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Abstract

Entity matching is the problem of identifying which records refer to the same
real-world entity. It is a key data integration task and, despite decades of re-
search, is still challenging. In recent years, deep learning has emerged as the new
state-of-the-art paradigm to tackle entity matching. This new paradigm brings
about new strengths, weaknesses, trade-offs, and characteristics compared to
classical methods.

In this thesis, we explore the use of deep learning for entity matching with
the goal of gaining insight into what these new methods contribute to the task,
how they differ from classical methods, and what their current limitations are.
We put special focus on interpretability and blocking because these are, in our
opinion, aspects that highlight the contrasts the most.

Through a combination of literature analysis and experimental work this
thesis provides three main contributions:

1. Insight and overview of how new deep learning methods compare to clas-
sical methods for entity matching.

2. A state-of-the-art model-agnostic explainability method tailored to entity
matching.

3. A state-of-the-art blocking method based on set similarity joins.

We hope that these contributions are valuable to practitioners and the research
community and further the development of deep learning for entity matching.
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Chapter 1

Introduction

This chapter will provide a brief overview of the thesis. We first motivate the
topic before we introduce the research questions, contributions, and publica-
tions. Lastly, we give an overview over the thesis structure.

1.1 Motivation

Entity Matching (EM) is a key data integration task that determines which
records across or within data sources refer to the same real-world entity when
we have no unique and common identifiers [25, 34]. It is ubiquitous and emerges
in practically all domains that exercise data management. Typical real-world
use cases are comparing product catalogs across stores, merging of customer
databases, or deduplicating inventory lists. It is tempting to think that one
can avoid this altogether by simply doing a better job of data management
and standardization. While this is partly true, there are two main underlying
reasons outside our control we have these problems, and the need for this task,
that are hard to avoid and unlikely to go away anytime soon:

1. Imperfect Data Sources: There are often factors outside our control
that negatively affect the quality of the data we receive. Human input
contains typos or other mistakes. Same for automatic data collection such
as OCR on documents. Furthermore, we might not be in control of keeping
our data up to date with reality — i.e., a customer can move or change
name without notifying us.

3



4 CHAPTER 1. INTRODUCTION

2. Decentralized and Uncoordinated Data Management: Decisions
about data procedures and formats are often taken locally without the
knowledge of which other data sources it needs to integrate with in the
future. Unique and common identifiers across two data sources require
upfront coordination and consensus. Unfortunately, it is hard to know
with certainty which data sources one will need to integrate in the future.
One solution is to agree on standards, but it is simply infeasible to have
ubiquitous and indefinitely forward compatible standards for everything
at all times that everyone agrees upon. When a company models its
product catalog or inventory list it is often not possible to follow a standard
identification scheme and data format that will guarantee interoperability
with all potential companies it might merge with years or decades from
now. Importantly, the company can not enforce that everyone else follows
the same (or any) standard.

Entity matching has been studied for decades and despite multiple rounds
of new paradigms over the years it remains a non-trivial task. The previous
paradigm shift was the movement towards machine learning-based methods.
These methods reduced the manual tailoring of algorithms to different datasets,
but required significant manual feature engineering. Similarity features have,
up until recently, almost exclusively been based upon classical string similarity
measures (i.e., edit distance, jaccard overlap between tokens, etc). Not only do
they mostly rely on surface-level syntactical similarity, they also often need to
be manually crafted, tuned, and curated for each unique use case.

Recently, deep learning has emerged as a new paradigm for performing entity
matching [11]. Since deep learning has a strong ability to automatically learn
features it has the potential to significantly lower the dataset-specific manual ef-
forts that are typically needed for more traditional machine learning approaches.
On the other side, deep learning methods come with their own set of challenges
— like high computational requirements and lack of interpretability.

The challenges involved in Entity Matching overlap that of multiple research
fields, such as information retrieval, databases, and natural language process-
ing. Natural language processing in particular has been an important source
of methods and techniques in recent time and plays a central role in this the-
sis. However, as we will see in Chapter 2, it is important to note that Entity
Matching poses unique challenges that are not adequately addressed alone by
the methods and techniques that these research fields offer.
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1.2 Research Questions

In this thesis, we take a closer look at deep learning for entity matching. The
overall goal is to gain insight into what these new methods contribute to the
entity matching task, how they differ from classical methods, and what their
current limitations are. We pay particular interest to interpretability and block-
ing since these are, in our opinion, aspects that highlight the contrasts the most.
Using standard benchmark datasets, we hope to provide novel insight into the
strengths and weaknesses of deep learning in regards to interpretability and
blocking and how this differs across different types of data. We will now briefly
go through the research questions.

RQ1 What are the contributions from deep learning to entity matching?

While deep learning has had a large impact on a variety of tasks, we are inter-
ested in what the unique capabilities of deep learning contribute to specifically
entity matching compared to earlier methods based on traditional string similar-
ity measures, information retrieval, database techniques, and machine learning.

RQ2 How does modern deep learning approaches compare to classical ap-
proaches for blocking?

One of the core challenges of entity matching is that high precision requires
explicit comparison of record pairs but the number of pairs is quadratic in the
number of records. Therefore, entity matching is typically done in two steps.
First, we perform a high-recall step, called blocking, that implicitly prune away
obvious non-matches and generate explicit record pairs that are good candidates
for being matches. Then we perform a high-precision step, called record pair
classification, that compare explicit pairs and classify them as matches or non-
matches. The blocking step have unique challenges in terms of scalability and
recall. It is hard to effectively prune the quadratic candidate space while also
consistently picking out the high-similarity pairs from the noise. We seek out
to understand how deep learning approaches compare to more classical ones in
this critical step.

RQ3 Can we explain predictions from deep learning matchers and classical
matchers in the same frame of interpretation, and if so, how?

One drawback of deep learning methods is the lack of interpretability. This
makes it harder to compare to classical methods. However, in recent years
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there has been considerable research on explainability techniques and methods.
We investigate whether we can exploit explainability methods to understand
the behavior of both deep learning and classical matchers in the same way.

RQ4 How does explainbility methods adapted to entity matching improve in-
terpretation of matchers?

There have been proposed many explainability techniques, but relatively few
have been adapted to entity matching. We are interested in finding out which
benefits there is to doing so.

1.3 Approach

We mainly address RQ1 through literature analysis, while R2, R3, and R4
are mainly addressed through experimental analysis. Our experimental work
on both blocking and explainability uses and extends existing state-of-the-art
work and methods from the field. For blocking, we extend and improve exist-
ing classical approaches in order to compare them more fairly to modern deep
learning-based approaches, while for explainable entity matching we extend and
specialize existing general explainability methods to entity matching in order to
meet the unique challenges it has.

Throughout the thesis, we will make use of mostly the same standard, and
widely used, datasets from Magellan Data Repository [30]. This makes the
experimental results easier to compare between different parts of the thesis and
against existing work.

When evaluating, we focus on computational cost, time, interpretability, and
practicality in real-world use. As far as possible, we try to represent the trade-
offs when balancing precision and recall instead of assuming a desired balance.
Most experiments are purely quantative and are performed by custom software
implementation. However, due to the subjective nature of interpretability, we
also ground our work on explainability in user studies.

1.4 Contributions

The main contributions of the this thesis are:

C1 Insight and overview of how new deep learning methods compare
to classical methods for entity matching. We provide a substantial
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survey of the use of neural networks in entity matching and go into de-
tail about how the new generation of deep learning methods differ from
previous methods.

C2 A state-of-the-art model-agnostic explainability method tailored
to entity matching. The method we propose enables us to do effective
analysis on predictions from both classical and deep learning methods.

C3 A state-of-the-art blocking method based on set similarity joins.
We show results suggesting that classical methods can still outperform
deep learning-based methods for blocking by significant margins in widely
used benchmarks.

1.5 Publications

This thesis is a collection of three papers:

Paper A Neural Networks for Entity Matching: A Survey [11]
Nils Barlaug, Jon Atle Gulla
Published in ACM Transactions on Knowledge Discovery from Data
(TKDD) in 2021

Paper B LEMON: Explainable Entity Matching [9, 8]
Nils Barlaug
Published in IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) in 2022, with extended version (as demanded and ap-
proved by reviewers) available on arXiv.

Paper C ShallowBlocker: Improving Set Similarity Joins for Block-
ing
Nils Barlaug
Being prepared for submission

In addition, the following were published during the thesis work but is not
directly related to the thesis:

Paper D Tailoring Entity Matching for Industrial Settings [10]
Nils Barlaug
Published in ACM Proceedings of the International Conference on
Information and Knowledge Management (CIKM) in 2019
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Paper E Balancing Multi-Domain Corpora Learning for Open-Domain
Response Generation [146]
Yujie Xing, Jinglun Cai, Nils Barlaug, Peng Liu, Jon Atle Gulla
Published in ACL Findings of the Association for Computational
Linguistics (NAACL) in 2022.

Paper RQ1 RQ2 RQ3 RQ4 RQ5 C1 C2 C3

A • • • •
B • • •
C • •

Table 1.1: Overview of how the different papers covers the different research
questions and main contributions.

Table 1.1 provide an overview of which research questions and main contri-
butions each publication addresses. The three following chapters are adapted
from the papers.

1.6 Thesis Structure

Chapter 1 Introduction: Motivates the thesis, presents research questions
and main contributions, and provide an overview of the thesis.

Chapter 2 Neural Networks for Entity Matching (Paper A): A detailed
survey of the use of neural networks for entity matching.

Chapter 3 Approach-Agnostic Explainability for Entity Matching (Pa-
per B): Overview of existing work on explainability for entity
matching, introduction of a new state-of-the-art method, and ex-
tensive experimental results.

Chapter 4 Strong Blocking Baseline for Deep Learning (Paper C): A
closer look into the blocking step, introduction of a new state-of-
the-art method based on classical string similarity measures and set
similarity joins, and extensive experimental results comparing the
proposed method with existing deep learning and classical methods.
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Chapter 5 Conclusion: Discussion of the research questions and the conse-
quences of the contributions, as well as some thoughts about future
research.
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Chapter 2

Neural Networks for Entity
Matching

Paper A

Original title: Neural Networks for Entity Matching: A Survey
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Entity matching is the problem of identifying which records refer to the
same real-world entity. It has been actively researched for decades, and
a variety of different approaches have been developed. Even today, it
remains a challenging problem, and there is still generous room for im-
provement. In recent years we have seen new methods based upon deep
learning techniques for natural language processing emerge.

In this survey, we present how neural networks have been used for entity
matching. Specifically, we identify which steps of the entity matching
process existing work have targeted using neural networks, and provide
an overview of the different techniques used at each step. We also dis-
cuss contributions from deep learning in entity matching compared to
traditional methods, and propose a taxonomy of deep neural networks
for entity matching.

2.1 Introduction

Our world is becoming increasingly digitalized. While this opens up a number
of new, exciting opportunities, it also introduces challenges along the way. A
substantial amount of the value to be harvested from increased digitalization
depends on integrating different data sources. Unfortunately, many of the ex-
isting data sources one wishes to integrate do not share a common frame of
reference. For example, let us say a factory wants to use statistics from equip-
ment maintenance logs to decide which equipment to prioritize for upgrades.
Currently, at this factory, equipment inventory is kept in one system, while
maintenance logs are kept in a separate system. Sadly, these two systems do
not refer to equipment in the same way – i.e., there are no common identifiers
or names across the two systems. While it is possible for a human to identify
which maintenance logs belong to which equipment in the inventory system,
there is no simple, automatic way to tie the maintenance logs to the inventory
records.

Entity matching is the field of research dedicated to solving the problem of
identifying which records refer to the same real-world entity. It is an important
data integration task that often arises when data originate from different sources.
The records are usually assumed to either be from two different data sources
without duplicates or from the same data source with duplicates. It is not a
new problem. A group of similar problems has been studied for a long time
in a variety of fields under different names (see Section 2.2). Despite having
been researched for decades, entity matching remains a challenging problem in
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practice. There are several factors that make it difficult in general:

• Poor data quality : Real-world data is seldom completely clean, struc-
tured, and homogeneous. Data originating from manual insertion can
contain typos, alternative spellings, or fail to comply with the schema
(e.g., mixing first and last name). Automatic processes extracting in-
formation from unstructured sources might not always be accurate on
the scope of attributes (e.g., {firstName: "John Smith", lastName:

"Programmer"}). Furthermore, some data might simply be missing. Data
in entity matching is often assumed to be structured in records. However,
it is not unusual that these records are in practice semi-structured because
of certain unstructured string attributes – opening up a world of possible
inconsistencies – for example, a name attribute ("John Smith", "Smith,
John", "John R. Smith", "John Richard Smith") or an adress attribute.
In addition, we cannot always expect different data sources to follow the
same schema, format, and syntactic conventions.

• The large number of possible matches: Given |A| records from one
data source and |B| ∈ Θ(|A|) from another, there are Θ(|A|2) possible
matches. We would normally expect the number of positive matches
to be O(|A|). This has two important implications. First, it is infeasi-
ble to explicitly compare all possible pairs for any nontrivial number of
records. Second, there is an extreme imbalance between positive and neg-
ative matches; more specifically, there are Ω(|A|) times as many negative
as positive matches. The potential for false positives is inherently greater.
If one wants to use a learning-based approach, it can be difficult to la-
bel enough positive examples, since they occur in an ocean of negative
examples.

• Dependency on external human knowledge and interaction: The
space of potential entity matching problem instances is unbounded and of-
fers great variety. While a substantial part of the instances can of course,
in theory, be solved automatically, in many real-world instances, it is either
unrealistic or impossible to perform matching as an automatic, isolated
process, as the data sources simply do not contain all necessary informa-
tion. Moreover, to perform matching, our solution has to interact with
human experts and make use of their knowledge. Human interaction is in
itself a complex domain.

Deep learning has in recent years become an essential part of multiple re-
search fields, most notably in fields such as computer vision and natural language
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processing, which are concerned with unstructured data. Its most prominent
advantage over earlier approaches is its ability to learn features instead of rely-
ing on carefully handcrafted features [74]. Researchers have already realized the
potential advantage of deep learning for entity matching [e.g., 39, 91]. In this
survey, we aim to summarize the work done so far in the use of neural networks
for entity matching.

2.1.1 Research questions

One of the challenges of comparing how neural networks are used in entity
matching is that published methods often do not address the exact same prob-
lem. They tend to cover somewhat different aspects of entity matching. With
this is in mind, we formulate the following research questions:

• How do methods using neural networks for entity matching differ in what
they solve, and how do the methods that address the same aspects differ
in their approaches?

• What benefits and opportunities does deep learning provide for entity
matching, and what challenges does it pose?

• How can we categorize the different deep neural networks used for entity
matching?

2.1.2 Main contributions

To answer our research questions, we provide the following main contributions:

• We use a reference model of the traditional entity matching process to
identify which steps of process that existing work has targeted using neural
networks and provide an overview of the different techniques that are used
for each step.

• We discuss the contributions of deep learning to entity matching compared
to traditional approaches using a proposed reference model for a deep
learning-based entity matching process.

• We propose a taxonomy of deep neural networks for entity matching.

• We discuss challenges and propose potential future work for deep learn-
ing in entity matching understood in the context of our reference entity
matching process and deep network taxonomy.
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2.1.3 Outline

First, as necessary background information, Section 2.2 will introduce the prob-
lem definition and give a brief introduction to neural networks. Section 2.3
mentions related work — both publications that survey or summarize simi-
lar topics and problems that are similar to entity matching. We then provide
an overview of the surveyed methods using a reference model of the entity
matching process as a framework in Section 2.4, before we in Section 2.5 take
a step back and discuss contributions from deep learning to entity matching
compared to more traditional approaches. With those contributions in mind,
we introduce a taxonomy of deep neural networks for entity matching in Sec-
tion 2.6. Section 2.7 provide a brief overview of how evaluation is performed
and reported comparative evaluations between deep learning approaches and
traditional methods. Finally, we discuss challenges and opportunities for deep
learning in entity matching in Section 2.8.

2.2 Background

This section introduces the entity matching problem definition and its many
names and variations. What follows is a brief introduction to neural networks
and deep learning and how they are used with text.

2.2.1 Problem definition

Let A and B be two data sources. A has the attributes (A1, A2, ..., An), and
we denote records as a = (a1, a2, ..., an) ∈ A. Similarly, B has the attributes
(B1, B2, ..., Bm), and we denote records as b = (b1, b2, ..., bm) ∈ B. A data source
is a set of records, and a record is a tuple following a specific schema of attributes.
An attribute is defined by the intended semantics of its values. So Ai = Bj if and
only if values ai of Ai are intended to carry the same information as values bj of
Bj , and the specific syntactics of the attribute values are irrelevant. Attributes
can also have metadata (like a name) associated with them, but this does not
affect the equality between them. We call the tuple of attributes (A1, A2, ..., An)
the schema of data source A, and correspondingly for B.

The goal of entity matching is to find the largest possible binary relation
M ⊆ A × B such that a and b refer to the same entity for all (a, b) ∈ M . In
other words, we would like to find all record pairs across data sources that refer
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to the same entity. We define an entity to be something of unique existence1.
Attribute values are often assumed to be strings, but that is not always the
case. It is important to note that the two record sets need not necessarily have
the same schema.

Aspects beyond what the surveyed methods cover have been intentionally
left out. For example, we make no matches within each data source, only across
the two. Which is not to say there cannot be duplicates within a data source.
However, in this problem definition, we assume that we are not interested in
finding them. In practice, it is quite common to assume no duplicates within
the data sources. If we are explicitly interested in finding duplicates within a
single data source, we can, as will be mentioned below, address duplicates in
this formulation of the problem by simply having A = B.

In addition, there is also a more subtle assumption in this problem definition:
The record sets A and B are assumed to operate with the same taxonomic
granularity. This is not necessarily always the case. One data source might
refer to households; the other, to individuals, or two data sources could refer
to street-level addresses and postal code areas, respectively. In many cases, it
would still make sense to match records that do not strictly refer to the same
entity, but rather refer to entities with some defined taxonomic closeness. We
leave this out of the definition for simplicity, as it does not affect our analysis
of the surveyed methods.

Somewhat ironically, as often pointed out, entity matching itself suffers from
the problem of being referenced by many different names, some referring to
the exact same problem, while others are slight variations, specializations, or
generalizations. In addition, the names are not used completely consistently.
Table 2.1 lists a selection of these names. We will comment on a few.

Table 2.1: Some of the many names that are used for entity matching or similar
variations of it.

Entity matching Entity resolution Record linkage
Data matching Data linkage Reference reconciliation
String matching Approximate string matching Fuzzy matching
Fuzzy join Similarity join Deduplication
Duplicate detection Merge-purge Object identification
Re-identification

1An entity does not have to be a physical object, but can also be abstract or conceptual –
e.g., a company or an event.
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Entity resolution, record linkage, and data matching are frequently used for
more or less the same problem as we defined above. It is not unusual that A
and B are assumed to have the same schema — either because the schemas
are, in fact, equal, or because some kind of schema matching has already been
performed as a separate step. Sometimes, fusing the matching pairs to one rep-
resentation is considered a final step of the problem. If we also have duplicates
within each data source, it might be necessary to cluster and fuse more than two
records at a time. In this article, we will stick to the more narrow definition laid
out above. Deduplication or duplicate detection is the problem of identifying
which records in the same data source refer to the same entity, and can be seen
as the special case A = B. String matching attempts to find strings that refer
to the same entity and can be regarded as the special case n = m = 1, if strings
are interpreted as single-attribute records.

2.2.2 Neural networks and deep learning

We provide a brief and simplified description of neural networks and deep learn-
ing, followed by a short introduction to how deep learning is used in natural
language processing. A comprehensive introduction to these topics is outside
the scope of this survey. See instead, for example, Goodfellow et al. [48], from
which we will adapt some of our notation in the following paragraphs, for a gen-
eral introduction to deep learning, and Goldberg [47] and Jurafsky and Martin
[63] for introductions to deep learning for natural language processing.

A neural network is a machine learning model. We wish to approximate
some unknown function f∗(x) = y that can map from some interesting in-
put x to some desired output y. Usually, we will have some examples D =
{(x(j),y(j))|1 ≤ j ≤ m}, which are known to be such that f∗(x(j)) ≈ y(j) for
all j, to help guide us. To approximate f∗ we define a function f(x;θ) param-
eterized by θ, and then try to learn what θ should be using the examples D.
This function f is the neural network.

Even though there are no strict requirements for what constitutes a neural
network, they usually follow a common recipe. Generally, we let f consist of
one or more nested functions f(x) = fL(fL−1(...f1(x))). Each such function
fl would normally be a linear operation, like matrix multiplication, using the
parameters θ and then nested by a nonlinear element-wise operation. For ex-
ample, fl(x) = max(0,Wx+ b), where both W and b are part of θ and max is
element-wise. We call these nested functions layers, and L is the depth of the
network. When a neural network has several layers (no clear threshold), we call
it a deep neural network.
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Given a suitable network architecture f , we try to find parameters θ that will
make it behave close to the examples D. We first define a loss function L(y, ŷ)
quantifying how wrong a prediction ŷ = f(x;θ) is compared to the correct
y. Then we randomly initialize θ and perform some variant or descendant of
stochastic gradient descent (SGD) with mini-batches:

θt+1 = θt − α
1

|D̃|
∑

(x,y)∈D̃

∇θtL(y, f(x;θ))

where α is the learning rate, and D̃ ⊂ D is a random mini-batch. The stopping
criterion and other details vary between methods. This procedure is expensive,
because it needs to evaluate f and differentiate L with respect to θ. To make it
efficient, we make sure to choose |D̃| ≪ |D| and also differentiate with the back-
propagation algorithm. Generally, we can interpret f as a directional acyclic
computational graph. The backpropagation algorithm simply applies dynamic
programming using the chain rule over this computational graph.

The real strength of deep learning is its ability to do hierarchical representa-
tion learning. With modern techniques, multilayered networks are able to learn
useful features from relatively unstructured input data [74]. This is especially
valuable for data such as images and text, which are notoriously hard to extract
good features from with manually crafted procedures.

Deep learning for natural language processing

Many state-of-the-art methods for natural language processing are deep learning
models [e.g., 132, 32, 147]. Central to all these methods is how text is trans-
formed to a numerical format suitable for a neural network. This is done through
embeddings, which are translations from textual units to a vector space – tradi-
tionally available in a lookup table. The textual units will usually be characters
or words. An embeddings lookup table can be seen as parameters to the network
and be learned together with the rest of the network end-to-end. That way the
network is able to learn good distributed character or word representations for
the task at hand. The words used in a data set are often not unique to that data
set, but rather just typical words from some language. Therefore one can often
get a head start by using pretrained word embeddings like word2vec [88], GloVe
[104] or fastText [16], which have been trained on enormous general corpora.
Following a rather recent trend, large pretrained networks that can produce
contextualized word embeddings that take into account the surrounding words
are also available [105, 32, 109].
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Text is naturally interpreted as a sequence. It is therefore perhaps not so
surprising that neural networks designed for sequences are often used. One way
to model sequences is to use Convolutional Neural Networks (CNNs) — first
popularized by computer vision applications — which has received considerable
attention within the natural language processing community [66, 27]. However,
a more prominent sequence model has been Recurrent Neural Networks (RNN)
[41] and their variants. RNNs are constructed by repeating the same layer
multiple times. Each layer takes both the output from the previous layer as
well as some part of an input sequence. So assuming the input to be a sequence
x1, ...,xL, we nest layers recursively as hl = fl(hl−1,xl;θ), where hl is called
the hidden state. Layers share the same parameters, and the number of layers
can therefore be dynamically adjusted to the length of the input sequence. The
last hidden state will, in theory, contain information about the whole input
sequence. Additional layers can be appended to further process this feature
vector and produce some desired output. Output sequences can be generated
in a number of ways by setting the initial hidden state and then extracting
the hidden state from different layers. RNNs themselves consist of a (dynamic)
number of layers, but it is also possible to nest several RNNs. We then get what
is called stacked RNNs.

RNNs are relatively deep networks and are therefore prone to what is called
vanishing gradients. The gradients from the early layers become so small that
they are ineffective in gradient descent. In other words, the first parts of the
input sequence have too little influence over the end result. Therefore, variants
of RNNs such as Long Short-Term Memory (LSTM) [57] and Gated Recurrent
Units (GRU) [24] are often used in practice. They make sure that hidden states
are more easily able to flow through the subsequent layers undisturbed, so that
gradients will remain strong when backpropagated through many layers. Despite
this improvement, the networks will still tend to be influenced more by the end
of the input sequence then the beginning. It has become quite common to have
bidirectional RNNs [117, 52], which can be seen as combining two RNNs, where
one of them processes the input sequence backward.

Another popular way to face the issue of skew in influence for sequences is
to use attention mechanisms [6]. The idea is to let the network itself choose
what parts of the input to focus on, potentially for several iterations. This is
typically achieved in a network by producing some normalized attention vector
that is multiplied with the vector of interest.

While initially used as an enhancement to RNNs, networks based almost
solely on attention [132] have recently started to proliferate [32, 109, 147] and
are currently considered state-of-the-art for many, if not most, natural language
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Figure 2.1: Illustration of the architecture for a two-stack uni-directional RNN
encoder and a three-layer BERT-style [32] encoder for natural language process-
ing. Let (x1, x2, . . . , xl, . . . , xL) be the input sequence, and el be an embedding
for xl. Both a standard RNN and LSTM block are illustrated for the RNN
architecture. Notice the additional context state Cl for LSTM, which can more
easily carry gradients. Inspired by illustrations in [98, 132, 32].
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processing tasks. We call these Transformer-based networks — as originally
named by [132] that targeted machine translation. In contrast to RNN-based
networks, they are not sequential with respect to the input sequence. See Fig-
ure 2.1 for an illustration of an RNN and Transformer encoder. This makes them
more parallel, which again makes it easier to leverage modern, highly parallel
hardware. In addition, one avoids prohibitive deep networks (due to vanishing
gradients) for long input sequences. Each layer performs self-attention over the
whole input sequence, effectively removing the long paths between cells of RNNs
that makes it so hard to learn long-range dependencies. Since transformer net-
works are architecturally agnostic to the input sequence order, they are instead
fed positional information through the input as positional embeddings.

One particular influential recent trend has been the ability to leverage huge
pretrained models that have been trained unsupervised for language modeling
on massive text corpora [105, 32, 109] — similar to what the computer vision
community has done for a while. They produce contextualized word embed-
dings that take into account the surrounding words. The embeddings can be
used as a much more powerful variant of the classical word embeddings, but as
popularized by BERT [32], one can also fine-tune the network to the task at
hand. Take BERT as an example. It is pretrained jointly on masked language
modeling and next sentence prediction. Input during training is a special [CLS]
token first, then the two sentences terminated by a special [SEP] token each.
The [CLS] tokens output from the network is used to do the next sentence clas-
sification. Each token’s embedding is augmented with a positional embedding
and a segment embedding indicating which sentence it belongs to. This setup
makes the network suitable for fine-tuning on both sequence labeling tasks as
well as pair labeling tasks (such as question answering or entity matching).

2.3 Related work

2.3.1 Other surveys and extensive overviews

Given entity matching’s long history, there is no surprise that it has been sur-
veyed before in various ways, covering entity matching as a whole and more
narrow aspects.

First, there are several books that provide an overview. Christen [25] is a
dedicated and comprehensive source on entity matching, Naumann and Her-
schel [92] specifically cover the slightly more specialized problem of duplicate
detection, and Batini and Scannapieco [12], Talburt [126], and Doan et al. [34]
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all introduce entity matching in the context of data quality and integration.
Second, the workshop tutorials by Getoor and Machanavajjhala [44] and Ste-
fanidis et al. [121] serve as introductory summaries. Third, Elmagarmid et al.
[40] present a literature analysis.

Other sources cover more narrow aspects of entity matching – such as spe-
cific techniques or subtasks. Quite early on, statisticians dominated the field
of entity matching. Probabilistic methods were developed by Newcombe et al.
[93] and given a solid theoretical framework by Fellegi and Sunter [42]. These
probabilistic methods are summarized by Winkler [139, 140] and Herzog et al.
[56]. Blocking, which is surveyed by Papadakis et al. [101], Christen [25], and
Papadakis et al. [99], is considered an important subtask of entity matching,
meant to tackle the quadratic complexity of potential matches. Christophides
et al. [26] specifically review entity matching techniques in the context of big
data. There has been an uptick in interest in both machine learning and crowd-
sourcing as a solution to entity matching in recent years. As part of a larger
survey on crowdsourced data management, Li et al. [77] cover crowdsourced
entity matching. Lu et al. [85] summarize the use of machine learning, while
Gurajada et al. [54] present an overview of crowdsourcing, active learning, and
deep learning for entity matching.

While earlier works mention or cover neural networks for entity matching
to various degrees, we are to the best of our knowledge the first to present a
dedicated, complete, and up-to-date survey.

2.3.2 Related problems

Entity matching can be seen as part of a larger group of tasks with roots in
natural language processing that solve similar, but distinct, matching problems.
Interestingly, but perhaps not surprisingly, deep learning-based methods have
become state-of-the-art in all these tasks. We will briefly mention some of the
most prominent ones.

• Coreference resolution: Given a text, find all mentions of entities and
determine which mentions corefer. Two entity mentions corefer if they
refer to the same entity [64]. In contrast, entity matching is concerned
with more structured data with clearly distinct units of data (records).
Importantly, entity matching does not have to take into account a larger
textual context, which is necessary in coreference resolution to find core-
ferring mentions across multiple sentences. State-of-the-art methods are
able to perform the whole task end-to-end using a deep network without
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detecting and disambiguating mentions in two separate steps [75, 62].

• Entity alignment: Given two knowledge bases, find which entries across
the two that refer to the same entity. Knowledge bases, in contrast to
record sets in entity matching, have relations between entries. Leveraging
these relations are central to the task. The way most neural-based meth-
ods do this is by producing so-called knowledge graph embeddings [155,
123, 23], embeddings of entries which incorporate information about their
relationship to other entries.

As a slightly specialized variant, user identity linkage is the problem of
identifying which users across two social networks are the same [154].

• Entity linking: Given a text, find all mentions of entities and link them
to entries in a knowledge base. One example of a heavily used knowledge
base would be Wikipedia. In some ways, one can see entity linking as
a hybrid between coreference resolution and entity alignment, and it dif-
fers from entity matching in the same ways. Neural-based methods are
considered state-of-the-art [111, 68].

• Paraphrase identification: Given two texts, determine if they are se-
mantically equivalent – i.e., if they carry the same meaning. This can be
be seen as a generalization of string matching, if one interprets strings
referring to the same entity as implicating that the strings are also se-
mantically similar. Nonetheless, we still consider figuring out which texts
convey the same meaning in general to be a distinct problem from entity
matching. First, entity matching deals with more structured data. Second
and most importantly, in entity matching, all records refer to an entity,
and we are only concerned with which specific real-world entity a record
is referring to. Any excess meaning carried by a record does not impact
matching.

Finally, there is also semantic textual similarity and textual entailment,
which are closely related to paraphrase identification. Semantic textual
similarity is concerned with the degree of how semantically similar two
texts are, while textual entailment is about finding out whether one text
semantically entails, contradicts, or is neutral to a second text. Addition-
ally, in the case of multiple choice, question answering can also be seen as
a matching problem.

State-of-the-art for most of these matching problems rely on rather generic,
but powerful, language understanding models [147, 32].
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In a broader sense, similar problems are also studied in the context of infor-
mation retrieval [89]. Neural networks not only provide effective techniques for
retrieving unstructured text but also for data formats that have traditionally
been less accessible such as images [82] — and even across modals [142].

2.4 The entity matching process

Traditionally, entity matching is often thought of as a process consisting of
multiple steps, even though there is no generally agreed upon list of specific
steps. It is useful to compare methods in light of how they relate to this abstract
process. To this end, we introduce a high-level reference model describing the
entity matching process as five distinct steps. These steps can also be viewed as
a chain of the subtasks or subproblems that make up entity matching. Inspired
by processes and figures such as those in [92, 25, 39, 26, 54], Figure 2.2 depicts
this reference model of the traditional entity matching process. We will use the
model to frame the discussion of different methods using neural networks.

Schema
matching Blocking

Data pre-
processing

Data source
A

Data pre-
processing

Data source
B

Record pair
comparison Classi�cation Matches

M

Figure 2.2: Illustration of the reference model for a traditional entity matching
process and its five steps. Human-in-the-loop aspects are not considered.

The process adheres to the problem definition introduced above. It assumes
two data sources as input. In theory, it could be generalized to multiple sources,
but this is seldom done in the literature. A single source, as previously men-
tioned, can simply be seen as a special case. At the end of the process, the
result is simply matches. Since this is an abstract process extracted from the
literature, it is not necessarily followed step by step. The order might not be
completely strict, and steps might be intermingled or skipped – as will be clear
when we look at specific methods.

We also note that this process is machine-oriented and does not highlight
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any iterative human interactions or feedback loops. Significant research has
gone into both crowdsourcing [133, 135, 137, 50] and active learning [65, 5, 107].
Interestingly, Kasai et al. [65] use a deep neural network in their active learning
approach. Such human-in-the-loop factors are often crucial for entity matching
in practice [35]. We do not consider our proposed process to be in conflict
with these aspects, but rather mostly orthogonal. Empirically, based on the
surveyed methods, we do not find neural networks to be very tightly coupled to
any human-in-the-loop techniques. We therefore focus on the machine-oriented
aspects.

Data preprocessing

The first step in the process is data preprocessing, which is usually a crucial
step in many data integration tasks [34]. The goal is to get both data sources
into consistent and similar formats better suited for downstream tasks. Typical
transformations may involve removing excess punctuation, lowercasing all let-
ters, normalizing values, and tokenizing. Sometimes, one might also view this
step as feature extraction, where records are transformed to a feature space.
Preprocessing is, of course, very dependent on the domain and the specific data
sources.

Schema matching

After preprocessing we perform schema matching, where the objective is to find
out which attributes should be compared to one another, essentially identifying
semantically related attributes. This will enable downstream steps to compare
records across the two sources. Even though schema matching is often consid-
ered a separate problem to be solved before performing entity matching [e.g.,
25], we choose to include it both because deep learning-based methods have the
potential to perform it jointly with other steps (as a surveyed method shows
[94]) and because it is frequently an unavoidable problem in real-world use cases
for entity matching.

In practice, this step is often performed manually as part of the prepro-
cessing step, simply making sure to transform both data sources into the same
schema format. Traditional techniques for schema matching span a wide range
of solutions. They can use both schema metadata and actual attribute values.
Some are supervised learning methods, while others are unsupervised. Impor-
tantly, most of them are completely independent of downstream tasks in the
process, though most techniques are actually not developed specifically for the
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purpose of entity matching. For more in-depth coverage of schema matching,
see Rahm and Bernstein [110], Bellahsene et al. [14], and Doan et al. [34].

Blocking

Since the number of potential matches grows quadratically, it is common to
pick out candidate pairs C ⊆ A × B in a separate step before any records are
compared directly. We call this step blocking, and the goal is to bring down the
number of potential matches |C| ≪ |A × B| to a level where record-to-record
comparison is feasible. Note that in the literature, blocking is sometimes used
as a name for only one of the possible strategies for avoiding the quadratic
complexity [e.g., 26]. For simplicity, we refer to any effort to make record
comparison feasible as blocking.

One can think of the blocking step as doing implicit comparison of records,
while the comparison step described below is doing explicit comparison between
pairs of records. There is often no way around performing at least some explicit
pairwise comparison, since implicit comparison cannot offer the necessary preci-
sion. In certain cases, when the comparison lends itself to indexing, it is possible
to fuse record pair comparison and blocking into one step. Usually, however,
the explicit comparison is nontrivial, infeasible, or impossible to speed up by
indexing – necessitating a need to prune away obvious nonmatches in a separate
blocking step. This is possible because implicit comparison will typically have
lower precision, but can be done more efficiently. At the same time, explicit
comparison will typically have higher precision but has inherent quadratic com-
plexity. By constructing a high-recall implicit comparison step to filter away
obvious nonmatches first, we can make it feasible to use a more powerful high-
precision explicit comparison afterward.

Typical techniques are based on hashing, sorting, or various ways of indexing.
Some work completely independent from the downstream steps, while others are
more coupled with the record pair comparison and classification steps. For ex-
ample, if matches are decided based on thresholds of string similarity measures,
it is often possible to specifically index attribute values to prune away accord-
ing to that criteria [150]. Most techniques rely heavily on syntactic similarity,
including those based on supervised machine learning. See Christen [25] and
Christophides et al. [26] for extensive reviews on blocking techniques. In prac-
tice, it is not uncommon that blocking involves quite a bit of manual feature
selection, picking out which attributes should be used and which technique to
apply.
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Record pair comparison

When the number of candidate pairs |C| has been reduced to a manageable
amount, we can compare individual records (a, b) ∈ C. The pairwise comparison
results in a similarity vector S, consisting of one or more numerical values
indicating how similar or dissimilar the two records are.

Traditionally, such comparisons have mostly been made using string sim-
ilarity measures. These measures typically quantify a very specific syntactic
similarity, and therefore differ in what clues for matching strings they are able
to pick up. Some are, for example, good at adjusting for spelling errors or
OCR errors. String similarity measures have been extensively covered before
[40, 25, 85]. It is possible to incorporate domain knowledge in a string similar-
ity measure to also perform semantic comparison instead of just syntactic [4,
119], but it is less common and introduces the extra challenge of acquiring such
materialized domain knowledge.

String similarity measures are made to compare two strings and cannot be
directly applied to a pair of records. Normally, one will compare those at-
tributes which were found to be semantically similar in the schema matching
step, thereby getting multiple measurements to include in S. Also, since the
similarity measures are almost always static and only cover a narrow syntactic
similarity, one can use multiple measures and offload the job of figuring out
which ones to emphasize to the downstream classification step.

Classification

Lastly, the objective of the classification step is to classify each candidate pair
as either match or nonmatch based on the similarity vector. In cases where
|S| = 1, simple thresholding might be enough, while when |S| > 1, one needs
more elaborate solutions.

Early efforts in entity matching were focused on unsupervised probabilistic
methods for doing classification. Initially developed by Newcombe et al. [93]
and later formalized by Fellegi and Sunter [42], the idea is that, given certain
assumptions, one can calculate the optimal matching choice according to some
bounds on false positives and negatives. It can be seen as very close to a näive
Bayes classifier, classifying record pairs as either match, nonmatch, or uncertain
– where the uncertain matches must go through manual review. The motivation
is that common attribute values that agree (for example, a very common first
name) are less significant than rare attribute values that agree. See Herzog et al.
[56] for a complete introduction to probabilistic approaches.
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Recently, methods based on rules or machine learning have been more promi-
nent. Rules are predicates over the similarity vector S that flag them as match
or nonmatch. They can be constructed manually, making them a powerful and
highly explainable way of explicitly incorporating domain knowledge into the
classification. Manually constructing rules requires a lot of expert labor, so
significant work has been put into automatically learning rules from examples.
Other efforts in leveraging learning have used off-the-shelf classification models
such as decision trees and support vector machines. These machine learning
models are then trained on examples of S for which it is known if they represent
a matching or nonmatching record pair. Both rule-based and machine learning
approaches are covered extensively in the literature [40, 34, 25].

Outline

Table 2.2 lists, to the best of our knowledge, all methods that use neural net-
works for entity matching and which steps of the process they tackle using neural
networks. We will in the subsequent subsections take a closer look at each step
and see how different methods use neural networks to handle them.

2.4.1 Data preprocessing

Deep neural networks are good at doing representation learning. As we will
see, they can therefore effectively learn to do some of the data preprocessing we
would traditionally do manually. When we explore how the different methods
do this, we will focus on two aspects: How embeddings are used to get records
in a suitable input format, and how the networks’ hierarchical representations
are structured.

Embeddings

Neural networks alone only work with numerical data, so an important enabling
factor in letting networks learn representations is how textual records are trans-
formed into a numerical format. In practice, this is done using embeddings, as
explained in Section 2.2. Note that while some embedding models, like GloVe
[104], are not neural networks, we still consider them a crucial component for
neural networks and how they are able to replace manual feature extraction
(see Section 2.5). They perform and enable powerful representation learning on
text. Other embedding models, like word2vec, can be seen as a simple neural
network. Even though the embeddings are later used in a lookup table, they
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Table 2.2: Overview of which steps of the entity matching process reference
model different methods tackle with neural networks.

Method
Data

preprocessing
Schema
matching

Blocking
Record pair
comparison

Classification

SEMINT [79, 80] •
SMDD [149] •
Nin and Torra [95] • ∼
Pixton and Giraud-Carrier [106] •
Wilson [138] •
Tran et al. [130] •
NNSM [151] •
Gottapu et al. [49] • •
Reyes-Galaviz et al. [113]. •
Kooli et al. [70] • • •
DeepMatcher [91] • • •
Wolcott et al. [141] • •
DeepER [39] • • • ∼
MPM [43] • • •
Kasai et al. [65] • • •
Seq2SeqMatcher [94] • • • •
Nozaki et al. [96] • •
AutoBlock [96] • •
Hi-EM [153] • • •
Brunner and Stockinger [20] • • • •
Ditto [81] • • • •

were trained using this simple network. One interesting use of word2vec is that
of Nozaki et al. [96]. They do not use the word embeddings as input to a neural
network, but use them as is in a simple aggregation and comparison scheme to
do schema matching (details in Section 2.4.2).

Granularity Embeddings can be used at different granularities, usually at
word- or character-level. The second column of Table 2.3 shows which methods
use which granularity. Word embeddings significantly reduce the length of the
sequences to be processed compared to character embeddings but come at the
expense of increasing the number of unique values that have to be represented
by many orders of magnitude. This often makes solutions relying on word em-
beddings more vulnerable to out-of-vocabulary (OOV) words – i.e., words that
were not present in the training data. Word-based embedding models usually
handle unknown words by assigning the same embedding to all unknown words,
making no distinction between them. When embeddings are pretrained on large
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Table 2.3: Overview of how the surveyed methods use embeddings, specifically
at what granularity, if they use pretrained embeddings, and whether they fine-
tune embeddings. Surveyed methods not using embeddings at all are left out.
+Other options were tried, but this was found to be most preferential. ∗The
method uses pretrained embeddings for the attribute value text, but standard
embeddings trained from scratch for attribute labels.

