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Abstract—Face Recognition systems (FRS) have been found
to be vulnerable to morphing attacks, where the morphed face
image is generated by blending the face images from contributory
data subjects. This work presents a novel direction for generat-
ing face-morphing attacks in 3D. To this extent, we introduced
a novel approach based on blending 3D face point clouds cor-
responding to contributory data subjects. The proposed method
generates 3D face morphing by projecting the input 3D face point
clouds onto depth maps and 2D color images, followed by image
blending and wrapping operations performed independently on
the color images and depth maps. We then back-projected the 2D
morphing color map and the depth map to the point cloud using
the canonical (fixed) view. Given that the generated 3D face mor-
phing models will result in holes owing to a single canonical view,
we have proposed a new algorithm for hole filling that will result
in a high-quality 3D face morphing model. Extensive experiments
were conducted on the newly generated 3D face dataset compris-
ing 675 3D scans corresponding to 41 unique data subjects and
a publicly available database (Facescape) with 100 data subjects.
Experiments were performed to benchmark the vulnerability of
the proposed 3D morph-generation scheme against automatic
2D, 3D FRS, and human observer analysis. We also presented a
quantitative assessment of the quality of the generated 3D face-
morphing models using eight different quality metrics. Finally,
we propose three different 3D face Morphing Attack Detection
(3D-MAD) algorithms to benchmark the performance of 3D face
morphing attack detection techniques.

Index Terms—Biometrics, face recognition, vulnerability, 3D
morphing, point clouds, image morphing, morphing attack
detection.

I. INTRODUCTION

FACE Recognition Systems (FRS) are being widely
deployed in numerous applications related to security set-

tings, such as automated border control (ABC) gates, and
commercial settings, such as e-commerce and e-banking sce-
narios. The rapid evolution of FRS can be attributed to
advances in deep learning FRS [1], [2], which improved the
accuracy in real-world and uncontrolled scenarios. These fac-
tors have accelerated the use of 2D face images in electronic
machine-readable documents (eMRTD), which are exclusively
used to verify the owner of a passport at various ID services,
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including border control (both automatic and human). Because
most countries still use printed passport image for the pass-
port application process, face morphing attacks have indicated
the vulnerability of both humans and automatic FRS [3], [4].
Face morphing is the process of blending multiple face images
based on either facial landmarks [5] or Generative Adversarial
Networks [6] to generate a morphed face image. The extensive
analysis reported in the literature [7], [8], [9], [10] demon-
strates the vulnerability of 2D face morphing images to both
deep learning and commercial off-the-shelf FRS.

There exist several techniques to detect the 2D face morph-
ing attacks that can be classified as [11] (a) Single image-based
Morph Attack Detection (S-MAD): where the face Morphing
Attack Detection (MAD) techniques will use the single face
image to arrive at the final decision (b) Differential Morphing
Attack Detection (D-MAD): where a pair of 2D face images
are used to arrive at the final decision. S-MAD and D-MAD
techniques have been extensively studied, resulting in sev-
eral MAD techniques. The reader is advised to refer to a
recent survey by Venkatesh et al. [11] to obtain a comprehen-
sive overview of the existing 2D MAD techniques. Despite
the rapid progress in 2D MAD techniques, a recent evalu-
ation report from NIST FRVT MORPH [12] indicated the
degraded detection of 2D face morphing attacks. Thus, 2D
MAD attacks, particularly in the S-MAD scenario, present
significant challenges for reliable detection. These factors
motivated us to explore 3D face morphing, so that depth
information may provide a reliable cue that makes morphing
detection easier. Over the past several decades, 3D face recog-
nition has been widely studied, resulting in several real-life
security-based applications with 3D face photo-based national
ID cards [13], [14], [15], 3D face photo-based driving license
cards [15] and 3D face-based automatic border control gates
(ABC) [16]. The real case reported in [17] demonstrated the
use of a 2D rendered face image from a 3D face model instead
of a real 2D face photo to obtain the ID card bypassing human
observers in the ID card issuing protocol. Although most real-
life 3D face applications are based on comparing 3D face
models with 2D face images for verification, this is mainly
because e-passports use 2D face images.

However, the use of 3D to 3D comparison will be realis-
tic, especially in the border control scenario, as both ICAO
9303 [18] and ISO/IEC 19794-5 [19] standards are well
defined to accommodate the 3D face model in the 3rd gen-
eration e-passport. The 3D face ID cards are a reality, as
they are being deployed in countries such as the UAE [13],
which can facilitate both human observers and automatic
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FRS to achieve accurate, secure, and reliable ID verification.
Further, evolving technology has made it possible for 3D face
imaging on handheld devices and smartphones (e.g., Apple
Face ID [20] uses 3D face recognition) that can further
enable remote ID verification based on 3D face verifica-
tion. These factors motivated us to investigate the feasibility
of generating 3D face morphing and study their vulnerabil-
ity and detection. An early attempt in [21] employed the
3DMM [22] technique to generate a 3D face morphing model.
However, the reported results indicate the lowest vulnera-
bility to conventional FRS, indicating a limitation of the
3DMM.

