usually called a loss function L in deep learning context. The choice of loss
function is problem dependent and there exists many different types of loss functions
used in practice. It also can be thought of as a hyperparameter during the training
process, although it is not strictly a part of the final network and only used during
training. For supervised learning problems the loss function will be a function of the
training data labels y and the predicted network outputs ŷ = f(x) for corresponding
input data x. The neural network (2.1) is described simply as f . For example is the
Mean Squared Error (MSE) loss function defined as:

L(y, ŷ) = 1

M

M∑
m=1

(ym − ŷm)2 (2.2)

for a single datapoint y ∈ RM . Computing the loss over a batch of training data is
done by averaging the loss functions of each datapoint. The MSE loss function is very
commonly used for regression problems where the goal is to learn a continuous mapping
between input and output. For classification problems, the Cross Entropy loss function
is one of the most widely used:

L(y, ŷ) = − 1

M

M∑
m=1

ym ln (ŷm) (2.3)

using that there are M different classes. This is usually accomplished by modeling the
output labels as one-hot encoded vectors.

The deep learning optimization can then be stated simply as the unconstrained mini-
mization problem:

min
θ

L(y, ŷ) (2.4)

where ŷ = f(x;θ) for a training set with input points x and outputs y. The neural
network f is parametrized by θ containing the weight matrices and bias vectors. The
parameter vector θ is usually very high-dimensional, which leads to a very non-convex
loss landscape. In order to find the global minima it is therefore necessary to use global
optimization methods, but this is rarely done in practice as it is too computationally
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expensive considering both the high amount of parameters and also higher amounts of
training data. Instead it is more common to simply treat the problem as it was convex
and use gradient descent based methods in order to find a local minima. The performance
difference from different local minimas turns out to not necessarily be that important
in practice. Higher order optimization methods are also generally not used, as the size
of the Hessian matrix would make it too expensive in terms of both computations and
memory.
A gradient descent algorithm in its simplest form are described as:

θ ← θ − α∇θL (2.5)

where the step size α, usually called the learning rate in deep learning, is yet another hy-
perparameter. In order to perform gradient descent it is therefore necessary to compute
the gradients from the loss function to the parameters ∇θL.

Figure 2.3: Simplified visualization of how gradient descent iteratively minimizes the loss
function towards a local minima.

Computing derivatives can be done in different ways. Symbolical gradient repre-
sentations are generally too computationally expensive for deep neural networks, and
numerical methods based on finite differences are too inaccurate to provide useful de-
scent iterations. A middleground is to use automatic differentiation where individual
expressions are done symbolically where each symbolic expression is evaluated numer-
ically independent of the overall expression. Automatic differentiation is based on the
chain rule from basic calculus where each expression is computed iteratively. It can be
done in a forward or reverse mode that both results in the same output but depending
on whether to start iterating from the input or the output. Forward mode is usually
better if the resulting jacobian matrix is tall, meaning that the dimension of the input
is smaller than the dimension of the output. Reverse mode is in contrast better for wide
matrices where the input dimension is larger than the output dimension. As the goal is
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to compute gradients to the parameters of the neural network, reverse mode automatic
differentiation will be significantly less expensive to compute. In deep learning context
it is common to refer to reverse mode automatic differentiation as the backpropagation
algorithm after it was independently re-discovered by the computer science community
[5].
For neural networks with multiple layers it is practical to compute gradients to the

parameters of each layer separately. The gradients to previous layers can then be recur-
sively computed based on the gradients to the inputs so far. To simplify notation, write
∇θL = ∂L

∂θ . Gradients to the parameters at layer k are then given as:

∂L
∂θk

=
∂L
∂zk

∂zk
∂θk

=
∂L
∂zk

∂ϕk

∂sk

∂sk
∂θk

(2.6)

where sk = Wkzk−1 + bk. All the Jacobians above can be considered well-defined and
easily computable analytically. For example will the jacobian ∂ϕk

∂sk
be the derivative of

the activation function which is implemented alongside the activation function. To get
gradients to previous layers, apply the chain rule recursively:

∂L
∂θk−1

=
∂L
∂zk

∂ϕk

∂sk

∂sk
∂zk−1

∂zk−1

∂θk−1
=

∂L
∂zk

∂ϕk

∂sk

∂sk
∂zk−1

∂ϕk−1

∂sk−1

∂sk−1

∂θk−1
(2.7)

This generalizes to the recursive formula:

∂L
∂θi

=
∂L
∂zk

∂zk
∂zk−1

. . .
∂zi+1

∂zi

∂zi
∂θi

(2.8)

with

∂zi+1

∂zi
=

∂ϕi+1

∂si+1

∂si+1

∂zi

∂zi
∂θi

=
∂ϕi

∂si

∂si
∂θi

(2.9)

which gives the complete backpropagation algorithm for neural networks. Computing
gradients like this is also called to do a backward pass of the network.

Figure 2.4: Visualization of a deep neural network.

The current gradient descent algorithm will converge to the closest local minimum
from the initial parameter values. There are some common techniques that can help to
mitigate this somewhat and escape local minimas. As second order optimization methods
are generally too expensive these techniques modify the gradient iterations themselves.
A standard technique in deep learning is to use Stochastic Gradient Descent (SGD)
instead of the normal gradient descent algorithm. The difference is that the stochastic
version uses a subset of the training data called a minibatch at each update, compared
to the whole data at once. The minibatches are drawn from random partitions of the
training set, and it is common to re-randomize or shuffle the minibatch partitions after a
full pass of the training data. SGD is particularly useful when dealing with large datasets
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for memory reasons, but the stochastic nature makes the loss landscape shift at each
iteration, thus making it possible to escape local minimas. Another addition is to add
momentum to the iterations so that the gradient updates can overcome short hurdles.
Momentum is implemented in practice by averaging the current gradient with the K
previously computed gradients and using the averaged gradient as the actual descent
direction. It can also result in faster convergence due to reducing oscillations in valleys
in the loss landscape. A final technique to mention is that it is common to adjust the
learning rate as the learning happens, usually with a larger learning rate at the beginning
and then a smaller one towards the end. One of the most common optimizers currently
used in deep learning is the Adam (Adaptive Momentum) optimizer [14] using all of
these features.
In some cases with smaller datasets it is possible to use approximate second or-

der optimization methods. These are also called quasi-Newton methods due to using
an approximation of the Hessian matrix, as computing the full Hessian matrix is not
tractable. In deep learning context the most common method is the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [15].
There are also multiple techniques to help deep neural networks generalize better

and reduce overfitting. A common method is to add regularization on the network
parameters, which effectively reduces the model complexity as the parameter values are
driven close to zero. The strength of the regularization is a tunable hyperparameter and
can be thought of as a tradeoff between model complexity and data fit after training.
Dropout is another technique useful during training that makes it more difficult for
networks to simply memorize the training data and instead forces them to learn better
representations. This is done in practice by adding a random chance that every node
in every layer is simply turned off for that training iteration. The probability is yet
another hyperparameter. Dropout is also only used during training, and turned off
when the network is used for inference.
To conclude the section on deep learning it is worth mentioning that there exists

other types of ANNs than just FCNNs. Convolutional Neural Networks (CNNs) are
very common when dealing with data that contains translationally invariant features
[16]. Images are the typical example of this, as training a CNN to classify objects in
images means that the position of the object inside the image should not impact the
classification. CNNS are inspired by linear FIR filters from digital signal processing and
image processing, where an input signal sent through a filter results in an output of the
mathematical convolution of the input signal and the filter impulse response. In classical
image processing such filters were manually designed to detect certain features in images
[17], while more modern CNNs are basically learning their own filter representations.
Using CNNs instead of FCNNs for image processing tasks will usually result in much
fewer total network parameters.
Another type of ANN are Recurrent Neural Networks (RNNs) [16], which are intended

for handling sequential data. Typical examples include time-series data, or text and
natural language processing. They work by processing one element of the input sequence
at a time and modifying an internal hidden state of the RNN containing the latent
representation of the sequence. One problem with RNNs is that they heavily suffer
from what is known as the vanishing gradient problem [18], which is also encountered
for any deeper network. Due to the backpropagation algorithm recursively computing
gradients, the gradient magnitudes have a tendency to shrink for each successive layer
due to magnitudes smaller than 1 being multiplied together. The Long-Short Term
Memory (LSTM) architecture is a modified RNN that solves the problem of vanishing
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gradients, and are in practice always preferred over standard RNNs. RNNs have also
been used for sequence to sequence tasks where one RNN encodes the sequence into a
hidden state and a second RNN decodes the hidden state to an output sequence [19].
This approach used to be state of the art for problems like translating natural languages,
but RNNs has more recently been surpassed by the transformer architecture for most
sequence modeling tasks [20].

2.2 Partial Differential Equations

2.2.1 Introduction

Dynamical systems can generally be thought of as something that has a state (the
system) that changes over time (the dynamics). Dynamical systems are often described
using mathematical equations to make them easier to study.
Ordinary Differential Equations (ODEs) are a way to describe systems represented

by a state vector x(t) that evolves continuously in time t. ODEs are particularly useful
for describing many systems related to physics, engineering, finance and other types of
sciences. An ODE can be defined as an equation with a function of a variable together
with its derivatives [21]. As an implicit equation this becomes:

F (t, x(t), ẋ(t), ẍ(t), . . . ) = 0 (2.10)

with state variable x(t) ∈ R and independent variable t. The order of the ODE is defined
as the highest order of the derivative present in the equation. For practical applications
it is often easier to work with the explicit form:

ẋ = f(t,x(t)) (2.11)

where the state is now a vector x(t) ∈ Rn. As the ODE now only contains the first order
derivative, the order is now defined to be the dimension of the state vector. An ODE
containing higher order derivatives can be converted into the form of equation (2.11)
by augmenting the state vector with the higher order derivatives of the state, without
losing any generality.
ODEs of the form of equation (2.11 have infinitely many solutions for x(t), as the

equation only describes how the state changes. Combining the equation with an initial
value x(t0) = x0 results in an Initial Value Problem (IVP). The IVP can be uniquely
solved for x(t) from the Picard-Lindelöf theorem [22] provided that the dynamics of the
system f is Lipschitz continuous. The solution at time t1 is found by integrating from
the initial time t0:

x(t1) = x(t0) +

∫ t1

t0

f(t,x(t))dt (2.12)

which is commonly solved using numerical methods designed specifically for ODEs in
practice.
Partial Differential Equations (PDEs) are a way to describe systems represented by

a function u(t,x) that evolves continuously in time t. In contrast to ODEs where the
state was a vector that evolved in time, PDEs use states represented by functions that
evolve over time. Functions in the context of functional analysis can be interpreted
as vectors with an uncountably infinite dimension, which also means that they can be
approximated by a high-dimensional ODE.
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The independent variables are commonly denoted as time t and spatial variables x.
The system state represents some quantity that is distributed over the space, where
the distribution also change over time. The system state function u has so far been
considered as a scalar, but systems of PDEs are also possible. However, this master
thesis will mainly deal with scalar valued PDEs. Because the system state in a PDE
is able to capture more information than in an ODE they are able to model more
complicated dynamical systems, but are also generally harder to both solve and study.
Similarly to ODEs, PDEs can be described more generally as an implicit equation

[23]:

F (x, u(x), Du(x), D2u(x), . . . ) = 0 (2.13)

defined on an open subset Ω ⊂ Rn called the domain, with independent variables x ∈ Ω,
state variable u(x) and differential operator Dk representing the set of all k-th order
partial derivatives with respect to the elements of the x vector. This definition does
not include the time variable t explicitly, but it can be interpreted as being included in
the independent variable vector x. The order of the PDE is defined as the order of the
highest partial derivative present in the equation, similarly to the order of an ODE.
PDEs in the form of equation (2.13) will also have an infinite number of possible solu-

tions without placing further restrictions. When the time t is included as an independent
variable in the PDE it is common to define an initial condition. Initial conditions are
simply defined as u(0,x) = g(x),x ∈ Ω for a given function g dependent on the specific
problem. It is also sometimes necessary to define a set of boundary conditions on ∂Ω.
Different types of boundary conditions exists, but one of the most commonly used is
the Dirichlet boundary condition that takes the form of: u(t,x) = ϕ(t,x) defined on
x ∈ ∂Ω and t ∈ [0,∞) for a scalar function ϕ. Another commonly used is called the

Neumann boundary condition which takes the form of: ∂u(t,x)
∂n = ϕ(t,x), which specified

the boundary in terms of the rate of change in the normal direction n on the boundary.
Boundary conditions can also be more complicated, for example involving higher order
derivatives, nonlinearities and different combinations of these. The problem of solving
a PDE with a specific set of boundary conditions is called a Boundary Value Problem
(BVP).
When defining initial conditions for ODEs, it is necessary to specify the same number

of initial conditions as the order of the equation. For example will a second order
equation require and initial state and an initial derivative. The same principle works
for PDEs, where the initial conditions must be specified up to the highest order partial
derivative of the time. For example will the heat equation require one initial temperature
distribution as it only contains a first order partial derivative in time, while for example
the wave equation requires both an initial amplitude and an initial amplitude velocity
as there is a second order partial derivative in time. This is also relevant for boundary
conditions, where the order of the partial derivatives in the spatial variables specifies
how many boundary conditions with derivatives are required for a unique solution.
As the solution to a PDE has to satisfy the equation itself (2.13), it would seem

necessary that potential solutions are differentiable. Although in practice, many PDEs
will naturally result in discontinuous solutions, thus also making them non-differentiable.
One example of this is the shock wave phenomenon arising from Burgers’ equation,
which is used frequently for experiments throughout this thesis. This result led to
the development of an alternative formulation of PDEs based on what is called a weak
derivative, where the main principle is to rewrite the PDE to be represented as an integral
equation without including any explicit derivatives. A discontinuous solution satisfying
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the weak formulation of the PDE is then called a weak solution. Weak solutions are also
shown to not necessarily belong to any commonly used function spaces used for studying
differential equations, like an Lp space. A Sobolev space is an extension of Lp spaces
where weak solutions can exist, and have become one of the main ways to study PDEs
in a mathematically rigorous way [23]. But this is not directly relevant when working
with numerical approximations and going into more detail is outside the scope of this
master thesis.