Method Embedding granularity
Pretrained
embeddings

Fine-tuned
embeddings

Gottapu et al. [49] Word No -

Kooli et al. [70] Word & Character N-gram Yes No

DeepMatcher [91] Word & Character N-gram+ Yes+ No

Wolcott et al. [141] Character No -

DeepER [39] Word Yes Yes+

MPM [43] Word & Character N-gram Yes No

Kasai et al. [65] Word & Character N-gram Yes No

Seq2SeqMatcher [94] Word & Character N-gram Both∗ No

Nozaki et al. [96] Word Yes No

AutoBlock [152] Word & Character N-gram Yes No

Hi-EM [153] Character No -

Brunner and Stockinger [20] Character N-gram Yes Yes

Ditto [81] Character N-gram Yes Yes

general corpora (as will be discussed next), but the data sources at hand contain
domain-specific words that are otherwise rare, they will naturally tend to be less
useful. In addition, the data sources at hand might have low data quality and
contain typos or small spelling variations that are not common in the train-
ing data – thus effectively making those words out-of-vocabulary. Motivated
by these concerns, the majority of the methods use fastText [16] embeddings
(or similarly, Wordpiece/SentencePiece/Byte-Pair-Encoding [117, 72, 118] for
the transformer networks). FastText combines embeddings for both the word
itself and all character N-grams of certain lengths, often making it possible to
find a suitable representation for an OOV word, since the word most likely has
known N-grams. Using N-grams in this way is basically a way of approximately
incorporating a morpheme granularity level to word-level embeddings [16].

Does the choice of embeddings matter? Mudgal et al. [91] compare fastText
to (the purely word-based) GloVe and find fastText to have an edge when the
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data sources contain domain-specific words that are OOV and otherwise com-
parable. Ebraheem et al. [39], meanwhile, compare fastText without N-grams,
GloVe, and word2vec [88], reaching the conclusion that there is no significant
difference. The combined results might indicate that the embedding granularity
is more important than which particular embedding is used.

Pretraining One of the benefits of popular word embeddings models like
word2vec, GloVe, and fastText is that you can get pretrained embeddings. They
have been trained on enormous general corpora, have vocabularies of significant
size, and are often available for different languages. Pretrained character em-
beddings are not nearly as common, though Zhao and He [153] are, in essence,
pretraining the entity matching model on large amounts of training data and
can in a way be thought of having pretrained character embeddings. The third
column in Table 2.3 shows which methods use pretrained embeddings. Using
pretrained embeddings is essentially a way of doing transfer learning for feature
extraction. Since embeddings can be trained unsupervised, there is generally
a substantial amount of training data available. This can be very helpful if it
manages to reduce the necessary amount of labeled training data for the down-
stream entity matching task at hand. Mudgal et al. [91] found that learning
embeddings from scratch instead of using pretrained embeddings can be favor-
able to highly specialized data sources, while for other data sources, pretrained
embeddings either outperformed or were comparable to learning from scratch.

Fine-tuning Even when embeddings have been pretrained on some large text
collection, one still has the opportunity to continue adjusting them when doing
the task-specific training together with all other weights. We refer to this as
fine-tuning the embeddings – the opposite of freezing them. The fourth column
in Table 2.3 shows which methods fine-tune their embeddings, which currently
is only Ebraheem et al. [39]. They found fine-tuning to help on hard data sets
— i.e., those that are very challenging or impossible to get close to perfect F1

score on.

Representation levels

Embeddings offer neural networks an initial mapping from the actual input to a
suitable numeric representation. But as mentioned earlier, the strength of deep
learning’s use of neural networks is really its ability to do hierarchical repre-
sentation learning, which is achieved using multiple layers, learning increasingly
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abstract features [74]. The first layers of deep networks will typically be de-
signed to enable building a good representation of the input, and then let the
last layers focus on producing the desired output. It is nontrivial to figure out
what each layer actually learns. When we compare the surveyed methods, we
instead focus on explicit levels of representation.

Table 2.4 highlight how each method does representation learning by listing
which explicit representation levels are used, and which techniques are used
to build representation from the level below, where the explicit level units are
character, word, attribute, and record. It is important to note that the table
does not reflect the entire neural network of each method, but rather only the
beginning layers that are to be considered as the feature extraction part of
the network. We consider a representation level as used if you can simply
pick out a vector representation for units of that level after some layer. A
vector is considered to represent a unit if its calculations only rely on that
unit or other input through an attention mechanism. Importantly, a vector
that relies on two records through something else than an attention mechanism
is not considered a representation, but rather a comparison (see Section 2.4.4).
Figure 2.3 illustrates the difference in terms of computational graphs. Of course,
with neural networks, the actual line between the initial feature extraction part
and the rest is an artificial one and not necessarily indicative of how the networks
actually learn and work. But they do reflect design decisions to a certain degree
and help us compare them in that regard.

a b

Independent representations

a b

α

Interdependent representations

a b

Comparison

Figure 2.3: Illustration of what is considered a vector representation (inde-
pendent or interdependent) and what is considered a comparison in terms of
computational graphs. Here, a and b are records and α is an attention mecha-
nism.

We see each method’s first layer is (unsurprisingly) an embedding, providing
initial character or word vectors. Some use a specific embedding model, like
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Table 2.4: Overview of which explicit representation levels the surveyed methods
make use of and which kinds of network layers are used to build representation
from the level below. Methods upper half use independent record representa-
tions, and those in the bottom half use interdependent record representations.
Self-attention is any attention mechanism that only uses elements within the
same record, while cross-attention refers to any attention mechanism looking
across two records. +Other options were explored, but the representational
power was similar or lower. ∗Multiple options in use at the same time.

Method Character Word Attribute Record

Gottapu et al. [49]
Standard
embeddings

1 Convolutional

Wolcott et al. [141]
Standard
embeddings

1 BiLSTM, 2 FC

DeepER [39] GloVe+ 1 BiLSTM+

MPM [43] ∗ fastText∗ ∗

Kasai et al. [65] fastText 1 BiGRU

Nozaki et al. [96] word2vec Sum, average

AutoBlock [152] fastText
1 BiLSTM+,
self-attentation

Weighted sum

DeepMatcher [91] fastText+
Cross-attention,
1 BiGRU+

Seq2SeqMatcher [94]
Standard
embeddings &
fastText

Cross-attention

Hi-EM [153]
Standard
embeddings

1 BiGRU,
cross-attention,
self-attention

1 BiGRU,
cross-attention,
self-attention

Concatenation

Brunner and
Stockinger [20]

Byte-pair encoding+,
12 transformer layers
(self- and cross-attention)+

Ditto [81]
Byte-pair encoding+,
12 transformer layers
(self- and cross-attention)+
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fastText, while others just use standard lookup table embeddings that they
train themselves. Next, we note the popularity of RNN-based models among
the methods, which is in line with the widespread use of such sequence-aware
models in natural language processing [e.g., 51, 125, 73]. An interesting case is
that of MPM [43], which actually combines two versions of DeepMatcher [91]
as well as classical similarity measures in its architecture.

The methods can be naturally divided into two categories when it comes to
representation learning: independent or interdependent representation. If the
highest representation level relies on a record pair instead of a single record, we
say it is an interdependent representation. Otherwise, it is an independent rep-
resentation. See again Figure 2.3 for an illustration. The methods in Table 2.4
have independent and interdependent representation at the top and bottom, re-
spectively. Interdependent representations are, in essence, a way to incorporate
record pair comparison into the feature extraction. They have the benefit of
being able to adapt based on what they will be compared to, while independent
representations have the benefit of not relying on record pairs to be computed.
The latter will be important when we discuss blocking in Section 2.4.3.

Independent representation There is significant variation among the meth-
ods with independent representation. Kooli et al. [70] and Nozaki et al. [96]
mostly rely on word embeddings for the feature extraction part of the network.
Kooli et al. simply concatenate them before the next layers do comparison, and
Nozaki et al. aggregate them through summation and averaging. Wolcott et al.
[141] use bidirectional LSTM on character embeddings followed by dense lay-
ers to produce record-level representations. As the only method, Wolcott et
al. actually go straight from characters to record representation. Kasai et al.
[65] use bidirectional GRU on word embeddings to get an attribute-level rep-
resentation. As the only surveyed method, Gottapu et al. [49] apply a simple
convolutional layer to word embeddings. Lastly, both DeepER [39] and Auto-
Block [152] have networks solely aimed at finding good representations for use
in blocking (see Section 2.4.3). DeepER uses bidirectional LSTM on word em-
beddings to get a record-level representation (but also show a simple averaging
approach is competitive). Somewhat differently, AutoBlock applies bidirectional
LSTM and self-attention on word embeddings to get an attribute representation
and represents records as a weighted sum of attributes.

Interdependent representation DeepMatcher [91] explores several ways of
building attribute representation from word embeddings. The one with the
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highest representational power, Hybrid, uses a combination of bidirectional GRU
and decomposable attention [103] across records. Unique among the surveyed
methods, Seq2SeqMatcher [94] structures records as sequences of (attribute,
word) pairs. The embedding of such a pair is a concatenation of a custom
embedding for the attribute and a fastText embedding for the word itself. The
record-level representation is produced through an attention technique between
the sequences of two records. Brunner and Stockinger [20] treat a record pair as
a sequence of attribute value sub-word tokens, while Ditto [81] model record pair
as a sequence of alternating attribute name and value sub-word tokens. Both let
each token keep its own representation throughout the representation building
layers. These Transformer networks take interdependent representation to an
extreme, as each token depends on all other in every Transformer layer. Finally,
Hi-EM [153] is the only method which uses all the four explicit representation
levels. It applies a combination of bidirectional LSTM, self-attention within
the record, and attention across records — both from its standard character
embeddings to word vectors and from its word vectors to its attribute vectors.
For the record-level representation, it simply concatenate the attribute vectors.

2.4.2 Schema matching

Given two data sources A and B, we divide the ways in which the schemas can
be related in three:

• Aligned schemas: Both data sources use the same schema. In other
words, ∀i∈{1,2,...,n}(Ai = Bi) and n = m.

• Misaligned schemas: Both data sources have the same attributes, but
not in the same order. In other words, there exists a bijective relation
H ⊂ {Ai}ni=1 × {Bj}mj=1 such that ∀AiBj : ((Ai, Bj) ∈ H) → (Ai = Bj).

• Incompatible schemas: There is no simple correspondence. In other
words, there does not exist such a bijective relation as described above.

With aligned schemas, there is no need for schema matching. For misaligned
schemas, finding a one-to-one correspondence between attributes is sufficient,
while in the general case of incompatible schemas, more complex connections
must be uncovered. Many schema matching techniques are concerned with the
former case, misaligned schemas. For entity matching, the goal is usually to
find out which attributes should be compared in the downstream task where
records are compared; we want to find the pairs (Ai, Bj) of attributes that are
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semantically related. So one attribute can be compared to several attributes
from the other data source – implying incompatible schemas.

An additional challenge that might occur is dirty attribute values – values
that should have been in another attribute [91, 94]. In such cases, we need to
compare attributes that might not necessarily be semantically related in order
to be robust to noise.

There are two sources of information when doing schema matching. There
are the actual attribute values in records, and there is the attribute metadata.
Attribute metadata will often simply be a name (e.g., title, author, etc).

When it comes to neural networks for schema matching, there are essentially
four approaches in the surveyed methods:

Learn attribute matching from clusters

SEMINT [79, 80], SMDD [149], and NNSM [151] specifically target schema
matching. They all first create training data by performing unsupervised clus-
tering of attributes, and then use that data to train a multilayered perceptron2

(MLP). SEMINT uses a Self-Organizing Map [67] to cluster the feature vec-
tors of attributes in data source A into categories. The attribute features are
handcrafted and are based on both schema metadata and attribute values. The
category clusters are then used as labeled data to train an MLP with one hid-
den layer. Given an attribute feature vector, the network scores its similarity to
these cluster categories, and this is used to match the attributes of data source
B to the categories of A. SMDD follows a similar strategy, but uses the dis-
tribution of attribute values and a hierarchical clustering technique. Somewhat
differently, NNSM clusters pairs of attributes into either being similar or dis-
similar based on similarity scores of four traditional matchers. Next, they train
an MLP with two hidden layers to classify a pair of attributes as either similar
or dissimilar using the clusters as training data.

An interesting aspect of these schema matching methods is their lack of
need for human-labeled training data. The methods that learn from clusters
generate training data by using more traditional unsupervised manual methods.
As Zhang et al. [151] explains it, they are essentially using neural networks as
a way to combine several traditional methods.

2A multilayered perceptron is a simple feedforward network using only fully connected
layers.
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Learn schema mapping

Nin and Torra [95] translate records from source A to records following the
schema of B. They train a network for each attribute in B, which can translate
a record a ∈ A to a record of B’s schema. Working only on purely numeric
data, they are able to simply use records from A as input and output values
as the translated record from a neural network. The network effectively trans-
forms incompatible schemas into aligned schemas. This approach can resolve
the schema matching problem for downstream tasks but also does a lot of the
heavy lifting of the record pair comparison by attempting to project records
from A to corresponding records in B.

Compare attribute representations

Nozaki et al. [96] do schema matching by thresholding the cosine distance be-
tween attribute vectors. The attribute vectors are found by first summing up the
pretrained word embeddings for each attribute in each record and then simply
averaging per attribute across all records. Even though it relies on pretrained
word embeddings, the method itself is unsupervised. The distance threshold
was simply found experimentally.

Learn jointly with comparison and classification

While schema matching has traditionally been dealt with as a separate task, as
with the methods above, Nie et al. [94], Brunner and Stockinger [20], and Li
et al. [81] incorporate it as part of their deep learning approach for comparing
and classifying record pairs.

As explained in the previous subsection, Seq2SeqMatcher [94] structure
records as sequences of (attribute, word) tokens, and then solve entity match-
ing as a sequence matching problem. The embedding of such a token is a con-
catenation of a custom embedding for the attribute and a fastText embedding
for the word itself. Notice that no attribute metadata is used. Treating the
input in this way enables the neural network to learn how to compare values
across attributes. Specifically, the authors use a bidirectional attention mecha-
nism between token embeddings from two records, and then use only the max k
attention scores to get the soft-attended representation of a token. Using only
the k largest attention scores, effectively setting the rest to zero, helps the model
compare only relevant tokens and ignore irrelevant tokens.

Brunner and Stockinger [20] preserve no information about the attributes
other than the order (which, of course, may differ across schemas), and simply
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treat a record as a sequence of sub-word tokens. They rely entirely on the power-
ful attention mechanism in the Transformer network to do the schema matching
using positional information provided through the input and whatever insight
and correlation the attribute values provide. Ditto [81], on the other hand, ex-
plicitly incorporate attribute name sub-word tokens in the input sequence, which
gives more information to the Transformer network to perform schema match-
ing. In contrast to Seq2SeqMatcher, Ditto uses the attribute name instead of a
randomly initialized embedding — enabling the network to exploit knowledge
from its language modeling pretraining that the attribute name might signal.

2.4.3 Blocking

Few methods try to use neural networks for blocking, as seen in Table 2.2.
The only two methods, DeepER [39] and AutoBlock [152], embed records into
a high-dimensional metric space and then do nearest neighbor search to filter
down the cartesian product A × B to a candidate pair set C. They both use
cosine distance as a metric, and the networks are implicitly trained to produce
record representations close to each other for matching records and far from
each other for nonmatching records. Finding the nearest neighbors in high-
dimensional spaces is computationally infeasible, so to make it more feasible,
they perform approximate nearest neighbor search. Then there is no guarantee
to find the nearest neighbors, but rather a high probability. Both methods do
this using locality sensitive hashing (LSH) [58], which is a well-studied technique
[136].

The two methods follow the same high-level strategy, but they have some
important differences. The networks themselves that are responsible for building
a good record representation are differentiated in Section 2.4.1. DeepER trains
its network end-to-end with comparison and classification of record pairs. The
record representations are compared using either elementwise subtraction or
multiplication, and then a dense layer performs the classification. AutoBlock,
in comparison, trains specifically for blocking with a custom loss applied directly
to the cosine distance between records. For the actual nearest neighbor pruning,
they use two different LSH methods. DeepER uses hyperplane LSH [21, 60],
a well-studied method that is known to be easy to implement and often fast
in practice. AutoBlock uses cross-polytope LSH [3], which has the benefit of
theoretically optimal query running time while also being efficient in practice.
Both use multiprobing with distance 1.
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2.4.4 Record pair comparison

Central to matching is to assess the similarity of two records, both syntactically
and semantically. The surveyed neural networks will generally produce some
distributed representation at either attribute- or record-level and then compare
the representations. We consider the layers in a network that are responsible
for reducing from representations per record to representations across records
appropriate for classification as record pair comparison layers. Or, to put it
simply, those layers producing the similarity vector S from per-record repre-
sentations. We will look at three central characteristics of how comparison is
performed:

Table 2.5: Overview of how the surveyed methods perform record pair compar-
ison. +Other options were tried, but this was found to be preferential. ∗The
most expressive model (BiLSTM-based) does non-attribute-aligned comparison,
while the simpler averaging model is attribute-aligned.

Method Attribute-
aligned

Distributed
similarity

Attention-based

Kooli et al. [70] No Yes No

DeepMatcher [91] Yes Yes+ Words+

Wolcott et al. [141] No No No

DeepER [39] No∗ Yes No

MPM [43] Yes Both (Partially) words

Kasai et al. [65] Yes Yes No

Seq2SeqMatcher [94] No Yes Words

Hi-EM [153] Yes Yes Characters, words

Brunner and Stockinger [20] No Yes Character N-grams

Ditto [81] No Yes Character N-grams

Attribute-aligned comparison

If one assumes the two data sources A and B to have aligned schemas, one
can compare attributes in a one-to-one fashion. We then say the comparison
is attribute-aligned. The alternative is to perform comparison at record level,
as one will be less dependent on the schemas to be aligned. The second col-
umn in Table 2.5 shows which of the surveyed methods do attribute-aligned
comparison. DeepMatcher [91] and Kasai et al. [65] both compare attributes
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one-to-one before they combine the similarity representation to record level. To
handle cases where non-attribute-aligned comparison is necessary because the
data is dirty and are partially put in wrong attributes, DeepMatcher merges all
attributes to one long string attribute – essentially reducing the problem to a
string matching problem. This is, of course, something most attribute-aligned
methods can do to overcome this restriction, but then the information carried
by the attribute separation is lost. Hi-EM [153] does actually not align the com-
parison of attribute representations, but the attribute representations have been
produced by implicitly comparing characters and words through an attention
mechanism across aligned attributes.

Distributed similarity

When two distributed representations are compared, one can either produce an-
other distributed representation for the similarity of them or reduce the repre-
sentations down to a nondistributed similarity representation – usually a scalar.
The third column in Table 2.5 shows which of the surveyed methods make
distributed similarity representations. As can be seen, the majority of the sur-
veyed methods do. Typical ways of computing these similarities include vector
difference, Hadamard product, or concatenation. The only with nondistributed
similarities, Wolcott et al. [141], use cosine distance to compute the similarity.

Nondistributed similarities have the benefit of reducing complexity and train-
ing time, but at the cost of expressiveness. The increased expressive power of
distributed similarities has to be matched by a classifier able to use it. Mudgal
et al. [91] reported that distributed similarities outperform nondistributed. In
addition, they found vector difference to be significantly better than concatena-
tion when used after representation layers that do not use cross-attention. MPM
[43] stands out since it combines both distributed and nondistributed similarity.
It uses multiple classical similarity measures and two versions of DeepMatcher
[91] in parallel and let the network effectively choose a similarity representation
through a softmax.

Cross-record attention

As we saw in Section 2.4.1, some methods build distributed representations that
are dependent on the record to be compared to through attention mechanisms.
They are essentially peeking at what is to come, which enables them to fo-
cus on what is important for the comparison. The fourth column in Table 2.5
summarizes which methods use cross-attention and at which representation lev-
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els. DeepMatcher [91] uses attention between words across records, while Hi-
EM [153] uses attention between both character- and word-level representations
across records. Both restrict their attention mechanism within each attribute,
since the comparison is attribute-aligned. In contrast, Seq2SeqMatcher [94],
Brunner and Stockinger [20], and Ditto [81], are able to use attention between all
sub-words/words across the compared records. The Transformer networks take
cross-attention all the way by relying almost exclusively on attention through-
out the architecture and not making any distinction between self-attention and
cross-attention.

2.4.5 Classification

Table 2.6: Overview of which neural network layers the surveyed methods use
for classification. ∗The authors emphasize that any machine learning classifier
can be used and do not explicitly favorize a neural network.

Method Classification layers

Pixton and Giraud-Carrier [106]
Two linear layers with custom sparsity pattern, threshold
on ratio of match and mismatch score

Wilson [138] Single perceptron, threshold

Tran et al. [130] MLP, softmax

Gottapu et al. [49] Linear layer, softmax

Reyes-Galaviz et al. [113] Two-layered MLP with custom sparsity pattern, threshold

Kooli et al. [70] MLP, LSTM, or CNN

DeepMatcher [91]
Two-layered MLP with Highway-connections [120], soft-
max

DeepER [39] Single dense layer∗

MPM [43]
Two-layered MLP with Highway-connections [120], soft-
max

Kasai et al. [65]
Two-layered MLP with Highway-connections [120], soft-
max

Seq2SeqMatcher [94] Two-layered MLP, softmax

Hi-EM [153] Single dense layer

Brunner and Stockinger [20] Single dense layer, softmax

Ditto [81] Single dense layer, softmax

Compared to the other steps, there is less variance in how the surveyed
methods perform classification. Generally, they take in a similarity vector S
and do binary classification. Deeming a record pair matching or not. As an
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exception to this approach, Gottapu et al. [49] classify records a ∈ A directly
to a corresponding record b ∈ B, treating matching the problem as a multiclass
classification with |B| classes.

S can be from a separate procedure, like string similarity measures, or up-
stream layers in the same neural network. The first was more common in ear-
lier methods, while the former is common among newer deep learning methods.
Nonetheless, the actual networks or layers used for classification are relatively
similar. Table 2.6 shows how each method’s classification network is built –
either standalone or as the final layers of a larger network. We see that most
are variations of the same theme of MLP with softmax at the end.

2.5 Contributions from deep learning

In the previous section we dissected the use of neural networks in all the surveyed
methods using our process reference model. We now take a step back and
summarize which contributions deep learning provide entity matching. Initially
when neural networks were applied for entity matching, they were used merely
as a classifier over feature vectors, either for schema matching or determining if
pair of records matched or not. In the past few years, following the rise of deep
learning, we have seen not only an increase in the use of neural networks, but
also a broadening of the role they play in the entity matching process.

2.5.1 Learned feature extraction and comparison

Traditionally, as part of the preprocessing in entity matching, it is common to
transform the data through a range of handcrafted procedures to a format more
suitable for comparison. Important features are made more prominent and
accessible to the steps downstream, while less important features are filtered
away. Examples include phonetic encoding, removing punctuation, stemming,
and expanding common domain-specific abbreviations. The problem is that
these procedures are highly dependent on the data sources, and an expert has to
decide which features are essential and how to extract them. Such customization
makes it harder to scale a solution across data sources and use cases.

In contrast, driven by the advances of deep learning for natural language
processing, more recent methods are able to learn feature extraction from less
preprocessed records. As mentioned in Section 2.4.1, embeddings are used as
a powerful gateway to letting neural networks work with text, while hierar-
chical representation learning and sequence models make it possible to make
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semantically rich distributed representations of attribute values and records.
This alleviates the need for much of the ad-hoc handcrafted feature extraction
procedures, leaving mostly standardized feature extraction steps such as simple
tokenization. This is in line with the development in other domains using deep
learning, where deep neural networks have been increasingly able to replace
complex handtuned feature engineering [74]. Of course, it does not replace all
forms of preprocessing when data sources in different formats and of different
origins are to be matched. One might, for example, need to extract records
from some nonstandard XML or JSON format. While current deep learning
methods do not remove the need for such handcrafted ad-hoc preprocessing,
feature extraction can still be a very labor-intensive part of the preprocessing,
and so deep learning has the potential to lighten the manual load drastically.

In addition to feature extraction, a point of significant handcrafted complex-
ity is that of string similarity measures. Traditionally, one would use several
string similarity measures between two records to produce a similarity feature
vector and then use a neural network, some other classification model, or rules
to classify the pair as matching or nonmatching based on this similarity vector.
Doing comparison together with feature extraction in a deep neural network,
we are able to effectively learn how to do comparison of records. The network
will learn to extract features that are suitable for comparing records, either
for static comparison or for downstream layers in the network. In cases where
cross-attention is used, the network is even able to learn to extract features
tailored to be suitable for comparison against a specific record. Compared to
traditional approaches, learning comparison in this way can remove the need for
these complex handcrafted similarity measures. Also, since deep networks can
produce powerful distributed representations, this approach opens up a straight-
forward way to perform semantic comparison. This means one can depend less
on syntactic similarity, which is hard to do with handcrafted methods.

Transfer learning has been a catalyst to being able to train more powerful
deep learning models with fewer labeled examples for the task at hand in both
natural language processing [115] and computer vision (where starting out with
large networks [e.g., 55] pretrained on enormous data sets like ImageNet [31]
is common). Deep learning methods for entity matching have also started to
use such opportunities. Using some of the readily available pretrained word
embeddings is popular, and is used as an efficient way of transfer learning from
large general corpora. Thirumuruganathan et al. [129] outline different ways
to transfer learn between entity matching task using weigted sums of word em-
beddings as distributed record representations. Some methods also use transfer
learning beyond word embeddings and pretrain models specifically for entity
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matching [65, 153]. Furthermore, most recently, we have also seen the use of
large, powerful, general pretrained language models that are fine-tuned to entity
matching [20, 81]. Compare this to traditional methods, which do not typically
incorporate transfer learning. While one can argue that this is to be expected,
since deep learning methods will usually require more training examples, the
use of deep networks makes it possible to realize very powerful transfer learning
scenarios, which are hard to pull off with traditional methods.

2.5.2 Coalescing the entity matching process

Schema
matching Blocking

Data pre-
processing

Data source
A

Data pre-
processing

Data source
B

Record pair
comparison Classi�cation Matches

M

Feature
extraction

Lighter data
preprocessing

Lighter data
preprocessing

Data source
A

Data source
B

Record pair
comparison

Schema matching

Classi�cation Matches
M

Neural network

Blocking index

Figure 2.4: Illustration of the reference model for a deep learning entity match-
ing process (bottom) together with the reference model for the traditional entity
matching process (top) and how they relate to each other.

In Section 2.4, we introduced the reference model of the traditional entity
matching process. To support our discussion, we introduce a reference model for
a deep learning-based entity matching process. Figure 2.4 depicts this reference
model together with the traditional variant while highlighting how steps corre-
spond between them. One should note that none of the surveyed deep learning
methods actually follow this exact process. It is the essence of all the methods
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summed up in one view.
What all surveyed deep learning methods have in common is that they have

fused together feature extraction, record pair comparison, and classification in
a single step as a neural network. The need for data processing as a separate
step still exists, but with less focus on feature extraction. In some ways, this
development comes naturally. The steps are carried out in more or less the same
order, and one can (to a certain degree) distinguish between them in the neural
network architecture. But as we saw in Section 2.4, some methods have also
explored using neural networks for schema matching and blocking.

Nie et al. [94] is the first deep learning method to incorporate schema match-
ing in an end-to-end fashion together with record pair comparison and classifi-
cation. They essentially construct the feature extraction and record pair com-
parison part of the network in such a manner that it is possible to learn schema
matching – reducing the step to a built-in property of the network – in effect,
jointly training a model for both matching schemas and records. Compared
to solving schema matching as a separate task upfront, this has the potential
benefit of being able to adapt how the schemas are matched to how they are
used downstream. Other deep learning methods assume the schema to be the
same for both data sources, but to what degree and how this assumption is
manifested in the method differ (see Section 2.6).

The surveyed methods tackling blocking with deep learning [39, 152] rely
on making a distributed representation of a record with a neural network, and
then finding the candidate pairs with approximate nearest neighbor search. In
other words, the network produces indexable feature vectors, and through the
use of a suitable index, we find similar records in subquadratic time. While it
does not remove the blocking step, it does reduce the core blocking mechanism
to an indexing problem over some standard metric. The network will learn how
to do blocking by learning how to represent similar records close to each other
in the metric space, while the nearest neighbor search will always remain the
same. If one uses the same distributed representations downstream for record
pair comparison, it also serves as a good way to align how blocking and record
pair comparison evaluate similarity. It is not unusual in traditional methods
that these two steps, who both at their core do record comparison, have two
considerably different ways of measuring similarity.

In computer vision and natural language processing, one has traditionally
operated on large, complex, and heavily engineered pipelines. They are often
divided into distinct steps that have been worked on separately. In contrast,
deep learning methods in these fields have evolved to do what previously was
done in several distinct steps in one go with a deep network [e.g., 125, 112],
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making it possible to train on tasks end-to-end. In a similar fashion, we can see
deep learning increasingly reshaping the entity matching process by coalescing
traditional steps. This has at least two immediate benefits. First, it effectively
reduces the number of steps in the process, and second, it makes it possible to
train an increasing part of the process end-to-end. The main enabling factor
is the representation learning in modern deep learning techniques for natural
language processing, which is able to tie all of these together. As we have seen,
powerful feature extraction can remove much of the need for manual feature
engineering in schema matching, blocking, and record pair comparison. When
in addition these steps are able to share the feature extraction and become part
of an end-to-end network covering a large portion of the entity matching process,
it can be translated to a potentially great reduction in complexity when building
entity matching pipelines. Because the complexity of the process lies not only
in the individual steps, but also in the interaction between them. Tuning and
getting multiple heavily engineered steps to work smoothly together can be
difficult.

2.6 Taxonomy of deep neural networks for en-
tity matching

We have seen how neural networks serve different purposes in the entity match-
ing process and vary in how they do so. Deep learning has led to an increase
in the use of neural networks for entity matching in the past few years, making
deep networks the norm. All of these deep learning methods have in common
that they reduce the need for tedious handcrafting of features, but how the net-
works are structured at a high level differs in important ways, which impact their
ability to interact with other steps in the entity matching process. The schema
matching and blocking steps are especially interesting in this regard, since they
have traditionally been solved with specialized methods separate from record
pair comparison and classification. With this in mind, we propose a taxonomy
of deep neural networks for entity matching consisting of four categories. There
is no concrete definition of what constitutes a deep neural network, so for the
purpose of this taxonomy we only consider networks that do feature extraction3

(basically those who are marked for the data preprocessing step in Table 2.2).
The categories are decided by two binary properties that were introduced in

3Note we also exclude Nozaki et al. [96], since the method do not represent a neural network
itself.
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Section 2.4: 1) Whether comparison is attribute-aligned or not, and 2) whether
representations used for comparison are independent or interdependent. Fig-
ure 2.5 shows the taxonomy and which category each surveyed deep neural
network falls into. In addition, it highlights how schema matching and blocking
are related to the categories and which of the methods leverage their neural net-
works to tackle these steps. The two properties do not only reflect the high-level
structural properties of the network, but also the assumptions of the problem
to be solved. To help illustrate the taxonomy, we also show one representative
deep learning network architecture for each category in Figure 2.6.

2.6.1 Attribute-aligned or non-attribute-aligned compar-
ison

If the network is structured in a way that assumes records from the two data
sources to have aligned schemas and constrain record comparison to one-to-one
on attributes, we say it has attribute-aligned comparison. If it does not, we
say it has non-attribute-aligned comparison. Notice that comparison does not
necessarily need to be explicit record pair comparison, but can also be implicit
comparison through, for example, indexing of distributed representations.

Attribute-aligned comparison is a powerful way to incorporate prior knowl-
edge into a method, potentially making training easier and more efficient. At
the same time, it prevents the possibility of performing schema matching. Non-
attribute-aligned comparison does not necessarily imply the method is being
used for schema matching, but that it is in its nature more compatible and
should be easier to adapt to performing it.

2.6.2 Independent or interdependent representation

If the network relies on seeing a pair of records that are to be compared to
produce representations of the records, we say it generates interdependent rep-
resentations. Otherwise, we say it generates independent representations.

Interdependent representations have the benefit of being able to observe
what they are being compared to. Intuitively, it is easier to compare two things
if we can look at both at the same time. If we are only allowed to look at
one thing at a time, then it is harder to know what to focus on. On the
other side, by being dependent on seeing the record to be compared to produce
a representation, one has essentially made it impossible to compare a large
number of records in any subquadratic way. For independent representations,
it is possible to generate a representation of each record once and implicitly
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Figure 2.5: Taxonomy of deep neural networks for entity matching. Split into
four categories along two axes that represent two binary properties. Methods
within the blue and red colored areas are methods that address blocking and
schema matching, respectively.
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compare them through a form of indexing, effectively opening up the possibility
of doing blocking with the representations made from the network.

2.6.3 The four categories

• Rigid encoders are networks that produce independent attribute rep-
resentations and then perform comparison. Even though none of the
surveyed methods do, it is possible to use such independent attribute
representations for blocking purposes.

• Flexible encoders are networks that produce independent record repre-
sentations and then perform comparison. It is possible to perform block-
ing using these independent representations, as shown by DeepER [39] and
AutoBlock [152]. If the representations can be built from records with two
different schemas, one can also effectively perform schema matching, but
none of the current methods do.

• Attribute comparators are networks that use cross-attention only within
the same attribute. They are inherently focused on doing aligned attribute-
to-attribute comparison. DeepMatcher [91] has attribute-to-attribute com-
parison explicitly designed into the network architecture. Hi-EM [153]
takes it a step further by training individual networks per attribute. There
is no easy way to perform blocking or schema matching with such a net-
work architecture.

• Record comparators are networks that use cross-attention at record
level without being constrained by the boundaries of attributes. They
can learn how to compare across attributes, making it possible to over-
come misaligned schemas and even incompatible schemas, depending on
the network structure. Seq2SeqMatcher [94] was the first of the surveyed
method in this category, and it is able to handle incompatible schemas.
Transformer-based networks, which can naturally work as record com-
parators, have later shown to provide state-of-the-art performance [20,
81].
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2.7 Evaluation

2.7.1 Metrics

An entity matching system can be evaluated in several ways. Since it is fun-
damentally a very skewed binary classification problem with few positives com-
pared to negatives, it is natural to use precision/recall measures – popular met-
rics from information retrieval and machine learning classification. And while
precision and recall (as well as accuracy) are sometimes reported, the most
prominent is to report and evaluate the matches using the F1 measure. Of
course, while simple, this metric only measure one aspect of an entity matching
system. Different authors have therefore used additional metrics. Kasai et al.
[65] focus on the important issue of how many training examples a model needs,
and measure F1 for different amounts of provided training examples. Focused
on scalability, Wolcott et al. [141] report wall-clock running time for different
sizes of the data sources.

It is also possible to evaluate intermediate steps in isolation in addition to the
end-to-end result. Some methods specifically target blocking, and so specifically
measure the outcome of that step. One could evaluate blocking the same way
as the end result, using F1. But remember that for blocking we are mainly
interesting in getting high recall, and less interesting in precision as long as the
number of candidate pairs |C| is sufficiently lower than the size of the Cartesian
product |A×B|. So the surveyed methods report both recall and some variant of
reduction ratio from data sources to candidate set. Ebraheem et al. [39] report

RR = |C|
|A×B| , while Zhang et al. [152] report P/E = |C|

|A| .

2.7.2 Datasets

The early approaches to entity matching were mostly concerned with matching
personal records (census data or medical records). Such datasets are usually
not publicly available due to privacy concerns. Today, methods are evaluated
on data from different domains. A substantial of amount of reported results are
from closed datasets, but we’re seeing increasingly more open datasets being
used. Some of the most popular open datasets include domains such as publica-
tions, restaurants, products, songs, and companies [29, 37, 71]. See Table 2.7 for
an overview of the most popular public datasets among the surveyed methods.
In order to test certain scenarios, some authors also artificially construct new
datasets based on existing ones, either by reducing the data quality [e.g., 91] or
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constructing new records [e.g., 59].

Table 2.7: Overview of public datasets that have been used by at least two of
the surveyed publications. # Records lists the number of records in each data
source, # Matches denotes the number of matches between them, and # Pos
/ # Candidates denotes the number of positive examples among all the record
pair candidates in an agreed-upon subset of the potential matches. The latter
is used when blocking is not part of the experiment.

Dataset Domain # Records # Attributes # Matches
# Pos /

# Candidates

Abt-Buy [71, 29] Product 1081 - 1092 3 1096 1028/9575
Amazon-Google [71, 29] Software 1363 - 3226 3 1300 1167/11460
Beer [29] Beer 3274 - 4345 4 68/450
DBLP-ACM [71, 29] Citation 2616 - 2294 4 2224 2220/12363
DBLP-Scholar [71, 29] Citation 2616 - 64263 4 5347 5347/28707
Fodors-Zagats [37, 29] Restaurant 533 - 331 6 112 110/946
iTunes-Amazon [29] Music 4875 - 5619 8 132/539
Walmart-Amazon [29] Electronics 2554 - 22074 5 1154 962/10242

2.7.3 Experimental results

Comparing surveyed methods

It has historically been hard to directly compare reported experimental results.
Either because they do not target and measure the same aspect of the entity
matching process, do not use the same data, or do not evaluate in the same
way. For example, several methods have been evaluated on some of the same
datasets but used completely different train-test splits (both the actual selection
and train-test ratio). There is a general lack of widespread and agreed upon
benchmarks that would make comparison across many methods straightforward
— like we have seen in core computer vision and NLP tasks. To a large degree,
on has relied on authors to reimplement and run other methods within their
own evaluation setup. So for the majority of the surveyed methods, we can not
make any comparison using reported experimental data.

It is, however, possible to partially compare some of the more recent meth-
ods. Figure 2.7 shows which surveyed methods that have experimental results
that let you compare it to other methods. Mainly due to the adaptation of
some of the experiments done by Mudgal et al. [91] as a benchmark, but also
due to authors of a method running new experiments on earlier methods in their
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evaluation setup. The Mudgal et al. [91] benchmark let us compare (at least par-
tially) several methods at once. Table 2.8 presents an overview of all available
experimental results on those specific benchmark experiments. We observe that
the Transformer-based networks, especially Ditto [81], seems to be the current
state-of-the-art. Ditto does use some domain-specific optimizations, but the au-
thors report strong results for a baseline without those optimizations. Note that
this benchmark only addresses certain aspects of the entity matching process.
Comparable results for aspects such as training time, prediction latency, and
label efficiency can not be collected in the same way for several methods — even
though some results and comparison between pairs of surveyed methods have
been reported. And neural methods addressing blocking, using active learning,
or using transfer learning are not in a state where any significant overview can
be provided.

DeepMatcher [91]

DeepER [39]

Kasai et al. [65]

Seq2SeqMatcher [94]

AutoBlock [96]Hi-EM [153]

Brunner and Stocking* [20]

Ditto [81]

MPM [43]

Mudgal et al. [91] benchmark

SEMINT [79, 80]
SMDD [149]
Nin and Torra [95]
Pixton and Giraud-Carrier [106]
Wilson [138]
Tran et al. [130]
NNSM [151]
Gottapu et al. [49]
Reyes-Galaviz et al. [113]
Kooli et al. [70]
Wolcott et al. [141]
Nozaki et al. [96]

Figure 2.7: Overview of which of the surveyed methods has been compared ex-
perimentally to each other and which have at least partially been subject to the
same benchmarks. Arrows indicate that the method at the head was compared
to the method at the tail in the latter’s publication. Note that they are not nec-
essarily transitive, and they do not all test the same task (i.e., some compare
blocking, others only matching after blocking). The blue area is methods that
have been tested on at least a subset of the public benchmark from Mudgal
et al. [91]. ∗As pointed out by Li et al. [81], the authors do model selection
using the test set — effectively leaking from the test set and making the results
slightly unfit for comparison with others.
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Table 2.8: Overview of reported results from the surveyed methods on the
public part of the benchmark from Mudgal et al. [91]. We have also included
reported results [91] from Magellan (MG) as a state-of-the-art classical non-
neural method. All experiments use the post-blocking record pair candidates
described in Table 2.7. The structured versions are the unaltered datasets where
attributes are aligned, while in the dirty variant other attributes are moved to
the title attribute with a 50% probability. For the textual dataset, Abt-Buy,
all attributes are long textual descriptions. +We only report the Hybrid model,
which is generally considered the strongest. †The results from Ebraheem et
al. [39] are not comparable to the others due to different setup, so reproduced
results from [81] are used instead. Note that those results do not involve the
blocking method from [39]. ∗Not entirely fit for comparison since the authors
do model selection using the test set.

Dataset MG [69] DM+ [91] DeepER† [39] MPM [43] Kasai [65] S2SM [94] B&S∗ [20] Ditto [81]

Structured
Amazon-Google 49.1 69.3 56.08 70.7 75.58
Beer 78.8 72.7 50.00 94.37
DBLP-ACM 98.4 98.4 97.63 98.45 98.9 98.99
DBLP-Scholar 92.3 94.7 90.82 92.94 95.3 95.60
Fodors-Zagats 100.0 100 97.67 100.0
iTunes-Amazon 91.2 88.0 72.46 97.06
Walmart-Amazon 71.9 66.9 50.62 73.6 78.2 86.76

Dirty
DBLP-ACM 91.9 98.1 89.62 98.4 98.9 99.03
DBLP-Scholar 82.5 93.8 86.07 94.1 95.6 95.75
iTunes-Amazon 46.8 74.5 67.80 94.2 95.65
Walmart-Amazon 37.4 46.0 36.44 68.3 85.5 85.69

Textual
Abt-Buy 43.6 62.8 42.99 90.9 89.33

Deep learning vs. traditional methods

Several of the surveyed methods have evaluated deep learning approaches against
more traditional approaches [152, 94, 65, 141, 70, 91, 39, 43, 20]. The results are
generally promising for deep learning approaches, but traditional methods are
often competitive. Most methods compare themselves to Magellan [69], which is
considered a state-of-the-art traditional entity matching system, using F1 scores.
Mudgal et al. [91] report that DeepMatcher mostly outperforms Magellan with
a few exceptions (see parts of the result in Table 2.8). The relative strength of
DeepMatcher to the traditional method increases as the data quality decreases,
and the same is reported about Seq2SeqMatcher [94]. AutoBlock [152] is found
to be especially strong against traditional blocking techniques for dirty data.
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This may suggest that deep learning approaches’ strength is most clearly seen
when the data is noisy and heterogeneous.

