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Summary

This graduate thesis investigates neural networks for genomic prediction using Single Nuc-
leotide Polymorphisms (SNPs) from house sparrows. Despite the sucess of neural networks
in various fields, they have not yet revolutionized genomic prediction. Understanding the
genetic basis of phenotypes is crucial for fields like breeding programs and conservation
biology.

t-distributed stochastic neighbour embedding (t-SNE) was compared with principal com-
ponent analysis (PCA) for visualizing high-dimensional SNP data. t-SNE effectively re-
vealed population structures by clustering individuals by their hatch island.

A total of 27 neural networks were trained on two house sparrow datasets containing
overlapping samples and SNPs, and the same non-genetic variables. The datasets differed
in size: the small dataset had 3032 samples and 182,854 SNPs, and the large dataset
had 6092 samples and 66,018 SNPs. The networks predicted body mass, tarsus length,
and body mass adjusted for non-genetic variables. A linear mixed model served as a
benchmark. The consequences of modelling a wild population consisting of multiple sub-
populations is explored by recording the model accuracy separated by the hatch island of
the sample.

Three classes of feed forward neural network was tested, multi layered perceptrons, con-
volutional neural networks and locally connected neural networks. The effect of one-hot
encoding applied to SNPs, input size and various approaches to feature selection was
also investigated. The best approach to perform feature selection on the SNPs was to
choose the SNPs most correlated with the phenotype. The three network types per-
formed similarly when predicting the adjusted body mass. The best performing net-
work, which was trained on the large data set, achieved a Pearson correlation between
the predicted and true phenotype of 0.291 (σ = 0.023), outperforming the linear mixed
model, which was trained on the small data set (0.272 (0.029)). None of the neural
networks outperformed the linear mixed model on the small data set. One-hot encod-
ing was rarely beneficial, but to performed well when combined with locally connected
layers. The neural networks predicting the raw phenotypes (using both genetic and
non-genetic data) slightly outperformed the linear model when predicting body mass
(Neaural network : 0.347 (0.042), Linear model : 0.320 (0.037), but did worse on tarsus
length (Neural network : 0.324 (0.029), Linear model : 0.385 (0.035)). The results in this
thesis shows that neural networks can be a viable option for genomic prediction, especially
when dealing with large data sets.
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Sammendrag

Denne masteroppgaven utforsker bruken av nevrale nettverk for genomisk prediksjon p̊a
enkeltnukleotidpolymorfismer (SNP-er) fra en vill populasjon av gr̊aspurv. Til tross for
suksessen til nevrale nettverk, har de enn̊a ikke revolusjonert genomisk prediksjon. En
forst̊aelse av det genetiske grunnlaget for fenotyper er avgjørende for forskning innen
bevaringsbiologi og avlsprogrammer.

”t-distributed stochastic neighbour embedding” (t-SNE) ble utforsket som et alternativ til
prinsipalkomponentanalyse (PCA) for visualisering av høydimensjonal SNP-data. t-SNE
ga en to-dimensjonal visualisering som i stor grad samsvarte med hvilken øy fuglene var
fra.

Totalt 27 nevrale nettverk ble trent p̊a to datasett av ulik størrelse, men med overlapp
i SNP-er og individer. Det lille datasettet hadde 3032 individer med 182,854 SNP-er og
det store datasettet hadde 6092 individer med 66,018 SNP-er. Fenotypene kroppsvekt,
tarsuslengde, eller kroppsvekten etter justering for ikke-genetiske variabler ble predikert.
Den uendrede fenotypen ble predikert av et nevralt nettverk som brukte b̊ade genetiske og
ikke-genetiske variabler samtidig. Ytelsen til nettverkene ble sammenlignet med en lineær
model. Konsekvensene av å modellere en vill bestand best̊aende av flere subpopulasjoner
utforskes ved å sjekke ytelsen p̊a et datasett separert etter individers opprinnelsesøy.

Tre klasser av nevrale nettverk ble testet, ”multi layered perceptrons”, ”con- volutional
neural networks” and ”locally connected neural network”. Effekten av å anvende ”one-hot
encoding” p̊a SNP-er, antall SNP-er og ulike tilnærminger til redusere antall SNP-er før
trening av nettverkene ble testet. Den beste tilnærmingen for å selektere SNP-ene var
å velge basert p̊a absolutt korrelasjon med fenotypen. De tre nettverkstypene presterte
omtrent likt p̊a den justerte kroppsvekten. Det beste ytelsen kom fra en ”multi layered
perceptrons” som oppn̊adde en Pearson-korrelasjon mellom den predikerte og sanne feno-
typen p̊a 0.291 (σ = 0.023) (p̊a det store datasettet), og overgikk dermed den lineære
modellen, som ble trent p̊a det lille datasettet (0.272 (0.029)). Ingen av de nevrale
nettverkene overgikk den lineære modellen p̊a det lille datasettet. ”One-hot encoding”
var sjeldent gunstig, men presterte godt n̊ar den ble kombinert med et ”locally connected
layer”. P̊a de ujusterte fenotypene presterte nettverkene litt bedre enn den lineære mod-
ellen p̊a kroppsvekt (Neuralt nettverk : 0.347 (0.042), ; Lineær modell : 0.320 (0.037), men
d̊arligere p̊a tarsuslengde (Neuralt nettverk : 0.324 (0.029), ; Lineær modell : 0.385 (0.035).
Resultatene i denne avhandlingen viser at nevrale nettverk kan være et godt alternativ
for genomisk prediksjon, spesielt n̊ar datasettet er stort.
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1 Introduction

Biological systems are highly complex and the field of biology as become an increasingly
data driven area of research. Advances in genomic sequencing, reducing cost and improv-
ing accuracy, have enabled the collection of large genomic data sets. One use case of
these genomic data sets is modelling the functional relation between the genes and the
phenotypes. Methods from machine learning are increasingly being employed to analyze
genomic data. Advances in machine learning have revolutionized numerous fields of re-
search involving large complex data. The most impactful machine learning method might
be neural networks. This thesis continues previous work in my project thesis (Singsaas
2023) and aims to contribute to the understanding of how neural networks is best applied
to genomic data from a wild population for the purpose of genomic prediction. Certain
sections have been continued from its formulation in the project thesis, but all results and
the analysis is new. These are the Sections 2.1, 2.2, 2.3, 2.5, 3.3 and 3.5. Greater detail on
what is a continuation from the project thesis is given at the beginning of these sections.

The aim of genomic prediction is to predict the phenotype of an individual, often based on
genome wide molecular markers in the from of single nucleotide polymorphisms (SNPs)
(Meuwissen et al. 2001; Meuwissen et al. 2016). SNPs are locations in the DNA sequence
where the variation in the observed nucleotides is above a certain threshold. Recording
these locations preserve the variation in genetic material within a population, while leaving
out the large majority which is identical and would therefore be useless for predicting the
effect of genes on phenotypes as we have no observations where they are absent. The
correlation of the SNPs with surrounding genes (linkage disequilibrium) lets us capture
the effect of genes with a causal relation to the phenotype (quantitative trait loci), without
them being directly included in the data. Next generation sequencing has made it possible,
at least in principle, to construct models on whole genomes. Predicting on whole genomes
would let the model directly estimate the effects of the causal mutations, rather than
relying on their linkage disequilibrium with surrounding SNPs. Despite these upsides we
are yet to see definitive improvements by whole genome regression compared to SNP based
regression (Ros-Freixedes et al. 2022).

Genomic prediction and genomic selection has been widely used to accelerate and improve
precision in the artificial selection process in plant and animal breeding (VanRaden 2020).
The generation time can be shortened by sampling genetic material rather than having
to wait to record phenotypes when they are expressed. Use cases include accelerating
development of crops which are more resilient to the changing climate (Budhlakoti et al.
2022). In medicine there is a need for a better understanding of how genes affects the
health outcomes of humans, such as poly-genetic disorders. Genomic prediction on wild
systems has seen comparably less activity, although a few studies have been published
(e.g, Ashraf et al. 2022; Hunter et al. 2022). Genomic prediction in wild populations
is primarily focused on conservation biology and understanding evolutionary processes,
letting us predict a species capacity to adapt to environmental changes. Genomic predic-
tion on wild populations poses some unique challenges compared to studies on domestic
populations. Wild populations often have higher genetic diversity compared to domestic
populations, which have been selectively bred. This diversity can make it more difficult
to identify relevant genetic markers for traits of interest and causes poor generalization
between sub-populations.

In recent years, neural networks have made significant advancements in numerous fields,
including image recognition (Khan et al. 2020) and natural language processing (OpenAI

5



2023). The unparalleled success of neural networks models in these areas has resulted
in a growing interest in their application to various domains. However, in the field of
genomic prediction using SNP data, the impact of neural networks has been limited. More
traditional statistical models have remained the dominant method for genomic prediction
tasks (Montesinos-López et al. 2021). The effect of genes on phenotypes are known to
have aspects that are poorly captured by the commonly used linear models. This thesis
investigates the viability of the much more flexible neural networks, as they in principle
should be able to model genetic effects that are poorly modeled by linear models. Until
now, most studies on genomic prediction using machine learning techniques focus primarily
on genomic selection within plant and animal breeding contexts (Li et al. 2018; Montesinos-
López et al. 2021; Ros-Freixedes et al. 2022; Wang et al. 2022), as well in medicine, disease
risk and complex trait prediction (Bellot et al. 2018; Kim et al. 2018).

Despite these potential upsides, linear models are still the dominant method, as the neural
networks have yet to consistently outperform the linear models (e.g., Montesinos-López
et al. 2021). This raises the question of whether neural network models are inherently
unsuitable for genomic prediction tasks, or if the appropriate architecture and methodology
have yet to be discovered. To address this question, this thesis focuses on an empirical
analysis of a real data set from collaborators at the Centre for Biodiversity Dynamics
(CBD) at NTNU using a data set of house sparrows in Northern Norway. A total of
28 models are trained to predict the phenotype tarsus length, body mass or an adjusted
body mass (adjusted for non-genetic effects). These models all vary in architecture, input
size and input encoding, giving insights into the what the best design choices are for
such neural networks. Topics covered include SNP selection criteria for dimensionality
reduction, network architecture types, SNP encoding and regularization techniques. In
addition, two visualization techniques for exploring potential genetic clustering of the
wild population is presented and discussed. These two methods are the commonly used
principle component analysis (PCA) and the more novel t-distributed stochastic neighbour
embedding (t-SNE).

NTNU has stated goal to be a leading actor tackling today’s sustainability challenges,
researching aspects ranging from new technology and innovative solutions, modelling and
environmental impact assessments to research on consumer behavior and governance (ht-
tps://www.ntnu.no/barekraft). This thesis contributes to the work of Centre for Biod-
iversity Dynamic by investigating new methods for genomic prediction, which is important
for some ecological metrics used in conservation biology. Additionally, advancing the field
of genomic prediction is beneficial for the development of crops that are better suited for
the climate of tomorrow.
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2 Background

2.1 Foundational biological concepts for genomic prediction

To understand the discussion of how neural networks can be suited for genomic prediction,
a basic understanding of concepts in quantitative genetics is needed. These concepts has
informed the design choices made in neural networks trained in this thesis. The terms
introduced relates to the different ways genes acts on phenotypes and how we categorize
them. This section contains formulations from (Singsaas 2023).

2.1.1 Phenotypic variation

Phenotypic variation refers to the differences in physical characteristics and traits ob-
served among the individuals of a population, influenced by both genetic factors (G) and
environmental conditions (E). Genetic factors refers to the genetic material (DNA). En-
vironmental conditions are the various external factors and influences, such as climate,
habitat, and resources, that impact the development and traits of an animal. Variation
in G and E gives rise to the variation in phenotype (P ). This separation of genetic and
environmental effects means that the phenotype can be partitioned into these two com-
ponents, following the equation P = G + E. The variance in phenotype is by extension
expected to be the sum of the genetic and environmental variances (σ2

P = σ2
G + σ2

E),
assuming that these two components are independent. The assumption that the genetic
and environmental variance is independent of each other is made in the most commonly
applied statistical models for genomic prediction.

A more nuanced view of phenotypic variation includes the interactions between genes and
the environment (G×E) (Conner and Hartl 2004, p. 108). The G×E interaction refers to
gene action being depending on the environment. Two individuals with different genetic
material may express the same phenotype, but change the environment and the G × E
interaction may give different changes in the phenotype of the individuals. This effect is
also referred to as phenotypic plasticity. The presence of G × E interactions underlines
the fact that the genomic prediction task, especially in wild systems, is highly dependent
on the specific population and environment. The contribution of genetic variation, envir-
onmental variation, and their interactions to the phenotype variation will be different for
each phenotype. Some phenotypes may be sufficiently modelled only considering genetic
and environmental effects separately. However, if the G × E effects are sizable, then a
model that captures these effects would be beneficial.