2.2.2 Example PDEs

Below are listed some common PDEs that can appear in many practical applications, as
well as in experiments with PINNs.

Laplace’s equation

∇2u(x) = 0

Heat equation

∂u(t,x)
∂t = k∇2u(t,x)

Wave equation

∂2u(t,x)
∂t2

= k∇2u(t,x)

Schrödinger equation

iℏ∂Ψ(t,x)
∂t =

[
− ℏ2

2m∇
2 + V (t,x)

]
Ψ(t,x)

1D Burgers’ equation

∂u
∂t + u∂u

∂x = ν ∂2u
∂x2

1D Allen-Cahn equation

∂u
∂t − a∂2u

∂x2 + bu3 − cu = 0

Kuramoto–Sivashinsky equation

∂u
∂t +

∂2u
∂x2 + ∂4u

∂x4 + u∂u
∂x = 0

Korteweg - De Vries equation

∂u
∂t +

∂3u
∂x3 − 6u∂u

∂x = 0

Maxwell’s vacuum equations
∇ ·E = 0,

∇ ·B = 0,

∇×E = −∂B
∂t ,

∇×B = µ0ϵ0
∂E
∂t ,
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Incompressible Navier–Stokes equations{
∂u
∂t + (u · ∇)u− ν∇2u = −1

ρ∇p+ g,

∇ · u = 0,

2.2.3 Classification of Second Order PDEs

Many PDEs of interest that are derived from physical systems are often second order
PDEs, which means that the equation contains second order partial derivatives. In the
study of second order PDEs, it is common to classify them into three different types of
PDEs, each of which with their own distinct type of dynamics [24]. For a linear second
oder PDE defined on two variables (t, x), the general form can be written as:

Autt +Butx + Cuxx +Dut + Eux + Fu+G = 0 (2.14)

where all the coefficients are functions of (t, x). The equation is called homogeneous if
G = 0.

To classify such PDEs, consider the quantity known as the discriminant:

∆ = B2 − 4AC (2.15)

The type of the PDE is then classified as follows:

• Hyperbolic if ∆ > 0

• Parabolic if ∆ = 0

• Elliptic if ∆ < 0

The terminology used is analogous to types of curves defined from standard quadratic
equations in two variables.
For a general nonlinear second order PDE, the classification can be done in the same

way by linearizing the equation to calculate the necessary coefficients. It is also possible
to generalize the classifications to higher-dimensional spatial variables.
Hyperbolic and parabolic equations are generally systems that evolve in time. Hyper-

bolic equations are typically defined by vibrations and periodic motion. The simplest
example of a hyperbolic equation is the wave equation. Parabolic equations are typi-
cally defined by diffusion, where the state tends to spread out over time. The simplest
example of a parabolic equation is the heat equation.
Elliptic equations are generally systems defined to be in some equilibrium state, and

are often independent of time. In this case, the classification done with the discriminant
can then be done by replacing the variables (t, x) with spatial variables (x, y). The
simplest example of an elliptic equation is Laplace’s equation.
As the coefficients can be functions of (t, x), it is possible to have PDEs where the

type of dynamics changes throughout the domain. For an example of this, consider the
Tricomi equation:

x
∂2u

∂t2
− ∂2u

∂x2
= 0 (2.16)

The discriminant is then calculated as:

∆ = B2 − 4AC = 02 − 4 · x · (−1) = 4x (2.17)
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which means that it is hyperbolic for x > 0, elliptic for x < 0 and parabolic on the
transition x = 0. The Tricomi equation is used to model supersonic aerodynamics, and
the change in dynamics correspond to subsonic and supersonic flight, with a sonic boom
happening on the transition [24].

2.2.4 Analytical Solutions

Solving PDEs analytically is generally not possible, and it is much more common in
practice to use numerical methods based on Finite Differences or the Finite Element
Method (FEM). However some simple PDEs combined with simple boundary conditions
are analytically solvable. This can be useful for generating data without implementing
a full numerical solver.

Separation of Variables

One method of approaching this for linear PDEs is to use separation of variables, which
assumes that u(t,x) = G(t)F (x). A linear PDE with initial condition and boundary
condition will have a unique solution provided that the initial and boundary conditions
are sufficiently nice, for example that the constraint functions are continuously differen-
tiable. This means that if the separation of variables results in a solution that satisfies
the PDE and conditions it is also a unique solution. Rewriting u(t,x) = G(t)F (x) and
inserting into the PDE will result in two separate ODEs that can be solved indepen-
dently. These two solutions can then be combined to give the final solution to the PDE
and conditions.
To give an example of the separation of variables method, consider the 1-dimensional

heat equation: ∂u
∂t = c2 ∂

2u
∂x2 where u = u(t, x) defined on [0,∞)×[0, L]. Use the boundary

conditions: u(t, 0) = u(t, L) = 0 and the more general initial condition: u(0, x) = g(x).
This can be interpreted as modeling the heat distribution of a bar of length L where the
ends of the bar are kept at temperature 0, and where the initial temperature distribution
is given by g(x) [25].

Start by separating u(t, x) = G(t)F (x) and insert this back into the heat equation:

∂u

∂t
= c2

∂2u

∂x2

∂

∂t

[
G(t)F (x)

]
= c2

∂2

∂x2
[
G(t)F (x)

]
Ġ(t)F (x) = c2G(t)F ′′(x)

Ġ(t)

c2G(t)
=

F ′′(x)

F (x)

The left side of the equation above is a function of t and the right side is a function
of x. Because they are equal for all values of t and x, it implies that both sides must
be equal to a constant. This means that the expression can be split into two different
ODEs:

Ġ(t) + p2c2G(t) = 0

F ′′(x) + p2F (x) = 0

where the constant is denoted as p2. A negative constant would result in two unstable
ODEs which would not be able to satisfy the boundary conditions of the PDE, which is
why it can be assumed positive. The bottom equation has the general solution:
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F (x) = A cos(px) +B sin(px)

The boundary conditions give u(t, 0) = G(t)F (0) = 0 =⇒ F (0) = 0 and u(t, L) =
G(t)F (L) = 0 =⇒ F (L) = 0. As the ODE is second order it gives a unique solution
with these two constraints. Inserting x = 0 gives F (0) = A cos(p · 0) + B sin(p · 0) =
A =⇒ A = 0. Inserting x = L gives F (L) = B sin(p · L) = 0 =⇒ p = nπ

L for
n = 1, 2, . . . .

Solving the top ODE results in the general solution:

G(t) = Ce−p2c2t = e−λ2
nt

where λn = cnπ
L Combining these two solutions with a given n results in a solution to

the PDE:

un(t, x) = Bn sin
(nπ
L

x
)
e−λ2

nt

Because the PDE is linear it means that linear combinations of solutions will also be
a solution. The full solution is then given as:

u(t, x) =

∞∑
n=1

Bn sin
(nπ
L

x
)
e−λ2

nt

where the Bn constants depend on the B and C constants from the ODE solutions above,
and must be chosen to satisfy the initial condition u(0, x) = g(x). Inserting this into the
proposed solution gives:

u(0, x) =

∞∑
n=1

Bn sin
(nπ
L

x
)
= g(x)

which means that theBn coefficients are the result from decomposing the initial condition
g(x) into a Fourier sine series. An explicit expression for these coefficients is:

Bn =
2

L

∫ L

0
g(x) sin

(nπx
L

)
dx

Method of Characteristics

Another method that can work for simple PDEs is the method of characteristics [26].
Consider a first order multi-dimensional PDE on the form:

∂u

∂t
(t,x) + v(t,x) · ∇u(t,x) + w(t,x, u) = 0 (2.18)

A characteristic of the equation is a trajectory x(t), where the spatial variable x is
given as a function of the time variable t, and where the following ODE holds:

dx

dt
(t) = v(t,x(t)) (2.19)

The Lagrangian derivative can then be defined as:

Du

Dt
(t) =

d

dt
u(t,x(t)) (2.20)
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which intuitively can be understood as the rate of the change of the state u on a char-
acteristic trajectory x(t). By expanding the Lagrangian derivative:

d

dt
u(t,x(t)) =

∂u

∂t
+

dx

dt
· ∇u (2.21)

and where dx
dt = v(t,x(t)), thus giving another ODE:

Du

Dt
(t) + w(t,x(t), u(t,x(t))) = 0 (2.22)

This means that for any equation on the form of (2.18), the PDE can be reduced to a
system of two ODEs: (2.19) and (2.22), each of which are defined using the given v and
w, and can be solved using conventional ODE methods. The resulting solutions to the
ODEs can in most cases be used to construct the full PDE solution.
As an example, consider the simple 1-dimensional transport equation:

∂u

∂t
+ a

∂u

∂x
= 0 (2.23)

where v(t, x) = a constant and w(t, x, u) = 0. Also assume that an initial condition is
given as: u(0, x) = g(x). The characteristic ODE (2.19) gives that x(t) = at+x0. Define
z(t) = u(t, x(t)) so that the Lagrangian derivative becomes: dz

dt = 0 and z(t) = z0.
To proceed from here, the initial condition is needed to retrieve a unique solution

u(t, x). The initial condition can be used as:

z(0) = u(0, x(0)) = u(0, x0) = g(x0) (2.24)

This also implies that z(t) = z0 = g(x0), which means that u is constant along
characteristic trajectories, which makes sense as w = 0 in the example equation.
For this example, the next step would be to invert the equations for the characteristic,

resulting in:

x(t) = at+ x0

=⇒ x0 = x− at
(2.25)

which can be inserted back into the value for x0, giving the final solution:

u(t, x) = g(x− at) (2.26)

This requires that the mapping from the characteristic is invertible, which may not
always be the case depending on the resulting ODEs. The transport equation is one of
the simplest PDEs, but the method of characteristics can be used similarly for many
other more complicated PDEs.

2.3 Optimal Control Theory

2.3.1 Brief Overview

Optimal control can be thought of as a field laying at the intersection of control theory
and mathematical optimization. The goal is to use optimization methods in order to
find control policies for a dynamical system, where the dynamical system behaves in an
optimal way for a given objective function. Consider a dynamical system represented as
an ODE on the form:
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ẋ = f(t,x, c) (2.27)

with system state x(t) ∈ Rn, control input c(t) ∈ Rm and system dynamics f . In control
theory it is normally common to use the symbol u for the control input, but here the
symbol c is used to avoid confusion with the state of a PDE. The general form of an
optimal control problem can then be formulated as:

min
c(t)

h(tf ,x(tf ), c(tf )) +

∫ tf

t0

g(t,x(t), c(t))dt

s.t. ẋ = f(t,x, c)

x(t0) = x0

(2.28)

where the time span goes from an initial time t0 to final time tf , initial condition x0,
final cost h and instantaneous cost g. The optimization problem has the system ODE
(2.27) as a constraint, and is done over a suitable function space, for example the space
of functions with finite energy L2. This formulation assumes that the initial and final
times are fixed variables, but it is in some cases also possible to have the final time
as part of the optimization variables, which can be useful for example for trajectory
optimization when minimizing the time spent is important. It is also common to include
control constraints that can take the form of: ca ≤ c(t) ≤ cb, ∀t ≥ t0, as the control can
often be limited by physical hardware constraints.
Solving a continuous time optimal control problem can in some rare cases be done

analytically based on either using Pontryagin’s maximum principle or by solving the
Hamilton–Jacobi–Bellman equation. One notable special case is the Linear Quadratic
Regulator (LQR), where the system ODE is linear, the final cost is zero, the instanta-
neous cost is quadratic in both state and control input and the final time goes to infinity.
This also assumes that the system is controllable. For a Linear Time-Invariant (LTI)
system represented as:

ẋ = Ax+Bc (2.29)

the control input will be given as a full-state feedback controller:

c = −Kx (2.30)

for a control matrix K computed analytically from the algebraic Riccati equation.
Usually it is not possible to find analytical solutions to the optimization problem

(2.28), which motivates the use of numerical methods. This is done by discretizing the
state and the control input, thus changing the search space from a function space to a
vector space. The system ODE is then split up into a set of constraints operating at
each of the discretization points. The discretization step size h defines the number of
new variables and dynamics constraints as: N =

tf−t0
h . The discretized optimization

problem becomes:
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min
x1,...,xN∈Rn,c1,...,cN∈Rm

h(tN ,xN , cN ) +
N−1∑
i=0

g(ti,xi, ci)

s.t. xN = xN−1 + hf(tN−1,xN−1, cN−1)

...

x2 = x1 + hf(t1,x1, c1)

x1 = x0

(2.31)

using an explicit Euler discretization. The continuous time system states x(t) and control
inputs c(t) are discretized and turn into a collection of points that can be flattened into
a vector of dimension: N · n+N ·m.

When the setup is similar to the LQR with linear constraints and a quadratic cost
function, the optimization problem is convex, meaning that there is a globally optimal
solution. Because of this it is very common to work with linearized dynamics if possible.
For cases where this is not possible, other numerical methods can be used to solve the
problem, for example Sequential Quadratic Programming (SQP) [15].
The output from an optimization problem like (2.31) gives a state trajectory and a

set of control inputs for a given time horizon. This will result in open-loop control if
implemented directly, and is therefore lacking in robustness to possible disturbances and
modeling errors. Model Predictive Control (MPC) is a control policy that implements
optimal control with feedback, therefore fixing the robustness problem. MPC works by
solving the optimization problem (2.31) and using the first control input on the actual
plant. The next series of control inputs are then discarded, and the optimization problem
is solved again using the next measured state as the new initial state. MPC can be very
computationally expensive, but is a very general technique for implementing optimal
control with feedback, and is used frequently when appropriate.