This work presents a novel method for generating 3D face
morphing using 3D point clouds. Given the 3D scans from
the accomplished and malicious actors, the proposed method
projects the 3D point clouds to the depth maps and 2D
color images, which are independently blended, warped, and
back-projected to the 3D to obtain 3D face morphing. The
motivation for projecting to 2D for morphing is to effec-
tively address the non-rigid registration, especially with the
high volume of point clouds (85 K) that need to be registered
between two unique data subjects. Further, using canonical
view generation to project from 3D to 2D and back project
to 3D will assure a high-quality depth even for the morphed
face images, thus indicating the high vulnerability of the FRS.
Therefore, this is the first framework to address the generation
of 3D face morphing of two unique face 3D scans, which can
result in vulnerability to FRS. More specifically, we aimed
to answer the following research questions, which will be
answered systematically in this study:
• RQ#1: Does the proposed 3D face morphing generation

technique yield a high-quality 3D morphed model?
• RQ#2: Does the generated 3D face morphing model indi-

cate the vulnerability for both automatic 3D FRS and
human observers?

• RQ#3: Are the generated 3D face morphing models more
vulnerable when compared to 2D face morphing images
for both automatic 3D FRS and human observers?

• RQ#4: Does the 3D point cloud information be used to
detect the 3D face morphing attacks reliably?

We systematically address these research questions through
the following contributions:
• We present a novel 3D face morphing generation method

based on the point clouds obtained by fusing depth maps
and 2D color images to generate the 3D face morphing
model.

• Extensive analysis of the vulnerability of the generated
3D face morphing is studied by quantifying the attack
success rate to 3D FRS. In addition, vulnerability anal-
ysis was performed using 2D FRS (deep learning and
COTS).

• Human observer analysis for detecting the 3D face mor-
phing and 2D face morphing is presented to study
the significance of depth information in detecting the
morphing attack.

• The quantitative analysis of the generated 3D morphed
face models is presented using eight different quality
features representing color and geometry.

• We present three different 3D MAD techniques based on
the deep features from point clouds to benchmark the 3D
face MAD.

• A new 3D face dataset with bona fide and morphed mod-
els is developed corresponding to 41 unique data subjects
resulting in 675 3D scans. We collected a new 3D face
dataset as we were interested in capturing high-resolution
(suitable for ID enrolment) inner face data [23] Our 3D
face dataset consists of raw 3D scans (number of 3D ver-
tices between 31289 & 201065) and processed 3D scans
(number of 3D vertices between 35950 & 121088), which
is much higher than existing 3D face datasets.1

• The proposed method is benchmarked on both publicly
available dataset (FaceScape) and the newly constructed
3D face dataset.

In the rest of the paper, we introduce the proposed method
in Section II and experiments & results in Section III. This
is followed by a discussion about the different aspects of the
proposed method in Section IV, followed by limitations &
potential future-works in Section V and finally conclusions in
Section VI.

II. PROPOSED METHOD

Figure 1 shows a block diagram of the proposed 3D face-
morphing generation framework based on the 3D point clouds.
We are motivated to employ 3D point clouds over traditional
3D triangular meshes for two main reasons. The first is that
connectivity information in a 3D triangular mesh leads to
overhead storage, processing, management, and manipulation
of the triangular meshes. Thus, 3D triangular meshes will
significantly increase computing and memory, making them
less suitable for low-computing devices. The second reason
is that commodity scanning devices (for example, the Artec
Sensor) can reproduce detailed colored point clouds that cap-
ture appearance and geometry. This allows us to generate
high-quality 3D face morphing attacks.

However, 3D face morphing generation using point clouds
introduces numerous challenges: (a) Establishing a dense 3D
correspondence between two different bona fide 3D point
clouds to be morphed. Because 3D face point clouds from
two different subjects are affected by various factors, such
as differences in input point density, reliable detection of 3D
facial key points, and estimation of affine/perspective warping,
(b) locally affine deformation between two different 3D point
clouds to be morphed is difficult to estimate [24], [25], [26].
(c) The misalignment of dense 3D correspondence between
the two different 3D point clouds to be morphed increases
with nonrigid deformation [27].

A crucial part of 3D morphing using point clouds is
reliable alignment before performing the morphing opera-
tion. Given the 3D face point clouds on the source and
target faces, the point cloud registration can be defined as
aligning a source point cloud to a target point cloud. The
point cloud registration can be grouped into three broad
categories [28] namely 1) Deformation Field, 2) Extrinsic

1The reader is referred to Table I of 3D face datasets (inner face data only)
from the survey by Egger et al. [23]).



SINGH AND RAMACHANDRA: 3-D FACE MORPHING ATTACKS: GENERATION, VULNERABILITY AND DETECTION 105

Fig. 1. Block diagram of the proposed 3D face morphing generation technique.

Methods and 3) Learning-based methods. Deformation-field-
based techniques can be defined as the computation of defor-
mation between two point clouds, which can be achieved
either by assuming pointwise positions [29] or by pointwise
affine transformations [30]. Pointwise position variable meth-
ods are simplistic because they do not model deformations
compared with pointwise affine transformations, which model
local rotations. However, because local transformations must
be stored and computed at a per-point level, this results in high
computational and memory costs. This limitation was over-
come by deformation-field-based methods using deformation
graph embedding over the initial point set, which consisted of
fewer nodes than the underlying point set [25], [31]. Extrinsic
methods are based on optimizing an energy function to com-
pute the point set correspondence, which usually includes
an alignment term and regularization term [25]. However,
optimization-based methods compute deterministic modeling
of the transformation. Probabilistic modeling of transforma-
tion was performed by Myronenko and Song [32] in their
algorithm, Coherent Point Drift (CPD), which assumes that the
source points are centroids of an equally weighted Gaussian
with an isotropic covariance matrix in the Gaussian Mixture
Model (GMM). CPD consists of alignment and regulariza-
tion terms for the transformation computation and performs
non-rigid registration, but has memory and computation costs.
However, the main limitation of optimization-based meth-
ods is that they produce good results when the input sur-
faces are close. Furthermore, they require good initialization
of the correspondences and the lack of these, leading to

convergence to local minima. This was overcome by learning-
based data-driven methods of two types: (1) supervised meth-
ods and (2) unsupervised methods. Supervised methods require
ground-truth data for training [33] but can work with varying
point cloud density and underlying geometry. Unsupervised
methods do not require ground-truth data and can be trained
using a deformation module based on a CNN followed by an
alignment module to compute the deformation [34].