2.1.2 QTLs and linkage disequilibrium

Loci (locations in the DNA) that regulates quantitative traits are called quantitative trait
loci (QTLs). These are the causal genes that affects the expressed phenotype. Identifying
QTLs is important for purposes such as disease risk modelling. In genomic prediction we
mainly want to model their effects. Usually however, the whole genome is not available
for analysis. This is also true for the data studied in this thesis. Only certain genes are
recorded, single nucleotide polymorphisms (SNPs). These are only loci on the genome
where the population has a certain level of variation, meaning that important QTLs are
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not necessary present in the data. This is where the linkage disequilibrium becomes an
important principle. Dense marker maps will have markers sufficiently close to any QTL so
that they are more likely to be inherited together, and therefore be correlated in the data.
Linkage disequilibrium refers to genes not appearing independently of each other, but
being correlated based on how they are inherited (Conner and Hartl 2004, p. 157). High
linkage disequilibrium means that knowing the genotype at one locus gives information
about likely genotypes at nearby locus. This is why markers, such as SNPs, can be used
to identify QTLs, even if the markers are not causal themselves. When using these SNPs
as features in a statistical model, the linkage disequilibrium introduces the problem of
multicollinearity. Multicollinearity is the presence of highly correlated features in the data
set. This informed decisions on the pre-selection of SNPs described in Section 3.5.

2.1.3 Gene actions: Dominance and epistatic effects

Gene actions, the mechanism through which a gene influences the phenotype, come in
multiple different flavours and is a central reason to why non-parametric machine learning
techniques such as neural networks might be suited for genomic prediction. Interactions
on the genome happens at two levels, within a locus and between different loci. The the
absence of interaction at any of these levels, is referred to as additive gene action. Between
different loci, additive effects means that the effect of one locus is independent of the
genotype at another locus, making the effects summable. Within a locus, additive effects
are present when the heterozygote has an intermediate contribution to the phenotype,
between the homozygotes for the alternative alleles (gene variants) (Conner and Hartl
2004, p. 103).

Dominance effects refers to the alternative ways there can be an interaction within a
locus (Conner and Hartl 2004, p. 105). These are again organized into sub-categories.
The simplest case for illustration might be the case of complete dominance. Complete
dominance describes the case when the effect of one allele in a heteroztgote genotype is
completely muted by the other. The effect of one allele is therefore dependent on the
allele at the same locus, making it non-additive. This motivated the exploration of an
alternative way of encoding the SNPs, introduced in Section 2.5.

The final category of gene action, essential for the intentions of this study, is epistatic
effects. Epistatic effects are interactions between different loci, meaning that the con-
tribution of a genotype is not known without knowing its interactions. When epistatic
effects are present, the effect sizes of each gene cannot simply be summed up without
considering the interplay with other loci. Non-additive effects complicates the genomic
prediction task and might make approaches such as neural networks suitable, as they are
not directly modelled in the more commonly applied linear methods.

2.1.4 Breeding values

The breeding value, often denoted as the genetic value, is defined as the additive effects
of an individual’s genes on the value of the trait in its offspring (Conner and Hartl 2004,
p. 111). It is essentially the sum of gene effects across all loci contributing to the trait.
In practice, we don’t usually know the exact breeding value of an individual, but we can
estimate it based on observed phenotypes and genetic data. These estimates are known as
estimated breeding values. In genomic prediction, the goal is to estimate these breeding
values as accurately as possible, often to guide selection decisions.
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2.1.5 Heritability

Heritability is a measure that quantifies the proportion of observed phenotypic variation in
a population that can be attributed to genetic variation (Conner and Hartl 2004, p. 112).
In the context of genomic prediction, the concept of heritability represents the upper limit
of prediction accuracy that can be achieved using genomic data for a given trait in a
specific population. Heritability is dependent on the genetic variation and environmental
variation seen in a studied population. Importantly, this means that the performance in
a genomic prediction task is not transferable to other populations. In the extreme case, if
a trait is fixed among all individuals (say the number of eyes in humans), the heritability
will be zero. However, this does not mean that it is not genetically determined.

The heritability is often separated into two types, broad-sense heritability (H2) and

narrow-sense heritability (h2). Broad-sense heritability is defined as H2 = var(G)
var(P ) , the

total genetic varaince as proportion of the phenotypic variance. Narrow-sense heritability
is restricted to the proportion of phenotypic variance attributed to the additive genetic
variance, defined as h2 = var(Ga)

var(P ) , where var(Ga) is the variance of the additive genetic
effects. Narrow-sense heritability is often used because of its relation to statistical assump-
tions in the most used linear models for genomic prediction. It is also an easier quantity to
estimate, as complex interactions on the genome is discarded, and only the average effects
in the population are included.

2.2 The prediction problem

Linear mixed models predicting breeding values in livestock and plants are often called
animal models. For n observations, a simple version of an animal model can be formulated
as

yi = µ+ gi + εi, i = 1, 2, ..., n , (1)

where yi is the phenotype of individual i, µ is the population mean, gi is the breeding value
of individual i and εi is the independent environmental effects. Note that the effects gi
and ϵ are separate terms and no interaction is included. The result is that the variation in
phenotype is decomposed as the genetic and environmental variance under the assumption
of σ2

P = σ2
E+σ2

G. This decomposition of phenotypic variation is often violated, as discussed
in Section 2.1. Estimating the genetic effects, or in the case of Equation 1, the breeding
values , can be done multiple ways. To provide important context for the application of
neural networks to genomic prediction, the two approaches of animal models and marker
based regression are briefly introduced. The results of an animal model will serve as
the comparison for the neural networks trained in this thesis. A similar adjustment of
phenotypes was done in Singsaas (2023).

2.2.1 Animal models and relatedness based regression

Animal models are linear mixed models (Kruuk 2004), a model family that includes explan-
atory variables which are fixed and some which are random. Fixed effects are constants
associated with a feature, such as sex, affecting the mean of the distribution. For example,
an individual specific random effect can be included in the model. The variance of this
random effect would reflect the variance between different individuals not explained by
the fixed effects. In equation (1), the vector of breeding values, g = [g1, ..., gn]

T is assumed
drawn from a multivariate normal distribution g ∼ N(0, σ2

G ·G). The n × n relatedness
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matrix is denoted G and σ2
G is the additive genetic variance. The relatedness matrix can

be estimated from a pedigree if it is known. For instance, full siblings have a coefficient of
0.5, indicating that they in expectation would share about half of their genetic material,
assuming non-related parents. With the availability of SNP data, the relatedness matrix
can also be calculated based on the amount of shared genetic material (Bérénos et al.
2014). From the matrix of markers, Z, the relatedness matrix is defined as

G =
ZZT

2
∑

pi(1− pi)
,

where pi is the frequency of the second allele (VanRaden 2008). The matrix Z has dimen-
sions n× p, where p is the number of markers.

2.2.2 Marker-based regression

Marker-based regression is an alternative to the animal model where each marker, often
SNPs, is directly included as an explanatory variable. The total genetic effect for an
individual is then the sum of the marker effects. For n samples with p markers the marker
based regression can be formulated as

y = µ+ Zu+Xb+Wd+ ε , (2)

where Z is a n× p matrix of marker codes (encoding the genotypes aa, aA and AA as 0, 1
and 2 respectivly). The vector of responses, y, is n× 1 dimensional. µ is the population
mean, Xb accounts for any fixed effects and Wd incorporates the random effects included
in the model. In the case of n < p, this model is not solvable by ordinary least squares
(Lande and Thompsont 1990). Different approaches are possible to get an identifiable
model, in both the frequentist (e.g., GBLUP, Meuwissen et al. (2001) and VanRaden
(2008)) and Bayesian paradigm (Gianola 2013).

In this study, the genetic merit of an individual, Zu in Equation (2), will be estimated by
neural networks. This will allow the modelling of more complex gene actions. As defined
in Equation (2), there is no terms for between loci interactions or G × E effects. With
the SNPs encoded as 0, 1 or 2, there is also an assumption of additive effects within a
loci, as the genotype Aa, coded as 1, will be given an intermediate effect between aa and
AA, coded as 0 and 2. An approach where both the environmental and genetic effects are
modelled by a neural network was also explored in this thesis (Section 3.7), which also
allows interactions between environmental and genetic variables.

2.3 Neural networks

The following introduction of neural networks is a continuation of Singsaas (2023), with
the addition of locally connected neural networks, use cases from the literature and a
closer look at dropout. The first, and most basic neural network was the single-layer
perceptron, used for binary classification. It was inspired by the functioning of neurons
and neural pathways in the brain, and was first conceptualized by McCulloch and Pitts
in 1943 (Mcculloch and Pitts 1943), with the first formulation of the perception by Frank
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Rosenblatt in 1958 (Rosenblatt 1958) . Since then, modern computing power and innova-
tions in new architectures have made neural networks arguably the most powerful machine
learning method, most notably in tasks such as image classification and natural language
processing. The methods developed in these areas of research have found applications in
a wide variety of fields, including genetics and biology (e.g. Jumper et al. 2021).

A neural network consists of at least three layers: an input layer, one or more hidden layers,
and an output layer. The input layer receives the initial data for the neural network, while
the output layer makes the final prediction (or any other type of output such as a decision
or generated text). In the networks considered in this thesis, the flow of information
is always from the input layer to the output layer. Other network types incorporates
recurrence, where the flow of information also flows from a later layer to an earlier layer.
Each layer consists of a certain number of nodes (or units). The nodes in each layer
is connected forwards and backwards to later and earlier layers. Associated with each
connection there is a weight, wk

i,j (weight associated with input from node j to node i in
layer k), which the value passed between the nodes is multiplied by. At each node all the
incoming connections are summed and a bias is added. Finally an activation function is
applied before information is passed on to the later layers. To further describe a neural
network we will have to consider a specific type of architecture, as the operations within
them vary.

Various architectures have been developed to address specific problems, with the choice
of architecture being highly dependent on the data being analyzed. Most methods are
applicable to multiple domains, especially if similar structure and dependencies exist in the
data. Examples of architectures and areas where they excel include convolutional neural
networks for image classification and transformers for natural language processing. Three
classes of neural networks are used in this study. These are multi layered perceptrons
(MLPs), convolutional neural networks (CNNs) and locally connected neural networks
(LCNNs). The specific layer types and their potential benefits for genomic prediction are
now introduced.

2.3.1 Multi-layered perceptrons

MLPs (also called fully connected, or dense, feed forward neural networks) are the perhaps
the simplest form of neural networks, being a natural extension of the perceptron. Consider
Figure 1, where an MLP with two hidden layers and an input vector of length four is
illustrated. The characterization of an MLP is that every node in each layer is connected
to every other node in both the preceding and proceeding layer, meaning that the whole
output of the preceding layer is given as input to each node in the next layer.

Consider the output aj from a node j in the first hidden layer of an MLP, as illustrated in
Figure 1. It is fully connected to the input layer, and therefore has the full feature vector,
X, as its input. Every value xi in the vector X is multiplied by a weight w1

i,j , which can be

represented as the vector product (W1
i )

TX. In addition to this vector product, a constant
βk
i is added to node i in layer k. Finally, an activation function, ϕ1, is applied, giving the

final expression for the value, aj , attained at node i in the first hidden layer,

aj = ϕ1

(
x1 · w1

1,i + x2 · w1
2,i + x3 · w1

3,i + x4 · w1
4,i + β1

i

)
= ϕ

(
(W1

i )
TX+ β1

i

)
, (3)

where W1
i = [w1

1,i, w
1
2,i, w

1
3,i, w

1
4,i], that is, every weight for the input to node i in layer 1.
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Figure 1: Illustration of a multi-layered perceptron with two hidden layers and SNP vector
X, taking values 0, 1 or 2, as input. Information flows from left to right, giving the output
ŷ. The weights wk

i,j and biases bkj are fitted during training.

One can also consider the whole operation at a hidden layer as one matrix operation.
Define Wk = [W k

1 ,W
k
2 ,W

k
3 ,W

k
4 ]

T , the matrix of stacked row vectors containing the input
weights. In addition, define the vector of stacked biases, βk = [βk

1 , β
k
2 , β

k
3 , β

k
4 ]

T . For
simplicity assume that the same activation function, ϕ, is applied at each layer. The
output of the network can then be stated as,

ŷ = ϕ3

(
WT

3 · ϕ2

(
WT

2 · ϕ1

(
WT

1 ·X+ β1

)
+ β2

)
+ β3

)
. (4)

Until now, not much have been said on the activation function ϕ. If the activation function
was the identity function, then the model as defined in Equation (4), would simply be a
linear predictor. The inclusion of non-linear activation functions is what gives neural
networks its power to model non-linearity and represent an integral part of the function
approximation ability of neural networks. According to the Universal Approximation
Theorem, a network with at least one hidden layer containing a finite number of neurons
can approximate any continuous function to an arbitrary level of accuracy, provided the
activation function is non-linear (Hornik et al. 1989).

The choice of activation function for the output layer is of special importance as it must
ensure that the model is giving output on the correct scale, which is decided by the
specific task at hand. For example, a sigmoid function is often used when modeling the
probabilities of binary events, as it outputs values in the interval (0, 1). The rectified linear
unit (ReLu) is a popular choice of activation function in the hidden layers, as it has many
desirable properties for the training process of neural networks (Hara et al. 2015). ReLu
can be expressed as ϕReLu(x) = max(x, 0).

