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Abstract 
The burgeoning cruise industry has emphasized the importance of maritime safety and efficient 

evacuation protocols. The tangible risks and past incidents involving passenger ships spotlight the 

critical necessity for enhanced protection and effective evacuation strategies. This pressing demand has 

propelled initiatives by organizations such as the International Maritime Organization (IMO) and the 

Maritime Safety Committee (MSC) to fortify safety protocols and evacuation plans to safeguard various 

stakeholders, including passengers, crew members, and emergency response teams. 

This research pivots on the critical analysis and development of human evacuation models, in the 

context of passenger ships. While traditional models have been divided into simplified and advanced 

analyses, this study endeavors to address the complexities and uncertainties inherent in human 

evacuation models rendering it more advanced than simple. 

A systematic literature review was conducted to assess the existing state of human evacuation 

modeling for passenger ships and subsequently identify gaps. Based on the identified gaps and critical 

parameters and objectives in this research area, three distinct human evacuation optimization models 

(HEM 1, HEM 2, and HEM 3) for passenger ships under varying uncertainties were developed. The 

first model optimizes total evacuation time considering the uncertainty in passenger walking speed by 

utilizing robust optimization (RO) by introducing uncertainty sets. The second model, addressing the 

hybrid uncertainty of passenger walking speed and travel distance, employs a risk-neutral, two-stage, 

scenario-based stochastic optimization technique (RSSP). The third model optimizes the total 

evacuation time under mixed uncertainty involving walking speed and door capacity disruptions by 

applying HRSSRP (hybrid risk-neutral, two-stage, scenario-based stochastic ρ-robust programming). 

Further, the generated scenarios for passenger walking speed are updated throughout evacuation to 

follow the real-time circumstances. Moreover, the modeling process incorporated considerations for 

various starting locations, situational awareness (i.e., alert or non-alert), and the passenger ship’s general 

arrangement (e.g., number of exit doors and corridor’s width). 

Another contribution of this research is the inclusion of families as separate entities in the models 

to capture the unique dynamics of group evacuations. Also, the models maintain proximity between 

crew and passengers by allocating optimal crew-to-passenger ratios during the evacuation process. The 

models were validated using a single deck of a real-life passenger ship. 

The developed models serve dually on macroscopic and microscopic levels to facilitate decision-

making in overall evacuation organization and devising individualized evacuation plans under 

uncertainties. This research carves out a pathway for practical applications in various domains, such as 

ship design, simulation software development, digital twins, and machine learning algorithms, all within 

the human evacuation process from passenger ships. The developed models were built using real-world 

data from the IMO and then underwent partial validation via a case study focused on a single deck of a 

passenger ship. Nonetheless, it is crucial to acknowledge that this validation is not yet complete. Further 

investigation and real-time testing are necessary to fully confirm their effectiveness and accuracy for 

broader applications, including multi-deck environments, in future studies. 

While this study provides a robust foundation, limitations such as its focus on single-deck 

evacuation scenarios and reliance on fixed parameters for initial passenger location and awareness 

levels open avenues for future research; future improvements could integrate multi-deck scenarios with 

real-time data through sensor technology. Additionally, exploring other uncertainty modeling 

techniques, such as Bayesian network-based approaches, could offer additional insights by leveraging 

the expertise of maritime specialists and mitigating data scarcity in this research area. 
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Chapter 1. Introduction 
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1. Introduction 
The expansion of the global tourism industry, mainly through passenger ship voyages, highlights an 

urgent and undeniable imperative: the need to assure maritime safety and establish planned and 

efficiently executed evacuation protocols. With an industry generating billions in revenues and 

mobilizing millions of passengers annually, the tangible risks and tragic histories of passenger ship 

accidents necessitate rigorous and innovative approaches to enhance protection and develop effective 

evacuation plans for passenger ships. In 2019, cruise ships carried 29.7 million passengers, generating 

over $154 billion globally (Cruise Lines International Association, 2021).  

However, the cruise industry experienced fluctuations due to global events in the following years. 

The impact of the coronavirus pandemic was distinctly evident in 2020 and 2021, with passenger 

numbers plummeting to 5.8 million and 4.8 million, respectively. Despite these challenges, in 2023, 

cruise tourism is predicted to bounce back, reaching 106% of the 2019 levels with 31.5 million 

passengers. The sector, one of the fastest-growing in tourism, hosted 20.4 million ocean-going cruise 

passengers in 2022 and is forecasted to rise substantially to 39.5 million by 2027 (Cruise Lines 

International Association, 2023). Plus, Allianz (2023) reported 70 passenger ship losses from 2013 to 

2022. In addition, see Table 1, at least 2,630 people lost their lives due to incidents from 2011 to 2019. 

Table 1. Passenger ship incidents 

Year Ship name Type Fatalities Reference 

2011 • MV Spice Islander • Passenger ferry 1,5291 (Fundi, 2018) 

2012 • Costa Concordia • Cruise ship 32 (Vanem and Skjong, 2006) 

2013 • MV ST Thomas Aquinas • Passenger ferry 120 (Fahcruddin et al., 2019) 

2014 • MV Sewol • Passenger ferry 304 (Kim et al., 2016) 

2015 • Dongfang Zhi Xing • Cruise ship 442 (Baird, 2018) 

2016 • Aung Soe Moe Kyaw 2 • Passenger ferry 99 

(Christine and Bonnemains, 2018) 2017 • Zahro Express • Passenger ferry > 23 

2018 • MV Butiraoi • Passenger ferry 81 

2019 • MV Viking Sky • Cruise ship 0 (Ibrion et al., 2021) 

Total  > 2,630  

 

Prompted by the above facts and safety concerns, the IMO and MSC have enforced regulations 

and highlighted evacuation models as crucial for minimizing casualties at sea (IMO, 2016, 2007, 2000, 

1999; Q. Xie et al., 2020a). These regulations by the IMO and MSC focus on evacuation analysis for 

passenger ships, evolving over time. Starting in 1999, they provided initial guidelines for Ro-Ro 

passenger ships (MSC/Circ.909), extending in 2001 and 2002 to high-speed passenger crafts and all 

passenger ships (MSC/Circ.1001, MSC.1/Circ.1033). By 2007, comprehensive guidelines for simple 

and advanced evacuation analyses were established (MSC.1/Circ.1238). Recent updates in 2015 and 

2016 (MSC/Circ.1166, MSC.1/Circ. 1533) revised these guidelines, which highlighted enhanced safety 

and minimizing casualties at sea. 

Moreover, understanding various evacuation factors is crucial to enhancing the precision and 

efficacy of human evacuation models (HEM). These factors, pivotal during the evacuation process, 

encompass environmental, configurational, behavioral, and human aspects, each contributing distinct 

challenges and variables to the evacuation dynamics. As categorized and defined by Arshad et al. (2022) 

and Lee et al. (2003) in Table 2, environmental factors delineate the external influences affecting 

passengers' walking speeds, while configurational aspects encompass the structural layout of the ship 

 
1 203 passengers tragically lost their lives, while 1,326 passengers remain unaccounted for but presumably dead. 
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that can facilitate or hinder evacuation. On the other hand, behavioral factors encapsulate passengers' 

responses and interactions during an emergency, and human factors involve the physical and 

demographic properties of the evacuees.  

Table 2. Aspects of evacuation process for passenger (Arshad et al., 2022; Lee et al., 2003). 

Aspect Definition Features 

• Environment 
• It outlines the external factors influencing the 

walking speed of passengers. 

• Ship conditions (motions, stability)  

• Hazards (e.g., fire, heat, smoke) 

• Configuration 
• It encompasses the structural design of a 

passenger ship. 

• Evacuation routes design  

• Functional areas 

• Behavior 
• It pertains to how passengers respond to a given 

situation. 

• Walking speed,  

• Group behavior 

• Counter flows 

• Human • It consists of passenger characteristics.  

• Age,  

• Gender 

• Physical state 

 

Evacuation models are developed and applied based on the evacuation factors. Two primary 

categories emerge in evacuation analysis: simplified and advanced analysis (IMO, 2016). The former, 

the simplified analysis adheres to a deterministic method, visualizing passengers as nonautonomous 

agents and thus fails to account for the variability in human behavior during emergencies. Conversely, 

advanced analysis steps into uncertainty by recognizing passengers as autonomous agents whose actions 

are influenced by uncertain and fluctuating input parameters, such as ship motion (Nasso et al., 2019). 

In response to the gaps identified in the literature review, the research focuses on targeted inquiries 

that will inform further investigations and model development. These efforts aim to bridge the identified 

knowledge gaps and improve the real-world efficacy of HEMs. This pursuit is grounded in the main 

research question (RQ) and is driven by specific research objectives (RO) that guide the systematic 

approach to enhancing HEM reliability and applicability: 

1.1. ROs and main RQ 
The principal research question is as follows: 

• How can human evacuation models be developed to improve the evacuation process on a single 

deck of a passenger ship while taking uncertainty into account and by using mathematical 

optimization techniques? 

To address this central research question, the following four sub-research questions, each tackled by 

Papers 1 through 4 respectively, are implied. Due to its prescriptive, structured approach (defining 

objective functions, constraints, and variables), mathematical optimization is used in this thesis to 

develop strategic, scalable evacuation plans. More explanation is offered in section 2.3. Following the 

main research question, the first research objective (RO 1) is as follows: 

1.2. RO 1: Propose human evacuation models for passenger ships by 

employing uncertainty modeling techniques—robust, stochastic, and 

hybrid optimization—focused on walking speed, travel distance, and 

exit door capacities. 
This objective focuses on the creation of optimization models for dynamic ship-based evacuation on a 

single deck of a passenger ship. This objective is addressed through the development of three distinct 

human evacuation optimization models in Papers 2 to 4, each tackling a specific aspect of the evacuation 

process under different uncertainties. These models aim not only at time minimization but also at 

determining strategic decisions, such as exit door quantities within passenger ship evacuations. 
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1.3. Sub RQs 
Addressing sub-RQ 1 will contribute to the achievement of RO 1. 

• Sub RQ 1: how can a systematic literature review reveal the current state, gaps, and future 

directions in human evacuation modeling, specifically addressing uncertainties in parameters 

like passenger walking speed and travel distance? 

In addressing Sub RQ 1, Paper 1 (Arshad et al., 2022), a systematic review of more than 115 

studies, guided by IMO guidelines (IMO, 2016), was undertaken to uncover gaps and propose new 

avenues for research in human evacuation analysis. This review analyzed key factors affecting 

evacuation processes, including walking speed, travel distance, and exit door capacity. It highlighted a 

gap in the current understanding of how combined uncertainties, such as the interplay between walking 

speed and travel distance or the relationship between walking speed and exit door capacity, impact the 

development of personalized human evacuation plans. And how uncertainty modeling techniques, such 

as robust optimization, stochastic optimization, and hybrid robust-stochastic optimization, can manage 

these uncertainties when developing human evacuation plans. To bridge this gap, models were designed 

to manage these (hybrid) uncertainties. 

• Sub RQ 2: how can robust optimization be employed to formulate a human evacuation model 

that manages uncertainties related to walking speeds during the evacuation process on a single 

deck of a passenger ship? 

To tackle this, Paper 2 develops a human evacuation model that optimizes a critical uncertain 

factor, passenger walking speed. This model, employing robust optimization techniques, contributes to 

achieving RO 1 and RO 2 by addressing practical uncertainties.   

• Sub RQ 3: how can a scenario-based approach be utilized to develop an evacuation 

optimization model that simultaneously navigates hybrid uncertainties in passenger walking 

speed and travel distance during the evacuation process on a single deck of a passenger ship? 

Paper 3 builds on the previous model by addressing additional uncertainties in human evacuation 

optimization in the context of passenger ships. Paper 3 addresses Sub RQ 3 by integrating additional 

uncertainties. This paper furthers RO 1 and RO 2 by optimizing evacuation plans through a 

comprehensive scenario-based approach, which enhances the model's practicality and adaptability. 

• Sub RQ 4: how can a hybrid robust-stochastic approach be applied to design an evacuation 

optimization model that simultaneously navigates hybrid uncertainties in passenger walking 

speed and disruption in exit door capacities during the evacuation process on a single deck of 

a passenger ship? 

In addressing Sub RQ 4, Paper 4 introduces a mathematical model optimizing evacuation plans 

concentrating on macroscopic and microscopic factors. The model employs a hybrid stochastic-robust 

approach, contributing to RO 1 and RO 2 by offering robust and adaptable evacuation strategies for 

diverse emergency scenarios (Two of the papers referenced in this thesis, Paper 2 and Paper 4, have 

been submitted for publication but have not yet been published. It is essential to highlight that the 

versions of these papers included here may differ from their final published versions. Paper 2 is 

currently undergoing its second revision, while Paper 4 is under review.). 

1.4. RO 2: Testing and validating the proposed models 
RO 2 involves the practical application and validation of the developed models. This objective is met 

by applying these models to a real-life case study using a single deck of an actual passenger ship. The 

validation process can ensure the models' effectiveness and provides insights for ship designers and 

emergency response planners. 
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Decoding these aspects is imperative, not merely for comprehending the complexities of the 

evacuation process but also for improving the HEMs. Therefore, in this dissertation, the decoding was 

achieved through a systematic literature review to afford a holistic understanding and reveal existing 

knowledge and gaps in this field. Following this, three human evacuation optimization models for 

passenger ships were formulated, each building on insights derived from the literature review and 

adapted to meet the challenges and scenarios unveiled.  

The developed models center on a location-allocation optimization model, (Azarmand and 

Neishabouri, 2009), that assigns passengers to evacuation exits based on parameters like walking speed, 

current location, and travel distance and combined uncertainty such as passenger walking speed and 

travel distance.  

Each sub-research question addresses a specific aspect of the broader challenge. The discussion 

begins with Paper 1, which lays the groundwork by establishing an understanding and pinpointing gap 

in the existing literature. While efforts to tackle these research questions have been documented in the 

literature, challenges remain. The necessity of crafting personalized evacuation plans for solo travelers 

and families, considering hybrid uncertainties such as the interplay between passenger walking speed 

and travel distances, as well as walking speed and exit door capacity, remains an area not fully explored. 

Identifying these uncertainties necessitates the use of appropriate modeling techniques for effective 

handling. This study proposes two specific uncertainty modeling approaches—robust and stochastic 

optimization— and introduces a combination of robust-stochastic optimization (HRSSRP) to address 

these challenges. Implementing these techniques sheds light on potential gaps in current methodologies 

for modeling uncertainties in developing human evacuation plans for passenger ships and highlights the 

nature of this work.  

