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Anvendelser av dyp leering for
maling av hjerteklaffsykdom
innen transtorakal
ekkokardiografi

Hjerteklaffsykdom omfatter sykdommer som pévirker hjerteklaffene og er as-
sosiert med redusert slagvolum og darlig prognose for pasienten. Transtorakal
ekkokardiografi (TTE) er det viktigste verktgyet for vurdering av hjerteklaffsyk-
dom. Imidlertid finnes det for gyeblikket ingen gullstandard for gradering
av hjerteklaffsykdom basert paA TTE. Derfor er kardiologer avhenginge av
en integrert tilnserming med bruk av flere malinger, noe som er bade tid-
krevende og assosiert med stor grad av méalevarabilitet mellom observatgrer.
I lys av nylige fremskritt innen ultralydteknologi og fagfeltet dyp leering
(DL) kan noen av de vikigste utfordringene knyttet til arbeidsbelastning
og maleusikkerhet bli handtert. Malet med denne avhandlingen var a ut-
forske hvordan DL kan benyttes i ssammenheng med bade ny og eksisterende
metodikk for kvantisering av hjerteklaffsykdom basert pa TTE.

Tre studier blir presentert. Fgrst presenterer vi en DL-tilnsgerming for
automatisk maling av mitralklaffapperatet fra TTE B-Mode-bilder, som ble
vist & veere muliggjorende for pavisning og kvantisering av mitralprolaps og
-stenose. Deretter presenterer vi en DL-tilnserming for automatisk kvantifis-
ering av mitralinsuffisiens ved segmentering og tidsintegrering av konvergen-
sregioner fra 2-D farge-Doppler-sekvenser. Metoden var i stand til & skille
mellom milde, moderate og alvorlige tilfeller, og malingene korrelerte godt
med referansemaélinger fra TTE og magnetisk ressonanstomografi. Til slutt
presenterer vi en simuleringsbasert DL-tilnserming for segmentering av darlig
opplgste bilder av klaffeinsuffisiens, i ssmmenheng med et rammeverk basert
pa 3-D Doppler ultralydavbildning med hgy bildefrekvens. Metoden ble vist
a vaere anvendelig pa kliniske data, og sentrale utfordringer ble belyst.






Abstract

Valvular heart disease (VHD) is a class of diseases that affect the heart
valves, and are associated with a reduced cardiac output and a poor prog-
nosis for the afflicted patients. Transthoracic echocardiography (TTE) is
the cornerstone for the assessment of VHD. However, currently there does
not exist any gold standard TTE method for the assessment of the VHD,
hence cardiologists rely on an integrative approach of multiple measure-
ments, which is both time-consuming and associated with high inter-observer
variability. In light of recent advancements in ultrasound technology and
within the field of deep learning (DL), some of the key challenges related to
workload and inter-observer variability for the assessment of VHD could be
addressed. The goal of this thesis was to explore the integration of DL-based
approaches for both new and existing TTE methods for quantifying VHD
severity.

Three studies are presented. First, we present a DL approach for auto-
matic monitoring of the mitral valve apparatus from TTE B-Mode images,
which was demonstrated feasible for detecting and quantifying mitral valve
prolapse and stenosis. Secondly, we present a DL framework for the au-
tomatic quantification of mitral regurgitation from segmentation and time
integration of regurgitant flow convergence zones from 2-D Color Doppler
sequences. This framework was able to distinguish between mild, moderate,
and severe cases, and measurements had a good correlation with TTE and
magnetic resonance imaging references. Finally, we present a simulation-
based DL approach for sub-pixel segmentation of poor resolution images of
regurgitant valves, in the context of a high frame rate 3-D Doppler ultra-
sound framework. Clinical feasibility was demonstrated, and central chal-
lenges were highlighted.

iii






Preface

This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor (Ph.D.) at the Faculty of Medicine of the
Norwegian University of Science and Technology (NTNU). The research was
funded by the Centre for Innovative Ultrasound Solutions (CIUS) and was
carried out at the Department of Circulation and Medical Imaging (ISB),
NTNU. The main supervisor has been Professor Lasse Lgvstakken, and the
co-supervisors have been Professor Havard Dalen, associate professor Jorgen
Avdal, associate professor Bjgrnar Grenne and Stefano Fiorentini, all from

ISB, NTNU.
Acknowledgement

This thesis could not have been completed without the aid of everyone who
has supported me throughout these years. I extend my sincere gratitude
to my supervisor, Lasse, for his guidance and remarkable expertise in the
field of ultrasound. Moreover, I want to express my appreciation to my co-
supervisor, Stefano, whose patience and knowledge were essential for keeping
me afloat during the initial phases of my PhD studies.

I also want to express my gratitude to the knowledgeable and enthusi-
astic clinicians Henrik, Erik Andreas, Espen, Bjgrnar, and Havard. They
generously took time from their busy schedules to provide me with invaluable
data annotations and their profound insights into the field of cardiology.

Furthermore, I would like to thank all my colleagues at ISB who have
consistently been available for discussions and have assisted me whenever I
got stuck. Special thanks go to Jieyu and David, who helped me numerous
times with programming. Moreover, my colleagues have played a crucial role
in my overall well-being. We have shared many laughs during coffee breaks,
waffle Fridays, travels, and ski trips, and I consider myself fortunate to have
you as friends.

Finally, I would like to express my deepest gratitude to my family who
has always supported and encouraged me, and to Ingvild, for your love and
countless hugs.






Table of Contents

[Abbreviations| ix
(1__Introduction| 1
[1.1  Amms of the study|. . . . . ... ... ... ... ... ... 3
1.2 Summary of presented work| . . . . . ... ... 4
1.3 Discussion of resultsl . . . . . . .. ... 6
[1.3.1  Mitral Valve Segmentation and Tracking from "Trans- |

| thoracic Echocardiography using Deep Learning/. . . . 6

[1.3.2  EasyPISA - Automatic Integrated PISA Measure- |
| ments of Mitral Regurgitation from 2-D Color-Doppler |

| using Deep Learning| . . . . .. .. ... ... ... .. 9
[1.3.3  Quantifying Valve Regurgitation using 3-D Doppler |

| Ultrasound Images and Deep Learning| . . . . . . . .. 11
[1.4  Concluding remarks| . . . .. ... ... .. ... .. ... 13
[LLb Publication listl . . . . . ... ... ... L. 17
(L6 Thesisoutlinel . . . . . . . ... ... 18
Referenced . . . . . . . ... L 19

[2 Background| 25
[2.1 Echocardiography|. . . . . . . . . . ... 25
2.2 Valvular heart diseasel . . . . . ... ... ... ... ... 34
2.3 Echocardiographic assessment of mitral valve regurgitation|. . 37
2.4 Deep learning for medical image analysis|. . . . . . . ... .. 42
Referenced . . . . . . . . . . ... 57

[3 Mitral Valve Segmentation and Tracking from Transthoracic |
[ Echocardiography using Deep Learning] 63
BI Tntroductionl. . . . . . . . . . . ... 64
B2 Methodd . . . ... ... 65
B3 Resultsl. . . . . . . oo 72

vii



Table of Contents

8.4  Discussionl . . . . . ... 74
B.5 Conclusiond . . . . ... ... ... 80
Referencesl . . . . . . . . . . .. 83

4 EasyPISA - Automatic Integrated PISA Measurements of |
| Mitral Regurgitation from 2-D Color-Doppler using Deep |

87
4.1 Introductionl. . . . . . . . . .. 88
B2 Methodd . . . . . . . . . 89
BE3 Resultsl. . . . . .o 95
4.4 Discussionl . . . . . ... 98
4.5 Conclusionsl . . . . . . . . .. 106
Referenced . . . . . . . . . 107