However, the use of existing point cloud registration for this
precise application of 3D face morphing point cloud genera-
tion poses challenges, such as registration using the same
individual, and point cloud registration has mainly focused
on the non-rigid registration of two-point clouds from the
same individual [28]. This is primarily because high-quality
registration is aimed at producing a globally consistent 3D
mesh. Thus, the registration methods were not tested when two
different point clouds were registered, as compared to those
from the same individual. Vertex accurate correspondence:
3D Face Morphing requires perfect vertex correspondence
between the source and target point clouds, which is challeng-
ing and has not been extensively evaluated. Low vertex count
point clouds: Point cloud registration, especially when using
learning-based methods, has network architectures based on
point clouds with a low number of vertices (1024). Thus,
registering point clouds with many vertices (75 K) has
not been extensively evaluated and is therefore suitable for
low-resolution face images. To address these challenges effec-
tively, the proposed method consists of four stages: (1) point
cloud reconstruction and cleanup, (2) 3D morph generation,
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(3) hole-filling algorithm, and (4) final cleanup. These steps
are discussed in detail in the following subsections.

A. Point Cloud Reconstruction & Cleanup

We captured a sequence of raw 3D scans by using the Artec
Eva sensor [35] from two data subjects to be morphed (S1
and S2). In this work, we consider the case of morphing two
data subjects at a time because of its real-life applications, as
demonstrated in several 2D face morphing studies [3], [11].
We processed both S1 and S2 by performing a series of prepro-
cessing operations such as noise filtering, texturing, and fusion
of input depth maps to generate the corresponding point clouds
P1 and P2. These operations were performed using Artec Eva
Studio SDK filters together with the Meshlab filter [36]. The
cleaned and processed point clouds are shown qualitatively in
Figure 1.

B. 3D Morph Generation Pipeline

In the next step, we process the point clouds P1 and P2
to generate a 3D face morphing point cloud by the following
series of operations which are discussed below:

1) Point-Cloud Centering & Scaling: First, we compute
the minimum enclosing spheres using the algorithm from
Gärtner [37] to obtain two bounding spheres with centers and
radii (C1, r1), & (C2, r2) corresponding to the point clouds P1
and P2 respectively. Note P1 = (v1

1, . . . , vn1
1 ) where vi

1 is the
ith 3D vertex, n1 is the number of points in the point cloud
P1, and P2 = (v1

2, . . . , vn2
2 ) where vi

2 is the ith 3D vertex and
n2 is the number of points in the point cloud P2. We then sub-
tract the sphere center C1 from each 3D vertex of P1 and repeat
the same operation on P2 with C2. Finally, the centered point
clouds were scaled to the common radius, normalizing the 3D
point clouds to a common scale. The resulting centered and
scaled point clouds corresponding to P1 and P2 are denoted
as PC1 and PC2, respectively. Figure 1 shows the qualitative
results of this operation, which show the centered and scaled
3D point clouds.

2) Canonical View Generation: This step performs fine
alignment by projecting the 3D face point clouds PC1 and
PC2 onto the canonical (fixed) view. This step aims to keep
the view and projection matrix identical to those of the 3D face
point clouds PC1 and PC2. We then projected PC1 and PC2
to generate 2D color images and depth maps using canonical
view parameters. The generated 2D color images and depth
maps are denoted by (I1, D1) and (I2, D2), which correspond
to the point clouds PC1 and PC2 respectively. In particular, we
choose the canonical view for fine alignment because the tra-
ditional scheme of alignment, such as Iterative Closest Point
(ICP) [27] does not provide a good alignment result when
used on point clouds [25]. This can be attributed to the limi-
tations of the ICP to function when a locally affine/non-rigid
deformation exists between the point clouds [38] The qualita-
tive results of the canonical view transformation are shown in
Figure 1, which shows the aligned 2D color images and depth
maps magnified in the inset image.

3) 3D Morph Generation: Given the 2D face color images
(I1, I2) and depth-maps (D1, D2) corresponding to PC1,

Algorithm 1 3D Face Morphing Algorithm
Input (I1, I2, D1, D2, CV)

Output (PM)

1: Detect Facial Keypoints on K1 on I1, and K2 on I2 using
Dlib [42], and generate key-points of the morph using
Equation (1).

2: Perform Delaunay Triangulation on KM which is obtained
by blending K1 and K2 using Equation (1).

3: Estimate Affine Warping between corresponding triangles
of K1 & KM denoted as wM

1 , and for K2 & KM denoted
as wM

2 .
4: Apply affine warping wM

1 on I1 to obtain I1M ,
and on D1 to obtain D1M .

5: Apply affine warping wM
2 on I2 to obtain I2M ,

and on D2 to obtain D2M .
6: Obtain morphed color image IM using the warped key-

points from the color images I1, and I2 using Equation (1),
and morphed depth map DM using Equation (2).

7: Obtain the morphed point cloud by back-projecting
IM , and DM to obtain the colored 3D point cloud PM

with 3D coordinates ∀i∈{1, . . . , n3}(xi, yi, zi) =
(xi, yi, DM(xi, yi)) and color
∀i∈{1, . . . , n3}Color(xi, yi, zi) = CM(xi, yi)) where
n3 = min(n1, n2).