This work, while taking steps to address these complexities, acknowledges its limitations and 

presents opportunities for refinement and further exploration in future research. These uncertainties are 

examined in Papers 2 to 4 through uncertainty modeling techniques, including robust optimization, 

stochastic optimization, and hybrid robust-stochastic optimization. The focus here is on formulating 

HEMs in the context of these diverse uncertainties. A more detailed introduction to the relevant 

literature, its shortcomings, and the distinctiveness of the approach adopted will be provided in Chapter 

2. This approach facilitates a detailed progression towards addressing the main research question. 

Through these studies (Papers 1 to 4), this dissertation transcends traditional models, navigating 

through the complexities and uncertainties inherent in HEMs, and introducing optimized, robust, and 

resilient models that not only address the varied uncertainties in passenger evacuation scenarios but also 

accommodate the dynamic and unique challenges presented by group evacuations and real-time 

adjustments in evacuation scenarios. While concentrating on single-deck evacuation scenarios, the 

models introduced in this research offer insights that could inform practical applications and future 

studies. They suggest a basis for exploring broader applications, including ship design enhancements, 

simulation software development, and the incorporation of digital twins and machine learning 

algorithms. This work proposes potential pathways for extending investigations to multi-deck scenarios 

and incorporating real-time data through sensor technology. Such improvements could improve the 

safety and efficiency of passenger ship evacuations, highlighting the importance of further research in 

these areas.  

1.5. Organization of the dissertation 
The dissertation is organized in a traditional way, starting with the introductory matters, followed by a 

literature review. The actual research is organized as shown in Figure 1. Figure 1 illustrates the 

systematic progression from Paper 1 through 4 by depicting how each subsequent study builds upon its 

predecessor to address the sub-research questions methodically and converge toward answering the 

overarching main research question about developing HEMs amidst the uncertainties of evacuating a 

single deck on passenger ships. 
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Figure 1. Influence of main RQ to subsequent research (Papers 1-4). It highlights the pivotal contribution of Paper 1 in devising 

this dissertation RO. 

Beginning at the lefthand side of Figure 1, the literature review is essentially the sum of Paper 1 

with further refinements gained from the research performed after its publication. In Paper 1, a 

systematic literature review of over 115 studies from January 1999 to August 2022 was conducted, 

comprising scientific journals, peer-reviewed conference papers, and doctoral and master dissertations. 

Each publication was analyzed through the lens of IMO guidelines to identify prevailing gaps and offer 

future research directions. Paramount parameters in developing HEMs, such as passenger/family 

walking speed (influenced by age, gender, and physical condition), traveled distance, response time, 

starting location, the number of exit doors, crew allocation, ship’s general arrangement, passenger 

distribution, traffic flow across corridors, initial density, exit door capacity, and 

correction/counterflow/safety factors, were determined. Notably, real-world parameters like walking 

speed, travel distance, and door capacity introduce sources of uncertainty that impact the evacuation 

process. A HEM should inherently be robust to such uncertainties to mitigate the impact of parameter 

variations during the evacuation period.  

While several studies have incorporated parameter uncertainty in analyzing HEMs for passenger 

ships (e.g., Grandison et al. (2017) and Xie et al. (2020)), a gap exists in the academic literature 

concerning the incorporation of individual uncertainty in walking speed, travel distance, and door 

capacity in the computational optimization of evacuation time for each passenger on board passenger 

ships. Addressing these uncertainties is crucial in crafting evacuation optimization models to ensure 

they are not only realistic and reliable but also robust and versatile by navigating various emergency 

scenarios. This ensures evacuation plans are safe, efficient, and inclusive, minimizing bottlenecks and 

facilitating orderly passenger movement while adhering to international safety regulations and 

standards. Embracing uncertainties promotes effective crisis management, reducing potential panic and 

enabling coordinated responses during emergencies whilst also facilitating continuous improvement 

and iterative enhancements in evacuation planning to underpin a framework safeguarding all onboard. 

Consequently, the models were developed, duly considering the aforementioned parameters and sources 

of uncertainties.  

Paper 2 tackles evacuation modeling by focusing on pivotal factors such as walking speed (a key 

determinant of human behavior), the capacity of transitional areas like exit stairs (moving forward, the 

objective is to reach the initial transition point located on the same deck. This transition point could be 

stairs, exit doors, or similar egress pathways.), and passenger proximity to these exits, ensuring swift 
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and secure evacuations. The paper introduces a multi-period human evacuation model designed to 

optimize each passenger's evacuation plan, with a particular emphasis on minimizing the evacuation 

time of the slowest individual. Additionally, the model, developed within the context of Paper 2, 

identifies the optimal number of exit stairs and formulates evacuation routes, even amidst uncertainties 

in walking speeds influenced by a passenger ship's heeling angle. In addressing uncertainty, a Robust 

Optimization (RO) approach is utilized to manage the spectrum of possible walking speeds to ensure 

the resilience of the optimal solution amidst various uncertainties within a defined boundary (Ben-Tal 

and Nemirovski, 2008). A lower and upper limit demarcates this boundary under the presumption that 

uncertain parameters reside within this set (Ben-Tal et al., 2009). RO offers two principal benefits: 

firstly, it maintains computational tractability regardless of the number of uncertain parameters, and 

secondly, it utilizes historical data and expert input to define the boundaries of uncertainty sets, negating 

the need for exact probability distribution estimates (Keyvanshokooh et al., 2016).  

Furthermore, RO allows decision-makers to modulate the conservatism level of results relative to 

parameter uncertainty, where conservatism represents a deliberate trade-off for model robustness 

(Bertsimas et al., 2011; Bertsimas and Sim, 2004). Specifically, it gauges the impact of potential 

alterations in objective value against a standard solution (Roos and den Hertog, 2020). Consequently, 

RO's merits align seamlessly with the requisites of a human evacuation plan. Furthermore, considering 

the fluctuation of walking speed over time, an adjustment strategy is introduced for each angle. Walking 

speed data, contingent on age, gender, and mobility level on flat terrains under standard conditions, is 

derived from IMO (2016) and utilized to build the uncertainty sets. Kim et al. (2019) discovered a 

sharper decline in walking speed as one approached the end of the horizon. Consequently, an adjustment 

strategy is introduced to update walking speeds to adapt to real-time situations. Sun et al. (2018) 

calculated the walking speeds for different individuals, revealing the varied impact of heeling angles on 

speed. Accordingly, the influence rate (IR) for each angle on walking speed is introduced to adjust speed 

dynamically in response to unfolding scenarios during the evacuation horizon. 

While Paper 2 presents a robust human evacuation optimization model, it also highlights certain 

limitations, such as accounting for variables like response time (considering passenger awareness levels 

- alert or non-alert), initial passenger location, distribution, corridor traffic flow, initial density, and 

correction/counterflow/safety factors. Efforts to mitigate these limitations are discussed in Paper 3. 

Moreover, with passenger travel distance adding another dimension of uncertainty, the development of 

a human evacuation optimization model that simultaneously addresses the hybrid uncertainties of 

passenger walking speed and travel distance was pursued. In this endeavor, a hybrid uncertain 

optimization modeling approach was adopted for human evacuation planning for passenger ships. 

Paper 3 introduces an evacuation optimization model that simultaneously models uncertain 

parameters, compromising passenger walking speed and travel distance, with deterministic elements, 

including deck layout, door capacity, initial density, and corridor traffic flow. The model also regards 

diverse starting locations and incorporates two awareness levels — alert and non-alert. The optimization 

model determines the optimal number of stairs and allocates passengers to exit doors by navigating 

through a landscape of hybrid uncertainty. This versatile model can accommodate fixed and potential 

transitional points in terms of their numbers and locations. The model employs a data-driven method, 

specifically the k-means algorithm, to cluster historical data regarding passenger walking speeds and 

subsequently generate scenarios. An adjustment mechanism is incorporated to consider the ship's rolling 

motion, which influences passenger speeds throughout the duration of the evacuation planning. 

Scenarios for travel distance are developed to encapsulate the effects of various route choices for each 

passenger. A risk-neutral, two-stage, scenario-based stochastic programming (RSSP) model is devised 

to manage uncertainties. The two-stage stochastic programming approach enables decision-makers to 

strategically plan exit door locations that are robust across various scenarios and to adaptively manage 

passenger allocation to these exits during an actual emergency to guarantee that the evacuation is as 

efficient and safe as possible given the real-time conditions and uncertainties. This technique leverages 
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both deterministic and stochastic elements to provide a balanced, risk-mitigated, and optimized 

decision-making framework suitable for human evacuation planning under uncertainty. Utilizing RSSP, 

the human evacuation optimization issue is formulated as a two-stage, scenario-based model under a 

risk-neutral stance (Birge and Louveaux, 2011).  

Birge's approach uses stochastic optimization in a two-stage model to handle uncertain 

parameters, dividing decision variables into 'here-and-now' and 'wait-and-see' categories. The first-stage 

objective function embeds the expected value of second-stage decisions to facilitate a robust and 

foresighted optimization strategy. This ensures initial decisions, like exit door locations, and subsequent 

ones, such as passenger-door allocation, are proactive and adaptive to balance risk and opportunity 

management throughout the evacuation planning. 

Paper 3 developed a robust HEM amidst hybrid uncertainty yet faced limitations like family 

consideration and crew allocation, which are addressed in Paper 4. Paper 4 formulates an evacuation 

model, considering uncertainties in passenger walking speed and potential exit door disruptions. 

Introducing this new uncertainty source, a robust toolkit for managing evacuations across varied 

scenarios was offered, thereby boosting the safety and resilience of evacuation plans. 

Paper 4 proposes an HEM for passenger ships by navigating macroscopic and microscopic 

viewpoints amid uncertainty. At a macroscopic scale, it determines the number of exit doors, factoring 

in their functional variability, to oversee the broader evacuation orchestration. Microscopically, it 

addresses individual behaviors, accounting for fluctuations in passenger walking speed for both 

individuals and families, and strategically allocates passengers to ideal exit doors. The model endeavors 

to minimize evacuation time and the number of exit doors while ensuring proximity between crew and 

passengers. Crew members are not initially modeled as evacuating entities. However, the model's design 

accommodates flexibility, considering evacuation plans for crew members, including allocating specific 

exits for their use. A hybrid scenario-based stochastic p-robust programming technique is utilized to 

manage uncertainties by incorporating an adaptable, risk-neutral, two-stage, scenario-based stochastic 

method for walking speed variability and a feasibility-driven p-robust approach for potential exit door 

capacity disruptions. This hybrid approach not only provides robust and optimized evacuation plans 

under varying walking speeds but also allows passengers to navigate to a safe location (an exit door), 

especially in disrupted scenarios. This is vital for handling real-world emergencies, in the intricate and 

dynamic context of a passenger ship. The pedestrians' walking speeds may diminish as danger levels or 

ship motion amplifies and as the evacuation progresses by incorporating this assumption into the 

proposed human evacuation model. The model assumes a temporal decrease in passengers' walking 

speeds by accommodating this with two degradation constants for families and individuals. These 

assumptions help to adjust to new developing circumstances. Adjustment formulas, assuming 

exponential and linear degradations in walking speed, are applied to account for this adjustment. 
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2. Summary of relevant literature 
Steering through the intricate realms of maritime safety involves a strategic intertwining of regulatory 

adherence, human evacuation modeling, and management of uncertainties. The MSC Circulars provide 

a regulatory backbone for establishing rigorous safety and emergency protocols for passenger ships, 

which fundamentally shape the development of HEMs. While aiming to distill the chaotic and dynamic 

realities of evacuation scenarios into computationally replicable formats, these models should 

concurrently encounter sources of uncertainties that characterize actual emergencies.  

Thus, this review sails through the confluence of these three interconnected realms (understanding 

MSC Circulars, HEMs, and uncertainty management), which seek to craft evacuation models that are 

not only anchored in regulatory compliance but also demonstrate resilience and adaptability amidst 

uncertain real-world evacuation scenarios. 

2.1. MSC circulars 
MSC circulars (Circ.) concerning evacuation analysis for passenger ships establish a comprehensive 

framework through structured guidelines and methodologies to secure the enactment of safe and 

efficient evacuation procedures. The circulars delineate two primary methods for evacuation analysis: 

simplified and advanced. Simplified evacuation analysis is depicted as a deterministic method where 

passengers are assumed to be nonautonomous agents, adhering to a predefined, unvarying set of 

behaviors.  

In contrast, advanced evacuation analysis employs a stochastic process to treat passengers as 

autonomous agents, thereby accounting for the variability and uncertainty in individual behaviors and 

responses during evacuation scenarios. The analysis guarantees that maritime entities have a range of 

analytical tools at their disposal for conducting swift assessments or undertaking detailed evacuation 

planning as necessary. This approach is consistent with international standards and enhances the safety 

of passengers in diverse maritime contexts. In the following, some issued circulars are briefly described 

in Table 3. 

Table 3. MSC Circs. 

Date Document 

Number 

Title Reference 

May 1999 MSC/Circ.909 Interim guidelines for a simplified evacuation analysis on 

ro-ro passenger ships 

(IMO, 1999) 

June 2001 MSC/Circ.1001 Interim guidelines for a simplified evacuation analysis of 

high-speed passenger crafts 

(IMO, 2001) 

June 2002 MSC.1/Circ.1033 Interim guidelines for a simplified evacuation analysis for 

new and existing passenger ships 

(IMO, 2002) 

October 

2007 

MSC.1/Circ.1238 Guidelines for both simplified and advanced evacuation 

analysis for new and existing passenger ships 

(IMO, 2007) 

June 2015 MSC/Circ.1166 Guidelines for a simplified evacuation analysis for high-

speed passenger crafts 

(IMO, 2015) 

June 2016 MSC.1/Circ. 

1533 

Revised guidelines on the evacuation analysis for new and 

existing passenger ships 

(IMO, 2016) 

 

The MSC Circs have evolved over the years to address various facets of evacuation planning and 

analysis for passenger ships. Starting with MSC/Circ.909 in May 1999, preliminary guidelines were 

introduced, focusing on simplified methods for modeling evacuations on ro-ro passenger ships. 

Subsequent circulars, such as MSC/Circ.1001 and MSC.1/Circ.1033, expanded the scope by presenting 

provisional guidelines for high-speed crafts and standardizing methodologies across various ship types. 

MSC.1/Circ.1238 in October 2007 marked a shift towards integrating advanced evacuation analysis, 

which signaled a recognition of the need for both complex and simplified approaches in planning. The 



Chapter 2. Summary of relevant literature 

9 

 

progression continued with MSC/Circ.1166 in June 2015, which refined guidelines for high-speed crafts 

to provide methodologies that stayed abreast of emerging insights.  

The trajectory of these circulars not only enhances the depth and breadth of evacuation analyses 

but also increasingly prioritizes considering a wide array of human factors to guarantee guidelines are 

both relevant and effective in varied maritime evacuation scenarios. Continuing with MSC.1/Circ. 1533, 

issued on June 6, 2016, the guidelines delved deeper into simplified and advanced evacuation analyses, 

encompassing updates and refinements to align with the latest understanding of human behavior during 

evacuations and developments in evacuation. 

2.1.1. Simplified evacuation analysis: 

• Basic and Accessible:  

The method, while foundational and potentially suitable for initial ship design phases due to its 

straightforwardness, is underpinned by several assumptions (e.g., deterministic behavior of passengers) 

that may not cater to all realistic, variable, and dynamic evacuation contexts found in actual emergency 

scenarios (IMO, 2016; Nasso et al., 2019). 