2.3.2 Convolutional neural networks

Convolutional neural networks (CNNs) leverage the convolution operation to find effect-
ive representations in the data. Desirable properties of CNNs include sparse interactions,
parameter sharing and equivariant representations (Ian Goodfellow et al. 2016, Ch. 9),
properties which might be beneficial for the genomic prediction task. These will be elab-
orated upon further, but first let us introduce the basic convolution operation. The con-
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volution, s(t), between two real valued functions v and ω can be stated as

s(t) =

∫
ω(x)v(t − x) dx .

Neural networks operate on discrete input data, which is why the discrete concolution is
needed. In the context of a 1D vector, a discrete convolution operation can be defined as
follows (Ian Goodfellow et al. 2016, Ch. 9). Consider an input vector X of length N and
a filter (or kernel) A = [A1, A2, ..., AM ]T of length M , where M ≤ N . The convolution
of X with A is another vector a = [a1, a2, ..., aNM+1] of length N −M + 1, assuming no
padding is applied on the boundaries. Each element of a is given by the dot product of A
with a subvector of X of length M . The dot product can be expressed as,

ai =
M−1∑
j=0

Aj · xi+j , i = 0, . . . , N −M . (5)

The subvector ofX considered for output ai of the filter will be the vector [xi, xi+1, ..., xi+N−M ]T .
The operation of applying a filter of length M to a vector is often thought of as a window
covering M values in the input, and being shifted by a certain stride length for each oper-
ation (Equation (5) assumes a stride of one). Each placement of the window corresponds
to one operation on the input covered by the filter. In the training of a CNN the weights
of A will be tuned to minimize the chosen loss function.

The interactions in a CNN will be sparse compared to an MLP, as long as the kernel is
smaller than the input vector. Consider Figure 2. For a filter of width of three applied
with a stride of one, every value in the preceding layer is only fed to three different filter
operations. Similarly, for every output of the filter, only three values in the preceding
layer are considered. In an MLP, the entirety of the output of the preceding layer is given
to every node in the next layer.

Figure 2: One convolutional filter with a width of three applied with a stride of one. Same
colored edges represents the same learned weight, illustrating the parameter sharing in
CNNs. Top: Connectivity of a node in the preceding layer to the next layer. Only three
nodes in the next layer are passed a value from any given node in the preceding layer.
Bottom: Similarly, every filter output is only given input from three nodes in the preceding
layer.

Another potentially desirable trait of CNNs is parameter sharing, as illustrated i Figure 2.
In an MLP, each weight is applied exactly once for each input vector. This is not the case
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for CNNs. Each filter is applied along the whole input, with the same weights. In other
words, the filter A is constant along the whole sequence. The weights are therefore trained
to perform well on the whole sequence simultaneously (although it might not have to, as
different filters may learn to capture important features in different regions). A property
of CNNs related to parameter sharing is equivariance to translation. If the input is shifted
by some value, then the output of the convolution is shifted accordingly. Equivariance to
translation is a property well suited for problems with a spatial (or temporal) structure,
as the output of the convolution retains a notion of location in the input. Consider
a convolutional neural network trained to detect edges in an image. Edges are edges
wherever they appear in the image, and the sharing of parameters in CNNs facilitates an
effective way of detecting edges by applying the same ”edge detection” at all locations,
without having to learn it at each location separately. In addition, it will retain a sense
of the location of the edge. If an edge is shifted by some value before being passed to the
convolutional layer, it will give the same output as if shift was applied to output of the
convolutional layer applied to the original image. The notion of location in an image can
be especially useful for building higher level representations in later layers.

Figure 3: A convolutional neural network applied to a SNP vector. The convolutional layer
consists of three filers (A, B and C) with a width of three and a stride of one, resulting
in only two passes through each filter. The resulting output is the three vectors of length
two, corresponding to each of the filters. A max pooling layer is applied to each of the
filter output in its entirety. Generally the pooling layer is a sliding window which takes the
maximum over some width of the filter output and is shifted by some stride between each
operation. A flattening layer stacks the max pooling output before it is passed subsequent
layers.

The convolutional layer in a neural network often consists of multiple filters applied to the
input, as illustrated in Figure 3. After the convolutional layer, there is typically a pooling
layer, which reduces the dimension of each filter output. A common choice is max pooling
(Zhou and Chellappa 1992), which reports the maximum value within a window of each
filter output. A typical layer after the pooling layer is the flattening layer, which simply
concatenates the output from the different filters into a dimension of suitable shape for the
coming layers. The final layers of a CNN usually consists of one or more fully connected
layers, before the final output layer.

A CNN can, in principle, be applied to many types of data. However, it is not immediately
apparent that SNP data possess a structure that can efficiently be leveraged the properties
of CNNs, such as sparse interactions, parameter sharing, and equivariant representations.
There is especially no reason to expect the SNP vector to be equivariant to transition,
allowing the shared weights of a CNN excel. The same sequence of markers detected by
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a convolutional filter at two different location in the SNP vector will probably have no
relation to each other in terms of their effect on the phenotype. It is however easier to argue
that the sparse interactions of a CNN is suitable for the SNP vector. Genetic material is
inherited as longer haplotypes, meaning that closely located SNPs will be highly correlated
and possibly encode the same information about greater genetic material. Having a fully
connected layer connected to the SNP vector will therefore have a high degree of redundant
interactions. The convolution operation might allow the network to recognise haplotypes
more efficiently. CNNs have been the best performing network type in multiple studies
on genomic prediction (Bellot et al. 2018; Pérez-Enciso and Zingaretti 2019). The best
performing architectures are however highly dependent on the type of gene action affecting
the phenotype being modeled.

2.3.3 Locally connected neural networks

Locally connected layers can provide the benefits of sparse connectivity, without the as-
sumption of in-variance to translation of the SNP vector (following from shared weights).
Locally connected layers may be thought of as a convolutional layer, but without the
shared weights (Elizondo and Fiesler 1997). In the same way as in a CNN, for each filter,
a set of weights is applied to a window of the input vector and the repeated with a certain
stride length.

Locally connected neural networks (LCNN) have been applied to genomic prediction of
simulated phenotypes in Pook et al. (2020) and was found to outperform both CNNs and
MLPs. LCNNs also outperformed a linear model for large population sizes (n = 10000)
and high heritability. The LCNN architecture has an especially interesting interpretation
when combined one-hot encoded SNPs, introduced later in Section 2.5.

The neural network types introduced in this section might not represent the cutting edge of
research in machine learning, but they are still highly relevant. More novel approaches such
as transformer neural networks, which uses the attention mechanism, has also been applied
to genomic data (Kim et al. 2018; Ng 2017; Romero et al. 2016). The attention mechanism
provide a method for weighing the importance of different elements in a sequence, and has
become the leading network type for natural language processing (Vaswani et al. 2017).
Cahyawijaya et al. (2022) introduces SNP2Vec for genome wide association studies, in
which an attention based model is used to encode long genomic sequences (reduce the
dimension) for the prediction of Alzheimer’s disease.

2.3.4 Training

Modern neural networks are typically trained using backpropagation and stochastic gradi-
ent descent (Ian Goodfellow et al. 2016, Ch. 6.5). The training process aims to find the set
of trainable parameters, which minimizes the chosen loss function. A common choice of
loss function for regression problems is the mean squared error (MSE). Before one iteration
of backpropagation and gradient descent is performed on the network weights, more than
one of the observation is usually passed through the network. This subset of the training
set is called a batch. After one batch is passed through the network, the loss is computed,
before backpropagation is used to compute the gradient of the loss with respect to the
network’s parameters. The model parameters are then improved by a gradient descent
step, which is dependent on the hyperparameter learning rate, which is set by the user.
For a batch of size N and corresponding set of responses, {yi}Ni=1, and predictions, {ŷi}Ni=1,

15



the MSE loss is computed as,

Lbatch =
1

N

N∑
i=1

(ŷi − yi)
2 . (6)

A larger batch size provides a more accurate estimate of the gradient of the loss func-
tion, but requires more computational resources and may lead to less frequent updates,
potentially slowing down the learning process (Ian Goodfellow et al. 2016, Ch. 8). On
the other hand, smaller batch size leads to more noise in the gradient estimate, but can
sometimes benefit the training process by providing a form of implicit regularization, by
helping the optimization escape local minima in the loss function (Wilson and Martinez
2003). It also allows for more frequent updates, potentially leading to faster convergence.
The learning rate determines the step size taken in the direction of the negative gradient
during each update. A high learning rate leads to larger steps in the parameter space,
potentially enabling faster convergence, but at the risk of overshooting the optimal para-
meters and causing instability in the learning process. Conversely, a lower learning rate
allows for more cautious steps, which may increase the likelihood of reaching the optimal
parameters, but could also slow down the training process (Ian Goodfellow et al. 2016, Ch.
8). The training process will often consist of passing through the entirety of the training
data multiple times. One pass through the training data is called an epoch. Determining
a suitable set of hyperparameters (learning rate, batch size, number of epochs) is crucial
to model performance.

2.3.5 Regularization

Regularization techniques are essential for preventing overfitting and improving the gener-
alization capabilities of neural networks. Overfitting occurs when a model captures noise
in the training data, resulting in poor performance on unseen data. The bias-variance
trade-off describes the trade-off between a model’s dependency on the training data (high
variance), and its bias towards the initial assumptions of the model. More complex models
generally lead to higher variance. In the case of polynomial regression, assuming a linear
relationship between two variables which in reality has a more complex relationship will
give a bias error towards the false assumption of linearity. On the other hand, if one
assumes a high degree polynomial for a relationship between two variables which in realty
is linear, the remaining degrees of freedom will be fitted to the potential noise in the data,
making the regression highly dependent on the specific training data. The bias-variance
trade-off can be stated as following (Trevor Hastie et al. 2009, p. 223). Assume the target
phenotype, y, is a function of the SNP data, X, through the relation y = f(X)+ ε, where
E(ε) = 0 and V ar(ε) = σ2

ε . The squared error of a prediction based on an input SNP
vector x0 using the fitted model f̂ , which approximates f , is then

Squared Error = E[(y − f̂)2|x0]
= σ2

ε + [Ef̂(x0)− f(x0)]
2 + E[f̂(x0)− Ef̂(x0)]

2

= Irreducible Error + Bias2 +Variance .

Regularization techniques are particularly important for data where the number of features
exceed the number of observations, which is often the case in genomic data. Two common
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regularization techniques are L1 or L2 regularization, which adds a penalty term to the
loss function proportional to the sum of the absolute values or squares of the model weights
(Ian Goodfellow et al. 2016, Ch. 7). This penalty encourages the model to learn simpler,
less complex functions with. Other techniques include early stopping (Ian Goodfellow
et al. 2016, Ch. 8.1.2), which halts training when the validation error starts to increase,
and batch normalization (Ioffe and Szegedy 2015), which normalizes the inputs to each
layer to maintain a stable distribution.

Another widely used regularization technique is dropout. Dropout is a method specific to
neural networks which randomly deactivates a subset of nodes during training and it will be
the most prominent regularization method in this thesis. By deactivating a subset of nodes
with probability p, the model is forced to rely on a broader range of features and reduces
the dependence on individual nodes, promoting a more robust learning process (Srivastava
et al. 2014). Dropout resembles an ensemble method, where predictions are averaged
over multiple models. Creating an ensemble of models is a very successful method that
usually performs better than better than a single model. However, for neural networks this
would become computationally expensive since many separate networks must be trained.
Dropout addresses this by letting the ensemble of networks be thinned versions of the
total network, allowing weight sharing between each thinned network. During training
with a dropout layer with rate p, the output from each node is scaled by 1

p to compensate
for deactivated nodes. The dropout is deactivated when predicting on new data and the
weights are therefore not scaled. This results in an approximate averaging over all the
sampled thinned networks.

Libraries such as Keras (Chollet et al. 2015), are available for fast and easy training of
neural networks with multiple different architectures and regularization techniques. These
tools enable users to develop networks without a deep understanding of the underlying
algorithms or mathematical principles. However, model performance often depends on
choosing the right network architecture and hyperparameters.

2.4 Neural networks for genomic prediction

Neural networks offer several potential benefits over linear models for genomic prediction
tasks. The ability of neural networks to capture complex interactions and handle high
dimensional data, are two of these benefits. However, with its ability to capture complex
interactions comes the problem of low interpretability, which is why neural networks are
often referred to as black box models. These topics are also covered similarly in (Singsaas
2023).

2.4.1 Capturing interactions

Genomic data is often characterized by complex interactions between genetic markers,
such as epistasis (non-additive interactions between genes) and dominance effects. These
interactions can significantly influence the phenotype, and traditional linear models may
not effectively capture these non-additive relationships. Neural network models, with
their ability to learn hierarchical representations and capture intricate relationships, are
inherently better suited for modeling such interactions. This complexity could lead to
improved prediction accuracy in comparison to traditional linear models.