[6 " Quantifying Valve Regurgitation using 3-D Doppler Ultra- |

|  sound Images and Deep Learning| 111
5.1 Introductionl. . . . . . . . . . . ... 112
B2 Methodd . . . . . . . .. .. 114
B3 Resultsl. . . . . ..o 122
5.4 Discussionl . . . . . ... 130
5.5 Conclusionl. . . . . . . . ... 135
Referenced . . . . . . . . . . 137

viii



Abbreviations

2-D Two-dimensional

3-D Three-dimensional

A2C Apical two-chamber
A4C Apical four-chamber view
Al Artificial intelligence

ALAX Apical long-axis view
AUNet Attention UNet

cMRI Cardiac magnetic resonance imaging
CNN Convolutional neural network

CSA Cross sectional area

CT Computed tomography

CVD Cardiovascular disease

CW Continous wave

DL Deep learning

DS Deep supervision

DSC Dice similarity coefficient

EROA Effective regurgitant orifice area
FIR Finite impulse response

HPRF High pulse repetition frequency

X



Abbreviations

ICC
IQ
LPF
LV
LVOT
ML
MR
MV
PISA
PLAX
PRF
PSF
PW
ResNet
RVol
SNR
SVD
TCS
TEE
TTE
VHD
VTI

Intraclass correlation coefficient
In-phase quadrature

Low pass filter

Left ventricle

Left ventricular outflow tract
Machine Learning

Mitral regurgitation

Mitral valve

Proximal isovelocity surface area
Parasternal long-axis view
Pulse repetition frequency
Point spread function

Pulsed wave

Residual Network

Regurgitant volume

Signal to noise ratio

Singular value decomposition
Temporal Consistency Score
Transesophageal echocardiography
Transthoracic echocardiography
Valvular heart disease

Velocity time integral



Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally, and
prevalence is increasing with the aging population [1]. As the prevalence
increases, so does the workload for clinicians in hospitals around the world,
which ultimately may lead to a decline in the quality of patient care. To
handle the increase of CVD patients in the future, hospitals need to innovate
to spend less time and resources on diagnosis, while still providing accurate
disease assessment.

Currently, echocardiography is at the core of CVD assessment. Fchocar-
diography refers to the process of imaging the heart using reflections of high
frequency sound waves, i.e. ultrasound, transmitted into the tissue. Ultra-
sonic waves are inaudible to humans, yet highly effective for imaging soft
tissues. The earliest experiments successfully demonstrating heart imaging
using ultrasound were conducted in the 1950s, and were limited to one-
dimensional depictions of the moving tissue [2], [3] and blood flow [4], [5].
As the technology has progressively improved over the years, echocardiog-
raphy today enables detailed two-dimensional (2-D) and three-dimensional
(3-D) imaging of the beating heart, both the tissues of its various structures
in motion and blood flow dynamics.

Following the successful development of ultrasound technology, transtho-
racic echocardiography (TTE), where the ultrasound probe is placed on the
skin of the patient’s chest, has become the primary imaging modality for
assessment of CVD [6]. While enabling detailed imaging of the heart, TTE
is non-invasive and non-ionizing and is also attributed to higher accessibility,
portability, and inexpensiveness compared to other imaging modalities, such
as cardiac magnetic resonance imaging (cMRI) and computed tomography
(1) ).

A common kind of CVD is valvular heart disease (VHD) [8], which is
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Chapter 1. Introduction

a class of diseases that affect the heart valves. Although VHD is highly
prevalent in the population [9], most cases are mild and do not have a sig-
nificant impact on the individual’s health. However, moderate and severe
cases of VHD are associated with increased mortality and morbidity [10],
[11]. Consequently, distinguishing between mild, moderate, and severe cases
of VHD is imperative to ensure that appropriate treatment is given to those
who might be at increased risk while avoiding burdening others with unnec-
essary treatment.

As with most types of CVD, patients with VHD are initially assessed
using TTE [6]. Although abnormalities in the valve apparatus can be iden-
tified by experienced operators, accurately assessing the severity of the con-
dition is a significant challenge even for cardiologists with many years of
experience. Currently, there are no gold standards for assessment of VHD.
Instead, the guidelines [6], [12], [13] recommend an integrative approach of
several quantitative and qualitative measurements using TTE. Moreover,
patients might additionally be assessed with other imaging modalities, such
as transesophageal echocardiography (TEE) and ¢cMRI, as a part of the full
examination. Consequently, assessment of VHD is labor intensive and is as-
sociated with high inter-observer variability [14]. Thus, methods for severity
assessment need to improve in both efficiency and accuracy to ensure suffi-
cient patient care for the aging population.

In recent years we have seen massive advancements within the field of
deep learning (DL). DL is a sub-category of machine learning (ML), which
describes systems capable of performing a wide range of sophisticated tasks
without explicit programming. DL systems learn symbolic representations
of data by adapting thousands to billions of interconnected parameters |15].
The fundamentals of this technology were developed throughout the second
half of the 20" century [16]. However, their practical use has only been
proven effective in recent years, which is mainly attributed to the avail-
ability of computing resources and large datasets [16], [17]. DL systems
are rapidly becoming an essential part of society, and most people inter-
act with such systems every day, including facial recognition software |18],
media recommender systems [19], and very recently, large language models
[15] and other publicly available deep generative models [20]. We also see
similar trends in echocardiography, where the amount of research related to
DL increases rapidly every year, showing great promise for automation of
measurements [21], image enhancement [22], [23], and diagnosis and pheno-
typing [24]. Given the automation capabilities of DL, it is natural to believe
that DL techniques can be applied to the assessment of VHD to alleviate
both workload and inter-observer variability.



1.1. Aims of the study

1.1 Aims of the study

The aims of this study were two-fold. Firstly, we aimed to assess whether
automation of existing quantitative metrics associated with VHD was feasi-
ble using DL. Secondly, we sought to investigate whether DL could be used
to improve the accuracy of both new and existing quantitative metrics for
VHD. The aims can be summarized in the following two research questions.

Can deep learning automate the measurement of clinical mark-
ers of VHD?

According to the recommendations [6], [12], [13], there exists several quan-
titative metrics based on TTE which should be integrated as a part of a full
assessment of VHD. Some of these include cardiac stroke volumes, maximum
velocity and duration of Doppler spectrograms, and caliper measurements of
regurgitant jets apparent from color-Doppler imaging. However, as most of
these measurements need to be performed manually, they are both tedious
and subjective. Moreover, there exists additional metrics that have been
proven beneficial for VHD assessment, such as quantitative valve morphol-
ogy parameters [25], [26] and integrated flow convergence of regurgitant jets
from multiple color-Doppler frames (integrated PISA) |27]. However, these
metrics are rarely used in practice as it would require considerable additional
time per examination. Consequently, many of these metrics are not a part
of current recommendations. However, enabling automatic measurements
could render these methods viable for clinical practice. Moreover, enabling
automatic measurements would facilitate further clinical research on VHD,
as gathering quantitative becomes less demanding.

Can deep learning improve the measurement accuracy of cur-
rent and novel quantitative markers of VHD?