2.1.2. Advanced evacuation analysis 

• Detailed and individualized:  

This method tries to accommodate the variabilities and specificities of individual passenger behaviors 

and response times, which aims to produce more accurate and reliable evacuation duration predictions 

than the simplified approach (IMO, 2016; Nasso et al., 2019). 

2.1.3. Reflecting on MSC.1/Circ. 1533  

• Integrating enhancements:  

This circular acknowledges and incorporates improvements in understanding and modeling human 

behavior during evacuations. It encompasses modifications that cater to a more detailed exploration of 

evacuation dynamics. Thus, it provides a more thorough framework that recognizes the complexities 

and variabilities inherent in real-world evacuation scenarios (Bucci et al., 2016; IMO, 2016; Nasso et 

al., 2019). 

• Balancing simplicity and detail:  

While simplified analysis provides a quick and accessible means of predicting evacuation durations, 

advanced analysis brings forth a detailed, albeit more complex, method of planning, which becomes 

pivotal in scenarios where diverse and dynamic human factors play a significant role (Bucci et al., 2016; 

IMO, 2016; Nasso et al., 2019). 

In this vein, MSC.1/Circ. 1533 culminates in a guideline that seeks to harmonize regulatory, 

practical, and human-centric perspectives in evacuation modeling, which desires to safeguard 

passengers through both the design and operational phases of passenger ships. 

2.1.4. Limitations and discussion 

To the best of current understanding, IMO guidelines reveal gaps, especially in addressing dynamic and 

uncertain human behavior, including factors like passenger walking speed, awareness, and capacity 

uncertainties at critical points like exit doors for developing human evacuation plans. Although the 

existing models in the literature primarily cover single-deck scenarios, they aim to mitigate these gaps 

and lay the groundwork for future enhancements, including applications in multi-deck settings (Arshad 

et al., 2022; IMO, 2016; Ni et al., 2017b; Sarvari et al., 2018). Acknowledging this, there is room for 

improvement and further refinement.  
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A pertinent example for future exploration can be the complex dynamics of passenger behavior 

(e.g., passenger walking speed moving between decks) in multi-deck passenger ship evacuations. 

Though not comprehensive, the approach is adaptable and aims to enhance evacuation planning in both 

current studies and practical implementations. 

• Family consideration: 

Ignoring familial units could result in evacuation models that fail to mirror real-life situations, where 

family members are likely to navigate together, potentially at the pace of the slowest member, which 

impacts overall evacuation times and dynamics. 

• Uncertainty management: 

The apparent dismissal of the impact of uncertainties from various evacuation factors may result in 

models that are overly optimistic and potentially misaligned with actual evacuation trajectories, 

especially considering the diverse passenger characteristics and behaviors during emergencies. 

• Uniform starting point: 

Assuming a uniform starting point for all passengers simplifies the complexities related to 

individualized starting points, which is more reflective of actual scenarios, particularly on larger ships 

or those with intricate layouts. 

• Static speed assumption: 

Holding the speed constant for each passenger neglects the natural variations and reductions in speed 

due to environmental factors during the evacuation. 

• Exit and crew allocation: 

Overlooking exit allocation and having ambiguous crew allocation criteria may result in suboptimal 

resource deployment, potentially increasing evacuation times and reducing the efficacy of the 

evacuation process, particularly in scenarios where specific exits become congested or impassable. 

• Real-world preparedness: 

Without strategies to dynamically manage disruptions, such as blocked or malfunctioning exit doors, 

the guidelines may lack robustness in safeguarding against plausible real-world evacuation hindrances. 

The dilemma surrounding the assumption of simultaneous evacuation without hindrance highlights two 

pivotal shortcomings: 

• Door capacity limitations: 

 A static model may inadvertently direct evacuees towards congested exits, which exacerbates 

bottlenecks. Conversely, by recalibrating and rerouting passengers upon reaching door capacity, multi-

period models may enhance flow, safety, and efficiency by effectively mitigating such congestion. 

• Missed intervention points: 

A lack of multi-period evacuation planning may overlook crucial intervention junctures, potentially 

missing opportunities to strategically allocate crew members to manage flows and prevent bottlenecks, 

particularly at vital stages or locations during the evacuation.  

In essence, while the MSC guidelines provide a foundational framework for evacuation modeling, 

their limitations highlight an imperative for further refinement and enhancement to navigate the 

challenges of real-world passenger ship evacuations more accurately, reliably, and safely. These insights 
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underscore the necessity of continued research and development in this domain to safeguard lives at sea 

further. 

2.2. Human evacuation models 
Navigating the multifaceted domain of HEM, within the maritime context, necessitates thoroughly 

exploring and discerning the diverse modeling paradigms prevalent in the extant literature, 

predominantly rooted in land-based environments. Primarily, HEMs articulate a strategic framework 

for evacuation by entailing the orchestration of evacuee movement through a defined network from 

their respective locations to specified safe destinations, aware of the temporal, spatial, and behavioral 

dynamics inherent to evacuation scenarios. The present discourse delineates a time-variant, 

unstructured, and disaggregated evacuation model, which inherently conforms to the convoluted nature 

of the maritime evacuation context under uncertainty (Karabuk and Manzour, 2019). 

Literature categorizes evacuation models under various attributes, temporal variance, structural 

framework, granularity of evacuation planning, and traffic assignment methodologies. Time-variant 

models, such as those proposed by Bish et al. (2014), dynamically calculate the evolving state of 

evacuation against time-invariant counterparts that adhere to static temporal parameters (Yamada, 

1996). Structurally, models may be delineated as either structured, mandating predefined evacuee entry 

into the system (Bish and Sherali, 2013; Liu et al., 2006), or unstructured, perceiving it as a variable 

integral to solution derivation (Bish et al., 2014; Chiu and Zheng, 2007; Sbayti and Mahmassani, 2006). 

Additionally, models traverse the spectrum from aggregate, strategizing for cohesive evacuee groups, 

to disaggregate, necessitating granular planning at, for instance, individual levels (Chiu and 

Mahmassani, 2002; Zheng et al., 2010).  

Further bifurcation is witnessed in the paradigm of traffic assignment problems, oscillated 

between system-optimal formulations, which may potentially discriminate to elevate overall system 

performance (Ma et al., 2014), and user equilibrium formulations, grounded in the assumption of self-

interest among individual evacuees (Pel et al., 2012; Yi et al., 2017). The macroscopic and microscopic 

modeling dichotomy further enriches the human evacuation modeling landscape, with the former 

focusing on optimizing egress routes from a global standpoint by treating crowds as a continuum and 

the latter zooming into individual behaviors by accounting for external and internal influencers of 

pedestrian movement (Hamacher and Tjandra, 2001).  

Upon examining the models through the lens of macroscopic and microscopic perspectives, they 

can be categorized based on their similarities within these two approaches. Macroscopic-type models 

can encompass time-invariant, structured, and aggregate models. Conversely, microscopic-type models 

can include time-variant, unstructured, and disaggregate models. 

2.3. Methodologies in HEM 
Mathematical human evacuation models bring advantages owing to their prescriptive nature and 

structured methodology for formulating and solving complex problems (Bayram, 2016). These models, 

recognized for their optimization capabilities, can play a pivotal role in devising scalable evacuation 

strategies (Liu et al., 2016; Saadatseresht et al., 2009). They are inherently prescriptive, which provides 

specific guidelines or recommendations on the optimal courses of action based on quantitative data and 

established algorithms. This aspect is crucial in evacuation scenarios, where strategic decision-making 

should be swift and sound. However, the prescriptive nature of mathematical models means they often 

require data and can sometimes oversimplify scenarios, not fully capturing human behavior during 

emergencies (Hamacher and Tjandra, 2001; Vermuyten et al., 2016). 

Conversely, simulation models, such as cellular automata, social force models, and agent-based 

simulations, are instrumental in solving crowd evacuation challenges by offering a detailed depiction 

of evacuation scenarios. These models can replicate real-world conditions, enabling planners to 

visualize and comprehend the dynamics of critical factors like congestion. Pereira et al. (2017) 
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developed a cellular automata model considering group characteristics for optimizing evacuation routes. 

J. Li et al. (2021) proposed a social force model for the temporal-spatial dynamics on stairs, while  Sun 

and Liu (2021) merged a density evacuation algorithm with a social force model for efficient path 

planning. Despite their ability to describe complex evacuation behaviors and interactions, simulation 

models require significant computational resources, especially for large populations or complex 

environments (Haghani, 2020). Tools such as VELOS, AENEAS, EVI, and maritime-EXODU simulate 

evacuation scenarios but often lack direct optimization capabilities, such as optimization under 

uncertainty (Galea et al., 2004; Ginnis et al., 2010; Meyer-König et al., 2007; Valanto, 2006; Vassalos 

et al., 2003). These models can provide essential insights into potential challenges and decision-making 

processes during evacuation, yet translating these insights into strategic actions demands further 

analytical effort.  

Current research on emergency evacuation also incorporates surveys and statistical models to 

enhance understanding and efficiency (Finiti, 2021). Studies have examined evacuee performance, 

focusing on reaction times, walking speeds, and behaviors during crowd evacuation (Na et al., 2019; 

W. Xie et al., 2020; D. Zhang et al., 2017). Research has delved into the determinants of evacuation 

decisions, employing the random parameter binary logit model for assessment (Sarwar et al., 2018). 

Dulebenets et al. (2019) designed a statistical model to explore factors influencing evacuation and to 

bolster regional evacuation strategies in disaster scenarios. These approaches can offer practical insights 

into evacuation decision-making processes, identify key evacuation influencers, explore characteristic 

evacuation behaviors, and support the refinement of evacuation planning (K. Liu et al., 2022; Vanem 

and Skjong, 2006). 

While they can provide a description of events, they do not inherently suggest the best course of 

action. While their descriptive nature is practical for understanding a situation, they often require 

additional interpretative effort to translate insights into strategic actions. Also, their reliance on specific, 

sometimes narrow scenarios can limit the scope of their application without substantial adjustments. 

Furthermore, they can be computationally heavy, especially when dealing with large populations or 

extensive facilities, and they require calibration and validation against real-world scenarios, which are 

often practically and ethically challenging. Again, the outcomes from simulations can sometimes be 

challenging to generalize for broader applications, as they are usually tailored for specific scenarios 

(Bachelet and Yon, 2007; Carson, 2005; Iassinovski et al., 2003; Noorhazlinda, 2019). 

In human evacuation planning, both prescriptive mathematical models and descriptive simulation 

models hold benefits. Mathematical models shine by providing optimized evacuation plans experienced 

at handling diverse constraints and uncertainties, delivering actionable and practical guidance suitable 

for emergencies. Their strategic optimization capabilities can manage uncertainties. This thesis applies 

mathematical optimization to tackle these uncertainties. 

2.4. Uncertainty management 
Uncertainty, pervasive in research and planning, critically influences predictive analytics and decision-

making, especially in domains where decisions are paramount, such as maritime safety. Effective 

management of uncertainty is crucial to ensure the resilience and viability of resulting models under 

diverse conditions (Dellino and Meloni, 2015).  

The primary strategic aspects addressed through the generic human evacuation modeling for 

passenger ships involve the following: Which evacuation routes should be prioritized? What should be 

the estimated time frame for complete evacuation in various emergency scenarios? How many safe 

zones should be established? Where should these safe zones be placed within the ship? Which 

collaboration partners (e.g., crew members) should be selected? What evacuation, communication, and 

safety technologies should be adopted, and what should be their capacity? Which areas of the ship 

should be accessible/avoided during specific emergencies? The activities under consideration naturally 

include evacuation and emergency response, and recovery activities following the event may also be 
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relevant (Balakhontceva et al., 2015; Galea et al., 2013; IMO, 2016; Kruke and Auestad, 2021; K. Liu 

et al., 2022; Ma et al., 2024; Ng et al., 2021; Wang et al., 2022a; Yue et al., 2022). These questions are 

often examined in isolation, mainly when prompted by events such as the introduction of new ship 

models, regulatory changes, or major incidents. Beyond these questions, various factors contribute to 

the complexity of human evacuation modeling. The first is the ship's layout and potential obstacles 

during evacuation—for instance, challenges involving complex evacuation processes in ships with 

intricate designs (Arshad et al., 2022; Ni et al., 2017b).   

A second aspect involves the incorporation of passenger autonomy and diverse characteristics into 

the modeling (Arshad et al., 2022; K. Liu et al., 2022). It necessitates a strategic approach that not only 

prioritizes safety but also considers the individual and collective behaviors, preferences, and needs of 

passengers as autonomous agents, which adds a layer of complexity to the decision-making processes 

within the model. A third crucial aspect is the long-term impact of the evacuation model decisions 

(Arshad et al., 2022; K. Liu et al., 2022). Using a static, short-term model may be reasonable when the 

decisions are limited to small-scale evacuations or drills; however, when dealing with the evacuation of 

large ships, particularly where different scenarios, such as capsizing, are considered, more than static 

models are needed. This introduces a fourth complexity aspect: uncertainty.  

Most models proposed in the literature are not only static but deterministic (Arshad et al., 2022; 

Q. Xie et al., 2020c, 2020b). When considering multiple potential emergency scenarios, the problem 

becomes dynamic and non-deterministic (e.g., stochastic). Moreover, more is needed to consider typical 

variables such as passenger walking speed, passenger travel distance, and ship layout (Arshad et al., 

2024; Wang et al., 2022a); one could also include extreme events such as severe weather incidents that 

may affect the evacuation process (Balakhontceva et al., 2016; Stefanou et al., 2024). Significant 

investments are often required to implement strategic evacuation modeling decisions. Generally, 

stakeholders and safety regulators may require an assessment of safety and effectiveness before 

approving these decisions. Safety comes from the net lives saved and injuries prevented by utilizing an 

evacuation model during an emergency: safe evacuations and minimized injuries less any risks or 

injuries associated with the evacuation process. These safety metrics and risks should be anticipated in 

the evacuation model. 

2.4.1. Deterministic HEMs 

A deterministic human evacuation model for passenger ships determines the movement of individuals 

from a point of danger to a point of safety, which assumes a predefined and fixed set of parameters and 

conditions without variability (IMO, 2016). In this context, every passenger abides by a set route and 

timeline dictated by the model’s input parameters, such as fixed walking speed and unvarying decision-

making patterns, ignoring the natural human tendencies towards uncertainty. Despite its deterministic 

nature, this model seeks to optimize evacuation times and assess the efficiency of existing safety 

protocols within a ship. It provides a baseline scenario where all variables function optimally and 

without stochastic interruption (Nasso et al., 2019). While it may lack the uncertainty of real-world 

evacuations, it offers a simplified and controlled environment to analyze fundamental aspects of 

evacuation strategies and identify primary areas of improvement in a ship’s safety design and 

emergency procedures. 