However, neural networks have yet to consistently outperform linear models. In Ubbens
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et al. (2021) the authors suggests that the underwhelming results of neural networks in
the field of genomics can, at least in part, be attributed to the effect of shortcut learning.
Shortcut learning is a problem encountered not just in the field of machine learning,
but many other types of leaning systems, including humans Geirhos et al. (2020). The
phenomenon appears when a learning system is able to perform well on a task by adopting
an easier decision rule than the intended solution. The system might pick up on patterns
in the data which are highly predictive of what is to be modeled, but which might not
generalize to other cases. This might come from poor training data or simply be a feature
of the problem. Consider a neural network doing image classification of animals. During
training the network is presented with the typical pictures of cows and achieves good
performance. If the cows in the training data always appears on a grassy landscape you
might have ended up with a network that has taken a shortcut and whenever it is looking
for a cow, it is really looking for the color green and the contours of grass. A model which
actually detected cows would clearly generalize better.

In Ubbens et al. (2021) the authors shows a case where a neural network that is given
access to the value of the genetic markers directly performs no better than a network
only given access to locations of matches between markers for pairs of individuals, in-
dicating that the network mainly relies on a measure of relatedness when performing its
predictions. This gives reason to believe that the specific marker values of an individual
are not essential to the networks when performing predictions, but that the networks are
rather modelling something akin to a relatedness matrix, as used in animal models. The
relatedness between individuals is therefore used as shortcut, instead of modeling the ac-
tual marker effects. This idea is tested in Nazzicari and Biscarini (2022), where a neural
network is trained on a tensor (high-dimensional array) consisting of stacked relatedness
matrices(additive, dominance, and epistasis kinship matrices) to predict nine simulated
phenotypes with different gene actions. The neural networks were found to perform worse
than the benchmark linear model on all phenotypes.

Montesinos-López et al. (2021) gives a overview of the performance of neural networks in
genomic selection. The authors noticed no significant differences in prediction performance
between conventional models and neural network models, as 11 out of 23 studied papers
reported neural networks having better prediction performance. Nevertheless, most of the
studies where neural networks outperformed traditional genomic selection models used
variations of CNNs, showing their promise for genomic prediction.

In Montesinos-López et al. (2018) neural networks shows promise for capturing G × E
interactions when the environment is unknown. MLPs were trained on nine different data
sets and compared to two different linear models. Only one of the linear models contained
an explicit term for the G × E interactions. The neural netwoks were superior to the
linear model without the G×E term in six out of nine data sets. This might indicate that
neural network models learn better representations than parametrized models when the
parametrized model is not correct (the significant G×E term was not included). When a
G×E was included in the linear model however, the neural networks were outperformed
by linear model on eight of the nine data sets.

2.4.2 High-dimensional data (n ≪ p)

Genomic prediction tasks typically involve data sets where the number of features (p)
is significantly larger than the number of samples (n). This high-dimensional nature of
the problem can lead to overfitting and poor generalization. Neural network models,
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especially when combined with appropriate regularization techniques, have demonstrated
the ability to cope with high-dimensional data and can potentially provide accurate and
robust predictions. It is often the case that the number of parameters in a neural network
model exceeds the number of data points. This is referred to as overparametrization
(Zhou et al. 2020) and takes place after the interpolation threshold in deep double descent
(Nakkiran et al. 2019). Overparametrized deep neural networks often perform well on
unseen test data, even though it according to classical statistical principles should be
overfitting to the training data.

In genomic data, this discrepancy between features and samples is often too large to be
passed directly to a neural network. We therefore seek to reduce the number of SNPs before
applying a neural network to the SNP vector. The paper Pérez-Enciso and Zingaretti
(2019) touches on this feature (SNP) selection. They highlight a limitation in dealing
with very large genomic datasets, stating, ”in our experience, very large genomic data
sets, such as over 100k SNPs, cannot be effectively handled due to the enormous number
of parameters to be estimated” (Pérez-Enciso and Zingaretti 2019, p. 12).

2.4.3 Interpretability

When developing models for understanding the genome, depending on the purpose, inter-
pretability of the model might be of an importance. In Genome Wide Assosciation Studies
(GWAS), the purpose is often to find specific genetic variants that causes some disease
or influences a phenotype. The statistical model employed then has to provide important
statistics to evaluate questions of such causal relationships. Understanding which vari-
ants influences a certain phenotype might be of an importance in genomic selection, but
in many applications, such as predicting complex traits in livestock or crops, the priority
might be to achieve the best possible accuracy. Such use cases is were the less interpretable
”black box” models are best suited. The trade-off between interpretability and accuracy
is an inherent challenge to machine learning and complex data. As models increase in
complexity, they become less easy to interpret. This happens because an increase in com-
plexity involves adding more parameters, making inference about the effect of any given
variable harder. Conversely, simple linear regression models are easy to interpret as the
model gives each variable an explicit effect size. However, much work is being done in the
field of explainable machine learning (Christoph Molnar 2022), which might make these
models viable for tasks requiring more interpretability as well. Multiple approaches for
extracting feature importance from neural networks have been developed (Sheehan and
Song 2016).

2.5 One-hot encoding

This section overlaps with Singsaas (2023), with the addition of dummy encoding, in-
terpretation one-hot encoding combined with locally connected layers and a discussions
of the impact of one-hot encoding. One-hot encoding was explored as an alternative to
the default encoding of the SNPs. The way the data is encoded in machine learning and
statistical models can greatly impact the resulting performance, as it affects possible in-
teractions and representations that can be learned. The default encoding of the SNPs as
the integer values 0, 1 and 2, may be sub-optimal in important ways.

Consider a very simple network with no hidden layers, so that the output is simply a set
of weights multiplied by the SNP vector in its default representation. If the homozygote
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Figure 4: Illustration on how the one-hot encoding procedure transforms the original SNP
vector (above), where the integers 0, 1 and 2 codes for the wild type, heterozygote and
homozygote genotypes respectively, to the one-hot encoded vector (below). The mapping
used is: 0, [1, 0, 0]; 1, [0, 1, 0]; 2, [0, 0, 1].

(coded as 2) genotype at a given location is given a weight wi, its effect on the output
will be 2 · wi. This will then imply that the heterozygote genotype (coded as 1) at this
location will have half the impact on the output, as it contributes by 1 ·wi. This is also the
case for marker-based regression models. The implicit assumptions of the default encoding
might potentially negatively impact the performance of the neural network models. The
output in this case is a prediction of the phenotype, and we know that there are different
dominance effects which is not possible to represent in this example network using the
default representation. The default representation would only be effective at capturing
incomplete dominance and additive effects, as the heterozygote then is an intermediate
between the wild type and homozygote. In deeper neural networks this might not be the
case. Deeper neural networks can, in theory, form representations of incomplete dominance
effects from default encoded SNPs, but it may be hard to learn. One-hot encoding might
lend itself more easily to forming representations of these effects.

One-hot encoding transforms a column containing a feature of l categories into l columns,
where all entries are zero, except for the column coding for the category observed. The
procedure is illustrated in Figure 4. The one-hot encoding procedure thus expands the
SNP vector by a factor of three. The increase in the dimension of the input is a potential
downside of one-hot encoding, as we are already dealing with the challenge of having more
features than observations. An alternative to one-hot encoding in dummy encoding, which
is often used in statistical models. Dummy encoding expands the feature to l− 1 dummy
variables by omitting the reference category. The effects of the included categories are
then relative to the reference category. This would mitigate the severeness of the increase
in number of features, but is less recommended for neural networks and is therefore not
tested in this thesis. One-hot encoding let’s each genotype have an effect independent of
the effects of the alternative genotypes, removing the assumption of additive effects.

The combination of a locally connected layer with one-hot encoded SNPs is a reoccurring
design in this thesis. Consider a locally connected layer with a single filter and a window
width of three, as illustrated in Figure 5. If the input to this layer is one-hot encoded
SNPs, then every genotype is given a separate effect size. A standard fully connected layer
would give separate effects to all genotypes, but would also include interactions within and
between all genotypes. LCNNs might therefore be an efficient way of handling the higher
dimension of the input caused by one-hot encoding.
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Figure 5: Illustration of a locally connected layer with one-hot encoded SNPs as input.
The locally connected layer is flexible enough to accommodate different effects for each
genotype, while avoiding a large increase in parameters.

3 Methodology

3.1 Data description

Data for the analysis is provided through a project by the Center for Biodiversity Dynam-
ics (CBD) at NTNU where measurements of an insular house sparrow meta-population
in the Helgeland region in Norway have been made annually since 1993 (Lundregan et al.
2018). The meta-population consists of sixteen islands with different environmental con-
ditions, habitat types and population sizes (Muff et al. 2019). There are two data sets
considered in the analysis of this thesis, both from this population in Helgeland. These
two data sets differ in the number of samples and the SNPs genotyped. The data set
with the largest number of samples will be referred to the large data set, while the one
with the smaller samples is referred to as the small data set. Note that the small data
set contains more genotyped SNPs than the large data set. The small data set contains
182 854 SNPs from 3032 unique individuals. The large data set contains a larger set of
15737 measurements from 6092 unique individuals with 66018 genotyped SNPs. Multiple
phenotypes are recorded for each sample. Relevant for this thesis are the phenotypes
body mass and tarsus length. The large data set contains 5986 individuals with recorded
tarsus length and 6046 with recorded body mass. The small data set contains 1918 unique
individuals with recorded body mass and SNPs, which was the only phenotype modeled
from the small data set.

3.2 Visualizing high-dimensional data

As a stage in the exploratory data analysis, principle component analysis (PCA) and t-
Distributed Stochastic Neighbourhood Embedding (t-SNE) (Van Der Maaten and Hinton
2008) was applied to the SNP data. Both methods were applied using the scikit-learn
library in Python (Pedregosa et al. 2011). These two methods are used to investigate to
what extent the SNP data shows seperation by hatch island of the samples, which again
reflects the presence of the environmental variables in the genetic data. PCA is the most
used method for visualizing high-dimensional data, especially in the biology literature.
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t-SNE has seen more use in the machine learning literature for tasks such as visualizing
the learned word embedding of neural networks, although it has also been used on SNP
data (Platzer 2013).

t-SNE is a statistical method used for the task of high-dimensional data visualization.
Unlike many dimensionality reduction techniques such as PCA, t-SNE is particularly good
at maintaining local structures within the data, making it an excellent tool for uncovering
clusters or groups. It achieves this by transforming high-dimensional distances between
data points into probability representations of similarities. Only the basics of PCA is
described in this section, as it is a widely applied and described method. t-SNE is given
a more detailed description.

3.2.1 Principle Componen Analysis (PCA)

For data of n dimensions, PCA projects the data onto n new orthogonal axis. The prin-
cipal components are the eigenvectors of the data’s covariance matrix, and the amount of
variance captured by each component is the corresponding eigenvalue. The first principle
component is the axis which maximizes the variance of the data on one axis. The second
principle component then has the second most variance, etc. Investigating the cumulative
variance explained by the components 1 through k is a way to determine the number of
principle components to include (k), as for certain purposes we can drop the components
after which there is less variance explained. However, there is not always a clear point at
which the variance explained drops of. As the procedure returns data in n dimensions, it
is not inherently a dimensionality reduction technique, but might serve as one for visualiz-
ations, as the first k components might be sufficient to show certain properties of the data.
Before applying PCA it is essential to mean and center the data, to avoid bias towards
certain features.

3.2.2 t-Distributed Stochastic Neighbour Embedding (t-SNE)

t-SNE can give a projection into any number of dimensions less that the dimension of the
original data. It differs from PCA in that the number of dimension is a parameter chosen
by the user before the algorithm is carried out. Following is a description of t-SNE for
a projection into two dimensions, including some important mathematical concepts and
how the resulting plot can be interpreted. A full walk-through of the mathematical details
is beyond the scope of this thesis.

Let xi = (x1, x2, ..., xp) be one data point in the original p-dimensional data. Through
t-SNE, this point is projected into yi = (y1, y2) in two dimensions. For each point xi, we
define a Gaussian distribution centered at xi. The conditional probability pj|i is a measure
of the similarity of xj to xi, defined as

pj|i =
exp(−∥xi − xj∥2/2σ2

i )

Σk ̸=i exp(−∥xi − xk∥2/2σ2
i )
,

where σi is the variance of the distribution centered at xi, given more attention later. For
all points i, we set pi,i = 0, as only pairwise comparisons are of interest. The distance
metric, ∥ · ∥, is chosen by the user. The interpretation of pj|i in the words of VanRaden
(2020) is: ”The similarity of data point xj to data point xi is the conditional probability,

22



pj|i, that xi would pick xj as its neighbor”. A similar distribution can be defined for the
low-dimensional points. Let qj|i be the conditional probability of yj given the distribution
centered at yi, but in the case of t-SNE, the distribution is chosen to be a student t-
distribution and not a Gaussian (as in stochastic neighbourhood embedding (Hinton and
Roweis 2002)). Setting the variances of qj|i to

1√
2
results in,

qj|i =
exp(−∥yi − yj∥2)

Σk ̸=i exp(−∥yi − yk∥2
,

If the mapping of xi into yj is good, then the two conditional distributions qj|i and pj|i
will be similar. The natural measure for this similarity is the Kullback-Leibler divergence.
In the case of t-SNE, the cost function (C) is defined as the Kullback-Leibler divergence
of the two joint probability distributions P and Q. The cost function is then

C = KL(P |Q) = ΣiΣjpij log
pij
qij

,

which can be minimized by gradient descent. The details of pij and qij can be found
in (Van Der Maaten and Hinton 2008). Finally, the variance of the distributions in the
high dimensional space, σ2, is set such that Pi has a perplexity defined by the user.
Essentially, the so-called perplexity is the effective number of neighbours considered. For
larger perplexity values, the position of a point in the low dimensional space is sensitive to
a larger number of neighbours. Typical values for the perplexity falls between 5 and 50.
In addition to varying the perplexity parameter, users may choose to use another metric
for the high dimensional space than the Euclidean norm, such as the cosine distance.