Kasai et al. [65] investigate the use of transfer learning and active learning for
their deep learning model. They find Magellan to significantly outperform their
model when given few labeled training examples, but they were able to make it
substantially more competitive using transfer learning and active learning. The
model still performs favorably in comparison to the traditional methods when
given enough examples.

2.8 Future research

In Section 2.5, we saw which contributions deep learning have made to entity
matching. We will now take a look at both the challenges and opportunities
for deep neural networks in entity matching, both of which represent potential
directions for future research.

2.8.1 Challenges

Explainability and ease of debugging

Entity matching, being a central data integration task, is constructing data
models that are consumed by people or machines for downstream tasks. For
many applications, it is crucial to trust the data source, and being able to
understand why something does not work is key. Unfortunately, deep learning
models are notoriously hard to interpret. As steps in the entity matching process
increasingly coalesce into a large neural network, as illustrated in Figure 2.4, we
get fewer checkpoints along the way in the process that can easily be inspected.
We cannot see the output from each step in the same way anymore. Therefore,
figuring out why two records where matched or not matched is usually nontrivial.
There are a few techniques that are already used, such as looking at alignment
scores, but we are still far away from a comprehensive way of debugging neural
networks for entity matching.

Running time in interactive settings

Human interaction is considered an important factor in entity matching [35].
Users cannot generally be expected to wait for very long when they are supposed
to do interactive work, limiting the potential applications of deep learning for
entity matching in interactive settings, since the running time for both training
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and prediction is high – especially compared to cleverly engineered traditional
pipelines with good blocking.

Number of training examples

As more steps in the entity matching process are addressed by deep learning-
based techniques, the more different steps rely on more training data. Deep
learning models are hungry for training examples, and there is not always an
abundance of them readily available. Even while the use of deep learning can
potentially reduce the need for manual labor in the form of feature engineering,
it might still be necessary to do expensive manual labeling. While transfer
learning and active learning could help, there are not any pretrained entity
matching models publicly available to train from.

2.8.2 Opportunities

End-to-end approach with schema matching and blocking

As we have seen, deep neural networks are increasingly able to take over steps
in the entity matching process. But we have still not seen a method doing
both schema matching and blocking together with record pair comparison and
classification in an end-to-end solution with a neural network – in other words,
an approach that implements the whole deep learning entity matching reference
model in Figure 2.4. The network would presumably be a flexible encoder,
belonging in the upper-right corner of our taxonomy. It would have independent
representations to make efficient blocking possible and non-attribute-aligned
comparison to make schema matching possible. This could be an important
step toward tackling the entity matching problem in a streamlined end-to-end
fashion.

More open datasets

One of the fundamental challenges when trying to develop an entity matching
methods that will work across many datasets is the huge variation between do-
mains and data sources. While several open datasets are available, we would
like to see significantly more. It is especially important to increase the diversity
of the domains represented. For example, many datasets are related to either
research publications or consumer-focused products/services – there are no in-
dustrial datasets. This would not only enable more complete evaluations, but
also provide data suitable for transfer learning.
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Standardized benchmarks

It is not always easy to compare the different methods since they do not neces-
sarily evaluate on the same data in the same way. We have seen how standard
open datasets with corresponding standard evaluation metrics have been a cat-
alyst for advances in machine learning for fields such as computer vision [116],
recommender systems [15] and natural language processing [17]. We think there
is great potential in similar agreed-upon benchmarks for entity matching. This
need not only be restricted to traditional precision/recall measures for the re-
sulting matches. It would also be of interest to standardize the evaluation of
blocking techniques, transfer learning techniques, active learning techniques,
and computational performance and efficiency.

Publicly available pretrained models

While there has been work on transfer learning [65, 153, 20, 81], there are no
pretrained models publicly available specifically for entity matching. Having
pretrained models to fine-tune could potentially speed up training and reduce
the amount of necessary training examples. This is challenging, because, as
mentioned above, there is a huge variation across domains and data sources.
Each data source is different. Building pretrained models that can be fine-tuned
for a broad number of data sets and making them publicly available would be
of huge benefit to the field. This would, of course, benefit from the previous
point about more open datasets.

An interesting approach for those networks with attribute-aligned compari-
son, explored by Zhao and He [153], is to have pretrained models for different
types of attributes (e.g., name, addresses, organization) in addition to generic
ones. Then one can mix and match models for each attribute one is about to
match. This, of course, only works for aligned schemas. It can be even more
interesting to look at networks with non-attribute-aligned comparison for such
pretrained models, since they can potentially offer pretrained schema matching,
which will be crucial to handle the large variety of data source schemas out
there. For this, Transformer-based networks have considerable potential since
they are already built on top of heavily pretrained language models.

Pretrained models can belong to any of the four categories of our taxonomy.
Nonetheless, we find pretrained flexible encoders that can support both block-
ing and schema matching to be the most significant opportunity. Specifically,
because it would enable transfer learning jointly on the largest possible portion
of the entity matching process.
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2.9 Conclusion

We have seen how existing work has used neural networks in entity matching.
By using a reference model of the traditional entity matching process, we have
shown how the surveyed methods address different steps of the process and
which techniques have been used at each step.

More recently, approaches based on deep learning techniques for natural lan-
guage processing have emerged. We looked at what such deep learning methods
contribute to the entity matching task. The central contribution is powerful hi-
erarchical representation learning from text. As we have seen, this can alleviate
most of the handcrafted feature engineering necessary in the data preprocess-
ing, which can ease the burden of manually tailored procedures in downstream
steps such as record pair comparison. Furthermore, it is a driver in increasingly
coalescing steps of the entity matching process into end-to-end neural networks
performing several steps in one go, effectively reducing the number of steps and
enabling end-to-end training. To give a clear view of how the entity matching
process changes with such an increasingly coalesced deep learning approach, we
propose a reference model for entity matching processes using deep learning.

To differentiate the deep neural networks used in the surveyed methods, we
introduced a taxonomy of deep neural networks for entity matching. It focuses
on two properties that are important in regard to how easy it is to support
schema matching and blocking.

Lastly, we looked at potential directions for future research by discussing
challenges and opportunities. The challenges being explainability, running time
in interactive settings, and the large need for training examples, while for op-
portunities we think it would be interesting to develop a complete end-to-end
approach with both schema matching and blocking, exploring a new part of
the deep neural network taxonomy. We also see a lot of potential in trying to
develop more open datasets, standardized benchmarks, and publicly available
pretrained models for entity matching — which have been important for other
fields.
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State-of-the-art entity matching (EM) methods are hard to interpret, and
there is significant value in bringing explainable AI to EM. Unfortunately,
most popular explainability methods do not work well out of the box for
EM and need adaptation. In this paper, we identify three challenges of
applying local post hoc feature attribution methods to entity matching:
cross-record interaction effects, non-match explanations, and variation
in sensitivity. We propose our novel model-agnostic and schema-flexible
method LEMON that addresses all three challenges by (i) producing dual
explanations to avoid cross-record interaction effects, (ii) introducing the
novel concept of attribution potential to explain how two records could
have matched, and (iii) automatically choosing explanation granularity to
match the sensitivity of the matcher and record pair in question. Experi-
ments on public datasets demonstrate that the proposed method is more
faithful to the matcher and does a better job of helping users understand
the decision boundary of the matcher than previous work. Furthermore,
user studies show that the rate at which human subjects can construct
counterfactual examples after seeing an explanation from our proposed
method increases from 54% to 64% for matches and from 15% to 49%
for non-matches compared to explanations from a standard adaptation
of LIME.

3.1 Introduction

Entity matching is an essential task in data integration [34]. It is the task of
identifying which records refer to the same real-world entity. Figure 3.1 shows an
example. Machine learning has become a standard tool to tackle the variety of
data and to avoid laborsome feature engineering from experts while still achiev-
ing high accuracy (e.g., [69, 91, 81]). Unfortunately, this is often at the cost of
reduced transparency and interpretability. While it is possible to carefully se-
lect classical machine learning methods that are intrinsically interpretable and
combine them with classical string similarity metrics, current state-of-the-art
consists of large deep learning models [20, 39, 81, 91], which offer limited in-
terpretability out of the box. The possible benefits of being able to explain
black-box models are numerous. To mention some: 1) Researchers can gain
new insight into their models and find ways to improve them 2) Practitioners
will have a valuable tool for verifying that the models work as expected and de-
bugging those which do not 3) Companies can gain the necessary transparency
they need to trust such black-boxes for mission-critical data integration efforts
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4) End-users can be reassured that models and their results can be trusted, or
discover themselves that they should not be.

The challenge of explaining machine learning models and their potential ben-
efits is not unique to entity matching. Therefore, explainable machine learning
has in recent years received significant attention from the broader research com-
munity [1, 45, 53]. The result is a multitude of techniques and methods with
different strengths and weaknesses. But as previous work has discussed, apply-
ing these techniques to entity matching is non-trivial. It is necessary to adapt
and evolve them to tackle the unique characteristics of entity matching [33, 38,
128].

title belkin shield micra for ipod
touch tint

category mp3 accessories

brand belkin

modelno f8z646ttc01

price 47.88

title belkin ipod touch shield micra
tint-royal purple

category cases

brand belkin

modelno f8z646ttc02

price 12.49

Figure 3.1: Example of two records that need to be classified as either a match
or a non-match from the Walmart-Amazon dataset. In this case, the records
refer to almost the same product — the only definitive difference being the color.

Local post hoc feature attribution methods are perhaps the most popular
type of explainability method in general, and the most studied so far for entity
matching [38, 128, 33, 7]. Previous work on explainable entity matching base
their work on LIME [114] — one of the most popular methods of that type. In
this paper, we choose to focus mainly on LIME to be consistent with, and for
ease of comparison to, earlier work. Our work is relevant beyond LIME, and we
will reference and include other methods in our experiments, but we consider
in-depth adaptation and treatment of other methods outside of the scope of this
paper and hope to address them in future work.

Challenges. Unfortunately, standard local post hoc attribution methods do
not work satisfactorily for entity matching out of the box. We identify three
challenges of applying them:

1. Cross-record interaction effects: Since EM is a matching problem,
features across a record pair will tend to have strong interaction effects, but
linear surrogate models such as in LIME implicitly assume independent
features. This can severely impair the accuracy of the surrogate model.
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2. Non-match explanations: In essence, most feature attribution methods
analyze the effect of removing features to determine their attribution.
However, for record pairs for which the matcher is fairly confident that
they do not match, so the match score is close to zero, it is unlikely that
removal of features will make any significant difference on the match score.
The result is that we have no significant attributions to explain why the
records do not match. This is especially important since most record pairs
do not match.

3. Variation in sensitivity: While some record pairs may only need to
perturb a few features to trigger a significant change in the output of the
matcher, others may contain a lot of redundant features, making it hard to
substantially impact the matching score and provide meaningfully sized
attributions. It can be hard to make the trade-off between token and
attribute level feature granularity. One risk being either too fine-grained
or unnecessarily course-grained, and it differs between specific record pairs
in the same dataset, across datasets, and across matchers.

As we will outline in Section 3.2, earlier work has only partially addressed these
challenges.

Proposed method. Our proposed method addresses all three challenges jointly
by: 1) Using dual explanations to avoid cross-record interaction effects. 2) In-
troducing the novel concept of attribution potential, an improvement over the
copy/append perturbation from previous work that is schema-flexible and more
robust to dirty data and matchers sensitive to the order of tokens. 3) Choosing
an interpretable representation granularity that optimizes the trade-off between
counterfactual interpretation and the finest granularity possible. Our proposed
method provides one unified frame of interpretation with the same single expla-
nation format for all record pairs, has no dataset-specific hyperparameters that
need tinkering, and does not require matched schemas. Source code is publicly
available1.

Evaluation of explainability methods is still an open problem, and there are
no standard ways of evaluating explainable entity matching. Ideally, in broad
terms, we would like to measure to what degree an explanation helps users
understand how the model makes a matching decision. Inspired by the motiva-
tions behind counterfactual examples [134], we argue that a useful attribution
explanation should help the user understand where the decision boundary is and
what kind of difference in input would be necessary to sway the matcher. To

1https://github.com/NilsBarlaug/lemon
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that end, we propose to ask users what they think would be a minimal change
to a record pair to make the matcher change its prediction and then check if
they are correct. We show how this can be done for simulated users as well as
human subjects.

Finally, our results show that our proposed method is state-of-the-art, both
in terms of faithfulness and helping users understand the matcher’s behavior —
though at the cost of higher runtime. Additionally, our user study shows great
potential for real-world improvement in understanding by human subjects.

Contributions. In summary, our main contributions are:

• We propose a method that addresses three important challenges of apply-
ing local post hoc attribution methods to entity matching: 1) Cross-record
interaction effects, 2) non-match explanation, and 3) variation in sensitiv-
ity. We show through experiments that this is indeed effective.

• To evaluate entity matching attribution explanations, we propose a novel
evaluation method that aims to measure to what degree explanations help
users understand the decision boundary of a matcher. We show how to
perform experiments on both simulated users and human subjects.

• Through extensive experiments on public datasets we show that our pro-
posed method is state-of-the-art both in terms of faithfulness and helping
users understand the matcher’s behavior. We verify the real-world appli-
cability of our proposed method by performing an extensive user study.
To the best of our knowledge, we are the first to conduct a user study for
explainable entity matching.

Outline The rest of the paper is organized as follows. Section 2 briefly covers
related work, Section 3 covers LIME and its adaptation to entity matching,
and Section 4 goes into the details of our proposed method. We explain our
experimental setup in Section 5, and then we walk through and discuss the
experiments in Section 6 before we make our concluding remarks in Section 7.

3.2 Related work

Machine learning for EM. The immense variety in datasets makes machine learn-
ing a natural solution for entity matching. The traditional approach has been
to handcraft string similarity metrics to produce similarity feature vectors and
then utilize a classical off-the-shelf machine learning model such as SVM or
random forest to classify them [25, 40, 69]. The two main drawbacks of this
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approach are the necessary manual tinkering and poor performance on dirty
data [91]. However, in the last few years, the research community has increas-
ingly adopted deep learning [91, 39, 94, 153, 20, 81]. While early work focused
on custom architectures and trained models from scratch, the current state of
the art focuses on fine-tuning large natural language models such as BERT [32],
which offers higher accuracy and decreases the need for training examples [81].
We refer to [11] for an extensive survey on deep learning for EM.

Explainable AI. There are many ways to explain machine learning models.
Generally, explanations can be either global or local [36], in other words, ex-
plaining the model’s behavior as a whole or explaining a single prediction. Fur-
thermore, we often distinguish between intrinsically interpretable models and
post hoc interpretation methods [90] (which can be model-agnostic or not). The
former are models that are interpretable on their own, like linear regression or
decision trees, while the latter are methods for explaining black-box models. We
refer the reader to one of many extensive sources on the topic [1, 36, 45, 53, 90].

A particularly prominent group of approaches are local post hoc attribution
methods (e.g., [114, 86, 124]), which aim to explain a prediction by communi-
cating to what degree different parts of the input are to be attributed for the
prediction. LIME [114] is one of the most prominent among such methods. It
is a model-agnostic method, and works by randomly removing features of an
input example and training a (usually linear) interpretable surrogate model to
predict the model’s output for these perturbations. Among other popular lo-
cal post hoc attribution methods are the game-theoretic-based SHAP [86] and
gradient-based methods (e.g., [124]).

Explainable EM. The use of explainability techniques for machine learning-
based entity matching is still a young subject, and there has only been a limited
amount of previous work. However, we note that rule-based methods have
historically been used to make systems that can be interpreted by experts [40],
and they represent an alternative way to make explainable matchers [108].

The authors in [38] demonstrate ExplainER, a tool for exploring explainable
entity matching that provides multiple prominent explainability techniques such
as LIME and association rules, while [128] discuss challenges and research op-
portunities. Further, there have been two significant adaptations of LIME for
entity matching, which we will now describe and contrast to our work.

Mojito [33] introduces two versions of LIME for entity matching: LIME DROP
and LIME COPY. The former is a straightforward application of LIME simi-
lar to how the original authors do text classification using token level feature
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granularity2, while in the latter they use attribute level representation and per-
turb by copying the entire attribute value to the corresponding attribute in the
other record instead of removing tokens. LIME COPY is an elegant way to
address challenge (2), but leaves more to be wanted. Firstly, attribute level
granularity is too coarse-grained for most cases with longer textual attributes
(the extreme case being a single textual attribute). Secondly, since it is sepa-
rate from LIME DROP, it requires the user to interpret two different kinds of
explanations. Finally, it relies on a matched schema with one-to-one attribute
correspondence.

Recently, Landmark [7] was proposed as a two-part improvement over Mo-
jito. Firstly, it makes two explanations, one per record, and avoids perturbing
both records simultaneously, which effectively solves challenge (1). Secondly, for
record pairs labeled as non-matches, instead of perturbing by randomly copy-
ing entire attributes, it appends every corresponding attribute value from the
other record and performs regular token level exclusion perturbation (a tech-
nique named double-entity generation), effectively combining LIME DROP and
LIME COPY. The authors demonstrate through experiments that their tech-
niques are indeed effective and that Landmark is a substantial improvement over
Mojito. One limitation of the approach is that tokens from the other record are
only ever considered to be appended at the end of the corresponding attribute.
This is unfortunate if the matcher is sensitive to the order of tokens (e.g., many
products have the brand name first in the title), the schemas are not matched
one-to-one, or the data is dirty. Similar to Mojito, Landmark also makes two
different kinds of explanations.

While making important contributions, neither Mojito nor Landmark ad-
dresses all three challenges identified in Section 3.1. Only Landmark tackles
challenge (1). Both propose a solution to challenge (2), but with important
limitations, as we discussed above. Neither addresses challenge (3). Moreover,
they do not provide a unified and coherent way of actually communicating or
visualizing an explanation to the end-user in the same way the original authors
of LIME do — something we aim to do.

3.3 Preliminaries

In this section, we first present the problem definition and then introduce LIME
and describe how it can be adapted for entity matching.

2Tokens are typically words or singular values, and can be assumed to be for datasets and
experiments in this paper, but does not necessarily have to be for the described methods.
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3.3.1 Problem Definition

Entity Matching. Let A and B be two data sources. A data source is a collection
of records following the same schema (they all have the same attributes), and a
record r = {(αj , vj)}j is an ordered set of attribute name-value pairs. The goal
of entity matching is to find all pairs (a, b) ∈ A×B such that a and b refers to
the same real-world entity. We call such pairs matches and all other pairs for
non-matches. Since there is a quadratic number of pairs O(|A||B|), inspecting
all pairs in A×B is usually infeasible. Therefore, one will normally first perform
a recall-focused step called blocking [100] to produce a set of candidates C ⊆
A × B such that |C| ≪ |A × B| while still containing most matches with high
probability. Then we classify every (a, b) ∈ C as either match or non-match. In
this paper, we focus on the record pair classification part of entity matching.
Therefore, for our purposes, entity matching is a binary classification problem
deciding whether a pair of records (a, b) refer to the same real-world entity or
not (match or non-match).

Local Post Hoc Attribution for Entity Matching. The goal of a local post
hoc attribution explainability method for entity matching is to explain a single
prediction of a record pair classification from an arbitrary matcher by communi-
cating the significance (in some shape or form) of the different parts of the two
records to the user. Formally, let a matcher be a classifier f(x) : A×B → R
that accepts a record pair x = (a, b) such that a ∈ A ∧ b ∈ B and outputs a
prediction score between 0 and 1. Note that f is not restricted to supervised
machine learning models but can be any procedure capable of classifying record
pairs with a confidence score. A local post hoc attribution explainability method
for entity matching provide two things. First, it provides a procedure λ(f, x)
that accepts a matcher f and a record pair x and outputs an explanation ex.
Secondly, it provides a framework of interpretation for the explanations. An
explanation ex attributes different parts of x to the prediction score y = f(x)
using real-valued attribution scores, and the explanation is communicated to
the user either through numbers directly or some visualization (see for example
[114]). How the attribution scores are to be interpreted and how it should be
communicated to the user is up the method.

As stated in Section 3.1, evaluation of explainability methods is still an
open problem and there are no standards for how to do it in entity matching.
Therefore, as part of our contribution we propose ways to do this for attribution
methods. We refer the reader to Section 3.6 for more on this.
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3.3.2 LIME

Fit weighted linear
regression model

Sample
perturbations

Interpretable
components

Make
explanation

Figure 3.2: Illustration of LIME [114] for a binary classification problem. The
main steps are: 1) Split the input x into interpretable components. 2) Sample
neighbors z′i of the interpretable representation x

′ ∈ Ix. 3) Convert each z
′
i to a

corresponding input domain representation z = tx(z
′
i) and run inference to get

yi = f(tx(z
′
i)). 4) Fit a weighted linear regression model on the neighborhood

dataset Zx to get ξ(x) — essentially the regression coefficients β̂. 5) Present β̂
in a user-friendly way relating them to the interpretable components.

The main idea of LIME [114] is to locally approximate a classifier around
one instance with an interpretable model over an interpretable representation in
a way that balances faithfulness and complexity, and then use the interpretable
model as an explanation. The intuition is that while our problem is too complex
for classical machine learning models that we regard as inherently interpretable
(e.g., linear regression or decision trees) to be accurate enough, it might be
possible to faithfully approximate the decision boundary for a black-box model
locally around one input instance. In other words, the authors train an in-
terpretable surrogate model using local data points sampled by perturbing an
input instance and use it as an explanation of that particular instance. And
while the input features of a black-box model might be unsuited for human in-
terpretation (e.g., deep learning embeddings or convoluted string metrics), they
define an alternative interpretable representation for the input instance we want
to explain and use that to train the interpretable surrogate model.

Formally, let f(x) : A×B → R be the matcher we want to explain. Further-
more, for a single instance x = (a, b) that we want to explain, let Ix = {0, 1}dx
be the interpretable domain and x′ ∈ Ix the interpretable representation of x.
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Its elements represent the presence (or absence) of what is called interpretable
components in [114], essentially non-overlapping parts of the input. E.g., for
text, it could be the presence of different words. For each x there must exist
a function tx(x

′) : I → A×B that can translate an interpretable representation
to the input domain of the classifier f .

With the goal of approximating f local to x, the authors sample a new
dataset Zx = {(z′, y) ∈ I × R} where y = f(tx(z

′)). Each z′ is drawn by setting
a uniformly random-sized subset of x′ to zero. Let G be a class of interpretable
models over Ix. Furthermore, let L(f, g, πx) be how unfaithful g ∈ G is to f in
the neighborhood defined by the distance kernel πx(z

′). They want to find a
g ∈ G that is as faithful to f as possible, but since many interpretable models
can be made more accurate by increasing the complexity, they need to balance
the faithfulness with model complexity so g is simple enough to actually be
interpretable for humans. To that end, let Ω(g) be a measure of complexity for
g, and choose the following explanation for x:

ξ(x) = argmin
g∈G

[
L(f, g, πx) + Ω(g)

]
(3.1)

In their work, the authors only present one concrete instance of their general
framework3. They chose G to be weighted sparse linear regression models and
L to be mean squared error weighted by πx on Zx. Furthermore, Ω(g) is chosen
to be the number of non-zero coefficients of g, and the trade-off between L and
Ω is simplified by constraining Ω(g) to not be greater than a constant K known
to be low enough. It is now simply a matter of fitting a regularized weighted
least squares linear regression model on Zx. For a simplified overview of the
whole process see Figure 3.2.

3.3.3 LIME for Entity Matching

Before we describe our proposed method in the next section, we will now go
through the design decisions done within the LIME framework. A setup we
then build upon and use as a baseline for our proposed method.

Let a record r = {(αj , vj)} be an ordered set of pairs with attribute name and
value. Inspired by how [114] apply LIME for text classification, we define the
interpretable representation Ix to be the absence of unique tokens in attribute

3We will, as is common in the literature, refer to both the general framework and the
described concrete instance as LIME interchangeably.
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names and values for both records in x = (a, b) (i.e., tx(0) = x)4. Attribute
values that are not strings are treated as single tokens, and their absence is their
null/zero value.

x

a b

Name iPhone Pro 13

Description Apple iPhone 13
Pro Blue 128GB

Price 999

Title Apple iPhone 13

Spec 128 5G $799

x′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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z′ 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

tx

z
Name iPhone 13

Description Apple iPhone 13
Blue 128GB

999

Title Apple iPhone 13

Spec 128 5G

Figure 3.3: Example record pair x, its corresponding interpretable representa-
tion x′ in LIME, and an example of a perturbed sample.

Example 1 Figure 3.3 shows an example record pair x and its corresponding
interpretable representation x′. In this example, the records are product de-
scriptions of two similar (but different) phones. The record a refers to a “pro”
version of the phone referred to by b. Furthermore, it is uncertain whether the
phones have the same color since b does not specify its color while a is blue.
The figure also shows an example of a perturbed interpretable representation z′

and how it is translated with tx into a perturbed record pair z. The token Pro

(among others) is removed from record a and it is more likely that a reasonable
matcher will consider the record pair z a better match then x.

4The reader might also note that the choice of 0/1 semantics are flipped compared to the
authors in [114] (see Section 3.3.2). This is simply to be more conceptually similar to our
proposed method and is not critical to the approach.
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We sample Zx by setting random subsets of x′ to one, where the size of
the subsets are sampled uniformly from the interval [0, Dmax], and we use the
neighborhood distance kernel

πx(z
′) = exp(−2

D(x′, z′)
Dmax

) (3.2)

where D is the Hamming distance. While the original authors simply used
Dmax = dx for text classification, we empirically find this neighborhood too
large due to entity matching generally being more sensitive to single tokens
compared to standard text classification. This could, of course, be accounted for
by narrowing πx, but it is more sample efficient to also reduce the neighborhood
we are sampling from. We use Dmax = max(5, ⌊dx

5 ⌋), and let the number of
samples |Zx| be max(500,min(30dx, 3000)). From our experience, the results
are not sensitive to these parameters.

Finally, we let G be the set of weighted regression models without intercept.
The loss then being

L(f, g, πx) =
∑

(z′,y)∈Zx
πx(z

′)(y − g(z′))2 (3.3)

ξ(x) is found using weighted least squares and forward selection (choosing K
coefficients).

3.4 Method

We now describe how we address the three challenges described in Section 3.1
with three distinct, but coherent, techniques that together form our proposed
method: Local explanations for Entities that Match Or Not (LEMON). As dis-
cussed earlier, we use LIME as the basis for our method, but the proposed
ideas have wider applicability. The three following subsections respectively ad-
dress and propose a solution to the three challenges (1) cross-record interaction
effects, (2) non-match explanations, and (3) variation in sensitivity.

3.4.1 Dual Explanations

One shortcoming of LIME, when applied directly to entity matching, is that it
does not take into account the inherent duality of the matching. No distinction is
made between the two input records. This is problematic because our surrogate
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linear regression model assumes independent features, but perturbations across
two input records will naturally have strong interaction effects. In essence, the
surrogate model g cannot sufficiently capture the behaviour of our matcher f
even for small neighborhoods, which severely hurts the approximation accuracy.

The proposed solution is relatively straightforward but still effective. Equiv-
alently to [7], we make two explanations, one for each record. We call such a
pair (eax, e

b
x) of complementary explanations for dual explanations. For each ex-

planation, we let Ix represent only the absence of tokens in one record. In effect,
we approximate attributions from only one record at a time while keeping the
other constant. That way, we avoid the strong interaction effects across them.
Intuitively, we explain why record a matches b or not and why record b matches
a or not, separately. The two explanations can still be presented together as
one joint explanation to the user.

3.4.2 Attribution Potential

Attribution methods such as the LIME implementation described above tell us
which part of the input is the most influential. This is usually achieved using
some kind of exclusion analysis where one looks at the difference between the
absence and presence of input features (e.g., [114, 124, 86]). While that might
be an effective approach for many machine learning problems, it is inherently
unsuited for entity matching. The issue lies in explaining non-matches. Record
pairs that a matcher classifies as a match can be explained subtractively because
removing or zeroing out essential parts of the records will result in lower match-
ing scores from most well-behaved matchers. But for record pairs where the
matcher is convinced they do not match and provide a near-zero match score,
it is unlikely that removal or zeroing out any part of the records will make a
significant difference on the match score. For example, in the record pair from
Example 1 a matcher’s output might not change significantly by removing Blue

from a because it correctly identifies that there is still a lack of matched color
information. Seemingly, nothing influences the match score, thereby providing
no useful signal of the contribution from different features. Notice that standard
gradient-based methods are not able to escape this problem because f will, in
these cases, be in a flat area and the gradients be rather uninformative. Intu-
itively, we can not explain why two records do not match by what they contain.
A natural solution to this problem is instead to explain by what they do not
contain.

Interpretable Representation. Let the interpretable representation Ix =
{P,A,M}dx be categorical instead of binary, where the values represent whether
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the corresponding token is Present, Absent, or Matched. Unsurprisingly, z′i = A
means tx(z

′) will exclude token i and if z′i = P it will be kept — much like
before. On the other hand, if z′i = M , we will copy and inject the token in
the other record where it maximizes the match score f(tx(z

′)). For now, let us
assume we have an accurate and efficient implementation of tx(z

′).

x

a b

Name iPhone Pro 13

Description Apple iPhone 13
Pro Blue 128GB

Price 999

Title Apple iPhone 13

Spec 128 5G $799

x′ P P P P P P P P P P

N
a
m
e

i
P
h
o
n
e

P
r
o

1
3

D
e
s
c
r
i
p
t
i
o
n

A
p
p
l
e

B
l
u
e

1
2
8
G
B

P
r
i
c
e

9
9
9

z′ P P M P P P M P P A

tx

z
Name iPhone Pro 13

Description Apple iPhone 13
Pro Blue 128GB

Price NULL

Title Apple iPhone Pro 13

Spec 128 Blue 5G $799

Figure 3.4: Example record pair x, its corresponding interpretable represen-
tation x′ in LEMON for one of two dual explanations, and an example of a
perturbed sample.

Example 2 Reusing the record pair x from Example 1, Figure 3.4 shows the
interpretable representation x′ for one of two dual explanations in LEMON (ex-
plaining why a matches, or not, b). The representation would, of course, be
similar for the other of the two explanations. In the figure, we also see an
example of a perturbed interpretable representation z′ and its equivalent record
pair z provided by tx. Notice how both Pro and Blue have been injected into b
— making it more likely to be accepted as a match by a reasonable matcher.

For the linear surrogate model, we dummy code Ix, using P as reference
value. When we do forward selection, we select both dummy variables repre-
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senting a categorical variable at once, so that we either pick the entire categorical
variable or not. We will then have two estimated coefficients, β̂A

i and β̂M
i , for

each of the K selected interpretable features. Finally, we define the attribution
for token i to be wi = −β̂A

i , and the attribution potential to be pi = β̂M
i . Intu-

itively, wi is the contribution of token i, and is the same as in LIME, while pi can
be interpreted as the maximum additional contribution token i could have had
if the other record matched better. Note that it is important to model this new
attribution potential through a categorical variable instead of simply adding an-
other binary variable to Ix, because exclusion and injection perturbations of the
same token strongly interact with each other and should be mutually exclusive.

Approximating tx. In contrast to plain LIME as described in Section 3.3.3,
tx is now less straightforward to compute. The difficulty lies in where to in-
ject tokens i for which z′i = M to maximize f(tx(z

′
i)). Since our method is

model-agnostic, the best we can do is try all possible injections. That would be
computationally prohibitive, not only because of the high number of possible
injection targets but also because of the exponential growth of combinations
when multiple tokens should be injected. Instead, we can approximate it by
sampling L combinations of injection targets and picking the one that gives the
highest match score.

The possible injection targets for a token in an attribute value are anywhere
in the string attributes of the other record, but without splitting tokens in the
target attribute value. If the token is a non-string value, it can also overwrite
attribute values of the same type — e.g., a number attribute can replace a
number attribute in the other record. Tokens from attribute names can only be
injected to attribute names. When we sample injection targets, we first pick a
target attribute uniformly at random and then a random position within that
attribute. In addition, we employ a heuristic to incorporate information about
matched schemas if available. In cases where the schemas are matched, we
boost the probability of choosing the corresponding attribute as the target to
50%. This makes efficient use of prior knowledge about the schemas while still
preserving robustness to dirty data. To pick the sample size L, we first sum
the possible injection targets per token to be injected. We cap the number of
targets to three per attribute and ten in total and then let L be the maximum
of all tokens to be injected.

Neighborhood sampling. We sample the neighborhood Zx much like before.
Now, x′ will be a vector of only P , and we let z′i = A instead of 1 for random
subsets. But we additionally set random subsets of elements to M . The subset
size is chosen uniformly at random from [0,max(3, ⌊dx/3⌋)], except with a 50%
chance of picking 0. The reason we sample M less than A is that injections
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tend to have more dramatic effects on the match score than exclusions, and so
we consider them to be larger perturbations and want to avoid drowning the
exclusion effects.

3.4.3 Counterfactual Granularity

Depending on the dataset and matcher, influencing the match score significantly
can sometimes require perturbing large parts of the input records. This is
especially true for datasets where records contain many high-quality pieces of
information because it provides the matcher with multiple redundant strong
signals about whether they match or not. An example is the iTunes-Amazon
dataset, where attributes such as song name, artist name, album name, and more
might all agree or disagree at the same time. The problem is that we want to pick
out K important features for the user to focus on, but in such cases, no single
token is likely to be significantly important. While we could use attribute-level
features, that would be unnecessarily coarse-grained for many cases. Instead,
we propose an adaptive strategy where we automatically choose an appropriate
explanation granularity. The idea is to exponentially decrease the granularity of
the interpretable features until the attributions and attribution potentials are
large enough in magnitude to explain the decision boundary.

Let ex = {(wi, pi)}i∈EK be the K pairs of attributions and attribution po-
tentials for an explanation ξ(x), where EK is the K interpretable features cho-

sen to be used in the regularized linear surrogate model. Further, let înci =

max(−wi, pi) and d̂eci = wi. In other words, this is how much perturbation of
token i could increase or decrease the match score according to wi and pi if you
removed the token or injected the token in the other record. Then, to represent
greedy actions increasing the match score, let INC be a vector of the elements
in EK with positive înci and sorted by înci in descending order, and similarly
for DEC . We define the predicted counterfactual strength of k steps to be

ĈFS
k
(ex) =





p−
[
f(x)−

s=k∑
s=1

DEC s

]
, f(x) > p

[
f(x) +

s=k∑
s=1

INC s

]
− p, f(x) ≤ p

(3.4)

Intuitively, this is to what degree one would assume to surpass the classification
threshold p if one performs k greedy actions to change the matcher prediction.
Note that most matchers, as well as those in our experiments, have a classifi-
cation threshold p of 0.5 [69, 81]. Then let the greedy counterfactual strategy
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kg(ex) be the smallest number of steps predicted to be necessary to get a coun-
terfactual strength of at least ϵ:

kg(ex) =





min{k : ĈFS
k
(ex) ≥ ϵ}, if such k exists

|DEC |, otherwise if f(x) > p

|INC |, otherwise if f(x) ≤ p

(3.5)

Finally, we define the predicted counterfactual strength of the explanation ξ(x)

to simply be ĈFS (ex) = ĈFS
kg(ex)

(ex), and the actual counterfactual strength
to be:

CFS (ex) =




p−

[
f(x)− f

(
tx(x

′
g)
)]
, f(x) > p

[
f(x) + f

(
tx(x

′
g)
)]

− p, f(x) ≤ p
(3.6)

where x′g is the perturbation of the interpretable representation x′ corresponding
to the greedy counterfactual strategy.

When an explanation’s interpretable features represent (up to) n consecutive
tokens, we say that explanation has a granularity of n tokens. To find our
desired granularity, we start with a granularity of one token and then double

until we find a granularity that satisfies ĈFS (ex) ≥ ϵ ∧ CFS (ex) ≥ ϵ or no
coarser granularity is possible (i.e., all features are whole attributes). When no
granularity satisfies the requirement, we pick the granularity with the highest

harmonic mean between ĈFS (ex) and CFS (ex), which will favor them to be
large and similar.

We call the resulting approach for picking granularity counterfactual granu-
larity. It will try to find explanations that explain the decision boundary while
balancing maximal granularity and faithfulness. Note that the granularity is
chosen independently for each of the two dual explanations. Decreasing the
granularity exponentially avoids a large increase in runtime compared to fixed-
step decrease by exploiting the fact that users are likely to be more sensitive to
the same constant sized decrease at high granularities than low granularities.
I.e., going from a granularity of one token to two tokens feels more substantial
than going from a granularity of eight tokens to nine tokens.

3.4.4 Summary

All three extensions introduced above fit together in our proposed method.
Finally, we choose K to be 5 and ϵ to be 0.1 for all examples. Figure 3.5 provides
a simplified overview of the steps that make up LEMON, while Algorithm 1
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Algorithm 1: LEMON

Input: Matcher f , record pair (a, b), number of features K (default: 5),
counterfactual margin ϵ (default: 0.1), min and max number of samples
Smin, Smax (default: 500, 3000)

Output: Pair of dual explanations (eax, e
b
x). Each explanation ex = {(wi, pi)}i

consists of attribution and attribution potential for K chosen interpretable
features.

1 Function Explain(r, o):
2 x← (r, o)

3 CFS
∗ ← −∞

4 e∗x ← null
5 n← 1
6 N ← max num. of tokens in any non-empty string in r or 1
7 while n < 2N do

8
x′ ← interpretable representation of x for r with

granularity of n tokens

9 Zx ← {}
10 S ← max(Smin,min(30dx, Smax))
11 for i ∈ {1, 2, . . . , S} do
12 Sample perturbation z′ of x′

13 y ← f(tx(z′))
14 Zx ← Zx ∪ {(z′, y)}

15

{(β̂Ai , β̂Mi )}i ← linear regression on Zx weighted by πx,

selecting only K features

using forward selection
16 ex ← {(wi, pi)}i calculated from {(β̂Ai , β̂Mi )}i

17 Calculate ĈFS(ex) and CFS(ex)

18 if ĈFS(ex) ≥ ϵ ∧ CFS(ex) ≥ ϵ then
19 return ex

20 CFS ← ĈFS(ex)·CFS(ex)

ĈFS(ex)+CFS(ex)

21 if CFS > CFS
∗
then

22 CFS
∗ ← CFS

23 e∗x ← ex

24 n← 2n

25 return e∗x

26 eax ← Explain(a, b)

27 ebx ← Explain(b, a)

28 return (eax, e
b
x)
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Fit weighted linear
regression model

Sample
perturbations

Interpretable
components

Non-match Match

Make
explanation

Non-match Match

Exponentially decrease granularity

If 

Figure 3.5: Illustration of how LEMON generates an explanation for a record
pair x = (a, b). The fundamental flow is similar to LIME in Figure 3.2, but
have been significantly altered and expanded to support dual explanations, at-
tribution potential and counterfactual granularity.

provides pseudocode. It is a model-agnostic and schema-flexible method without
any hyperparameters that need tuning. One downside of LEMON is that, due
to its extensions, it is more computationally demanding than LIME. The main
reason is the increased number of matcher predictions made to estimate the
attribution potential and finding the right granularity. However, in most cases
it is still possible to generate an explanation within a few seconds.

Complexity. To analyze the runtime formally, we focus only on the number
of predictions performed using the matcher f . This is reasonable because, for
any non-trivial matcher, the runtime is completely dominated by the runtime
of the matcher. Let F be the upper bound on the runtime of f for all possible
perturbations of x. Furthermore, let N be the max number of tokens in any non-
empty string in x or 1, S be the number of samples |Zx| at 1 token granularity,
and L be the max number of attribution potential samples for all perturbations
of x. The time complexity of LEMON is then O(FSL logN). Technically, since
S and L are bounded by constants, O(F logN) would also be accurate, but
these factors are essential to understand the difference from similar methods.
LIME [114], SHAP [86], and Landmark [7] (see Section 3.2) are all O(FS), while
gradient-based methods are typically O(F ). Ignoring that different methods
have different strategies for choosing |Zx|, the reason for LEMON’s increased
runtime compared to LIME is the additional factor L logN . Since L is low
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Figure 3.6: Example of how a LEMON explanation can be visualized and what
we show users in our user study. This particular explanation is for the prediction
of the BERT-Mini matcher used in our experiments on the record pair from
Table 3.1.

and bounded we still get feasible runtime in practice. See Section 3.6.8 for an
empirical evaluation. Note that an analysis of space complexity is less interesting
since any non-trivial matcher and dataset will dominate the space requirements
compared to the explanation method itself.

Explanations. One key advantage of LEMON over previous work is that it
provides one type of explanation for all record pairs, whether the records match
or not, with a clear and easy way to interpret and visualize. The attributions
wi are equivalent to those in LIME and can be interpreted in the same way. Its
interpretation is to what degree interpretable feature i (some part of a record)
contributes to the match score. If the corresponding part of the record is re-
moved, we expect the match score to decrease by approximately wi. For the
same interpretable feature i, the interpretation of the attribution potential pi
is how much higher the attribution wi could be if the other record matched the
feature better.

While the explanation can be visualized in many ways, we propose a straight-
forward extension of the visualization proposed by the original LIME authors.
Figure 3.6 shows an example. In addition to plotting a colored bar for each
wi, we also plot gray bars from wi to wi + pi, outlining feature i’s potential
attribution.
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3.5 Experimental Setup

3.5.1 Datasets

Table 3.1: The Public DeepMatcher [91] Benchmark Dataset and F1 Score for
the Magellan and BERT-Mini Matchers Used in the Experiments.