Despite providing valuable insights into optimal scenarios, deterministic human evacuation 

models bear several disadvantages owing to their inherent inability to account for the multifaceted and 

uncertain nature of human behavior and how situations unfold, particularly in emergencies. First, they 

often fail to accurately represent the variability and randomness, such as walking speed, in movement 

during evacuations (Sun et al., 2018b). Second, deterministic models overlook the potential impact of 

unforeseen variables, such as obstructions and variations in individual physical abilities, which can 

influence evacuation processes (Kim et al., 2019). Lastly, they may underestimate the actual evacuation 
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time and potential bottlenecks, as they do not consider the possible random elements introduced by 

uncertain decision pathways during an emergency (Nasso et al., 2019). 

Given these limitations, there is an argument for integrating uncertainty modeling into human 

evacuation scenarios. Uncertainty models allow researchers and safety planners to explore a broader 

range of possible outcomes by acknowledging human actions' inherent uncertainty and variability 

(Arshad et al., 2024; Lovreglio et al., 2016; Wang et al., 2015; Q. Xie et al., 2020b). In this research, 

uncertainty involves including stochastic (random) elements that simulate the uncertainty often seen in 

real-life situations. Specifically, in evacuation dynamics, this means accounting for factors such as the 

varying speeds at which passengers move and passenger travel distances. These speeds and distances 

can change due to various reasons like panic, physical limitations, obstacles, or different environmental 

conditions (e.g., ship motions) encountered during an evacuation (Ni et al., 2017b). Uncertainty 

modeling can offer a more realistic representation of evacuation dynamics by incorporating stochastic 

elements, such as fluctuating movement speeds and travel distances (Arshad et al., 2022; Bayram, 

2016). Additionally, uncertainty may stem from the onboard facilities, including the capacity of 

transitional points like exit doors, which can experience bottlenecks. Furthermore, mixed uncertainties 

can emerge, including variability in passenger walking speeds and travel distances. 

This shift towards embracing complexity and uncertainty ultimately enables the development of 

more robust, adaptable, and resilient evacuation strategies, which can provide enhanced safety and 

preparedness in real-world emergency scenarios on passenger ships. 

2.4.2. HEMs under uncertainty 

While deterministic models offer a fundamental basis for HEMs, their inability to account for 

uncertainties and potential variations in future scenarios limits their predictive and adaptive capacities. 

Since these models do not incorporate unforeseen variables and information inaccuracies about 

conceivable future circumstances, transitioning towards uncertainty modeling emerges as a vital step 

toward enhancing the realism and applicability of HEM designs.  

Uncertainty, risk, and certainty have been pivotal in shaping decision-making models and further 

specifications from (Mousavi and Gigerenzer, 2014). Certainty implies a straightforward decision-

outcome link; risk involves probabilistic outcomes, while uncertainty conveys situations where outcome 

probabilities cannot be assigned. The widely accepted distinction between risk and uncertainty is not 

universal, with traditional risk management defining risk as a function of the probability and impact of 

adverse events (Aven and Zio, 2011; Grossi, 2005). Various models, including fuzzy sets and belief 

functions, have been used to quantify the likelihood of future events. This discourse proposes 

classifying decision scenarios based on information quality: decisions under certainty are made with 

perfect information, while those under uncertainty involve imperfect information, leading to risks, 

which denote the potential for undesired outcomes and grow with the probability and severity of these 

outcomes. 

Given that uncertainty is interpreted and applied diversely across various disciplines, this section 

will briefly discuss data uncertainty and the different methodologies employed to model it. 

2.4.2.1.  Data uncertainty 

Navigating the complex landscape of data uncertainty necessitates understanding its origins and the 

data types. The onset of complexity in data analysis is rooted in diverse aspects of data uncertainty, 

which includes challenges such as measurement inaccuracies, the presence of missing values, and 

inconsistency in the data. It substantially impacts the reliability and credibility of subsequent data 

analysis and decision-making processes. This complexity is further entwined with the intrinsic 

characteristics of the data itself. Numerical, categorical, and linguistic data each present unique 

challenges and opportunities in uncertainty management. Numerical data, embodying quantifiable 

metrics such as age, offers a tangible measure yet is susceptible to variability and measurement errors 
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(Aggarwal and Yu, 2009). In contrast, categorical data, exemplified by non-quantitative classifications 

like gender and linguistic terms, which encapsulate qualitative descriptors such as high or low, are often 

considered subjective and interpretative uncertainties (Singh et al., 2007).  

Under the umbrella of uncertainty, the presence of either perfect or imperfect/partial information 

steers the decision-making process toward scenarios of certainty or uncertainty. Within uncertainty, 

three primary forms emerge randomness, hazard, and deep uncertainty (Lempert et al., 2006). 

Randomness, arising from the stochastic nature of events, pertains to routine business operations with 

minimal impact and assumes the existence of ample, reliable historical data to estimate probability 

distributions. Hazard embodies low-probability, high-impact unusual events, whereas deep uncertainty 

emanates from an inability to estimate the probability of potential future extremes due to insufficient 

information (Klibi et al., 2010). Additionally, Mula et al. (2007) bifurcates uncertainty into fuzziness, 

associated with flexibility in constraints and objectives, and epistemic uncertainty, which pertains to 

knowledge deficiencies regarding input data, often expressed through linguistic attributes or judgmental 

data (Bairamzadeh et al., 2018).  

However, it's essential to recognize the inherent limitations in fully addressing epistemic 

uncertainty, especially in the context of unknown unknowns. While methods exist to manage known 

variables/parameters and even those uncertainties that can be anticipated, there remain challenges in 

dealing with aspects that are wholly unforeseen or beyond current understanding. Furthermore, model 

and parameter uncertainties emerging from modeling simplifications and parameter estimation 

variabilities, respectively, necessitates a tailored approach towards uncertainty management (Y. Wang 

et al., 2013).  

Thus, a comprehensive strategy pivots on identifying and understanding these uncertainties to 

ensure that the subsequent selection and application of uncertainty management methods are precisely 

tuned to the distinctive challenges posed by the specific data and uncertainty types in question. This 

interweaving of understanding the data and its associated uncertainties lays a robust foundation for 

informed, resilient, and effective decision-making and analysis in the omnipresent haze of uncertainty. 

2.4.2.2. Uncertainty modeling approaches 

Table 4 delineates a variety of techniques employed for managing uncertainties in different decision-

making contexts. Techniques such as Monte Carlo Simulation (MCS) and Robust Optimization (RO) 

deal with numerical data and uncertainties through randomness and bounded uncertainty, respectively, 

while others, like Bayesian Networks (BN) and Fuzzy Optimization (FO), navigate through categorical 

data and linguistic uncertainties. The approaches such as Data-Driven Robust Optimization (DDRO) 

and Scenario-Based Optimization (SBO) utilize historical and observational data to enhance decision-
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Table 5. Comparative overview of uncertainty modeling techniques: strengths and challenges. 

Technique Strength Challenge 

MCS • Handling complex systems 

• Assessing variable impact 

• Simulates various scenarios 

• Computational expense 

• Slow convergence rates 

• Dependence on random number generators 

• Requirement for known probability 

distributions 

RO • Computational tractability 

• Utilization of historical data 

• Parameter stability 

• Scenario viability 

• Conservative solutions 

• Boundaries definition  

• Ignorance of probability distribution 

BN • Representation of dependencies 

• Prior knowledge incorporation 

• Ability to update beliefs 

• Computational complexity and cost 

• Parameter learning 

• Difficulty in translating dependencies 

SO • Risk management  

• Multistage decision-making 

• Inclusive stakeholder perspective 

• Computational complexity and cost 

• Big data requirement to estimate 

probabilistic distributions 

• Scenario generation and reduction 

FO • Handling imprecision 

• User-centric approach 

• Flexible solution mechanism 

• Accuracy compromises 

• Objective standardization 

• Computational demands 

DDRO • Incorporating big data in decisions 

• Enhancing reliability and robustness 

• Balancing optimality and feasibility 

• Big data quality and availability 

• Computational complexity 

• Overfitting risk 

SBO • Adaptive decision making 

• Utilization of static and dynamic 

optimization 

• Computational complexity 

• Data and scenario management 

• Robustness against diverse scenarios 

 

MCS leverages repeated random sampling to navigate through complex systems despite its 

computational demands and reliance on high-quality random number generators. On the other hand, RO 

utilizes historical data to provide stable solutions across varied scenarios, even without precise 

probability estimates, though this might sometimes constrain its predictive accuracy. While BN can 

depict relationships among variables and parameters, use existing knowledge, and adapt to new data, 

they also pose challenges related to computational demands, learning from data, and accurately 

representing dependencies in mathematical terms. SO analyzes risks and supports adaptable, multi-

stage decision-making, inclusively accounting for diverse stakeholder perspectives. However, it 

confronts limitations like computational complexity and cost, a necessity for substantial data, and the 

task of crafting and condensing plausible scenarios for model development. FO provides a valuable 

toolkit for navigating through uncertainties and imprecisions using a user-friendly and flexible 

approach.  

However, it brings challenges, such as computational demands, concerns regarding precision, 

objectivity, and issues related to standardization, which require careful consideration in its application. 

DDRO operates data to make informed decisions but has burdens like needing good data and lots of 

computer power. It can also get too tailored to existing data (overfitting). SBO adapts decisions using a 

mix of planned and on-the-spot optimization, which steers through various situations flexibly. However, 

its sophisticated decision-making demands weighty computational power, extensive data and scenario 

management, and a sturdy approach to perform well across diverse, possibly unforeseen situations.  

Finally, hybrid uncertainty modeling methodologies are emerging as potent tools in managing 

complex, uncertain systems by integrating the strengths of various individual modeling techniques 

(Aien et al., 2016; Wu et al., 2017). These methodologies aim to mitigate the limitations inherent in 

using a single modeling approach, especially in complex environments with multiple uncertain factors. 
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One such approach is HRSSRP (Hybrid Risk-Neutral, Two-Stage, Scenario-Based Stochastic ρ-Robust 

Programming). HRSSRP addresses real-life challenges by offering an approach to risk assessment and 

decision-making. Its comprehensive risk analysis goes beyond traditional methods, accommodating 

diverse future scenarios and mitigating overt optimism and undue caution. The model's strength lies in 

its adaptability, navigating uncertainties through a two-stage decision process that adjusts strategies 

based on evolving data, much like in real-world situations.  

Furthermore, HRSSRP's flexibility can make it useful for handling the multifaceted nature of live 

data sources. This approach is crucial because it aligns the modeling technique closely with the data's 

behavior. However, it's essential to acknowledge that while HRSSRP's advanced capabilities make it a 

tool for dynamic, uncertain conditions, it demands computational resources and expertise in data 

management. 

2.4.2.3. Risk perspective in uncertainty modeling 

In uncertainty modeling and optimization, three distinctive risk perspectives influence decision-making: 

risk-neutral, risk-averse, and risk-seeking. A risk-neutral perspective guides through uncertainties by 

considering all scenarios without leaning excessively towards security or gain, aiming for a balanced, 

unbiased decision-making approach (Shapiro, 2021). In contrast, a risk-averse perspective prioritizes 

safety, preferring decisions that minimize potential risks and avoid undesirable outcomes, even at the 

expense of higher rewards (Li and Grossmann, 2021; Shapiro et al., 2013).  

On the opposite spectrum, a risk-seeking perspective embraces risks for the potential of higher 

rewards, which opts for bolder strategies that, while riskier, could lead to more advantageous outcomes 

if the risks pay off (Yu et al., 2021). Each perspective represents a different stance towards managing 

risk versus reward in the face of uncertainty, which directs decision-makers based on their propensity 

to either embrace or mitigate risks. 

2.5. Literature gap 
Evacuation strategies, critical in emergencies within various settings, have evolved significantly over 

the past decade. Researchers have delved into optimizing evacuation procedures, which focus on 

personalized routes, uncertainty management, infrastructure adaptation, and behavioral considerations. 

This literature review briefly synthesizes identifying thematic intersections and divergences that shape 

contemporary understanding and application. 

• The interplay of macroscopic and microscopic considerations 

The body of literature unveils a shift from generic, macroscopic strategies towards more granular, 

microscopic analyses. Saeed Osman and Ram (2013) and Ni et al. (2017) modeled a structured system-

optimal formulation, which balances time-variant considerations with aggregate and disaggregate 

planning. Their foundational work paved the way for Gao et al. (2020) and others, which began 

integrating macroscopic structures and microscopic human behaviors, acknowledging that efficient 

evacuation is not merely systemic but inherently human-centric. Yang et al. (2022) further this 

discourse, introducing a stochastic user equilibrium model that factors in human uncertainty. Their 

approach highlighted the need for dynamic planning that accounts for human behavior, an aspect often 

sidelined in earlier deterministic models. 

• Optimization amidst uncertainty 

Uncertainty management remains a pivotal challenge, with early models often paying attention to real-

time variabilities. Pourrahmani et al. (2015) marked a transition with their fuzzy-set theory, 

accommodating uncertainties in evacuee numbers. Successive studies, particularly by Ghasemi et al. 

(2020) and Shin and Moon (2022), embraced stochastic considerations, embedding uncertain elements 

like resource availability and structural integrity into their frameworks. 
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Xie et al. (2020b) developed further, recognizing the uncertainty of passenger travel time, yet their focus 

on initial passenger density hinted at the need for more comprehensive analyses. This gap, indicating a 

need to broaden uncertainty parameters, was partially bridged by Lozowicka (2021) and Guo and Zhang 

(2022), who factored in individual selection and passenger behavior stochasticity, setting the foundation 

for improved uncertainty management in evacuation scenarios. 

• Solution methodologies: From theoretical to practical 

The solution methodologies evolved, which reflects a greater emphasis on practical, real-world 

applications. Early methods relied on mathematical programming, with Saeed Osman and Ram (2013) 

and Gao et al. (2020) utilizing integer programming and constraint-based design. However, with Yuan 

et al. (2014) and Ni et al. (2017)'s simulation models, there was a noticeable shift towards more dynamic 

scenario planning. This trend was exemplified by Xie et al. (2020c) and Lozowicka (2021), who 

integrated genetic algorithms with surrogate-based modeling, which realized the unpredictability of 

real-world situations like fire impact and individual behaviors. Cotfas et al. (2023) took this a step 

further, which simulates the practical application of guidance apps, thereby merging technological 

advancements with traditional evacuation methodologies. 

• Settings: land-based versus ship-based applications 

The reviewed literature diverges in application settings, with distinct methodologies emerging for land-

based and ship-based evacuations. Studies like those by Ghasemi et al. (2020) and Shin and Moon 

(2022) often focused on land-based evacuations, which incorporate urban complexities and building 

infrastructures. In contrast, Yuan et al. (2014) and Fang et al. (2023) ventured into maritime contexts, 

which consider ship-specific dynamics and constraints, diversifying the applicability of evacuation 

research. This distinction highlighted challenges within different environments, such as the influence 

of ship motion, confined spaces, and passenger density in maritime evacuations. 