The Euclidean norm is often the natural choice, but it is worth investigating its relevance
for SNP data and how it relates to the amount of shared genetic material between indi-
viduals. Because of the SNPs being encoded as 0, 1 or 2, if two individuals have values
0 and 2 at the same location, this contributes more to the Euclidean distance than if the
values were 0 and 1. This means that even though the amount of shared SNPs may be the
same, the Euclidean distance will be different. Recall that the genotypes aa, Aa and AA
are coded as 0, 1 and 2. If two samples differ in a location by having 0 and a 1 versus 0 and
a 2, the latter case tells us that the two individuals does not share any alleles. As the Eu-
clidean metric gives a greater distance to the latter case, it might reflect the relatedness of
individuals better than just the amount of similar SNPs. The distance measure which only
considers the number of identical SNPs would be the Hamming distance, which simply
counts the locations at which the two SNP vectors differs. In this thesis, t-SNE is carried
out for the Euclidean, cosine and Hamming distance, and with changing perplexity.

t-SNE excels at revealing local patterns and clusters, but it does not always maintain the
global structure of the data. That is, the distances between clusters in the t-SNE plot
might not reflect their actual relationships in the high-dimensional space. The same goes
for the size of a cluster. A bigger cluster does not necessarily reflect a greater genetic
diversity. The overlap of clusters might however indicate a greater genetic flow between
groups or shared ancestry. Another important thing to note when using t-SNE is that the
final representation might be highly dependent on the hyperparameters chosen, especially
the perplexity parameter, but also the number of iterations gradient descent performed.
It is therefore a good idea to experiment with different hyperparameters. These are some
of the downsides of t-SNE when compared to PCA. While PCA operates by quite simple
principles, making it easy to interpret, the non-deterministic and more complex behaviour
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of t-SNE makes it prone to misinterpretations. These pitfalls are visualized and explained
in greater detail in Wattenberg et al. (2016).

PCA and t-SNE was in this thesis used to visually explore the SNP data in relation to the
hatch island of the samples. Insights into the presence of genetic groups within the data
can inform our model training procedure. High levels of clustering by hatch island might
suggest that the neural network models can infer the hatch island of the sample from
the SNPs, and thereby the environment. It also suggests that the models may become
overfitted to dominant clusters and fail to generalize well to smaller clusters. Islands with
less than ten observations were removed from this analysis. Very distinct clustering by of
an hatch island from the rest of the metapopulation might warrant an investigation into
the accuracy of the predictive models on test data from this island (introduced in Section
3.9).

3.3 Adjusted phenotype: Accounting for non-genetic effects

Quantitative traits often vary depending on age, sex, and environmental effects. Tradi-
tional linear mixed models can accommodate these factors by including fixed and random
effects in the model. Most of the neural networks in this thesis will predict body mass
solely based on SNPs. To ensure that the neural networks focus on capturing the genetic
variation and not confounding effects, a linear mixed model (LMM) is fitted to the pheno-
typic data prior to performing genomic prediction with neural networks (e.g Ashraf et al.
2022). This LMM can be stated as

yi,j = µ+ β1 · sexi + β2 · FGRMi + β3 ·monthi,j + β4 · agei
+ bisland current, i + bhatchyear ,i + bring number, i + εi,j ,

(7)

where yi,j is the j-th observation of the i-th individual’s body mass. The population mean
is denoted by µ, and the the fixed effects sex, FGRM (the individual’s genomic inbreeding
coefficient), month, and age are included, which have corresponding regression coefficients
β1, β2, β3, and β4. The model also incorporates the random effects bisland current, bhatchyear,
and bringnr. Each of these random variables is assumed to be independently distributed,
following a normal distribution with a mean of zero and an estimated variance. Finally,
εi,j is the residual term in the model for observation j of individual i. The new adjusted
phenotype, y∗i for individual i is then defined as,

y∗i = bring number, i . (8)

The ring number effect is defined as the new, adjusted, phenotype. This new adjusted
phenotype is then used as the response variable in the neural networks in Section 3.6.
Removing variation in the phenotype due to environmental variables leaves a greater
proportion of genetic variation. The R code used to define the model and retrieve the
adjusted body mass is available in Appendix E. This is the same model as defined in
Singsaas (2023), but without the inclusion of the residuals in the new adjusted phenotype.
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3.4 Genomic Best Linear Unbiased Predictor

The results of the neural networks trained in this thesis would not be informative without
a comparison with one of the widely used statistical methods for genomic prediction. To
this end, the results of a Bayesian version of the Genomic Best Linear Unbiased Pre-
dictor(GBLUP) model was used as a benchmark when evaluating the viability of the
neural network models.

The GBLUP animal model was fitted using the integrated nested Laplace approximations
(INLA) approach to fitting Bayesian models (Rue et al. 2009), using the R-INLA package
in R version 4.3.2. INLA is used for Bayesian inference in models belonging to the latent
Gaussian models class, often having superior performance compared to Markov Chain
Monte Carlo approaches. The model was in this case a linear mixed model, with both
genetic and non-genetic effects. GBLUP was trained on both body mass and tarsus length.
For comparisons with the neural networks predicting the adjusted phenotype (Section 3.3),
only the estimated breeding values are extracted. The full predictor of GBLUP serves as
comparison for the neural network predicting the raw phenotypes body mass and tarsus,
using both genetic and non-genetic variables. (later introduced in 3.7).

The GBLUP model contains the same variables as in Equation 7 , but with the addition
of an additive genetic term. Hatch island and the ID effect were again modeled as random
effects with Gaussian priors. Finally, a more complex random effect for the genetic effect
is included using the relatedness matrix. For the random additive genetic effect, the
relatedness matrix defines the covariance structure. In the case of INLA, the inverse of
the relatedness matrix was given as the precision. Individuals that are closely related will
then have a high covariance for the genetic effect. The run-time of the GBLUP model is
highly dependent on the dimensions of the relatedness matrix. As the relatedness matrix
is n × n, including more samples can become very computationally expensive. GBLUP
was therefore only applied to the small data set, since applying it to the large data set
was not feasible. R code for defining the model in INLA and retrieving the breeding value
and full predictor is available in Appendix G.

3.5 Feature selection: Pre-selecting SNPs

Genetic data is often characterized by a large number of features (SNPs) compared to the
number of samples. This might be caused by financial limitations, as sequencing the genes
of more individuals is costly, or the number of individuals from the relevant populations
might be limited. By reducing the dimensionality of the data, we can potentially improve
model performance, reduce computational complexity, and facilitate the identification of
significant SNP-phenotype relationships.

Selecting a subset of the SNPs before training the neural networks was the primary way
of how we are dealing with high-dimensional nature of the SNP data here. Three different
procedures will be used to select a subset of SNPs. Two of them will be based on the
Spearman correlation of the SNP with the response. Spearmans correlation is very much
like the more commonly used Pearson correlation, but does not assume a linear relationship
between the two variables (Wilcox 2001). The following SNP selection methods were also
tested in Singsaas (2023) and the descriptions are therefore similar.

1. ”Random” selects SNPs with uniform probability. While it is not expected to yield
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particularly strong results (Pérez-Enciso and Zingaretti 2019), it provides a reference
point for assessing the effectiveness of two other approaches.

2. ”Most correlated” selects the SNPs by the absolute value of their correlation with
the response. This method aims to capture the SNPs with the largest individual ef-
fects on the phenotype. By focusing on the strongest correlations, we can potentially
improve model performance. However, this approach may not be effective at select-
ing SNPs with important interactions, as it only considers one SNP at a time. In
addition, due to linkage equilibrium, a highly influential QTL might cause multiple
SNPs to be included that all correlate with the phenotype due to this QTL. This
motivates the final approach for pre-selecting SNPs.

3. ”Best unif” selects the p SNPs that are most correlated from with the phenotype
from p uniformly sized non-overlapping windows, measured in base pairs. A single
marker is selected from each of these windows. This is intended to counter the effect
of a highly influential QTL causing multiple SNPs to be included, which would
contain the same information and cause multicollinearity. This might also facilitate
the effective application of a convolution filter to the data, as it preservers some
notion of spatial relatedness between the features as suggested in Bellot et al. (2018)
and Pérez-Enciso and Zingaretti (2019). Code for the Best unif selection scheme is
available in Appendix F.

The Best unif method used in this thesis defines an extreme of this type of SNP selection,
in that no window contribute with more than one SNP. A method which allows multiple
SNPs from the same window, or which uses overlapping windows, would tend to choose a
set of SNPs with a grater overlap with the SNPs selected by the Most Correlated approach.
These nuances of the SNP selection are not investigated in this thesis, but could lead to
a better SNP selection method. These methods are applied to the training data, meaning
that only the correlation of the SNPs with the response in the training data is used to
select SNPs. The intersection of the two sets chosen by Best unif and Most correlated is
shown in Appendix D.

Similar methods of pre-selecting SNPs have been tested in the literature. A summary
is given in Pérez-Enciso and Zingaretti (2019). The authors recommends choosing SNPs
only based on their individual p-value, and restrictions on this criterion, such as minimum
distance between selected SNPs was not found helpful. Although selecting solely based on
the SNPs correlation with the phenotype might not capture epistatic effects, the authors
argue that the individual additive effects will capture some fraction of the epistatic effects,
and the procedure will therefore indirectly include genes with non-additive behaviours.

3.6 Neural networks predicting the adjusted body mass

The architectures of models fitted on the small and large data set are presented in Table 1
and Table 2 respectively. The MLPs trained on the large data set all had a dropout rate
of 0.5 applied to the input layer. The models trained on the adjusted body mass (Section
3.3) are abbreviated as MLP , LCNN and CNN by the architecture type, multi layered
perceptron, locally connected neural network or convolutional neural network, followed by
an index. Models with indexes less than ten are trained on the small data set. Models
with indexes larger than ten are trained on the large data set. All neural networks was
built using Keras in Python 3.10.9.
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Before training, all features and phenotypes were standardized and centered, as is good
practice for neural network modeling. The exception was in the case of one-hot encoded
SNPs, which was kept binary. The only regularization technique in the final models was
dropout, although L1 and L2 were tested in initial model exploration. Dropout rates
ranged between 0.3 and 0.5. All MLPs trained on the large data set had dropout applied
to the input layer, effectively dropping features randomly. This is an unusual placing of
dropout. The idea is to create a model that allows the inclusion of a greater number of
SNPs, under the assumption that many of them will be redundant. The redundancy will
limit the loss of information by dropping features. For the LCNNs and the CNNs, the
dropout is only applied after the locally connected or convolutional layer. All models were
trained using a learning schedule, which means that the learning rate at each bathch is not
kept constant, but changes for each batch. The specific schedule used was cosine decay,
where the learning rate is initialized at a chosen starting value before decaying, following a
cosine function, to a final learning rate which is constant until training is done. The decay
happens over a number of batches set by the user. Typical values for the cosine decay
used in this study were a decay from 0.01 to 0.001 over the span of 200 batches. Early
stopping was used in the training on all modes. Early stopping monitored a validation set
(10% of training data), and terminated training if no improvement in the MSE was seen
over ten epochs. All activation functions were chosen to be ReLu, except for the output
layer, which had alinear activation function.