2.3.2 PDE-Constrained Optimal Control

Optimal control theory is not limited to systems described by ODEs and can easily be
extended to other types of systems, for example stochastic systems or systems repre-
sented by PDEs. The overall goal remains the same: find a control input to make the
system behave in a way that is optimal with respect to a given objective function.
As an example of why this can be so useful, consider the problem of controlling the

temperature in a room. One way to do this is to use a temperature sensor placed at one
location in the room, and then construct a model from thermodynamics that models
the temperature as a single scalar valued differential equation. This system can then be
controlled using any methods from traditional control theory. The main drawback of this
approach is that it assumes that the temperature is both constant and distributed equally
throughout the room. This can be an acceptable drawback in many circumstances, as
almost every house heater does it like this. But for cases where more fine control over
specific areas are needed, it is possible to extend the model of the system with the
three-dimensional heat equation. The desired temperature can then be represented as a
function of space instead of a single scalar value. As the overall problem is more fine-
grained, one potential benefit of this approach is to save on total energy consumption,
at the cost of increased modeling complexity and computational cost.
Assume the dynamical systems of interest are represented as a PDE on the explicit

form of:
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∂u

∂t
= f(u(t,x), Du(t,x), . . . , DNu(t,x), c) (2.32)

where the system state is a scalar valued function of time and position u(t,x). The
dynamics f is here assumed to be time and space invariant, meaning that it does not
depend on t or x directly, and it takes in the state u, as well as partial derivatives up to
order N along with a control input c. It is often common in texts on PDE-constrained
optimal control to use y as the system state and u as the control input to align more
with the conventions of control theory. However this thesis adopts the conventions used
in texts on PDEs and Physics Informed Neural Networks, as those are the main topics.
The optimal control problem can be defined similarly to (2.28):

min
c

J(u(t,x), c)

s.t.
∂u

∂t
= f(u(t,x), Du(t,x), . . . , DNu(t,x), c)

u(t0,x) = g(x), ∀x ∈ Ω

u(t,x) = ϕ(t,x), ∀x ∈ ∂Ω

(2.33)

for an objective function J(u(t,x), c). The initial condition is given by g(x) for an initial
time t0, and the boundary constraint is here given as a Dirichlet boundary condition with
ϕ(t,x), although different types of boundary constraints can be defined in the same way.
This formulation of the optimal control problem suggests that the control input c can
change the dynamics of the system in some way. If the control input is a function of time
and space c = c(t,x), then this problem formulation is referred to as volume control, as
every point spatial point can influence the dynamics. This is also the formulation that
gives the most direct control of the problem. Other alternatives exist, for example that
the control input is only dependent on the time c = c(t), or only over a subset of the
spatial domain.
The objective function J(u(t,x), c) can be represented in many different ways depend-

ing on the application. One common choice is to make a system behave in a given way,
in the sense that the system state u(t,x) is driven towards a desired system state ud(x)
as t→∞, similar to what is done for many control problems on ODEs. One difference is
that ud is a real-valued function of space, instead of just a vector value. It’s also possible
for the objective function to not only be evaluated at a subset of the spatial domain, for
example at specific points, or at the boundaries.
Solving this type of optimal control problem can be done in the same way as for

ODEs using a discretization technique. This results in an array representing the points
of the system state u, which can then be optimized over using numerical optimization
techniques. However, the computational complexity increases rapidly with the number
of dimensions of the spatial domain, and can be infeasible to solve in the worst case.
These formulations of the optimal control problem assume that the control input has

some influence over the dynamics of the system. But there are other possible formulations
as well. One example is that the dynamics themselves no longer depend on the control
input, but rather that the problem is to determine the optimal initial condition, thus
making the initial condition the control input. Or with an equation: g(x) = c(x).
This problem formulation would also be possible for systems described by ODEs, but
is generally not so practical as most uncontrolled systems already exist in some state
without the possibility to get to the initial condition in the first place. So this serves as
mostly a theoretical possibility for now.
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The final formulation discussed here is done by again making the dynamics no longer
depend on the control input, but rather that the boundary conditions are dependent
on it. This can make more sense physically, for example using Neumann boundary
conditions ∂u(t,x)

∂t = ϕ(t,x),∀x ∈ ∂Ω, where the boundary condition is given by the
control input: ϕ(t,x) = c(t,x), this has the physical implication of adding or removing
flux at through the boundaries. The same setup also works with Dirichlet boundaries,
as well as mixed boundaries. It is also possible for the control input to only affect a
part of the boundary condition and not the whole boundary, but that would be problem
dependent.

2.4 Physics Informed Neural Networks

2.4.1 Overview

As neural networks are universal function approximators they are also able to learn rep-
resentations of outputs from dynamical systems. One possible approach for ODEs is
to model the network as the actual dynamics of the system. The network can then be
trained using a simple regression setup where the target values are the derivatives of the
input values. The learned dynamics can then be used with any numerical integrator to
simulate the learned system. One of the main drawbacks of this approach is that it re-
quires a lot of training data, including the actual derivatives which are often not directly
available. The Neural Ordinary Differential Equation (Neural ODE) architecture [27]
[28] [29] made it possible to learn ODEs without using derivatives but they still require
a lot of training data and are generally slow to converge for more complicated systems.
Extensions to the architecture [30] [31] [32] that forces a more specific representation
turned out to be significantly increase both the convergence speed when training and
also give more accurate representations of the unobserved states. However, the Neural
ODE architecture is not easily generalizable to PDEs which limits its total representative
capabilities. They also suffer from not being able to generalize well outside the training
data.
The Physics Informed Neural Network (PINN) framework [33] [34] [35] is a method

for training neural networks to learn the output of dynamical systems. In contrast to
the methods described above, PINNs will learn a representation for a specific solution of
a dynamical system instead of learning the underlying dynamics. This is accomplished
by using explicit prior information of the system dynamics during training. One of the
motivations for this approach was that machine learning algorithms would often partially
rediscover known systems, but by utilizing known physical laws or other forms of domain
expertise it can greatly increase the speed of convergence and increase robustness of
the solutions. Data acquisition can often be difficult or costly for complex physical,
engineering and biological dynamical systems, but adding prior information can reduce
the amount of necessary data to properly learn the systems.
The original PINN problem formulation considered parameterized nonlinear systems

of PDEs on the form:

ut +N [u;λ] = 0 (2.34)

for a state u(t,x) called the latent solution, nonlinear operator N parameterized by λ
and for t ∈ [0, T ],x ∈ Ω ⊂ Rn. The subscript notation ut is in the context of PDEs
often used as a shorter notation for ∂u

∂t . This notation is very similar to the general PDE
given in (2.13), except that it is an explicit representation with respect to the partial
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derivative ut, and that the state u(t,x) is now a vector meaning, it can represent a
system of PDEs as opposed to a single scalar equation.
u(t,x) can then be approximated with a deep neural network and then trained on

sampled data from the system. Compared to traditional numerical methods like FEM,
this will result in a continuous rather than discrete mapping. Training the neural network
can be done by minimizing the loss function:

Lu =
1

Nu

Nu∑
i=1

||u(tiu,xi
u)− ui||2 (2.35)

for training data tiu,x
i
u,u

i with i = 1, 2, . . . , Nu. This simple regression setup will usually
converge provided that there is enough training data. However, for cases with limited
data or where data is only available from the initial and boundary conditions the trained
network would not generalize well. The solution is to add prior knowledge about the
structure of the PDE into the loss function. This of course requires that the PDE is
known or can be derived from first principles. The PINN setup works by defining:

f = ut +N [u;λ] (2.36)

and then combining the the loss function above (2.35) with the physics informed loss:

Lf =
1

Nf

Nf∑
i=1

||f(tif ,xi
f )||2 (2.37)

so that the final training loss becomes: L = Lu + β · Lf , for some hyperparameter β
that adjusts the tradeoff between data and prior information. This results in solving the
following unconstrained minimization problem:

min
θ

Lu + β · Lf (2.38)

for neural network parameters θ. This can also be interpreted as solving the constrained
minimization problem:

min
θ

Lu

s.t. Lf = 0
(2.39)

where β takes the role of the Lagrange multiplier. This constrained minimization prob-
lem can be considered an approximation of the continuous version of the problem where
the PDE (2.34) is enforced as a constraint.
The physics informed loss (2.37) is evaluated at the collocation points tif ,x

i
f with

i = 1, 2, . . . , Nf , which is not reliant on data but rather manually chosen or generated
before training. The original PINN version [33] used a method called Latin Hypercube
Sampling, which works by partitioning the space into a grid with equal spacing, and
then randomly sampling points from each cell in the grid. The number of collocation
points has a great impact on the generalization ability of PINNs, but has the drawback
that they decrease the training speed. Evaluating f(tif ,x

i
f ) using equation (2.36) can

be done using automatic differentiation of the neural network from the output to the
input. Additionally, as PINNs can train with very small amounts of training data the
original authors trained the networks using the L-BFGS optimization algorithm.
Systems of PDEs can often result in complex dynamical outputs, which necessitates

a neural network with enough depth and width to properly represent the complexity of
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the output. However, larger models with more parameters also require more data to be
able to generalize, as they would easily overfit otherwise. The physics informed loss can
in this case be thought of as a regularization term that restricts the overall complexity of
the model and makes it follow the prior more closely, which is what makes it possible to
rely on relatively small amounts of training data compared to the model complexity. It is
also worth noting that if no data is available but the initial and boundary conditions have
known expressions, data can be generated by sampling from these expressions. In this
case, PINNs does not require any more prior information than other numerical methods
for solving PDEs which typically rely on a discretization of the initial and boundary
conditions in addition to the PDE equation.
This setup uses that the parameters of the PDE λ are known, as they are necessary

to evaluate f . The original authors also demonstrated an alternative setup where the
parameters are unknown [34], where PINNs can be used for data driven discovery. This
can be done by setting λ as an unknown parameter vector combined with the same PINN
setup described above, and then including λ in the optimization. Gradients from the loss
function L to parameters λ can be computed using automatic differentiation through
f . A drawback of this method is that it requires significantly more data compared to
when the parameters are known, and more specifically that the data is sampled from
throughout the entire spatio-temporal domain instead of just from the initial data and
boundary.

2.4.2 Literature review

Deeper Investigations

The PINN framework [33] [34] [35] have been studied extensively after they were intro-
duced originally. The PINN approach was used to model fluid dynamics based on the
Navier-Stokes equation in an efficient way [36] that is much more flexible with the geom-
etry of the boundary compared to traditional solvers, and much more accurate compared
to pure machine learning. But the authors noticed that the PINN model struggles for
higher Reynolds numbers indicating more turbulence, as neural networks often struggle
with learning higher frequency signals. Multiple surveys on PINNs have been published
that discusses some of the current applications and challenges, also highlighting the
high-frequency drawbacks of neural networks, with comparisons to classical numerical
methods [37], and an overview of novel architecture improvements along with theoretical
investigations on convergence and error estimates [38]. Further work going into detail
on convergence guarantees framed in mathematical analysis [39] and rigorous estimates
on the approximation capabilities and generalization [40] also exists.
It has been shown that PINNs can fail to learn even the simplest of PDEs for certain

parameter values [41], even though the network itself has the capacity to learn. The
problem is instead that the optimization problem is too difficult to solve with simple
gradient based methods leading to a model that fails at approximating the true under-
lying system. Potential solutions to overcome this is to train the PINNs with different
methods. One example mentioned in [41] is to do curriculum learning, where the com-
plexity of the physics information is gradually increased during training. This can be
viewed as a form of transfer learning where the PINN is first trained on a simpler sys-
tem before being trained further on a more complicated [42]. Another approach is to
formulate the PINN training as a sequence to sequence learning problem [41]. Instead
of learning the mapping for the whole spatio-temporal domain, learn one sequence at a
time, for example as a slice at a certain point in time, and then learn the next point
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in time by starting from the previous slice. Another proposed technique is to start the
optimization problem with the Adam optimizer utilizing the momentum, and switching
to the L-BFGS optimizer after a certain number of training steps [42]. L-BFGS seems
to be required for learning more complicated PDEs to converge, but L-BFGS does not
use momentum and will go directly towards the closest local minimum, which can be
avoided by using Adam first. Further investigations done by analyzing the training in
the limit of infinitely wide neural networks have also been done [43].
An attempt at fighting back against the effects from the curse of dimensionality was

made by introducing separable PINNs [44], where each dimension of the input vector
is entered into a separate neural network. The resulting outputs are then combined to
form the final output. This makes the training much more efficient, as the automatic
differentiation can operate on a much smaller dimensional subspace, compared to the
full neural network. Even for as low as three dimensional inputs the authors found a
significant speed up in terms of time spent training compared to the vanilla PINN setup.
Some PDEs are defined using periodic boundary conditions. Training a PINN to

learn this can be approximated by adding that the values of the PINN output should
be equal to each other at the boundaries as a term to the loss function. If the PDE
also has a periodic boundary including partial derivatves, this can also be done in a
similar way by computing partial derivatives, comparing outputs and adding to the
loss. But for higher order, or even infinitely differentiable periodic boundary conditions,
this gets increasingly computationally expensive. A solution to this was proposed in
[45]. This method works by manually constructing a Fourier embedding of the input
as a type of feature engineering, and then sending this embedding as the input to the
PINN. This guarantees infinitely differentiable periodic boundary conditions where the
accuracy and resolution is influenced by the dimension of the Fourier embedding. The
Fourier embedding is constructed as a vector containing sines and cosines with increasing
frequencies of the spatial point, where all sines and cosines are set to be periodic on the
spatial domain. The number of frequencies relates to the dimension of the embedding
and can be considered a hyperparameter. The Fourier embedding can also be extended
to multiple dimensions, by considering pairs of products between sines and cosines. As
the vector with sines and cosines are sent into the first layer of the neural network, the
neural network will then multiply these terms with weights and add them together in
different ways, making the overall process resemble a customized Fourier series.