Currently, there are no gold standards for VHD assessment using TTE, and
the accuracy of current methods is limited. Current methods are limited by
simplifications of underlying physics, and by requiring manual measurements
which are prone to human error and practical differences [6]. DL could
alleviate subjectivity and hence improve the accuracy and reproducibility of
clinical measurements. Moreover, novel methods based on advanced imaging
such as 3-D Doppler is limited by image resolution and frame rate |28,
[29]. DL systems are capable of approximating any function [30], including
inverse mappings from poor resolution images [31], [32]. Hence, DL could
be leveraged to mitigate quantitative inaccuracies associated with limited
image quality.
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1.2 Summary of presented work

Contribution 1: Mitral Valve Segmentation and Tracking from
Transthoracic Echocardiography using Deep Learning

The underlying mechanisms leading to VHD are either caused by direct
changes in valve morphology and function, or by secondary dysfunction, in
which remodeling of the adjacent cavities can cause dilatation of the valvular
orifice (annulus) or tethering of the leaflets. Deviations from normal function
could lead to improper coaptation of the valve leaflets, effectively creating
regurgitant orifices [33]. Moreover, restricted leaflet motion could lead to
stenosis in the valve [6]. Assessment of the valve’s condition is therefore
essential for an accurate description of disease mechanisms and for monitor-
ing the progression of the disease. However, valve function is typically only
assessed qualitatively [6]. Quantitative assessment would require tedious
manual measurements, which is rarely considered feasible.

In this work, we developed a framework for automatic segmentation of
the mitral valve (MV) from multiple standard views in TTE imaging. We
trained a convolutional neural network to segment the different anatomical
parts of the MV. We compared different network architectures and found
that attention gates [34] and deep supervision could be leveraged to increase
emphasis on relevant regions in the image, thus mitigating issues of false
positives in irrelevant regions. We showed that this improved the robustness
and quality of automatically derived biomarkers for MV function.

The biomarkers derived using this framework were valve opening angles,
velocities, and leaflet tenting area for all scallops in both leaflets of the MV,
similar to VHD biomarkers which have been described in the literature |25],
[26], |35]. We applied the framework to exams from patients with VHD and
healthy references. We demonstrated that the automatically derived valve
opening angles and tenting areas were feasible for detecting and quantifying
MYV prolapse, and could be associated with the qualitative description from
the clinical exam. Similarly, we demonstrated that valve angular displace-
ment and velocity could be associated with stenosis. These initial results
hold promise for automatic assessment of VHD in the future, motivating
further research on the topic.

Contribution 2: EasyPISA - Automatic Integrated PISA Mea-
surements of Mitral Regurgitation from 2-D Color-Doppler
using Deep Learning

One of the most common types of VHD is valve regurgitation, where im-
proper closure of the valve causes leakage, hence reducing net forward stroke

4



1.2. Summary of presented work

volume. Current guidelines recommend the proximal isovelocity surface area
(PISA) method for quantitative assessment of valve regurgitation. However,
PISA has several limitations due to physical simplifications and due to re-
quiring accurate manual tracing of the echocardiograms |6], [14].

PISA is associated with high inter-observer variability due to practical
differences in measuring the flow convergence region and interpreting the
guidelines [14], |36], [37]. Moreover, standard PISA assessment only mea-
sures the regurgitant jet in one time instance and therefore needs to be
integrated with continuous Doppler measurements to account for temporal
variation of the regurgitation |27]. However, with automated measurement
it is possible to measure in every frame of the recording, hence accounting
for temporal variation directly. Furthermore, automated measurements al-
low for a more flexible surface area estimator in comparison to the manual
approach, for which hemispherical convergence of flow is usually assumed
for simplicity of measurement [6], [13], [38].

In this work, we developed a framework for the assessment of mitral
regurgitation from 2-D color-Doppler echocardiograms by automating the
PISA measurement with DL. The framework, named EasyPISA, automati-
cally segments flow convergence regions from 2-D color-Doppler sequences.
The isovelocity surface area was computed without assumptions of hemi-
spherical convergence using a surface of revolution estimator, and regurgi-
tant volumes were derived with time integration of consecutive measure-
ments.

EasyPISA was applied retrospectively to exams of patients with mitral
regurgitation, with known reference values from standard examination us-
ing TTE and cardiac magnetic resonance imaging (cMRI). We found that
EasyPISA estimates had a good correlation with both PISA and cMRI refer-
ences. Analysis showed that some of the discrepancy could be explained by
insufficient frame rate, angle dependency, and over-segmentation, but also
by differences in geometry assumptions.

Contribution 3: Quantifying Valve Regurgitation Using 3-D
Doppler Ultrasound Images and Deep Learning

One of the fundamental limitations of the 2-D PISA method is that it only
captures a cross-section of the regurgitant orifice. Due to this limitation,
symmetry needs to be assumed when estimating the out-of-plane compo-
nent of the lesion. However, the symmetry assumption is not always valid.
Depending on the placement and cause of the regurgitation, the orifice could
be elliptical or crescent-shaped instead of the assumed circular shape [6], [33].

The 3-D nature of the problem motivates the use of 3-D ultrasound.
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While 3-D PISA is an option [39], traditional 3-D Doppler ultrasound is
severely limited by frame rate and thus struggles to capture regurgitation
dynamics. Because of this, previous work from our group [40] described
a method using High Pulse Repetition Frequency (HPRF) 3-D ultrasound,
which could achieve images of an en face view of the orifice at high frame
rate.

However, one of the fundamental challenges with the HPRF 3-D ultra-
sound technique was the spatial resolution of the images, which made it
difficult to accurately delineate the contour of the orifice. This was a ma-
jor limitation, as accurately estimating the size of the regurgitant orifice is
essential for accurately separating between mild, moderate, and severe cases.

In this work, we sought to improve the contour estimation by using DL
sub-pixel segmentation for estimating the orifice area with better resolu-
tion than what was initially given by the image. Because of limited data
availability, we resorted to training the model on simulated data.

Using a lightweight architecture trained on thousands of simulated re-
gurgitant orifices with various shapes and sizes, we achieved a model with
high validation accuracy. We also found that applying the model to real data
was feasible by using data augmentation to account for noise that could not
be directly simulated using the ultrasound simulator.

Experimental analysis showed that the model could delineate the under-
lying orifice shapes from the poor resolution images better than the original
method, and consequently could estimate flow volumes with higher accuracy.
Using this model on patient data we achieved comparable results to both 2-D
PISA and cMRI. However, other components of the HPRF data acquisition
pipeline still pose a challenge to the pipeline’s viability for clinical use.

1.3 Discussion of results

1.3.1 Mitral Valve Segmentation and Tracking from Trans-
thoracic Echocardiography using Deep Learning

Challenges in the dataset

Segmentation of the MV is challenging for several reasons. The MV is typ-
ically not clearly visible in poor-quality images. Manually annotating such
images was therefore a significant challenge. This caused worse model per-
formance on average for poor-quality images, which are common for difficult-
to-image patients.

Moreover, the MV is a dynamic, three-dimensional structure. Imaging
with 2-D ultrasound is therefore challenging as leaflets can move out of the
imaging plane, causing inconsistent segmentation results. To fully assess MV
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function it was necessary for the model to segment the MV from multiple
standard views. However, as both the MV and the surrounding tissue dis-
play different features in the different views, generalizing the segmentation
problem across all views was a considerable challenge. Training different
models for each view was not feasible at the time due to limitations of the
dataset size, hence one model was trained on the full dataset. Consequently,
we could observe a reduction in performance for the parasternal long-axis
view, and for the anterior leaflet in the apical two-chamber view.

Generalizability was a challenge not only in terms of image quality and
view but also pathology. To account for a wide range of pathologies, we
trained the model on images from patients with degenerative or rheumatic
MYV disease with varying severity. However, we could observe that the model
would fail for some cases with severe pathology or otherwise substantial devi-
ation from the normal cases. This is a common problem for ML algorithms,
as they are prone to overfitting the model parameters to the training dataset
[16]. Expanding the training dataset would be beneficial for increasing gener-
alizability. Much more data is currently available but needs to be annotated
in order to be used for training. However, ensuring sufficient diversity of
pathologies is a challenge.