The literature reveals consistent limitations across various studies in the context of evacuation 

models, which highlight a critical need for more comprehensive, real-world applicable solutions. 

Notable shortcomings include Osman and Ram's (2013) oversight of flow capacities, Pourrahmani et 

al.'s (2015) struggles with real-time uncertainties and Gao et al.'s (2020) neglect of environmental and 

behavioral complexities within evacuation spaces. These issues, alongside Ghasemi et al.'s (2020) 

disregard for diverse transportation modes and uncertainties, Guo and Zhang's (2022) difficulties with 

real-time data, and Shin and Moon's (2022) narrow focus on structural uncertainties, highlight the 

models' disconnect with on-ground realities.  

In maritime contexts, gaps persist, with Yuan et al. (2014) and Ni et al. (2017) simplifying 

passenger behaviors and interactions, and Xie et al. (2020b, 2020c) limiting their focus to specific 

variables like initial passenger density and fire scenarios while neglecting broader influencing factors. 

Even with methods, as employed by Fang et al. (2023), Cotfas et al. (2023), and Chen et al. (2023), 

practical complexities of ship evacuations — such as specific disaster scenarios, complex crowd 

dynamics, and the influence of physical variables — are often underexplored. These collective insights 

indicate a pressing need for evolved models that are intricately aligned with the multifaceted realities 

of maritime evacuation contexts. 

Table 6 categorizes critical research in human evacuation, which outlines themes like macroscopic 

and microscopic model scope, optimization of evacuation strategies, management of uncertainties, 

various applied solution methodologies, and the diverse settings of model application. 
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While these tools have proven to be robust and widely utilized in the field, this thesis pivots towards 

leveraging optimization techniques to tackle (hybrid) uncertainties in optimizing personalized human 

evacuation plans. This shift is motivated by the latest discussions in academic circles and the approach 

of uncertainty modeling, which seeks to address through uncertainties employing various methods 

detailed in the contributions of Arshad et al. (2022), and as further elaborated in Table 6. 

Building on this, the current research delves into mathematical optimization models to refine 

human evacuation plans under (hybrid) uncertainties, concentrating on key parameters such as 

passenger walking speed, travel distance, and exit door capacity. By deploying mathematical 

formulations, HEMs are constructed. These models can be valued in evacuation planning due to their 

capacity to generate optimal and scalable solutions that are aligned with specific objectives. They can 

be considered for their adaptability in incorporating constraints, facilitating sensitivity and scenario 

analyses, and handling stochastic characteristics to mitigate uncertainties. This adaptability can render 

them robust tools for formulating evacuation models (Hamacher and Tjandra, 2001; Vermuyten et al., 

2016). 

The distinction between simulation and optimization techniques is fundamental to the applied 

approach in this thesis. Simulation tools, such as VELOS, can mirror complex realities, enabling the 

exploration of diverse scenarios based on varying inputs (Ginnis et al., 2010; Konstantinos V Kostas et 

al., 2014a). These tools can offer a visual grasp of evacuation processes but do not always ensure the 

attainment of the optimal solution. Optimization techniques, conversely, can identify the most suitable 

solution that aligns with established objectives and constraints, focusing on delivering the evacuation 

plans by evaluating different factors and uncertainties (Bachelet and Yon, 2007). This thesis applies 

optimization techniques over simulation for developing evacuation plans, advocating for their use in 

addressing the complexities and uncertainties inherent in human evacuation planning. 

This dissertation has delved into the complexities of human evacuation research to navigate its 

uncertainties and the uncertain nature of human behavior in emergencies. An evaluation of existing 

literature, including an examination of MSC guidelines and insights from systematic reviews such as 

those by Lee et al. (2003), Sarvari et al. (2018), and Arshad et al. (2022), revealed gaps in current 

evacuation models. These gaps are particularly in managing uncertain parameters like passenger 

walking speeds, travel distances, and exit door capacities, as well as in addressing the combined 

uncertainties of these factors during emergencies. 

Addressing these deficiencies, the research introduces three mathematical optimization models, 

each designed to manage time-sensitive and individual-specific evacuation scenarios focusing on user 

equilibrium and structured methodologies. These models prioritize an individualized approach, 

accommodating each evacuee's speed, distance, potential exit blockages, and initial location to create a 

personalized evacuation plan. The contribution of this dissertation lies in its application of uncertainty 

modeling techniques—robust optimization, stochastic optimization, and a hybrid robust-stochastic 

method for developing personalized evacuation plans. These methods, while offering a new perspective 

and contributing insights to the field, are acknowledged as not being flawless. The exploration of these 

optimization techniques uncovers their potential for contributions to evacuation research despite being 

relatively unexplored within the existing body of literature. 

Moreover, the dissertation extends the application of these models to determine the optimal 

number of exit doors required, considering various factors such as walking speeds, travel distances, 

door capacities, and passenger numbers. The practical validity of these models is further demonstrated 

through the application to a real-life case study, utilizing the Evi simulation tool for a passenger ship's 

single deck.  

This research employed RO, RSSP, and HRSSRP to model and manage hybrid uncertainties, 

including passenger walking speed, travel distance, and potential disruptions in exit doors. Doing so 
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emphasized creating a robust framework capable of withstanding real-world variabilities and 

emergencies.  

This dissertation marks progress by moving beyond traditional evacuation methods, especially in 

addressing hybrid uncertainties and employing uncertainty modeling techniques. It suggests a future 

where evacuation protocols, in maritime settings, are tailored, adaptable, and conscious of individual 

human factors. The insights offered here can pave the way for further development of these models and 

their potential integration into standard practices, which can play a vital role in enhancing safety. This 

work highlights the importance of continued research and refinement in this crucial area, highlighting 

that while strides have been made, there remains ample scope for improvement.
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3. Human evacuation problem description 
This section outlines the structure of the human evacuation optimization problem during maritime 

emergencies, which is central to this study. When a threat emerges, the ship initiates evacuation 

protocols. In high-risk situations, the crew and emergency teams enforce a compulsory evacuation. This 

research considers various real-world uncertainties within the evacuation process, such as potential exit 

blockages, the need for resilience, and uncertain factors such as passenger walking speeds and travel 

distances. These factors can be influenced by ship motions, passenger interactions, and any hazard 

which affects their walking speed capability (Chen et al., 2023; Fang et al., 2023). A dynamic method 

for adjusting walking speeds over time is also introduced, acknowledging that factors like developing 

hazards, ship motions, and passenger congestion can slow progress. This model navigates these real-

world challenges and seeks to formulate an optimized, resilient evacuation plan. 

For enhanced clarity and decision-making efficiency, the ship's deck plan is converted into a 

network graph (J. Wang et al., 2013). This graph features nodes (representing cabins, facilities, exit 

points, and crew areas) and edges (depicting evacuation routes from current locations to designated 

exits). The evacuation dynamics is addressed, acknowledging passengers' diversity, categorized into 

individuals (P = {p
1
,p

2
,…,p

n
} and family groups (F = {f

1
,f

2
,…,f

m
}) of varying compositions. These 

groups are defined by specific attributes (age, gender, physical condition), which influence mobility 

factors like walking speed and travel distance. A collective speed is considered  dictated by the slowest 

member, particularly for families, acknowledging that families prefer to stay together during evacuation 

scenarios (Ditlev Jorgensen and May, 2002).  

Another essential aspect is the passengers' state of alertness, referring to their ability to quickly 

notice, understand, and react to emergency cues, including alarms. This alertness level can shape the 

response time, which covers the interval from the alarm's onset to the evacuation decision, where more 

alert individuals tend to respond faster. Passengers engaged in activities such as sleeping, using their 

phones, drinking, or eating may have diminished alertness, which leads to longer response times 

(Brown, 2016). Passengers are berthed in various cabins situated within the corridors of several main 

vertical zones (MVZ). Each MVZ encompasses multiple corridors, and within these corridors, cabins 

are distributed (L = {l1,l2,…,lh}). The types of cabins range from standard and magic to owner suites, 

having different capacities, with some featuring terraces.  

However, these cabins do not have direct evacuation routes, which require occupants to proceed 

through specific corridor pathways to reach evacuation doors during an emergency. Evacuation doors 

(E = {e1,e2,…,eo}) are integral components in the corridors, which serve as critical junctions that 

connect passengers from their current positions to exit points, ultimately leading to muster stations. 

These connections form what is known as evacuation routes, strategically planned pathways that 

expedite the safe relocation of passengers in emergencies. Nonetheless, the effectiveness of these doors 

is subject to capacity constraints, which are influenced by the size of the corridor, the capacity at 

assembly points, or decisions made by the emergency team. These factors highlight the necessity for a 

versatile model capable of adapting to these variables to manage passenger movement dynamically in 

emergencies.  

Multi-period evacuation planning can enhance the adaptability and efficiency of emergency 

protocols, cater dynamically to real-time developments, and deliver a higher safety level for everyone 

involved. It positions the versatile model not just as a static response mechanism but as a proactive, 

strategic tool in emergency management (Hamacher and Tjandra, 2001; Minas et al., 2020). Let's denote 

(T= {t1,t2,…,tq}) as the distinctive intervals that make up the entire evacuation planning timeframe. 

Each interval ends when the exit doors have been used to their full potential, which indicates maximum 

occupancy.  
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Within this structure, the model succeeds in a dynamic, multi-stage setting. Passengers are guided 

to designated exit doors along an evacuation path, which depends on the doors' residual capacity. The 

practical limit of any evacuation route is determined by the maximum throughput of the exit doors, 

which guarantees a practical and streamlined evacuation rate throughout the process. This strategy 

harmonizes the thorough use of available evacuation paths with the exit doors' capacity constraints, 

which paves the way for a well-orchestrated evacuation effort. Moreover, it accentuates the critical 

importance of managing capacities to preserve the integrity and efficiency of the evacuation 

proceedings (Dressler et al., 2010).  

Passengers onboard a ship are dispersed across various facilities such as dining venues, cabins, 

and entertainment areas. Each location is at a distinctive distance from emergency exits, which affects 

evacuation times. Given the ship's architecture and diverse passenger needs, it's critical to provide 

explicit evacuation instructions from all these unique starting points. Proper allocation of emergency 

resources is essential, as is a strategic approach to crowd control and communication based on 

passengers' precise locations. This detailed understanding of passenger distribution is fundamental for 

practical emergency drill planning.  

In this context, multiple starting points are accounted for during emergencies, which assign 

different initial locations (I = {i1,i2,…,ib}) for passengers based on their accurate location at the time of 

the emergency. Additionally, various strategic positions (J = {j
1
,j

2
,…,j

c
}) are allocated for crew 

members to assist passengers (while the direct modeling of the evacuation crew is not initially included, 

the research designates locations—either potential or fixed—for crew members to facilitate support and 

assistance to passengers in need.). Here, p
n
i  signifies passenger n at location i, and f

m

i
 indicates family 

group m at the same point. The terms (p
n
i ,eo) and (f

m

i
,eo) define the specific routes for individuals and 

family groups, respectively, which moving from their initial location i to the designated evacuation exit 

eo. 

This research also considers two key features: the initial density of passengers at I and the traffic 

flow along the corridors. The initial density describes the spatial distribution of passengers in each i at 

the beginning of an evacuation. The initial density refers to the number of people present in a specific 

area at the start of the evacuation process. It is a crucial metric in emergency planning and response, as 

it influences the approach and resources required for a safe and efficient evacuation. Considering the 

initial density of passengers in each area of a ship is crucial for enhancing evacuation procedures. By 

maintaining a standard number of individuals in different sections, the management team can enforce 

safety protocols more effectively, mitigating risks associated with overcrowding, such as trampling and 

panic during emergencies. This strategic control of passenger distribution not only provides a safer and 

more manageable environment but also allows for the development of personalized evacuation 

strategies. Recognizing the specific density and layout of each area, from the width of corridors to the 

number of available exits, enables the creation of tailored plans. Continuous monitoring of initial 

density is essential for ensuring no specific location exceeds its allowable capacity before any 

emergency arises. This precaution helps maintain manageable evacuation conditions and upholds safety 

protocols. 

In contrast, traffic flow characterizes the movement of passengers through the evacuation routes 

in the event of an emergency at each period. Monitoring people's flow helps prevent bottlenecks in tight 

spaces by distributing crowds more evenly. Several factors can influence traffic flow, including the 

width and design of corridors, the number of exit doors, the average shoulder width of passengers, and 

factors related to passenger behavior, such as physical ability and walking speed.  

In this research, three pivotal factors identified by the IMO are integrated for calculating 

evacuation time on passenger ships: safety (α), correction (β), and counterflow correction (γ). α is used 

as a form of risk management (IMO, 2016). It is an additional layer of protection applied in human 
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evacuation process to account for uncertainties in the design process that are not covered by β and γ. β 

acknowledges the intricate realities of passenger dynamics, including varied behaviors and physical 

states. γ compensates for time lags due to intersecting movements of passengers. β and γ adjust for 

known or anticipated deviations from ideal models due to simplifications. 

These elements collectively contribute to the precision and dependability of the predictions (IMO, 

2016). As a result, a mathematical optimization model is presented tailored for human evacuation on 

passenger ships. The approach focuses on minimizing evacuation time, optimizing door usage, and 

guaranteeing optimal proximity between crew and passengers during emergencies. The model respects 

constraints such as the ship's layout, individual walking speeds, the distances that passengers must travel 

to reach exits, door capacities, and the initial distribution and movement of passengers accounting for 

uncertainties during the evacuation process. 

These considerations lead to a more organized and efficient evacuation process, which assures 

that all passengers, such as those in high-density areas, have clear, accessible routes to safety during 

critical situations. Figure 2 showcases the network configuration central to this study's analysis, which 

visually represents passenger distribution — encompassing solo travelers and family groups — 

throughout the ship's deck. 

 

Figure 2. Spatial distribution of passengers on a single ship deck. 

In the study at hand, the evacuation procedure is dissected into two consecutive, unique phases: 

(1) the response period (R) and (2) the travel period (T). Central to this study is the concept of evacuation 

time (ET), formulated in equation (1) as follows: 

ET = R + T (1) 

The process begins with the response period, initiated upon receiving initial cues (such as ship’s 

motions), and continues up to the moment of deciding to evacuate. Subsequently, the travel period 

encompasses the journey from the commencement of movement until an exit is reached. It's important 

to note that the computation of evacuation time is individualized, accounting for each passenger, with 
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considerations extending from solo travelers to families. Refer to Figure 3, which delineates these 

sequential periods. 

 

Figure 3. Periods of the evacuation process (IMO, 2016) 

Scenario 1 (α×(γ+β) = 1) outlines an evacuation approach, aligning safety, efficiency, and 

counterflow considerations harmoniously, indicating the possibility of achieving the optimal evacuation 

time under specified conditions. This scenario aligns with IMO standards for evacuation procedures. In 

contrast, Scenario 2 (α×(γ+β) < 1) reflects an optimistic evacuation strategy, suggesting that there might 

be room for enhancing evacuation efficiency, possibly through strategic reallocation of resources or 

modifying safety measures without undermining overall safety. Scenario 3 (α×(γ+β) > 1) signals a 

situation requiring additional time beyond IMO standards, indicating that the initial estimates for 

evacuation might be overly optimistic  (IMO, 2016). 