PC2. We perform the morphing operation as explained in
the Algorithm 1. The primary idea is to perform the mor-
phing in 2D and back-project to 3D. The primary motivation
for using a 2D morph generation method is to address the
challenge of finding correspondence between PC1 and PC2.
The underlining idea is to perform the steps of morph-
ing (facial landmark detection, Delaunay triangulation, &
warping) on 2D color images and re-use the same (facial
landmark locations, triangulation, and warping) on the depth
maps. In this work, we have used the blending (morphing)
factor (α) as 0.5 as it is well demonstrated to be highly
vulnerable in the earlier works on 2D face morphing [6].
The morphing is carried out as mentioned in the equation
below:

IM = α×I1
(
K′1

)+ (1− α)×I2
(
K′2

)

K′1 = wM
1 (K1)

K′2 = wM
2 (K2)

KM = α×K1 + (1− α) ∗ K2 (1)

where α is the blending factor, K1 denotes 2D facial landmark
locations corresponding to I1, K2 denotes 2D facial landmark
locations corresponding to I2, KM is generated by blending
K1, & K2, wM

1 denotes the warping function from K1 to KM ,
wM

2 denotes the warping function from K2 to KM , and IM is
the morphed 2D color image. Similarly, the same operations
are carried out on the depth maps as shown in the equation
below:

DM = α×D1
(
K′1

)+ (1− α)×D2
(
K′2

)
(2)

where DM is the morphed depth map.
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Fig. 2. Qualitative results of the hole filling algorithms (a) Input Point Cloud with holes (b) Point Cloud with Normals which has noise (c) Point Cloud with
Screened Poisson Reconstruction [39] where artifacts are shown in the inset (d) Point Cloud Reconstructed with APSS [40] (e) Point Cloud Reconstructed
with RIMLS [41] (f) Point Cloud Hole Filled using Proposed Method.

In the next step, we back-project IM , and DM to get the 3D
face morphing point cloud PM = (v1

M, . . . , vn3
M ) where n3 =

min(n1, n2) is the number of vertices. Note each 3D vertex
is obtained using i = 1n3(xi, yi, zi) = (x, y, DM(x, y)) and the
qualitative results is shown in Figure 1. However, generating
the 3D face morphing will result in multiple holes due to
a single canonical view. These holes are visible from other
views. Therefore, we present a novel hole-filling algorithm to
further improve the perceptual visual quality of the 3D face
morphing.

C. Hole Filling Algorithm

In this step, we propose a new hole-filling algorithm tai-
lored to this specific 3D face morphing generation problem.
Because the holes are visible from different views, filling the
holes in these views is necessary to improve perceptual visual
quality. Note that the holes are generated when the bona fide
subject is looked at from a view different from the canonical
camera, especially in high curvature regions such as the nose,
as such areas are not completely visible from one canonical
view. Therefore, we transform the 3D face-morphing point
cloud PM multiple times independently to generate Pj

M where
j = 1. . . n4 and n4 is the number of transformations, and each
transformation is a 3D translation [45]. In this work, we empir-
ically choose the number of 3D translations to 7 to balance the
computational cost and the visual quality achieved after hole
filling. Using more 3D translations will significantly increase
the computational cost and fail to improve visual quality. We
tried the conventional approach of hole filling using 3D tri-
angulation of 3D point clouds proposed in [39], [40], [41].
Figure 2 shows the qualitative results of the three different
SOTA triangulation algorithms, which indicate unsatisfactory
results. This is because the 3D orientation (3D normal) estima-
tion indicates artifacts in the 3D triangulated mesh. Therefore,
filling holes directly in the 3D point cloud is challenging
because the underlying surface (manifold) is not known in
advance. Errors in 3D orientation estimation make it difficult
to employ conventional 3D hole-filling approaches.

This motivated us to devise a new approach for achiev-
ing effective hole filling. To this extent, we project each
point cloud Pj

M onto the 2D face morphing color image
(Cj) and its corresponding depth map (Dj). We fill the holes
in Cj & Dj using steps 2 to 9 described in Algorithm 2.

Algorithm 2 Hole Filling Point Cloud
Input (n4-views)
Output (Chf,Dhf,Phf)

1: Generate n pairs of color-maps, and depth-maps
{(C1, D1), (C2, D2), . . . , (Cj, Dj), . . . , (Cn4, Dn4)}, trans-
lated from the canonical view.

2: for j← 1 to n4 do
3: Perform Image In-painting [43] on Cj, and Dj.
4: Perform Image Registration of Cj with the

canonical view-point color-map CCV using
the following steps:

5: Feature Computation using Oriented
FAST and Rotated BRIEF (ORB) Descriptor [44].

6: Brute-Force Matching of features using Hamming
Distance.

7: Homography computation using inlier
features.

8: Perspectively warp the color and depth maps using
computed homography.

9: end for
10: Average all the registered color-maps (Chf) and the depth-

maps (Dhf).
11: Back-Project the averaged color-map and

depth-map from 2D to 3D to generate
hole-filled point cloud (Phf) using the canonical view
parameters.

Finally, we obtain the hole-filled 3D face morphing point
cloud (Phf), as indicated in Steps 10 and 11 in Algorithm 2.
Figure 2 (e) shows the qualitative results of the proposed
hole-filling method, which indicates superior visual quality
compared to the existing methods.

D. Final Cleanup Algorithm

The final cleanup uses a clipping region outside a por-
tion of the bounding sphere. The final result corresponding
to the proposed 3D face morphing, a point cloud, is shown in
Figure 3 for an example data subjects.2 The main advantages
of the proposed method are as follows.