Model selection

Due to the challenges in the dataset and concerns about generalizability,
model design was important to mitigate the specific challenges in the dataset.
We found that using attention gates to enforce saliency around the MV
could mitigate issues with false positives of surrounding tissue, leading to
overall better estimates of the extracted metrics for valve function. However,
improvements to the model could be made in the future to further increase
the robustness. The MV leaflets are thin structures, that always connect to
the annulus points, hence the annulus and leaflet structures might be better
modeled as graphs. Followingly, the model could be optimized to minimize
a regression loss function of the graph point coordinates. Adapting the
segmentation problem to a point coordinate regression problem could be
achievable using graph convolutional networks [41], or by combining the
proposed model with a differentiable spatial to numerical transform [42].
Moreover, due to the dynamic nature of the MV, leveraging temporal
information in the model would likely further increase robustness and tem-
poral consistency. However, this would require a training dataset densely
annotated in time, which substantially increases the workload for annotators
and was therefore not considered feasible. We experimented with overcom-
ing this issue by using spatiotemporal pseudo-labels generated with a model
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trained on individual frames, similar to other research [43|-[45]. However,
we did not observe any improved results in our experiments using this ap-
proach. Leveraging temporal information could also be possible by using
tracking algorithms. Tracking-based algorithms would need to account for
large leaflet displacement between imaging frames during the MV opening
phase, as well as out-of-plane movement. Various algorithms for tracking
MV motion have previously been proposed [46]-[48]. Such algorithms might
be combined with supervised DL segmentation methods to improve temporal
consistency while still maintaining segmentation accuracy.

Future work

With the knowledge gained from the analysis of the model’s performance, the
model should be reiterated with some improvements. The training dataset
should be expanded to include more examples with various pathologies and
image quality by annotating more exams. The current training set size was
limited, and we expect an increased performance if the training set were to
be expanded. Moreover, the training dataset could be artificially balanced
in terms of imaging views, and potentially different pathologies, in order to
improve generalization and reduce overfitting. Furthermore, updating the
model architecture to enable point coordinate regression, i.e. modeling the
MYV as a graph, would likely be beneficial.

We are currently running larger retrospective and prospective clinical
studies to assess both model robustness and feasibility of the clinical biomark-
ers. In these studies, we plan to assess the predictive quality of the automatic
VHD biomarkers on a larger population, consisting of about 100 exams for
retrospective analysis with various pathologies, and about 20 MV patients
acquired prospectively using a real-time version of the framework. Initial
results indicate good predictive quality for MV prolapse and stenosis. More-
over, results indicate that segmentation performance is better prospectively
than retrospectively, as the operator can adjust the imaging view according
to the segmentation observed in real-time.

These studies will likely unveil additional unforeseen challenges and po-
tential flaws or limitations of the method, which could be improved in future
iterations of the project. Furthermore, the true clinical value of the derived
MYV biomarkers is hypothesized, but not currently known to a full extent.
This is because deriving such measurements in large populations has not
been feasible without automated measurement. We expect the ongoing clin-
ical studies will provide more knowledge about the clinical importance of
automated MV measurements.
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1.3.2 EasyPISA - Automatic Integrated PISA Measurements
of Mitral Regurgitation from 2-D Color-Doppler using
Deep Learning

Automatic segmentation of flow convergence zones

Similar to the MV segmentation problem, segmentation of flow convergence
regions from 2-D color-Doppler images presented some challenges. Firstly,
since flow convergence regions were not always visible in the images it was
important that the model did not output large false positive predictions for
images with no apparent flow convergence. To account for this, about half of
the total images used for training and validation were negative images, i.e.
did not contain flow convergence annotations. Moreover, the flow conver-
gence labels were small compared to the image dimensions, which, in com-
bination with the large share of negative images, made the dataset subject
to a high class imbalance. Furthermore, the image resolution was decreased
as a preprocessing step, which could further challenge the segmentation of
small flow convergence regions.

To account for class imbalance and to maintain sufficient recall, the loss
function used for training the convolutional neural network could be adapted
to balance the emphasis on positive and negative examples. However, the
trade-off with maintaining a high recall was that the model was more prone
to false positives. False positives would typically occur where there was
a strong flow signal in irrelevant regions, such as the inlet of the aortic
outflow tract. Moreover, false positive segmentation on the atrial side of the
mitral valve was a significant challenge as pixels in the regurgitant jet eflux
could falsely be segmented along with the flow convergence zone. Similar
to the mitral valve segmentation project, as discussed in Section we
attempted to utilize attention gates to mitigate false positives from irrelevant
regions. However, we did not observe any clear benefits of this approach at
this time. Nonetheless, we believe that attention might prove beneficial in
future iterations of the project, but further work is required to adjust the
methodology to the problem. As an alternative solution, we could mitigate
false positive segmentation on the atrial side of the mitral valve by applying
the mitral valve segmentation model to mask out false positive pixels. This
conceptually simple, yet effective solution might be essential to ensure a
robust application in the future.

Feasibility of flow volume estimation

We demonstrated that EasyPISA had good agreement with the PISA ref-
erence values (Intraclass correlation coefficient, ICC: 0.83), but there was a
considerable spread in the estimates. The variability was caused by multiple
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factors. Some cases were overestimated due to false positive segmentation,
as described above. Other cases were underestimated, either due to loss of
Doppler signal in regions of high beam-to-flow angles, or due to insufficient
frame rate in cases of highly dynamic flow patterns. The PISA method is
also known to be limited by high inter-observer variability [36], [37], which
also explains some spread in the reference values. Moreover, the EasyPISA
method, which is based on the time integration of consecutive frames, is
fundamentally different from standard PISA, which relies on the integra-
tion of continuous wave Doppler spectra. Furthermore, since EasyPISA
does not assume hemispherical convergence, some additional discrepancy
between EasyPISA and the PISA reference could be expected in cases of
non-hemispherical flow convergence.

In addition to TTE references, cMRI references were also used to better
assess the predictive quality of EasyPISA. Although EasyPISA achieved
acceptable correlation with cMRI (ICC: 0.66), the most prominent outliers
from the comparative analysis to PISA (including severe dynamic, and non-
hemispheric cases) did unfortunately not have cMRI reference values. There-
fore it was difficult to properly assess the effect of multi-frame integration
and eased geometrical assumptions.

The PISA method is challenged by the fact that the method is not nec-
essarily well understood by the operators [14]. Therefore, the operators are
prone to making mistakes if they misinterpret the steps of the methodol-
ogy. This is especially true for challenging cases, such as non-hemispherical
convergence [49| and dynamic jets [50]. In our study, the reference PISA
and ¢cMRI measurements had an excellent agreement, which was surpris-
ing, as other research has demonstrated significant discordance between the
methods [37]. We believe that this can be explained by the fact that the
cMRI and PISA exams were performed by the same clinician, with knowl-
edge about the patient’s condition. Therefore the assessment was not fully
blinded, unlike EasyPISA, which was entirely automatic and blind to the
patient’s condition. Moreover, the clinician was highly experienced with us-
ing the PISA method and thus may have performed the measurements more
thoroughly than the average clinician.

Future work

We are planning to further assess the clinical feasibility of EasyPISA in
the future. Robustness should be verified in datasets with a wide range
of pathologies. A larger feasibility study would likely uncover additional
challenges that might result in further refinement of parts of the meth-
ods, especially the model architecture and training. Moreover, the training
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dataset size was limited to 54 patients in this study, and the application
would undoubtedly benefit from increasing the size of the training dataset,
especially in terms of accounting for a wider range of pathologies. Future
studies should also compare EasyPISA with references from multiple clini-
cians, blinded from the patient’s condition and each other’s measurements.
This way, EasyPISA could more accurately be assessed in comparison to
inter-observer variability. Finally, a real-time EasyPISA application is cur-
rently under development, which could be used in prospective studies. We
believe that a real-time application that indicates to the operator the pres-
ence of flow convergence zones and estimates of severity could be useful in
initial screenings of patients.