Every passenger, solo travelers or families, has a specific time they start and complete the 

evacuation. Start time (ST) is how long a passenger waits before they have to start leaving. Complete 

time (CT) is start time plus R and T as equation (2). 

CT = ST + R + T (2) 

The scope of this study is delineated through the establishment of four key assumptions and 

simplifications that underpin the models' formulation. These foundational elements are outlined below: 

• The model acknowledges uncertainty in passengers' walking speed, as discussed in Papers 2 

through 4.  

This aspect acknowledges that each passenger's walking speed is subject to fluctuation. Such variability 

stems from a multitude of factors, possibly encompassing individual physical capabilities, 

psychological states, and external conditions within the ship or immediate environment. These 

divergent elements contribute to an uncertain range of walking speeds. 

• It similarly recognizes uncertainty surrounding the distance passengers travel, a vision explored 

in Paper 3.  

Passengers, while navigating towards exits, might not adhere to a direct or shortest path for various 

reasons such as crowd dynamics, individual decision-making, physical obstructions, or the influence of 

unfolding circumstances during the emergency. This uncertainty in movement patterns introduces 

additional layers of uncertainty to estimating travel distances for each passenger. 
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• In Paper 4, the number of available exit doors with the likelihood of potential disruptions is 

associated.  

An element of uncertainty enveloping the capacity of each exit door is considered. This is about the 

physical limitations or maximum thresholds. Factors contributing to this uncertainty could include 

sudden door blockages, varying rates of passenger flow, or individual panic—all potentially altering the 

functional capacity of each door and, consequently, the overall evacuation dynamics. 

• A central premise across Papers 2 to 4 is the necessity for the complete evacuation of all 

passengers. 

Furthermore, the model operates on the principle of fixed and predefined parameters in certain aspects: 

• The locations of both cabins and potential exit doors are established as constants within the 

model's framework (referenced in Papers 2 through 4). 

• Similarly, the stationed locations of crew teams are set parameters within the model (discussed 

in Papers 2 through 4). 

By stating these elements are fixed and predefined, the potential facilities (exit doors and crew team 

locations) are predetermined; the model determines which ones to operationalize. 

• This research is focused on a single deck of passenger ships to allow for a detailed examination 

of evacuation plans, safety procedures, and logistical challenges within a simplified 

environment. This methodical limitation avoids the complex variables introduced by multi-

deck configurations, thereby facilitating more precise validation and verification of the 

developed models. It is important to note that this approach does not imply superiority over 

multi-deck studies but rather serves as a step toward developing scalable and robust safety 

strategies. The objective is to ensure that insights garnered from this singular-deck analysis 

contribute to the groundwork for future, more complex multi-deck modeling. This strategy 

aligns with the aim to enhance safety protocols, emergency preparedness, and evacuation 

procedures in a progressively systematic manner, acknowledging both the potential and 

limitations of the current methodology. This focused analysis is a preliminary yet critical step 

in advancing toward comprehensive models that can navigate the intricacies of multi-level 

environments more effectively. 

To establish the framework of this study, assumptions and simplifications are introduced for the 

model's structure, outlined as follows: 

• Passenger walking speeds are considered uncertain in HEM 1 to HEM 3. 

• In HEM 2, the passenger's travel distances are treated as uncertain. 

• In HEM 3, the operability of exit doors is regarded as a potential variable, reflecting possible 

disruptions. 

• A primary goal is evacuating all passengers to get transitional points (e.g., exit doors or stairs) 

and evacuate from the deck (in all HEMs). 

• Fixed and predefined elements include cabin locations, potential exit doors, potential crew team 

positions, and corridor layouts (in all HEMs). 

• Crew teams are positioned at their assigned locations before the initiation of the evacuation 

process for passengers. 

• The capacity of exit doors is assumed to be known and constant in HEM 1 and HEM 2. 
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4. Human evacuation problem formulation 
This section formulates three optimization models for the described human evacuation problem in 

passenger ships, evolved across Papers 2 to 4. Each model enhances the previous by adding human 

evacuation elements and addressing uncertainties from different uncertainty modeling techniques. The 

models are mathematically articulated, with occasional linearization to introduce a computationally 

efficient version (Asghari et al., 2022). 

For a coherent comparison, the models from Papers 2 and 3 are adjusted to mirror the most updated 

version presented in Paper 4. This uniformity across models means they share the same mathematical 

framework, including variables, parameters, equations, and objectives. However, due to differing 

underlying uncertainties, distinctive uncertainty management techniques are implemented for each, 

including RO, RSSP, and HRSSRP. This approach allows us to observe the models' responsiveness and 

the nature of the solutions they generate under various uncertain scenarios. The models decide on the 

allocation of each passenger and family to appropriate exit doors at the appropriate period, response 

time for each passenger, travel and evacuation time for each passenger, the total evacuation time, the 

number of exit doors, the number of crew teams, and identify additional byproducts of the models such 

as the slowest passengers.  

4.1. HEM 1 formulation  
The initial model, introduced in Paper 2, aims to minimize the evacuation time for the slowest 

passengers, encompassing families and solo travelers, by assigning them to the appropriate exit doors 

amidst uncertainties in walking speed. This uncertainty is tackled through RO. The discussion starts 

with addressing the uncertainty in passenger walking speed on a passenger ship, then explores the 

suitability of robust optimization for the problem at hand, and ultimately, formulates the premier 

optimization model (HEM 1). 

4.1.1. Uncertainty in passenger walking speed 

Walking speed, measured in meters per second, is a cornerstone in the mechanics of human evacuation 

in the maritime context of passenger ships. This critical metric serves as one of the foundations for 

calculating the time required for individuals to traverse from their initial standings to designated exits, 

a vital component directly influencing total evacuation time, managing crowd density, and orchestrating 

the systematic flow toward safety (Na et al., 2019; Wang et al., 2021a). The consideration of walking 

speed is instrumental not only in crafting practical evacuation models but also in fortifying passenger 

safety (Bles et al., 2001; Weng et al., 2006). Acknowledging the spectrum of individual mobility, 

including those with special needs, provides an inclusive safety strategy. This attention to detail in 

evacuation dynamics also facilitates the actual deployment and allocation of emergency response 

resources, which enhances the efficacy of coordinated rescue efforts.  

Moreover, adherence to these calculated parameters is paramount in complying with maritime 

safety norms, thereby reinforcing the commitment to preserving lives and maintaining regulatory 

standards in emergency preparedness (Katuhara et al., 2003; Walter et al., 2017). This element, 

therefore, intertwines practical planning, individual safety, operational synchronization, and regulatory 

adherence, all governed by the pivotal role of walking speed in human evacuation logistics. 

In emergencies aboard passenger ships, walking speed becomes subject to a confluence of 

elements like crowd density, the ship's physical configuration, individual mobility constraints, ship 

motions, observable hazards, and psychological factors such as stress (Ditlev Jorgensen and May, 2002; 

Kwee-Meier et al., 2017; Sun et al., 2018a; Wang et al., 2021a). These aspects can alter walking 

dynamics, which highlights the reliance of passengers on their fundamental ability to walk to reach 

safety exits. Obstructions or inconsistencies in walking speed may trigger substantial evacuation delays, 

which escalate into risky conditions during urgent evacuations (Ni et al., 2018). An insight into these 

determinants allows for the formulation of proficient evacuation tactics and structural planning, 
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reducing the dangers linked with slow egress and guaranteeing swift access to safety in alarming 

situations. Uncertainty in walking speed pertains to the uncertain nature and fluctuations in individuals' 

speed, particularly evident during evacuations. This uncertainty stems from a multitude of sources 

encompassing personal attributes (like age or physical health), environmental dynamics (including 

smoke or minor hindrances), psychological states (panic or stress), ship motions, clear yet hazardous 

conditions, and situational variables (such as managing belongings or aiding others) (J. Wang et al., 

2013; Q. Xie et al., 2020a, 2020c).  

Exploring this uncertainty is imperative for myriad reasons (Arshad et al., 2022). It not only 

recognizes the diversity in human capacities and behaviors, thereby promoting safety protocols that 

accommodate this diversity, but it also fosters the establishment of robust evacuation simulations. These 

simulations consider possible anomalies that move beyond the unreliable method of generalizing 

speeds. Furthermore, it underlines the necessity for flexible evacuation plans that can adapt to diverse 

needs and circumstances. In emphasizing and examining the uncertain nature of walking speed, entities 

involved in ship design, regulation, and emergency response can anticipate actual emergency contexts 

more accurately (Volodina and Challenor, 2021). This proactive approach enhances evacuation 

methodologies, potentially safeguarding lives by addressing the complications introduced by 

unexpected hindrances in reaching emergency exits. 

4.1.2. RO for HEM 1 

Employing RO in HEMs, when dealing with uncertainties in walking speed can present a strategically 

advantageous approach for several compelling reasons. The imperative to integrate RO into HEM arises 

primarily from accommodating the uncertain nature of human behavior and varying mobility capacities 

in evacuation scenarios. 

One of the primary motivations for utilizing RO in this context is to critically evaluate its 

performance relative to other techniques used in this research (in HEM 2 and HEM 3). This comparative 

analysis can help identify reliable, efficient, and adaptable strategies for evacuation modeling. 

Furthermore, the credibility of RO is well-established across various disciplines, which has consistently 

yielded promising results in supply chain management and logistics, energy systems, finance, and 

healthcare (Gabrel et al., 2014; Moret et al., 2020; Pishvaee et al., 2011). Its proven track record of 

versatility enhances the appeal of its application in HEM (Jenkins et al., 2020; Ji and Qi, 2020; Sun et 

al., 2021).  

Delving deeper into the specifics of RO, its theoretical framework excels in addressing 

uncertainties intrinsic to optimization problems. RO does not merely seek solutions within an ideal 

scenario; instead, it fortifies the model against diverse realizations of uncertainty within a predefined 

bounded set (Ben-Tal and Nemirovski, 2008). This bounded uncertainty set, demarcated by specific 

upper and lower limits, presupposes that all uncertain parameters are contained within this range, 

thereby safeguarding the optimal solution against potential variations. 

Two salient advantages catapult the efficacy of RO in this domain. Firstly, the robust counterpart 

maintains computational tractability regardless of the number of uncertain parameters. This aspect 

ensures that the model remains practical and executable even when confronted with multiple variables. 

Secondly, the model is incredibly accommodating in terms of data requirements. It permits the 

integration of historical data and subjective expert opinions in establishing the boundaries of uncertainty 

sets, which bypass the necessity for precise probabilistic distributions (Keyvanshokooh et al., 2016).  

Additionally, RO empowers decision-makers with the ability to calibrate the level of conservatism 

in their models, which influences the robustness of the proposed solutions. Conservatism is a price for 

model robustness that represents a deliberate trade-off. It allows for tailored defensive measures against 

variations in outcomes (Bertsimas and Sim, 2004). Specifically, it provides a mechanism to gauge the 
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impact of deviations from the nominal solution, which offers foresight into potential shifts in the 

objective value (Roos and den Hertog, 2020). 

HEM 1 employs robust optimization by defining uncertainty sets to manage the uncertainty 

associated with passenger walking speeds. This approach is beneficial in scenarios where detailed data 

may be scarce (Gabrel et al., 2014). It can facilitate the development of evacuation plans using minimal 

information, such as known minimum and maximum walking speeds, to account for variations in 

walking speeds. To address the challenge of limited data, this thesis introduces the uncertainty sets for 

passenger walking speed. These sets are designed to mitigate data scarcity by encompassing potential 

variations within their bounds. 

4.1.3. Mathematical optimization formulation of HEM 1 

The process initiates by establishing a deterministic model, which then progresses to the linearization 

phase. The next step is to construct a robust counterpart of the model addressing uncertainty. After 

generating the robust counterpart, the passenger walking speed adjustment strategy is explained. The 

final stage involves converting two objectives into a single objective. 

4.1.3.1. Deterministic formulation  

In terms of the notation (HEM 1), the described human evacuation problem (section 3) can be 

formulated as a Non-Linear Programming (NLP) mathematical optimization model as follows. 

Ζ1 = min{ max
p ∈ P, e ∈ E, i ∈ I, t ∈ T

(dpe
i

 + (1 - θp) × ι / vpt) × Xpet ×ϑp
i
)} (3) 

Ζ2 = min{ max
f ∈ F, e ∈ E, i ∈ I, t ∈ T

 (dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i
)} (4) 

 

The objective functions are subjected to the following constraints: 

 

 

Xpet ≤ rpet                                                   ∀ p ∈ P, e ∈ E, and t ∈ T (5) 

Hfet ≤ rfet                                                       ∀ f ∈ F, e ∈ E, and t ∈ T (6) 

Xpet ≤ Yet                                                       ∀ p ∈ P, e ∈ E, and t ∈ T (7) 

Hfet ≤ Yet                                                       ∀ f ∈ F, e ∈ E, and t ∈ T (8) 

∑  rpet

e ∈ E

×Yet ≥ 1                                        ∀ p ∈ P and t ∈ T (9) 

∑  rfet

e ∈ E

×Yet ≥ 1                                         ∀ f ∈ F and t ∈ T (10) 

∑ Xpet

p ∈ P

+ ∑ Hfet

f ∈ F

× εf ≤ cap
et

×Yet       ∀ e ∈ E and t ∈ T (11) 

Yet ≤ ∑ Xpet

p ∈ P

                                              ∀ e ∈ E and t ∈ T 
(12) 

Yet ≤ ∑ Hfet

f ∈ F

                                                ∀ e ∈ E and t ∈ T 
(13) 

∑ ∑ Xpet

t ∈ Te ∈ E

 = 1                                           ∀ p ∈ P (14) 

∑ ∑ Hfet

t ∈ Te ∈ E

 = 1                                           ∀ f ∈ F (15) 

( ∑ Xpet

p ∈ P

+ ∑ Hfet×εf

f ∈ F

)× τ  ≤ ω × λt    ∀ e ∈ and t ∈ T (16) 

Gj(t-1) ≤ Gjt                                                    ∀ j ∈ J and t ∈ T (17) 

∑ η
j
×G

jt
≥ (N+ ∑  εf

f ∈ F

)/ℓ

j ∈ J

                       ∀ t ∈ T (18) 
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Ye(t-1) ≤ Yet                                                     ∀ e ∈ E and t ∈ T (19) 

 

The optimization objectives of the proposed model focus on a min-max optimization problem, 

which minimizes the variables outlined in equation (3-4). This approach targets identifying the slowest 

passenger and family to ensure optimal distribution of resources. The min-max approach not only 

optimizes resources but also stabilizes the overall system against fluctuations in individual 

circumstances. Constraint (5-6) states that passengers within the coverage radius of an exit door can 

reach the respective stair. Constraint (7-8) guarantees that, in each respective time interval, passengers 

are required to proceed toward the established operational exit door. Constraint (9-10) assures that in 

each period, at least one exit door is opened to serve evacuees. Constraint (11) stipulates that evacuees 

traveling toward an exit door at each period must be less than the capacity of the corresponding facility. 