Learning Chaotic Systems

Systems represented as ODEs where the dynamics of different states operate at different
frequencies, for example one state with slower dynamics and another state with faster
dynamics, are known to be particularly challenging for traditional numerical solvers.
Equations like these are often called stiff ODEs and can require specialized solvers in
certain cases. The same phenomenon is also present when training PINNs. Similar
problems can also exist for systems represented by PDEs, one example of this is the
turbulence within the Navier-Stokes equations.
This stiffness problem and how it relates to training PINNs was analyzed by looking

at the gradients during training [46]. The authors propose a new learning algorithm
that updates the learning rate based on gradient values iteratively during training in
a method called learning rate annealing. They also proposed a new neural network
structure with some inspirations from skip connections as found in residual networks
[47] that are less affected by these training problems.
Another solution to solve such problems is to train using time marching [48]. This
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means that the time-domain is partitioned into multiple smaller segments where they
cover the original time domain. A separate PINN is then trained on each of these
time segments separately until convergence, and sequentially where the next network is
initialized with the parameters of the previous network. The initial condition of the first
PINN is set to the initial condition of the overall problem, while subsequent networks
have initial conditions set to the output of the previous network at the corresponding
time. The overall solution to the problem is then gradually built up in time, leading to
a higher final accuracy.
The concept of partitioning the time was taken to another level with the introduction

of causality during training [49]. With this setup the overall loss function when training
is modified in a way that prioritizes learning dynamics in a time-sequential manner. In
practice, this means that the time domain is once again partitioned into Nt sets, and
the loss function is computed over each of these time domains separately. The final loss
is computed as a weighted sum of these individual losses:

L(θ) = 1

Nt

Nt∑
i=0

wiLi(ti,θ) (2.40)

where the loss weights wi are computed as:

wi = exp

(
−ϵ

i−1∑
k=1

L(tk,θ)

)
(2.41)

The loss weight wi can be interpreted as a value that increases when the loss functions
on previous time domains are low. So initially when training, all losses will be high,
meaning only the first time domain will have any significant weighting. As the loss on
the first time domain improves, the weight for the second time domain increases, and so
on for the other time domains. The ϵ hyperparameter is a positive value that determines
the relative importance of causality. If ϵ = 0, then all loss weights will be 1, thus ignoring
causality. If ϵ→∞ then only the current time domain will have an influence on the loss
function until this local loss goes to zero.
The causal loss function can also be combined with time marching, where the time

domain is first split into ranges for training separate PINNs, and then each time range
is split further into another set of time ranges for causal training. The authors of [49]
combined these techniques with the modified network structure from [46] to achieve high
accuracy on the chaotic Lorenz ODE, Kuramoto–Sivashinsky equation, and turbulent
Navier-Stokes equation compared to other approaches so far. They also used exact
periodic boundary conditions with a Fourier embedding [45] where applicable.

System Discovery

Some methods for performing system discovery with PINNs exists. This makes it possible
to learn the dynamics of a system based on data. One of these methods is to perform
symbolic regression with MLPs as a part of the symbolic operators [50]. This makes
it possible to generate symbolic expressions for the solutions of PDEs, but are often
difficult to work with in practice as the authors note.
Another method that learns the expression of an unknown term within a differen-

tial equation was recently proposed [51]. This method is particularly useful when the
equation for the dynamics is partially known with some potentially missing terms. The
authors did this by setting up three different neural networks responsible for learning
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different aspects of the problem. The first learns the known dynamics, the second learns
the output state of the system and the third learns the unknown part of the boundary
condition. These three networks combined makes it possible to explicitly represent the
unknown dynamics.
To train networks with this setup, consider three neural networks parametrized by: θu

for learning the output values, θb for learning the unknown part of the boundary and θf
for learning the unknown part of the dynamics. The three networks are trained together
using a loss function L(θu,θb,θf ) equal to a sum of three loss functions: Lu(θu) for the
output values, Lb(θu,θb) for the boundary and Lf (θu,θf ) for the dynamics. The output
value loss function is in this case equal to the standard loss function for given data points
(2.35). The boundary loss is computed by inserting output values from the u-network
into the known part of the boundary conditions, and then adding in the outputs from
the b-network and computing the MSE loss. The dynamics loss is again similar to the
physics informed loss (2.37) where the known part of the dynamics is used on collocation
points from the u-network like in (2.36), and where the outputs from the f -network is
added in before computing the MSE loss.
One thing to note is that the f -network needs to be explicitly given input values con-

taining the relevant partial derivatives, as it is not able to learn arbitrary dependencies
between derivatives. These partial derivatives must be computed from the output values
of the u-network and differentiated with automatic differentiation. It then requires some
prior knowledge of the unknown term as an inductive bias.

Solving Control Problems

PINNs have also been used for control applications. Formulating a PINN on ODEs
where the control variable is included as an input to the neural network in addition to
the time state makes it possible to use PINNs as part of a Model Predictive Control
(MPC) framework using the PINN as the predictive model [52]. The authors here note
that the training the Physics Informed Neural nets-based Control (PINC) as they call it
makes the MPC run much faster during runtime as it is no longer required to integrate
an ODE, because a lot of computational time is traded off when the PINC is trained.
As PINNs are naturally suited for learning on PDEs, they are also suited for PDE-

constrained optimal control problems [53]. The underlying system is now described by a
PDE, similar to the problem formulations discussed in the previous section. The PINN
formulation of PDE-constrained optimal control [53] used two different neural networks
that were trained together simultaneously. The first network learns the system state u in
the same way as the normal PINN, but where either the physics informed loss through
the PDE dynamics or the data loss through the boundary conditions are influenced by
the control input. The control input c is represented by the second neural network, and
is trained by formulating the whole problem as minimizing a loss function corresponding
to a standard PDE-constrained optimal control problem. This setup is very flexible,
and can solve any of the different problem configurations related to PDE-constrained
optimal control.
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3.1 Introduction

To gain familiarity with PINNs and explore their limitations, multiple PINNs were
trained on data from different types of dynamical systems. The models were in some
cases also compared against other models to highlight differences. After an initial in-
vestigation into how to work with PINNs, more advanced experiments were conducted
that showcased more practical applications as well as better training methods.

All the PINN models were implemented from scratch with PyTorch [54] and functorch
[55]. The ODEs were integrated using torchdiffeq [56]. The code is open sourced at
GitHub, using the MIT license for free use. The repository includes both code for
training models as well as code for generating all the plots used throughout this thesis.

3.2 Data

The initial models were trained on generated synthetic data on relatively simple prob-
lems. The ODE systems were integrated using the Dormand-Prince 5 [57] integrator
with a step size of h = 0.01, where the initial values were both randomly sampled and
manually chosen on different systems. The initial PDE systems were only using data
generated from the initial and boundary conditions so it was not necessary to use a
numerical solver. More data could be sampled from linear PDEs by solving them ana-
lytically using the separation of variables method. The analytical solution was also used
for comparing the learned systems to the true systems as a form of training validation.
Some experiments used datasets obtained from repositories associated with various pa-
pers. These datasets were used for validating the learned PINNs, and were originally
obtained with traditional numerical solvers
The collocation points for calculating the physics informed loss were randomly sampled

throughout the spatio-temporal domain. This can also be done when training PINNs
on real data, as the collocation points do not rely on any information of the output
of the system. The points were sampled uniformly as this turned out to work well
enough instead of the latin hypercube sampling. Some of the simpler systems used
linearly spaced collocation points instead of random sampling, but this proved to not
be as effective for more complicated systems. More simpler PDEs could get away with
sampling collocation points once before the training, while the more demanding PDEs
sample collocation points randomly at every training iteration.
A manual seed was also set to ensure that the experiments were reproducible and to

minimize the chance that the results are dependent on the random seed.

3.3 Model architecture

The output trajectories of the dynamical systems were modeled as fully-connected neural
networks. The tanh activation function was used to introduce nonlinearity and constrain
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the outputs of the hidden layers, while also allowing negative values. It is also contin-
uously differentiable which could be an advantage when learning outputs that are also
continuously differentiable. The physics informed loss was calculated using automatic
differentiation to get first derivatives of the neural network at the collocation inputs, and
second derivatives using the already calculated first derivatives as input to the automatic
differentiation again. Higher order derivatives can be calculated in a similar manner.
When learning higher order ODEs with PINNs it is possible to convert the system

dynamics into a state space representation and use that as the prior when computing the
loss. This would however require collocation samples from a higher dimensional space,
and potentially also more data corresponding to all the new states to accurately learn.
For systems defined with a single state and higher order derivatives of that state it is
then more useful to not use the state space representation as it is less data-intensive.
The MSE loss function was used for all purposes during training.

3.4 Hyperparameters

Table 3.1 contains a list of the hyperparameters for each of the conducted experiments.
α refers to the learning rate, Nu to the number of datapoints in the training set, Nf to
the number of collocation points and β to the relative weighting of the loss functions.
Each experiment is explained in more detail in the next section. Every experiment uses
the Adam optimizer with some exceptions that use the L-BFGS optimizer, which can be
seen in the table below when α = 1. In general, it was found that the L-BFGS optimizer
converges much faster, but is generally not practical for systems with more complicated
dynamics where the optimizer can get stuck in a suboptimal minimum.
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Table 3.1: Table of hyperparameters for each experiment.

Experiment Hidden Layers Hidden Units Epochs α Nu Nf β

Learning Dynamical Systems with PINNs

Linear ODE 3 20 20000 1e-4 10 100 1e-4

Nonlinear ODE 4 20 10000 1e-4 10 100 1e-1

Time-varying ODE 2 40 1000 1e-3 1 1000 1e-1

1D Linear PDE 4 20 1000 1e-3 100 1000 1e-1

2D Linear PDE 4 20 1000 1e-3 100 1000 1e-3

Nonlinear PDE 5 20 1000 1 100 10000 1e-1

Data-Driven Discovery of Dynamical Systems with PINNs

1D Linear PDE 4 20 1000 1 1000 1000 1e-2

2D Linear PDE 4 20 1000 1 20000 20000 1e-4

Causal Training

Simple PDE 5 50 10000 1e-3 1000 10000 1e-3

Chaotic PDE 4 100 150000 1e-3 1000 25000 1e-3

Symbolic Operator Discovery

Nonlinear PDE 6 50 10000 1e-3 1000 10000 1e-3

Solving PDE-Constrained Optimal Control Problems with PINNs

Flux Control 5 50 5000 1 100 10000 100

Dirichlet Boundary Control 4 50 10000 1 100 10000 1

Neumann Boundary Control 4 50 10000 1 100 10000 1

Initial Control 4 50 20000 1e-3 400 20000 1

Regularization with the Maximum Principle

Elliptic PDE 4 50 1000 1 200 10000 1e-1

Causal Optimal Control with PINNs

Initial Control 5 50 20000 1e-3 1000 10000 1e4

Reversed Initial Control 5 50 20000 1e-3 1000 10000 1e3

Some of the later experiments involve multiple neural networks being trained simul-
taneously. The listed hyperparameters in table 3.1 will in this case refer to the network
that corresponds to the output state u. Other networks will usually have similar or
slightly lower hidden layers and hidden units.

3.5 Experimental Setup

The following section describes the setup of each conducted experiment using the hyper-
parameters listed in table 3.1. Details about the specific dynamical system along with
parameters are described, in addition to what the purpose and goal of each experiment
is. The results of each experiment are presented in the next chapter.

3.5.1 Learning Dynamical Systems with PINNs

The first experiments are meant to show that PINNs can learn outputs from dynamical
systems in a strictly superior way than standard neural networks by generalizing better
on less data.
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Linear ODE

Linear time-invariant ODEs are generally considered the easiest type of dynamical sys-
tem to work with. They always have an analytical solution which can be expressed in a
closed form, and are always stable or unstable on a global level. A common toy problem
when working with ODEs is the second order dynamical system called the mass spring
damper, which shows up in a variety of situations related to mechanical systems. The
mass spring damper system is defined by the following ODE:

mẍ+ dẋ+ kx = 0 (3.1)

with state: position x(t) and parameters: massm, damping d and spring constant k. The
following experiments use the parameters: m = 1, d = 5, k = 500 and initial conditions
x(0) = 1, ẋ(0) = 0.

Figure 3.1: Mass spring damper system visualization.

The purpose here is to demonstrate how to train PINNs on outputs from some of the
simplest type of dynamical systems. A PINN is compared to a neural network with the
same number of parameters trained in the standard way by formulating a regression
problem on time inputs and trajectory outputs, to showcase the advantages of also
incorporating prior information about the system dynamics. The training is done by
sampling 10 datapoints evenly spaced in time in the range 0 < t < 0.4 seconds from
the true output of the system generated numerically. The training data only contains
the positions x(t) and not the velocity ẋ(t). The mass spring damper is also used to
demonstrate the importance of having enough data when training.

Nonlinear ODE

Consider the second order system called the Van der Pol oscillator defined by the non-
linear ODE:

ẍ− µ(1− x2)ẋ+ x = 0 (3.2)

with state x(t) and parameter µ. It can be considered as a mass spring damper where
m = 1, d = −µ(1 − x2) and k = 1, and is a common example of an ODE with a limit
cycle, meaning that every trajectory converges to some periodic function in time.
The parameter: µ is set to 1, and both a PINN and a standard neural network with

the same number of parameters is trained on 10 datapoints evenly spaced throughout
0 < t < 20. The purpose is to show that PINNs are able to easily generalize to nonlinear
systems without losing any accuracy.
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Time-varying ODE

For the final ODE, consider the non-autonomous Riccati equation defined by [21]:

ẋ = x2 − t (3.3)

This system has two equilibrium points located at x(t) = ±
√
t where the negative

equilibrium point is stable and the positive is unstable. This means that every initial
condition below zero will approach the trajectory x(t) = −

√
t. This is demonstrated

by training a PINN with equation (3.3) as prior but not using any datapoints at all. A
second PINN is also trained by additionally using the initial condition as a datapoint.

1D Linear PDE

PINNs were originally formulated based on PDEs, as they are generally more difficult to
work with than ODEs. The initial PDE experiment considered the 1-dimensional heat
equation defined as follows:

ut = k2uxx (3.4)

The following experiment is defined by setting k = 1, boundary conditions u(t, 0) =
u(t, 1) = 0 defined on the spatial region 0 < x < 1 and initial condition u(0, x) = sin(πx).
This makes it possible to solve the heat equation analytically using the separation of
variables method. The initial condition was chosen strategically to simplify the compu-
tation of the resulting Fourier series from equation (2.2.4). The resulting solution has
the expression:

u(t, x) = sin(πx)e−π2t (3.5)

Figure 3.2 displays a visualization of the state u(t, x) over the spatial domain and the
time range 0 < t < 0.2 seconds, which is generated using the analytical expression (3.5).
As the boundary is set to zero it will lead to an initial heat distribution evolving in time
by dissipating towards zero.
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Figure 3.2: True solution of a 1-dimensional heat equation.

Training a PINN is done by only using datapoints sampled randomly and uniformly on
the boundary and initial conditions. Many real life problems modeled with PDEs have
known expressions for the initial and boundary conditions which means that the current
setup is equivalent to standard numerical solvers in terms of how much prior data they
need. The collocation points for the physics informed loss are uniformly sampled across
the whole spatio-temporal domain.