Model name SNP selection P, encoding Layers
MLP random Random 10k, default Dense (80), Dropout (0.3), Dense (96)

MLP 0 Most correlated 1k, default Dense (112), Dropout (0.35), Dense (80)
MLP 1 Most correlated 1k, one-hot Dense (112), Dropout (0.35), Dense (80)
MLP 2 Most correlated 10k, default Dense (80), Dropout (0.3), Dense (96)
CNN 0 Most correlated 1k, default Conv1D(4,6,1), Dropout (0.3), Dense (96),

Dropout (0.3), Dense (96)
CNN 1 Most correlated 1k, one-hot Conv1D(4, 18 ,3), Dropout (0.3), Dense (96),

Dropout (0.3), Dense (96)
CNN 2 Best unif 1k, one-hot Conv1D(4,6,1), Dropout (0.3), Dense (96),

Dropout (0.3), Dense (96,)
CNN 3 Most correlated 10k, default Conv1D(12,6,2), Dropout (0.4), Dense (54),

Dropout (0.3), Dense (54)
LCNN 0 Most correlated 1k, default LocallyConnected1D(1,15,5), Dropout (0.4),

Dense (96), Dropout (0.3), Dense (64)
LCNN 1 Most correlated 1k, one-hot LocallyConnected1D(2,3,3), Dropout (0.4),

Dense (96), Dropout (0.3), Dense (64)
LCNN 2 Best unif 1k, default LocallyConnected1D(1,15,5), Dropout(0.4),

Dense(128), Dropout (0.4), Dense (64)
LCNN 3 Most correlated 10k, default LocallyConnected1D(1,15,5), Dropout(0.4),

Dense(128), Dropout (0.4), Dense (64)

Table 1: Summary of the 12 neural network models trained for the small data set, pre-
dicting the adjusted body mass (Section 3.3). The Layers column shows the specific layer
types used in the models with their respective parameters. Layer types are stated using the
naming from the Keras library: Dropout(rate), dropout regularization layer; Dense(units),
fully connected layer; Conv1D(filters, kernel size, strides), one-dimensional convolutional
layer; LocallyConnected1D(filters, kernel size, strides); one-dimensional locally connected
layer. The column SNP selection P, encoding contains information on the SNP selection
scheme, number of SNPs(P) and finally the encoding of those SNPs as either default (0,
1 or 2) or one-hot encoded (Section 2.5).
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Model name SNP selection P, encoding Layers
MLP 10 Most correlated 1k, default Dropout(0.5) Dense(128), Dense (64)
MLP 11 Most correlated 10k, default Dropout(0.5) Dense(64), Dense (64)
MLP 12 Most correlated 10k, one-hot Dropout(0.5) Dense(64), Dense (64)
MLP 13 Most correlated 20k, one-hot Dropout(0.5) Dense(64), Dense (64)
CNN 10 Most correlated 1k, default Conv1D(24,5,2), Dense (64), Dense (64)
CNN 11 Most correlated 1k, one-hot Conv1D(16,5,2), Dense (64), Dense (64)
CNN 12 Most correlated 10k, default Conv1D(12,10,10), Dense (64), Dense (32)
CNN 13 Most correlated 10k, one-hot Conv1D(8,15,15), Dense (64), Dense (64)
LCNN 10 Most correlated 1k, one-hot LocallyConnected1D (1,3,3), Dense (64),

Dense (64)
LCNN 11 Most correlated 1k, default LocallyConnected1D 1,15,10), Dense (64,

ReLu), Dense (64)
LCNN 12 Most correlated 10k, default LocallyConnected1D (1, 15, 10), Dro-

pout(0.35), Dense (64), Dropout(0.35),
Dense (64)

LCNN 13 Most correlated 10k, one-hot LocallyConnected1D (1, 3, 3), Dropout(0.5),
Dense (64), Dense (64)

LCNN 14 Most correlated 15k, one-hot LocallyConnected1D (1, 3, 3), Dropout(0.5),
Dense (64), Dense (64)

Table 2: Summary of the 13 neural network models trained for the large data, set pre-
dicting the adjusted body mass (Section 3.3). The Layers column shows the specific layer
types used in the models with their respective parameters. Layer types are stated using the
naming from the Keras library: Dropout(rate), dropout regularization layer; Dense(units),
fully connected layer; Conv1D(filters, kernel size, strides), one-dimensional convolutional
layer; LocallyConnected1D(filters, kernel size, strides); one-dimensional locally connected
layer. The column SNP selection P, encoding contains information on the SNP selection
scheme, number of SNPs(P) and finally the encoding of those SNPs as either default (0,
1 or 2) or one-hot encoded (Section 2.5).

3.7 Parallel neural network: Predicting on environmental
and genetic data

As described in the Section 2.1, phenotypes are affected by both genetic and environ-
mental factors. For most of the models trained in this thesis, the environmental effects
are accounted for by a linear mixed model as outlined in the Section 2.2. This section
proposes an alternative approach, which aims to escape the downsides of modelling the
environmental and genetic effects separately.

The environmental variables, which explains much of the phenotypic variance, might be
correlated with genetic markers, causing genetic variance to accounted for in the pre-
processing step described in Section 3.3. Additionally, the interactions between genetic
and environmental variables, G × E, cannot be efficiently captured by constructing two
separate models for explaining the genetic and environmental variance. This motivates
constructing a neural networks that is trained on both environmental and genetic data
simultaneously, which then is capable to capture the variance due to interactions between
environmental and genetic variables. This surmounts to a neural network that predicts y
in Equation 2, and not just Zu.

It is the highly flexible nature of neural networks that makes this approach possible. The
most naive approach would be to concatenate the genetic and environmental input to
form a larger input to the full network processing both types of variables without any
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more care.. There are multiple reasons to choose a more intricate approach to building
this model. Concatenating the inputs leads to a high redundancy in the interactions
between the genetic and environmental effects, leading to a model that is hard to train.
Intuitively, one might also expect the relatively few non-genetic variables to ”drown” in
the thousands of genetic markers, when they most likely code for greater effect sizes than
any single genetic marker. Choosing an architecture which assumes that the genetic and
environmental effects are mostly separate, but allows for a certain degree of interaction
might be more suitable. The architecture investigated in this thesis consists of two separate
networks, one network with SNP data as input and one with non-genetic variables as
input. The output of these two networks are then concatenated and passed to a fully
connected layer before the output node, as illustrated in Figure 6. Concatenating the
output from genetic and non-genetic variables at a later layer ensures that they are of
more comparable dimensions, provided that the final layer of the genetic and non-genetic
layers contain a similar number of nodes. This model will be referred to as a parallel neural
network, and to the best of my knowledge, this is not a design explored in the context of
genomic prediction in existing literature. This approach allows the genetic network and
non-genetic network to have different architectures and different sizes. The non-genetic
network might be a simple one-layer dense network, while the genetic network might be
a much deeper convolutional neural network. The final hidden layer, which takes output
from both the genetic and non-genetic networks allows for G × E interactions. The two
separate networks can also be pre-trained before being merged to form the parallel neural
network. In addition to helping in the training process, the approach of pre-training the
networks separately allows the usage of data which does not have both genetic and non-
genetic data. If there are individuals where the non-genetic and phenotype data is present,
but not the genetic data, these observations might still be used in the pre-training of the
non-genetic network.

Figure 6: Illustration of the parallel network. Genetic and non-genetic data is given
separately as input to two distinct networks before the output is concatenated and passes
to a fully connected layer, allowing potential G×E effects to be captured. The non-genetic
sections of the network (red) was pre-trained before the full network is formed by adding
the final fully connected and output layer. The internal weights of the non-genetic network
was also frozen, meaning that they did change during training of the full model.

Before training the non-genetic network, the data involved must be formatted to suitable
input for a neural network. In the linear mixed model of Section 3.3 we are able to define
random effects for variables, such as hatch island. The neural network cannot handle these
variables in the same way. For the neural network with non-genetic variables as input,
these was given a one-hot encoding, just as described for the SNP data in Section 2.5.
Consider the variable hatch island, which is initially encoded as integers representing each
observed hatch island. For the non-genetic neural network, there was one input node for
each potential hatch island, all of which are set to zero except for the hatch island which
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is observed for that sample. The non-genetic variables used were sex, month of sampling,
the estimated inbreeding coefficient, age of the bird and sampling and hatch year. The
Python code for defining the parallel network is available in Appendix H.

The two parallel neural networks in this thesis predicted the phenotype body mass or
tarsus length. The parallel networks are denoted as PNN mass and PNN tarsus for the
networks predicting the body mass and tarsus length respectively. Both networks had
the same architecture. The non-genetic network is consisted of two fully connected layers,
both with 12 units. The genetic network resembles MLP 11, using two 64 unit layers and
a dropout of with rate 0.5 applied to the input layer. All activation functions were set
be ReLu, except for the output node which used a linear activation function. The non-
genetic network was pre-trained on the relevant variables (then with the addition of an
output node). Additionally, repeated measurements of individuals was used during this
pre-training. Before the full model was constructed, the internal layers of the non-genetic
network was frozen, meaning that they did not change after pre-training. The comparison
for the PNN models was the full predictor of two GBLUP models including both the
genetic and non-genetic variables, as described in Section 3.4.

3.8 Model assessment and loss function

The traditional measure of prediction accuracy in genomic prediction tasks is the Pearson
correlation between the predicted value and the observed phenotype (Meuwissen et al.
2001). The higher the correlation coefficient, the more variance in the phenotype is ex-
plained by the genetic material. The Pearson correlation was therefore used as the metric
for assessing the accuracies of all models. Note that the final evaluation metric was not the
same as the loss function used during training of the networks. The mean squared error is
used as the loss function for training of all models in this thesis. The Pearson correlation
coefficient and the Mean Squared Error provide complementary information about model
performance. The Pearson correlation measures the linear relationship between the ob-
served and predicted values, which reflects how well the model predictions align with the
true values. However, it does not directly measure the magnitude of the errors.

Figure 7: The five-fold cross-validation procedure illustrated. The procedure consists of
five training-validation runs, where every data point will be in the validation set for one
run.

The accuracy of all models in this thesis was assessed by performing five-fold cross-
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validation, including the GBLUP models. The data was split into five folds, meaning
five distinct subsets of the total data. Each of the five folds was set as the validation set
for one run each, meaning that the remaining four folds are combined to form a training
set before the prediction was made on the validation set. In five-fold cross validation, the
validation data is 20% of the total data in each run. The final performance measure is then
the mean over the five correlations from each training and validation run. The standard
deviation of the accuracies is a measure of the models variance depending on the data set.
The cross validation procedure is illustrated in Figure 7. For the models trained on data
including repeated samples (non-genetic part of the PNNs and GBLUP), the folds was
split by the unique individuals, meaning that no individual appeared in both the training
and test set.

3.9 Testing for difference in model performance by hatch is-
land

Neural networks have not been widely applied to genomic prediction in wild populations.
The genetic variation in a wild meta-population might propose additional challenges com-
pared to domestic populations. Data containing samples from widely different distribu-
tions often causes poor performance in machine learning models. To investigate whether
the neural networks performed worse on samples from certain sub-populations, the test
set was separated by hatch island and the accuracy was recorded for each of the subsets.
These subsets of samples from different island groups are of widely different sizes. A small
set will have a larger probability of having a performance widely different from the test set
as a whole that a large set, purely by chance. The differences in set sizes therefore need
to be considered when assessing the significance of the differences. Hatch islands with less
than 50 samples are omitted from this analysis.

An approximate permutation test was used to quantify the significance of the differences in
performance by samples from different islands. The approximate permutation test differs
from the ordinary permutation test in that not all possible permutations are iterated
through, as there are too many. A Monte Carlo-like simulation was instead used (Nichols
and Holmes 2001). The test is performed for each of the set sizes seen after splitting
the test set by hatch island. Consider a hatch island with n samples in the test data
forming a subset. The performance of the neural network on this subset is recorded as
Cisland. The performance on the whole test set is denoted as Cmeta pop Next, a 1000 new
random subsets with n samples are defined. The performance of the model was recorded
on each of these random subsets, forming Ci, i = 1, 2, ...1000. The statistic of interest
is the difference between the performance on the subset from a specific island with the
population as a whole, Tisland = Cmeta pop −Cisland. The larger the value of this statistic,
the worse the model performed on this island compared to the whole population. The
same statistic is defined for each of the random subsets, Ti = Cmeta pop −Ci. The p-value
of the observation Tisland is then the proportion of Ti greater than Tisland,

p-value =

∑1000
i=1 (Ti > Tisland)

1000
.

This p-value corresponds to the null hypothesis that the performance on a hatch island
group in the test data is drawn from the same distribution as a random set of that size,
meaning that the model performs similarly on that hatch island compared to the rest. The
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distribution formed by {Ci}1000i=1 was used to construct confidence intervals. For a 95% con-
fidence interval, the lower and upper bound is given by the percentiles at 2.5% and 97.5%.
The model was trained on the training set containing all hatch islands. Only the test set
was split by hatch island. The test and training set split was done randomly, meaning that
there was no control over the relative frequency of each hatch island. The permutation
test was only carried out for the best performing neural network model (MLP 11) due to
computational costs, and does not incorporate cross-validation.
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4 Results

t-SNE and PCA

The plots from the PCA and t-SNE are presented in Figure 8. The data points are
colored by the hatch island. Plots from t-SNE with different distance metrics and per-
plexity parameters are available in Appendix A. Figure 8 shows the t-SNE projection with
perplexity = 30 and the Euclidean distance. The t-SNE projection of the SNP data shows
a high degree of grouping by hatch island. A high degree of grouping is also seen in the
PCA, although more components are needed distinguish the islands, compared to t-SNE.
The first principle component showed especially good separation of the island colored in
grey, Aldra. The first 6 PCs are available in Appendix C and the explained variances of
each component in Appendix B. The distance measure used was either Euclidean, cosine
or the Hamming distance. Grouping by island was similar between all distance measures
and perplexity parameters. The relative position of different groupings was also sim-
ilar between different parameter and metric choices, meaning that islands that appeared
grouped close to each other for one configuration, tended to appear close for all other
configurations. The t-SNE plots can be compared to the results from Ranke et al. (2021),
where the genetic flow between the islands is investigated. Their results are visualized in
Figure 9. By comparing this figure with the t-SNE plot, we can get an idea of how the
clusters appearing in the t-SNE plot relates to the genetic flow between the islands.