Type Name #Cand. #Matches
Matcher F1

MG BM

Structured

Amazon-Google 11 460 1 167 0.52 0.67
Beer 450 68 0.85 0.76
DBLP-ACM 12 363 2 220 0.99 0.98
DBLP-Scholar 28 707 5 347 0.94 0.93
Fodors-Zagats 946 110 1.00 0.95
iTunes-Amazon 539 132 0.90 0.93
Walmart-Amazon 10 242 962 0.66 0.80

Dirty

DBLP-ACM 12 636 2 220 0.91 0.97
DBLP-Scholar 28 707 5 347 0.83 0.94
iTunes-Amazon 539 132 0.53 0.90
Walmart-Amazon 10 242 962 0.41 0.79

Textual
Abt-Buy 9 575 1 028 0.51 0.81
Company 112 632 28 200 0.57 0.90

All experiments are carried out on the 13 public datasets used in the eval-
uation of DeepMatcher [91] — originally from [71] and [29]. Table 3.1 lists
them together with their number of candidates and number of matches. The
datasets are divided into three types: structured, dirty, and textual. Struc-
tured datasets have nicely separated attributes. Dirty datasets are created from
their structured counterpart by randomly injecting other attributes into the title
attribute [91], and textual datasets generally consist of long textual attributes
containing multiple pieces of information. For the company dataset, we truncate
each record to max 256 space-separated words.

When we take a closer look at properties of the different explainability meth-
ods and the studied behavior is similar across all datasets we sometimes report
only for a subset of the datasets or a single dataset (Abt-Buy) due to space re-
strictions. For those experiments one can assume the general behavior is similar
on the other datasets.
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3.5.2 Matchers

To show that our proposed method is versatile and model-agnostic, we perform
our experiments for each dataset on both a matcher that uses classical machine
learning with string metrics as features and on a deep learning based matcher.
See Table 3.1 for their F1 score on the benchmark datasets.

Magellan. For the classical approach, we train a Magellan [69] random for-
est matcher. We use the automatically suggested similarity features and the
default random forest settings provided by the library. Furthermore, we do not
downsample and train on the entire training dataset.

BERT-Mini. For the deep learning approach, we train a baseline Ditto [81]
matcher using BERT-Mini [131]. While not quite achieving state-of-the-art ac-
curacy, BERT-Mini provides a decent accuracy vs. cost trade-off while maintain-
ing the main characteristics of state-of-the-art deep learning matchers and still
significantly outperforming the classical matcher on dirty and textual data5. We
use batch size 32, linearly decreasing learning rate from 3 ·10−5 with 50 warmup
steps, 16-bit precision optimization, and 1, 3, 5, 10, or 20 epochs depending on
the dataset size. The final model is the one from the epoch with the highest F1
score on the validation dataset.

3.5.3 Baselines

We now introduce the baselines we use for comparison. For a fair comparison,
we adopt dual explanations for all of them.

LIME. Since our work can be seen as a continuation of LIME [114], it is a
natural baseline. We use LIME as described in Section 3.3.3.

Landmark. This is the most relevant work to ours (see Section 3.2). We use
the source code provided by the authors6 with default settings.

SHAP. Another popular approach for producing input attributions is SHAP [86].
It is based on the game-theoretic Shapley values [83, 122] and provides several
methods for different types of models. For a fair comparison, we use their
model-agnostic method, Kernel SHAP, which can be interpreted as using LIME
to approximate Shapley values. Note that Kernel SHAP does not limit K and
sets Ω(g) = 0. We use default settings from the SHAP library.

5Since we perform an extensive set of experiments we want to be mindful of our usage
of computational resources — both to reduce the energy footprint and keep the experiments
as accessible as possible. For the purpose of this paper we consider this matcher to be suffi-
ciently representative of state-of-the-art matchers. See Appendix 3.8 for results on the main
experiments for a RoBERTa-based [84] DITTO matcher and DeepMatcher [91]

6https://github.com/softlab-unimore/landmark
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Integrated gradients. Our proposed method is a perturbation-based attribu-
tion method. To compare against a gradient-based method, we use integrated
gradients [124] as a baseline. This method is not truly model-agnostic as it
requires gradients, so we can only apply it to our deep learning matcher.

Integrated gradients explain input x in reference to some baseline input x∗

(some neutral input that gives a score close to zero). Let x be the embedding
vector of a record pair. As the authors suggest for textual input, we let x∗ be
the zero embedding. The attribution for the ith element of x is then defined to
be

IGi(xi) = (xi − x∗i )×
∫ 1

α=0

∂f(x∗ + α× (x− x∗))
∂xi

dα (3.7)

The integral is approximated by averaging the gradient of evenly spaced points
from x∗ to x. We use 50 points in our experiments. The raw attributions are for
single elements of the embedded input, by no means interpretable for humans, so
it is common to sum them for each embedding. To get attributions on the same
representation level as our method, we combine attributions of Bert subword
embeddings into whole words.

3.6 Experiments

We will now go through several experiments to evaluate LEMON and compare
it to other methods. When we evaluate post hoc explainability, it is important
to remember that we do not wish to measure the performance of the match-
ers, but rather what the explainability method can tell us about the matchers.
Explanations should not be judged disconnected from the matcher on whether
they provide the same rationale as users but to what degree they reflect the
actual (correct or wrong) behavior of the matchers and to what degree they are
effective at communicating this to users. Note that some experiments report
only results for one or a few datasets when the results tend be similar, due to
space constraints. Please see Appendix 3.9 for extensive results.

3.6.1 Counterfactual Interpretation

Explanations can sometimes provide enough information to the user to under-
stand how the prediction could be different. The authors of [7] call this the “in-
terest” of an explanation. We argue similarly that a useful explanation should
implicitly reveal to the user some changes to the records that would flip the pre-
diction outcome. But we further argue that we should help the user understand



82 CHAPTER 3. EXPLAINABILITY FOR ENTITY MATCHING

T
ab

le
3.2:

C
ou

n
terfactu

al
F
1
S
core

for
A
ll
th
e
E
valu

ated
E
x
p
lain

ab
ility

M
eth

o
d
s
A
cross

A
ll
D
ata

sets
an

d
th
e
T
w
o
M
atch

ers.

M
o
d
e
l

T
y
p
e

M
e
t
h
o
d

D
a
t
a
s
e
t

S
tru

c
tu

re
d

D
irty

T
e
x
tu

a
l

A
G

B
D
A

D
G

F
Z

IA
W

A
D
A

D
G

IA
W

A
A
B

C
M

e
a
n

M
a
g
e
lla

n

M
a
tch

L
IM

E
0
.9
6

0
.8
3

1
.0

0
0
.8
7

0
.7
7

0
.9
8

0
.8
2

0
.5
0

0
.7
9

0
.9
0

0
.8
6

0
.9
5

0
.4
7

0
.8
2

S
H
A
P

0
.9
5

1
.0

0
1
.0

0
1
.0

0
0
.9
5

1
.0

0
0
.8
3

0
.6
5

0
.9
6

0
.6
8

0
.8
1

0
.9
8

0
.6
8

0
.8
8

S
H
A
P

(w
/
C
F
G
)

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
8

0
.9
9

1
.0

0
0
.9
1

0
.9

9
0
.9

9
0
.8

7
0
.9

8
L
a
n
d
m
a
rk

0
.9
2

0
.8
9

1
.0

0
0
.9
6

0
.7
3

0
.8
7

0
.9
5

0
.7
5

0
.7
4

0
.8
8

0
.9
0

0
.9
5

0
.2
8

0
.8
3

L
E
M

O
N

(w
/
o
D
E
)

0
.9
8

0
.9
1

1
.0

0
0
.9
7

0
.9
5

1
.0

0
0
.9
6

0
.8
3

0
.9
3

0
.9
3

0
.9
5

0
.9
8

0
.4
9

0
.9
1

L
E
M

O
N

(w
/
o
A
P
)

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

9
0
.9
8

0
.8
3

0
.9

8
L
E
M

O
N

(w
/
o
C
F
G
)

0
.9
6

0
.8
9

1
.0

0
0
.8
8

0
.9
1

0
.9
8

0
.8
1

0
.5
2

0
.8
1

0
.8
5

0
.8
3

0
.9
2

0
.4
1

0
.8
3

L
E
M

O
N

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
8

0
.9

9
0
.8
0

0
.9

8

N
o
n
-m

a
tch

L
IM

E
0
.0
2

0
.1
1

0
.0
2

0
.0
1

0
.0
2

0
.1
4

0
.0
3

0
.0
9

0
.1
0

0
.1
7

0
.1
0

0
.1
3

0
.1
1

0
.0
8

S
H
A
P

0
.0
0

0
.0
3

0
.0
0

0
.0
1

0
.0
0

0
.0
5

0
.0
2

0
.0
7

0
.0
6

0
.1
0

0
.1
2

0
.0
6

0
.1
3

0
.0
5

S
H
A
P

(w
/
C
F
G
)

0
.0
2

0
.2
2

0
.0
1

0
.0
2

0
.0
0

0
.0
5

0
.0
2

0
.0
9

0
.0
9

0
.2
3

0
.2
1

0
.0
8

1
.0

0
0
.1
6

L
a
n
d
m
a
rk

0
.1
4

0
.8

4
0
.1

4
0
.2
0

0
.2
3

0
.2
1

0
.9

3
0
.0
4

0
.4
3

0
.3
9

0
.0
3

0
.7
9

0
.0
9

0
.3
4

L
E
M

O
N

(w
/
o
D
E
)

0
.5
9

0
.7
8

0
.0
6

0
.3
7

0
.6
5

0
.6
4

0
.8
2

0
.6
4

0
.6
9

0
.8

7
0
.8
2

0
.8

8
0
.9
6

0
.6
8

L
E
M

O
N

(w
/
o
A
P
)

0
.0
4

0
.4
2

0
.0
2

0
.0
3

0
.0
2

0
.1
4

0
.0
5

0
.1
7

0
.2
1

0
.2
6

0
.3
6

0
.1
7

0
.6
8

0
.2
0

L
E
M

O
N

(w
/
o
C
F
G
)

0
.4
0

0
.4
6

0
.0
8

0
.1
3

0
.0
3

0
.2
4

0
.7
3

0
.2
3

0
.4
9

0
.6
9

0
.6
3

0
.7
8

0
.1
3

0
.3
8

L
E
M

O
N

0
.7

1
0
.5
0

0
.1
2

0
.5

4
0
.9

8
0
.7

7
0
.7
6

0
.7

5
0
.7

8
0
.8

7
0
.8

7
0
.8
7

0
.9
6

0
.7

3

B
E
R
T
-M

in
i

M
a
tch

L
IM

E
0
.9
5

0
.6
5

0
.9
7

0
.8
5

0
.9
3

0
.6
5

0
.8
1

0
.9
7

0
.6
9

0
.6
2

0
.8
0

0
.7
8

0
.1
8

0
.7
6

S
H
A
P

0
.9
0

0
.8
1

0
.7
9

0
.6
5

0
.9
1

0
.6
9

0
.7
1

0
.7
9

0
.6
2

0
.6
3

0
.7
5

0
.7
7

0
.2
5

0
.7
1

S
H
A
P

(w
/
C
F
G
)

0
.9
5

0
.9
6

0
.9
2

0
.9
8

0
.8
6

0
.8
9

0
.9
7

0
.9
8

0
.9
9

1
.0

0
0
.9
9

1
.0

0
0
.3

9
0
.9
1

IG
0
.9
0

0
.4
3

0
.7
1

0
.8
3

0
.5
0

0
.7
0

0
.6
7

0
.6
9

0
.8
9

0
.8
1

0
.6
8

0
.7
9

0
.3
3

0
.6
9

IG
(w

/
C
F
G
)

0
.8
8

0
.5
2

0
.6
6

0
.9
4

0
.6
8

0
.7
0

0
.7
7

0
.8
6

0
.9
5

0
.9
4

0
.8
7

0
.9
3

0
.2
8

0
.7
7

L
a
n
d
m
a
rk

0
.9
8

0
.9
3

1
.0

0
0
.9
4

0
.8
6

0
.9

4
0
.8
4

0
.9
9

0
.8
3

0
.9
0

0
.8
8

0
.8
3

0
.0
8

0
.8
5

L
E
M

O
N

(w
/
o
D
E
)

0
.9
9

0
.6
9

1
.0

0
0
.9
7

0
.9
8

0
.8
8

0
.8
3

1
.0

0
0
.9
4

0
.8
9

0
.8
4

0
.8
6

0
.2
5

0
.8
5

L
E
M

O
N

(w
/
o
A
P
)

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

4
0
.9

9
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
8

0
.3

9
0
.9

5
L
E
M

O
N

(w
/
o
C
F
G
)

0
.9
5

0
.6
5

0
.9
8

0
.8
6

0
.9
8

0
.5
8

0
.8
1

0
.9
9

0
.7
0

0
.5
9

0
.8
1

0
.7
9

0
.1
5

0
.7
6

L
E
M

O
N

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

4
0
.9
8

1
.0

0
0
.9
9

1
.0

0
1
.0

0
0
.9
7

0
.3
7

0
.9
4

N
o
n
-m

a
tch

L
IM

E
0
.1
3

0
.0
6

0
.0
1

0
.0
4

0
.0
4

0
.1
3

0
.0
8

0
.0
2

0
.0
4

0
.2
3

0
.0
7

0
.0
5

0
.0
3

0
.0
7

S
H
A
P

0
.1
4

0
.1
6

0
.0
1

0
.0
4

0
.0
1

0
.2
9

0
.0
8

0
.0
2

0
.0
5

0
.3
3

0
.1
4

0
.1
5

0
.1
8

0
.1
2

S
H
A
P

(w
/
C
F
G
)

0
.1
4

0
.2
6

0
.0
2

0
.0
4

0
.0
1

0
.3
4

0
.1
1

0
.0
2

0
.0
5

0
.4
9

0
.1
7

0
.3
7

0
.2
6

0
.1
8

IG
0
.0
7

0
.0
0

0
.0
0

0
.0
3

0
.0
1

0
.0
0

0
.0
2

0
.0
1

0
.0
1

0
.0
0

0
.0
3

0
.0
7

0
.0
2

0
.0
2

IG
(w

/
C
F
G
)

0
.0
8

0
.0
3

0
.0
0

0
.0
4

0
.0
1

0
.0
0

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
6

0
.0
8

0
.0
3

0
.0
3

L
a
n
d
m
a
rk

0
.4
0

0
.7
0

0
.0
5

0
.1
7

0
.5
0

0
.6
3

0
.6
4

0
.0
7

0
.3
5

0
.5
0

0
.7
4

0
.6
7

0
.0
1

0
.4
2

L
E
M

O
N

(w
/
o
D
E
)

0
.7
5

0
.9
3

0
.5
5

0
.6

8
0
.8

6
0
.9
1

0
.9

3
0
.7

4
0
.7
8

0
.8

8
0
.9

7
0
.9
3

0
.9

7
0
.8

4
L
E
M

O
N

(w
/
o
A
P
)

0
.1
8

0
.0
8

0
.0
3

0
.0
8

0
.0
5

0
.6
7

0
.1
4

0
.0
4

0
.0
9

0
.5
6

0
.1
6

0
.2
3

0
.2
6

0
.2
0

L
E
M

O
N

(w
/
o
C
F
G
)

0
.5
0

0
.9
2

0
.0
2

0
.1
9

0
.8
5

0
.9
4

0
.8
9

0
.0
4

0
.1
8

0
.7
6

0
.9
5

0
.9
0

0
.9
6

0
.6
2

L
E
M

O
N

0
.8

1
0
.9

4
0
.6

5
0
.6

8
0
.8

6
0
.9

7
0
.9
0

0
.5
0

0
.7

9
0
.8
7

0
.9
5

0
.9

8
0
.9

7
0
.8

4



3.6. EXPERIMENTS 83

a minimal number of such changes necessary, since that would mean the user
has a greater understanding of where the decision boundary is.

To that end, we simulate users being shown an explanation for a record
pair and then being asked what they think would be some minimal changes to
the records that would flip the matcher’s prediction. The simulated users will
greedily try to make the smallest number of perturbations necessary according
to the explanation, as described in Section 3.4.3. Of the two dual explanations,

they pick the explanation with the lowest kg if ĈFS (ex) ≥ ϵ or the one with the

highest ĈFS (ex) otherwise. We extend the same greedy strategy to Landmark
explanations but with their corresponding perturbations. Let the counterfactual
recall of an attribution method be the fraction of explanations where at least
one of the two dual explanations indicate how the matching prediction could be

flipped (ĈFS (ex) ≥ ϵ), and the counterfactual precision be the fraction of those
where the greedy counterfactual strategy is actually successful (CFS (ex) > 0).
To unify them into a single metric, we report the counterfactual F1 score. We
formalize this in the following definition.

Definition 1 (Counterfactual Recall, Precision, and F1) Let λ be an en-
tity matching attribution method that outputs dual explanations (eax, e

b
x) and let

C ⊆ A × B be a collection of pairs (a, b) (i.e., a dataset). The counterfactual
recall of the method λ for the matcher f on the record pair collection C is

CR(λ, f, C) = E(a,b)∼C

[
max

(
ĈFS (eax), ĈFS (e

b
x)
)
≥ ϵ
]

where [. . . ] are Iverson brackets and we assume (eax, e
b
x) = λ(f, (a, b)). Further-

more, let the recalled pairs in C be

Cr =
{
(a, b)|(a, b) ∈ C ∧max

(
ĈFS (eax), ĈFS (e

b
x)
)
≥ ϵ
}

and let the greedy pick among the dual explanations be

egx =





eax, if kg(e
a
x) < kg(e

b
x)

or kg(e
a
x) = kg(e

b
x) ∧ ĈFS (eax) ≥ ĈFS (ebx)

ebx, otherwise

The counterfactual precision of the method λ for the matcher f on the record
pair collection C is

CP(λ, f, C) = E(a,b)∼Cr

[
CFS (egx) > 0

]
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Lastly, the counterfactual F1 score is then simply

CF 1(λ, f, C) =
2CR(λ, f, C) · CP(λ, f, C)

CR(λ, f, C) + CP(λ, f, C)

We produce 500 explanations for both predicted matches and non-matches
(or all when there are less than 500 available) for each explanation method per
dataset7. Table 3.2 shows the counterfactual F1 for the different explainability
methods, matchers, and datasets8.

We observe that LEMON performs best overall, with the highest or close to
the highest F1 score in most cases. It significantly outperforms all three base-
lines, where non-matches, as expected, have the most pronounced difference.
Since all the baselines are fundamentally analyzing the prediction by observ-
ing what happens when features are removed, they suffer from the same issue
of explaining non-matches as discussed in Section 3.4.2. Importantly, the low
performance of all the baselines backs up the claim that standard local post
hoc attribution methods do not work satisfactorily out of the box for entity
matching. Our proposed method generally outperforms Landmark, with the
exception of the three datasets for the Magellan matcher on non-matches. We
note that LEMON has the biggest advantage over Landmark on datasets that
typically would require more substantial perturbations to flip the prediction,
such as matches in DBLP-GoogleScholar and Company. At the same time,
it is clear that all methods struggle with non-matches on DBLP-ACM and
DBLP-GoogleScholar (and Beer to a certain degree) more than other datasets
— especially for Magellan. This is mainly because the datasets yield a binary
classification problem with large margins for the decision boundary. The clas-
sification problem is too easy and the matchers too certain. The true matches
contain many highly similar attributes, while true non-matches tend to have
several significantly dissimilar attributes. Changing the matcher’s prediction
from non-match to match is hard because it requires many perturbations across
most attributes. Therefore, the reason Landmark performs better in some cases
with non-matches for Magellan is mainly because Landmark does not restrict
the number of interpretable features to use in the explanation. This enables
higher counterfactual recall at the expense of more complex and less specific
explanations.

7The same pairs are used for the different explanation methods.
8See Appendix 3.9 for counterfactual precision and recall numbers.
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3.6.2 Explanation Faithfulness

It is desirable that explanations are faithful to the matcher. All useful expla-
nations provide some simplified view of the matcher’s behavior, but we still
want them to be indicative of how the matcher actually operates without being
unnecessarily misleading. Inspired by [114], we make perturbations to a record
pair and compare the resulting match score with what we would expect from
the attributions and attribution potentials. Specifically, if we remove feature i,
we expect the match score to decrease with wi (remember that wi can be nega-
tive). Ff we inject feature i into the other record, we expect the match score to
increase with pi. The same applies to Landmark, but with appending instead
of injecting features. Since the baselines do not estimate attribution potentials,
we ignore that perturbation for them. We perform 1, 2, and 3 random pertur-
bations among the interpretable features for both dual explanations. We repeat
for 500 explanations of matches and non-matches for each matcher and dataset
(or all when there are less than 500 available). Let δl be the set of expected
match score increases and decreases for experiment l out of L, and let the mean
absolute error be

MAE =
1

L

∑

l

∣∣∣f(z)−
[
f(x) +

∑

c∈δl

c
]∣∣∣ (3.8)

This error measure will favor conservative explanation methods that make small
and insignificant claims, and punish methods like Landmark and LEMON that
provide higher impact explanations because of the injected/appended features.
Therefore, we define the perturbation error to be the mean absolute error by
dividing by the average magnitude of the predicted change:

PE =
MAE

1
L

∑
l

∑
c∈δl

|c| (3.9)

Table 3.3 shows the perturbation error for all methods. No method achieves
truly low error levels, which is expected given the simplified assumption of in-
dependent additative attributions. However, we observe that LEMON overall
is the method with the smallest errors, with LIME performing very similarly.
LEMON and LIME lie in the range of 0.25 to 0.75 in almost all cases, while
SHAP, IG, and Landmark often exceed 1.0. Further, we see Landmark some-
times gets extremely high perturbation error, especially for Magellan on the
dirty datasets like Dirty iTunes-Amazon. Upon closer inspection, we think this
stems from a combination of sampling a too large neighborhood and the ineffec-
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tiveness of the double-entity generation strategy when the data does not follow
the matched schemas (i.e., is dirty).

3.6.3 User Study

Table 3.4: Counterfactual Precision of Users After Being Shown an Explanation
From LIME or LEMON.

Dataset

Method

LIME LEMON

Match Non-match Match Non-match

Structured
Amazon-Google 0.71 0.22 0.77 0.42
Beer 0.47 0.16 0.50 0.63
DBLP-ACM 0.82 0.06 0.79 0.23
DBLP-GoogleScholar 0.53 0.08 0.62 0.27
Fodors-Zagats 0.59 0.14 0.69 0.46
iTunes-Amazon 0.45 0.18 0.60 0.60
Walmart-Amazon 0.55 0.24 0.63 0.58

Dirty
DBLP-ACM 0.71 0.02 0.81 0.40
DBLP-GoogleScholar 0.45 0.08 0.58 0.48
iTunes-Amazon 0.53 0.22 0.75 0.56
Walmart-Amazon 0.53 0.24 0.62 0.71

Textual
Abt-Buy 0.55 0.14 0.62 0.73
Company 0.14 0.16 0.29 0.35

Mean 0.54 0.15 0.63 0.49

To examine if explanations from LEMON improve human subjects under-
standing of a matcher compared to LIME, we adopt the experiment on counter-
factual interpretation from Section 3.6.1 to human subjects. We recruit random
test users from the research survey platform Prolific. Note that these users are
laymen and do not have any experience with entity matching or a background
in computer science. A user is shown an explanation for a record pair and then
asked what they think would be a minimal change to the record pair that would
make the matcher predict the opposite. Each user is shown one explanation
for a match and a non-match for each dataset, and we use only the BERT-
Mini matcher. Afterward, we check what fraction of them successfully gets the
opposite prediction — i.e., the counterfactual precision. We conduct the exper-
iment on 50 users for LIME and 50 different users for LEMON, and report the
counterfactual precision in Table 3.4.
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As expected, and in line with the experiments above, the greatest improve-
ment is for non-matches. We see an average improvement in the counterfactual
precision of 0.09 for matches and 0.34 for non-matches. The results are gen-
erally less pronounced than those of the simulated experiments. We suspect
the lower maximum scores reflect the difficulty of the task for a layman, and
that the higher minimum scores reflect human ability to use common sense to
make up for weak explanations. Note that we cannot compare to Landmark [7]
since the authors do not propose any way of presenting an actual explanation
to a user. The combination of double-entity generation and not limiting Ω(g)
(i.e., explaining using all features instead of limiting them to K) makes such a
presentation non-trivial.

3.6.4 Ablation Study

Included in Table 3.2 and Table 3.3 is also an ablation study. We examine what
happens when we remove each of the three main components of LEMON: 1) Dual
Explanations. Instead of dual explanations, we produce one joint explanation
for both records. We use K = 10 for a fair comparison. 2) Attribution Poten-
tial. We use the interpretable representation of the LIME baseline and do not
estimate any attribution potential. 3) Counterfactual Granularity. We fix the
granularity to be one token. In addition, we examine the effect of adding coun-
terfactual granularity to the baselines SHAP and integrated gradients (there is
no trivial way to do the same for attribution potential).

LEMON performs better across the board for matches with dual explana-
tions, but the results more varied for non-matches. This makes sense since the
problematic interaction effects mainly occur when two records match and have
a lot of similar content. Unsurprisingly, since its primary goal is to explain how
records could match better, attribution potential only significantly improves
non-match explanations. Nevertheless, the improvement for non-matches is
dramatic, demonstrating how effective attribution potential is for explaining
record pairs that do not match. Finally, we observe that the effectiveness of
counterfactual granularity varies greatly from dataset to dataset. It makes the
most difference on datasets where we consider the records to have multiple
high-quality pieces of information — either in the form of several high-quality
attributes or long textual attributes with multiple high-quality keywords.



3.6. EXPERIMENTS 89

S-AG S-B S-DA S-DG S-FZ S-IA S-WA D-DA D-DG D-IA D-WA T-AB T-C
0

0.2
0.4
0.6
0.8
1

M
at
ch

S-AG S-B S-DA S-DG S-FZ S-IA S-WA D-DA D-DG D-IA D-WA T-AB T-C
0

0.2
0.4
0.6
0.8
1

N
on
-m

at
ch

LIME SHAP Landmark LEMON

Figure 3.7: Stability of explainability methods based on neighborhood sampling
for BERT-Mini on all datasets.

3.6.5 Stability

Several of the benchmarked methods, including LEMON itself, rely on random
sampling of the neighborhood of x. Different initial random seeds will result
in different explanations. However, with sufficient samples we would like a
well-behaved method to generate similar explanations — i.e. explanations to
be stable and not change much if different random seeds are used. Stability
is a desirable trait from a trust perspective, but also especially useful when
examining or debugging a matcher. If we make changes to a matcher, we want
to be confident that the differences we observe in the explanations mostly reflect
the matcher changes and not instability of the explanation method. LEMON
not only relies on sampling the neighborhood of x in the interpretable domain
Ix, but also on sampling to approximate tx when translating from Ix. A natural
question to ask is if this additional random sampling hurts stability.

Let e1x = {(wi1, pi2)}i∈E1 and e2x = {(wi2, pi2)}i∈E2 be two explanations
for the same input x and matcher f with a different random seed. Let the
the similarity between the two explanations s(e1, e2) = e1∩e2

e1∪e2
be the weighted

Jaccard coefficient such that the intersection is

e1x ∩ e2x =
∑

i∈E1∩E2

[
(wi1∩̇wi2) + (pi1∩̇pi2)

]
(3.10)
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and the union is

e1x ∪ e2x =
∑

i∈E1∩E2

max(|wi1|, |wi2|) + max(|pi1|, |pi2|)

+
∑

i∈E1\E2

(wi1 + pi1) +
∑

i∈E2\E1

(wi2 + pi2)
(3.11)

where ∩̇ is a shorthand for

r∩̇q = H(rq)min(|r|, |q|) (3.12)

and H is the unit step function. For LIME and SHAP, pi is 0 for all i. To be
able to compare explanations of different granularity, all explanations are nor-
malized to single token interpretable features — i.e. if feature i is an n-token
interpretable feature we split it into n features with attribution wi

n and attribu-
tion potential pi

n . Finally, we define the stability of an explanation method as
the expected similarity between two explanations Ex

[
s(e1x, e

2
x)
]
. Note that this

definition slightly favors methods such as SHAP and Landmark that uses all
interpretable features in its explanations instead of only the K most important
like LIME and LEMON. Picking the K most important interpretable features
controls the explanation complexity at the cost of exposing the method to more
instability because small changes in importance can change which features are
within or outside top K.

Figure 3.7 shows the estimated stability of LIME, SHAP, Landmark, and
LEMON for BERT-Mini on all datasets. For each dataset, we sample 100 pre-
dicted matches and non-matches uniformly at random, generate two explana-
tions with different random seed for each example, and average the similarities.
We see that LEMON is relatively stable and is similar to LIME in terms of sta-
bility. This is important because it shows LEMON does not degrade in stability
despite the sampling-based approximation of tx. SHAP is overall the most sta-
ble method, while Landmark is the least stable. To understand these differences
in stability it is important to also take into account the sample size.

3.6.6 Neighborhood Sample Size

From our experience, the main concern when choosing the neighborhood sample
size |Zx| is stability. From Figure 3.8 we see that one achieves satisfactory
counterfactual F1 score and perturbation error with relatively few samples, but
as we will see, it takes considerably more samples to get stable explanations.
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Figure 3.8: Counterfactual F1 and perturbation error (PE ) of explainability
methods based on neighborhood sampling for BERT-Mini on Abt-Buy when
varying the neighborhood sampling size |Zx|.

Thus, picking |Zx| mostly boils down to a trade-off between stability and speed
(see 3.6.8 for a discussion about runtime).

The different neighborhood sampling-based methods have different strategies
for picking a sample size9, so it is interesting to compare the stability at equal
sample sizes. Figure 3.9 shows the stability of the explainability methods for
BERT-Mini on the Abt-Buy dataset when we vary the neighborhood sample
size. As before, we sample 100 predicted matches and non-matches, generate two
explanations per example, and estimate the stability to be the average similarity

9SHAP defaults to 2dx + 2048, Landmark to 500, and our LIME baseline and LEMON to
max(500,min(30dx, 3000)).
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Figure 3.9: Stability of explainability methods based on neighborhood sampling
for BERT-Mini on the Abt-Buy dataset when varying the neighborhood sam-
pling size |Zx|.

between the explanation pairs. We observe that LEMON is close to or equally
sample efficient as LIME and SHAP for matches, and slightly more for non-
matches. This shows that the difference in stability between SHAP and LEMON
is mainly a matter of difference in sample sizes. We deliberately use a less
aggressive sampling scheme for LEMON than SHAP because we find the returns
in terms of stability diminishing — especially given the higher computational
footprint of LEMON. Landmark’s instability, however, can not be attributed
to the lower sampling size. It is clear from Figure 3.9 that the method is
significantly less sampling efficient than the others. We suspect this is mostly
due to the large neighborhood used when sampling.

3.6.7 Explanation Complexity

An important distinction between LEMON and Landmark is that LEMON, as
LIME, limits the explanation complexity Ω(g) by constraining the number of
interpretable features used in an explanation to K < dx. This is important
because we can not generally expect users to consume explanations with a large
number of interpretable components. We consider K = 5 default for LEMON
and have used this for all experiments, since we consider this a reasonable num-
ber of features for user consumption in practice. Furthermore, we argue that
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Figure 3.10: Counterfactual F1 and perturbation error (PE ) of explainability
methods based on neighborhood sampling for BERT-Mini on Abt-Buy when
varying K.

the choice of K is indeed mostly a matter of what is practical to the user.
Figure 3.10 shows how the counterfactual F1 score and perturbation error vary
depending on the choice of K for LIME and LEMON (remember SHAP and
Landmark use all interpretable features). We see that for K ≥ 3 the counter-
factual interpretation and explanation faithfulness is not affected much by the
choice of K. For very low values of K we lose the necessary expressive power
needed to capture the matcher’s behavior — which makes it hard to produce
counterfactually interpretable explanations.
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3.6.8 Runtime
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Figure 3.11: Runtime of explainability methods based on neighborhood sam-
pling for BERT-Mini on three different datasets.

One of the main disadvantages of local post hoc neighborhood sampling
methods are long runtimes. This is a result of having to do inference on a
large number of sampled inputs. Of course, LEMON is more prone to this than
existing work due to the approximation of tx and counterfactual granularity.
Figure 3.11 shows the time needed to make a single explanation of a BERT-
Mini matcher prediction for three different datasets on a NVIDIA RTX 2080
Ti for the different neighborhood sampling-based methods. Each boxplot shows
the distribution of 100 explanations. LEMON generally takes the longest time,
with SHAP being most comparable. Note that the runtime varies significantly
for every methods even on the same dataset. This is because inference time
depends heavily on the input size, which varies between record pairs and depend
on the random perturbation. LEMON’s runtime varies more because of how the
counterfactual granularity is found.

While the runtime is longer than in previous work, we argue it is still within
reason for most applications on most datasets — especially taking into consid-
eration the improvement in explanation quality seen in Section 3.6.1, 3.6.2, and
3.6.3. Moreover, it is possible to trade off some stability for shorter runtime
if desired. As mentioned in Section 3.6.6, the choice of |Zx| is essentially a
trade-off between stability and speed. Figure 3.12 plots the stability against the
median runtime for explaining BERT-Mini on the Abt-Buy dataset (one of the
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Figure 3.12: Stability of explainability methods based on neighborhood sam-
pling for BERT-Mini on Abt-Buy when varying the median runtime (by chang-
ing |Zx|).

datasets with the longest runtime) when we vary |Zx|. We see that LEMON
has a stability-runtime trade-off comparable to Landmark. By reducing the
neighborhood sample size we can achieve more similar runtime to Landmark at
the expense of also getting similar (low) stability as Landmark. To what degree
depends on the dataset, but there is significant flexibility if lower runtime is
critical.

3.7 Conclusion

Local post hoc feature attribution is a valuable and popular type of explainabil-
ity method that can explain any classifier, but standard methods leave signifi-
cant room for improvement when applied to entity matching. We have identi-
fied three challenges of applying such methods to entity matching and proposed
LEMON, a model-agnostic and schema-flexible method that addresses all three
challenges. Experiments and a novel evaluation method for explainable entity
matching show that our proposed method is more faithful to the matcher and
more effective in explaining to the user where the decision boundary is — espe-
cially for non-matches. Lastly, user studies support a real-world improvement
in understanding for a layman seeing LEMON explanations compared to naive
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LIME explanations.

There is still much to be done within explainable entity matching. A disad-
vantage of LEMON (and other perturbation-based methods like LIME, SHAP,
and Landmark) is their running time. Even though it is possible to trade off sig-
nificantly shorter running time for explanation stability, and trivial to parallelize
the computational bottleneck (running inference of matcher f), depending on
the hardware and matcher, it might still be infeasible in practice to do real-time
explanation or generate explanations for all record pairs in large datasets, while
still achieving satisfactory stability. Therefore, more efficient sampling strate-
gies should be explored. Furthermore, there is more to be done on examining
the adaptation of other explainability methods for entity matching in-depth,
and on how to evaluate them. Our experiments and ablation study show that
dual explanations and counterfactual granularity are easily applicable to SHAP
and gradient-based methods, and that they are indeed effective for other meth-
ods than LIME. It is less clear how one would adapt the ideas of attribution
potential to those methods, and we hope to address that in the future.

3.8 Other Matchers

In addition to Magellan and BERT-Mini, it is also interesting to evaluate
LEMON on larger transformer models and other deep learning architectures.
To that end we perform the experiments on counterfactual interpretation and
explanation faithfulness from Section 3.6.1 and 3.6.2 on a RoBERTa-based [84]
baseline DITTO model and DeepMatcher [91].

3.8.1 DeepMatcher

The authors [91] explore a range of different deep learning models for entity
matching. We use their hybrid model since it performs the best overall. Each
model is trained for 15 epochs with a batch size of 32 and a negative to positive
sampling ratio of 3. The model is evaluated on the validation set after every
epoch and the best model is kept. Note that we do not perform an exhaus-
tive hyperparameter search like the authors and instead use default settings as
provided by the publicly available implementation10 from the authors — which
gives performance reasonably close to what they report.

10https://github.com/anhaidgroup/deepmatcher
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3.8.2 RoBERTa

The authors of DITTO [81] evaluated a number of prominent transformer-based
natural language models and found RoBERTa [84] to generally perform the
best. We train each baseline RoBERTa-based DITTO model the same way as
described in Section 3.5.2 for BERT-Mini.

3.8.3 Results

Table 3.5 shows the performance of the DeepMatcher and RoBERTa models on
every dataset. We have also repeated the performance of Magellan and BERT-
Mini for easy comparison. As we see, DeepMatcher generally outperforms Mag-
ellan on the dirty and textual datasets while the results are more mixed on the
structured datasets — which is in line with the DeepMatcher authors’ reported
results [91]. Furthermore, BERT-Mini performs better than DeepMatcher on
most datasets while RoBERTa performs even better than BERT-Mini. This
shows that even though bigger transformer models are better, a conservatively
sized model is able to outperform the previous generation deep learning method.

Figure 3.6 shows the counterfactual F1 score for LIME, SHAP, Landmark,
and LEMON for DeepMatcher and RoBERTa across all datasets. We see that
the results are similar to those of Magellan and BERT-Mini in Section 3.6.1,
and the biggest improvements over the baselines are seen for non-matches. The
results further strengthen the claim that LEMON is model-agnostic by showing
that it is equally functional for other deep learning architectures and even bigger
transformer models.

Furthermore, Figure 3.7 shows the perturbation error PE for the same ex-
plainability methods and matchers across all datasets. The general tendencies
are the same as for Magellan and BERT-Mini in Section 3.6.2. LEMON is
overall similar to LIME (but performs noticeably worse on some datasets for
non-matches with DeepMatcher), while still being significantly more faithful
than SHAP and Landmark. We note that even though Landmark has sub-
stantially higher perturbation error than LEMON and LIME for DeepMatcher
and RoBERTa, it is still considerably better than for Magellan. We are un-
certain why Magellan triggers particularly large errors, but we suspect it is
because Magellan has a less forgiving decision boundary that changes more
abruptly when multiple attributes are perturbed at the same time since it uses
per-attribute string similarity metrics.
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Table 3.5: F1 Score for the Magellan, DeepMatcher, BERT-Mini, and RoBERTa
Matchers Used in the Experiments on the Public DeepMatcher [91] Benchmark
Dataset.

Type Name
Matcher F1

MG DM BM RoBERTa

Structured

Amazon-Google 0.52 0.67 0.67 0.72
Beer 0.85 0.69 0.76 0.90
DBLP-ACM 0.99 0.98 0.98 0.99
DBLP-Scholar 0.94 0.95 0.93 0.95
Fodors-Zagats 1.00 0.91 0.95 1.00
iTunes-Amazon 0.90 0.87 0.93 0.94
Walmart-Amazon 0.66 0.66 0.80 0.87

Dirty

DBLP-ACM 0.91 0.96 0.97 0.99
DBLP-Scholar 0.83 0.92 0.94 0.95
iTunes-Amazon 0.53 0.65 0.90 0.96
Walmart-Amazon 0.41 0.39 0.79 0.86

Textual
Abt-Buy 0.51 0.68 0.81 0.88
Company 0.57 0.89 0.91 0.91

3.9 Extensive Results

3.9.1 Precision-Recall Trade-off

Table 3.2 from Section 3.6.1 reports counterfactual F1 scores. For completeness
we also present the counterfactual precision and recall for those same exper-
iments in Table 3.8. The desired trade-off between precision and recall will
depend on the use case, so we acknowledge that F1 score will never be a perfect
metric. One could argue that counterfactual precision is often more important
than counterfactual recall because it is harder to trust explanations that convey
false information than explanations that fail to convey anything useful. How-
ever, it would still be challenging to define exactly what the trade-off should
be. Regardless, we see that all evaluated methods have relatively high precision
and in general higher precision than recall.

As expected, we see that the main reason the baselines perform badly on
non-matches is that the counterfactual recall is low. In other words, they simply
struggle to generate explanations that could be interpreted counterfactually.
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Table 3.6: Counterfactual F1 Score for All the Evaluated Explainability Methods
Across All Datasets and the Two Matchers.

Model Type Method

Dataset
Structured Dirty Textual

AG B DA DG FZ IA WA DA DG IA WA AB C Mean

DeepMatcher

Match

LIME 0.98 0.76 0.86 0.68 0.74 0.54 0.84 0.77 0.85 0.59 0.91 0.93 0.22 0.74
SHAP 0.96 0.76 1.00 0.81 0.98 0.60 0.86 0.99 0.97 0.62 0.92 0.96 0.35 0.83
Landmark 0.98 0.76 0.95 0.90 0.96 0.57 0.92 0.96 0.95 0.52 0.85 0.90 0.12 0.79
LEMON 1.00 0.80 1.00 1.00 1.00 0.57 0.98 1.00 1.00 0.54 1.00 0.99 0.21 0.85

Non-match

LIME 0.18 0.26 0.02 0.03 0.00 0.22 0.10 0.02 0.07 0.11 0.14 0.54 0.03 0.13
SHAP 0.22 0.30 0.00 0.01 0.01 0.60 0.17 0.00 0.02 0.35 0.13 0.51 0.08 0.18
Landmark 0.25 0.74 0.17 0.14 0.64 0.37 0.15 0.10 0.21 0.54 0.57 0.98 0.04 0.38
LEMON 0.62 0.97 0.15 0.76 0.89 0.69 0.89 0.73 0.76 0.99 0.65 0.98 0.90 0.77

RoBERTa

Match

LIME 0.99 0.80 1.00 0.89 0.67 0.87 0.77 0.99 0.77 0.84 0.71 0.79 0.19 0.79
SHAP 0.99 0.83 1.00 0.99 0.73 1.00 0.63 1.00 0.98 0.87 0.68 0.81 0.27 0.83
Landmark 0.99 1.00 1.00 0.88 0.82 0.92 0.82 0.99 0.80 0.86 0.82 0.94 0.06 0.84
LEMON 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.96 0.96 0.99 0.27 0.93

Non-match

LIME 0.10 0.15 0.00 0.05 0.00 0.05 0.04 0.00 0.02 0.09 0.10 0.04 0.04 0.05
SHAP 0.04 0.16 0.00 0.02 0.00 0.00 0.12 0.00 0.00 0.05 0.16 0.04 0.06 0.05
Landmark 0.23 0.18 0.09 0.13 0.01 0.11 0.35 0.05 0.11 0.13 0.54 0.58 0.01 0.19
LEMON 0.73 0.58 0.18 0.71 0.83 0.87 0.79 0.53 0.77 0.75 0.92 0.97 0.94 0.74

3.9.2 Magnitude of Changes in User Study

Table 3.9 reports the average edit distance for the record pair, before and after
being altered by the users in the user study (see Section 3.6.3), after seeing
an explanation from LIME or LEMON for all datasets. We observe that users
tend to make bigger changes with LEMON, perhaps indicating that the users
have a tendency to underestimate the changes necessary to sway the matcher
when the explanations are less helpful and they need to rely more on their own
intuition. Matches in the Company dataset are a good example. They require a
surprising amount of perturbation to convince the matchers something is not a
match because the record pairs contain so many redundant highly discriminative
features.