1.3.3 Quantifying Valve Regurgitation using 3-D Doppler
Ultrasound Images and Deep Learning

Learning from simulations

Unlike the other two projects described in this thesis, we did not have access
to annotated HPRF 3-D Doppler data which could be curated for DL. The
amount of in vivo recordings was limited, and would furthermore be very
challenging to accurately annotate manually due to the poor image quality.
However, since the image features were relatively simple and regular, they
could effectively be simulated using an ultrasound simulator.

Consequently, the main challenge was related to the domain gap between
simulated and real data. The model performance was excellent on the sim-
ulated validation data, obtaining an average orifice area error of 3.5 mm?,
which is small compared to the thresholds for severe aortic regurgitation (30
mm?) and mitral regurgitation (40 mm?) [6]. However, applying the model
to real acquired data unveiled some important challenges.

In an experimental study, we observed that the acquired data was prone
to some blooming artifacts which were not observed in the simulations. We
believe that this was due to a combination of multiple effects that could not
easily be simulated with our simulator, such as sidelobes and recruited flow.
The model was affected negatively by the blooming artifacts as it falsely in-
terpreted the artifacts as regions containing flow, causing an overestimation
of flow volumes. The gap between the simulated and real domain could be
mitigated by using data augmentation, where blooming artifacts were sim-
ulated and superimposed on the images. This was shown to mitigate false
positive segmentation of blooming artifacts.

The augmented model achieved good results in the experimental tests.
The model achieved better flow volume estimates than the references, and
could also accurately differentiate between various irregular shapes of the
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orifice phantom from highly blurred images. These results demonstrated
the capabilities of DL to solve visual recognition problems which can be
difficult for humans. Despite promising results in experiments, generalizing
the model to clinical data remained a challenge.

Since the model was based on DL from simulations, there is still uncer-
tainty about whether the model could generalize sufficiently well to the clin-
ical data. The clinical data was challenged by additional artifacts, caused by
obstruction of view from ribs, reverberation, attenuation, and velocity clut-
ter from rapidly moving tissue. Consequently, this limited the validity of the
experimental results, as we could not account for all of the aforementioned
effects.

Using the proposed approach we could obtain results comparable to
cMRI and PISA. Moreover, we showed that for certain cases with poor
image quality, the application greatly improved when using DL segmenta-
tion of the orifice, rather than conventional segmentation methods which
had been proposed previously. These results were encouraging for prospects
of clinical feasibility, however, many challenges still need to be addressed in
order for the method to be sufficiently reliable for clinical use.

Challenges with the acquisition and processing pipeline

There were many sources of error in the acquisition and processing pipeline
which might have influenced the results. Clutter filtering was a particularly
difficult challenge. Heart valve movement and recruited flow are sources of
high-velocity clutter which would cause severe reduction in the signal-to-
noise ratio if not effectively suppressed using the clutter filter. Moreover,
due to the HPRF acquisition, secondary sample volumes at smaller depths
could contribute to strong clutter because reflections were less attenuated
than from the deeper primary sample volume. We used finite impulse re-
sponse (FIR) filters for clutter filtering [51], but these needed to be manually
adapted to the recordings, and their effectiveness was limited in the pres-
ence of high-velocity clutter. Singular value decomposition (SVD) filters,
which are the current state of the art in clutter filtering [52], could be worth
investigating in the future.

Flow volume estimates depend not only on orifice area estimates but
also on velocity estimates. We used a PW Doppler spectrum estimator to
estimate the mean velocity in every image pixel. Adaptive thresholding [53]
was used to segment the spectral envelope and trace the maximum velocity.
However, the thresholding could lead to erroneous estimates in recordings
with low signal-to-noise ratios. A DL based estimator could be more robust,
but we did not have sufficient training examples to develop a model for spec-
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tral envelope segmentation. Moreover, aliasing of high-velocity jets would
cause underestimation of velocity, and consequently, flow volumes. Aliasing
is caused by a limited PRF, which is challenging for 3-D Doppler ultrasound,
albeit the HPRF application does increase the achievable PRF (10-20 kHz)
from the baseline (50-200 Hz) [28|, [54].

Estimating the vena contracta depth, where the jet cross-section is the
most narrow, was important for estimating the jet cross-sectional area.
Depth estimation was performed automatically, largely based on the veloc-
ity estimator. If the depth was inaccurately estimated, the jet cross-section
would appear larger, causing overestimation. Moreover, the image quality
would be deteriorated, further challenging the segmentation.

Future work

We are planning a reiteration of this project with an updated pipeline, where
many of the issues related to acquisition and processing will be improved.
Moreover, the ultrasound simulator could be replaced by a fast 3-D flow-line
simulator previously developed in our group [55] to enable the generation
of 3-D flow fields for training data, as opposed to static 2-D cross sections.
Hence a model could be developed to infer flow volumes directly from ac-
quired 3-D data, which could remove the need for velocity and depth es-
timation and reduce the sensitivity to data preprocessing. For validation,
the realism of the experimental low phantom could be improved by adding
aberrators and rib obstructions. Finally, a larger validation study, prefer-
ably with ¢cMRI should be performed using the updated method to assess
its clinical feasibility.

1.4 Concluding remarks

In this thesis, we have explored DL methods applied to TTE assessment of
VHD. Three projects have been described: automatic mitral valve segmen-
tation and tracking, automatic regurgitant flow volume estimation from 2-D
Doppler ultrasound based on the integrated PISA method, and regurgitant
flow volume estimation from HPRF 3-D Doppler ultrasound, using DL sub-
pixel segmentation of jet cross sections. The two first projects demonstrated
the potential for automatic extraction of existing metrics for VHD, which
are currently underused in the everyday clinic. DL enables monitoring met-
rics that have been recommended by the literature, but which have been
challenging to apply in practice due to substantial workload requirements.
Furthermore, the third aforementioned project showed how DL could be ap-
plied not only for automation but for improving the accuracy of quantitative
metrics which were fundamentally limited by image quality.
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In current practice, the assessment of VHD is limited by workload and
inter-observer variability. The variability is caused by differences in skills
and experience, practice differences between institutions, and varying inter-
pretations of the guidelines [14], [56]. As demonstrated in this thesis, DL can
be a valuable tool for streamlining workflows and facilitating standardization
of measurements. Assessment of valve prolapse and stenosis can be quanti-
fied according to automatic measurements following predefined rules, which
alleviates subjectivity associated with the assessment. Moreover, automatic
measurements of valve regurgitation can alleviate variability associated with
improper interpretation of the guidelines, which is especially common for dy-
namic jets [50], [57], for eccentric jets |58] and non-circular orifice geometries

), 3.

DL has the potential to solve many problems which have proved to be
challenging using classical methods. However, supervised DL techniques are
limited by requiring large annotated datasets. In the projects described in
this thesis, we found that using annotated data from around 50-100 patients
was sufficient for achieving satisfactory results, although the model robust-
ness was challenged by difficult examples. We believe that segmentation
robustness can be further increased by annotating more data for training,
but it is difficult to know a priori which quantities would be needed. Data
annotation is associated with some costs, as it requires experienced clini-
cians to manually annotate the images. For our datasets annotation time
was about 45 minutes per patient. The costs associated with expanding
the dataset are manageable, but increasing the dataset size without specific
considerations about data distribution would likely result in diminishing re-
turns. Future efforts to expand the datasets should pay attention to the
current model’s specific failure modes and annotate the images for which
the model fails. Moreover, datasets need to be sampled from diverse pop-
ulations in terms of pathology to ensure generalizability, which otherwise
could lead to unwanted model biases.