2Supporting Video is available at https://folk.ntnu.no/jagms/Supporting
Video.mp4.
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Fig. 3. Illustration of 2D color image and depth maps for bona fide and morphs generated using the proposed method.

• The proposed method performs the alignment based on
2D facial key points, which preserves the identity in the
generated 3D face morphing attack sample.

• The proposed method results in low computation and
memory compared with existing 3D-3D techniques by
overcoming the 3D registration.

• The proposed method results in a high vulnerability of
FRS as the identity features are preserved for contributed
data subjects used to generate the morphing attack.
Therefore, the proposed method can cause high-quality
3D face-morphing attacks, resulting in vulnerability of
both 2D and 3D face recognition systems.

• The proposed method can handle wide variation in the
3D pose.

E. Qualitative and Quantitative Comparison of Proposed
Method With SOTA

To illustrate the effectiveness of the proposed method, we
selected a few SOTA methods based on nonrigid point cloud
registration and methods generating a 3D face model from a
2D face image. Our current evaluation of SOTA for nonrigid
point cloud registration (NRPCR) methods includes CPD by
Myronenko and Song [32] and Corrnet3D by Zeng et al. [34].
CPD is based on optimization and was the SOTA method for
NRPCR earlier, whereas Corrnet3D is a more recent unsuper-
vised deep-learning-based method for NRPCR. Furthermore,
to evaluate the methods for generating a 3D face model from
a 2D face image, we selected 3DMM by Blanz and Vetter [22]

TABLE I
VULNERABILITY OF SOTA ON COMPARISON DATASET

and a more recent deep-learning-based method, FLAME, by
Li et al. [46]. 3DMM introduced the concept of a morphable
model, where parameters such as shape and texture can be
controlled during 3D face synthesis. Furthermore, the 3DMM
provided earlier SOTA results for 3D face generation from a
2D face image. FLAME enhances the quality of the generated
3D face model from a 2D face image by using more control-
lable parameters such as pose, expression, shape, and texture
during the 3D face synthesis process.

1) Qualitative Comparison and Analysis: The results of
qualitative comparison with SOTA are shown in Figure 4 and
the quantitative vulnerability computed using MMPMR [7]
and FMMPMR [47] (refer Section III-C for the definition of
these metrics) is indicated in the Table I. It can be noticed from
Figure 4 that SOTA methods don’t contain identity features of
the 3D face morphing model to a large extent. However, CPD
does contain the identity features of the 3D face morphing
model but fails on the alignment of the two input point clouds,
which results in double features such as eyebrows. Corrnet3D
produces lower-quality results, which can be attributed to the
fact that the authors have not yet focused exclusively on face
registration.
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Fig. 4. Illustration of the SOTA Comparison showing Bona fide and Morphs generated using (a) CPD [32], (b) Corrnet3D [34], (c) 3DMM [22]
(d) FLAME [46], (e) Proposed Method. Note that both 3DMM and FLAME need a single image as input, and in the current evaluation, we pass a 2D
rendering generated using the proposed method. Note that the proposed method shows high-quality rendering and identity features of the 2D face morphing
image.

Further, 3DMM and FLAME generate a 3D face model
from a 2D face image. Thus, we passed the rendering (2D
face image) of the 3D face morphing model as an input.
However, these methods fail to preserve the identity features
during the 3D face model generation, as seen from Figure 4.
The generated 3D model has a low resemblance to the identity
features of the face morphing image.

2) Quantitative Comparison and Analysis: The results of
the quantitative comparison are shown in Figure 5, where
we have evaluated two 3D point feature extraction methods,
namely LED3D [49] and Pointnet++ [48]. However, it can
be seen that 3D comparison results in low values for SOTA
compared to the proposed method. This can be attributed to
the low-resolution of the identity-specific depth generation by
the SOTA, which is also shown in Figure 6.

A sample implementation of the proposed method is
available at.3

III. EXPERIMENTS AND RESULTS

In this section, we present the discussion on extensive exper-
iments carried out on the newly acquired 3D face dataset.
We discuss the quantitative results of the various experiments,
including vulnerability study on automatic FRS and human
observer study, quantitative quality estimation based on color
and geometry of the generated 3D face morphing models and
automatic detection of 3D MAD attacks.

A. 3D Face Data Collection

In this study, we constructed a new 3D face dataset using
the Artec Eva 3D scanner [35]. Data collection was conducted

3Proposed Method Implementation https://github.com/jagmohaniiit/
3DFaceMorph

TABLE II
STATISTICS OF NEWLY COLLECTED 3D MORPHING DATASET (3DMD)

in an indoor lighting environment. The subjects were asked to
sit on the chair by closing their eyes to avoid strong reflection
of light from the 3D scanner. The 3D scanner was moved
vertically to capture the 3D sequence.

Artec Studio Professional 14 was used for 3D data col-
lection and processing. We collected 3D facial data from
41 subjects, including 28 males and 13 females. We captured
nine to ten samples for each data subject in three differ-
ent sessions over three days. The statistics of the whole 3D
face dataset are summarized in Table II. We name our newly
collected dataset the 3D Morphing Dataset (3DMD).