3.9.3 Neighborhood Sample Size

Due to the space constraints, Figure 3.8 and 3.9 from Section 3.6.6 only report
results from the Abt-Buy dataset. Figure 3.13 and 3.14 show the results for all
datasets.

The key takeaway from Section 3.6.6 about neighborhood sampling size Zx

and performance is true for all datasets: it takes a relatively low number of
samples to reach stationary levels of performance, and the F1 score and pertur-
bation error do not change much with more samples after that. We can observe
that, unsurprisingly, datasets with larger records tend to need more samples to
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Table 3.7: Perturbation Error PE for All the Evaluated Explainability Methods
Across All Datasets and the Two Matchers.

Model Type Method

Dataset
Structured Dirty Textual

AG B DA DG FZ IA WA DA DG IA WA AB C Mean

DeepMatcher

Match

LIME 0.36 0.24 0.34 0.46 0.29 0.17 0.55 0.55 0.46 0.23 0.42 0.30 1.28 0.43
SHAP 0.70 0.34 0.82 0.96 0.41 0.40 0.94 0.93 1.09 0.34 0.70 0.46 1.35 0.73
Landmark 0.82 1.38 0.65 0.91 0.38 0.68 0.84 1.01 1.13 2.95 1.75 1.17 1.11 1.14
LEMON 0.38 0.69 0.35 0.44 0.23 0.28 0.37 0.46 0.43 0.57 0.38 0.41 0.62 0.43

Non-match

LIME 0.48 0.36 0.32 0.41 0.22 0.22 0.52 0.44 0.50 0.24 0.49 0.39 0.70 0.41
SHAP 0.75 0.65 0.83 0.73 0.44 0.49 0.79 0.92 0.89 0.57 0.83 0.75 0.92 0.74
Landmark 0.80 1.02 0.85 0.82 0.44 0.63 0.82 0.83 0.80 1.42 0.90 2.21 1.28 0.99
LEMON 0.56 0.91 0.69 0.55 0.30 0.51 0.53 0.49 0.48 0.78 0.58 0.47 0.45 0.56

RoBERTa

Match

LIME 0.34 0.33 0.39 0.51 0.60 0.41 0.67 0.36 0.54 0.54 0.72 0.93 1.34 0.59
SHAP 0.88 1.02 1.27 1.15 0.91 1.05 1.32 1.12 1.07 1.27 1.37 0.94 1.62 1.15
Landmark 0.82 0.73 0.79 0.88 0.84 0.78 0.86 0.80 0.89 0.93 0.90 0.68 1.33 0.86
LEMON 0.36 0.43 0.39 0.47 0.56 0.44 0.53 0.36 0.50 0.53 0.52 0.50 0.54 0.47

Non-match

LIME 0.55 0.64 0.40 0.47 0.57 0.39 0.91 0.92 0.61 0.74 0.79 0.79 0.49 0.64
SHAP 0.88 1.05 1.09 1.31 0.49 0.89 0.96 0.63 0.89 1.71 0.96 0.82 1.03 0.98
Landmark 0.81 0.85 0.81 0.80 0.83 0.79 0.78 0.81 0.79 0.77 0.78 0.81 1.00 0.82
LEMON 0.53 0.69 1.05 0.56 0.74 0.61 0.56 0.74 0.58 0.57 0.44 0.31 0.42 0.60

reach this state.

Overall, the performance increases with more samples up to a certain point
and is significantly hampered by a very low number of samples. This is not only
because the low number of samples leads to erroneous modeling of the effect
of perturbations, but also because there might not have been any interesting
perturbations sampled. However, we note that in some instances the counter-
factual F1 score is higher for a lower number of samples. For example Landmark
on the Company dataset. Upon inspection, we see this is because the low num-
ber of samples makes the surrogate model overfit and make overly confident
claims. This turns out to be correct more often in a strictly counterfactual
sense and pay off in terms of counterfactual F1 score compared to a more faith-
ful approach that fails to provide a counterfactually interpretable explanation.
Unfortunately, this comes at the cost of unacceptably large perturbation errors
and low faithfulness and does therefore not represent a viable option in practice.

In regards to stability, we see from Figure 3.14 that the behavior is similar
on all datasets. The main difference is that datasets with bigger records tend
to need more samples to reach similar levels of stability.

3.9.4 Explanation Complexity

Figure 3.10 from Section 3.6.7 shows the effect of varying K for the Abt-Buy
dataset. For completeness, Figure 3.15 shows the effect of varying K for all
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Figure 3.13: Counterfactual F1 and perturbation error (PE ) of explainability
methods based on neighborhood sampling for BERT-Mini on all datasets when
varying the neighborhood sampling size |Zx|.
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Figure 3.14: Stability of explainability methods based on neighborhood sam-
pling for BERT-Mini on all datasets when varying the neighborhood sampling
size |Zx|.
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Table 3.9: Average Edit Distance of the Changes Made by the Participants in
the User Study.

Dataset

Method

LIME LEMON

Match Non-match Match Non-match

Structured
Amazon-Google 14 15 15 22
Beer 14 20 24 23
DBLP-ACM 24 35 43 64
DBLP-GoogleScholar 20 21 33 39
Fodors-Zagats 14 17 17 16
iTunes-Amazon 17 28 23 35
Walmart-Amazon 12 19 19 17

Dirty
DBLP-ACM 25 25 49 82
DBLP-GoogleScholar 27 23 47 53
iTunes-Amazon 33 36 28 60
Walmart-Amazon 17 20 26 23

Textual
Abt-Buy 14 35 36 36
Company 107 102 556 148

datasets. Experiments were performed as explained in Section 3.6.7.
Results for all datasets verify the claim that, for all but the lowest of Ks, the

counterfactual interpretation and explanation faithfulness is not meaningfully
affected by the choice of K. This is convenient because it lets us prioritize
choosing a K that is suitable for user consumption.

3.9.5 Runtime

Figure 3.11 from Section 3.6.8 shows the runtime for three selected datasets.
We report the equivalent results for all datasets in Figure 3.16. Furthermore,
Figure 3.17 extends the results on stability-runtime trade-off in Figure 3.12 from
Section 3.6.8 to all datasets.

In general, we observe that LEMON has higher runtime than the baselines
across all datasets. The runtime is first and foremost determined by the neigh-
borhood sampling size Zx. However, as discussed in Section 3.6.5 and 3.6.6, even
small sample sizes yield satisfactory counterfactual interpretation and explana-
tion faithfulness, and deciding Zx in practice is mostly a matter of stability.
Therefore, if low runtime is important, one has the option to trade off some
stability to decrease the runtime. Figure 3.17 then tells a different story than
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Figure 3.15: Counterfactual F1 and perturbation error (PE ) of explainability
methods based on neighborhood sampling for BERT-Mini on all datasets when
varying K.
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Figure 3.16 because it shows that the trade-off between runtime and stability
is less than the relative difference in runtime as seen in Figure 3.16 for most
datasets. In other words, one can decrease the neighborhood sampling size of
LEMON to get a more similar runtime as for example Landmark while still be-
ing equally stable and retaining the high level of counterfactual interpretation
and explanation faithfulness. To what degree this trade-off is beneficial depends
on the dataset.
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Figure 3.16: Runtime of explainability methods based on neighborhood sam-
pling for BERT-Mini on all datasets.
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Blocking is a crucial step in large-scale entity matching but often requires
significant manual engineering from an expert for each new dataset. Re-
cent work has show that deep learning is state-of-the-art and has great
potential for achieving hands-off and accurate blocking compared to clas-
sical methods. However, in practice, such deep learning methods are often
unstable, offers little interpretability, and require hyperparameter tuning
and significant computational resources.

In this paper, we propose a hands-off blocking method based on classical
string similarity measures: ShallowBlocker. It uses a novel hybrid set
similarity join combining absolute similarity, relative similarity, and local
cardinality conditions with a new effective pre-candidate filter replacing
size filter. We show that the method achieves state-of-the-art pair ef-
fectiveness on both unsupervised and supervised blocking in a scalable
way.

4.1 Introduction

Entity Matching (EM) is the task of identifying which records refer to the same
real-world entity. It is a core data integration task, and is done either within one
data source (i.e., deduplication) or across data sources [25, 34]. One of the task’s
key characteristics is its quadratic nature. The number of potential matches is
quadratic in the number of records but the actual number of matches is typically
linear in the number of records. This has two important consequences: 1) It
is often computationally infeasible to explicitly compare all potential pairs. 2)
Most record pairs do not match because the ratio of non-matches to matches
increases linearly with the number of records. Therefore, the problem is often
solved in two steps — blocking and then matching, where the blocking step
generates a set of candidate record pairs and the matching step inspect the
candidates to classify them as either match or non-match. The idea is that the
blocking procedure will return a sub-quadratic number of pairs in sub-quadratic
time (ideally linear for both) while still recalling most matches, paving the way
for the matching procedure to achieve high precision using pairwise comparison
in feasible time.

Blocking is a well-studied problem and there exists a multitude of techniques
and methods [100]. Unfortunately, it is often hard to solve the task in practice
without expert knowledge. One needs to be able to pick a suitable method
and potentially hand-tune difficult to understand parameters for the data at
hand. Recently, there has been substantial work on the use of deep learning
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for blocking [39, 127, 152]. One of the potential benefits of such approaches is
having a method that works satisfactorily across most datasets without expert
handcrafting. Of course, deep learning is no silver bullet, and often entails
less interpretability, longer runtime, and tweaking training hyperparameters per
dataset. Additionally, recent work highlights that deep learning methods does
not necessarily outcompete traditional methods in terms of effectiveness [102],
despite earlier reports [127].

Proposed Method In this paper, we propose ShallowBlocker, a novel block-
ing method based on set similarity joins. The method relies on a new prefix
filtering-based similarity join routine, TTRKJoin, that we introduce. The join
routine combines constraints on absolute similarity, relative similarity, and local
cardinality in order to exploit benefits of different similarity join types. Fur-
thermore, we leverage parallelization and propose a new pre-candidate filtering
technique to get an efficient implementation. To support hyperparameter se-
lection, we perform analysis queries on randomly sampled records and known
matches so that we can quickly estimate recall, number of retrieved pairs, and
runtime for different hyperparameter configurations. Finally, through carefully
selected early cutoff on searches in TTRKJoin we achieve approximate joins with
quality guarantees.

ShallowBlocker consists of a strategy for choosing TTRKJoin hyperparame-
ters in both an unsupervised and supervised setting. In the unsupervised setting
the method tries to equally balance the pruning power of the three join con-
straints given a user-specified pair budget and degree of approximation. While
in the supervised setting the method optimizes the join hyperparameters ac-
cording to an arbitrary user-specified objective function expressing the desired
trade-off between recall, number of returned pairs, and runtime.

Contribution Our main contributions are:

• We propose a new hands-off blocking method, ShallowBlocker, and show
that it achieves state-of-the-art pair effectiveness for both unsupervised
and supervised blocking in a scalable way. Importantly, it does not require
elaborate dataset-specific tuning. For unsupervised use the user specifies
pair budget and an optional approximation degree, while for supervised
use the user can specify an arbitrary trade-off between recall, number of
returned pairs, and runtime.
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• We introduce a new expressive hybrid set similarity join primitive, (τ, τr, k)-
join, suitable for blocking.

• We propose TTRKJoin, an efficient (τ, τr, k)-join algorithm with a novel
pre-candidate filtering technique and strong bounds. Furthermore, we
describe a framework for quickly estimating the effect of different hyper-
parameters on TTRKJoin and for performing approximate joins. Shallow-
Blocker introduces effective strategies for determining good hyperparam-
eters for TTRKJoin.

• We demonstrate that classical string similarity blocking methods still out-
perform deep learning-based blocking methods, such as DeepBlocker, on
widely used benchmark datasets.

Outline We start by covering related work (Section 4.2) and problem state-
ment (Section 4.3). Then we introduce important set similarity join theory and
techniques we will build upon (Section 4.4). In order to describe our proposed
method we first discuss the new hybrid join primitive (Section 4.5) followed by
the proposed algorithm for it (Section 4.6), a framework for estimating its behav-
ior (Section 4.7), and how to do and interpret approximate joins (Section 4.8) —
before we describe how everything goes together to form ShallowBlocker (Sec-
tion 4.9). Finally, we describe the experimental setup (Section 4.10), go through
the experiments with results (Section 4.11), and conclude (Section 4.12).

4.2 Related work

Researchers have pursued many approaches for doing blocking, and it is outside
the scope of this paper to provide an extensive overview. We cover only the most
relevant and refer the reader to Papadakis et al. [100] for a detailed survey.

4.2.1 Set Similarity Joins

If we convert records to token sets (e.g., q-grams or words) we can cast blocking
as a set similarity join problem, where the goal is to find all pairs with simi-
larity above some threshold. SSJoin [22] and AllPairs [13] proposed the highly
effective prefix filtering technique for generating candidate pairs in addition to
size filtering. PPJoin [145, 144] extends AllPairs with an additional candidate-
time filter: the positional filter. L2AP [2] specializes prefix filtering for Cosine
similarity measure and introduce tighter bounds based on the Cauchy–Schwarz
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inequality. There is a multitude of methods with more elaborate and aggressive
filtering techniques, both prefix-based and other [100]. However, Mann et al.
[87] show that with efficient implementations the overhead of the filtering tech-
niques often outweighs the benefits, and that AllPairs and PPJoin is the best
performing methods and state-of-the-art.

4.2.2 Deep Learning

The research community have increasingly focused on the use of deep learning
for entity matching the last few years [11], and some also target the blocking
step. DeepER [39] uses pre-trained word embeddings and LSTMs to embed
records. It generates candidate pairs using random hyperplane Multi-Probe
LSH, and record embedding pairs are compared elementwise and then fed into
a SVM to classify as match or no match. The network and SVM is trained using
labeled data. AutoBlock [152] improves over DeepER by using a novel attention
mechanism and cross-polytope LSH. DeepBlocker [127] is a state-of-the-art deep
learning-based blocker. The authors explore a wide range of configurations,
including different training strategies and different network types such as large
pre-trained transformer models. Despite being self-supervised, the method is
more effective than AutoBlock.

4.3 Problem Statement

Let A and B be two sets of records, and let M ⊆ A × B be all record pairs
across A and B that refer to the same entity. In other words, for all (a, b) ∈
M the records a and b are references to the same entity. The goal of entity
matching/resolution is to determine M . For blocking in particular, the goal is
to find a superset P of M such that |P | ≪ |A × B| in subquadratic time and
memory. Informally, the purpose is to remove large amounts of obvious non-
matches so that a high-precision pair comparison downstream does not have to
process a quadratic number of pairs. If A and B is the same set we call the
problem deduplication.

When we evaluate blocking methods we are interested in three main perfor-
mance characteristics:

1. Recall: To what degree the method is able to find true matches. We

measure this with the classical recall measure R = |P |∩|M |
|M | .
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2. Pruning Power: To what degree the method is able to discard potential
pairs. The most direct measure of this is |P |, but that is hard to interpret

and compare across datasets. Reduction rate (1 − |P |
|A×B| ) is a popular

measure, but since |M | is generally expected to be linear in |A| and |B| it
will increase quickly towards 1 for larger datasets if the blocking method is
effective, which makes comparison across dataset sizes difficult. Therefore,

in this paper, we will report the empirical cardinality k̃ = |P |
min(|A|,|B|) .

3. Efficiency: How fast can it be done and with what computational re-
sources. We measure this mainly through runtime, but memory consump-
tion and special hardware requirements (e.g., GPU) is also of interest.

In practice, the former and the two latter are in conflict, so blocking methods
will typically let the user adjust the trade-off between them.

4.4 Set Similarity Joins Using Prefix Filtering

Our method builds heavily on prefix filtering-based set similarity joins. There-
fore, we will now describe existing set similarity join building blocks we exploit in
our method, while the next sections will outline the join routine in our method.

We find it useful to introduce these concepts through the perspective of the
popular similarity join method PPJoin [143, 144], as it offers a familiar frame
of reference for the reader and let us introduce our join routine as an evolution
of PPJoin. Algorithm 2 shows PPJoin similar to how it is presented by the
authors. It performs self-join with jaccard similarity on unweighted sets. We
will use this as a running example of the different building blocks as we go
through them. At the same time we will also describe the same ideas extended
to nonself-joins, other set similarity measures, and weighted sets — resulting in
a more generic version of PPJoin at the end of the section that prepares us for
the next sections.

4.4.1 Set Similarity Join

A set similarity join finds all set pairs with some set similarity measure above a
user-provided threshold τ1. For the purpose of this paper a set contains tokens
from some record. More formally, given two collections of token sets A and B we
want to find all pairs (a, b) ∈ A × B that have similarity above some threshold

1We will see in Section 4.5 that there are other types of similarity joins.
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Algorithm 2: PPJoin(A, τj)
Input: A is a collection of token sets. Each token set is already sorted by O. τj is

the Jaccard threshold.
Output: Token set pairs {(a, a′) | a ∩ a′ ≥ τj}

1 Sort A by increasing size;
2 I ← [∅]t ; // Inverted token indices

3 P ← ∅ ; // Pairs with Jaccard similarity at least τj
4 foreach a ∈ A do
5 O ← empty map, default value 0;
6 for i← 1 to |a| − ⌈τo · |a|⌉+ 1 do // Prefix filter

7 t← a[i];
8 I′t ← {(a′, j) ∈ It | τj · |a| ≤ |a′|} ; // Size filter

9 foreach (a′, j) ∈ I′t do
10 o∗ ← O[a′] + 1 + min(|a| − i, |a′| − j);
11 if o∗ ≥ τj

τj+1
(|a|+ |b|) then // Pos. filter

12 O[a′]← O[a′] + 1;

13 else
14 Remove O[a′];

15 It ← It ∪ {(a′, i)};
16 P ← P ∪ Verify(a,A, O, τj) ;

17 return P ;

τ , i.e., find C = {(a, b) ∈ A× B | sim(a, b) ≥ τ}. If A = B we call it a self-join
and usually ignore self-referring pairs (a, a).

In this paper, we consider four of the most used set similarity measures:
Jaccard, Cosine, Dice, and Overlap. Table 4.1 list their definitions. Note that
Jaccard, Cosine, and Dice are normalized and produce a similarity score between
0 and 1, while Overlap may be arbitrary large.

These similarity measures are for unweighted sets, but our method will
rely on weighted sets. There are several ways to generalize these measures
to weighted sets. We use a straightforward approach where the overlap is gen-
eralized to

∑
k min(ak, bk), where ak is the weight of the kth globally ranked

token in a according to some global ordering O if a contains this token or zero
otherwise2. The weighted counterpart to the four similarity measures are listed
in Table 4.1. For convenience we define x[i] to be the ith token in the weighted
set x according to O, x[i..j] to be the subset containing the ith to the jth (in-

2This is different from [144], where the weight for a given token is assumed to be global.
Here the weight can be different for the same token in different sets — which is important for
weighting schemes like TF-IDF.



116 CHAPTER 4. BLOCKING BASELINE FOR DEEP LEARNING

Prefix size Size bounds Equivalent overlap

Measure sim(a, b) π(x, τ) λl(a, τ) λu(a, τ) α(a, b, τ)

Unweighted

Jaccard
|a ∩ b|
|a ∪ b|

|x| − ⌈τ · |x|⌉+ 1 τ · |a|
|a|
τ

τ

τ + 1
(|a|+ |b|)

Cosine
|a ∩ b|√
|a| · |b|

|x| − ⌈τ2 · |x|⌉+ 1 τ2 · |a|
|a|
τ2

τ
√
|a| · |b|

Dice
2 · |a ∩ b|
|a|+ |b|

|x| −
⌈
τ · |x|
2− τ

⌉
+ 1

τ · |a|
2− τ

(2− τ) · |a|
τ

τ(|a|+ |b|)
2

Overlap |a ∩ b| |x| − τ + 1 τ ∞ τ

Weighted

Jaccard

∑
kmin(ak, bk)∑
kmax(ak, bk)

(1− τ) · ω(x) τ · ω(a)
ω(a)

τ

τ

τ + 1

(
ω(a) + ω(b)

)
Cosine∗

∑
k

ak · bk ω(x)− τ τ ∞ τ

Dice
2 ·

∑
kmin(ak, bk)

|a|+ |b|
(1−

τ

2− τ
) · ω(x)

τ

2− τ
· ω(a)

(2− τ)
τ

· ω(a)
τ

2

(
ω(a) + ω(b)

)
Overlap

∑
k

min(ak, bk) ω(x)− τ τ ∞ τ

Table 4.1: Definitions of the set similarity measures together with prefix size,
size bounds, and equivalent overlap for both unweighted and weighted sets.
∗Requires every set x to be normalized such that ∥x∥2 = 1.

clusive) tokens of x, t.w the weight of a token t, t.k the global rank of a token

t according to the total ordering O, and the size ω(x) =
∑|x|

i=1 x[i].w.

4.4.2 Inverted Token Index

Central to most set similarity joins (and PPJoin) are the use of inverted token
indexes — i.e., indexes of which token set contains a certain token. A naive
approach for finding all the token sets in B that are similar to some a ∈ A
would be to look up all tokens of a to find all token sets in B that have at least
one common token and check if sim(a, b) ≥ τ for all of them. Finding all token
set pairs above the threshold is then just a matter of repeating the procedure
for all a ∈ A3.

This is the underlying idea of PPJoin, as seen in Algorithm 2. Note that
since it performs self-join it employs an optimization where the sets are indexed

3In this case, sets in A are used to query against an index of B. Obviously, one could also
do it the other way around — and depending on the data it might be beneficial. However, for
simplicity, but without loss of generality, we assume A to be the query collection and B the
index collection throughout the paper.
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only after having been queried (see line 15). The problem with this approach is
tokens that occur in a large number of token sets lead to an excessive number
of retrieved token sets, and therefore token set comparisons, for pairs that are
not very similar. There are simply to many token set pairs that have at least
one common token. It is possible to improve on this by efficiently merging the
inverted lists and avoid redundant work (e.g., ScanCount [76]), but we still suffer
from the same underlying problem. Therefore, to achieve feasible runtimes we
need to reduce the total number of lookups and token set comparisons through
multiple pruning techniques — also called filters.

4.4.3 Prefix Filtering

? ? ? ? ? ? ?

? ? ? ? ? ? ?

?

?

(a)

(b)

Figure 4.1: Example of the prefix filtering principle for (a) unweighted and (b)
weighted token sets. The token sets are sorted by the total ordering O. The
highlighted tokens is the prefixes that must have at least one token common if
the Overlap is at least τo.

The key insight that enables prefix filtering is that once one have scanned
through π inverted lists without seeing some token set b we know the intersection
can be at most |a| −π because we know π of the tokens in a does not exist in b.
In other words, we only need to probe |a|− τo+1 inverted lists to be certain we
have found every b ∈ B with an overlap |a∩b| of at least τo, and can safely prune
the remaining inverted token lists. We can provide an even stronger guarantee
if we assume all token sets to be sorted in the same global total ordering O.
This is known as the prefix filtering principle [22] (adapted for this paper):

Lemma 1 (Unweighted Prefix Filtering Principle) Let a and b be two to-

ken sets and assume some total token ordering O. If |a ∩ b| ≥ τo, then
∣∣∣a
[
1..(|a|−
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τo + 1)
]
∩ b
[
1..(|b| − τo + 1)

]∣∣∣ > 0.

In other words, when denoting x[1..π] as the π-prefix of x, if the overlap between
a and b are at least τo, then the (|a|−τo+1)-prefix of a and the (|b|−τo+1)-prefix
of b will have at least one token in common. See Figure 4.1a for an example.
This not only means it is enough to probe the (|a| − τo + 1)-prefix tokens of a
to find the token sets with overlap at least τo in B, but also that we only need
to index the (|b| − τo +1)-prefix for all b ∈ B. This further reduces the indexing
and query time as well as the memory footprint of the inverted index. In the
rest of the paper we will refer to such prefixes sufficient to find similar token
sets of x above some threshold as simply the prefix of x.

Token Ordering The real power of the prefix filtering principle lies in our
ability to freely choose the token ordering O. We order by increasing frequency
of occurrence among token sets — essentially ignoring the most frequent tokens.
If τo is large enough and the distribution of tokens skewed enough we effectively
avoid the problem of frequently occurring tokens.

Other Similarity Measures Utilizing this is straightforward when we have
an Overlap similarity threshold. The trick to extending to other similarity
measures is that we can bound the overlap |a ∩ b| from below using |a| and the
similarity measure at hand. Assume, for example, a Jaccard threshold τj . It
can be shown easily that

simj(a, b) =
|a ∩ b|
|a ∪ b| ≥ τj

⇓
|a ∩ b| ≥ τj · |a|

Which means we can simply replace τo with
⌈
τj · |a|

⌉
and only query the (|a|+⌈

τ · |a|
⌉
+1)-prefix for a ∈ A and only index the (|b|+

⌈
τ · |b|

⌉
+1)-prefix of b ∈ B.

See line 6 in Algorithm 2. One can bound the overlap for the other similarity
measures in a similar fashion. Table 4.1 lists π(x, τ), the prefix size for token set
x with respect to some similarity threshold τ , for all four similarity measures.

Weighted Sets Prefix filtering can easily be extended to weighted sets where
the overlap between a and b is defined as

∑
k min(ak, bk). We generalize the

prefix filtering principle into a weighted version.
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Lemma 2 (Weighted Prefix Filtering Principle) Let a and b be two weighted
token sets and assume some total token ordering O. Furthermore, let ϕ(x, p) =

argmini

(
ω
(
x[1..i]

)
> p
)
. If

∑
k min(ak, bk) ≥ τo then

∑
k min

(
a
[
1..ϕ(a, ω(a)−

τo)
]
k
, b
[
1..ϕ(b, ω(b)− τo)

]
k

)
> 0.

So instead of having to only consider the (|a| − τo + 1)-prefix to ensure we
find every b with overlap |a ∩ b| of at least τo, we have to consider the smallest
π-prefix where the total weight of the π tokens in the prefix are larger than
ω(a) − τo to ensure we find every b with overlap

∑
k min(ak, bk) of at least

τo. The equivalent applies for which tokens of b ∈ B we need to index. See
Figure 4.1b for an example.

We extend to other similarity measures the same way as for the unweighted
case. Table 4.1 lists the prefix size π(x, τ) for all four similarity measures. The
prefix size of a weighted set with respect to some similarity threshold is, instead
of being the sufficient number of tokens, the total weight the prefix need to
exceed.

4.4.4 Size Filter

A simple, yet effective, technique is to crop inverted lists using the size of the
token sets. We note that if |a ∩ b| ≥ τo, then |b| ≥ τo. In other words, τo is
a lower bound on the size of b. Therefore, if we sort the inverted lists for the
tokens of B by increasing size of b we can efficiently skip the beginning of the
list until b ≥ τo.

Generalizing to other set similarity measures is a matter of bounding |b|
using τ and |a|. For example, for a Jaccard threshold τj we have that

simj(a, b) =
|a ∩ b|
|a ∪ b| ≥ τj

⇓
|b| ≥ τj · |a|

We can see this in use at line 8 in Algorithm 2. For the normalized set similarity
measures we can also identify an upper bound and stop traversal of the ordered
inverted lists early, which is useless in the presence of the indexing trick for
self-join in Algorithm 2, but will be useful for nonself-joins. Table 4.1 lists the
upper and lower size bounds, λu(a, τ) and λl(a, τ) for the different similarity
measures.
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The extension to weighted sets when the overlap is defined as
∑

k min(ak, bk)
is straightforward, follows the same derivation, and ends up with the same
bounds (see Table 4.1). The only difference being the size bounds being on
total weight instead of cardinality.

4.4.5 Positional Filter

? ?

? ? ?

? ?

? ? ?

?

?

(a)

(b)

Figure 4.2: Example of the positional filtering principle for (a) unweighted and
(b) weighted tokens sets. The token sets are sorted by the total ordering O.
The example show how we can use the fact that a[i] = b[j] and that we know
the overlap between a[1..(i − 1)] and b[1..(j − 1)] to calculate an upper bound
on the overlap between a and b.

While prefix filtering enables us to reduce the number of tokens we need
to probe, and size filtering let us ignore parts of the inverted lists, positional
filtering let us dismiss many explicit pairs without calculating their similarity.
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The key idea is that if we know a and b have a common token on position i
and j (such that a[i] = b[j]), and we know the overlap between the prefixes
a
[
1..(i− 1)

]
and b

[
1..(j − 1)

]
, we can bound their total overlap because a

[
(i+

1)..|a|
]
∩ b
[
(j + 1)..|b|

]
≤ min(|a| − i, |b| − j). This is known as the positional

filtering principle [144] (adapted for this paper):

Lemma 3 (Unweighted Positional Filtering Principle) Let a and b be two
token sets and x[i..j] be the ith to the jth (inclusive) ranked tokens of a token
set x according to some total ordering O. If |a ∩ b| ≥ τo and a[i] = b[j], then∣∣∣a
[
1..(i− 1)

]
∩ b
[
1..(j − 1)

]∣∣∣+ 1 +min
(
|a| − i, |b| − j

)
≥ τo.

See Figure 4.2a for an example. We utilize this principle by keeping track
of how many common tokens we have seen between a and all token sets in B
as we traverse the inverted lists for a’s prefix in order of O. Additionally, we
store the position j of tokens within the token sets in the inverted lists for B.
Thereby, when we encounter token set b as we probe the inverted list of token
a[i] and know the position of the token in b to be j we can simply check whether∣∣∣a
[
1..(i− 1)

]
∩ b
[
1..(j− 1)

]∣∣∣+1+min(|a| − i, |b| − j) ≥ τo holds and discard the

token set pair immediately if it does not.

Other Similarity Measures If we bound |a∩ b| from below by some expres-
sion α(a, b, τ) using |a|, |b|, and some similarity threshold τ we can use α(a, b, τ)
instead of τo in the inequality since |a ∩ b| ≥ α(a, b, τ) ≥ τo. We call α(a, b, τ)
an equivalent overlap. For Jaccard, one can derive α(a, b, τ) = τ

τ+1 (|a| + |b|),
and we see this being used on line 11 in Algorithm 2. Table 4.1 lists equivalent
overlaps for all similarity measures.

Weighted Sets The positional filtering principle can be extended to weighted
sets:

Lemma 4 (Weighted Positional Filtering Principle) Let a and b be two
weighted token sets and assume some total token ordering O. If

∑
k min(ak, bk) ≥ τo

and a[i] = b[j], then

∑

k

min
(
a
[
1..(i− 1)

]
k
, b
[
1..(j − 1)

]
k

)
+min(a[i], b[j])

+ min

(
ω
(
a
[
(i+ 1)..|a|

])
, ω
(
b
[
(j + 1)..|b|

]))
≥ τo
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Figure 4.2b shows an example. This means we can utilize positional filtering
the same way as before by using the accumulated overlap with different token
sets b ∈ B as we traverse the prefix of a, but instead of storing the position j

we store ω
(
b
[
(j+1)..|b|

])
. One problem with this naive extension of positional

filtering is that in order to calculate min(a[i], b[j]) we must either look up b[j]
or grow the index to include it. The PPJoin authors simply suggest to store

ω
(
b
[
j..|b|

])
and ignores the min(a[i], b[j]) term [144]. This effectively exploits

the fact that

min(a[i], b[j]) + min

(
ω
(
a
[
(i+ 1)..|a|

])
, ω
(
b
[
(j + 1)..|b|

]))

≤ min

(
ω
(
a
[
i..|a|

])
, ω
(
b
[
j..|b|

]))

In our experience, this trade-off between the overhead of accessing/storing b[j]
and the tighter bound with min(a[i], b[j]) favors their approach as long as the
verification routine is fast. Therefore, we assume this form of positional filtering
from here on. We can derive equivalent overlaps as in the unweighted case to
support other similarity measures — see Table 4.1.

4.4.6 Generalized PPJoin

Algorithm 3: BuildIndex(B, τ)
Input: B is a collection of weighted token sets already sorted by O. τ is the

similarity threshold.
Output: Inverted token indices I

1 I ← [∅]t;
2 Sort B by increasing ω(b);
3 foreach b ∈ B do
4 j ← 1;
5 sb ← ω(b);
6 while sb ≥ σ(b, τ) do
7 It ← It ∪ {(b, sb)};
8 sb ← sb − b[j].w;
9 j ← j + 1;

10 return I ;

Figure 4.3 illustrates how the different filtering techniques come together.
We call the prefix and size filter for pre-candidate filters. They prune the im-
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Sorted by increasing 

Pre-candidates

(3) Positional
filtering

(1) Prefix
filtering

(2) Size
filtering

Candidates

(4) Verify

Figure 4.3: Illustration of the filtering steps in PPJoin. Inspired by Mann et al.
[87].

plicit pair space and limit which explicit pairs are materialized. The positional
filter is a candidate filter, which means it prunes explicit pairs before they are
undergo the Verify routine to check if they are above the similarity threshold.
While Algorithm 2 depicts PPJoin similar to how the authors do [143, 144], we
also provide a fully generalized version for the reader in Algorithm 4 (and 3)
that performs nonself-join for weighted sets with any supported set similarity
measure using all the extensions described above. This will serve as a starting
point for describing our method and contrasting it to existing methods.

4.4.7 Improved Prefix Filtering for Weighted Cosine

In Table 4.1 we presented the prefix for weighted cosine similarity one gets
by following the PPJoin authors [144] instructions for extending to weighted
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Algorithm 4: GPPJoin(A,B, τ)
Input: A and B are collections of weighted token sets already sorted by O. τ is the

similarity threshold.
Output: Token set pairs {(a, b) | sim(a, b) ≥ τ}

1 I ← BuildIndex(B, τ); // Inverted token indices

2 P ← ∅ ; // Pairs with similarity at least τ
3 foreach a ∈ A do
4 O ← empty map, default value 0;
5 i← 1;
6 pa ← 0;
7 while pa ≤ π(a, τ) do // Prefix filter

8 t, w ← a[i];
// Size filter

9 I′t ← {(b, sb) ∈ It | λl(a, τ) ≤ ω(b) ≤ λu(a, τ)}
10 foreach (b, pb) ∈ I′t do
11 o∗ ← O[b] + min(ω(a)− pa, sb)
12 if o∗ ≥ α(a, b, τ) then // Positional filter

13 P [b]← O[b] + w
14 else
15 Remove O[b]

16 i← i+ 1
17 pa ← pa + w

18 P ← P ∪ Verify(a,B, P, τ) ;

19 return P ;

similarity — which is close to how prefix filtering is done in AllPairs [13]. The
bound is a natural extension of the unweighted case4. Unfortunately, prefix and
size filtering with these bounds are not very effective because the bounds loosen
as the token sets get bigger. To see why, we will look at an example.

Example 3 Assume a normalized weighted set x of n unique tokens with weight√
1
n , which then has size ω(x) =

∑
n

√
1/n =

√
n. The (relative) prefix size of

x for weighted cosine similarity expressed in fraction of the tokens is

ω(x)− τ

ω(x)
= 1− τ

ω(x)
= 1− τ√

n

We observe that the relative prefix size goes towards 1 as n increases. In other
words, prefix filtering is less and less effective as the token set grow and will

4However, note that it is necessary to assume normalized (unit length) vectors in order to
bound prefix/suffix and size when performing prefix filtering and size filtering. This simply
means one must take care to normalize all token sets before performing the similarity join.
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eventually have no effect. Contrast this to jaccard similarity, which has the
relative prefix size

(1− τ) · ω(x)
ω(x)

= 1− τ

The relative prefix size is independent of the number of tokens. If τ = 0.5 then
prefix filtering will will avoid lookup on half of the tokens no matter how many
tokens the set contains. An equivalent example could be made for size filtering.

L2AP [2] introduces tighter bounds for cosine similarity in AllPairs. The
key is to utilize the Cauchy-Schwarz inequality:

dot(a, b) ≤ ∥a∥2 × ∥b∥2
∑

k

ak · bk ≤
√∑

k

a2k ×
√∑

k

b2k
(4.1)

We can then infer a suffix size bound:

τ ≤ dot(a, b)

= dot
(
a
[
1..(i− 1)

]
, b
)
+ dot

(
a
[
i..|a|

]
, b
)

= dot
(
a
[
i..|a|

]
, b
)

≤
∥∥a
[
i..|a|

]∥∥
2
× ∥b∥2

≤
∥∥a
[
i..|a|

]∥∥
2

(4.2)

Which is equivalent to a prefix size bound of
∥∥a
[
1..(i− 1)

]∥∥
2
≥
√
1− τ2 (4.3)

Note that the bound is on the L2 norm of the prefix instead of the L1 norm as
in PPJoin. Importantly, the bound is much more effective because it does not
grow with the number of tokens.

4.5 Expressive Hybrid Join Primitive

This section will describe a new flexible join primitive that will be the core build-
ing block of our proposed methods. We first discuss strength and weaknesses of
three types of similarity join conditions, and argue that they complement each
others weaknesses and there is merit to combining them. Therefore, we propose
a new hybrid join type and will follow up in the next section with an efficient
algorithmic realization of such a join.
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4.5.1 Similarity Join Conditions

All similarity joins have an inclusion condition specifying which pairs should be
returned or not. We will now briefly discuss three types of the similarity join
conditions used for entity matching.

1. Absolute Similarity Threshold (τ-join) A τ -join returns all set pairs
(a, b) across the set collections A and B such that sim(a, b) ≥ τ . This type of join
for have received a substantial amount of work [e.g., 87], and PPJoin [143, 144]
is an example of a τ -join. The main strength of absolute similarity thresholds is
their ability to consistently filter out low similarity pairs. However, τ -joins do
not handle varying similarity density well. Some sets in A may be quite similar
to many sets in B, while other sets in A may only be modestly similar to a few
sets in B. The problem is that even though a lower τ will avoid a substantial
number of false positives from sets with high similarity density it will struggle
to recall neighbors of sets with low similarity density. While a higher τ will have
the exact opposite problem. See Figure 4.4a-1 and 4.4a-2 for an illustration of
how there might not be any τ that provide an acceptable solution.

2. Relative Similarity Threshold (τr-join) A τr-join returns the pairs
(a, b) for which sim(a, b) ≥ τrS

∗, where S∗ = maxb′∈B sim(a, b′). This type of
join has not received much attention, but a very similar variant5 was recently
studied and motivated by Li et al. [78]. The strength of relative similarity
thresholds is that they can exploit relative differences in similarity to filter
more aggressively when there exists high-similarity matches. While normally
one would be interested in b with a similarity to a of 0.6, one might want to
dismiss it if there exists another b′ with similarity 0.99. The main challenge is
sets that are not highly similar to any other set. As S∗ decreases the relative
similarity of all other sets will converge towards each other. Therefore, setting
τr to a value high enough to get acceptable recall might also lead to certain sets
in A without any similar sets in B generate an unacceptable number of pairs.
See Figure 4.4b-1 and 4.4b-2 for an illustration.

3. Local Cardinality Threshold (k-join) A k-join returns pairs (a, b) such
that b is within the k most similar records to a. These join types have received
increased attention recently for use with deep learning embeddings [e.g., 127].
Note that this is different from joins with global cardinality constraints such

5They formulated it with similarity distance instead of similarity.
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as top-k similarity join [145, 148], which return the k most similar pairs across
all sets, and is outside the scope of this paper. The obvious benefit of a local
cardinality threshold is that it bounds the number of returned pairs and is not
prone to the same scenarios that would blow up the number of returned pairs
like for τ -join and τr-join. It is also adaptive in the sense that it will be able
to pick up both low and high similarity matches depending on the similarity
density. The downside is that the number of returned pairs is static and it is
not able to leverage the similarity values to reduce the number of pairs when
the data suggests so. When all sets in B is very dissimilar to some set a it might
be unnecessary to still insist on returning k pairs for a — maybe a have no
matches. See Figure 4.4c-1 and 4.4c-2 for an illustration of how a k-join might
get unsatisfactory recall when k is set low but might return too many pairs that
are unlikely to match when k is set higher.

4.5.2 Hybrid Join Type

Join
Type Strength Weakness

τ -join Consistently filter out low
similarity pairs

Can not adapt to varying
similarity density

τr-join Filters more aggressively
when a set sticks out as
more similar

Too forgiving when sets
do not stick out with high
similarity

k-join Bounds the number of
pairs and pick up both
low and high similarity
matches

Returns unnecessarily
many pairs when all have
low similarity

Table 4.2: Strength and weaknesses of the join condition for τ -join, τr-join, and
k-join.

Table 4.2 summarizes the strengths and weaknesses of the three join condi-
tions discussed in the previous subsection. We argue that the strengths of the
three individual conditions complement the weaknesses of the others. Therefore,
we propose a hybrid join type incorporating all three: (τ, τr, k)-join.