Constraint (12-13) ascertains that at least one evacuee must travel to the established exit stair at each 

period. Constraint (14-15) imposes that each passenger is evacuated only one time over the horizon 

period. Constraint (16) assures that the number of evacuees past the corridor per unit of clear width of 

the corridor involved must be less than or equal the traffic flow of passengers in each period. Constraint 

(17) assures that a location, once evaluated for a crew team, must stay available for the entire planning 

phase. Constraint (18) ensures crew members are positioned to assist passengers during evacuation. It 

aims to strategically place crew in locations where they can be helpful in enhancing evacuation 

efficiency without obstructing passenger movement. Constraint (19) stipulates that, once they are 

installed, exit door must retain their existence without interruption throughout the entire span of the 

planning timeline. 

4.1.3.2. Linearization  

A linearization technique is applied to decrease the computational complexity of the original 

non-linear optimization model and, ultimately, facilitate decision-making (Asghari et al., 

2022). In this regard, Θ1 = min { max
p ∈ P, e ∈ E, i ∈ I, t ∈ T

(dpe
i

 + (1 - θp) × ι / vpt) × Xpet ×ϑp
i
)} is 

considered. As the left-hand side represents the maximum value of the right-hand side, Θ1 is, 

therefore, greater, or equal to all terms generated by the right-hand side. The structure of the 

mathematical model is reformulated by adding equations (20-25) to equations (5-19). 

Ζ1 = Θ1 (20) 

Θ1 ≥ dpe
i

 + (1 - θp) × ι / vpt) × Xpet ×ϑp
i
    ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I (21) 

Θ1 ≥ 0 (22) 

The process applies to the second objective. 

Ζ2 = Θ2 (23) 

Θ2 ≥ dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i
    ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I (24) 

Θ2 ≥ 0 (25) 

4.1.3.3. Robust counterpart of HEM 1 under uncertainty 

Consider the following deterministic linear optimization model. 

Min
x

f(x)  s.t. Amn× xn ≤ bi, ∀i = 1, …, m and x ∈ R+ (26) 

It is assumed that only the elements of matrix A, i.e., aij, are subjected to uncertainty. 

Generally, an uncertain parameter, ãij, can be defined as ãij = a̅ij+ ξij × âij. Where a̅ij stands for 

a nominal value, âij corresponds a perturbation value, and ξij represents a parametrized mapping 

of the uncertain parameter (Bertsimas and Sim, 2004; Namakshenas et al., 2022). In doing so, 

a model with the uncertain parameter can be redeveloped as: 
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Min
x

f(x)  s.t. ∑ a̅ij× xj

n

j=1

+ ∑ âij × x
j

n

j=1

 ≤  bi, ∀i = 1, …, m and ξij∈ U ,x ∈ R+ (27) 

Where U is the uncertainty set imposed on the model representing the oscillation of the 

uncertain parameter state within the set, the uncertainty set is derived from properties of vector 

norms describing the size and extent of the uncertain parameter. One of the techniques to build 

a robust model can be the determination of the worst-case value over all possible values which 

uncertain input parameters may take within the described uncertainty set. According to 

(Bertsimas and Sim, 2004, 2003), (27) is reformulated as:  

Min
x

f(x)  s.t. ∑ a̅ij× xj

n

j=1

+ max
ξij ∈ U

( ∑ âij×ξij×xj

n

j=1

)  ≤  bi, ∀i = 1, …, m and x ∈ R+ (28) 

The inner maximization part of inequality (28) is affected by uncertainty. The dual norm 

properties are employed to derive a deterministic explicit counterpart from it. Accordingly, the 

robust counterpart is written as follows; interested readers referred to Ben-Tal and Nemirovski 

(2008, 1998), Ben et al. (2004), and Namakshenas et al. (2022). 

Dual { max
ξij ∈ Uh 

{âij×ξij×xj}} = ∆solo× ‖âij×xj‖q
, ∀i = 1, …, m, ∀j = 1, …, n  and x ∈ R+ (29) 

Where h and ∆solo are some values associated with the h-norm of vector x and a positive 

number representing the conservatism level, respectively. Regarding q, it is satisfied based on 
1

h
+

1

q
=1. 

As an example, a robust counterpart for the inner maximization part in inequality (28) 

based on the box uncertainty set, U∞= {{ξij| ‖ξij‖
∞

≤ ∆solo}}, is equivalent to: 

Dual { max
ξij ∈ U∞ 

{âij×ξij×xj}} = ∆solo× ‖âij×xj‖1
=∆solo× ∑|âij×xj|

n

j=1

 , ∀i = 1, …, m and x ∈ R+ (30) 

According to the proposed model in this study, the uncertainty from passenger walking 

speed is expressed as  v'̃
pt. It becomes any value in the box uncertainty set oscillated in v'̃

pt = 

[v'̂
pt-vpt́ , v'̂

pt+vpt́ ]. The same process applies to families walking speed. According to inequalities 

(21 and 24) and (29-30), the tractable form of the constraint subjected to the uncertainty in this 

study can be stated as follows: 

 v'̅
pt × Θ1+ ∆solo× v'̂

pt × |Θ1| ≥  dpe
i

 + (1 - θp) × ι / vpt) × Xpet×ϑp
i
        ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I  (31) 

 v'̅
ft × Θ2 + ∆family × v'̂

ft × |Θ2| ≥  dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i
    ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I (32) 

  

Accordingly, the robust counterpart of the proposed human evacuation model with 

uncertain passengers' walking speed by box uncertainty sets is equivalent to the following MIP 

model: 

Min (Ζ
1
) = Θ1  

Min (Ζ
2
) = Θ2  

Subjected to:  
(5-19)   

 v'̅
pt × Θ1 + ∆solo× v'̂

pt × Θ1 ≥  dpe
i

 + (1 - θp) × ι / vpt) × Xpet×ϑp
i
         ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I  (33) 

 v'̅
pt × Θ1 -  ∆solo× v'̂

pt × Θ1 ≥  dpe
i

 + (1 - θp) × ι / vpt) × Xpet×ϑp
i
          ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I  (34) 

 v'̅
ft × Θ2 + ∆family × v'̂

ft ×Θ2 ≥  dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i
       ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I (35) 
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 v'̅
ft × Θ2  -  ∆family × v'̂

ft ×Θ2 ≥  dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i
       ∀ p ∈ P, e ∈ E, t ∈ T, i ∈ I (36) 

  

4.1.3.4. Passenger walking speed adjustment 

Evacuation models traditionally rely on static average walking speeds, which fall short of accurately 

predicting human behavior during emergencies. Kim et al. (2019) observed that individuals do not 

maintain a constant speed throughout evacuations; instead, factors like increasing hazards (e.g., ship 

motion influence), psychological stress, and physical fatigue reduce speed, particularly near the end of 

evacuation paths. In real-world emergencies, people's responses vary dramatically, which leads to 

uncertain speed changes. This variability is intensified by environmental challenges, like navigating a 

tilting ship or avoiding obstacles, which traditional models don't account for. It is crucial to integrate 

dynamic walking speed adjustments to enhance the realism and reliability of these models. These 

adjustments allow models to mirror actual human responses to changing threat levels and environmental 

conditions, which can result in more accurate evacuation timelines. 

In Paper 2, the focus was on understanding the impact of the heeling angle on the walking speed 

during evacuations, drawing from empirical data (Sun et al., 2018a). They conducted an in-depth 

analysis, quantifying how various heeling angles—specifically 0º, ±5º, ±10º, ±15º, and ±20º—alter 

individuals' walking speeds. Their study revealed the diverse effects of heeling angles on passenger 

movement, findings that are applied to walking speed adjustment in Table 8. The table illustrates the 

specific influence rate (IR) that each respective angle has on walking speed during the evacuation 

process, which provides pivotal insights that inform the subsequent methodologies. Armed with this 

knowledge, a system is implemented within the evacuation model to adjust walking speeds dynamically, 

which accounted for these angle-induced variations. This adjustment mechanism is governed by the 

algorithm outlined in Equation (37), which provides that each individual's walking speed is realistically 

represented and updated according to the changing circumstances during the evacuation process. 

vpt́  = vpt × (IRt) (37) 
Table 8. The adjusted walking speed after applying IR. The o is an integer value representing the number of evacuation 

periods. 

 IR  t1  t2 …  to 

Heel -15º 0.9831 vpt1́  = vpt1  × (0.98311) vpt2́  = vpt2  × (0.98312) … vptó  = vpto × (0.9831o) 

Heel -10º 0.9834 vpt1́  = vpt1  × (0.98341) vpt2́  = vpt2  × (0.98342) … vptó  = vpto  × (0.9834o) 

Heel -5º 0.9118 vpt1́  = vpt1  × (0.91181) vpt2́  = vpt2  × (0.91182) … vptó  = vpto  × (0.9118o) 

Heel 0º 1 vpt1́  = vpt1 vpt2́  = vpt2 … vptó  = vpto 

Heel 5º 0.9583 vpt1́  = vpt1  × (0.95831) vpt2́  = vpt2  × (0.95832) … vptó  = vpto  × (0.9583o) 

Heel 10º 0.9490 vpt1́  = vpt1  × (0.94901) vpt2́  = vpt2  × (0.94902) … vptó  = vpto  × (0.9490o) 

Heel 15º 0.9462 vpt1́  = vpt1  × (0.94621) vpt2́  = vpt2  × (0.94622) … vptó  = vpto  × (0.9462o) 

Heel 20º 0.9462 vpt1́  = vpt1 × (0.9391) vpt2́  = vpt2 × (0.9392) … vptó  = vpto × (0.939o) 

 

In Paper 3, the relationship between the ship's rolling angle and passenger walking speed is 

explored, guided by the empirical findings of (Wang et al., 2021b). They illuminated how the rhythmic 

swaying of a ship, rolling motions, progressively hampers evacuees' walking speeds. Recognizing this, 

an adjustment scheme is introduced to mimic these real-world uncertainties, specifically those triggered 

by ship movements. The methodology revolved around recalibrating walking speeds for each passenger 

throughout the designated evacuation period (t ∈ T), which accounted for the ship's ongoing instability. 

This dynamic approach ensures the model isn't static; instead, it evolves, reflecting emerging realities 

and unforeseen developments within the evacuation scenario (Schwartz, 2012). Wang et al. (2021b) 

observed that even subtle shifts in the ship's rolling angle (ranging from 0 to 4º) could have a substantial 

impact on walking speeds size, which vary between athwartship and fore-aft directions. Within the 
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context of these insights, Table 9 details the IR (Equation 38) each rolling angle has on walking speeds 

during an evacuation, which emphasizes the non-linear nature of human movement in these scenarios. 

vpt
s' = vpt

s  × (IRt) (38) 

Table 9. The walking speed after adjusting to a new situation.  

 IR t1 t2 … to 

Rolling 0 - 4º 

(athwartship) 0.9295 v
pt1
s'  =v

pt1
s  × (0.92951) v

pt2
s'  =v

pt2
s  × (0.92952) … vpto

s'  =vpto
s × (0.9295o) 

Rolling 0 - 4º 

(fore-aft) 
0.9114 v

pt1
s'  =v

pt1
s  × (0.91141) v

pt2
s'  =v

pt2
s  × (0.91142) … vpto

s'  =vpto
s  × (0.9114o) 

 

In Paper 4, the model adopts the premise that walking speeds can decrease in both linear and 

exponential manners, which is contingent on various factors emergent in an evacuation. Specifically, 

how the escalation of perceived danger might realistically affect a passenger's speed. This consideration 

led to the incorporation of degradation constants in the model: ϻ for family units and Ϩ for solo travelers. 

The model employs adjustment formulas, which assume an exponential decay in walking speed, as 

detailed below (Equations 39-40): 

vpt
s̃ ≈ vpt

s ×e(Ϩ×(t-1))   ∀ p ∈ P, t ∈ T, and s ∈ S (39) 

v́ft
s̃ ≈ v́ft

s
× e(ϻ×(t-1))   ∀ f ∈ F, t ∈ T, and s ∈ S (40) 

 

Moreover, understanding the necessity to accommodate a spectrum of influences on walking 

speed, a linear adjustment mechanism is introduced to bolster the model's resilience and realism. This 

procedure is as follows (Equations 41-42): 

For  ∀ p ∈ P, t ∈ T, and s ∈ S: 

If vpt
s  > Ϩ × (t - 1), update the speed as: vpt

s  = vpt
s  - Ϩ × (t - 1) 

If vpt
s  <= Ϩ × (t - 1), update the speed as: vpt

s  = Ꜫ (41) 

And for ∀ f ∈ F, t ∈ T, and s ∈ S: 

If v́ft
s
 > ϻ × (t - 1), update the speed as: v́ft

s
 = v́ft

s
 - ϻ × (t - 1) 

If v́ft
s
 <= ϻ × (t - 1), update the speed as: v́ft

s
= Ꜫ (42) 

This model acknowledges the deceleration of evacuees based on their initial speeds, represented 

through exponential and linear functions, which embody the environmental tolls of the evolving 

emergency. As hazards intensify, the model intuitively reflects the human tendency for reduced urgency, 

which captures the authentic dynamics of an evacuation scenario. The three models, HEM 1, 2, and 3, 

are subsequently subjected to testing using the adjustment technique finalized in Paper 4. 

4.1.3.5. Multi-objective formulation 

The proposed model has two objectives, each aiming for minimization. Achieving an optimum in one 

doesn't guarantee an optimum in others (Marler and Arora, 2004). The LP-metric method is applied to 

manage competing priorities, known for multi-objective decision-making (MODM) (Branke et al., 

2008). Despite sensitivity to the norm order and potential computational demands, its flexibility, 

robustness to outliers, and adaptability make it a powerful tool (Deza and Deza, 2013). Optimal values 

are determined for each objective, and the bi-objective model is transformed into a single-objective 

model using the formula (43). 
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Min ZLP= (w1× (
Z1-Z1

*

Z1
*

)

h

) + (w2× (
Z2-Z2

*

Z2
*

)

h

)

1
h

 (43) 

Z1
* and Z2

*  are optimal values of the three objective functions. w1 and w2 represent the weights 

assigned to each of these objective functions (w1 + w2  = 1 and w1, w2 ≥ 0). Setting h = 1 (Manhattan 

distance) provides robustness to outliers where extreme values can distort outcomes (Tahraoui et al., 

2022). The model runs independently for each objective, minimizing one function without considering 

the others. Equation (43) updates to (44), resulting in a single objective function (44) with constraints 

(5-19) and (33-36). 