We may have used existing 3D face datasets such as
FRGC [50] and BU-3DFE [51]. However, the FRGC dataset
provides a single depth map and color image. Thus, a high-
quality point cloud cannot be generated. Furthermore, the
dataset has a few misaligned color images and depth maps [52]
which results in low-quality 3D morphing generation. The
BU-3DFE [51] dataset provides 3D models, but these are per-
fectly registered and the capture conditions are identical for
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Fig. 5. Illustration showing scatter plot of Comparison scores using Bona fide and Morphs generated using Proposed Method (a) LED3D [49] and
(b) Pointnet++ [48] based where SOTA algorithms are 3DMM [22], FLAME [46], CPD [32].

Fig. 6. Illustration showing depth maps using SOTA and proposed method (a) 3DMM [22], (b) CPD [32], (c) FLAME [46] and (d) Proposed Method.

all subjects. This does not model the real-world scenario of
capturing 3D point clouds with changes in the capture condi-
tions that could occur during data collection. The quality of
our 3D face dataset has a much higher number of 3D ver-
tices between 35950 & 121088 for the inner face compared
to previous methods [23]. These factors motivated us to gen-
erate a new 3D face dataset to enable high-quality 3D face
morphing generation suitable for ID control scenarios.

B. Human Observer Analysis

We performed human observer analysis to evaluate the
human detection performance of the generated 3D morphs.
The survey is set up online4 and is created using PHP,
& HTML-CSS tools. GDPR norms were followed during
the survey creation, and only participants’ email (used only
for registration to avoid duplication), gender, and experi-
ence with the morphing problem were recorded. All measures
were implemented with full consideration of the participant
anonymity. In this study, we designed a GUI for a human
observer study to benchmark single-image morphing detection.

4https://folk.ntnu.no/jagms

Fig. 7. Screenshots from the GUI of human observer Web page (a) Full
Page Screenshot, and (b) Screenshot of 3D model page.

Figure 7 shows a screenshot of the Web portal used for
the human observer study. The GUI is designed to display
two facial images simultaneously, such that one corresponds
to the 2D face and the other to the 3D face. Then, the human
observer is prompted to independently decide whether these
face images are morph or bona fide. Human observers were
provided with an option to rotate the 3D face in different
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Fig. 8. Illustration of average accuracy of human observer study, note that
2D accuracy is always higher than 3D.

directions to make their decisions effectively. Furthermore,
opportunities to zoom in and out of the 3D face model are also
provided. We have mainly selected to present both 2D/3D face
images for human evaluation simultaneously to check whether
the 3D information might help detect morphing attacks. Due
to the time factor, we used 19 bona fide and 19 morph samples
independently from 2D and 3D for the human observer study.
Thus, each human observer spent approximately 20 min on
average completing this study. Detailed step-wise instructions
on using the Web portal were available for every participant
beforehand.

The human observer study used 36 observers with and with-
out face morphing experience. The quantitative results of the
human observer study are shown in Figure 8. We summarize
the human observer’s results from the survey as follows.
• The average detection accuracy of human observers for

2D face bona fide samples is 55.83% and 42.5% in a
3D face, respectively. The average detection accuracy
of human observers for morphs in 2D was 58.33% and
51.85% for a 3D face. Thus, the detection accuracy is
similar for bona fides and morphs in 2D. However, the
detection accuracy in 3D was lower for bona fide than
for morph.

• The average detection accuracy is similar for observers
without morphing experience and basic morphing expe-
rience. Human observers with advanced morphing expe-
rience had the highest average detection accuracy. The
observers without morphing experience perform similarly
to observers with basic morphing experience, which can
be attributed to the innate human capacity to distinguish
between bona fide vs. morphed.

• The survey further validates that generated 3D morphs
are challenging to detect from human observations. The
average detection accuracy of human observers does not
exceed 63.15%, which shows that the 2D and 3D morphs
developed in this study are of high quality and are difficult
to detect.

The average detection accuracy for a 2D face is higher than
that for a 3D face, which can be attributed to the following
reasons:

• The fact that 2D morph is more prevalent, and thus
observers generally look for specific artifacts in differ-
ent regions of the face, makes the task relatively easy
with a 2D face.

• The aspect of what artifacts to look at in 3D is unclear
to the human observers, as they are not trained for this
task.

• The quality of generated 3D morphs is high, so human
observers find it difficult to distinguish the 3D morphs
from the 3D bona fide.

C. Vulnerability Study

In this work, we benchmarked the performance of automatic
FRS on both 2D and 3D face models. The 2D face vulnerabil-
ity was computed using the color image, and the 3D face vul-
nerability was calculated based on the depth map/point cloud.
We have used two different metrics to benchmark the vulner-
ability assessment: the Mated Morphed Presentation Match
Rate (MMPMR) [7] and Fully Mated Morphed Presentation
Match Rate (FMMPMR) [47]. MMPMR can be defined as
the percentage of morph samples, which can be verified with
all contributing data subjects [47]. However, MMPMR does
not consider the number of attempts made during the score
computation. This is rectified in FMMPMR [47], where the
morphed image sample should be verified across all attempts.
The higher value of MMPMR and FMMPMR indicates the
higher vulnerability of the FRS. Vulnerability analysis was
performed by enrolling the morphing image (2D/3D) and then
obtaining the comparison score by probing both contributory
data subjects’ facial images (2D/3D). To compute the vulnera-
bility of 2D face morphing images, we used two different FRS:
Arcface [2] and a commercial-off-the-shelf (COTS) FRS.5

3D face vulnerability analysis uses Deep Learning-based FRS
such as Led3D [49] and PointNet++ [48]. The thresholds for
all FRS used in this study were set at FAR=0.1%, following
the guidelines of Frontex for border control [54].