Definition 2 ((τ, τr, k)-join) Let A and B be two collections of sets, and sim(a, b)
be some set similarity measure. Furthermore, let ψa(b) : B → {1, 2, . . . , |B|} be
a bijective function that order all b ∈ B by decreasing similarity to a so that
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sim(a, b) > sim(a, b′) if ψa(b) < ψ(b′). Finally let S∗
a = maxb∈B sim(a, b). A

(τ, τr, k)-join over A and B with respect to some similarity measure sim is a
join that return all pairs (a, b) such that

sim(a, b) ≥ τ ∧ sim(a, b) ≥ τrS
∗
a ∧ ψa(b) ≤ k

a ∈ A b ∈ B τ τr k

Figure 4.5: Conceptual illustration of (τ, τr, k)-join.

In other words, a (τ, τr, k)-join requires all three join condition to be met at once.
Figure 4.5 illustrates how the different conditions can complement each other the
same way Figure 4.4 illustrated weaknesses of the individual conditions. This
join type is significantly more expressive, but the number of hyperparameters
also increases, which makes it more challenging to choose hyperparameters.
This will be a central part of our proposed method and will be addressed in
later sections. For now, assume that they are provided.

4.6 Efficient (τ, τr, k)-join Algorithm

We will now propose an efficient algorithm, TTRKJoin, for performing (τ, τr, k)-
joins with weighted Jaccard, Cosine, Dice, or Overlap similarity. The join
routine is prefix filtering-based and is outlined in Algorithm 6. Even though
TTRKJoin is significantly different than PPJoin, we will for the benefit of the
reader motivate and describe TTRKJoin as a series of changes to PPJoin6 — as
this is a well-known and state-of-the-art method [87]. First, we describe how we
handle the additional τr and k join conditions. Then, we describe how we in-
corporate a better cosine prefix bound from L2AP [2], before we propose a new

6Specifically, the generalized version, GPPJoin, presented in Section 4.4.6.
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Algorithm 5: BuildTTRKIndex(B, τ ; sim)

Input: B is a collection of weighted token sets already sorted by O. τ is the
similarity threshold.

Output: Inverted token indices I+, I− for token sets with above and below
average prefix weight.

1 I ← [∅]t;
2 P ← [0]t;
3 foreach b ∈ B do
4 j ← 1;
5 pb ← 0;
6 while sb ≥ σ(b, τ) do
7 It ← It ∪ {(b, j, pb)};
8 Pt ← Pt + pb;
9 pb ← pb + b[j].w;

10 j ← j + 1;

11 I+ ← [∅]t;
12 I− ← [∅]t;
13 foreach It ∈ I do
14 pb ← Pt/|It|;
15 I+t .minPrefix←∞;

16 I−t .minPrefix←∞;
17 foreach (b, j, pb) ∈ It do
18 sb ← ω(b)− pb;
19 if pb ≥ pb then

20 I+t ← I+t ∪ {(b, j, sb)};
21 I+t .minPrefix← min(I+t .minPrefix, pb);

22 else

23 I−t ← I−t ∪ {(b, j, sb)};
24 I−t .minPrefix← min(I−t .minPrefix, pb);

25 Sort I+t and I−t by increasing sb;

26 return I+, I−;
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Algorithm 6: TTRKJoin(A,B, τ, τr, k, ρ∗; sim)

Input: A and B are collections of weighted token sets already sorted by O. τ and
τr are the similarity threshold and the relative similarity threshold. k is the
maximum number of neighbors per token set. ρ∗ is the maximum traversal
rank.

Output: Results of a (τ, τr, k)-join with a maximum traversal rank of ρ∗

1 I+, I− ← BuildTTRKIndex(B, τ);
2 P ← ∅;
3 foreach a ∈ A do
4 Q← empty min heap;
5 V ← ∅;
6 τ̃ ← τ ;
7 i← 1;
8 ρ← 0;
9 sa ← ω(a);

10 while sa ≥ σ(a, τ̃) do // Prefix filter

11 t, w ← a[i];

12 foreach It ∈ [I−t , I
+
t ] do

13 start ← binary search first It[start] ≥ λl(a, τ̃);
14 end ← binary search last It[end] ≤ λu(a, τ̃);
15 ρ← ρ+ (start− 1);

// PPS filter

16 foreach (b, j, sb) ∈ It[start..end] do
17 ρ← ρ+ 1
18 if ρ > ρ∗ then break loop at line 10

// Positional filter

19 if min(sa, sb) ≥ α(a, b, τ̃) then
20 continue

21 if b ∈ V then continue
22 S ← PartialSim(a, b, i, j, sa, sb, τ̃)
23 V ← V ∪ {b}
24 if S ≥ τ̃ then
25 Q.push(b, S)
26 if |Q| > k then Q.pop()
27 if |Q| = k then τ̃ ← max(τ̃ , Q.top.sim)
28 if τr · S > τ̃ then
29 τ̃ ← τr · S
30 while Q.top.sim < τ̃ do Q.pop()

31 ρ← ρ+ (|It| − end)
32 sa ← sa − w;
33 i← i+ 1;

34 P ← P ∪Q;

35 return P ;
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Algorithm 7: PartialSim(a, b, i, j, sa, sb, τ ; sim)

Input:
Output:

1 if a[|a|] > b[|b|] then
2 swap(a, b); swap(i, j); swap(sa, sb);

3 o← α(a, b, τ̃);
4 intersection ← 0 ; // For

∑
kmin(ak, bk)

5 union ← (ω(a)− sa) + (ω(b)− sb) ; // For
∑
kmax(ak, bk)

6 dotProduct ← 0;
7 while i ≤ |a| do
8 while a[i] > b[j] do
9 sb ← sb − b[j].w;

10 if sb < o then return 0;
11 union← union + b[j].w;
12 j ← j + 1;

13 if a[i] = b[j] then
14 o← o−min(a[i].w, b[i].w);
15 sa ← sa − a[i].w;
16 sb ← sb − b[i].w;
17 if min(sa, sb) < o then return 0;
18 intersection← intersection + min(a[i].w, b[i].w);
19 union← union + max(a[i].w, b[i].w);
20 dotProduct← dotProduct + a[i].w · b[i].w;
21 j ← j + 1;

22 i← i+ 1;

23 while j ≤ |b| do
24 sb ← sb − b[j].w;
25 if sb < o then return 0;
26 union← union + b[i].w;
27 j ← j + 1;

28 return sim(intersection/union/dotproduct/ω(a)/ω(b));
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effective filtering technique to replace size filtering. Following, we introduce an
additional parameter to the algorithm that will be used to achieve approximate
joins in Section 4.8. Lastly, we cover some implementation details.

4.6.1 Join Conditions

While it is possible to naively extend GPPJoin to handle the τr and k conditions
by simply applying them to candidates from the Verify routine, this would
not exploit the constraints put on the similarity to prune the search space.
Therefore, we evolve GPPJoin in two main ways — one for k and one τr.

Local Cardinality Threshold k

We keep track of the k most similar token sets in a minimum priority queue
Q as we probe the inverted lists for a. Instead of accumulating the overlap in
O for all the candidates in the prefix of a, we eagerly compute the similarity
(line 22) to each b on first encounter in order to maintain Q. We avoid redundant
work by keeping track of already encountered token sets in V (line 21 and 23).
Furthermore, let τ̃ be the similarity threshold used by prefix, size, and positional
filtering. It is initially set to τ , but Q let us tighten τ̃ to max(τ̃ , Q.top.sim) when
Q have been updated and |Q| = k because we know that we are not interested
in token sets b with a similarity to a lower than those among the top k we have
already found (line 27). Effectively, the three filters (prefix, size, positional) are
now dynamic and tighten as we discover token sets with higher similarity.

Relative Similarity Threshold τr

Every time we compute a new similarity S to a set b ∈ B we try to tighten τ̃
with τrS (line 28-29). If it is tightened we also make sure to prune Q with the
new threshold (line 30).

4.6.2 Incorporating L2 Based Cosine Bounds

In Section 4.4.7 we saw that the bounds for weighted cosine from PPJoin [144]
get more loose as the number of tokens increases. L2AP [2] offers a tighter
bound on the prefix, but on the L2 norm of the prefix instead of L1. We want a
unified algorithm that can handle all four similarity measures (Jaccard, Cosine,
Dice, Overlap) while also exploiting this bound.
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Norm Lower query suffix bound Index suffix bounds Equivalent overlap

Measure sim(a, b) l σ(x, τ) λl(a, τ) λu(a, τ) α(a, b, τ)

Jaccard

∑
kmin(ak, bk)∑
kmax(ak, bk)

1 τ · ω(x) τ · (ω(a) + pb)
sa

τ
− pa − pb

τ

τ + 1

(
ω(a) + ω(b)

)
Cosine∗

∑
k

ak · bk 2 τ2
τ2

sa
∞ τ

Dice
2 ·

∑
kmin(ak, bk)

|a|+ |b|
1

τ

2− τ
· ω(x)

τ

2− τ
· (ω(a) + pb)

(2− τ)
τ

· sa − pa − pb
τ

2

(
ω(a) + ω(b)

)
Overlap

∑
k

min(ak, bk) 1 τ τ ∞ τ

Table 4.3: Definitions of the weighted set similarity measures together with
suffix bounds and equivalent overlap we use in TTRKJoin. ∗Requires every set
x to be normalized such that ∥x∥2 = 1.

We generalize the size function ω to be the l-norm sum:

ω(x) = ∥x∥ll =
∑

k

xlk (4.4)

Furthermore, let all prefixes and suffixes be l-norm sums. In this setup, Cosine
has l = 2 while Jaccard, Dice, and Overlap have l = 1. The prefix size for cosine
is then 1− τ2, while they remain the same for the other similarity measures. To
simplify the bounds and the algorithm we operate with suffix bounds instead of
prefix bounds. Table 4.3 lists the suffix bounds for the four similarity measures,
as well as the norm to use. Note that we can not do size filtering for cosine with
this definition of size because it will always be 1 for normalized weighted token
sets. Luckily, we will not be using size filtering.

4.6.3 Prefix-Partitioned Suffix Filtering

PPJoin (and many other set similarity joins) accumulates overlap for candidates
over all tokens in the prefix before computing all similarities. We compute
similarities eagerly on first occurrence of a candidate in an inverted list and
simply ignore the same candidate if it shows up in subsequent inverted lists.
This allows us to make use of the local cardinality threshold k and relative
threshold τr to prune more aggressively by increasing the dynamic threshold τ̃
during the search. Moreover, it also opens up alternative ways than size filtering
to trim the inverted lists. We will now describe our proposed pre-candidate filter,
the Prefix-Partitioned Suffix (PPS) Filter, in three steps.
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Suffix Instead of Size

The key observation is that when we encounter token set b for the first time
when looking up a’s ith token and that token has position j in b we know that
there is no overlap between a[1..(i− 1)] and b[1..(j − 1)]. To simplify notation,
let the prefix and suffix of a and b be pa = ω(a[1..(i − 1)]), sa = ω(a[i..|a|]),
pb = ω(b[1..(i− 1)]), and pb = ω(b[j..|b|]).

The overlap between a and b is upper bounded by the suffix sb (and sa).
Therefore, we can sort by and threshold sb instead of w(b) in size filtering with
the same bounds. We call this a suffix filter7 — in contrast to size filter. It
makes intuitively sense to filter on the suffix of sets in b ∈ B because the suffix of
b reflects the remaining tokens a can still overlap with. In effect, the suffix filter
moves part of the pruning power of the positional filter from candidate filtering
to pre-candidate filtering. It has significantly tighter lower bounds than the size
filter because sb ≤ ω(b), but also has looser upper bounds. However, reusing
the bounds from size filtering is naive, and we can do better with the extra
positional information we have available.

Position-Enhanced Index Suffix Bounds

Tighter bounds can be inferred by using the fact that a[1..(i−1)] and b[1..(j−1)]
will not have any overlap. Take Jaccard as an example (with threshold τj):

∑
k min(ak, bk)∑
k max(ak, bk)

≥ τj
∑

k min(ak, bk)

ω(a) + ω(b)−∑k min(ak, bk)
≥ τj

(τj + 1)
∑

k

min(ak, bk) ≥ τj(ω(a) + ω(b))

(τj + 1)
∑

k≥ks

min(ak, bk) ≥ τj(ω(a) + ω(b))

(4.5)

7Not to be confused with the suffix filter in PPJoin+ [144], which performs candidate (not
pre-candidate) filtering.
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where ks = max(a[i].k, b[j].k). We can use the fact that
∑

k≥ks
min(ak, bk) is

upper bounded by sb and sa to get a lower and upper bound of sb:

(τj + 1)
∑

k≥ks

min(ak, bk) ≥ τj(ω(a) + ω(b))

(τj + 1)sb ≥ τj(ω(a) + ω(b))

(τj + 1)sb ≥ τj(ω(a) + pb + sb)

sb ≥ τj(ω(a) + pb)

(4.6)

(τj + 1)
∑

k≥ks

min(ak, bk) ≥ τj(ω(a) + ω(b))

(τj + 1)sa ≥ τj(ω(a) + ω(b))

(τj + 1)sa ≥ τj(pa + sa + pb + sb)

sb ≤
sa
τj

− pa − pb

(4.7)

Bounds for the other similarity measures can be inferred in similar fashion8.
They are listed in Table 4.3.

The bounds rely on pa, sa, and pb. The attentive reader might have realized
that, while pa and sa is known when applying the suffix filter, we do not actually
know pb because it might (and most likely will) differ between the different
entries in the inverted list It. We must replace it with a lower bound. Instead
of simply using zero we can use the minimum pb in It — denoted It.minPrefix.

Prefix-Partitioned Index

For Jaccard and Dice, where the bounds rely on pb, higher It.minPrefix results
in tighter suffix bounds. This makes intuitive sense since a larger prefix of index
sets b ∈ It that does not overlap with the query a means a smaller fraction of
each b’s size can overlap with a. Obviously, with large inverted lists it is likely
that It.minPrefix will be low.

In order to prune sets with large prefixes more aggressively we partition each
It into two inverted lists I+t and I−t , containing sets with prefixes above and
below the average prefix size pb. Both I

−
t and I+t are still sorted by sb and we can

crop them the same way we would for a suffix sorted It, but now I+t .minPrefix
will be at least pb. The additional work at indexing time is negligible but it
introduces some overhead at query time because twice as many lists need to be

8We use the Cauchy-Schwarz inequality for Cosine.
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cropped. Assuming an appropriate spread in prefix sizes the increased pruning
of I+t can make up for it and more.

While other more intricate partitioning schemes are possible, we find this to
be a reasonable approach that exploits additional positional information without
severely increasing the complexity or overhead compared to a standard sorted
inverted list. We deem further exploration of alternative approaches outside the
scope of this paper and hope to address it in future work.

Putting it Together

minPrefix

minPrefix

Figure 4.6: An example of performing Prefix-Partitioned Suffix Filtering when
looking up token t of token set a and looking for matches with a Jaccard simi-
larity of at least 0.5.

Algorithm 5 outlines the construction of the index with prefix-partitioned
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inverted lists sorted by suffix size. We first construct inverted lists for all tokens
and then partition them on prefix and sort by suffix afterwards. The actual
implementation partitions It in-place and reuses its memory for I−t and I+t . The
runtime complexity is the same as for building GPPJoin index (Algorithm 3):
O(T + |T |df∗ log df∗), where df∗ is the maximum frequency of any token among
the token sets in B. We use the partitioned lists at line 12 in Algorithm 6. Note
that we crop and traverse I−t first because it is (heuristically) more likely to
contain high-similarity sets. Figure 4.6 show an example of performing Prefix-
Partitioned Suffix Filtering.

4.6.4 Early Traversal Rank Cutoff (ρ∗)

The filtering techniques employed allow us to prune the search space aggressively
by skipping and cropping the inverted lists and avoid full similarity comparison,
but sometimes this is not enough. This is especially true when the thresholds are
set conservatively (low τ and τr, high k). Therefore, we introduce an additional
parameter to stop the search for each a ∈ A early.

Definition 3 Assume we are querying a and I−a[1], I
+
a[1], . . . , I

−
a[|a|], I

+
a[|a|] are all

the inverted lists of the tokens in a. To simplify notation, let I−a[n] = I2n−1 and

I+a[n] = I2n. The traversal rank ρ for the qth entry in In is q +
∑n−1

i=1 |Ia[i]|.
The parameter ρ∗ is the maximum traversal rank and Algorithm 6 will only
consider entries of the inverted indices with ρ ≤ ρ∗. Note that the traversal
rank of an entry is stable across different values of τ , τr, and k. Thus, ρ∗ will
always prune the same entries. This requires some extra bookkeeping (line 15
and 31) to handle the PPS filter.

Setting ρ∗ = ∞ yields a (τ, τr, k)-join, but lower values might yield differ-
ent results. This parameter is the key to perform approximate (τ, τr, k)-joins.
We postpone the discussion about how to interpret and automatically set this
parameter to Section 4.8.

4.6.5 Exploiting Parallelization

State-of-the-art deep learning methods exploit modern GPUs to train and run
their neural networks in a massively parallel fashion. While there is no trivial
way to leverage GPUs for our join algorithm, it is relatively easy to make use of
multiple CPU cores since the main loop on line 3 is embarrassingly parallelizable.
Additionally, we can parallelize partitioning and sorting of the inverted lists in
the BuildTTRKIndex routine (Algorithm 5).
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4.6.6 Fast Verification

We adapt the verification routine from Mann et al. [87] to weighted sets and
other similarity measures in order to form a fast similarity routine. See PartialSim
in Algorithm 7. Since we compute the similarity when encountering first com-
mon token t and we know the position of t in a and b9 as well as their suffixes
sa and sb, we can skip the tokens a[1..(i − 1)] and b[1..(j − 1)] (remembering
to take care of the Jaccard denominator). Furthermore, we can keep track over
the remaining suffix weight of the token sets, as well as the remaining necessary
overlap, to detect early that we can not meet the similarity threshold. Note that
Algorithm 7 computes the terms for all similarity measures to give a complete
picture, but in practice we can compute only the ones necessary for the measure
at hand.

4.7 Join Behaviour Estimation Framework

TTRKJoin have four hyperparamters that are hard to set. No matter the tech-
niques we employ to make the algorithm efficient, it will still be very resource
intensive to explore different hyperparameter configurations by simply running
the algorithm with a large number of different configurations. So central to the
method we will propose is the ability to estimate its behaviour with different
hyperparameters without running the full algorithm. We are interested in esti-
mating the three key characteristics of blocking through their main measure: 1)
Recall, 2) Number of retrieved pairs, and 3) Runtime. In this section, we will
present a framework for estimating these properties through analysis of select
or sampled queries.

4.7.1 Recall Conditions

The only reliable way to estimate recall (at least in the general case) is to eval-
uate against known matches. Assume we have a representative subset of known
matches M̃ ⊆M . Instead of running TTRKJoin with every hyperparamter con-
figuration of interest to find the recall of M̃ , assume for each known match
m ∈ M̃ we know the maximum τ and τr and the minimum k and ρ∗ that is
necessary to recall it. We call those four values the recall conditions of m —
denoted θm. Given a hyperparameter configuration (τ, τr, k, ρ

∗) we can answer

9Note that BuildTTRKIndex stores both the position j and the suffix size sb of the token t
in b in the inverted list.
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whether a match m would be recalled by TTRKJoin in constant time by checking
whether the hyperparameters respect the recall conditions θm. Furthermore, if
we have the recall conditions Θ = {θm} for all m ∈ M̃ we can trivially estimate

the recall in O(|M̃ |) time. For this strategy to be effective we need to able to
find the recall conditions efficiently.

Finding Recall Conditions

Algorithm 8: FindRecallCond(A, I±, M̃ ,D, [τ, τr, k, ρ∗]; sim)

Input: A is a collection of weighted token sets already sorted by O. I± is a PPS

index of B. M̃ ⊆ A× B are known matches. D are regularization parameter
values of interest. τ, τr, k, ρ∗ are the most permissive values of the TTRKJoin

parameters that the conditions will cover (defaults to [0, 0,∞,∞]).
Output: Θd, the strictest join conditions (τ, τr, k, ρ∗) that would recall each match

in M̃ per regularization configuration d ∈ D.
/* TTRKJoin with the following changes: */

// 1. Use provided index

1 I+, I− ← I±;
// 2. Initialize conditions

2 Θ← {∅}d;
· · ·
// 3. Query A

M̃
instead of A

AM ←
{
a ∈ A | ∃b∈B

[
(a, b) ∈ M̃

]}
;

3 foreach a ∈ A
M̃

do
· · ·
// 4. Use matches to tighten threshold

6 τ̃ ← max
(
τ, (1−maxD)min

b|(a,b)∈M̃ sim(a, b)
)
;

· · ·
// 5. Store ρ for each candidate

25 Q.push((b, ρ), S);
· · ·
// 5. Recall conditions instead of candidates

34 Θd ← extract recall conditions from Q for each d ∈ D;

35 return Θ;

We can run a modified version of TTRKJoin once to determine the recall
conditions of M̃ . Algorithm 8 outlines this modified version, FindRecallCond.
The idea is to search for each a that occur in a match (a, b) ∈ M̃ , and then
extract the recall conditions from Q. We make sure to store the traversal rank ρ
of when b was discovered in Q (Line 25). The recall conditions are then trivially
found by sorting in descending similarity order and traversing Q looking for
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each b that match a. Given (b, ρ) at position i in sorted Q, the maximum τ is
Q[i].sim, the maximum τr is Q[i].sim/Q[1].sim, the minimum k is i, and the
minimum ρ∗ is ρ.

We make two optimizations beyond those in TTRKJoin. First, we only query
a ∈ A which are part of at least one match (Line 3). Second, we can tighten τ̃
up front (Line 6) since we know which b ∈ B we are interested in finding and
token sets with lower similarity will not affect their recall conditions.

Regularization

If we use recall conditions for a limited sized M̃ to decide hyperparameter con-
figurations we risk overfitting. Therefore, we propose a simple, yet effective,
regularization parameter applied on recall conditions to control overfitting: the
similarity margin d. Given a match m = (a, b), the recall conditions θdm for m
with similarity margin d is the recall conditions m would have if the similarity
of a and b was (1 − d)sim(a, b) and all other similarities remained unchanged.
Higher values of d give more conservative recall conditions and stronger regu-
larization.

FindRecallCond (Algorithm 8) accepts a set D of similarity margins and

returns the recall conditions for all m ∈ M̃ for each d ∈ D. The recall conditions
for different d are extracted from the sorted Q by simulating the effect it would
have if the similarity was (1−d)·sim(a, b). This is straightforward for maximum
τ , maximum τr, and minimum k, but the effect on minimum ρ∗ is not easily
defined. As a heuristic, we set the minimum ρ∗ to the maximum of the traversal
rank of b and the candidate at the position in Q we would replace if we lowered
the similarity of b to (1−d) ·sim(a, b). Note that in order to be sure Q contains
enough candidates to see the effect of each d ∈ D we factor them in when
tightening τ̃ with the matches on line 6.

4.7.2 Search Trajectories

One uncomplicated way to estimate the number of retrieved pairs and runtime
for a hyperparameter configuration without running the full algorithm is to
randomly sample a subset Ã ⊆ A, run TTRKJoin on it, and then multiply
the resulting number of pairs and runtime with |A|/|Ã|. Assuming |Ã| is large
enough, it will provide accurate estimations with a |Ã|/|A| reduction in runtime.
Unfortunately, that might still be too computationally expensive if we want to
check many hyperparameter configurations.
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Therefore, we propose an approach were we selectively record the state of the
search and runtime as we query each a ∈ Ã once, and then use this information
to quickly simulate approximate runs of TTRKJoin on Ã. The result of the
simulated runs will provide us with pessimistic estimations of the number of
returned pairs and runtime. Additionally, we can estimate the sum of similarities
for the returned pairs, which will be important when doing approximate joins.

Let a search trajectory checkpoint reflect the state of the search at some
traversal rank ρ and consist of six parts:

1. CHP : Cumulative histogram quantifying the number of pairs with sim-
ilarity below |CHP | linearly spaced similarity levels between 0 and the
highest possible similarity10.

2. CHS : Cumulative histogram quantifying the summed similarity for pairs
with similarity below |CHS | linearly spaced similarity levels between 0
and the highest possible similarity.

3. S−
log k: Lower bound on similarities for the top k pairs for exponentially

spaced values of k such that k = argmaxk̂

[
⌈log k̂⌉ = ⌈log k⌉

]
.

4. rt: Empirically measured runtime since the start of query for a.

5. S∗: Highest similarity among the candidates.

6. sa: The current prefix of the query a we have traversed so far.

Let a search trajectory ψ for a token set a on index I± be a list of checkpoints
for exponentially spaced values of ρ. We can record search trajectories for Ã by
running a modified version of TTRKJoin, as outlined in Algorithm 9. We will
now briefly explain how we use the recorded trajectories to estimate the number
of returned pairs, runtime, and similarity sum.

Estimating the Number of Pairs

In order to be more robust to overfitting we estimate an upper bound of the
number of pairs instead of the number of pairs directly. We do this by first
upper bounding the returned pairs from querying a ∈ Ã and then multiplying
the upper bound with |A|/|Ã| to get an estimated upper bound on the total
number of pairs returned.

10The highest possible similarity is 1 for Jaccard, Cosine, and Dice — while for Overlap it
is min(ω(a),maxb∈B ω(b)).
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Algorithm 9: RecordTrajectories(Ã, I±, [τ, τr, k, ρ∗]; sim)

Input: Ã is a collection of weighted token sets already sorted by O. I± is a PPS
index of B. τ, τr, k, ρ∗ are the most permissive values of the TTRKJoin

parameters that the trajectories will cover (defaults to [0, 0,∞,∞]).

Output: Ψ, search trajectory for each a ∈ Ã.
Constants: |HP | = |HS | = |CHP | = |CHS | = 100; rψ = 1.1; Base number of log k:

1.1;
/* TTRKJoin with the following changes: */

// 1. Use provided index

1 I+, I− ← I±;
// 2. Initialize trajectories

2 Ψ← ∅;
· · ·

3 foreach a ∈ Ã do
// 3. Initialize trajectory bookkeeping

6 ψ ←empty array, ρψ ← 1, S∗ ← 0;
HP , HS ← empty histograms, start← now();
· · ·

16 foreach (b, j, sb) ∈ It[start..end] do
// 4. Store trajectory checkpoints

if ρ ≥ ρψ then
ρψ ← ⌈rψ · ρψ⌉;
rt← now()− start;
CHP , CHS , S

−
log k ← from HP and HS ;

ψ.push((CHP , CHS , S
−
log k, rt, S

∗, sa));

· · ·
// 5. Maintain HP , HS, and S∗

25 Q.push(b, S), H.add(S);
26 S∗ ← max(S∗, S);
27 if |Q| > k then

Spop ← Q.pop().sim;
Remove Spop from HP and HS ;

· · ·
28 while Q.top.sim < τ̃ do

Spop ← Q.pop().sim;
Remove Spop from HP and HS ;

· · ·
// 6. Last checkpoint

ts← now()− start;
CHP , CHS , S

−
log k ← from HP and HS ;

ψ.push((CHP , CHS , S
−
log k, rt, S

∗, sa));

S ← sorted descending similarities from Q;
CS ← cumulative S;
// 7. Store trajectory

34 Ψ← Ψ ∪ {(ψ,S, CS)};
35 return Ψ;
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To get an upper bound on the number of pairs for a single query of a with
hyperparameters (τ, τr, k, ρ

∗) using the corresponding search trajectory ψ, first
lookup the checkpoint with lowest ρ such that ρ ≥ ρ∗. Then lookup the lowest
similarity bin of CHP which interval lies below (or touches) max(τ, τrS

∗) —
denoted CHP [max(τ, τrS

∗)]. Taking k into consideration, the lower bound is

min(k, CHP [max(τ, τrS
∗)]). Sum the upper bounds for all a ∈ Ã and multiple

by |A|/|Ã| to get the estimate for (an upper bound of) the total number of

returned pairs. This is done in Θ(|Ã|) time.

Estimating Runtime

To estimate an upper bound for the runtime of a single query a with hyper-
parameters (τ, τr, k, ρ

∗) using the corresponding search trajectory ψ, we bi-
nary search for the checkpoint with lowest ρ that satisfy ρ ≥ ρ∗ and sa ≥
σ
(
a,max[τ, τrS

∗, S−
⌈log k⌉]

)
. The estimated upper bound for the runtime is then

the empirical runtime rt for that checkpoint. Sum the estimates for all a ∈ Ã
and multiple by |A|/|Ã| to get the estimate for total runtime of the join11.
Since the traversal rank is always bounded by the total number of tokens

∑
B

in B, and the checkpoints are exponentially spaced, estimating the runtime is
O(|Ã| log log∑B).

There are many sources of uncertainty when estimating the runtime like this.
Measuring empirical runtime is in itself unreliable, the RecordTrajectories

routine have higher overhead than TTRKJoin, and it does not effectively capture
the effect of the PPS and positional filter (only prefix) when using different
hyperparameters. However, we argue that it is sufficient as an heuristic to
distinguish different orders of magnitude in runtime when automatically picking
hyperparameters. The reported results of our method will back up this claim.

4.8 Approximate Joins

One can achieve great runtime performance for even large datasets with similar-
ity joins by picking the similarity threshold aggressively enough [87]. Unfortu-
nately, for datasets that require conservative thresholds (e.g., τ < 0.4 for cosine,
or equivalently picking k moderately high for a k-join approach) to get high re-
call it is challenging to avoid approaching quadratic runtime. The main reason

11In addition, divide by number of threads when running in parallel.
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is because the effectiveness of prefix filtering degrades quickly once the similar-
ity threshold is so low we do not prune away high frequency tokens anymore —
we can end up checking most token sets in B.

A popular approach to scalability problems when further impactful algo-
rithmic improvements are difficult to pull off is to relax the requirements and
allow approximations that are good enough for practical purposes. Note that
for string similarity-based blocking in particular this is not unreasonable since
the similarity measures and thresholds we use are already in reality approxima-
tions. In this section, we will propose a simple and effective way of performing
approximate (τ, τr, k)-joins with TTRKJoin.

4.8.1 Definitions

Let us start by defining what constitute an approximate join and the quality of
it.

Definition 4 (Approximate (τ, τr, k)-Join) Let A and B be two collections
of sets, and sim(a, b) be some set similarity measure. An approximate (τ, τr, k)-
join is any routine that will return a set of pairs P such that for all pairs
(a, b) ∈ P

sim(a, b) ≥ τ ∧ sim(a, b) ≥ τr max
(a′,b′)∈P |a′=a

[
sim(a′, b′)

]

and that for all a ∈ A
∣∣{(a′, b′) ∈ P | a′ = a}

∣∣ ≤ k

In other words, while a (τ, τr, k)-join must return all pairs that are among
the k most similar and within τr of the most similar for each a ∈ A in addition
to having a similarity of at least τ , an approximate (τ, τr, k)-join must only
return some set of pairs that is internally consistent. That is, there can not
be more than k pairs for each a ∈ A, two pairs (a, b) and (a, b′) such that
sim(a, b) < τr · sim(a, b′), or any pairs with similarity below τ . In order to
quantify how well an approximate (τ, τr, k)-join approximates an exact (τ, τr, k)-
join we define the quality of an approximate join.

Definition 5 (Quality of Approximate Join) Let Ba be the token sets from
B matched to some token set a ∈ A by a (τ, τr, k)-join and let S∗

a = maxb∈Ba sim(a, b).
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Furthermore, let B̂a be the token sets matched to a from an approximate (τ, τr, k)-
join. The quality of this approximate (k, τ, τr)-join on A and B is defined as

1

|A|
∑

a∈A

∑
b∈B̂a|sim(a,b)≥τrS∗

a
sim(a, b)

∑
b∈Ba sim(a, b)

The quality of an exact (k, τ, τr)-join is trivially always 1. The intuition is
that approximations that miss high-similarity pairs that stick out and can not be
replaced are of low quality, while approximations that miss some pairs but have
found others with comparable similarity are of high quality. Note that we only
include b ∈ B̂a when the similarity is at least τr of the highest similarity that
exist to a. This is so approximate joins can not be rewarded for not including
the highest similarity pair for any a ∈ A (and achieving a quality above 1).

Example 4 Assume τ = 0.2, τr = 0.5, k = 4 and let A = {a1, a2} and B =
{b1, . . . , b6}. The similarity according to some similarity measure is

b1 b2 b3 b4 b5 b6

a1 0.5 0.8 0.1 0.4 0.6 0.6
a2 0.4 0.3 0.5 0.9 0.2 0.4

The result of a (τ, τr, k)-join would be

P = {(a1, b1), (a1, b2), (a1, b5), (a1, b6), (a2, b3), (a2, b4)}

Let P1 and P2 be the result of two different approximate joins:

P1 = {(a1, b2), (a1, b4), (a1, b5), (a1, b6), (a2, b4)}
P2 = {(a1, b1), (a1, b4), (a1, b5), (a1, b6), (a2, b1), (a2, b2),

(a2, b3), (a2, b6)}

The corresponding quality is

q1 =
1

2

(
0.8 + 0.4 + 0.6 + 0.6

0.5 + 0.8 + 0.6 + 0.6
+

0.9

0.5 + 0.9

)
= 0.80

q2 =
1

2

(
0.4 + 0.5 + 0.6 + 0.6

0.5 + 0.8 + 0.6 + 0.6
+

0.5

0.5 + 0.9

)
= 0.60

We are specifically interested in approximate joins that achieve a certain
level of quality with some probability.
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Definition 6 ((q, qp)-Approximate (τ, τr, k)-Join) A (q, qp)-approximate (τ, τr, k)-
join is an approximate (τ, τr, k)-join with quality of at least q with probability
qp.

We will now look at how to perform a (q, qp)-approximated join with TTRKJoin.

4.8.2 Approximation with TTRKJoin

A reasonable hypothesis for most real world data is that matching token sets will
have at least one rare token in common with high probability [97]. Prefix filtering
already exploits this for runtime performance but only within the constraints
of still guaranteeing finding all pairs above some threshold. On the assumption
that most matches have at least one rare token in common, prefix filtering with
low thresholds must drudge through a disproportionately long tail of token sets
that only have ubiquitous tokens in common compared to how likely it is to
find any matches. Taking inspiration from information retrieval and O’hare et
al. [97], a natural solution is to simply cut off the search early for each query
a ∈ A. Trading in some small degradation of the result for reduced runtime.
Unfortunately, setting the cutoff condition is hard because its impact so heavily
rely on the dataset and other hyperparameters. We do not have any control
over how much quality we give up.

The key insight is that TTRKJoin always performs an approximate (τ, τr, k)-
join, no matter the value of the traversal rank cutoff ρ∗, and that any approxi-
mation quality for a dataset (A, B) can be achieved by setting ρ∗ high enough.
In other words, for any dataset (A,B), join conditions (τ, τr, k), and approxi-
mation quality q there exist a finite minimum ρ∗ that will make TTRKJoin do
an approximate join with quality of at least q. Importantly, the converse is also
true. That is, any TTRKJoin will yield an approximate join of some quality q.
This opens up two main ways to utilize TTRKJoin for approximate joins. We
can either target a specific quality level and try to determine the necessary ρ∗,
or we can determine a suitable ρ∗ by other means (e.g., validation/supervised
learning) and then try to determine the approximation quality. We cover the
former since it most relevant, but we note the latter is easily achieved in similar
spirit.

4.8.3 Choosing ρ∗ to achieve quality q

If we want to achieve a certain approximation quality by choosing a finite ρ∗,
and without actually running a full exact join, we need to accept some level of
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Algorithm 10: QualityToRank(q, qp, τ, τr, k,Ψ)

Input: q and qp is the desired approximation quality and probability of achieving
at least that. τ, τr, k is the join conditions of a (τ, τr, k)-join. Ψ are a set of
randomly sampled TTRKJoin search trajectories from the dataset of interest.

Output: ρ∗, a max traversal rank that will make TTRKJoin perform a
(q, qp)-approximated (τ, τr, k)-join.

1 Function SimSumLB (τ, τr, k, ρ∗, ψ)
2 CHP , CHS ← from the earliest checkpoint in ψ with ρ ≥ ρ∗ (or last);
3 S∗ ← from last checkpoint in ψ;
4 τ̃ ← max(τ, τr · S∗);
5 i← lowest bin of CHP whose entire interval is at least τ̃ ;
6 if CHP [i] ≤ k then // Tight similarity constraint

7 return CHS [i];
8 else // Tight cardinality constraint

9 j ← lowest bin j ≥ i such that CHP [j] ≥ k;
10 τ+ ← upper similarity bound of bin j;

11 return CHS [j]− τ+(CHP [j]− k);

12 foreach (ψ,S, CS) ∈ Ψ do
13 i← binary search lowest S[i] ≥ max(τ, τrS[1]);
14 Σψ ← CS[min(i, k)];

15 R← empty array;

16 foreach bootstrap resample Ψ̃ of Ψ do // NB resamples

17 ρ̂∗ ← binary search on log scale lowest such that

18
1

|Ψ̃|

∑
ψ∈Ψ̃

SimSumLB(τ,τr,k,ρ
∗,ψ)

Σψ
≥ q;

19 R.push(ρ̂∗);

20 Sort R ascending;

21 return R
[⌈
qp · |R|

⌉]
;

uncertainty. Therefore, we propose to use a sample of search trajectories to find
a ρ∗ that will yield a (q, qp)-approximated join.

Assume we want to do a (q, qp)-approximated (τ, τr, k)-join between A and

B. Let Ψ be a set of recorded search trajectories for a random subset Ã ⊆ A.
We can quickly determine an upper bound of the lowest ρ∗ that is guaranteed to
achieve quality q with TTRKJoin between Ã and B using Ψ. It is mostly a matter
of binary searching the exponentially spaced traversal ranks of the trajectories
in Ψ because CHS can be used to lower bound the quality. Furthermore, we
can use this as an estimator for a ρ∗ that achieve quality q on the full join with
A. Since we do not know the underlying distribution, we use bootstrapping to
find the qp quantile. Resample the already existing search trajectories Ψ NB
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times to produce NB estimates and pick the empirical qp quantile. The resulting
ρ∗ makes TTRKJoin do a (q, qp)-approximated join. Algorithm 10 outlines the
proposed approach.

4.9 ShallowBlocker

ShallowBlocker

Hyperparameter
Selection TTRKJoin

Unsupervised

Supervised

Vector Space Model

Figure 4.7: Illustration of the high-level conceptual flow of ShallowBlocker.

We are now ready to assemble everything and present our proposed method
for blocking, ShallowBlocker. Fundamentally, our method performs one or more
(τ, τr, k)-joins using TTRKJoin. Therefore, the focus in this section is mainly
how ShallowBlocker chooses hyperparameters and applies TTRKJoin. Figure 4.7
illustrates the high-level flow consisting of two main steps. First, we perform hy-
perparameter selection — which not only includes hyperparameters to TTRKJoin
and choice of set similarity measure, but also the token set model we use to go
from strings to weighted token sets. Then, secondly, we run one or more con-
figurations of TTRKJoin.

Note that we intentionally present the method in this fashion to highlight a
key characteristic, namely its interpretability. At its core, the proposed method
is a string similarity join with clearly defined conditions dictating what pairs
to produce, and these join conditions can be inspected and interpreted to un-
derstand how the end result is produced. Specifically, since ShallowBlocker
runs TTRKJoin it will always perform exact or approximated (τ, τr, k)-joins. In
cases where ρ∗ is finite we can infer some q and qp for which it is true that the
performed join is a (q, qp)-approximate (τ, τr, k)-join (see Section 4.8).
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We perform hyperparameter selection differently depending on whether ex-
amples of true matches are available or not. So we describe the unsupervised
and supervised approach separately for ease of presentation.

4.9.1 Unsupervised Blocking

Algorithm 11: ShallowBlocker(A,B, k, q), Unsupervised

Input: A and B are collections of strings. k bounds to maximum number of pairs
to k ·min(|A|, |B|), and q is the quality of underlying joins.

Output: Pairs C ⊆ A×B such that |P | ≤ k ·min(|A|, |B|).
1 if |A| > |B| then
2 swap(A,B); // Also flip pairs in resulting C

3 kba ←
⌊
k|A|
2|B|

⌋
;

4 kab ←
⌊
k|A|−kba|B|

|A|

⌋
;

5 Precompute TF-IDF weights and O for A and B using all tokenizers;
6 Pab ← BalancedTTRKJoin(A,B, kab, q);
7 Pba ← BalancedTTRKJoin(B,A, kba, q);
8 P ← Pab ∪ flipPairs(Pba);
9 return P ;

Algorithm 11 outlines the unsupervised approach. It accepts two hyperpa-
rameters:

• k: Bounds the number of pairs to |P | ≤ k ·min(|A|, |B|). This lets the user
adjust trade-off between recall and number of returned pairs. A reasonable
default is 10.

• q: The approximation quality of the joins performed (with qp probability).
This lets the user adjust trade-off between precision and runtime. This
is a valuable parameter for quick iterations early in an entity matching
development workflow. A reasonable default is 1 (no approximation).

While it is possible to construct unsupervised methods without any user-provided
parameters [97], we find that unpractical in real-world use cases. No method
is perfect on all datasets for all use cases and it is in practice necessary to be
able to adjust the precision-recall and/or precision-runtime tradeoff. Existing
blocking methods vary in the parameters they expose to let the user adjust this.
We argue, based on our own experience, that a user-friendly way to adjust these
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trade-offs is to control the pair budget and some level of approximation. Our rea-
soning is twofold: 1) The parameters are not very sensitive to small changes12.
2) The parameters are not very sensitive to dataset-specific characteristics, and
therefore it is possible to provide reasonable defaults.

Since (τ, τr, k)-joins are directional it matters which way to perform TTRKJoin.
For robust results we perform one join in each direction — denoted ab when
indexing B and querying A and ba for the other way around. We divide the
pair budget between them by fixing each joins k parameter, which guarantees
we will not exceed the total budget. The budget is divided as even as possible
(see line 1-4).