2D Linear PDE

Extending the previous experiment to the 2-dimensional heat equation defined as follows:

ut = k2(uxx + uyy) (3.6)

for spatial variables x and y. The experiment uses a very similar setup where k = 1,
the initial condition is given as: u(0, x, y) = sin(πx) sin(πy) for 0 < x, y < 1 and
boundary conditions: u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0. Similarly to the
1-dimensional case, an analytical solution can be found from the separation of variables
method. This results in the expression:

u(t, x, y) = sin(πx) sin(πy)e−2π2t (3.7)

The true solution is visualized below in Figure 3.3. As the solution is three-dimensional
it was visualized by extracting 2-dimensional slices in time to see how the spatial domain
evolves.
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(d) t = 0.2

Figure 3.3: True solution of a 2-dimensional heat equation.

A PINN is trained with the exact same method as the previous 1-dimensional case by
using uniformly sampled datapoints along the initial and boundary conditions for the
regression loss and uniformly sampled collocation points. The goal of this experiment is
to demonstrate that PINNs are able to learn higher dimensional PDEs, but with some
more difficulty.

Nonlinear PDE

Nonlinear PDEs are usually not solvable analytically and can in many cases also be
difficult to accurately solve numerically. The Navier-Stokes equations for describing
fluid mechanics has an infamous open problem in mathematics regarding simply the
existence of smooth solutions in 3-dimensional space. The homogeneous incompressible
Navier-Stokes equations are defined as:{

ut + (u · ∇)u− ν∇2u = −1
ρ∇p,

∇ · u = 0,
(3.8)

for states: velocity field u(t,x) and pressure p(t,x), with parameters: viscosity ν and
density ρ.

The viscous Burgers’ equation can be derived from the Navier-Stokes equation by
reducing to the 1-dimensional case, setting the pressure equal to zero and removing the
constraint that the fluid flow is incompressible. This results in the following PDE:
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ut + uux − νuxx = 0 (3.9)

The experiment uses the parameter ν = 0.01
π , initial condition u(0, x) = − sin(πx) and

boundary conditions u(t,−1) = u(t, 1) = 0.
The Adam optimizer from the previous experiments are replaced with the L-BFGS

optimizer using a line search based on the strong Wolfe conditions. It also requires
significantly more collocation points to learn properly, but not any more datapoints
along the initial and boundary conditions. The Burgers’ equation is generally difficult
to solve numerically due to a shock formation that forms after a certain amount of time
[33], but is still possible to learn with PINNs, although at an increased computational
cost compared to simpler PDEs.

3.5.2 Data-Driven Discovery of Dynamical Systems with PINNs

The next set of experiments are meant to demonstrate an area where PINNs outperforms
alternative numerical methods, as it can also be used with partially unknown dynamics.
One of the advantages of machine learning compared to many classical alternatives is
that the methods do not rely on an explicit model of the target system, which would
have been subjected to potentially inaccurate assumptions and modeling errors.

1D Linear PDE

The same heat equation problem formulated in the previous subsection is now revisited,
except that the parameter k is now considered unknown, thus leading to an incomplete
model of the system dynamics. Using the approach described in [34] it is possible to
train a PINN on data from the system and also learn an estimate of the k parameter
simultaneously. This is meant to be an experiment that showcases how the method
works, which means it can also be applied to real data without knowing the analytical
solution, or even the full details of the system dynamics.
The heat equation with the given setup was chosen for this experiment because it

has a simple analytical solution that can be used to generate data and also verify the
solution. The training data is now generated by random uniform sampling from the
entire spatio-temporal domain, and the collocation points for the physics informed loss
are chosen to be the same points as where the training data is collected. It therefore
requires a lot more data than the case where the parameter is known. The L-BFGS
optimizer is also used instead of Adam.
The estimated k̂ parameter is randomly initialized by sampling from a standard normal

distribution, and is then included as a part of the optimization procedure by augmenting
it into the target vector. It is then optimized iteratively with L-BFGS using gradients
computed from the physics informed loss function to the parameter k̂ with automatic
differentiation.

2D Linear PDE

To show that the data-driven discovery method can be applied to higher dimensional
systems, the same experiment is now repeated for the 2-dimensional heat equation, also
using the same setup as described in the previous subsection. The same changes are
made to this experiment by using the L-BFGS optimizer, random uniform sampling of
the same training and collocation points from the analytical solution, and initializing
the estimated parameter k̂ from a standard normal distribution. As the dimension is
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higher than the previous experiment, the number of training points has to be greatly
increased to compensate.

3.5.3 Causal Training

This and the following subsections are meant to demonstrate more involved training
methods and applications of PINNs. This subsection will demonstrate various enhanced
techniques that can be applied during training to improve accuracy and robustness, in
some cases also convergence speed. This also makes it possible to solve PDEs that
standard PINNs have historically failed to properly learn, like certain chaotic systems.
These experiments are meant to demonstrate the theory outlined in the literature

review from the previous chapter.

Simple PDE

Once again, consider the Burgers’ equation defined as:

ut + uux − νuxx = 0 (3.10)

with the parameter ν = 0.01
π , initial condition u(0, x) = − sin(πx) and periodic boundary

conditions u(t,−1) = u(t, 1) = 0.
The purpose now is to demonstrate 3.5.1 how the learned solution can be improved

from the previous experiment. Because the boundary conditions are defined to be peri-
odic, this is enforced exactly using a Fourier embedding. The Fourier embedding uses
5 increasing frequencies of sines and cosines in addition to the DC-term, which means
that the spatial input dimension of the network becomes 11, in addition to one extra
time dimension. Because all the frequencies are set to be periodic on the boundary,
the periodic boundary conditions are satisfied automatically without adding any extra
boundary term to the loss function.
The neural network itself is implemented as the modified network structure with resid-

ual connections, which has been shown to improve gradient flow for many chaotic sys-
tems.
This is combined with the causal loss function (2.40) which prioritizes learning earlier

time-domains before later time-domains, ensuring that causality in time is prioritized
during training. The causal loss is created by dividing the time domain into 20 equally
sized subdomains.
The full training procedure, each running a certain amount of epochs, is done for

5 different values of the ϵ hyperparameter. ϵ is first initialized to 0.01, and training is
either done until max epochs is reached, or a convergence criterion depending on the loss
weightings are met. ϵ is then multiplied by 10 for each subsequent training run, ending
with a value of 100 for the final iteration. This makes it so that causality is enforced
more for later training runs compared to the first ones. Each training run continues with
the same network parameters from the previous run, thus each subsequent run can be
thought of as an additional fine-tune that makes everything gradually more causal.
The final enhancement is to add time-marching. The overall time domain is split

into 10 different equally sized subdomains, and a separate model is trained on each
subdomain. This also means that each of these 10 subdomains are further divided into
20 subdomains from the causal loss. When one network finishes training, the next
network is initialized with the parameters of the previous network before restarting on
the next time subdomain. This also means that to get the output solution for the whole
domain, the outputs of each submodel must be combined together.
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Chaotic PDE

Burgers’ equation was already possible to solve accurately without the causal enhance-
ments, so the vastly increased training time is not necessarily justified. The previous
experiment was meant to show that the new techniques actually work, before attempting
a more complicated equation.
Now consider the 1-dimensional Allen-Cahn equation defined as:

ut − 0.0001uxx + 5u3 − 5u = 0 (3.11)

on the domain 0 ≤ t ≤ 1 and −1 ≤ x ≤ 1, using initial condition: u(0, x) = x2 cos(πx)
and periodic boundary conditions: u(t,−1) = u(t, 1) and ux(t,−1) = ux(t, 1).
This is an example of a chaotic PDE where standard PINNs fail to properly learn

the true solution, causing the error between the true solution and the PINN solution to
increase along the time axis.
Training a PINN with the same enhanced training techniques as used for the Burger’s

equation in the previous experiment makes it possible to accurately learn the Allen-
Cahn equation. A modified network structure is used alongside Fourier embeddings,
this time using 10 increasing frequencies resulting in an input dimension of 22. The
causal loss is subdivided into 100 time-domains. Time-marching is not used, as this is
one of the more computationally demanding techniques, and is instead replaced with
more collocation points and network parameters to compensate. The ϵ hyperparameter
is set to the constant 100 instead of iterating through a list.
To verify the accuracy of the solution, the trained PINN is compared to a dataset

obtained from a traditional numerical solver [58].

3.5.4 Symbolic Operator Discovery

The previous subsection on data-driven discovery of PDEs demonstrated a use case of
PINNs where they perform better than traditional numerical solvers. In that case, the
dynamics of the system was known in the form of the full PDE, with the addition that
there are unknown parameters to be learned in addition to the full solution.
Full system equations can in many cases be explicitly derived from first principles,

which makes the previous experiment useful in many cases. However, when using first
principles there are always many assumptions and simplifications being made to make
it possible to model the true system. In some cases, this can lead to a model that is not
accurate enough to be useful for a given purpose. It is also possible that an equation is
derived explicitly, but that some terms of the equation are missing.
The purpose of the following experiment is to make it possible to use data to discover

new dynamics and possibly unknown terms of an equation. The symbolic operator
discovery method described in the literature review is here used to learn a missing term
of a PDE from data.

Nonlinear PDE

Burgers’ equation is used yet again to demonstrate the method. Burgers’ equation is
now assumed to be on the form:

ut − νuxx = 0 (3.12)
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with ν = 0.01
π and where the term uux is missing from the equation. The goal is to

re-learn this term from data. The initial condition is set to the usual u(0, x) = − sin(πx)
and boundary conditions are assumed to be periodic.
Because the boundary is assumed to be known explicitly, it is not necessary to use

a dedicated network to learn this. The solution network and the unknown dynamics
network are both set to standard neural networks with the same number of layers and
hidden units, and then trained together. The unknown dynamics has an input dimension
of 3, corresponding to the terms: u, ut and ux. The true term is equal to the product of
u and ux, meaning that ut is not actually needed. It is added as an input here, because
in real applications it is not known beforehand which terms that goes in the unknown
dynamics.
To verify the accuracy of the experiment, a separate PINN is trained on the Burg-

ers’ equation using all the same enhanced training techniques described in the previous
subsection on causal training, except time-marching to make it easier to compare. The
output of this PINN is then compared against a dataset obtained from a traditional
numerical solver [59]. For simplicity, this PINN is then used as the ground truth for
comparing the learned dynamics in this experiment.

3.5.5 Solving PDE-Constrained Optimal Control Problems

The next set of experiments are meant to demonstrate a practical application of PINNs,
and show that the same framework can solve many different types of problems. However,
one drawback with this approach compared to traditional numerical methods is that
there are fewer guarantees with regards to optimality of solutions and general accuracy
of the solutions.

Flux Control

For the first experiment, consider a system governed by the two-dimensional Laplace
equation:

∂2u

∂x2
+

∂2u

∂y2
= 0 (3.13)

defined on the square domain: (x, y) ∈ [0, 1]× [0, 1], with boundary conditions:

• u(x, 0) = sin(πx)

• u(x, 1) = c(x)

• u(0, y) = u(1, y)

• ∂u
∂x(0, y) =

∂u
∂x(1, y)

with a periodic boundary in the x-direction, and where the function c(x) is a control
input that affects the entire top side of the domain.
Now consider the optimal control problem with all the above equations as constraints

along with the objective function:

J =

∫ 1

0

[
∂u
∂y (x, 1)− qd(x)

]2
dx (3.14)
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where qd(x) = cos(πx) is the desired flux. The optimal control problem can be thought
of as finding the control input c(x) that results in the desired flux at the top side of the
boundary, subject to the dynamics and boundary conditions.
The problem is solved using the method outlined in [53]. Two neural networks are

trained simultaneously, the first represents the state u and the second represents the
control input c(x). The final loss function to be optimized is a weighted sum of the
boundary loss, physics loss and objective function. The integral for the objective func-
tion is computed numerically using the trapezoid method of integration using 41 point
evaluations along the integral. For this experiment, the weightings of the boundary and
physics loss are set to be 1, with a weighting of the objective function set to 100.

Dirichlet Boundary Control

For this next experiment consider the optimal control problem with dynamics governed
by the 1-dimensional heat equation:

∂u

∂t
− ∂2u

∂x2
= 0 (3.15)

with initial condition:

u(0, x) = sin(πx) (3.16)

and boundary condition:

u(t, 0) = c(t) (3.17)

for a control input c(t). This means that the control input can influence the dynamics
along the bottom boundary of the domain. The objective function is here defined to be:

J =

N∑
k=1

[
u(xk)− ud(xk)

]2
(3.18)

for a desired temperature distribution ud(x) = 0.5. The objective function could be
replaced with an integral and computed with the trapezoid method, similarly to the
previous experiment. However, simply evaluating the function at a set of points and
comparing these with the MSE loss works well enough. The objective function is eval-
uated at the final time of the temporal domain. This makes it so the system does not
necessarily have to approach the target distribution as fast or as energy efficient as pos-
sible, which are usually desirable properties of control systems, but could also make the
learning procedure more difficult as the the three losses are summed together.

Neumann Boundary Control

Now consider the same experiment as above, except that the boundary condition is given
as:

∂u

∂x
(t, 0) = c(t) (3.19)

which is usually a more realistic scenario, as influencing the temperature distribution
directly without any inertia is more difficult to do than setting the flux along the bound-
ary.
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Initial Control

For the final experiment here, consider the system governed by Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(3.20)

with ν = 0.01. The domain is set to be (t, x) ∈ [0, 5] × [0, 4]. Periodic boundary
conditions are used.
It can be verified that the following analytical solution satisfies Burgers’ equation [53]:

ua(t, x) =
2νπe−π2ν(t−5) sin(πx)

2 + e−π2ν(t−5) cos(πx)
(3.21)

so that the initial condition can be inferred to be: u(0, x) = ua(0, x). This analytical
solution is visualized in Figure 3.4.
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Figure 3.4: An analytical solution of Burgers’ equation.