1) Quantitative Vulnerability Results on 3D Morphing
Dataset: The results are summarized in Table III and the
vulnerability plots are presented in Figure 9. Based on the
obtained results, it can be noted that (1) both 2D and 3D
FRS are vulnerable to the generated face morphing attacks,
and (2) among the 2D FRS, COTS indicates the highest vul-
nerability compared to Arcface FRS. (3) Among the 3D FRS,
PointNet++ [48] indicates the highest vulnerability. Thus, the
quantitative results of the vulnerability analysis indicate the
effectiveness of the generated 3D face morphing attacks.

2) Quantitative Vulnerability Results on Facescape
Dataset: We used 100 unique databases with 56 male
and 44 female subjects. For each subject, we selected two
3D face scans. One was used to generate the 3D face
morphing and the other was used as the probe image to
obtain the comparison score to compute the vulnerability
metrics. The proposed method was then used to obtain
3D morphing models, resulting in 2486 morphing models.
Figure 11 shows an example of the proposed 3D morphing
generation samples together with bona fide 3D scans from

5The name of the COTS is not indicated to respect confidentiality.
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Fig. 9. Vulnerability Plots using 2D & 3D FRS on 3D Morphing dataset (3FMD) (a) 2D face FRS using Arcface [2], (b) 2D face FRS using COTS, and
(c) 3D face FRS using Led3D [49], and (d) 3D face FRS using Pointnet++ [48].

Fig. 10. Vulnerability Plots using 2D & 3D FRS on Facescape Dataset (a) 2D face FRS using Arcface [2], (b) 2D face FRS using COTS, and (c) 3D face
FRS using Led3D [49], and (d) 3D face FRS using Pointnet++ [48].

Fig. 11. Illustration of the Color Images and Depth Maps of Bona fide Samples and Face Morphs generated using the proposed method on Facescape
Dataset [53].

the Facescape Dataset [53]. The quantitative vulnerability
results for the escape dataset are listed in Table IV, and the
vulnerability plots are shown in Figure 10. In addition, it can
be observed that the proposed 3D face morphing generation
samples exhibit high vulnerability with both 2D and 3D FRS.
Among the 2D FRS, both COTS and Arcface indicate similar
vulnerabilities with MMPMR = 100%. However, among the
3D FRS, PointNet++ [48] shows the highest vulnerability.

Thus, based on the vulnerability analysis reported on the
3DMD and Facescape datasets with 2D and 3D FRS, the
proposed 3D face morphing technique indicates consistently
high vulnerability. The vulnerability is noted to be high
with the Facescape dataset compared with the 3D morph-
ing dataset. The variation in the vulnerability performance
across different FRS can be attributed to the type of feature
extraction and classification techniques employed in individual
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TABLE III
VULNERABILITY ANALYSIS OF 2D AND 3D FRS ON 3D MORPHING DATASET

TABLE IV
VULNERABILITY ANALYSIS OF 2D AND 3D FRS ON FACESCAPE DATASET

TABLE V
QUANTITATIVE VALUES OF QUALITY FEATURES FOR 3D FACE POINT

CLOUDS CORRESPONDING TO 3D BONA FIDE AND MORPH

BASED ON COLOR AND GEOMETRY

FRS. For example, 2D face recognition systems are based
on identity features, whereas 3D-based systems are based on
high-resolution depth and shape.

D. Automatic 3D Face Point Cloud Quality Estimation

In this work, we estimate the visual quality based on the
effectiveness of different types of features, including both
color and geometry, as proposed in [55]. This study aimed
to quantitatively estimate the quality of the generated 3D face
morphing point clouds and bona fide 3D face point clouds
to quantify the quality of the proposed morphing generation.
To this extent, five different point cloud features based on
geometry, namely curvature, anisotropy, linearity, planarity,
and sphericity, and three color information features, namely
L color component, A color component, and B color compo-
nent, were computed to benchmark the quality based on the
geometry of the generated 3D morphing models.

Figure 12 shows the box plot of the eight different qual-
ity metrics for both 3D bona fide and 3D morphing point
clouds. The quantitative values (mean and standard deviation)
of different quality features are also shown in Table V. As
noted from Figure 9, the quality estimations, mainly based on

geometry, indicate the near-complete overlapping for 3D bona
fide and 3D morph. Thus, the proposed 3D face morphing
generation did not degrade the depth quality. Instead, it has
achieved comparable quality based on geometry from bona
fide 3D models used for the morphing operation. A similar
observation can also be noted with the color image quality
estimation.

E. 3D Face Morphing Attack Detection

In this section, we present our proposed method for a single
3D model-based MAD. Because 3D face morphing is exten-
sively presented in this paper for the first time, there is no
state-of-the-art method for detecting these attacks. Therefore,
we were motivated to develop 3D MAD techniques to reli-
ably detect these attacks. The proposed 3D MAD techniques
are based on pre-trained 3D point-based networks used to
extract features, as shown in Figure 13. Thus, given the 3D
face point clouds, we first computed the features from the pre-
trained network, and in the next step, we fed the same to the
linear support vector machine to make the final decision on
either bona fide or morph. In this work, we used three dif-
ferent pre-trained point networks, namely Pointnet [48], [56],
Pointnet++ [48], [56] and SimpleView [56], to benchmark
the 3D MAD performance. All three pretrained CNNs were
trained on the ModelNet40 dataset [57].

Pointnet [48], [56] was one of the earliest point-based
classifications of deep learning networks invariant to the
permutation of 3D vertices. Given the 3D face point
clouds, we extracted the features from the classifica-
tion task layer corresponding to a feature dimension of
4096. Pointnet++ [48], [56] is an improved version of
Pointnet [48], [56] that was achieved by introducing a hier-
archical neural network that was applied recursively. In this
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Fig. 12. Box plots showing the eight different 3D model quality estimation from 3D bona fide and 3D morph based on color and geometry.