Algorithm 12: BalancedTTRKJoin(A,B, k, q)

Constants: NA = 1000; kdp = 10; qp = 0.95;

1 Ã← sample max NA strings from A ;
2 dp∗ ← −1;
3 Ψ∗ ← ∅;
4 foreach tokenizer tok do

5 Ã ← ToTokenSets(Ã, tok,TF-IDF);
6 B ← ToTokenSets(B, tok,TF-IDF);
7 foreach similarity measure sim do
8 I± ← BuildTTRKIndex(B, 0; sim);

9 Ψ← RecordTrajectories(I±, Ã,∞);
10 if q = 1 then
11 ρ∗ ←∞;
12 else
13 ρ∗ ← QualityToRank(q, qp, 0, 0, kdp,Ψ);

14 P̃ ← TTRKJoin(Ã,B, 0, 0, kdp, ρ∗; sim) using I±;

15 dp← DiscriminatePower(P̃ );
16 if dp > dp∗ then
17 dp∗ ← dp;
18 Ψ∗ ← Ψ;

19 τ ← max{τ | EstimateNumPairs(τ, 0,∞,Ψ∗) ≥ k|A|} ;
20 τr ← max{τr | EstimateNumPairs(0, τr,∞,Ψ∗) ≥ k|A|} ;
21 ρ∗ ← QualityToRank(q, τ, τr, k,Ψ∗);
22 P ← TTRKJoin(A,B, τ, τr, k, ρ∗);
23 return P ;

For both invocations of TTRKJoin we need to determine the tokenizer, token
weighting scheme, the set similarity measure, and join parameters τ and τr.

12Contrast this to similarity threshold parameters, for which it is easy to fall into the failure
modes of producing almost no pairs or way too many.
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Algorithm 12 outlines the proposed method for doing so.

Choosing Token Set Model and Similarity Measure

To determine the token set model and set similarity measure we pick the com-
bination we heuristically find to be the most discriminate (see line 1-18). We
define the measure for discriminatory power of a token set model and similarity
measure sim on dataset (A,B) as

dp = 1− 1

|A|
∑

a∈A

[
1

kdp − 1

∑

b∈Ba

[
sim(a, b)

maxb′∈B sim(a, b′)

]
− 1

]

where A and B is A and B converted to token sets and Ba is the kdp most similar
token sets to a. We can run TTRKJoin with τ = τr = 0 and k = kdp to get the
necessary pairs. To avoid a costly evaluation we estimate the discriminatory
power by only using a subset Ã of A and with the desired approximation quality.
Table 4.4 shows the six configurations that are evaluated. We consider these
to be robust options for most datasets. Note that Dice similarity measure is
left out because it will, per definition, have the same discriminatory power as
Jaccard.

Token Set Model
Tokenization Token Weight Set Similarity Measure

3-gram∗

word
× TF-IDF ×

Jaccard
Cosine
Overlap

Table 4.4: Configuration space for unsupervised ShallowBlocker. ∗Only if the
total number of characters in the dataset are below 100 000 000.

Choosing Hybrid Join Conditions

We argued in Section 4.5 that there are strong potential benefits of mixing
different types of join conditions. In an unsupervised setting we have limited
signals to guide how we determine such conditions. We argue that a reasonable
approach is to balance the pruning power of the absolute similarity threshold,
relative similarity threshold, and local cardinality threshold in a (τ, τr, k)-join so
that each condition would in isolation produce the same number of pairs. That
way we dynamically adapt to data and we get to exploit the complementary
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strengths of the three join types. The combined conditions will consistently
filter out pairs of low absolute similarity, relative similarity, and similarity order.

Specifically, we determine τ , τr, and k that would hit the pair budget (k|A|)
if used in isolation. Obviously, this is per definition the case for the provided
k. For τ and τr, we binary search for the highest value that produce at least
k|A| estimated number of pairs according to a sample of recorded trajectories
as described in Section 35 (see line 19 and 20). Note that the k parameter of
the TTRKJoin will still guarantee that we stay within the pair budget no matter
what τ and τr is set to.

4.9.2 Supervised

In a supervised setting we assume a subset of known matches M̃ ⊆ M . This
enables us to estimate the recall of a solution. Furthermore, using the proposed
techniques in Section 4.7 we can quickly estimate the recall, an upper bound
of |P |, and an upper bound of the runtime for any run of TTRKJoin. Our
proposed method exploits this to tune the parameters of TTRKJoin to optimize
a user-defined objective function f based on recall, |P |, and runtime. The
only requirement of f is that its codomain is totally ordered. This is powerful
because it lets users define their desired trade-off of blocking behaviour expressed
explicitly in terms of these three main ways in which we judge blocking methods.

Algorithm 13 describes our proposed supervised version of ShallowBlocker —
which we will denote AutoShallowBlocker when we want to explicitly distinguish
it from the unsupervised version. The goal is to do two invocations of TTRKJoin,
one in each direction. We first acquire the recall conditions and some randomly
sampled search trajectories for each configuration of token set model and set
similarity measures (see Table 4.5) in both directions (see line 2-15). Then we
jointly optimize the parameters for both joins (line 17) before we execute them
(line 18-24). Note that since ρ∗ are among the parameters we optimize we also
let ShallowBlocker choose the degree of approximation. All details except the
optimization routine have already been covered.

Optimization

The optimization problem has four categorical and eight continuous variables
in total for the two joins. We evaluate a solution by estimating recall, |P |,
and runtime in both directions with the corresponding recall conditions and
search trajectories, combining them, and feeding them to the objective function
f . Since the objective function f is user-defined and only required to produce
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Algorithm 13: ShallowBlocker(A,B, M̃, f), Supervised

Input: A and B are collections of strings. M̃ ⊆M are known matches and f is an
objective function that accepts recall, |P |, and runtime and returns an a
value from a totally ordered set.

Output: Pairs P ⊆ A×B produced such that f(recall, |P |, runtime) is high by best
effort.

Constants: N = 500; qp = 0.95; D = {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5};
1 Precompute TF-IDF weights and O for A and B using all tokenizers;
2 Ψab,Ψba ← empty maps from (tms, sim) to sampled TTRK trajectories ;
3 Θab,Θba ← empty maps from (tms, sim) to recall conditions;
4 foreach token set model tsm do
5 A ← ToTokenSets(A, tms);
6 B ← ToTokenSets(B, tms);

7 Ã ← sample N sets from A;
8 B̃ ← sample N sets from B;
9 foreach similarity measure sim do

10 I± ← BuildTTRKIndex(B, 0; sim);

11 Ψab[tsm, sim]← RecordTrajectories(I±, Ã; sim);

12 Θab[tsm, sim]← FindRecallCond(A, I±, M̃ ,D; sim);

13 I± ← BuildTTRKIndex(A, 0; sim);
14 Ψba[tsm, sim]← RecordTrajectories(I±, B̃; sim);

15 Θba[tsm, sim]← FindRecallCond(B, I±, M̃ ,D; sim);

16 tsmab, simab, τab, τr.ab, kab, ρ
∗
ab,

17 tsmba, simba, τba, τr.ba, kba, ρ
∗
ba ← OptimizeTTRKJoins(f,Ψab,Ψba,Θab,Θba) ;

18 Aab ← ToTokenSets(A, tsmab) ;
19 Bab ← ToTokenSets(B, tsmab);
20 Pab ← TTRKJoin(Aab,Bab, τab, τr.ab, kab, ρ∗ab; simab);
21 Aba ← ToTokenSets(A, tsmba);
22 Bba ← ToTokenSets(B, tsmba);
23 Pba ← TTRKJoin(Bba,Aba, τba, τr.ba, kba, ρ∗ba; simba);
24 P ← Pab ∪ flipPairs(Pba) ;
25 return P ;
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Token Set Model Set Similarity Measure

Binary weighted 3-grams∗

TF-IDF weighted 3-grams∗

Binary weighted words
TF-IDF weighted words

×
Jaccard
Dice
Cosine
Overlap

Table 4.5: Configuration space for supervised ShallowBlocker. ∗Only if the total
number of characters in the dataset are below 100 000 000.

values from a totally ordered set it is a black-box optimization problem. The
number of variables is manageable and evaluation is quick. Furthermore, it
is reasonable to assume, given the nature of the problem, that the objective
function is not overly sensitive. Our experience is therefore that most random
and local search heuristics are effective enough in finding good solutions.

We opt for a relatively simple approach. Draw ten random solutions, pick
the best one, and then hill climb. Repeat 32 times (can be done in parallel)
and pick the best solution. In hill climbing, try all exponentially spaced incre-
ments/decrements of the numeric parameters. It is important to note that kab
or kba can be zero, so there might not be a TTRKJoin in both directions.

There is a considerable chance of overfitting on recall if the number of known
matches |M̃ | is not large enough. Therefore, we acquire the recall conditions
with varying regularization parameter values D as described in Section 35. The
regularization parameter d ∈ D we end up using is picked through 3-fold cross
validation of all values in D. Note that |P | and runtime is not as prone to
overfitting because we are in control of the number of samples those estimates
are based on and can simply choose a large enough number of samples. While
for recall we can not control the number of known matches.

4.9.3 Deduplication

So far we have only discussed blocking across two sets of records. A special
case of this is deduplication, where we only have one set of records A and
want to find all duplicates within A. To avoid unnecessary clutter we have
not incorporated this within the presentation of our proposed techniques and
method. However, they are all trivially adapted to deduplication. The main
differences is that TTRKJoin must take care to not return self-pairs and that
ShallowBlocker should only do TTRKJoin in one direction (from A to A).
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4.9.4 Constants

There are several constant parameters used throughout ShallowBlocker. This
is not contradictory to the method being hands-off. For all practical purposes
these are part of the method. They do not need tuning, are not user-provided,
and are in essence no different from the network architecture and training details
of a deep learning method or similar details from other methods. None of the
constants are, by their nature, sensitive as long as they are large enough (e.g.,
sample sizes). So we have simply picked round numbers of reasonable sizes that
we observe provide stable results.

4.10 Experimental Setup

4.10.1 Datasets

# Records # Matches # Characters # Words

Dataset |A| |B| Train Test Min Median Mean Max Min Median Mean Max

Amazon-Google 1363 3226 699 234 10 58 60 222 2 9 9.6 33

Beer 4345 3000 40 100+ 25 68 69 153 5 11 11.3 29
DBLP-ACM∗ 2616 2294 1332 444 17 129 132 421 4 19 19.3 66
DBLP-GoogleScholar∗ 2616 64 263 3207 1070 7 110 111 344 2 17 16.8 58

iTunes-Amazon∗ 6907 55 923 78 100+ 54 141 152 606 10 24 25.8 88
Walmart-Amazon∗ 2554 22 074 576 193 19 97 102 913 3 16 17.1 172
Abt-Buy 1081 1092 616 206 13 173 193 555 2 28 30.7 88
Company 28 200 28 200 10 000 5640 0 4311 5177 29 035 0 640 792.4 2007
Songs 1 000 000 10 000 136 011 31 86 90 440 6 12 13.0 72
Citeseer-DBLP 1 823 978 2 512 927 10 000 548 787 1 122 126 2541 0 17 18.2 312

Table 4.6: The different datasets used in our experiments. Note that some
datasets have been slightly adapted to fit our experimental setup. See Sec-
tion 4.10.1. ∗These datasets has a ”dirty” version [91]. +We have labelled
additional matches to get 100 test matches.

We use the DeepMatcher [91] and Falcon [28] datasets from the Magel-
lan Data Repository [30]. Table 4.6 shows key characteristics for the different
datasets. We ignore the known non-matches for all datasets since they are not
used by any method in our experiments or relevant for measuring recall.

We use the provided train/test split for the DeepMatcher datasets. The
validation sets are not used in the experiments. All supervised methods only
get the training matches and must do validation within those. We omit the
Fodors-Zagats dataset because it is tiny, trivial for all tested methods, and do
not have enough matches (even if we label more) to reliably measure recall. For
Beer and iTunes-Amazon we manually label additional matches to get 100 test
matches.
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The Songs and Citeseer-DBLP datasets from Falcon [28] do not have any
train/test split. We therefore split of 10 000 matches to training and the rest
to testing. Songs is a deduplication dataset — i.e., one set of records that is
matched to itself. Importantly, we remove self-matches from the dataset since
they are trivial.

4.10.2 Baseline Methods

Default hyperparameter values

Recall target

Method Hyperparameters 0.90 0.98 Hyperparameter space

Token Blocking - - - -

HVTB - - - -

Minhash LSH

τ 0.08 0.04 [0, 1]
Tokenization Word 3-gram, word
b Optimize eq. false [1, . . . , numPerm]
r positive and negative [1, . . . , ⌊numPerm/b⌋]

PPJoin
τ 0.20 0.14 [0,∞)
Similarity measure Cosine Jaccard, Cosine, Dice, Overlap
Tokenization Word 3-gram, word

τ -join

τ 0.22 0.16 [0,∞)
Similarity measure Cosine Jaccard, Cosine, Dice, Overlap
Tokenization Word 3-gram, word
Token weighting TF-IDF Binary, TF-IDF

DeepBlocker k 240 Not possible [1, . . . ,max(|A|, |B|)]
AutoBlock k - - [1, . . . ,max(|A|, |B|)]

k-join

k 10 32 [1, . . . ,max(|A|, |B|)]
Similarity measure Cosine Jaccard, Cosine, Dice, Overlap
Tokenization Word 3-gram, word
Token weighting TF-IDF Binary, TF-IDF

Table 4.7: Baseline methods and their hyperparameters. Also included is the
default hyperparameter values when used in an unsupervised setting and the
hyperparameter space.

We perform our experiments on a variety of baseline methods covering differ-
ent method categories. See them listed in Table 4.7. First, we briefly introduce
the different methods. Then we discuss how we determine hyperparameters in
an unsupervised and supervised context. For all methods were it is relevant
the largest string collection is indexed and the smallest queried (i.e., we ensure
|A| ≤ |B|).
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Token Blocking

It is one of the most ubiquitous blocking methods and is considered a naive
approach. Simply produce all pairs with at least one overlapping token. We use
word tokenization and run it using TTRKJoin with τ = 1, τr = 0, k = ∞, ρ∗ = ∞
and Overlap similarity.

HVTB [97]

A significant improvement over Token Blocking for most cases, and is reported
to achieve, or be comparable to, state-of-the-art results. Instead of producing
all pairs with at least one overlapping token, HVTB only considers non-unique
tokens with above average TF-IDF score and thereby pruning away pairs that
only have less impactful tokens in common. Furthermore, pairs with below
average number of overlapping tokens are pruned. The original source code is
not available so we implemented according the the authors specification. For a
fair comparison, we also include our own optimized version: HVTB+. The three
main improvements are using integer representation of tokens, parallelization,
and eagerly pruning pairs with one common token upon construction if overlaps
greater than one have already been observed. It produces the same pairs but
with greatly reduced runtime and memory consumption.

τ-join

Classical absolute threshold-based similarity join achieved by running TTRKJoin

with τr = 0, k = ∞, ρ∗ = ∞ fixed.

k-join

Classical local cardinality threshold-based similarity join achieved by running
TTRKJoin with τ = 0, τr = 0, ρ∗ = ∞ fixed.

PPJoin [143, 144]

Popular state-of-the-art τ -join blocking method [100]. We use the highly opti-
mized implementation from Mann et al. [87]. However, note that this implemen-
tation uses, and is optimized for, unweighted sets — as is common for PPJoin.
We include this in our experiments because it is a widely used method and point
of comparison.
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Minhash LSH

Well-known technique using locality-sensitive hashing [46] for approximate sim-
ilarity joins [18, 19]. We use the implementation from the datasketch13 package.
This is what the authors of AutoBlock [152] used in their experiments. For fair
comparison we implement a parallelization layer on top to exploit all available
CPU cores. We use the recommended default setting of 128 permutations.

DeepBlocker[127]

State-of-the-art unsupervised deep learning-based blocker. It avoids the need for
labeled training data by using either a encoder-decoder setup which is trained
for reconstruction or by generating synthetic labeled data. We use the authors
provided implementation14. However, note that we implemented a GPU accel-
erated top-k Cosine similarity search using FAISS [61] as the described by the
authors since the provided source code only includes a brute force CPU ver-
sion. Based on the reported results and recommendation of the authors we use
the Hybrid model for the ”textual” datasets (Walmart-Amazon, Abt-Buy, and
Company) and AutoEncoder for the rest.

AutoBlock[152]

Supervised deep learning-based blocker that embeds records and uses locality-
sensitive hashing to find similar embeddings. Known labeled matches are used to
train the deep network, but one must still specify the local cardinality threshold
k. The original source code is not available so we implement it according to the
authors description using PyTorch and FALCONN. We also parallalize the LSH
nearest neighbor search for a fair comparison.

4.10.3 Unsupervised Baselines

All baseline methods except AutoBlock are unsupervised. However, most of
them still have one or more hyperparameters that must be set manually. In an
unsupervised setting we are not able to tune them per dataset and must rely on
defaults. To give all methods an equal footing we chose the hyperparameters for
each method that yields the best overall results across all datasets on the test
sets. We find Cosine similarity measure, word tokenization, and TF-IDF token

13https://github.com/ekzhu/datasketch
14https://github.com/qcri/DeepBlocker
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weighting to be optimal for methods that have any of those hyperparameters.
For Minhash LSH we set b and r automatically to the configuration that balances
false positives and negatives equally.

Most baseline methods have a similarity threshold τ or local cardinality
threshold k as the main hyperparameter balancing recall against number of
returned pairs. For the experiments that target a specific recall level, we set
this parameter to the most aggressive (highest τ , lowest k) that achieves the
recall target on all datasets15 on the test set. For τ we only consider increments
of 0.01. Table 4.7 shows the hyperparameters for recall targets of 0.90 and 0.98.
It is important to note that this way of determining hyperparameters yields
best case results for the baseline methods by exploiting knowledge about the
test set and not incurring any runtime cost for picking hyperparameter values.
Therefore, it is not strictly comparable to results from supervised methods.

4.10.4 Supervised Baselines

The Supervised version of ShallowBlocker (denoted AutoShallowBlocker) uses

known matches M̃ and an objective function f to set all parameters. The only
supervised baseline method, AutoBlock, has a hyperparameter that must be
set: k. Furthermore, most of the other unsupervised methods can be tuned. So
in order to compare against the baseline methods fairly we extend them with
a supervised approach similar to ShallowBlocker for determining their hyper-
parameters from the training set. We will denote these modified supervised
baselines with a Sup- prefix (for supervised) — e.g., Sup-DeepBlocker.

Assume we are given training matches M̃ and a recall target R. We can
determine the hyperparameters by enumerating all combinations of categorical
parameters, picking the threshold (τ or k) for each combination that achieves

recall R on M̃ , and then picking the combination that will return the fewest
pairs. In order to avoid overfitting, and thereby missing the recall target, we
use regularization. M̃ is split into 3-fold cross-validation splits. We determine
the hyperparameters using the train split of each fold with some threshold reg-
ularization margin d. The regularization margin d is increased until the average
recall of validation splits is at least R with 95% confidence (not adjusting for

multiple testing). The final hyperparameters are picked using the entire M̃ and
the chosen d.

For the methods with a similarity threshold τ we can simply calculate the

15Except the Company dataset since it contains so many wrongly labelled matches that it
is unrealistic to reach high recall.
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similarity for all train matches and pick the R quantile of the similarities to
determine the highest threshold that would recall R of the matches M̃ . We
estimate the number of returned pairs by running the method on a sample of
1000 strings from A and the entire B and multiplying the number of pairs with
|A|/1000. The margin d adjusts the threshold to τ · (1 − d) and uses the same
values as ShallowBlocker, For Minhash LSH we pick the b and r that minimizes
probability of false positives while also reaching the recall target.

For the methods with a local cardinality threshold k we can determine the
smallest threshold that would recall R of the training matches by doubling k
and running the method on the subset of A that are in the training matches
and the entire B until at least R of the matches are found. Then using the
result to find the minimum between k/2 and k that still recall at least R of the
matches. The configuration that return the fewest pairs are simply the one with
the lowest k. The margin d adjusts the threshold to k + d and is increased in
powers of two.

Note that we make sure to avoid redundant work where possible for the
different methods in this supervised approach. For example, we only train
the deep learning model and compute the embeddings for each record once for
DeepBlocker — not for every fold and value of k. Additionally, note that we do
not do this for PPJoin since Sup-τ -join would be a superset of Sup-PPJoin.

4.10.5 Hardware

All CPU-only experiments are run on an AMD Ryzen 5950X system with 64GB
RAM. Because of practical resource constraints all experiments with deep learn-
ing models using GPU are run on a different machine with a Nvidia V100 GPU
and Intel Xeon Gold 6148 CPU with 128GB. While the systems are not equiv-
alent, and therefore not directly comparable, there will always be a divide be-
tween the CPU-only and GPU accelerated methods since the latter exploits a
fundamentally different compute resource. The GPU machine is the more ca-
pable and expensive, so at least the deep learning methods can not be said to
be hampered by the lack of compute and memory.
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Dataset

Resource Setting Method AG B DA DG IA WA D-DA D-DG D-IA D-WA AB C S CD

Recall

Unsupervised

Token Blocking 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 0.995 0.964 OOM OOM
HVTB 0.868 0.210 1.000 0.993 0.860 0.990 1.000 0.993 0.200 0.990 0.893 0.923 0.576 OOM
HVTB+ 0.868 0.210 1.000 0.993 0.860 0.990 1.000 0.993 0.200 0.990 0.893 0.923 0.576 0.998
MinHash LSH 1.000 1.000 1.000 0.999 1.000 0.995 1.000 0.999 1.000 0.995 0.937 0.699 OOM OOM
PPJoin 0.991 1.000 1.000 0.996 1.000 1.000 1.000 0.996 1.000 1.000 0.917 OOM OOM OOM
τ-join 0.983 1.000 1.000 0.993 1.000 1.000 1.000 0.993 1.000 1.000 0.903 0.455 0.998 1.000
DeepBlocker 0.996 1.000 0.998 0.979 0.988 0.991 0.998 0.983 0.994 0.992 0.995 0.714 0.901 TIME
k-join 0.974 1.000 1.000 0.968 1.000 0.984 1.000 0.968 1.000 0.984 0.966 0.863 0.906 0.996
ShallowBlocker (q=0.95) 0.980 1.000 1.000 0.975 0.956 0.968 1.000 0.976 0.956 0.968 0.995 0.767 0.904 0.990
ShallowBlocker (q=0.99) 0.981 1.000 1.000 0.974 0.970 0.964 1.000 0.976 0.970 0.964 0.995 0.666 0.906 0.989
ShallowBlocker (q=1) 0.977 1.000 1.000 0.970 0.964 0.962 1.000 0.972 0.964 0.962 0.995 0.809 0.900 0.988

Supervised
≤ 100 matches

Sup-MinHash LSH 0.978 0.996 0.942 0.956 0.960 0.973 0.924 0.948 0.960 0.973 0.923 0.949 OOM OOM
Sup-τ-join 0.974 1.000 0.935 0.953 0.984 0.981 0.935 0.941 0.984 0.981 0.939 0.940 0.980 0.979
Sup-AutoBlock 0.754 0.706 0.712 0.853 1.000 0.940 0.655 0.807 0.926 0.742 0.900 0.243 OOM OOM
Sup-DeepBlocker 0.956 1.000 0.984 0.954 0.990 0.981 0.984 0.963 0.986 0.983 0.976 ERR ERR 0.936∗
Sup-k-join 0.989 1.000 0.993 0.976 0.996 0.980 0.991 0.980 0.994 0.967 0.933 0.962 0.985 0.977
ShallowBlocker 0.992 1.000 0.940 0.964 0.986 0.985 0.920 0.950 0.988 0.988 0.938 0.924 0.978 0.967

Supervised
≤ 1000 matches

Sup-MinHash LSH 0.938 - 0.928 0.940 - 0.921 0.928 0.947 - 0.921 0.932 0.942 OOM OOM
Sup-τ-join 0.965 - 0.936 0.933 - 0.928 0.936 0.932 - 0.928 0.935 0.926 0.930 0.944
Sup-AutoBlock 0.891 - 0.825 0.899 - 0.906 0.882 0.862 - 0.878 0.907 0.506 0.975∗ OOM
Sup-DeepBlocker 0.932 - 0.985 0.930 - 0.931 0.983 0.930 - 0.933 0.938 ERR ERR 0.932∗
Sup-k-join 0.964 - 0.993 0.936 - 0.914 0.991 0.930 - 0.921 0.965 0.930 0.964 0.979
ShallowBlocker 0.982 - 0.955 0.933 - 0.940 0.937 0.943 - 0.947 0.913 0.926 0.930 0.948

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 0.935 OOM OOM
Sup-τ-join - - - - - - - - - - - 0.918 0.918 0.928
Sup-AutoBlock - - - - - - - - - - - 0.577 0.959∗ OOM
Sup-DeepBlocker - - - - - - - - - - - ERR 0.931∗ 0.925
Sup-k-join - - - - - - - - - - - 0.915 0.956 0.979
ShallowBlocker - - - - - - - - - - - 0.920 0.926 0.924

k̃

Unsupervised

Token Blocking 513 3685 1848 34879 51042 3987 1848 34526 51042 3987 426 27078 OOM OOM
HVTB 5.39 27.7 13.2 41.0 1384 41.2 13.2 41.8 278 41.2 9.00 5887 25.6 OOM
HVTB+ 5.39 27.7 13.2 41.0 1384 41.2 13.2 41.8 278 41.2 9.00 5887 25.6 150
MinHash LSH 418 3078 997 18528 31742 2332 997 18292 31742 2332 178 13438 OOM OOM
PPJoin 45.8 2168 80.8 958 2431 107 80.8 912 2431 107 12.1 OOM OOM OOM
τ-join 11.0 5.85 4.99 16.2 165 26.6 4.99 15.9 165 26.6 5.49 0.626 25.9 50.3
DeepBlocker 240 240 240 240 240 240 240 240 240 240 240 240 184 TIME
k-join 9.99 9.99 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 6.61 10.00
ShallowBlocker (q=0.95) 4.92 3.80 4.87 6.23 2.49 4.21 4.87 6.48 2.49 4.21 6.12 2.80 6.92 2.32
ShallowBlocker (q=0.99) 4.07 3.75 4.22 5.30 2.95 4.98 4.22 5.43 2.95 4.98 5.09 1.90 5.71 2.02
ShallowBlocker (q=1) 3.54 3.46 4.12 4.90 2.73 4.72 4.12 5.12 2.73 4.72 4.59 2.57 5.35 1.92

Supervised
≤ 100 matches

Sup-MinHash LSH 72.8 1535 1.48 286 3053 570 1.85 440 3053 570 165 25952 OOM OOM
Sup-τ-join 6.85 21.6 1.01 3.81 15.4 10.3 1.01 3.59 15.4 10.3 7.29 10337 17.8 0.927
Sup-AutoBlock 595 2.90 6.61 4763 39168 1660 10.7 27626 24459 4555 527 444 OOM OOM
Sup-DeepBlocker 61.6 106 1.000 252 202 120 1.000 134 240 133 126 ERR ERR 7.00∗
Sup-k-join 10.6 56.9 1.000 11.4 57.0 7.40 1.000 12.2 58.6 4.40 1.80 25580 27.1 2.00
ShallowBlocker 4.73 4.41 0.951 2.68 5.69 12.8 0.923 2.56 6.35 11.8 1.91 424 10.4 0.721

Supervised
≤ 1000 matches

Sup-MinHash LSH 43.7 - 1.47 173 - 194 1.97 250 - 194 175 25325 OOM OOM
Sup-τ-join 5.11 - 1.00 2.86 - 2.88 1.00 2.84 - 2.88 6.50 1198 8.68 0.532
Sup-AutoBlock 532 - 31.0 914 - 353 23.5 17682 - 8252 222 593 99.1∗ OOM
Sup-DeepBlocker 22.0 - 1.000 15.0 - 15.6 1.000 15.4 - 16.0 49.2 ERR ERR 2.75∗
Sup-k-join 5.20 - 1.000 6.40 - 2.60 1.000 6.20 - 2.80 3.40 1725 11.2 2.00
ShallowBlocker 2.85 - 0.961 2.28 - 2.29 0.937 2.32 - 2.82 1.16 237 5.93 0.459

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 24796 OOM OOM
Sup-τ-join - - - - - - - - - - - 620 7.69 0.470
Sup-AutoBlock - - - - - - - - - - - 505 77.7∗ OOM
Sup-DeepBlocker - - - - - - - - - - - ERR 471∗ 2.00
Sup-k-join - - - - - - - - - - - 97.9 9.46 2.00
ShallowBlocker - - - - - - - - - - - 70.1 6.10 0.389

Runtime

Unsupervised

Token Blocking 26ms 191ms 96ms 1.65s 6.31s 214ms 95ms 1.62s 6.29s 219ms 24ms 1m21s OOM OOM
HVTB 44ms 49ms 66ms 748ms 5.11s 243ms 71ms 757ms 1.23s 244ms 31ms 18m17s 5m41s OOM
HVTB+ 33ms 24ms 25ms 168ms 356ms 70ms 26ms 150ms 134ms 70ms 14ms 28.19s 10.83s 1m10s
MinHash LSH 380ms 982ms 447ms 8.53s 19.95s 2.05s 439ms 8.44s 19.73s 2.04s 240ms 32.47s OOM OOM
PPJoin 60ms 5.00s 210ms 2.85s 16.81s 360ms 200ms 2.72s 16.80s 350ms 30ms OOM OOM OOM
τ-join 17ms 20ms 20ms 158ms 213ms 65ms 23ms 159ms 220ms 73ms 19ms 7.36s 13.41s 4m49s
DeepBlocker 47.66s 1m5s 47.94s 9m44s 8m58s 3m49s 51.67s 9m4s 8m53s 53m59s 5m30s 4h52m 44m6s TIME
k-join 15ms 21ms 25ms 155ms 140ms 69ms 25ms 154ms 145ms 64ms 17ms 18.21s 4.30s 3m37s
ShallowBlocker (q=0.95) 760ms 866ms 1.01s 2.00s 2.11s 1.06s 1.02s 1.99s 2.17s 1.07s 921ms 11.07s 3.18s 45.69s
ShallowBlocker (q=0.99) 760ms 874ms 1.02s 2.11s 1.92s 803ms 1.02s 2.11s 1.99s 813ms 919ms 15.25s 3.33s 2m26s
ShallowBlocker (q=1) 392ms 447ms 682ms 2.85s 2.34s 688ms 676ms 2.83s 2.46s 686ms 493ms 29.01s 3.43s 4m14s

Supervised
≤ 100 matches

Sup-MinHash LSH 11.60s 22.58s 13.06s 40.20s 36.74s 25.54s 13.12s 34.38s 38.22s 25.86s 6.83s 6m54s OOM OOM
Sup-τ-join 1.46s 3.70s 1.41s 7.07s 8.63s 4.87s 1.46s 6.59s 9.32s 4.91s 2.16s 6m8s 1m19s 2m17s
Sup-AutoBlock 2m49s 3m52s 6m2s 5m36s 26m25s 4m37s 3m43s 6m42s 14m45s 3m54s 5m37s 48m40s OOM OOM
Sup-DeepBlocker 1m0s 1m21s 52.51s 8m57s 8m46s 3m26s 49.03s 9m2s 8m54s 55m15s 5m15s ERR ERR 1h40m∗
Sup-k-join 755ms 854ms 419ms 8.14s 9.76s 2.00s 430ms 8.46s 10.57s 2.00s 652ms 2m29s 42.51s 13m31s
ShallowBlocker 2.93s 3.24s 2.00s 7.97s 10.53s 4.14s 2.00s 8.05s 10.90s 4.16s 3.18s 45.76s 13.46s 23.96s

Supervised
≤ 1000 matches

Sup-MinHash LSH 7.56s - 11.71s 35.53s - 16.37s 11.47s 37.97s - 16.73s 7.74s 5m1s OOM OOM
Sup-τ-join 1.33s - 1.28s 5.56s - 3.86s 1.33s 5.64s - 3.90s 2.11s 5m29s 52.66s 1m41s
Sup-AutoBlock 2m19s - 5m53s 6m2s - 4m35s 3m56s 9m33s - 5m16s 3m49s 48m21s 2h51m∗ OOM
Sup-DeepBlocker 52.01s - 53.83s 9m5s - 3m22s 50.37s 9m0s - 56m5s 5m16s ERR ERR 1h38m∗
Sup-k-join 821ms - 480ms 22.17s - 2.58s 488ms 22.63s - 2.68s 1.04s 6m46s 56.57s 11m43s
ShallowBlocker 4.08s - 3.58s 12.22s - 5.36s 3.62s 12.24s - 5.36s 4.38s 1m13s 9.60s 27.56s

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 4m19s OOM OOM
Sup-τ-join - - - - - - - - - - - 4m36s 39.86s 1m25s
Sup-AutoBlock - - - - - - - - - - - 59m39s 2h22m∗ OOM
Sup-DeepBlocker - - - - - - - - - - - ERR 49m31s∗ 1h41m
Sup-k-join - - - - - - - - - - - 55m57s 41.48s 12m27s
ShallowBlocker - - - - - - - - - - - 4m53s 16.99s 1m7s

Table 4.8: Performance of all methods across all datasets in both unsupervised
and different supervised settings when the recall target is 90%. See Table 4.10
for memory usage. The highest performing method for each dataset and resource
setting according to each measure is underlined, while methods that are within
5% of this is bold. Methods that failed to reach to recall target is grayed out.
OOM: Out of memory. ERR: Hitting limits of FAISS. TIME: Exceeding 24h
time limit. ∗One or more runs crashed.
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Dataset

Resource Setting Method AG B DA DG IA WA D-DA D-DG D-IA D-WA AB C S CD

Recall

Unsupervised

Token Blocking 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 0.995 0.964 OOM OOM
HVTB 0.868 0.210 1.000 0.993 0.860 0.990 1.000 0.993 0.200 0.990 0.893 0.923 0.576 OOM
HVTB+ 0.868 0.210 1.000 0.993 0.860 0.990 1.000 0.993 0.200 0.990 0.893 0.923 0.576 0.998
MinHash LSH 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 0.985 0.862 OOM OOM
PPJoin 1.000 1.000 1.000 0.999 OOM 1.000 1.000 0.999 OOM 1.000 0.981 OOM OOM OOM
τ-join 0.987 1.000 1.000 0.997 1.000 1.000 1.000 0.997 1.000 1.000 0.981 0.660 0.999 1.000
DeepBlocker - - - - - - - - - - - - - -
k-join 0.991 1.000 1.000 0.993 1.000 0.990 1.000 0.993 1.000 0.990 0.990 0.892 0.980 0.998
ShallowBlocker (q=0.95) 0.996 1.000 1.000 0.990 0.998 1.000 1.000 0.989 0.998 1.000 1.000 0.865 0.980 0.997
ShallowBlocker (q=0.99) 0.987 1.000 1.000 0.988 0.980 0.992 1.000 0.988 0.980 0.992 1.000 0.796 0.981 0.995
ShallowBlocker (q=1) 0.987 1.000 1.000 0.987 0.980 0.994 1.000 0.988 0.980 0.994 0.995 0.853 0.980 0.995

Supervised
≤ 100 matches

Sup-MinHash LSH 0.997 1.000 0.994 0.991 0.992 0.995 0.994 0.999 0.992 0.995 0.969 0.949 OOM OOM
Sup-τ-join 0.987 1.000 0.998 0.989 0.980 1.000 0.998 0.991 0.980 1.000 0.971 0.963 0.999 0.993
Sup-AutoBlock 0.830 0.792 0.742 0.925 1.000 0.952 0.701 0.809 0.950 0.802 0.932 0.243 OOM OOM
Sup-DeepBlocker 0.998 ERR 0.995 0.990∗ 1.000 1.000∗ 0.996 0.989∗ 1.000 1.000∗ 1.000 ERR ERR 0.975
Sup-k-join 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.995 1.000 1.000 0.961 0.964 0.998 0.992
ShallowBlocker 0.995 1.000 0.980 0.989 0.994 0.993 0.987 0.989 0.992 0.992 0.972 0.937 0.995 0.974

Supervised
≤ 1000 matches

Sup-MinHash LSH 0.993 - 0.989 0.991 - 0.991 0.992 0.990 - 0.991 0.983 0.949 OOM OOM
Sup-τ-join 0.987 - 0.993 0.989 - 0.992 0.993 0.989 - 0.992 0.989 0.963 0.995 0.995
Sup-AutoBlock 0.924 - 0.898 0.953 - 0.951 0.964 0.869 - 0.885 0.928 0.506 OOM OOM
Sup-DeepBlocker 0.997 - 0.994 0.992 - 0.982 0.992 0.990∗ - 0.988 0.994 ERR ERR ERR
Sup-k-join 1.000 - 0.993 0.995 - 0.979 0.991 0.996 - 0.991 0.979 0.964 0.997 0.992
ShallowBlocker 0.997 - 0.989 0.992 - 0.992 0.991 0.992 - 0.993 0.987 0.962 0.992 0.990

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 0.949 OOM OOM
Sup-τ-join - - - - - - - - - - - 0.963 0.986 0.986
Sup-AutoBlock - - - - - - - - - - - 0.577 OOM OOM
Sup-DeepBlocker - - - - - - - - - - - ERR ERR 0.982∗
Sup-k-join - - - - - - - - - - - 0.964 0.992 0.994
ShallowBlocker - - - - - - - - - - - 0.964 0.990 0.988

k̃

Unsupervised

Token Blocking 513 3685 1848 34879 51042 3987 1848 34526 51042 3987 426 27078 OOM OOM
HVTB 5.39 27.7 13.2 41.0 1384 41.2 13.2 41.8 278 41.2 9.00 5887 25.6 OOM
HVTB+ 5.39 27.7 13.2 41.0 1384 41.2 13.2 41.8 278 41.2 9.00 5887 25.6 150
MinHash LSH 487 3587 1381 27536 41566 3322 1381 27160 41566 3322 276 19166 OOM OOM
PPJoin 124 2963 310 4580 OOM 287 310 4422 OOM 287 26.7 OOM OOM OOM
τ-join 22.0 13.3 10.3 54.0 337 60.4 10.3 52.6 337 60.4 10.9 1.49 40.4 210
DeepBlocker - - - - - - - - - - - - - -
k-join 31.8 31.9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21.2 32.0
ShallowBlocker (q=0.95) 16.2 16.3 16.1 11.4 9.84 16.3 16.1 11.8 9.84 16.3 21.2 8.81 21.4 7.38
ShallowBlocker (q=0.99) 10.6 9.65 10.8 11.3 5.71 10.5 10.8 11.7 5.71 10.5 14.6 5.60 16.9 5.24
ShallowBlocker (q=1) 10.2 8.96 9.92 10.7 5.58 9.87 9.92 11.0 5.58 9.87 13.6 6.11 15.4 4.90

Supervised
≤ 100 matches

Sup-MinHash LSH 351 2789 23.1 2427 10017 2272 23.1 10091 10017 2332 239 25952 OOM OOM
Sup-τ-join 21.2 1524 1.82 8.42 17.0 54.8 1.82 8.82 17.0 54.8 8.82 27056 27.4 1.69
Sup-AutoBlock 1074 24.6 10.9 23984 39168 2017 17.3 27912 28541 7081 648 444 OOM OOM
Sup-DeepBlocker 1041 ERR 5.40 1246∗ 1314 940∗ 5.80 649∗ 903 951∗ 552 ERR ERR 111
Sup-k-join 63.8 185 17.0 33.6 112 45.6 17.0 41.0 112 58.4 3.00 27078 56.4 3.00
ShallowBlocker 11.4 25.4 1.02 6.76 15.4 23.8 1.09 6.67 11.5 24.0 2.37 11870 19.6 0.999

Supervised
≤ 1000 matches

Sup-MinHash LSH 390 - 6.95 2213 - 1294 7.34 2111 - 1588 274 25952 OOM OOM
Sup-τ-join 23.9 - 1.29 12.9 - 22.4 1.29 12.7 - 22.4 32.3 27056 22.8 2.01
Sup-AutoBlock 1186 - 62.3 21349 - 2275 330 19356 - 8527 415 593 OOM OOM
Sup-DeepBlocker 700 - 2.40 1194 - 149 2.40 947∗ - 199 275 ERR ERR ERR
Sup-k-join 22.8 - 1.000 19.4 - 7.40 1.000 17.8 - 10.4 5.60 27078 53.3 3.00
ShallowBlocker 9.01 - 1.01 4.66 - 16.5 1.01 5.02 - 17.8 3.25 25303 16.8 0.805

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 25952 OOM OOM
Sup-τ-join - - - - - - - - - - - 27056 18.6 1.10
Sup-AutoBlock - - - - - - - - - - - 505 OOM OOM
Sup-DeepBlocker - - - - - - - - - - - ERR ERR 17.8∗
Sup-k-join - - - - - - - - - - - 27078 35.1 4.00
ShallowBlocker - - - - - - - - - - - 26921 14.4 0.782

Runtime

Unsupervised

Token Blocking 26ms 191ms 96ms 1.65s 6.31s 214ms 95ms 1.62s 6.29s 219ms 24ms 1m21s OOM OOM
HVTB 44ms 49ms 66ms 748ms 5.11s 243ms 71ms 757ms 1.23s 244ms 31ms 18m17s 5m41s OOM
HVTB+ 33ms 24ms 25ms 168ms 356ms 70ms 26ms 150ms 134ms 70ms 14ms 28.19s 10.83s 1m10s
MinHash LSH 731ms 1.58s 835ms 16.09s 29.71s 3.79s 820ms 15.94s 29.83s 3.77s 294ms 48.91s OOM OOM
PPJoin 150ms 6.78s 600ms 10.04s OOM 710ms 600ms 9.69s OOM 710ms 40ms OOM OOM OOM
τ-join 18ms 18ms 24ms 150ms 299ms 74ms 23ms 158ms 311ms 73ms 19ms 10.71s 24.59s 8m48s
DeepBlocker - - - - - - - - - - - - - -
k-join 16ms 22ms 23ms 161ms 168ms 71ms 25ms 159ms 173ms 73ms 17ms 21.45s 10.29s 5m34s
ShallowBlocker (q=0.95) 789ms 909ms 1.08s 2.54s 2.66s 1.26s 1.07s 2.55s 2.73s 1.25s 944ms 13.26s 4.28s 2m18s
ShallowBlocker (q=0.99) 786ms 912ms 1.07s 2.41s 2.64s 1.23s 1.06s 2.41s 2.71s 1.24s 952ms 19.76s 4.43s 4m20s
ShallowBlocker (q=1) 413ms 487ms 716ms 3.04s 3.01s 937ms 703ms 3.03s 3.15s 949ms 521ms 33.77s 6.20s 6m43s