All medical technology needs to be validated in clinical trials in order
to be considered feasible for clinical use. However, since DL systems are
data dependent, clinical trials cannot cover all possible cases that could be
encountered in practice. For DL systems to be viable for clinical use it
is important to ensure they can be trusted by the user, which requires a
certain level of explainability. Segmentation-based approaches mimic the
cardiologist’s workflow and are more explainable than end-to-end learning
systems [59] which predict diagnosis directly from the image data. How-
ever, segmentation models can fail if presented with low-quality images or
data that is outside of the training distribution. Therefore it is important
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to incorporate safety measures for practical use which detects segmentation
failure and unphysical behaviour. When the DL system is equipped with
appropriate safety measures it can be a valuable tool for cardiologists. As
demonstrated in this thesis, DL based approaches have the potential for im-
proving VHD assessment by increasing automation and accuracy of existing
and novel methods. DL based measurements have already become available
in commercial ultrasound scanners [60], [61]. It is therefore credible that DL
based methods for VHD disease assessment will be available for clinical use
in the future.
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1.5 Publication list

In addition to the works enclosed in this thesis, the author has contributed
to other research contributions and international conferences. A complete
list of contributions follows.

Contributions included in the thesis

e Sigurd Vangen Wifstad, Henrik Agerup Kildahl, Bjgrnar Grenne,
Espen Holte, Stale Wagen Hauge, Sigbjgrn Sazebg, Desalew Mekonnen,
Berhanu Nega, Rune Haaverstad, Mette-Elise Estensen, Havard Dalen
and Lasse Lovstakken, "Mitral Valve Segmentation and Tracking from
Transthoracic Echocardiography Using Deep Learning", Ultrasound in
Medicine € Biology, Volume 50, Issue 5, pages 661-670, 2024.

e Sigurd Vangen Wifstad, Henrik Agerup Kildahl, Espen Holte, Erik
Andreas Rye Berg, Bjornar Grenne, @yvind Salvesen, Havard Dalen
and Lasse Lovstakken, "EasyPISA: Automatic Integrated PISA Mea-
surements of Mitral Regurgitation from 2D Color Doppler using Deep
Learning", submitted to Ultrasound in Medicine € Biology, 2024.

e Sigurd Vangen Wifstad, Lasse Lovstakken, Jgrgen Avdal, Erik An-
dreas Rye Berg, Hans Torp, Bjgrnar Grenne and Stefano Fiorentini,
"Quantifying Valve Regurgitation Using 3-D Doppler Ultrasound Im-
ages and Deep Learning," IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, Volume 69, Issue 12, pages 3317-3326,
December 2022.

Other contributions

e Shivanandan Indimath, Sigurd Vangen Wifstad, Vincent Bryon,
Bjarne Rosvoll Bgklepp, Lasse Lovstakken, Jorgen Avdal, Stefano Fioren-
tini and Svein-Erik Masgy, "Subpixel segmentation of borehole frac-
tures from low resolution Doppler ultrasound images using machine
learning", Geoenergy Science and Engineering, Volume 235, pages 212703,
2024.

Conference proceedings

e Vincent Bryon, Sigurd Vangen Wifstad, Thomas Grgnli, Jieyu Hu
and Lasse Lgvstakken, "Automated Patient-Specific Left Ventricular
Simulations for Cardiac Function Evaluation Using Image-Based Com-
putational Fluid Dynamics and Color Flow Imaging," 2023 IEEE In-
ternational Ultrasonics Symposium (1US), Montreal, Canada, 2023,
pages 1-4,
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Presentations and abstracts

e Sigurd Vangen Wifstad, Henrik Agerup Kildahl, Espen Holte, Erik
Andreas Rye Berg, Bjgrnar Grenne, Havard Dalen and Lasse Lovs-
takken, "Automatic valve quantification using deep learning", Meeting
on Myocardial Function Imaging, Leuven, Belgium, 2024.

e Sigurd Vangen Wifstad, Henrik Agerup Kildahl, Espen Holte, Bjgrnar
Grenne, Havard Dalen and Lasse Lovstakken, " Automatic Jet Flow
Convergence Detection and Quantification from 2D Color Doppler
Flow Using Deep Learning", IFEE International Ultrasonics Sympo-
sium (IUS), Montreal, Canada, 2023.

e Sigurd Vangen Wifstad, Shivanandan Indimath, Vincent Bryon,
Jorgen Avdal, Lasse Lovstakken and Svein-Erik Masgy, "Can we use
Deep Learning to extract important information from poor resolution
Doppler images?", The Artimino conference on Medical Ultrasound
Technology, Artimino, Italy, 2023.

e Sigurd Vangen Wifstad, Stale Wagen Hauge, Sigvard Johansen
Seljelv, Sigbjorn Seebg, Desalew Mekonnen, Berhanu Nega, Sintayehu
Abebe, Mette-Elise Estensen, Rune Haaverstad, Havard Dalen, Lasse
Lovstakken, "Tracking heart valve motion from transthoracic echocar-
diography using deep learning", IEEE International Ultrasonics Sym-
posium (1US), Venice, Italy, 2022.

e Sigurd Vangen Wifstad, Lasse Lgvstakken, Jorgen Avdal, Hans
Torp and Stefano Fiorentini, "Automatic quantification of valvular
insufficiency using 3D Doppler imaging and Deep Learning", IEEFE
International Ultrasonics Symposium (IUS), Virtual, 2021.

1.6 Thesis outline

The technical and clinical background concepts needed to understand the
work discussed in this thesis are presented in Chapter [2l Two contributions
are presented in their published form in Chapters[3]and[5] The contribution
in Chapter {4 is presented in its submitted form prior to the review of the
scientific journal.
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Chapter 2

Background

This chapter describes essential background knowledge that is needed to un-
derstand the context, the methods and the results presented in this thesis.
The chapter begins with a basic introduction to medical ultrasound, in-
cluding important physical principles and different imaging modalities. The
content is largely based on the book Ultrasound Imaging: Waves, Signals,
and Signal Processing by Anglesen [1], which contains a more comprehensive
description of ultrasound technology. Secondly, a description of the heart
and heart valve anatomies and valvular heart disease is presented. Thirdly,
an excerpt of the recommended integrative approach for the assessment of
mitral regurgitation using TTE imaging, according to the American Society
of Echocardiography 2017 guidelines [2], is presented. This section aims to
give the reader an impression of the extensive workload that is required, and
the limitations met when assessing valvular heart disease, hence motivating
innovations for automation and improved accuracy. A comprehensive de-
scription of the assessment of different types of VHD for all valves can be
found in [2|-|5]. Lastly, a brief introduction to the field of deep learning
for medical image segmentation is presented. This section is largely based
on the book Deep Learning by Goodfellow, Bengio, and Corville |6], which
provides further details on the topic.

2.1 Echocardiography

Basic principles of medical ultrasound

Ultrasound refers to high frequency sound waves and is widely applied in
medicine for imaging of soft tissues. Imaging is possible due to ultrasonic
transitivity and reflectivity at the borders between various tissue types, caus-
ing reflections at the borders between tissues with differences in acoustical
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impedance. We define the impedance Z of some material as the product of
the speed of sound ¢ in the material, and the mass density p:

Z = cp. (2.1)

The acoustic impedance of some different materials 7] are listed in Ta-
ble 2.1} Figure 2]] illustrates specular reflection of an acoustic wave. At
the border between two different materials with impedances Z; and Zs, the
acoustic wave will be reflected with magnitude I', and further transmitted
with magnitude 1 — I', where I is the reflection coefficient, defined as:

1 — 2o

_ L2 (2.2)
AR

Consequently, I' is large at the borders between materials with large
differences in impedance, such as muscle and blood, which for instance re-
sults in strong signals from cardiac walls. Conversely, regions where the
impedance is homogeneous, like within blood-filled cavities, instead cause
weak reflections, and more of the wave energy is propagated further into
the medium. Materials with substantial differences in impedance from soft
tissues will cause very strong reflections, limiting the use of ultrasound from
effectively propagating through such boundaries. According to Table
and , I' is about 0.1 between muscle and fat, meaning that 90% of the
energy is transmitted further into the tissue. In comparison, I' is about 0.64
between bone and muscle, and 0.999 between air and muscle, meaning most
of the energy would be reflected at the boundary.