Now consider the optimal control problem by setting the initial condition to:

u(0, x) = c(x) (3.22)

with control input c(x). The objective function is set to be:

J =
1

2

∫ 4

0

[
u(5, x)− ua(5, x)

]2
dx (3.23)

This means that the goal of the optimal control problem is to find the initial condition
that results in the final state defined by ua(5, x). As solutions are unique, this implies
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that the resulting solution to the overall control problem will also equal ua(t, x) on the
entirety of the domain.
The integral of the objective function is again computed numerically using trapezoid

integration with 41 point evaluations.

3.5.6 Regularization with the Maximum Principle

The following experiment is based on a novel idea from this master project. It is a
way to make the training loss converge faster, as well as make it possible to use fewer
collocation points, which overall results in faster PINN training.

Elliptic PDE

A function is called harmonic if it satisfies Laplace’s equation:

∇2u = 0 (3.24)

A function is called subharmonic if it satisfies the following inequality:

∇2u ≥ 0 (3.25)

and the opposite inequality results in a superharmonic function. Harmonic functions are
therefore both subharmonic and superharmonic [26].
For a subharmonic function u defined on a bounded domain Ω ⊂ Rn, the strong

maximum principle says that:

max
Ω

u = max
∂Ω

u (3.26)

which either means that the maximum value of u is attained at the boundary of the
domain, or that u is constant on the domain [26]. This can be thought of as analogous
as to how convex functions have their maximum values on the boundary of their domain,
as long as the domain is also convex.
Similarly for superharmonic functions:

min
Ω

u = min
∂Ω

u (3.27)

which also means that for a harmonic function u:

min
∂Ω

u ≤ u ≤ max
∂Ω

u (3.28)

meaning that both the maximum and minimum values are attained at the boundary of
the domain.
This can be used during PINN training by adding regularization terms to the loss func-

tion. The maximum regularization term can be computed by first finding the maximum
value along the boundary:

umax = max
∂Ω

u (3.29)

and then penalizing values of u that are above the max value on interior points:

Lr+ =

Nf∑
i=1

[
max(u(tif , x

i
f )− umax, 0)

]2
(3.30)
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using the same collocation points (tif , x
i
f ) as the physics informed loss. If u(tif , x

i
f ) −

umax > 0 for any interior point, this is added to the regularization sum. If it is smaller
than zero, it is set to 0 from the max statement and therefore not added to the reg-
ularization. The max value is also computed again for every training iteration. If the
boundary conditions are known explicitly, it could be possible to use a constant max
value computed from this.
The minimum regularization is done similarly by first computing the minimum value

on the boundary:

umin = min
∂Ω

u (3.31)

and then summing up points:

Lr− =

Nf∑
i=1

[
min(u(tif , x

i
f )− umin, 0)

]2
(3.32)

Both maximum and minimum regularization use values raised to the second power.
For the minimum regularization, this serves as a way to make the values positive, but the
maximum values are always positive. Raising to the second power is also differentiable,
unlike the alternative solution of using an absolute value for the minimum. This can
also be thought of as similar to how L1 versus L2 regularization on network parameters
leads to different outcomes. L1 regularization tends to drive the parameters closer to
zero, while L2 places less importance on smaller values and more on removing the big
outliers.
Combining the maximum and minimum regularization terms leads to the overall reg-

ularization:

Lr = Lr+ + Lr− (3.33)

To test the effectiveness of this new regularization term, consider Laplace’s equation
in two dimensions and the following analytical solution:

ua(x, y) = cos(πx) sinh(πy) (3.34)

defined on the domain (x, y) ∈ [0, 1]× [0, 1]. The analytical solution can be derived using
separation of variables and is easily verifiable to satisfy the equation. It is visualized in
Figure 3.5. This analytical solution can then be used to obtain boundary conditions and
verify the accuracy of the trained PINNs.
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Figure 3.5: An analytical solution of Laplace’s equation.

Two PINNs with the same number of parameters are trained independently of each
other on Laplace’s equation with boundary conditions obtained from the analytical so-
lution. One of the PINNs is trained with the standard PINN setup, while the other one
has the exact same setup and hyperparameters with the addition of the regularization
term (3.33).
Afterwards, both PINNs are trained again from scratch, only this time using much

less collocation points with a reduction from 10000 to 200.
For PDEs that are more complicated than Laplace’s equation, it is also possible to

generalize a weaker version of the maximum principle. This requires that the PDE is
uniformly elliptic. For a second order linear differential operator L, defined as:

L = −
n∑

i=1

n∑
j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

bj(x)
∂

∂xj
(3.35)

then, L is elliptic if the eigenvalues of the matrix
[
aij
]
are positive at each point x, and

L is uniformly positive if the smallest eigenvalue is bounded from below by a constant
κ > 0 at each point x. The difference between elliptic and uniformly elliptic is not
that important for practical and numerical applications, and is mostly a necessity of
mathematical rigor. So the maximum principle could be used for many different types
of elliptic PDEs if they satisfy the above requirement.

Also note that the maximum principle for elliptic PDEs is unrelated to the similar
sounding Pontryagin’s maximum principle [60] from optimal control theory.
Finally, it should be mentioned that a similar maximum statement can be said about

the heat equation, where the maximum value is attained either at the boundary of the
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domain, or at the initial time [26]. Using this for faster training is less obvious to
implement, and could be worth investigating further.

3.5.7 Causal Optimal Control

The final set of experiments use a combination of previous methods for an overall im-
provement. More specifically, the PINN approach to optimal control theory is combined
with causality and related techniques to improve upon the training method.

Initial Control

The same initial control problem described above in the subection on optimal control
theory is now re-visited with all the same improvements done when training on the
chaotic PDE in the subsection on causal training. Causality leads to a more robust
training in general, which should also be helpful in order to learn control policies more
accurately.

Reversed Initial Control

For the problem with initial control, it might not necessarily make the most sense to
apply causality forwards in time. This is because the initial condition is unknown while
the final end state is known. So applying causality on an imperfect initial condition can
in this case lead to a loss function with two terms that are competing against each other
for most of the training. The term related to the causal physics information is trying to
keep the initial condition accurate before moving on to the next time range. While the
term related to the objective function of the optimal control problem wants to change
the initial condition to fit the final end state, thus breaking the causal training.
A solution to this problem can be to re-formulate it by reversing the direction of

the time t, and setting the desired final state as the initial condition. This also means
that there is no longer any need for an explicit control policy, so this particular optimal
control problem can be learned simply by causal training on the reversed time. The
control policy corresponding to the initial condition for the actual problem then becomes
equal to the end state of the reversed-time problem.
As the time range goes from t = 0 to t = 5, define the new reversed time variable as:

τ = 5 − t. By setting the state as a function: u = u(τ, x), then the partial derivative
becomes:

∂u

∂t
=

∂u

∂τ

∂τ

∂t
= −∂u

∂τ
(3.36)

The partial derivative for the spatial variable x remains unchanged. The time-reversed
Burgers’ equation then becomes:

−∂u

∂τ
+ u

∂u

∂x
= ν

∂2u

∂x2
(3.37)

which can now be used instead of the forward-time version of the equation for the physics
informed loss.

44



4 Results and Discussions

4.1 Results

4.1.1 Learning Dynamical Systems with Physics Informed Neural Networks

Linear ODE

Training both a standard neural network and a PINN with the same number of param-
eters in the networks, and using them to plot their output trajectories are visualized in
Figure 4.1. Both models are able to closely follow the true trajectory at the beginning,
as it is a relatively simple system and does not require that much data. However, after
t > 0.4 seconds the neural network output is diverging from the true output as it was
not trained on any data past this, and is therefore not generalizing outside its training
set. This can also be interpreted as overfitting on the training points. This is normal
behavior from a standard neural network and was to be expected. One possible solution
is to add more data, but in many real life cases this is not feasible.
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Figure 4.1: Output trajectories from a standard neural network and a PINN trained on
a mass spring damper system. Datapoints are highlighted as blue dots.

Adding a physics informed regularizer on the PINN results in much better generaliza-
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tion and follows the true system for much longer. Although the PINN is still not perfect
towards the end, which is a consequence of the collocation points used during training.
PINNs will not generalize further than their collocation points were sampled from, but
as the collocation points can be generated at will when training it is necessary to first
determine how long the PINN should stay accurate before training.
The validation loss for both models is computed by comparing the model trajectories

with the true trajectory at the whole timeline with the MSE loss function. The validation
loss per training epoch is shown in Figure 4.2. The standard neural network converges
relatively fast, and does not learn much more afterwards. The PINN is stagnant for
around 2500 epochs at first, before starting to improve. This observation turns out to
be important for training PINNs on ODEs, and is one of the reasons that this experiment
requires as many training epochs as it does. Because the mass spring damper is a globally
stable autonomous linear system, a valid solution to the equation (3.1) is the trajectory
x(t) = 0. This solution does obviously not fit with the datapoints, but is the result of
a local minimum during training which also happens to be much closer to the initial
parameters of the neural network. The β parameter that trades off the data loss and
physics informed loss was adjusted to a much lower value compared to many of the other
experiments to make the data more important, and was necessary to learn anything at
all. So surprisingly, it turns out that learning trajectories from stable linear autonomous
ODEs, the easiest possible type of ODEs, are actually kind of difficult to do with PINNs.
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Figure 4.2: Validation loss from a standard neural network and a PINN trained on a
mass spring damper system.

Next up, two identical PINNs were trained on the same mass spring damper datapoints
as before, except now that one PINN has Nf = 100 collocation points as before, and the
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other has Nf = 30 collocation points. Both sets of collocation points are sampled from
the same time interval uniformly. The output trajectories are visualized in Figure 4.3.
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Figure 4.3: Output trajectories from two PINNs trained on a mass spring damper system
with different number of collocation points. Datapoints are highlighted as
blue dots.

Both PINNs are following the true output for some time after the training data ends,
but it can be seen that the PINN with the most collocation points is also the one that
generalizes better. This could indicate that increasing the number of points leads to a
more robust model in general. One drawback of increasing the points however is the
computational training time as the model has to be differentiated with respect to the
prior ODE at every point. The validation loss from training these two PINNs are shown
in Figure 4.4.
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Figure 4.4: Validation loss two PINNs trained on a mass spring damper system with
different number of collocation points. Datapoints are highlighted as blue
dots.

It can be seen that not only is the PINN with fewer collocation points much faster
to train in terms of CPU time, but it also escaped the local minima x(t) = 0 faster.
However, with enough training steps the PINN with more points does catch up and
ends up at an even lower validation loss. The robustness of a PINN model is therefore
dependent exclusively on the amount of time willing to spend on training. It also appears
that if the number of training steps are expensive enough to be limited it is beneficial
to reduce the number of collocation points, or put invertedly, the number of collocation
points must increase alongside training epochs to maintain the relative robustness.

Nonlinear ODE

A standard neural network and a PINN trained on the Van der Pol oscillator and com-
puting the output trajectories are shown in Figure 4.5. Both models are able to hit
every datapoint perfectly, as expected with enough training. In this case the dynamics
are more complicated which results in the standard neural network overfitting heavily
on the relatively few datapoints in comparison. This could be solved by using more
data, and possibly reducing the model complexity, but it will still struggle to generalize
outside the training interval as seen in the previous experiment.
The PINN is following the true output almost perfectly with the same model com-

plexity and datapoints as the standard neural network. As the dynamics are more
complicated than the mass spring damper it is easier to train a PINN and can be done
in fewer epochs and without trading off the data loss.
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Figure 4.5: Output trajectories from a standard neural network and a PINN trained on
a Van der Pol oscillator system. Datapoints are highlighted as blue dots.

Time-varying ODE

Training a PINN on the dynamics of the Riccati equation (3.3) without using any data
at all results in Figure 4.6. As there is a time-varying equilibrium point at x(t) = −

√
t

which every trajectory converges to, the PINN trajectory also converges to this. The
first initial value of the PINN trajectory is a random point coming from the initialization
of the parameters.
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Figure 4.6: Training a physics informed neural network to learn the output trajectory of
a Riccati equation without any datapoints.

Adding an initial condition as a single datapoint to the PINN training results in the
trajectory visualized in Figure 4.7.
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Figure 4.7: Training a physics informed neural network to learn the output trajectory of
a Riccati equation based on a single datapoint.

The PINN is now following the true system almost perfectly for as long as the col-
location points were sampled from. The result was also reached in only 1000 epochs,
compared to the 20000 epochs necessary for the mass spring damper. It appears that
more complicated dynamics makes it possible to get away with less data while still
learning a robust model. In many real life systems modeled as nonlinear ODEs, small
modeling inaccuracies can cause the system to behave in wildly unexpected ways. This
is a major drawback of many nonlinear control systems [61] and must also be accounted
for when training PINNs on prior dynamics.

1D Linear PDE

The PINN output after training on the 1-dimensional heat equation is shown in Figure
4.8. The initial and boundary conditions are learned accurately, as well as the general
trend of the heat dissipation. The output is almost identical to the true solution shown in
Figure 3.2. Computing the validation loss of the PINN can be done by comparing outputs
against the true analytical solution throughout the whole spatio-temporal domain with
the MSE loss function. The final validation loss value after training is complete is as
low as: 6.2244 · 10−5, which confirms the visual comparison that the PINN has learned
the true system well.
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Figure 4.8: PINN output after training on a 1-dimensional heat equation.

The 1-dimensional heat equation is a relatively simple PDE so it is not surprising that
the PINN is learning without any difficulties. It is also much easier to learn compared
to simple ODEs, using fewer training epochs. The training data also consists entirely of
points sampled from the boundary and initial conditions, which can be compared to the
single datapoint used when training on the time-varying ODE. Adding interior points
would make the training even easier and faster to converge.

2D Linear PDE

The setup now is identical to the previous experiment on the heat equation with the
addition of an extra dimension. The extra dimension also requires more collocation
points to fight back against the curse of dimensionality. The trained PINN output is
seen in Figure 4.9 and is again able to learn the initial and boundary conditions well
alongside learning the heat dissipation.
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(b) t = 0.067
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(c) t = 0.133
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Figure 4.9: PINN output after training on a 2-dimensional heat equation.