Figure 8: PCA and t-SNE on large data set. Left: t-distributed stochastic neighbor
embedding (t-SNE) of the SNP data using the Euclidean distance and perplexity set to
30. Right: The first three principle components of the SNP data. Each observation is
colored according to their hatch island. Islands with fewer than ten observations were left
out of the analysis, leaving eight islands.

t-SNE mainly resulted in groupings of samples from the same hatch island, but without
clearly distinct boundaries. Island 38 (Aldra) had the highest degree of clustering in the
t-SNE plot for both data sets. Aldra consistently appeared on the periphery of the islands
groupings and with little overlap with the other islands. This observation is mirrored in
the PCA plot, as the first component shows high differentiation of Aldra from the rest
of the population. From Figure 9 it is apparent that there is a very little genetic flow
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between Aldra and the other islands.

Overlapping island groupings in the t-SNE plot did to some degree correspond to islands
with greater genetic flow between them, compared to non-overlapping groupings. Island
23 and 24, corresponding to Træna and Selvær, are largely overlapping in the both the t-
SNE and the PCA plot. These locations are each others closest neighbour. Figure 9 shows
a high degree of genetic flow between these two islands. There was also a separation of
what is referred to as ”inner” and ”outer” islands, colored yellow and blue respectively
in Figure 9. The outer islands are colored red, green and orange in the t-SNE plot. The
t-SNE plot shows a separation by inner and outer islands. The outer islands appeared
largely overlapping. Additionally, the inner most islands, Aldra and Gjerøy (appearing
grey and purple respectively in Figure 8), appears furthest from the outer islands. In
summary, the t-SNE projection appears to recreate much of the both the local (grouping
of islands) and global (relative position of groupings) structure in Figure 9 from the SNP
data.

Number Name

20 Nesøy
22 Myken
23 Træna
24 Selvær
26 Gjerøy
27 Hestmannøy
28 Indre Kvarøy
33 Onøy og Lurøy
34 Lovund
35 Sleneset
38 Aldra

Figure 9: Islands of birth for samples in data set and genetic flow between them. Right
figure is borrowed from Ranke et al. (2021). The thickness of the arrows corresponds to
the amount of genetic flow (migration) between the respective islands

Neural networks

Model performances are reported by the mean and standard deviation of the Pearson
correlation between the predicted and true response from the five-fold cross-validation,
denoted as mean (standard deviation). The standard deviations are relatively large com-
pared to the differences in model performances. The successful training of a network was
generally characterized by slow learning (many epochs).

Predicting adjusted body mass on the small data set

The final architectures of the 12 models trained on the small data set (n = 1884) are
given in Table 1 and their performance is presented in Figure 10. There was a large
difference in performance between each fold in the five-fold cross validation. The MLP
with 1k randomly selected SNPs performed a lot worse than all other models for any of
the considered input sizes, encodings and network architectures. GBLUP, which was only

34



applied to the small data set, achieved a correlation of 0.272 (0.029). None of the neural
network models trained on the small data set performed better than GBLUP.

The best performing neural network model trained on the small data set was LCNN 3, with
a correlation of 0.264 (0.037). LCNN 3 was trained on the output fromMost correlated 10k
(selecting the 10k SNPs most correlated with the adjusted phenotype) using the default
encoding (SNPs encoded as 0, 1 or 2) and had a locally connected layer with one filter,
a stride of 15 and window width of 5. Increasing the number of SNPs from 1k to 10k
was generally positive for model performance in MLPs and LCNNs. The best CNN did
however use 1k SNPs as input.

The Best unif SNP selection method, which selects SNPs based on their correlation with
the adjusted phenotype while hindering multiple SNPs being selected from the same region,
did not improve the accuracy of any of the tested model architectures. One-hot encoding of
the SNPs was observed to give similar or worse performance for all models when compared
to the default encoding. Using 10k one-hot encoded input, resulting in the dimension of
the input space being 30k, gave unstable models for all models on the small data set, and
is therefore not included.

Model Correlation (std)

MLP random 0.077 (0.67)

MLP 0 0.230 (0.044)

MLP 1 0.234 (0.044)

MLP 2 0.252 (0.043)

CNN 0 0.255 (0.031)

CNN 1 0.224 (0.029)

CNN 2 0.228 (0.027)

CNN 3 0.232 (0.033)

LCNN 0 0.255 (0.025)

LCNN 1 0.218 (0.045)

LCNN 2 0.233 (0.027)

LCNN 3 0.264 (0.037)

GBLUP 0.272 (0.029)

Figure 10: Model accuracy on the small data set measured as the Pearson correlation
coefficient between the predicted and true body mass, after adjusting for non-genetic
effects as described in Section 3.3. MLP models are colored shades of red, CNNs are colored
shades of green and LCNN are colored shades of blue. The GBLUP result is colored yellow.
Square markers represent models with default encoded SNPs, while circular markers are
models with one-hot encoded SNPs. The shaded areas indicates models with 10k SNPs as
input, while the white area contains models trained on 1k SNPs. All models are trained
on 1918 observations. Model architecture, input type and input size is given in Table 1.

Predicting adjusted body mass on the large data set

As the results for the smaller data set indicated that including 10k SNPs was beneficial for
performance, some of the networks for the larger data set (n = 5986) was trained on 15k
and 20k SNPs. The Best unif selection scheme was abandoned based on the results on the
smaller data set, as it did not cause any improvement and requires more computation time
than the Most correlated approach. The results from the large data set are seen in Table
11 and all the model architectures are seen in Table 2. The best performing models were
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MLPs with 10k and 20k default encoded SNPs as input, both achieving a correlation of
0.291 with a standard deviation of 0.023 and 0.024 respectively. An MLP was trained on
30k default encoded SNPs, but led to poor performance and failed to converge too often to
get a cross validation result, and is therefore not included in the results. All architecture
types (MLP, CNN and LCNN) resulted in at least one model that outperformed GBLUP
(0.272 (0.0294)), which was trained on the smaller data set.

Model Correlation (std)

MLP 10 0.246 (0.017)

MLP 11 0.291 (0.023)

MLP 12 0.274 (0.026)

MLP 13 0.291 (0.024)

LCNN 10 0.250 (0.020)

LCNN 11 0.240 (0.018)

LCNN 12 0.280 (0.031)

LCNN 13 0.286 (0.021)

LCNN 14 0.278 (0.007)

CNN 10 0.248 (0.029)

CNN 11 0.245 (0.0262)

CNN 12 0.281 (0.0284)

CNN 13 0.269 (0.0266)

Figure 11: Model accuracy on the large data set measured as the Pearson correlation
coefficient between the predicted and true body mass, after adjusting for non-genetic
effects as described in Section 3.3. Model architecture, input type and input size is given
in Table 1. The GBLUP result is colored yellow, but is the result is from the smaller data
set. Square markers represent models with default encoded SNPs, while circular markers
are models with one-hot encoded SNPs. The lightly shaded areas indicates models with
10k SNPs as input, while the darker shaded areas contains the models with more than
10k SNPs. The white regions contain models trained on 1k SNPs.

The best LCNN (LCNN 13) did, however, achieve a performance close to that of the best
performing MLP with a correlation of 0.286 (0.021), using the one-hot encoded SNPs com-
bined with a locally connected layer with windows covering three inputs (covering a single
one-hot encoded SNP) and with a stride of three. By far the most consistently performing
model in cross-validation was LCNN 14, which achieved a correlation of 0.278 (0.007).
LCNN 15 had 15k one hot encoded SNPs as input, which is the largest input size of all
the models. One hot encoding was not beneficial for the MLPs or CNNs. Common to all
these were that the input was 10k or more SNPs. For the models trained on 1k SNPs there
was a smaller increase in model performance on the large data set compared to the small
data set, and none outperformed GBLUP. Models generally achieved a lower variation in
performance on the large data set compared to the small data set.

Performance depending on hatch island

To investigate whether the prediction accuracy of the neural network models differs de-
pending on the hatch island of the samples, we test how it differs on the MLP 11 model,
the best performing neural network trained on the adjusted body mass from the large
data set. The model is given the full training data (containing all hatch islands) during
training, while the test data is split by hatch island. The results are shown in Figure 12
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Figure 12: Performance of MLP 11, separated by hatch island. Error bars represent 95%
confidence interval from an approximate permutation test. Dotted red line shows the
model performance on the complete test set.

with associated 95% confidence intervals from an approximate permutation test. Island
27, Hestmannøy, was the only island with an accuracy outside this confidence interval.
This is also the island with the largest number of samples in the test set with 254 samples.

Parallel network

Two neural networks were trained on the large data set using the raw phenotypes and
both genetic and non-genetic variables. One model predicted the body mass (PNN mass)
and the other ont the tarsus length (PNN tarsus). Both neural networks have the same
architecture of two parallel fully connected networks processing genetic and non-genetic
variable separately, before merging at the second to last layer.

PNN mass and PNN tarsus are compared to two GBLUP models as described in Section
3.4, namely GBLUP mass and GBLUP tarsus respectively. The GBLUP models are how-
ever trained on the smaller data set. The model performances are shown in Figure 13.
PNN mass achieved a correlation of 0.347 (0.0416), slightly outperforming GBLUP which
achieved 0.320 (0.0366). PNN tarsus achieved an accuracy of 0.324 (0.029), which was
outperformed by GBLUP tarsus with an accuracy of 0.385 (0.035).
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Figure 13: Performance (Pearson correlation) of the parallel neural networks PNN mass
and PNN tarsus predicting the raw phenotypes body mass and tarsus length using both
genetic and non-genetic variables from the large data set. These networks are compared
to the results of GBLUP, which is trained on the small data set using the same variables.
Error bars are one standard deviation, retrived from the 5-fold cross-validation.

5 Discussion and Conclusion

This study has explored several dimensions of applying neural networks to the task of
genomic prediction, including pre-selection of SNPs, SNP encoding, neural network archi-
tectures and data visualization. A total of 27 neural networks and two GBLUP models
were applied to the two data sets used in this thesis. Of those, 25 networks modelled an ad-
justed phenotype defined as the individual-specific random effect of an linear mixed model
accounting for non-genetic variables, and two networks predicted the raw phenotypes body
mass or tarsus length using bot SNP data and non-genetic data.

t-SNE and PCA were used as dimensionality reduction techniques with the goal of visually
exploring potential genetic clustering by hatch island. The projections of the SNP data
showed a high degree of grouping by the animals island of origin (Figure 8). The fact that t-
SNE efficiently visualized the local structure of the data, meaning the relatedness between
pairs individuals, might not be a surprise, as this is the strength of t-SNE. However, t-
SNE did also create a visualization that remarkably retained the global structure of the
data. Islands with a high level of genetic flow between them appeared more overlapped,
and islands that are located far away from each other appeared on opposite sides in the
t-SNE visualization. t-SNE tends to conserve more global structures for larger perplexity
parameters, which is also the case for this data.

The grouping of the genetic data by hatch island may indicate challenges to fitting a model,
when not considering these differences. Training data containing samples from distinct
clusters may lead to poor generalization. A potential approach is to use pre-training on
the total data set, before fine-tuning it on the specific clusters of interest. This approach
is called transfer learning (Hosna et al. 2022) and is a widely used technique in the field
of machine learning. Here, to test whether the neural networks performed better or worse
on samples from certain islands, the test set of MLP 11 was split by hatch island. The
result of this analysis was that none but Hestmannøy achieved a performance outside
(above) the 95% confidence interval, which was simulated by an approximate permutation
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test. Note that this analysis checked performance on eight different islands (essentially
testing multiple hypotheses), requiring care when evaluating the significance of the result.
Hestmannøy is also the island with the most samples in this test set, supporting the
hypothesis that the neural networks performes best on the samples from the group with
the largest number of samples in the training data. However, the model performance
did not generally increase for increasing population size for the other islands. The best
performing subset was the samples from Aldra, island 38, but the result was within the
95% confidence interval. The separation by hatch island done in this analysis might not
be accurate enough to show the true differences in performance by genetic clustering and
habitat differences, as there is a high degree of genetic flow between certain islands. This
genetic flow causes islands to effectively be a part of the same larger sub-population. This
analysis can be improved upon by controlling the number of samples from each hatch island
in both the test and training set. A similar approach would be to train on all samples
except those from one island, which will be the test set (essentially k-fold cross-validation
for k islands).

Four types of regularization were tested during the development of the models, namely
L1, L2, early stopping and dropout regularization. Dropout and early stopping were
the only regularization methods in the final models. Weight penalty methods were not
included as the initial tuning process set them close to zero. Dropout rates ranged between
0.2 and 0.5. From the limited number of models trained in this thesis, the CNNs was
observed to need a lower rate of regularization, which is in line with the sparse properties
of CNNs (Ian Goodfellow et al. 2016, Ch. 9). Early stopping was crucial in terminating
the learning process before the network overfitted the training data. The optimal number
of epochs varied widely, which meant that setting the number of epochs for training
manually will likely involve either overfitting or underfitting the data. For the large data
set, dropout layers were used before the first fully connected layer, meaning that weights
directly associated with SNPs are set to zero. This approach proved efficient when the
number of SNPs increased.