When the ultrasonic wave hits objects that are smaller than its wave-
length scattering, also known as diffuse reflection, will occur. Scattering is
the phenomenon where the object absorbs the energy of the incident wave
and emits it back in all directions. Such objects are hence referred to as

Material | Acoustic impedance [kg/s/m?]|x 105
Air 0.0004
Bone 7.75
Water 1.48
Blood 1.66
Fat 1.38
Muscle 1.68

Table 2.1: Acoustic impedance for different materials.
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Figure 2.1: Illustration of reflection and transmission of an ultrasonic pulse with
amplitude P at the boundary between two impedances Z; and Zs, located at depth
z. The amplitudes of the reflected and transmitted waves are reduced by factors
of I' and 1 — I respectively.

scatterers. In medical ultrasound, most tissues are irregular at the surface
level and therefore cause scattering from microscopic particles in addition to
specular reflection. Specular reflection is unidirectional based on the angle
between the incident wave and the surface and can only be received from
surfaces perpendicular to the ultrasound beam. This means that most of
the received signal in fact originates from scattering.

Moreover, scattering occurs not only on tissue surfaces but also in blood
due to the scattering of red blood cells, which constitute the majority of the
blood volume. The red blood cell scatterers are densely packed in the blood
and therefore interact with each other and can be seen as a continuum,
where scattering occurs from fluctuations in mass density and compress-
ability. However, since the mass density and compressibility are similar to
those of the surrounding blood plasma the scattering signal is relatively weak
compared to scattering from tissue surfaces [8]. The scattering strength of
tissue can be as much as 100 dB higher than scattering from blood, which
challenges blood flow imaging [9].

By transmitting an ultrasound pulse and recording the received echos
from the transmission it is possible to estimate the depth z from which the
echos were received according to

where t is the time between transmission and the reception of the echo, and
c is the speed of sound, which is often assumed to have a constant value

of 1540 m/s for soft tissues. Using (2.3)), the recorded signal can then be
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a) b)

Figure 2.2: a): Formation of a two-dimensional B-mode image. Ultrasonic pulses
are transmitted and received in several scan lines. The received signals are mapped
to spatial coordinates, forming an image depicting scatterer intensities in a two-
dimensional cross-section of the tissue. b): Closeup showing the speckle pattern
caused by interference of scattering from particles.

visualized as an image where one axis represents depth, and the intensity of
the signal represents the material properties at a given depth.

Two-dimensional images depicting scatterer intensity at given depths
and lateral positions can be acquired by scanning a sector of an area with
repeated ultrasonic transmissions. The image resulting from this process
is known as a B-mode image, as depicted in Figure Similarly, three-
dimensional images can be obtained by additional scanning along a second
axis.

The time required to form one B-mode image is fundamentally limited by
the propagation time of the transmitted and reflected waves in the medium.
To fully form one image the required time T is given by

T_Nz

=52, (2.4)

where N is the number of scan lines. Thus the maximum achievable frame
rate 1/7" is limited by both depth and the amount of scan lines used. The
frame rate limits the detail at which tissue movement can be registered.
Moreover, for 3-D ultrasound many more scan lines are required, which
limits the achievable frame rate of 3-D imaging.

The detail at which the tissue can be visualized is limited in the radial
direction by the length of the ultrasound pulse, given by the center frequency
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Object PSF Image

Figure 2.3: Image formation as the convolution (denoted by the operator x) between
the object and the PSF. The resulting image is a blurred rendition of the underlying
object.

and number of cycles of the pulse. In theory, any object cannot be accu-
rately resolved at a better spatial resolution than half the pulse length of
the transmitted ultrasound pulse.

To be able to resolve small features radially it is beneficial to use transmit
frequencies as high as possible. However, increasing frequency decreases the
penetration depth of the transmitted signal. This is due to attenuation u of
the signal amplitude, which follows the relation

w=afz, (2.5)

where f is the frequency, z is the depth and « is the attenuation coefficient
for the material. It follows from that high-frequency signals will be
heavily attenuated at larger depths, ultimately limiting the achievable radial
resolution for imaging deeper tissues.

In the lateral direction, the resolution R is limited by the width of the
focused ultrasound beam, conventionally defined as

R = ful, (2.6)

where A is the transmit wavelength and fx = F/D is the f-number, defined
as the ratio between the focal depth F' and the aperture size D. According
to increasing the aperture size improves lateral resolution. However,
aperture size is limited in practice due to technological constraints, as well
as physical constraints. The latter is especially true for TTE imaging, as
the entire aperture needs to fit in the intercostal space of the patient.
When imaging close to the resolution limits objects become blurred,
making it difficult to accurately discern the source of the received signal.
The degree to which the ultrasound system blurs the imaging object can
be described using the point spread function (PSF) of the imaging system.
The PSF describes the equivalent received image of a single point scatterer

29



Chapter 2. Background
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Figure 2.4: Continuous Wave Doppler imaging. A single-frequency continuous wave
is transmitted in one direction. The received signal is frequency-shifted according
to the Doppler effect. The velocity corresponding to the Doppler shift can be
represented using a spectrogram computed via a Fourier transform (F) of the
demodulated received signal, showing the frequency content of the received signal
at a given time point.

and defines the spatial resolution limits of the system. Consequently, the
features of any object that are smaller than the resolution limits given by
the PSF will be subject to blurring, as illustrated by Figure

Doppler imaging

In addition to imaging tissue structures, ultrasound can also be used for
measuring the velocity of moving objects and materials, such as blood. One
of the ways this can be achieved is via the Doppler effect. The ultrasound
wave transmitted with frequency f hitting an object moving with velocity v
will cause a pulse-echo frequency shift Af in the received signal according
to

Af = %v cos 0, (2.7)

where c is the speed of sound in the material and 6 is the angle between the
velocity vector and the incident ultrasonic wave. The frequency shift Af is
hence linearly related to the radial velocity component of the object. The
Doppler effect is utilized in Continuous Wave (CW) Doppler imaging, as
illustrated in Figure With CW Doppler imaging it is possible to mea-
sure the velocity distribution over time in the transmit direction. However,
since waves are continuously transmitted and received, it is not possible to
determine a time delay between transmit and receive, and hence there is no
notion of depth/radial resolution.

Velocity estimation is possible while maintaining radial resolution by
using pulsed wave (PW) Doppler imaging. Unlike what the name suggests,
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Figure 2.5: Pulsed Wave Doppler imaging. Consecutive ultrasonic pulses are trans-
mitted and received. Each received pulse is sampled at the depth of interest, corre-
sponding to a point in fast time. Consecutive fast time samples form a phase-shift
signal in slow time, from which a velocity spectrogram can be derived via the
Fourier transform (F).