Fig. 13. Illustration of the proposed 3D face MAD.

work, given the 3D face point clouds, we extracted the
features from the classification task layer of Pointnet++
to obtain a 40-dimensional feature vector. SimpleView [56]
network is based on projecting point clouds onto multiple-
view depth maps. In this work, given the 3D face point clouds,
we extract the features from the classification task layer of
the SimpleView network to obtain a 40-dimensional feature
vector.

To effectively benchmark the performance of the proposed
3D MAD, we divided the newly collected dataset into two
independent sets: training and testing. The training set con-
sisted of 3D bona fide and morphing samples from 21 unique
data subjects, whereas the testing set consisted of 3D sam-
ples from 20 unique data subjects. Thus, the training set
consisted of 168 bona fide and 194 morphed features and
the testing set consisted of 160 bona fide and 151 morphed
features, as summarized in Table VI. Table VII presents the
quantitative performance of the proposed 3D MAD technique.
Figure 14 shows the performance of the individual algorithms
in DET. The performance is benchmarked using ISO/IEC met-
rics [58] defined as the Attack Presentation Classification Error
Rate (APCER), which is the misclassification rate of attack
presentations, and the bona fide Presentation Classification
Error Rate (BPCER), which is the misclassification of bona
fide presentation as attacks. Based on the results, the best

Fig. 14. DET Curve for the Proposed 3D Morphing Detection methods.

TABLE VI
MORPHING ATTACK DETECTION (S-MAD) METHOD PROTOCOL

performance is obtained with the SimpleView [56] network
with a D-EER of 1.59%.

IV. DISCUSSION

Based on the extensive experiments and obtained results
made above, the research questions formulated in Section I
are answered below.
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TABLE VII
QUANTITATIVE PERFORMANCE OF THE PROPOSED 3D MAD TECHNIQUES

• RQ#1: Does the proposed 3D face morphing generation
technique yield a high-quality 3D morphed model?

– Yes, the proposed method of generating the 3D face
morphing has resulted in a high-quality morphed
model almost similar to that of the original 3D bona
fide. The quality analysis reported in Figure 12 and
Table V also justifies the quality of the generated
3D morphs quantitatively as the quality values from
3D morphing show larger overlapping with the 3D
bona fide. In addition, the human observer analysis
reported in Section III-B also justifies the quality of
the proposed 3D face morphing generation method
as it is found reasonably difficult to detect based on
the artefacts.

• RQ#2: Does the generated 3D face morphing model indi-
cate the vulnerability for both automatic 3D FRS and
human observers?

– Yes, based on the analysis reported in Section III-C,
the generated 3D face morphing model indicates a
high degree of vulnerability for both automatic 3D
FRS and human observers.

• RQ#3: Are the generated 3D face morphing models more
vulnerable when compared to 2D face images for both
automatic 3D FRS and human observers?

– Equally vulnerable, the 3D face morphing models
are more vulnerable than their 2D counterparts, as
shown in Figure 9 when using automatic FRS.

– However, the vulnerability is almost comparable
when evaluated by a human observer study (see
Section III-B), where one of the main reasons could
be more prevalence of 2D morphs, which makes
human observers sensitive about which artifacts to
look for.

• RQ#4: Can the 3D point cloud information be used to
detect the 3D face morphing attacks reliably?

– Yes, on using the proposed 3D face morphing attack
Detection approaches (see Section III-E) the point
cloud information can be used for reliable 3D mor-
phing detection.

V. LIMITATIONS OF CURRENT WORK AND

POTENTIAL FUTURE WORKS

Although this work presents a new dimension for face
morphing attack generation and detection, especially in 3D,
it has a few limitations. In the current scope of work,
3D morph generation and detection were carried out on
high-quality 3D scans collected using the Artec Eva sen-
sor. We employed high-quality 3D face scans to achieve

good enrolment quality scans that may reflect real-life ID
enrolment scenarios. Thus, future studies should investigate
the proposed 3D morphing generation and detection tech-
niques using low-quality (depth) 3D scans. Furthermore,
extending the study to in-the-wild capture can also be con-
sidered in future work. Second, the analysis was conducted
using 41 data subjects due to the present pandemic outbreak.
However, we also present the results on the publicly avail-
able 3D face dataset, Facescape, with 100 unique IDs. Future
work could benchmark the proposed method on large-scale
datasets with different 3D resolutions. Third, cleaning the
noise from 3D scans is tedious and sometimes requires manual
intervention. Thus, future work can develop fully automated
noise removal methods in 3D point clouds to easily generate
3D morphs.

VI. CONCLUSION

This work presented a new dimension for face morphing
attack generation and detection, particularly in 3D. We intro-
duced a novel algorithm to generate high-quality 3D face
morphing models using point clouds. To validate the attack
potential of the newly generated 3D face-morphing attacks,
vulnerability analysis uses 2D and 3D FRS. Furthermore,
human observer analysis is presented to investigate the use-
fulness of 3D information in morph detection. The obtained
results justify the high vulnerability of the proposed 3D face
morphing models. We also presented an automatic quality
analysis of the generated 3D morphing models, which indi-
cated a similar quality to the bona fide 3D scans. Finally, we
proposed three different 3D MAD algorithms to detect 3D
morphing attacks using pretrained point-based CNN models.
Extensive experiments indicated the efficacy of the proposed
3D MAD algorithms in detecting 3D face-morphing attacks.
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