Supervised
≤ 100 matches

Sup-MinHash LSH 16.02s 23.96s 19.11s 42.57s 51.04s 23.71s 19.21s 45.05s 53.67s 24.28s 7.44s 7m30s OOM OOM
Sup-τ-join 1.75s 5.55s 2.64s 9.91s 9.16s 5.79s 2.82s 9.86s 9.54s 5.80s 2.35s 2m18s 1m39s 2m40s
Sup-AutoBlock 2m52s 4m35s 6m16s 6m55s 26m17s 4m51s 3m57s 6m47s 15m22s 4m0s 5m37s 48m26s OOM OOM
Sup-DeepBlocker 1m5s ERR 51.13s 9m13s∗ 9m1s 3m35s∗ 50.57s 9m1s∗ 8m51s 55m42s∗ 5m20s ERR ERR 1h40m
Sup-k-join 1.04s 1.64s 574ms 10.12s 13.31s 2.81s 592ms 10.40s 14.31s 2.87s 849ms 2m38s 1m11s 14m6s
ShallowBlocker 2.99s 3.17s 2.00s 8.03s 10.75s 4.27s 2.00s 8.07s 11.14s 4.28s 3.38s 1m17s 12.41s 25.02s

Supervised
≤ 1000 matches

Sup-MinHash LSH 16.36s - 13.71s 40.27s - 34.43s 13.46s 38.18s - 30.76s 9.76s 7m31s OOM OOM
Sup-τ-join 1.74s - 2.20s 8.09s - 5.32s 2.31s 8.34s - 5.44s 2.97s 2m18s 1m25s 2m39s
Sup-AutoBlock 3m4s - 6m25s 11m19s - 5m56s 5m4s 9m54s - 5m24s 4m3s 47m41s OOM OOM
Sup-DeepBlocker 1m3s - 50.17s 9m8s - 3m44s 50.16s 9m7s∗ - 54m6s 5m36s ERR ERR ERR
Sup-k-join 1.37s - 472ms 35.64s - 3.99s 482ms 36.81s - 4.47s 1.59s 10m23s 1m23s 13m53s
ShallowBlocker 4.52s - 3.99s 13.82s - 5.90s 4.00s 13.92s - 5.88s 4.89s 2m0s 17.93s 38.05s

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 7m48s OOM OOM
Sup-τ-join - - - - - - - - - - - 2m20s 50.69s 1m35s
Sup-AutoBlock - - - - - - - - - - - 59m30s OOM OOM
Sup-DeepBlocker - - - - - - - - - - - ERR ERR 1h36m∗
Sup-k-join - - - - - - - - - - - 1h31m 2m14s 16m30s
ShallowBlocker - - - - - - - - - - - 5m51s 32.85s 1m16s

Table 4.9: Performance of all methods across all datasets in both unsupervised
and different supervised settings when the recall target is 98%. See Table 4.11
for memory usage. The highest performing method for each dataset and resource
setting according to each measure is underlined, while methods that are within
5% of this is bold. Methods that failed to reach to recall target is grayed
out. OOM: Out of memory. ERR: Hitting limits of FAISS. ∗One or more runs
crashed.
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Dataset

Resource Setting Method AG B DA DG IA WA D-DA D-DG D-IA D-WA AB C S CD

Memory Usage (GB)

Unsupervised

Token Blocking 0.14 0.32 0.21 1.85 6.04 0.40 0.21 1.84 6.04 0.38 0.13 18.7 OOM OOM
HVTB 0.12 0.14 0.12 0.28 0.98 0.17 0.13 0.28 0.39 0.17 0.12 8.00 38.3 OOM
HVTB+ 0.11 0.13 0.12 0.24 0.44 0.15 0.12 0.23 0.22 0.15 0.11 5.10 2.23 9.30
MinHash LSH 0.17 0.45 0.21 1.62 4.69 0.43 0.21 1.60 4.72 0.43 0.15 10.1 OOM OOM
PPJoin 0.01 0.07 0.01 0.05 0.29 0.01 0.01 0.05 0.29 0.01 0.01 OOM OOM OOM
τ-join 0.12 0.12 0.12 0.29 0.24 0.19 0.12 0.29 0.24 0.19 0.12 1.86 2.16 5.77
DeepBlocker 13.1 13.2 13.2 13.4 13.6 13.3 13.2 13.4 13.6 14.8 13.2 18.7 39.9 TIME
k-join 0.12 0.12 0.12 0.29 0.21 0.18 0.12 0.29 0.21 0.18 0.12 1.87 1.34 4.05
ShallowBlocker (q=0.95) 0.41 0.43 0.47 0.76 0.76 0.55 0.47 0.76 0.76 0.55 0.42 2.14 1.38 3.88
ShallowBlocker (q=0.99) 0.41 0.43 0.47 0.76 0.77 0.56 0.47 0.76 0.77 0.56 0.42 2.14 1.37 3.89
ShallowBlocker (q=1) 0.41 0.43 0.47 0.77 0.78 0.56 0.47 0.77 0.78 0.56 0.42 2.12 1.35 3.89

Supervised
≤ 100 matches

Sup-MinHash LSH 0.21 0.37 0.22 1.21 1.08 0.56 0.22 1.01 1.06 0.56 0.21 18.7 OOM OOM
Sup-τ-join 0.17 0.30 0.17 0.36 0.24 0.26 0.18 0.36 0.25 0.26 0.18 9.16 2.81 4.03
Sup-AutoBlock 11.1 10.9 10.9 13.5 66.2 12.0 10.9 23.9 38.1 13.3 11.1 15.6 OOM OOM
Sup-DeepBlocker 13.0 13.1 13.1 13.4 13.5 13.2 13.1 13.4 13.6 14.8 13.1 ERR ERR 45.1∗
Sup-k-join 0.18 0.18 0.19 1.05 0.92 0.45 0.19 1.12 0.91 0.45 0.17 18.1 3.75 9.93
ShallowBlocker 1.74 2.60 2.03 2.92 3.32 2.37 2.03 2.96 3.31 2.37 1.95 4.11 2.18 5.30

Supervised
≤ 1000 matches

Sup-MinHash LSH 0.20 - 0.22 1.17 - 0.40 0.22 1.18 - 0.40 0.21 18.4 OOM OOM
Sup-τ-join 0.17 - 0.18 0.36 - 0.26 0.18 0.37 - 0.26 0.18 2.78 2.19 4.02
Sup-AutoBlock 11.1 - 11.1 12.0 - 11.4 11.0 19.6 - 14.8 10.9 15.6 54.2∗ OOM
Sup-DeepBlocker 13.0 - 13.1 13.4 - 13.2 13.1 13.4 - 14.8 13.1 ERR ERR 45.1∗
Sup-k-join 0.19 - 0.20 1.10 - 0.48 0.20 1.12 - 0.49 0.18 4.93 3.22 10.0
ShallowBlocker 1.82 - 2.33 3.11 - 2.40 2.33 3.10 - 2.40 2.06 4.13 2.30 5.50

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 17.7 OOM OOM
Sup-τ-join - - - - - - - - - - - 2.92 2.14 4.02
Sup-AutoBlock - - - - - - - - - - - 15.6 52.7∗ OOM
Sup-DeepBlocker - - - - - - - - - - - ERR 73.9∗ 45.0
Sup-k-join - - - - - - - - - - - 8.16 3.14 10.1
ShallowBlocker - - - - - - - - - - - 4.18 2.67 6.17

Table 4.10: Memory usage of all methods across all datasets in both unsu-
pervised and different supervised settings when the recall target is 90%. This
complements Table 4.8. The lowest memory usage each dataset and resource
setting is underlined, while methods that are within 5% of this is bold. Methods
that failed to reach to recall target is grayed out. OOM: Out of memory. ERR:
Hitting limits of FAISS. TIME: Exceeding 24h time limit. ∗ One or more runs
crashed.

4.11 Experiments

4.11.1 Recall Target

The experiment compare the performance characteristics between methods when
targeting the same recall level. Table 4.8 and 4.10 report results when targeting
90%, while Table 4.9 and 4.11 report results when targeting 98%. We consider
90% and 98% as representative of low and high recall. For each method we
report recall, the number of returned pairs, runtime, and memory usage. We
normalize the number of returned pairs |P | and report the effective cardinality

k̃ = |P |/min(|A|, |B|) for easier comparison across dataset sizes. All reported
numbers are the average over five runs, and all are given a maximum runtime
of 24 hours.
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Dataset

Resource Setting Method AG B DA DG IA WA D-DA D-DG D-IA D-WA AB C S CD

Memory Usage (GB)

Unsupervised

Token Blocking 0.14 0.32 0.21 1.85 6.04 0.40 0.21 1.84 6.04 0.38 0.13 18.7 OOM OOM
HVTB 0.12 0.14 0.12 0.28 0.98 0.17 0.13 0.28 0.39 0.17 0.12 8.00 38.3 OOM
HVTB+ 0.11 0.13 0.12 0.24 0.44 0.15 0.12 0.23 0.22 0.15 0.11 5.10 2.23 9.30
MinHash LSH 0.19 0.47 0.24 2.06 5.53 0.58 0.24 2.11 5.46 0.58 0.16 13.8 OOM OOM
PPJoin 0.01 0.14 0.02 0.15 OOM 0.02 0.02 0.15 OOM 0.02 0.01 OOM OOM OOM
τ-join 0.12 0.12 0.12 0.29 0.28 0.19 0.12 0.29 0.29 0.19 0.12 1.88 3.40 12.6
DeepBlocker - - - - - - - - - - - - - -
k-join 0.12 0.12 0.13 0.29 0.21 0.18 0.13 0.29 0.22 0.18 0.12 1.87 1.69 4.89
ShallowBlocker (q=0.95) 0.42 0.46 0.48 0.77 0.78 0.57 0.48 0.77 0.78 0.57 0.44 2.12 2.34 4.02
ShallowBlocker (q=0.99) 0.42 0.45 0.48 0.77 0.78 0.57 0.48 0.78 0.78 0.57 0.43 2.14 1.89 3.97
ShallowBlocker (q=1) 0.42 0.45 0.48 0.78 0.79 0.56 0.48 0.78 0.79 0.56 0.43 2.12 1.81 3.97

Supervised
≤ 100 matches

Sup-MinHash LSH 0.23 0.43 0.23 1.33 2.04 0.45 0.23 1.69 2.05 0.46 0.24 18.9 OOM OOM
Sup-τ-join 0.17 0.34 0.18 0.37 0.25 0.26 0.18 0.37 0.25 0.26 0.18 18.4 3.59 4.02
Sup-AutoBlock 11.3 10.9 10.9 22.2 66.3 12.1 10.9 24.8 45.0 14.5 11.1 15.6 OOM OOM
Sup-DeepBlocker 13.3 ERR 13.1 13.7∗ 14.2 13.4∗ 13.1 13.6∗ 14.0 14.8∗ 13.2 ERR ERR 59.4
Sup-k-join 0.18 0.21 0.19 1.10 0.81 0.43 0.19 1.06 0.77 0.43 0.17 18.9 4.52 10.1
ShallowBlocker 1.74 2.61 2.03 2.94 3.31 2.37 2.03 2.96 3.31 2.37 1.95 11.5 2.71 5.31

Supervised
≤ 1000 matches

Sup-MinHash LSH 0.23 - 0.22 1.18 - 0.62 0.22 1.17 - 0.44 0.25 18.7 OOM OOM
Sup-τ-join 0.18 - 0.18 0.36 - 0.26 0.18 0.37 - 0.26 0.19 18.5 3.26 4.01
Sup-AutoBlock 11.4 - 11.2 21.9 - 12.2 11.5 20.0 - 14.8 11.0 15.6 OOM OOM
Sup-DeepBlocker 13.2 - 13.1 13.7 - 13.2 13.1 13.7∗ - 14.8 13.2 ERR ERR ERR
Sup-k-join 0.19 - 0.20 1.08 - 0.48 0.20 1.12 - 0.48 0.19 19.1 4.18 10.0
ShallowBlocker 1.81 - 2.33 3.10 - 2.39 2.33 3.09 - 2.40 2.06 19.3 2.74 5.51

Supervised
≤ 10 000 matches

Sup-MinHash LSH - - - - - - - - - - - 18.9 OOM OOM
Sup-τ-join - - - - - - - - - - - 18.7 2.79 4.03
Sup-AutoBlock - - - - - - - - - - - 15.6 OOM OOM
Sup-DeepBlocker - - - - - - - - - - - ERR ERR 45.0∗
Sup-k-join - - - - - - - - - - - 19.7 4.04 10.1
ShallowBlocker - - - - - - - - - - - 20.3 2.97 6.17

Table 4.11: Memory usage of all methods across all datasets in both unsu-
pervised and different supervised settings when the recall target is 98%. This
complements Table 4.9. The lowest memory usage each dataset and resource
setting is underlined, while methods that are within 5% of this is bold. Methods
that failed to reach to recall target is grayed out. OOM: Out of memory. ERR:
Hitting limits of FAISS. ∗ One or more runs crashed.

When used supervised, ShallowBlocker uses the objective function

f(recall, |P |, runtime) = (recall, cost)

where cost is
cost(|P |, runtime) = k̃ + crtruntime

and ordering of x = (recallx, costx) and y = (recally, costy) is given by

x ≥ y =

{
costx ≤ costy if recallx ≥ R ∧ recally ≥ R

recallx ≥ recally otherwise

We set crt to a conservative value of 0.01, meaning we consider a unit increment
in effective cardinality and a runtime increase of 100 seconds equal.

The unsupervised methods use the best hyperparameters that achieve the
desired recall on all the test sets as described in Section 4.10.3. We remind the
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reader that this means the same hyperparameters are used across all datasets,
and not tuned per dataset. For unsupervised ShallowBlocker we report the
results when setting the quality q to 0.95, 0.99, and 1.

The supervised methods get a training set of known matches different from
the test set. In order to study how the number of training matches affects
the results, we run each method with maximum 100, 1000, and 10 000 sampled
training matches.

Unsupervised Pair Effectiveness

We observe that ShallowBlocker is, with good margin, the method that is able
to achieve the desired recall with the least number of returned pairs, both for
low and high recall levels. The contrast is most pronounced with high recall.
DeepBlocker is not able to achieve 98% recall across all datasets because FAISS
is unable to return enough pairs. Furthermore, baseline methods using un-
weighted tokens (Token Blocking, PPJoin, Minhash LSH) struggle significantly
more than those relying on weighted tokens (HVTB, τ -join, k-join). We as-
sume this can be attributed to the excellent discriminatory power of TF-IDF.
Unsurprisingly, k-join is more stable than τ -join because it explicitly limits the
number of pairs. On the other hand, τ is able to prune more aggressively on
some datasets but end up returning way to many pairs on others. We see that
ShallowBlocker is able avoid exploding |P | while still exploiting the pruning
power of similarity thresholds — showing the strength of using (τ, τr, k)-joins.

Supervised Pair Effectiveness

We see that ShallowBlocker achieves the highest effectiveness in most super-
vised cases, and often with a substantial margin. The differences tends to be
larger for the high recall target, which makes sense because effective pruning
is harder. However, note that τ -join and k-join are sometimes more effective
with few training matches, and ShallowBlocker slightly misses the high recall
target for a few datasets. This is mainly due to ShallowBlocker having more
parameters and expressive power, and therefore more prone to variance with
few training matches. The attentive reader might have noticed that unsuper-
vised ShallowBlocker actually outperforms all the supervised methods in a few
cases. Here it is important again to remember that the hyperparameters of the
unsupervised methods were picked using the test sets to show best case perfor-
mance. The supervised methods can only rely on the train set and must pick
more conservative parameters to incorporate the resulting uncertainty.
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While DeepBlocker significantly outperforms AutoBlock, both deep learning-
based methods are dramatically less effective than ShallowBlocker. We see that
this also make them struggle with the large datasets.

Runtime

For small and medium datasets we see that τ -join and k-join are overall the
fastest. The reason ShallowBlocker is slower is because of the overhead it incurs
for automatically selecting join parameters and performing two joins — both in
the unsupervised and supervised setting. It is however kept consistently within
a few seconds of the fastest baselines, and importantly, pays of in competitive
runtimes for the large datasets Songs and Citeseet-DBLP. Note that runtime is
tightly coupled to the pair effectiveness and the number of returned pairs.

The runtime of PPJoin and Minhash LSH variate a lot more, and can be high
for even moderately sized datasets such as iTunes-Amazon. Mainly because it
needs very permissive thresholds to achieve the target recall. DeepBlocker is the
slowest of all the unsupervised methods by a significant margin, and the slowest
together with AutoBlock in the supervised setting. The embedding training
is the bottleneck for small datasets, while the pair generation using nearest
neighbor search on the embeddings is the bottleneck for larger datasets. For
the largest dataset, Citeseer-DBLP, DeepBlocker is not able to finish within the
time limit of 24 hours in the low recall setting.

The overhead of supervised ShallowBlocker is generally more than unsu-
pervised ShallowBlocker, as shown by the higher runtimes for most datasets.
However, on Citeseer-DBLP we also see that supervised ShallowBlocker can
leverage training data to choose join conditions and approximation degree that
actually significantly reduce the runtime.

Approximate Joins

We see, as expected, using approximate joins instead of exact joins has an overall
negative effect on the pair effectiveness of unsupervised ShallowBlocker (except
for iTunes-Amazon and Walmart-Amazon in the low recall setting, which we
think is mostly noise). The loss in effectiveness is more noticeable in the high
recall setting, especially for q = 0.95.

The goal of using approximated joins is to reduce runtime. For datasets
the exact ShallowBlocker already processes fast we actually observe an increase
in runtime. The reason is that extra overhead of determining ρ∗ exceeds any
reduction in the already low runtime. However, note that for the largest dataset,
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Citeseer-DBLP, we are able to significantly reduce the runtime in exchange for
moderate increases in |P |. For example, in the high recall setting ShallowBlocker
achieve a 36% (2.5 minutes) reduction in runtime by an increase in |P | of only
7% when using q = 0.99. So while approximate joins are not a silver bullet for
increased speed while achieving the same recall, and that it makes sense to run
with q = 1 by default, we think it is a valuable option to have at disposal for
large datasets.

Memory Usage

Unsurpricingly, the deep learning-based methods use substantially more mem-
ory than classical methods. PPJoin is the most nimble on a majority of the
datasets because of its highly optimized implementation over unweighted tokens.
However, as with runtime, memory usage is heavily coupled to the number of
returned pairs — and PPJoin is therefore not able to finish within the memory
limit on the largest datasets. ShallowBlocker generally has a higher memory
overhead on smaller datasets because of its extra bookkeeping for choosing pa-
rameters and running two joins. Nonetheless, for larger datasets this overhead
is outweighted by more effective join conditions resulting in low memory usage.

4.11.2 Effectiveness Trade-off

We study the trade-off between recall and the number of returned pairs |P |
in detail. Again, for easier comparison across datasets we report the effective
cardinality k̃ instead of |P |. Figure 4.8 shows recall plotted against k̃ across all
datasets for each method. We traverse the trade-off front of each baseline by
varying the only threshold (similarity or cardinality) parameter or recall target.
Similarly, for ShallowBlocker we vary k and for AutoShallowBlocker we use the
objective function

f(recall, |P |, runtime) = recall− ckk̃ − crtruntime

and vary ck (using crt = 0.01 as before).
We observe many of the same trends as in the previous experiment. Shal-

lowBlocker and AutoShallowBlocker generally demonstrate the best pair effec-
tiveness, while τ -join and k-join are the strongest baselines. Baselines using
unweighted tokens (Token Blocking, Minhash LSH, and PPJoin) are overall
considerably less effective, but PPJoin is effective on datasets like DBLP-ACM,
Songs, and Citeseer-DBLP. The deep learning methods are by far the least ef-
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Figure 4.8: Plot for every dataset showing the trade-off between number of
returned pairs (expressed as k̃ = |P |/min(|A|, |B|)) and recall for all methods.

Note that we have chosen a range of k̃ and recall we deem interesting, which
means sometimes methods are not visible in the plot. Token Blocking, for
example, is not visible in any plot because its k̃ is so large.
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fective. Note that most methods not significantly effected by dirty data, except
for AutoBlock — which do rely more on attribute boundaries.

4.11.3 Scalability
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Figure 4.10: The number of pre-candidates and candidates when using different
filter configurations across all datasets for τ -join and k-join using Jaccard and
Cosine with hyperparameters that achieve 90% and 98% recall. The Company
dataset is omitted for 98% since it is not possible to achieve that recall level.
The numbers are relative to the number of pre-candidates when using only prefix
filtering. The full height of each bar is the number of pre-candidates and the
bottom is the number of candidates.

Figure 4.9 shows the runtime and memory consumption of different methods
when running on different fraction sizes of the two largest datasets, Songs and
Citeseer-DBLP. We report for configurations that achieve both 90% and 98%
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as in Section 4.11.1.
From the plots we see clearly that Token Blocking, Minhash LSH, PPJoin,

and AutoBlock scales poorly. They are mostly not able to process the entire
datasets. This is mainly due to low pair effectiveness and the need for conser-
vative hyperparameters to meet the recall target. On the other hand, HVTB+,
τ -join, k-join, ShallowBlocker, and AutoShallowBlocker all scale reasonable well
and have similar characteristics. Note that the improved HVTB∗ is considerably
more memory efficient than HVTB, which is not able to process Citeseer-DBLP
within the memory constraints. As we saw in Section 4.11.1, ShallowBlocker and
AutoShallowBlocker have a larger overhead than many of the leaner baselines.
They have higher runtime and memory consumption for the smallest fraction,
but scale well due to aggressive pruning when the datasets grow. The deep learn-
ing methods have a much more extreme overhead. They are dominated by long
training time for smaller fractions and then increasingly dominated by nearest
neighbor search on embeddings for the larger ones. Unsupervised DeepBlocker
and Sup-AutoBlock are not able process the whole Citeseer-DBLP dataset.

4.11.4 Prefix-Partitioned Suffix Filtering

We examine the effect of our new proposed pre-candidate filter: Prefix-Partitioned
Suffix (PPS) Filter.

Number of Pre-Candidates

τ -join k-join

Measure Recall Filters DG IA WA C S CD DG IA WA C S CD

Jaccard

90%

Prefix 153ms 158ms 67.3ms 1m9s 6.66s 27.2s 187ms 212ms 71.8ms 49.9s 19.6s 27m17s
Prefix + Pos. 150ms 132ms 67.2ms 1m9s 4.07s 13.5s 177ms 163ms 69.2ms 46.6s 6.25s 6m58s
Prefix + Size + Pos. 151ms 138ms 69.2ms 1m8s 4.05s 12.9s 184ms 171ms 69.4ms 47.5s 6.51s 7m11s
Prefix + PPS + Pos. 157ms 125ms 69.1ms 1m5s 3.57s 10.4s 164ms 161ms 69.3ms 46.5s 4.91s 4m38s

98%

Prefix 167ms 184ms 71.3ms - 15.7s 1m15s 203ms 230ms 74.9ms - 1m28s 31m35s
Prefix + Pos. 159ms 150ms 70.6ms - 7.05s 30.0s 183ms 176ms 67.6ms - 19.3s 8m10s
Prefix + Size + Pos. 156ms 155ms 68.5ms - 7.15s 30.3s 184ms 183ms 73.2ms - 20.2s 8m28s
Prefix + PPS + Pos. 155ms 138ms 70.4ms - 5.83s 21.4s 167ms 170ms 70.5ms - 13.9s 5m28s

Cosine

90%

Prefix 155ms 127ms 70.5ms 32.6s 5.58s 13.1s 180ms 172ms 73.7ms 26.6s 23.0s 21m52s
Prefix + Pos. 152ms 119ms 68.4ms 28.8s 3.62s 9.39s 157ms 133ms 69.5ms 25.1s 4.76s 2m13s
Prefix + Size + Pos. 184ms 434ms 72.1ms 1m3s 46.8s 12m18s 260ms 563ms 78.4ms 48.1s 1m58s 1h12m
Prefix + PPS + Pos. 151ms 116ms 68.5ms 26.2s 3.40s 9.04s 157ms 132ms 69.9ms 24.0s 4.32s 1m51s

98%

Prefix 156ms 136ms 72.7ms - 18.5s 46.3s 207ms 191ms 76.6ms - 2m13s 26m8s
Prefix + Pos. 152ms 124ms 68.8ms - 6.20s 18.1s 159ms 141ms 71.9ms - 13.0s 2m38s
Prefix + Size + Pos. 219ms 490ms 81.2ms - 1m38s 19m3s 293ms 590ms 81.8ms - 5m2s 1h20m
Prefix + PPS + Pos. 153ms 121ms 70.5ms - 5.38s 16.3s 160ms 134ms 71.3ms - 10.4s 2m14s

Table 4.12: The runtime when using different filter configurations across all
datasets for τ -join and k-join using Jaccard and Cosine with hyperparameters
that achieve 90% and 98% recall.
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Dataset

Recall Filters DG IA WA C S CD

90%

Prefix 3.26s 2.64s 710ms 52.6s 12.6s 9m19s
Prefix + Pos. 2.80s 2.26s 649ms 48.7s 4.49s 2m18s
Prefix + Size + Pos. 6.12s 13.3s 1.18s 2m5s 4.70s 9m54s
Prefix + PPS + Pos. 2.71s 2.22s 642ms 44.7s 3.62s 1m12s

98%

Prefix 3.58s 3.35s 1.05s - 31.8s 23m38s
Prefix + Pos. 3.09s 2.90s 971ms - 8.99s 5m53s
Prefix + Size + Pos. 6.69s 21.9s 2.08s - 9.35s 15m33s
Prefix + PPS + Pos. 2.97s 2.84s 954ms - 6.35s 3m24s

Table 4.13: The runtime when using different filter configurations across all
datasets for unsupervised ShallowBlocker with hyperparameters that achieve
90% and 98% recall.

Figure 4.10 shows the relative number of pre-candidates and candidates for
τ -join and k-join using Jaccard and Cosine with thresholds achieving 90% and
98% recall per dataset. Reporting results for τ -join and k-join instead of Shal-
lowBlocker let us control for the effect of different constraint types and similarity
measures. We compare the number of pre-candidates and candidates when us-
ing prefix filter only, prefix and positional filter, PPJoin-style filters (prefix, size,
positional), and TTRKJoin filters (prefix, PPS, positional). Note that in order
to use size filtering for Cosine we must use L1 based bounds and thereby the
weaker prefix bound from PPJoin. The effect of using the improved L2AP [2]
prefix bound without PPS filtering can therefore be observed by looking at the
results for using only prefix and positional filtering.

Overall, we observe a reduction between approximately 20% and 90% of the
number of pre-candidates when applying PPS filtering. For the majority of cases
the reduction is 70% or more. This is significantly more than for PPJoin-style
size filtering, which we see have negligible effect for almost all datasets and at
most reduce the number of pre-candidates with around 20%. For Cosine the
weaker L1 prefix bound necessary to use size filtering makes it hard to compare
PPS against size filtering directly. However, it clearly shows that the L2 based
prefix bound from L2AP is a large improvement.

From the results we observe no major difference in behavior between thresh-
olds for high and low recall. Comparing τ -join and k-join we see the main
difference is the relative number of pre-candidates and candidates. τ -join has
fewer candidates compared to pre-candidates than k-join. This is mostly be-
cause τ -join is able to exploit the similarity threshold to prune when indexing,
and thereby reducing the number of duplicates when looking up the inverted
lists query time. Therefore, we would expect the runtime effect of PPS filtering
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to be greater for k-join. Comparing Jaccard against Cosine we see that PPS
filtering is most effective for Cosine — most likely because Jaccard relies on the
looser minPrefix of the inverted lists as bound on pb to get similarly tight suffix
bounds.

Runtime

Table 4.12 lists the runtime of the experiments above from Figure 4.10. For
clarity and conciseness we only report runtimes for datasets with runtime above
50ms. The remaining datasets are so small that the runtime is practically in-
distinguishable between different filtering techniques.

Previous work has shown that filtering techniques that generate fewer can-
didates than PPJoin or AllPairs often ends up being slower because of the extra
overhead [87]. However, we see from the reported runtimes that PPS filtering
either improves or matches size filtering across the board. The improvements
are most noticeable for the largest datasets, while the overhead of any filtering
beyond prefix provides no or minimal gains for smaller datasets. Furthermore,
we observe the enormous negative impact PPJoin style L1 size filtering (with
corresponding prefix bounds) has when using Cosine. As expected, the improve-
ments are greater for k-join than τ -join.

In contrast to τ -join and k-join, TTRKJoin mixes different join conditions
and ShallowBlocker mixes different similarity measures. Table 4.13 lists the
runtimes for unsupervised ShallowBlocker (q = 1) using the different filtering
configurations for k yielding 90% and 98% recall. These results show that the
runtimes from our controlled experiments on τ -join and k-join are indicative of
the effect it has on general use of TTRKJoin.

4.12 Conclusion

We have introduced, ShallowBlocker, a novel blocking method based on efficient
hybrid set similarity joins and shown through extensive experiments that it is
state-of-the-art. Specifically, it is able to achieve the same recall with fewer
returned pairs in most cases compared to previous state-of-the-art methods in
reasonable time. While it has a non-trivial runtime overhead for small datasets,
experiments show it is more efficient on large datasets than all the baselines.

The need for dataset-specific laborsome human engineering and tuning is
often highlighted as a key challenge for blocking. It is tempting to think that
classical blocking methods are too rigid and therefore will always need man-
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ual feature engineering for good results, so we require the automatic feature
learning from deep learning to create the best hands-off solutions. However,
our work shows that classical string similarity-based techniques can be used to
create hands-off blocking methods that outperform state-of-the-art deep learn-
ing based methods — even on dirty data. Importantly, our proposed method
requires considerably fewer computational resources and is significantly more
interpretable. Despite recent advances, our work suggests that classical tech-
niques for blocking are still highly competitive to deep learning methods.

There is still a lot to explore with the proposed techniques and methods. We
think (τ, τr, k)-join is a powerful primitive and we hope to see other fruitful uses
of TTRKJoin outside the scope of ShallowBlocker. Even though we see Shallow-
Blocker outperforming deep learning-based methods on the benchmark datasets
used in this paper, it is an inherent limitation that methods based on classical
string similarity rely on some level of syntactic similarity. It would be interest-
ing to explore the possibility of combining elements of both ShallowBlocker and
deep learning techniques to exploit the strengths of both approaches.
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Chapter 5

Discussion

In this thesis, we set out to explore novel deep learning-based approaches to
entity matching, how they differ from traditional methods, and their implica-
tions. We now go through and address the research questions we outlined at
the beginning of the thesis.

5.1 Research Questions

RQ1 What are the contributions from deep learning to entity matching?

Paper A provided a substantial survey of the use of neural networks in the entity
matching process. We identified two main and novel contributions deep learning
brings to entity matching:

1. Learned feature extraction and comparison: One of the challenges
of more traditional string similarity-based machine learning approaches is
that, even though the method can learn which features to use and how
to apply them, it is often necessary to manually tweak or craft similar-
ity features for new datasets. Deep learning approaches are able to learn
to extract features and how to compare them. This significantly reduces
manual feature engineering efforts. Perhaps even more important, it en-
ables us to exploit powerful semantic similarity. We simply do not have
effective techniques for manually crafting semantic similarity features at
the same level as deep learning methods.

177
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The drawbacks are that the required amount of training data and compu-
tational resources is significantly higher. Deep neural networks can have
millions or billions of parameters and operate more or less directly on raw
text. Tuning them is a much more daunting task than determining some
thresholds or linear combinations of a few select features handcrafted for
the task at hand. However, the recent introduction of large pretrained lan-
guage models greatly reduces these drawbacks. Fine-tuning such models
achieves state-of-the-art results with moderate amounts of training data
and a fraction of the compute compared to training from scratch.

2. Coalescing the entity matching process: Traditionally, entity match-
ing typically follows a (relatively) standard process of clearly separated
steps: 1) Data preprocessing, 2) Schema Matching, 3) Blocking, 4) Record
pair comparison, and 5) Classification (see Figure 2.2). Deep learning
methods enables us to unify or merge several of these steps (as illustrated
in Figure 2.4). A single neural network can be responsible for most of the
data preprocessing, schema matching, blocking, record pair comparison,
and classification. This has the potential to simplify the architecture of
entity matching systems.

On the other hand, this is also an important reason why deep learning so-
lutions are less interpretable. The clearly separated steps of the traditional
process make it inherently more interpretable because one can inspect and
reason about each step separately. In a more tightly integrated deep learn-
ing process it is harder to track and pinpoint why records end up being
considered a match or not.

RQ2 How does modern deep learning approaches compare to classical ap-
proaches for blocking?

There are a multitude of classical approaches [100]. We saw in paper A and
C that deep learning-based blocking relies on approximate k nearest neigh-
bor search of dense embeddings (at attribute and/or record level). The main
difference from classical approaches is the use of dense and semantic embed-
dings instead of sparse and (mostly) syntactic representation (e.g., bag of q-
grams/words). Generally, this makes the representation more expressive, but at
the cost of making it harder to interpret the representation and build efficient
search procedures.

The proposed method ShallowBlocker in paper C and the comparison to
state-of-the-art deep learning methods show that classical string similarity-based
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methods are still able to outperform deep learning-based methods in terms of re-
call, pair efficiency, and runtime efficiency — while also being more interpretable
— on popular benchmark datasets. The main advantage deep learning has is
the ability to learn expressive semantic features. However, since comparison
in blocking can not be done explicitly and must happen through the embed-
ding space, the precision of comparison is significantly limited. We suspect
expressive semantic features are less important for blocking because syntactic
similarity is often good enough in practice to find reasonable candidates that
can be classified with higher precision in the downstream explicit record pair
comparison, and that tailor-made algorithms on carefully selected sparse syn-
tactic representations can simply recall candidates more reliably and efficient
than the constrained embeddings. These challenges can, of course, be overcome
in the future, and we look forward to seeing the advances of deep learning for
blocking.

RQ3 Can we explain predictions from deep learning matchers and classical
matchers in the same frame of interpretation, and if so, how?

We argue this is possible. Paper B proposed LEMON, a model-agnostic explain-
ability method and framework for interpretation based on feature attribution
tailored to entity matching. The key to having a homogeneous explanation for-
mat across all matchers is the fact that we create them post hoc and only rely on
perturbations of the input to study the behavior of the matcher — and therefore
do not rely on the inner workings of the matchers. It is fundamentally a feature
attribution method. However, as we discuss in the paper, traditional local post
hoc feature attribution methods are not suitable for explaining why records do
not match because they only explain subtractively (see Section 3.4.2 and results
for non-matches in Table 3.2). Therefore, we also propose the notion of attri-
bution potential, which identifies tokens a matcher would find important if it
matched better with the other record. Synthetic experiments and experiments
on humans show that LEMON is effective on both a widely used state-of-the-art
classical method and deep learning method.

RQ4 How does explainbility methods adapted to entity matching improve in-
terpretation of matchers?

In paper B we saw that popular general-purpose local post hoc attribution ex-
plainability methods have several fundamental challenges when applying them
to entity matching. We identified three: 1) Cross-record interactions effects,
2) Non-match explanations, 3) Variation in sensitivity. Our proposed method,
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LEMON, builds upon the widely used LIME [114] method, and addresses all
three challenges. User studies from Paper B showed that the rate at which hu-
man subjects can construct counterfactual examples after seeing an explanation
from our proposed method increases from 54% to 64% for matches and from 15%
to 49% for non-matches compared to explanations from a standard adaptation
of LIME. Of course, user studies are difficult to execute and analyze correctly.
There are many potential sources of noise and error — such as how test users
are picked and what precise instructions they are given. We hope to see more
user studies from the research community in the future to gain more nuance.
However, these results, together with the extensive synthetic experiments, sug-
gest that one can achieve significantly more effective explanations by specifically
targeting the unique challenges in explaining entity matching predictions and
adapting existing explainability methods to entity matching.

5.2 Implications of Contributions

We briefly discuss potential implications of our contributions.

C1 Insight and overview of how new deep learning methods com-
pare to classical methods for entity matching. We hope the work
in this thesis help other researchers gain deeper insight into the unique
opportunities and challenges deep learning opens up for entity matching,
and that it will aid them in developing techniques and methods that ex-
ploit the opportunities and overcome the challenges. Entity matching is a
ubiquitous and often a highly valuable data integration task in practice if
can be sufficiently solved. Therefore, most significant advances are likely
to translate into real-world benefit to a wide range of data integration
practitioners.

C2 A state-of-the-art model-agnostic explainability method tailored
to entity matching. Our proposed method, LEMON, provides researchers
and practitioners a potentially powerful method for inspecting and inter-
preting the behaviour of matchers that can be used to troubleshoot or
discover ways to improve matchers. Furthermore, it can be used a tool to
compare the behavior or fundamentally different matchers (e.g., classical
vs deep learning). For researchers, our employed techniques can be used
as a basis for developing better or other types of explainability methods
for entity matching.
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C3 A state-of-the-art blocking method based on set similarity joins.
Choosing and tuning a blocking strategy can be challening in practice.
Our proposed method, ShallowBlocker, improves the state-of-the-art pair
effectiveness on popular benchmark datasets in both unsupervised and su-
pervised settings, while being hands-off, interpretable, and relatively fast.
ShallowBlocker provides researchers and practioners with a potentially im-
provement over existing and currently used blocking methods in terms of
pair effectiveness and ease of use. The proposed method and the extensive
experimental results can act as a starting ground for further research into
why deep learning methods are not able to perform at the same level —
and ultimately improving them. Furthermore, the (τ, τr, k)-join primitive,
its heuristic approximation scheme, and TTRKJoin can be used as building
blocks for future methods.

5.3 Final Thoughts

We set out to explore the novel use of deep learning for entity matching. We
were interested in contrasting it to existing classical approaches and methods,
and gain novel insight into the benefits and drawbacks. Furthermore, this thesis
has focused on interpretability and blocking as two core aspects to highlight the
differences.

Deep learning-based methods has some clear advantages over previous meth-
ods. In particular, we identified the learning of feature extraction and compari-
son and the coalescing of the entity matching process as the two main benefits.
However, as discussed, both come with trade-offs.

In practice, we do not think that challenges with regard to training data and
computational resources will hinder adoption. The progress enabled by large
pre-trained language models significantly reduces these challenges. The massive
attention they and their ecosystem are getting will only make them more easy
to use and accessible. We believe that interpretability will be a bigger hurdle for
adoption. Entity matching is often be a core task in data integration workflows
for critical domain/business data where the trust in the data quality is key.
We hope the work presented in Paper B, which provides a novel state-of-the-art
explainability method for entity matching that can explain predictions from deep
learning matchers and classical matchers in the same frame of interpretation,
will be of help to practitioners.

Existing work, as we saw in Paper A, has demonstrated the effectiveness of
deep learning for record pair comparison and classification. It is able to achieve
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significantly higher precision than classical approaches across most benchmark
datasets. However, as we demonstrated in Paper C, it is less clear whether
deep learning provides clear benefits over classical approaches for blocking. In
theory, it should be beneficial to datasets that rely more on semantic than syn-
tactic similarity, but that do not result in better recall, pair effectiveness, or
runtime on standard benchmark datasets. We think there is substantial room
for improvement of deep learning-based blocking and expect to see continued re-
search in this area. We hope the novel state-of-the-art classical blocking method
introduced in Paper C will serve as a strong baseline for the research community.

5.3.1 Future Research Directions

While we see many potential avenues for future research on the topics covered
in this thesis, we find two directions particularly interesting:

• Hybrid approaches: In this thesis, we have seen that classical and deep
learning methods have their own strengths and weaknesses. We think the
time is ripe for exploring hybrid approaches — mixing more traditional
approaches with deep learning approaches. For blocking, one could explore
how the computational efficiency of string similarity joins could be used
to more effectively prune/reduce the search space for embeddings. For
record pair comparison and classification, one could explore the possibility
of incorporating string similarity measures as input to a deep learning
network. We hope to see substantial contributions to the field from the
combination of techniques from these two worlds.

• End-to-end explainability: One significant shortcoming of all current
explainability methods for entity matching is that they only target classi-
fication of explicit pairs downstream for the blocking step. If the reason
two records are not matched is because the pair was not recalled in the
blocking step none of the current methods would be able to pick up that
and express that in the explanation. In the future, we hope to see meth-
ods trying to explain matches and non-matches across the entire entity
matching process — including blocking. This is not trivial to achieve, but
would be valuable because it reduces the complexity of working across the
different steps in the entity matching process.
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Conclusion

In this thesis, we have taken an extensive look at the use of deep learning for
entity matching. The goal was to gain novel insight into what these new tech-
niques and approaches contribute to entity matching, and how they differ from
classical approaches. We had a special focus on interpretability and blocking as
two areas of contrast.

The thesis has three main contributions. First, we provide novel insight and
overview of how new deep learning compares to classical methods for entity
matching. We highlight learned feature extraction and comparison together
with coalescing of the entity entity matching process as the two main benefits
deep learning brings to entity matching. At the same time, it is a source for
challenges in regard to the required amount of training data and computational
resources as well as the lack of inherent interpretability.

Secondly, we present LEMON, a state-of-the-art model-agnostic explainabil-
ity method tailored to entity matching. Since deep learning has limited inter-
pretability compared to classical methods, this method could be a valuable tool
in the transition between these paradigms given its ability to explain predictions
of all methods in the same way.

Lastly, we present ShallowBlocker, a state-of-the-art blocking method based
on set similarity joins. Extensive results highlight that there is still a lot to be
desired for deep learning-based blocking. Future work can use this method as a
strong baseline to represent classical approaches.

Entity matching is experiencing a paradigm shift that replaces traditional
machine learning methods and classical syntactical string similarity techniques
with deep learning-based approaches. We hope that this thesis is a valuable
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contribution for practitioners and the research community as the development
of deep learning for entity matching continues to unfold.
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