PW Doppler imaging does not directly rely on the Doppler effect for velocity
estimation. Instead, PW Doppler imaging is based on phase-shift estimation
of consecutive pulses, as illustrated in Figure [2.5] By transmitting consecu-
tive pulses at a moving scatterer, the phase Shlft of the received pulses will
be proportional to the scatterer displacement between pulses. Assuming
v << ¢, it can be shown that the phase shift A¢ is given by

dmv f cos 6

c¢-PRF ’ (2:8)

Ap =
where PRF is the pulse repetition frequency. Combining (2.7) and (| . we
can express the equivalent Doppler shift as

PRF

Af =
! 2T

Adg. (2.9)

PW Doppler enables velocity imaging with a notion of spatial locality.
However, the phase-estimation technique introduces an upper limit for mea-
surable velocity. This limit, known as the Nyquist limit, is given by the
aliasing velocity vy,4, which can be expressed as
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c-PRF

Ung = 4;%, (2.10)
Velocities that exceed the Nyquist limit will be subject to phase-wrapping,
where the apparent velocity wraps around the available velocity range. This
can be seen in the Doppler spectrum in Figure On the other hand, alias-
ing does not occur with CW Doppler, hence there is no phase-unwrapping
of the velocity spectrum in Figure Therefore CW Doppler is more suit-
able than PW Doppler for measuring very high velocities, for instance, heart
valve regurgitation jets, which typically have a peak velocity of 5-6 m/s [10].
Following , the velocity range with measurable PW Doppler can
be extended by increasing the PRF, however, due to transmit and receive

times the maximal achievable PRF is given by

c
PRF < —. 2.11
o (2.11)
Increasing the PRF above this limit would result in spatial ambiguity, as a
given pulse would be transmitted before the previous one is received. This
is known as high PRF (HPRF) mode [11].

Color-Doppler imaging

The phase-estimation technique applied in PW Doppler can also be extended
in multiple spatial dimensions. In color-Doppler, also known as Color Flow
Imaging, the mean velocities from sample volumes are displayed at their
respective spatial locations using a color map representing mean velocity
magnitude and direction. Color-Doppler signals are often displayed on top
of B-Mode images, resulting in a duplex image, displaying both tissue and
velocity information. Color-Doppler imaging is illustrated in Figure

Color-Doppler imaging enables velocity estimation in two or three spa-
tial dimensions, but practical trade-offs limit both the resolution and frame
rate compared to B-mode imaging. As explained earlier, higher transmit
frequency results in improved radial resolution, but also leads to increased
attenuation. Pulse echo signals from blood flow are typically weak com-
pared to signals from tissue imaging. Therefore, color-Doppler transmit
frequencies are usually lower than for B-Mode imaging in order to main-
tain sufficient penetration depth, and consequently leads to reduced spatial
resolution. Moreover, as each duplex image is formed from multiple pulses
of both color-Doppler and B-Mode transmissions in multiple scan lines, the
high total transmit and receive time limits the frame rate.
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Figure 2.6: Color-Doppler imaging. PW phase estimation is performed in multiple
depths for multiple scan lines. The mean velocity in each sample volume is esti-
mated and displayed using a red-blue color map, indicating the velocity magnitude
and direction within the available velocity range, given by the aliasing velocity vy,4.
A B-mode scan is performed and is combined with the color-Doppler image to form
a duplex image, where a signal strength arbitration scheme is used in each pixel to
choose from which image information is displayed.

Color-Doppler imaging is also subject to aliasing, limiting the measurable
range of velocities. The duplex image shown in Figure [2.6] exhibits aliasing
in the regions with the highest velocity. The aliasing artifacts are manifested
as sudden transitions between red/yellow and blue, as the apparent velocity
exceeds the Nyquist limit and thus wraps around the velocity range.

The Nyquist limit acts as an upper bound for measurable velocities. In
practice, there is also a lower bound for measurable velocity determined by
the presence of clutter, which is velocity noise from moving tissues. Since
the tissue signal strength is 40-100 dB higher than the blood signal |]§||7
the clutter needs to be removed using a clutter filter, which is illustrated in
Figure Clutter filtering can be a significant challenge when imaging low-
velocity flows, or imaging regions with a presence of high-velocity clutter.
For instance, heart valves open with high velocities, which could result in
strong clutter that cannot accurately be separated from the blood signal.

Finally, all the aforementioned Doppler imaging modalities are limited to
measuring the radial component of the velocity vector. Consequently, there
is considerable loss of signal for blood moving at high angles relative to the
ultrasound transmit beam. This is a major limitation of Doppler techniques,
as intracardiac blood flow in reality is largely three-dimensional. Techniques
for estimating the multiple components of blood flow are known as vector
flow imaging techniques . However, these techniques are associated with
a separate set of challenges and are out of the scope of this thesis.
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Figure 2.7: Velocity distributions of two different received signals (a and b). In
both cases, there is a strong presence of low-velocity clutter. In signal a, the blood
component is centered around 3 m/s, and can easily be separated from the clutter
using a clutter filter. In signal b, the blood component is centered around 1 m/s.
In this case, it is challenging to separate the blood and clutter components without
also suppressing parts of the blood component.

2.2 Valvular heart disease

The heart is an organ essential for our survival. Beating about once every
second, the heart continuously sends oxygenated blood and nutrients to each
cell in the body, while simultaneously pumping deoxygenated blood to the
lungs. The heart is illustrated in Figure a). The heart consists of four
chambers (right and left ventricles and atria), connected by valves, veins, and
arteries. Oxygenated blood enters the left atrium from the lungs through
the pulmonary veins. During diastole (relaxation) the mitral valve opens
and the aortic valve closes, causing blood to flood into the left ventricle
from the left atrium. During systole (contraction). The mitral valve closes,
the aortic valve opens, and the ventricle contracts, pumping the blood into
the aorta, and transporting it out to the body. Similar mechanisms occur
simultaneously in the right chambers, moving deoxygenated blood to the
lungs via the pulmonary artery.

The valves are imperative for heart function. When closed, they prevent
blood from flowing in the wrong direction, hence maintaining the cardiac
output. Figure b) shows the anatomy of the mitral valve. The mitral
valve consists of two leaflets, one on the anterior (A) and one on the posterior
(P) side of the left ventricle. Each leaflet is conventionally subdivided into
scallops 1-3, according to Carpentier’s classification [14]. The leaflets are
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Figure 2.8: a): Illustration of the heart , showing the four heart chambers,
valves, and interconnecting veins and arteries. b): Illustration of the mitral valve,
showing the leaflets, the annulus, the papillary muscles, and the chordae tendinae.

inserted in a fibrous ring along the heart wall known as the annulus. In
addition, the leaflets are attached to papillary muscles with fibrous strings
known as chordae tendinae, which allow the valve to close instead of swinging
back into the left atrium in systole [15].

Valvular heart disease (VHD) is a class of diseases that affect one or sev-
eral parts of the valve apparatus, causing deviations from normal function.
In moderate to severe cases, VHD ultimately leads to reduced cardiac out-
put and is associated with high morbidity and mortality [16], [L7]. VHD can
be categorized into two main categories: valve requrgitation, where improper
coaptation of the leaflets causes leakage through the closed valve, and valve
stenosis, where restricted leaflet motion causes narrowing of the valve orifice
when open. Valve disease can be caused either by degenerative or indirect
changes to the valve apparatus or by rheumatic heart disease. Rheumatic
mitral valve disease, where the mitral valve is scarred following an inflam-
mation, is rare in high-income countries but is still prevalent in low-income

countries , .

Valve regurgitation

Valve regurgitation, also known as valve insufficiency, can be caused di-
rectly by changes in the valve apparatus, or indirectly by changes in the
surrounding heart tissue . These two cases are respectively categorized
into functional (also called secondary) insufficiency, and degenerative (also
called primary) insufficiency . Figure shows examples of functional
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Figure 2.9: a-c): Three cases of mitral regurgitation showing B-mode images on
the left and the color-Doppler images on the right. The regurgitant jet is visible
as a turbulent signal flowing from the mitral valve into the left atrium. a): Func-
tional insufficiency caused by dilation, which pulls the leaflets apart and creates a
regurgitant orifice along the coa