One avenue investigated by this thesis is the different SNP selection approaches, the
Best unif scheme and the more straight forward Most correlated approach. The Most correlated
procedure selected the SNPs most correlated with the response when considering the whole
SNP vector. Best unif selected the one SNP most correlated with the response from uni-
formly spaced windows (measured in base pairs). The models trained on SNPs selected by
the Bes Unif 1k scheme, CNN 2 and LCNN 2, performed similarly or worse than similar
models trained on SNPs selected by Most correlated 1k. For larger selections of SNPs,
the overlap between the two SNP selection methods increases. This increase in overlap
would decrease the need for the Best unif scheme. The overlap between the SNP selec-
tion methods is in Appendix D. One intention of the Best unif approach was to decrease
the amount of multicollinearity. The presence of multicollinearity is known to negatively
impact the performance of many statistical models, but is not as detrimental to neural
networks.

The approach of Best unif was intended to be especially suited for CNNs, as it conserves
some spatial regularity in the input. This notion of spatial consistency could be beneficial
for the convolution operation as it allows the model to efficiently capture reoccurring
patterns. However, these results might suggest that the spatial equivariance property of
CNNs may not fully apply to the SNP vector. Rather than detecting features independent
of their spatial location, when applied to genomic data, CNNs can be seen as extracting
local contextual information from sequences. Interactions between neighboring genes or
SNPs can significantly influence the traits they govern. Therefore, spatial invariance might
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not be what makes CNNs valuable for genomic prediction tasks, but their capacity to
capture local interactions in the data. The CNNs was however consistently outperformed
by the LCNNs, which might suggest that the sparsity is beneficial, but that the shared
weights are not.

One of the clear trends of the results was the improvement in performance when increasing
the number of SNPs used as model input, up until 20k SNPs. Due to computational costs,
too few models were trained with input sizes in the interval 10k to 20k SNPs to draw any
conclusion on what the optimal number is.

One-hot encoding did not consistently outperform the default encoding of SNPs, especially
for the small data set. On the larger data set, one-hot encoding showed some promise
when combined with locally connected layers. A locally connected layer may efficiently
handle the increased dimensionality of the input space caused by one-hot encoding, better
than the MLPs. In the case of MLPs, one-hot encoding causes a large increase in model
parameters, which may impact performance. The LCNN trained on 15k one hot encoded
SNPs (LCNN 14) achieved an especially notable result. Even though it did not achieve
the best performance overall, it was competitive and with a drastically lower variation
between the folds in cross-validation. This result highlights LCNNs as a viable option for
handling the large dimensions of the SNPs, especially when using one-hot encoding.

The neural networks predicting the raw phenotypes, using both environmental and genetic
data simultaneously (PNN mass and PNN tarsus), outperformed GBLUP when predict-
ing body mass, but performed worse when predicting tarsus length. As with many model
performances in this study, were the uncertainties a too large to make any strong conclu-
sions. This does however serve as a proof of concept for this network structure. The final
architecture of the parallel network was informed by which models performed best when
predicting the adjusted body mass and a limited number of alternative design choices were
tested. This might have contributed to PNN tarsus performing worse than GBLUP tarsus,
as the optimal architecture is known to be dependent on the phenotype. As only two mod-
els were tested using this approach, both only applying MLPs to default encoded SNPs,
there is reason to expect room for improvement on the design choices made in this thesis.

The neural network models in this thesis were competitive with GBLUP when trained
on the large data set. However, the implications of the comparison between the GBLUP
models and neural networks trained on the large data set are limited as they are trained
on different data sets. Including the comparison between GBLUP and the parallel neural
network predicting the adjusted phenotype. GBLUPs computation time increases drastic-
ally with number of individuals (due to the relatedness matrix being n×n), which is why
it was not feasible to apply GBLUP to the large data set in this thesis. Neural networks
may for this reason be a more suitable choice for large data set.

Further studies could investigate the effect of the choice of encoding on a simulated data
set, allowing control of what genetic effects are most important to the phenotypic vari-
ation. This could give greater insight into whether one-hot encoding is necessary to model
dominance effects, or if networks are able to represent such effects from the default encod-
ing. What genetic effects are the most important may also affect which neural network
architecture is most suitable. The SNP selection can also be better tested and understood
by using an artificial data set. A less extreme version of Best unif which allows some over-
lap of windows selecting SNPs is a natural method to test. Testing the ability of models to
generalize between different populations could be further explored using the approximate
permutation, preferably controlling what samples are in the training set, which is not done
in this thesis.
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A t-SNE for varying perplexity and
metric

(a) p = 10 (Cosine) (b) p = 20 (Cosine) (c) p = 30 (Cosine) (d) p = 50 (Cosine)

(e) p = 10 (Euclidean) (f) p = 20 (Euclidean) (g) p = 30 (Euclidean) (h) p = 50 (Euclidean)

(i) p = 10 (Hamming) (j) p = 20 (Hamming) (k) p = 30 (Hamming) (l) p = 50 (Hamming)

Perplexity (p) and metric used.

B Variance explained in PCA

Variance explained by the 15 first principle components.
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C Six principle components of the
large data set

The first six principle components from the large data set.

D Intersection of SNP selection meth-
ods by increasing SNPs
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Intersection of the SNP selection Best unif and Most correlated for increasing numbers of
SNPs selected. X-axis is on a log scale.

E Adjusting body mass for non-
genetic variables

Code for fitting an LMM using the non-genetic effects and extracting the adjusted phen-
otype. Implemented in R.

1 library(lme4)

2 formula.mass.lmm = mass ~ sex + FGRM + month + age +

3 (1 | island_current) +

4 (1 | hatchyear) +

5 (1 | ringnr)

6 r.mass.lmer <- lmer(formula.mass.lmm , data = dd)

7 # The adjusted phenotype is the ID effect:

8 ID_effect <- ranef(r.mass.lmer)$ringnr

F Best unif SNP selection

The Best unif selection scheme (Section 3.5) implemented in Python.

1

2 def Best_Unif_N(X, Y, N, method = 'spearman '):
3

4 """

5 Returns a list of about n SNPs. Usually a few more than

n as there is always one SNP selected from each

Chromosome. The SNPs

6 most correlated with response on each of the n windows

()f same width meassured in base pairs) is selected.

7
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8 Parameters

9 ----------

10 N : Int

11 Number of SNPs to be chosen.

12 X : Pandas data frame

13 Training data.

14 Y: Numpy array or pandas series

15

16 Returns

17 -------

18 output_SNP : list

19 The chosen SNPs based on the Best_unif_n criteria.

20

21 """

22

23 import json

24 import numpy as np

25

26 file_path = "Path to dictionary containing position of

each SNP"

27 with open(file_path , "r") as json_file:

28 SNP_locations = json.load(json_file)

29

30 file_path = "Path to dictionary of chromosome contents"

31 with open(file_path , "r") as json_file:

32 Chromosome = json.load(json_file)

33

34 correlations = X.corrwith(Y, method=method)

35 top_N_indices_correlations=np.abs(correlations).nlargest(N).index

36

37 output_SNP = []

38 windows= []

39 not_i_ndata_count = 0

40

41 for c in Chromosome.keys():

42

43 nn = int(len(list(Chromosome[c])) /

len(correlations.index) * N)

44 nn = max(nn , 1)

45

46 bp = []

47 for snp in Chromosome[c]:

48 bp.append(int(SNP_locations[snp ][1]))

49 bp_max = max(bp)

50 t = bp_max / nn

51 lower = 0

52

53 current_window = []

54 for snp in Chromosome[c]:

55 if snp in correlations.index:

56 if int(SNP_locations[snp ][1]) - lower > t:
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57 windows.append(current_window)

58 current_window = []

59 current_window.append(snp)

60 lower += t

61 else:

62 current_window.append(snp)

63 else:

64 not_i_ndata_count +=1

65 windows.append(current_window)

66

67 for i in range(len(windows)):

68 correlations.loc[windows[i]]

output_SNP.append(np.abs(correlations.loc[windows[i]]).nlargest (1).index)

69

70 best_unif_final = []

71 for w in output_SNP:

72 for snp in w:

73 if type(snp) == list:

74 for snp2 in snp:

75 best_unif_final.append(snp2)

76 else:

77 best_unif_final.append(snp)

78

79 return best_unif_final

G GBLUP using INLA

Defining the GBLUP model in R-INLA and retrieving the breeding values and full pre-
dictions.

1 library(INLA)

2 """

3 idx_test: Indexes of test set. The phenotypes and genetic

effects are set to NA in the dataset passed to the INLA

model.

4 Cmatrix: The inverse of the relatedness matrix.

5 D.morph: Data set

6 """

7 #Defining formula

8 formula.phenotype <- phenoype ~ sex + FGRM + month + age +

9 f(hatchisland , model = "iid", hyper = list(

10 prec = list(initial = log (1), prior = "pc.prec", param

= c(1, 0.05))

11 )) +

12 f(hatchyear , model = "iid", hyper = list(

13 prec = list(initial = log (1), prior = "pc.prec", param

= c(1, 0.05))

14 )) +

15 f(IDC , model = "iid", hyper = list(
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16 prec = list(initial = log (1), prior = "pc.prec", param

= c(1, 0.05))

17 )) +

18 #The genetic effect

19 f(IDC2 ,

20 values = idxs , model = "generic0",

21 Cmatrix = Cmatrix ,

22 constr = TRUE ,

23 hyper = list(

24 prec = list(initial = log (0.5), prior = "pc.prec",

param = c(sqrt (2), 0.05))

25 )

26 )

27

28

29 # Creating model

30 model.phenotype <- inla(

31 formula = formula.phenotype , family = "gaussian",

32 data = d.morph_train ,

33 control.family = list(hyper = list(theta = list(initial

= log (0.5) , prior = "pc.prec", param = c(sqrt (2),

0.05)))),

34 control.compute = list(dic = F, return.marginals = FALSE)

35 # control.compute=list(config = TRUE)

36 )

37 # Full predictor

38 preds_EG <-

model.phenotype$summary.fitted.values$mean[idxs_test]
39 # Get breeding values

40 preds_G <-

model.phenotype$summary.random$IDC2$mean[idxs_test]
41

42 #Correlation of full predictor with true phenotype

43 corr_EG <- c(corr_EG , cor(preds_EG , pheno_test_EG , method =

"pearson"))

44

45 #Correlation of breeding value with true phenotype

46 corr_G <- c(corr_G, cor(preds_G, pheno_test_G, method =

"pearson"))

H Parallel neural network

Defining and training a parallel neural network in as described in Section 3.7.

1 """

2 X_env: Data frame containing non -genetic variables

3 X_gen: Data frame containing genetic variables

4

5 Make sure that the samples in both data sets correspond
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6 """

7 #Define learning rate schedule

8 lr_schedule =

tf.keras.optimizers.schedules.CosineDecay(initial_learning_rate

= 0.01, decay_steps = 300, alpha = 0.0001)

9

10

11 # Pre training of environmental model

12 env_model = Sequential ()

13 env_model.add(Dense(units =12, activation='relu ',
input_shape =( X_env_train.shape [1],)))

14 env_model.add(Dense(units = 12, activation='relu '))
15 env_model.add(Dense (1))

16 env_model.compile(optimizer=Adam(learning_rate=lr_schedule),

17 loss='mse',
18 metrics =['mae'])
19

20 early_stopping = EarlyStopping(monitor='val_loss ',
patience =10, restore_best_weights=True)

21

22 env_model.fit(x = X_env_train , y = Y_train , verbose = 1,

epochs = 100,

23 batch_size = 32, callbacks =[ early_stopping],

24 validation_split = 0.1)

25

26 # Pre -selecting SNPs

27 N_SNP = 10000

28 selected_SNPs = Most_correlated(X_gen_train ,

pd.Series(Y_train), N_SNP)

29 X_gen_train , X_gen_test = X_gen_train.loc[:, selected_SNPs],

X_gen_test.loc[:, selected_SNPs]

30

31 lr_schedule =

tf.keras.optimizers.schedules.CosineDecay(initial_learning_rate

= 0.01, decay_steps = 200, alpha = 0.001)

32

33 #GENETIC MODEL

34 gen_model = Sequential ()

35 gen_model.add(Dropout (0.5,

input_shape =( X_gen_train.shape [1],)))

36 gen_model.add(Dense(units = 64, activation='relu '))
37 #gen_model.add(Dropout (0.4))

38 gen_model.add(Dense(units = 64, activation='relu '))
39 #gen_model.add(Dense (1))

40 gen_model.compile(optimizer=Adam(learning_rate=lr_schedule),

41 loss='mse',
42 metrics =['mae'])
43

44

45

46 # Freeze layers of the pre -trained models
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47 for layer in env_model.layers:

48 layer.trainable = False

49

50 # Now , combine models into the final full model

51 combined_input = concatenate ([ gen_model.output ,

env_model.layers [-2]. output ])

52 #Add a fully connected layer

53 x = Dense (64, activation='relu ')(combined_input)
54 output = Dense(1, activation='linear ')(x)
55

56 final_model = Model(inputs =[ gen_model.input ,

env_model.input], outputs=output)

57 final_model.compile(optimizer='adam ',
loss='mean_squared_error ')

58

59 #Train the final full model

60 early_stopping = EarlyStopping(monitor='val_loss ',
patience =10, restore_best_weights=True)

61 final_model.fit([ X_gen_train , X_env_train], Y_train ,

epochs =50, batch_size =32, callbacks =[ early_stopping],

validation_split = 0.1, verbose = 1)

62

63 #Predictions of full model

64 predictions = final_model.predict ([X_gen_test , X_env_test ])
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