Compared to the true solution it is very similar to the true solution, which is also
confirmed by looking at the final validation loss at: 0.0405. It is however not as close to
the true solution as the 1-dimensional case. The two experiments were trained on the
same number of epochs, but even with the increased collocation points it is still not quite
as accurate. The PINN might be trained for longer on even more collocation points to
overcome this. It could also be beneficial to replace the optimizer with a better one, as
was done for the data-driven discovery experiment. This does however show that even
going from one to two dimensions on a simple PDE makes things much more difficult to
train on.

Nonlinear PDE

At first all experiments were done using collocation points placed at a linearly spaced
grid in the spatio-temporal domain, and the Adam optimizer for the training. However,
the resulting output of training a PINN on the Burgers’ equation was not accurate at all
and seemed to be impossible with that setup. The collocation points were then changed
to being sampled uniformly instead, which was also used for the previously discussed
experiments, and the L-BFGS optimizer introduced here for the Burgers’ equation.
Training a PINN with the improved setup worked, and the output now learns the

characteristic shock formation of the Burgers’ equation. This can be seen in Figure
4.10. As Burgers’ equation is difficult to solve analytically it is also difficult to properly
validate the solution without relying on numerical methods for solving PDEs. In this
case, the PINN output was compared visually against the output from the paper by
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the original authors of the PINN framework [33]. Vertical slices at specific points in
time of the output are also visualized separately in Figure 4.11. This final experiment
demonstrates the importance of having enough collocation points and a better optimizer
for learning more difficult PDEs.
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Figure 4.10: PINN output after training on a Burgers’ equation.
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Figure 4.11: Visualization of time-slices from the PINN output after training on a Burg-
ers’ equation.

4.1.2 Data-Driven Discovery of Dynamical Systems with PINNs

1D Linear PDE

The output from a PINN trained on the 1-dimensional heat equation is visualized in
Figure 4.12. The output looks very similar to both the true solution and the previous
experiment, which is also confirmed from the validation loss at: 2.0372 · 10−5. The
final validation loss here is even lower than the previous experiment with the known
parameter, which could be a result of replacing the optimizer and increasing the amount
of data to cover the interior of the domain.
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Figure 4.12: PINN output after training on a 1-dimensional heat equation with an un-
known parameter.

The true value of the parameter was set to k = 1 for simplicity, and the final estimate
of the parameter after training was: k̂ = 0.989268, which is very close to the true value.
An interesting thing that occasionally happened was that the estimate would converge
towards −1 instead, which is equivalent for the heat equation (3.4) where the parameter
is squared. The initial value of the estimate was sampled from a standard normal, so
it would often converge depending on which side of zero it started at. Having prior
information about the parameter could be useful in this case to ensure that it converges
to the correct value.
The purpose of this experiment was less about learning the output of the system with

a PINN and more about discovering the structure of the underlying dynamics. Because
of the increase in data quantity required it might be feasible to train a neural network
on the output data without using any prior physics information, but using PINNs it is
possible to both learn a representation of the output while also simultaneously estimating
the unknown parameters.

2D Linear PDE

The same experiment was now repeated for the 2-dimensional heat equation, and the
final output of the trained PINN is shown in Figure 4.9. The output is again very similar
to the true solution and output from the previous experiment with the 2-dimensional
heat equation. The final validation loss after training is: 5.2727 · 10−5, which is much
lower than the previous experiment with the known parameter, which again could be
explained by the change of optimization algorithm and increased data quantity.
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The final estimate of the parameter after training ends up at: k̂ = 0.993225 compared
to the true value of k = 1 which means that the PINN learned the true system well.
However, increasing the dimension requires significantly more data than compared to
the previous 1-dimensional case, where the number of training points and collocation
points is increased from 1000 to 20000. This also increases the computational cost,
but the most significant drawback is the reliance on training data, as more collocation
points can always be generated. Collecting data from real systems can often be difficult,
so it might not always be feasible to estimate unknown parameters with this method.
Although, if there exists some prior information about the value of the parameter in
addition to the system dynamics this could also be incorporated into the PINN training.
For example if the parameter value itself is unknown, but has a known minimum and
maximum value, this prior information can be used during training by clipping the
parameter value to this range after every iteration. For the heat equation specifically it
can for example be assumed that the heat conductivity is a positive value, thus limiting
the range from below by zero.
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Figure 4.13: PINN output after training on a 2-dimensional heat equation with an un-
known parameter.

4.1.3 Causal Training

Simple PDE

With all the training enhancements of the modified network structure, Fourier embed-
dings, causal loss with epsilon annealing and time-marching, the resulting output from
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solving the Burger’s equation is shown in Figure 4.14. The complete output was created
by stitching together the individual outputs from the smaller submodels. The quality
is seen to be much higher compared to the previous more default approach shown in
Figure 4.10.
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Figure 4.14: Burgers’ equation solved with causal PINN training.

Visualizations of the output at specific slices in time are shown below in Figure 4.15.
Comparing this to the slices from the default approach in Figure 4.11, the plots look
more smooth and symmetric, which indicates a higher accuracy.
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Figure 4.15: Visualization of time-slices from the PINN output after causal training on
a Burgers’ equation.

The purpose of this experiment was to show that the enhancements to the PINN
training process work and give accurate results. But the increased computational cost
may not be worth it for all problems.

Chaotic PDE

Moving on to the more complicated Allen-Cahn equation, training a PINN without
any of the enhancements will generally work very poorly. The result of doing this is
not shown here, as the plot would be just tending towards zero as the time increases.
However, by incorporating some of the enhancements described in the method section
and training a PINN, results in the output plot shown below in Figure 4.16.

59



4 Results and Discussions

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.16: The Allen-Cahn equation solved with causal PINN training.

Comparing the pointwise MSE to a numerical solver, the resulting difference becomes:
3.2457 · 10−6. This is an indication that the causal training method also gives a high
accuracy for chaotic systems.
Numerically solving chaotic ODEs and PDEs are often hard to do with any accuracy

for longer time intervals. For a system to be chaotic it means that small differences in
initial conditions results in wildly different trajectories in time. Because no numerical
method is perfectly accurate, for example due to floating point arithmetic on computers,
small errors will accumulate during the numerical integration. These small errors might
not mean much for a non-chaotic system except that the solutions become less accurate,
but for chaotic systems, the solutions will get increasingly wrong with time, making
them very unreliable.
Introducing causality is a way to combat this by ensuring that sections in time are

accurate enough before proceeding to the next section in time. This prevents errors from
accumulating, and reduces the chaotic influence during training.

4.1.4 Symbolic Operator Discovery

Nonlinear PDE

Firstly, a PINN is trained on yet another Burgers’ equation. All the same improvements
as used with the causal experiment are applied here, except time-marching. Comparing
the MSE loss to the numerical solver results in the difference: 2.8914 · 10−5. This PINN
model is then used as the ground truth to validate the accuracy of the symbolic operator
discovery. This is done partially because the trained PINNmodel is a continuous function
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that can be evaluated at any point, and is therefore not restricted to the specific grid
discretization as the downloaded dataset used. Additionally, having access to the model
itself makes it possible to compute partial derivatives with automatic differentiation,
thus making the operator accuracy more reliable. The alternative would be to use finite
differences on the numerical dataset, which makes it much less reliable. This insight can
also be considered a useful application of PINNs compared to numerical solvers.
Afterwards, the symbolic operator discovery is done with two different models. The

first is a default PINN. The second is a PINN with the additions of the modified net-
work structure, which seems to generally be an improvement without any noticeable
drawbacks, and with a Fourier embedding to handle the known periodic boundary. The
second neural network that learns the missing term of the PDE symbolically is kept as
a standard neural network for both models.
Plotting the outputs of any of these models would result in yet another plot of the

Burgers’ equation, which has been shown many times throughout this thesis, so it was
not necessary to display here yet again.
To validate the accuracy, a grid of equally spaced points are constructed over the

domain to evaluate at. The networks learning the output state of the PDE are compared
with the MSE against the ground truth PINN described previously. The default PINN
achieves an MSE of 1.28 · 10−4, and the improved PINN achieves an MSE of 7.7 · 10−5,
which is a slight improvement.
To validate the learned symbolic operators, automatic differentiation is used on the

ground truth PINN to calculate the relevant partial derivatives. These are then evaluated
on the grid of validation points. This makes it possible to explicitly calculate the ground
truth operator by combining the relevant terms together. The network that learns the
symbolic representation receives these true partial derivatives and state as input, and the
output becomes the learned operator. The operator can then be validated by comparing
with the MSE over the grid points. The first model with the standard PINN achieves
an MSE of 0.286, and the model with the improved PINN achieves an MSE of 0.194.
The improved PINN still has a slight improvement, but neither of the models appear
particularly accurate in this case.
So even though both models get a relatively accurate representation of the output, they

appear to not learn the symbolic expression for the unknown term very well. Although
the MSE values are not necessarily that big either, and it is to a certain extent dependent
on the true scale of the values of the system. This can also happen because the MSE
is computed as the mean over the validation points. And for Burgers’ equation in
particular, as there develops a discontinuity along the origin, the derivative at that
point approaches infinity as time increases. This value might get large enough to run
into numerical errors, but this was not investigated thoroughly. A potential solution
could be to take the median value of the MSE instead of the mean, as it is more outlier
resistant. But the conclusion is anyway that it is difficult to verify the accuracy of the
learned unknown term.
As the two networks are trained together, the outputs from the symbolic network are

used to calculate the physics informed loss also during training. If the network was set
to a constant zero, then the physics informed loss would not reflect the true PDE as
there is a term missing from the equation. Therefore it means that even though the
learned symbolic operator in this case might not be that accurate, it is still accurate
enough to allow the other network to represent the output state of the system. It is also
possible that simply tuning the hyperparameters further would result in a more accurate
expression for the unknown term.
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4.1.5 Solving PDE-Constrained Optimal Control Problems

Flux Control

The output state of the trained PINN can be seen below in Figure 4.17. The boundary
condition when y = 0 seems to be satisfied relatively well along with periodic boundary
in the x-direction.
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Figure 4.17: PINN output of the solution to the optimal control problem on Laplace’s
equation.

The learned control input is displayed in Figure 4.18, and is working as the boundary
on the top side of the domain when y = 1. Verifying that the flux in the y direction
goes to the desired flux is not obvious from looking at any of these plots, and must be
verified in another way.
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Figure 4.18: Learned control policy to the optimal control problem on Laplace’s equa-
tion.

As both networks are trained together, they will have to learn to satisfy boundary
and physics loss in addition to minimizing the objective function. By looking at the
training loss values, they should all go to zero to perfectly represent the true solution to
the optimal control problem. The individual training losses are shown in Figure 4.19.
It can be seen that the cost value corresponding to the objective function is prioritized

during training, which makes sense due to its higher relative weighting. It also shows
that the boundary loss and physics loss are much higher relatively. This can partially
be explained because the periodic boundary condition is not possible to satisfy with the
learned control policy in Figure 4.18, as that is also not periodic. Can also see that
the losses converge after around 4000 epochs to a local minima, which is because the
L-BFGS method doesn’t use any momentum.
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Figure 4.19: Training losses when training for the optimal control problem on Laplace’s
equation.

Another way to validate the learned control policy is to train a new PINN where the
control policy is kept constant during training. For this experiment, this is equivalent
to solving a standard boundary value problem. The objective function is not used for
training, but is instead measured and used as a performance metric during training.
Doing this results in the output solution plot in Figure 4.20 and losses in Figure 4.21.
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Figure 4.20: Output solution to Laplace’s equation with the control policy fixed as a
boundary condition.

The output plot looks relatively similar to the previous output plot, with the biggest
differences around the boundary. However, by looking at the individual losses, the cost
of the objective function is now significantly worse, which is an indication that the
learned control policy would not work very well on a true system. The same problem
remains with the fact that the learned control policy is not periodic, which can be why
the physics loss is much lower than the boundary loss. But it is likely that it is not
possible to find a solution that perfectly satisfies both the boundary conditions and the
desired flux. A possible solution to the non-periodic control policy could be to satisfy the
periodic boundary with a Fourier embedding in the y-direction, which could be worth
investigating further.
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Figure 4.21: Training losses when training on Laplace’s equation with the control policy
fixed as a boundary condition. The cost is not used when training, and is
instead used as a performance metric.

Dirichlet Boundary Control

Training a PINN on the output solution of the heat equation results in the plot shown
below in Figure 4.22, which looks relatively similar to the previous 1-dimensional heat
equation plots. As the desired temperature distribution is a constant 0.5, the system
will attempt to move towards this distribution while also subject to the constraint of
the dynamics. Figure 4.23 shows the same plot viewed at some slices in time.
As seen from the time slices, the temperature distribution becomes flatter over time,

but the heat equation is not really capable of staying constant over a bounded domain.
It is possible that the temperature distribution would oscillate at the boundaries and
remain close to 0.5 in the center, which overall averages out to 0.5 over a longer time
horizon.

66



4 Results and Discussions

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.22: PINN output of the solution to the optimal control problem on the heat
equation with Dirichlet boundary control.
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Figure 4.23: Visualization of time-slices from the PINN output of the solution to the
optimal control problem on the heat equation with Dirichlet boundary con-
trol.
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Figure 4.24: Learned control policy to the optimal control problem on the heat equation
with Dirichlet boundary control.

The learned control policy is shown in Figure 4.24, which also serves as a boundary
condition along the bottom side of the domain. It appears as a linearly increasing
function, which can make sense by considering that there is an initial heat distribution
that is spread out over the domain over time. As the distribution becomes more spread
out, there is also less incoming heat to the edges of the domain, which is compensated
for by the control policy. This can also be justified by thinking of the heat equation
as containing a first order partial derivative of time, which when integrated over time
becomes a straight line.
As there is no boundary condition on the top, the trained PINN appears to impose a

symmetric boundary condition on itself. This can be thought of as equivalent to applying
the control boundary on both sides of the domain. For real systems governed by the
heat equation on a bounded domain, there will always be some boundary conditions on
both sides of the domain. This also means that real systems will typically get a more
asymmetric distribution when supplied with heat from only one of the boundaries.

Neumann Boundary Control

Replacing the Dirichlet boundary with the Neumann boundary and training a PINN on
the optimal control problem results in the output solution in Figure 4.25 along with time-
slices in Figure 4.26. The desired temperature distribution is still set to be a constant
0.5.
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Figure 4.25: PINN output of the solution to the optimal control problem on the heat
equation with Neumann boundary control.

One noticeable difference from the previous experiment is that the overall temperature
distribution is much less symmetric. This also seems like a more realistic result, and
might be related to how Neumann control can be interpreted as more realistic than
Dirichlet control. Now, heat is sent in with some inertia, as opposed to instantly setting
the heat on the boundary. Otherwise, the same heat distribution appears to flatten out
relatively well, and the same argument related to averaging out over a longer time span
is still valid.
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Figure 4.26: Visualization of time-slices from the PINN output of the solution to the
optimal control problem on the heat equation with Neumann boundary
control.
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Figure 4.27: Learned control policy to the optimal control problem on the heat equation
with Neumann boundary control.

The learned control policy in Figure 4.27 still appears as a straight line, although
this time with a downward slope. As the value of c(t) refers to the rate of change in
the x-direction on the boundary, this is related to how much heat to introduce to the
system. At the beginning the boundary is close to zero which means a high rate of heat
must be introduced. After a while, as the heat distributes evenly, it is less necessary to
add more heat. Eventually due to inertia, the heat on the boundary exceeds the desired
heat of 0.5, so the rate of change becomes negative to lower it.
This overshoot might lead to some oscillations which could resemble a step response

for an underdamped second order linear system, where it eventually approaches a sta-
tionary value. A reason for this could be because the objective function is set to target
a heat distribution of a constant 0.5 without considering the inertia in the heat distribu-
tion itself, causing it to overshoot on the boundaries. For the step response mentioned
previously, the reference can be set to a constant value for the state, and a value of zero
to the derivative of the state to account for this.
To test this hypothesis further, the same optimal control problem was solved again

with a longer time horizon. The final time now goes from 0.2 to 1 second. The number
of data points along the initial condition was also increased from 100 to 1000 to increase
the general accuracy.
The resulting solution from this is plotted in Figure 4.28 along with time slices in

Figure 4.29. The overall solution is now much more symmetric again, which could
indicate that the previous lack of symmetry was more because of too few data points
along the initial condition, thus making it asymmetric from the start. Because there
still isn’t any boundary condition on the top, it might be that the PINN imposes its own
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symmetry again.
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Figure 4.28: PINN output of the solution to the optimal control problem on the heat
equation with Neumann boundary control and a longer time horizon.

It is also interesting to note that the new plot in Figure 4.28 appears to almost vanish
completely in an arc a little after 0.2 seconds. As the desired temperature distribution
is set to be at t = 1, it does not have to resemble the plot from the previous run. It is
then brought back by the control input that gradually shapes the distribution.
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Figure 4.29: Visualization of time-slices from the PINN output of the solution to the
optimal control problem on the heat equation with Neumann boundary
control and a longer time horizon.
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Figure 4.30: Learned control policy to the optimal control problem on the heat equation
with Neumann boundary control and a longer time horizon.

The control input visualized in Figure 4.30 looks similar to the previous input in the
sense that it looks like a relatively straight line at the start. It also overshoots zero,
before slowly converging back to it from below, which is very reminiscent of a second
order step response that is slightly underdamped. At the end with a time derivative of
zero, it means that the rate of change in the x direction is zero. Which shows that the
heat distribution has converged to a constant value.

Initial Control

For the final optimal control experiment, the trained PINN output is visualized in Figure
4.31. Comparing the plot visually to the analytical plot, it is immediately clear that it is
not a good representation of the true solution. Looking at specific slices in time shown
in Figure 4.32, the differences become more obvious. The learned solution at the initial
time t = 0 also corresponds to the learned control policy, and does match the analytical
solution very well. However, the PINN appears to still converge to the desired analytical
solution at t = 5 to a high degree, which also corresponds to satisfying the objective
function well.
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Figure 4.31: PINN output of the solution to the optimal control problem with Burgers’
equation.
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Figure 4.32: PINN output at specific slices in time of the solution to the optimal control
problem with Burgers’ equation.

Looking at the individual training losses in Figure 4.33, it can be seen that the bound-
ary loss is the lowest, which means that the network is not obstructed in the same way as
previous experiments. The initial loss comes next, and refers to the difference between
the control policy and initial value. So even with a low initial loss, the large discrepancy
comes because the control policy itself is inaccurate. The cost of the objective function
comes next, leaving the physics informed loss as the worst performing. So this can in-
dicate that even though the learned control policy worked well to lower the objective
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function here, it would not work well when applied to a real system, as the physics cheat
to get there.
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Figure 4.33: Training losses when training for the optimal control problem with Burgers’
equation.

The plots in Figure 4.33 are generally noisy with many frequent spikes. The spikes
happen at the same times when the Adam optimizer is stuck in a local minima but is
carried outside with momentum. Then the physics loss increases somewhat, while the
other three increase. This essentially means that it is a difficult problem to solve with
this simple formulation. The plots also appear to converge at the end. This happens
because of a change to the L-BFGS optimizer at 18000 epochs. But it also looks like the
L-BFGS optimizer simply converges to the same local minima the models already were
bouncing around in with Adam, and might not be necessary to use.

4.1.6 Regularization with the Maximum Principle

Elliptic PDE

Regularizing the training by using the maximum principle for Laplace’s equation results
in the PINN output in Figure 4.34, which overall looks very similar to the analytical
solution in Figure 3.5. Calculating the MSE from the analytical solution results in 1.21 ·
10−4. For comparison, training another PINN from scratch with the exact same setup
except the regularization results in an MSE from the analytical solution of 1.91 · 10−4.
So the regularization yields a very small improvement.
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Figure 4.34: PINN output after training with maximum principle regularization on
Laplace’s equation.

Plotting this MSE value as a validation loss for each epoch when training results in
the plots in Figure 4.35. The regularized PINN appears to learn faster during the first
200 epochs before flattening out. It then eventually surpasses the standard PINN again
after around 700 epochs.
It is possible that the regularization is something that works best at the start of

training, and can then be gradually or completely removed from the loss function. But
it does seem to give slightly faster training along with a little better final performance
/ accuracy. And as the computational cost is insignificant in comparison to the rest of
the training, adding this regularization term when training on elliptic PDEs does not
seem to have any obvious disadvantages. However, while the performance gains are very
minor for this specific experiment, it could be more useful for elliptic PDEs in higher
dimensions, and might be interesting to investigate further.
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Figure 4.35: Validation losses after training with maximum principle regularization on
Laplace’s equation.

4.1.7 Causal Optimal Control

Initial Control

Training a PINN with causal training and the other mentioned improvements results in
the plots shown below in Figure 4.36 and Figure 4.37.
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Figure 4.36: PINN output of the solution to the optimal control problem with Burgers’
equation after training with causality and other improvements.
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Figure 4.37: PINN output at specific slices in time of the solution to the optimal con-
trol problem with Burgers’ equation after training with causality and other
improvements.

Comparing these results visually to the previous attempt in Figure 4.31 and Figure
4.32 it is overall a better result, which is easier to see when t = 0. It is also possible
that further training would give even better results, as the causality makes the overall
training take much longer for a problem like this. Another consideration is that the
relative weighting of the physics loss is set to a really large value, which is necessary to
not be overrun by the causal loss and initial loss.
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However, the initial condition is still not very good when compared with the analytical
solution. It is possible that the causality makes the problem too difficult to learn. Run-
ning the same experiment again with the same setup with all the improved techniques
except for the causal loss results in the Figures shown below in Figure 4.38 and Figure
4.39.
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Figure 4.38: PINN output of the solution to the optimal control problem with Burgers’
equation after training with many improvements, but not causality.
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Figure 4.39: PINN output at specific slices in time of the solution to the optimal con-
trol problem with Burgers’ equation after training with causality and other
improvements.
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The solution looks relatively similar to the previous attempt that used causality. The
initial condition is the biggest change, where the amplitude is closer to the true solution
but some of the skewness is lost. It is hard to say which attempt resulted in the best
solution, and that might depend on what the application of the problem would be.

Reversed Initial Control

Using the time-reversed PDE and training a PINN on these dynamics while also using
causality and the other training techniques described before results in Figure 4.40 and
Figure 4.41.
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Figure 4.40: PINN output of the solution to the optimal control problem with Burgers’
equation after training on the time-reversed system.
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Figure 4.41: PINN output at specific slices in time of the solution to the optimal control
problem with Burgers’ equation after training on the time-reversed system.

These final results from training on the time-reversed dynamics can be seen to improve
upon the previous attempts by looking at the initial learned solution. While still not
perfect, it is a noticeable improvement from the ones in Figure 4.36 and Figure 4.38.
This plot was here generated by sampling at the final time for the trained model to get
the initial distribution to use. Using this problem formulation, training with causality
also makes more sense as it is working in the same way as the dependence between final
state and initial condition.
This experiment shows the importance of adapting the method to the problem. Not

all problems become easier by time-reversing the dynamics, but in cases like this where
it is possible it resulted in a solution that was easier to learn.

4.2 Discussion

Modeling dynamical systems with standard neural networks is often difficult due to a
lack of training data, and the trained networks struggle with generalization outside the
training domain. Adding prior physics information about the dynamics, which can often
be obtained by modeling systems from first principles, can regularize the neural networks
in a way that both allows them to learn from much less data and also generalize much
better outside the domain of the training data.
A non-intuitive result was that complicated dynamics turned out to be easier to learn

compared to more difficult dynamics, the exact opposite of what usually happens when
working with dynamical systems. As complicated dynamical systems are more strict
in how the system evolves it is possible that they also contain more information when
training PINNs, which allows for easier training. In general, it appears that PDEs are
easier to learn than ODEs, time-varying is easier than time-invariant, and nonlinear is
easier than linear.
How the training is done can also greatly influence the final result. Using the correct

optimization algorithm turned out to be important for some problems. Having enough
collocation points is necessary for better generalization, and is also necessary for increas-
ing the number of training steps. The collocation points should also be placed at the
correct locations. A linearly spaced grid makes learning very difficult, while a random
uniform sampling often works well enough.
Discovering unknown system parameters is one of the main advantages of PINNs com-

pared to traditional numerical methods, and seems to work well for simple problems.
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This does however require significantly more training data, and is also much more com-
putationally expensive. Learning terms symbolically has the problem where the input
variables must be explicitly set. This could mean that to find the best overall solution
it requires that the PINN is trained from scratch from every possible input combination
if nothing prior is known. And without access to an analytical solution or data it is not
possible to verify the solution, which is always the case when using the method for new
problems.
Using PINNs for optimal control problems are possible to setup, and the framework

has shown to be very flexible and easy to setup for solving many different types of
problems, requiring a relatively low complexity for the implementation. The results are
however very difficult to accurately verify, and the method does not have any convergence
guarantees. This stands in contrast to traditional numerical optimization methods,
where a convex optimization problem has algorithms that provably converge to the
global optimum. Of course not all problems are convex, but many of practical interest
are possible to formulate like this.

84



5 Conclusion and Further Work

5.1 Conclusion

Physics informed neural networks seem to work well for learning output trajectories from
both ODEs and PDEs, provided that there is enough data and enough computational
effort spent during the training. Data-driven discovery of unknown parameters also
seemed to work well, as long as enough data was provided. PINNs are overall a natural
choice for incorporating prior knowledge about system dynamics into a machine learning
framework. Discovering unknown terms of an equation from data is also another problem
where the PINN approach can work relatively well.

Applying PINNs for more advanced problems can also work well, especially by also
incorporating the various enhancements to the training process. This can also lead to an
increased computational complexity, but can give much better results. This might not
necessarily be worth using for simply solving PDEs numerically, as traditional numerical
methods will outperform this both computationally and accurately. However, adding
causality to solving optimal control problems gave much better results than not using
it. Some of the other improvements like the modified network structure doesn’t seem to
have any disadvantages when used, and can always be applied. Fourier embeddings are
very useful when the problem has a periodic boundary, not so useful if not.

5.2 Future Work

The current method of validating the trained PINNs is not very robust. A better way
than visually comparing can be to implement numerical PDE solvers to compare against.
An alternative is to compare against a dataset sampled from either a real system or
another numerical solver. The current data being used should also be augmented with
some random noise to better simulate sensors and make the overall experiments more
realistic. However, when learning symbolic representations for unknown systems or new
control policies it can be much harder to verify the results even numerically.
An alternative PINN framework based on discretizing the dynamics in a similar way

to the finite difference numerical PDE method was also described by the original authors
[33]. The actual discretization is based on Runge-Kutta numerical methods for ODEs,
which are much more accurate compared to a simple finite difference. The purpose
of this framework was to avoid the curse of dimensionality by reducing the number of
collocation points, which allows for faster training. Discretized PINN models could be
worth exploring further.
Using PINNs for data-driven discovery works well for systems where the expression

for the dynamics is known, but with unknown parameter values. Modeling real systems
from first principles relies on making assumptions, which can lead to model inaccuracies.
This is also true when using this symbolic approach as the input variables must be set
explicitly, either based on prior information or a guess. In the ideal case, redundant
input variables would not be used by the trained network, but neural networks can be
unpredictable and possibly overfit on these variables in a way that is not physically
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accurate but still causes the training loss to decrease. An interesting experiment can be
to treat the set of input variables as a hyperparameter and then perform hyperparameter
optimization on this set. By choosing from this optimization, there is a higher chance
of finding the most accurate true expression.
Using PINNs for optimal control has shown to be a very flexible framework for different

types of control problems. This master thesis has shown experiments on some types,
but many other problems can be formulated and experimented on with PINNs. Another
thing that should be done is verify the learned control policies by solving the same
problem numerically using the learned and freezed control policy. Validating this on
some simpler problems gives some evidence that the method works, which can then be
extrapolated to more complicated problems.
Some more future work could be to combine these two methods in order to do optimal

control of systems with partially unknown dynamics. It could be possible to either do
it in two stages, where first the unknown term is learned symbolically based on some
dataset of the true system. This symbolic term can then be added to the optimal control
PINN when learning the control policy. It might also be possible to do both of these
in a single step by adding the symbolic network directly to the optimal control PINN
problem, but this will most likely be too difficult to learn with neural networks directly
and still learn something accurate. Using PINNs to learn unknown terms could also
be combined with model predictive control in the way described by [52]. All of these
problem setups can be improved by adding causality and other training improvements.
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