Min ZLP= (w1× (
Z1-Z1

*

Z1
*

)) + (w2× (
Z2-Z2

*

Z2
*

)) (44) 

4.2. HEM 2 formulation 
In Paper 3, a subsequent model has been developed, focusing on minimizing the total evacuation time 

for all passengers on board, encompassing families and solo travelers. This effort requires the clear 

allocation of passengers to the appropriate exit points due to the uncertain nature of walking speeds and 

travel distances, which are integral to computing evacuation time. The approach adopts RSSP to counter 

these uncertainties. The narrative starts by exploring the variable factors of walking speed and travel 

distance in the context of a passenger ship. It proceeds to justify the relevance of RSSP in managing 

these uncertain aspects. The discussion then leads to the establishment of an optimization model, 

identified as HEM 2. 

4.2.1. Uncertainty in passenger walking speed and travel distance 

In the previous discussion, the uncertainty of passenger walking speed was explored. Now, attention 

turns to the uncertainties associated with passenger travel distance. In the intricate dynamics of an 

evacuation, especially on passenger ships, calculating the time needed for each passenger's safe exit is 

crucial. A critical factor in this calculation is the passenger travel distance, which influences evacuation 

timelines. 

• Understanding passenger travel distance and its role in evacuation time calculation: 

The concept of travel distance in evacuation refers to the actual length of the path that a passenger 

must traverse to reach a safe point, typically from their current location to the nearest appropriate exit 

on a ship. This distance is not a constant but varies based on several factors, including the passenger's 

location, the ship's layout, and potential obstructions or diversions that might occur during an 

emergency. 

The importance of travel distance becomes evident when it refers to the basic physics of motion. 

Considering the equation of motion where time (t) is calculated by dividing distance (d) with speed (s) 

(t = d/s), it is clear that the total distance a passenger needs to cover directly impacts the time they 

require to evacuate. Even if two individuals have the same walking speed, the one with a longer travel 

distance will inherently take more time to reach safety. Hence, understanding and optimizing these 

travel distances is paramount to minimizing overall evacuation time. 

• Addressing uncertainty in passenger travel distance: 

Uncertainty in travel distance arises from the uncertain nature of emergencies. In emergency 

scenarios, especially on a passenger ship, several unforeseen factors could alter travel paths—debris, a 

surge in passenger crowds, temporary obstructions, or changes in the ship's motions due to the 

emergency. This uncertainty produces a range of possible travel distances for each passenger. 
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Studying these uncertainties is vital because preparing for a spectrum of scenarios than a 

deterministic situation enhances the robustness of the evacuation plan. It can provide the strategy is 

adaptable and resilient in various contingencies, potentially saving more lives by accounting for 

situations beyond optimistic travel distance estimates. 

• Importance of considering hybrid uncertainty in both walking speed and travel distance: 

While it's critical to study the uncertainties in travel distance independently, considering them in 

conjunction with uncertainties in walking speed takes the evacuation model's accuracy a step further. 

This hybrid uncertainty acknowledges the interplay between how fast one can move (walking speed) 

and how far one needs to go (travel distance), each with its range of variability. 

By studying both uncertain components simultaneously, planners can prepare for a broader array 

of scenarios and construct a more robust, fail-safe evacuation strategy. It accounts for the weakest links 

(e.g., slower individuals with longer travel distances) and ensures inclusive safety measures. This 

holistic view is essential because, during an actual evacuation, both factors' variability might compound, 

and the model should accommodate such complexities to be effective in real-world scenarios. 

4.2.2. RSSP for HEM 2 

In human evacuation modeling, those designated as HEM 2, addressing the inherent uncertainties is 

crucial for developing evacuation plans. In this context, the application of risk-neutral, two-stage, 

scenario-based stochastic programming (RSSP) proves especially pertinent due to its unique handling 

of uncertainties and robust decision-making framework. Below, the suitability of RSSP for modeling 

hybrid uncertainties in passenger walking speed and travel distance within human evacuation models 

under hybrid uncertainties is explored. 

The two-stage, scenario-based structure of RSSP is inherently compatible with the dynamics of 

human evacuation planning. This approach divides decision-making into two intuitive phases: here-

and-now decisions, made in the absence of complete information, and wait-and-see decisions, adjusted 

once uncertainties are realized (Birge and Louveaux, 2011). This mirrors real-life evacuation scenarios 

where initial decisions should be made quickly, even with incomplete information, and later adjusted 

as the situation unfolds (Knueven et al., 2023). The model integrates uncertainty directly into the 

optimization process by incorporating scenarios representing possible outcomes of uncertain 

parameters (like walking speed and travel distance). This scenario-based framework is vital in human 

evacuation contexts as it allows for adaptability and informed decision-making in response to evolving 

circumstances on the ground. For example, different scenarios can account for varying conditions on a 

passenger ship, such as obstructions or passenger density, each affecting travel distance and walking 

speed. 

Optimizing the total evacuation time for all passengers under uncertain conditions is a challenging 

task that seeks to minimize the average time required for the entire evacuation process. A risk-neutral 

perspective is beneficial as it aims for an optimization strategy that neither specifically avoids nor seeks 

risk. Instead, it considers the general expectation of the entire set of passengers' evacuation time, which 

treats gains and losses equally in terms of impact (Shapiro, 2021; Shapiro et al., 2013). This approach 

contrasts with a risk-averse strategy that might focus on worst-case scenarios, which potentially leads 

to overly conservative planning and inefficient use of resources. By adopting a risk-neutral stance, the 

RSSP method handles the randomness presented by uncertain parameters across the entire scenario set 

than being overly cautious and planning solely for the extreme cases (Bayram and Yaman, 2018; Liang 

et al., 2019).  

This balance can be important in evacuation scenarios, where overly conservative strategies may 

result in unnecessary delays or resource allocation inefficiencies. Instead, focusing on the average 
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expected outcome ensures a more balanced, practical approach, optimizing resource utilization while 

maintaining an acceptable level of preparedness for less likely but more impactful adverse scenarios. 

4.2.3. Mathematical optimization formulation of HEM 2 

The process initiates by establishing a deterministic model, which then progresses to the scenario 

generation phase. After that, a step is constructing a scenario-based counterpart of the model addressing 

hybrid uncertainty. 

4.2.3.1. Deterministic formulation 

The described human evacuation problem (section 3) can be formulated a MIP mathematical 

optimization model as follows as well. 

Ζ4= α×(γ+β)×( ∑ ∑ ∑ ∑  (d
pe

i
 + (1 - θp) × ι / vpt) × Xpet ×

i ∈ It ∈ Te ∈ Ep ∈ P

ϑp
i

  

+ ∑ ∑ ∑ ∑ dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i

i ∈ It ∈ Te ∈ Ef ∈ F

) 
(45) 

 

The objective function (45) is subjected to the constraints (5-19). 
 

The objective function (45) optimizes the total evacuation time based on travel distances, non-alert 

travel distances, walking speed, and the current starting locale affected by the counterflow correction 

and safety factors. Equation (45) is subjected to constraints (5-19), which were previously explained. 

4.2.3.2. Passenger’s walking speed and travel distance scenarios 

The IMO provides real-world data on passengers' walking speeds, categorized by age, gender, and 

mobility. Table 10 reveals uniformly distributed speeds ranging from a set minimum to a maximum. 

Table 10. Walking speed on flat terrain (e.g., corridors). 

Passenger's characteristics Min. (
meters

second
) Max. (

meters

second
) 

Females younger than 30 years 0.93 1.50 

Females 30–50 years old 0.71 1.19 

Females older than 50 years 0.56 0.94 

Females older than 50, mobility impaired (1) 0.43 0.71 

Females older than 50, mobility impaired (2) 0.37 0.61 

Males younger than 30 years 1.11 1.85 

Males 30–50 years old 0.97 1.62 

Males older than 50 years 0.84 1.40 

Males older than 50, mobility impaired (1) 0.64 1.06 

Males older than 50, mobility impaired (2) 0.55 0.91 

Mobility impaired (1) and (2):  limited mobility without and with the need for assistance, respectively. 

 

Using the speed range limits, Equation (46) guides the random generation of walking speeds, with 

the Python library NumPy (np) facilitating sample creation for individual passengers. 

Walking speed samples= 
(Max. value of speed - Min. value of speed) × np.random.random_sample(number of samples) 

                                      + Min. value of speed      ∀ p ∈ P 

(46) 

The method is similarly used to generate walking speed samples for family groups. Following 

this, the k-means clustering method simplifies scenario creation by promoting data condensation and 

trend identification, which is crucial in informed decision-making under uncertainty. Clustering 

algorithms, particularly k-means, streamline scenario generation by facilitating data reduction and 
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pattern recognition, which enhances decision-making amid uncertainties (Xu and WunschII, 2005). 

Their computational efficiency, scalability, and rapid convergence make them ideal for processing large 

datasets and forming distinct clusters, revealing patterns and trends. Employing Python's NumPy and 

scikit-learn libraries, the k-means approach not only generates speed scenarios for each passenger but 

also employs the inertia metric for cluster quality evaluation (Jain, 2010). 

Figure 4 demonstrates the strategic placement of cluster centroids to minimize intra-cluster 

variances, which reduce as more clusters form due to finer data segmentation.  

 

Figure 4. Cluster analysis: centroid positions for passenger walking speeds. 

Up to three distinct scenarios emerge from these clusters, with an additional one reflecting the 

passenger's standard walking speed. Each cluster's core (centroid) dictates the walking speed for its 

respective scenario, authenticated by historical data from Table 10. These scenarios are then depicted 

as S = [S1, S2, S3, S4], where Ss represents the centroid for clusters 1 through 3, and S4 denotes the 

typical passenger walking speed. 

Passenger travel distance is gauged based on a passenger's proximity, presumed to be in I possible 

spots, to various potential exit doors. Scenarios can constructed by applying a deviation rate (dr𝑢𝑘
) from 

nominal distance values. This approach acknowledges that such distances can fluctuate according to the 

specific layout of a passenger ship. Additionally, the the deviation rates used may be modified in 

accordance with the insights and opinions of decision-makers. The dr𝑢𝑘
is measured in meters and 

extends the base travel distance. Travel distance scenarios stem from Equation (47), with Equation (48) 

elaborating on these scenarios. In particular, Equation (49) outlines three distinct travel distance 

scenarios for each passenger. 

dr𝑢𝑘
=U𝑘  for k=1, 2, 3,…, K (47) 

travel distance under scenario U𝑘 = dr𝑢𝑘
 + nominal value of travel distance (48) 

 dpe
iu

= dr𝑢𝑘
+ dpe

i
  and dru𝑘∈[1,2,3]

= [dru1
=10, dru2

=5, dru3
=0] 

 
(49) 

The given dr𝑢𝑘
 for k in [1,2,3] demonstrates the impact of uncertainties on travel distance. In 

scenarios U1 to U3, the uncertainty of route selection contributes an additional 10, 5, and 0 units (meters), 

respectively, to the nominal distance. 

4.2.3.3. Scenario-based HEM 2 under hybrid uncertainty 

The described human evacuation problem is presented as HEM 2, with the objective function 

expressed as a minimization optimization within the proposed HEM 2. 
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 Min (Ζ4) = ∑ ∑ πs × πu × ψ
us

 u ∈ Us ∈ S  (50) 

Subjected to:  

ψ
us

= α×(γ+β)×( ∑ ∑ ∑ ∑  (d
pe

iu
 + (1 - θp) × ι / vpt

s' ) × Xpet
su  ×

i ∈ It ∈ Te ∈ Ep ∈ P

ϑp
i

+ ∑ ∑ ∑ ∑  (d
fe

iu
 + (1 - θf) × ι / v́ft) × Hfet

su  ×

i ∈ It ∈ Te ∈ Ef ∈ F

× ϑ́f

i
)     ∀ u ∈ U and s ∈ S 

(51) 

Xpet
su  ≤ Yet                                                     ∀ p ∈ P, e ∈ E, t ∈ T, u ∈ U and s ∈ S (52) 

Hfet
su  ≤ Yet                                                     ∀ f ∈ F, e ∈ E, t ∈ T, u ∈ U and s ∈ S (53) 

∑ Xpet
su

p ∈ P

+ ∑ Hfet
su × εf

f ∈ F

 ≤ cap
et

×Yet      ∀ e ∈ E, t ∈ T, u ∈ U and s ∈ S 
(54) 

∑ ∑ Xpet
su

t ∈ Te ∈ E

 = 1                                        ∀ p ∈ P, u ∈ U and s ∈ S 
(55) 

∑ ∑ Hfet
su

t ∈ Te ∈ E

 = 1                                        ∀ f ∈ F, u ∈ U and s ∈ S 
(56) 

Yet ≤ ∑ Xpet
su

p ∈ P

                                             ∀ e ∈ E ,t ∈ T, u ∈ U and s ∈ S 
(57) 

Yet ≤ ∑ Hfet
su

f ∈ F

                                               ∀ e ∈ E ,t ∈ T, u ∈ U and s ∈ S 
(58) 

∑ (Xpet
su

p ∈ P

+ ∑ Hfet
su ×εf

f ∈ F

)× τ  ≤ ω × λt     ∀ e ∈ E, t ∈ T, u ∈ U and s ∈ S 
(59) 

(17-19)  

The objective function (50) aims to minimize the overall evacuation time's present value, which 

takes into account various scenarios (u ∈ U and s ∈ S) influenced by their respective probabilities. This 

represents the duration required for passengers to evacuate from their initial location to an exit. 

Constraint (51) generates the total evacuation time based on travel distances, non-alert travel distances, 

adjusted walking speed, and the current starting locale affected by the counterflow correction and safety 

factors with consideration of s and u. To be more specific, the total travel distances are divided by the 

walking speed depending on where the passengers, solo travelers, and families are located. Constraints 

(52-53) state that an exit door must be available to be passed by a passenger in each period under s and 

u. Constraint (54) stipulates that evacuees traveling toward an exit door at each period must be less than 

the capacity of the corresponding facility under s and u. Constraints (55-56) imposes that each passenger 

is evacuated only one time over the horizon period under s and u. Constraints (57-58) ascertain that at 

least one evacuee must travel to the established exit door at each period under s and u. Constraint (59) 

assures that the number of evacuees past the corridor per unit of clear width of the corridor involved 

must be less than or equal the traffic flow of passengers in each period under s and u. Constraints (17-

19) are established independent of scenarios s and u. 

4.3. HEM 3 formulation 
In Paper 4, a follow-up model was introduced with an emphasis on minimizing the overall evacuation 

time for all passengers, including families and solo travelers. Achieving this goal demands an 

assignment of passengers to specific exit points, taking into account potential disruptions and the 

variable walking speeds essential to determining evacuation times. The methodology leverages 

HRSSRP to address these uncertainties. The discussion begins by examining the fluctuating factors of 

walking speeds and the capacities of exit doors in the context of a human evacuation from a single deck 

of a passenger ship. It then shows the role of HRSSRP in addressing these uncertain elements. The 

discussion culminates in the introduction of an optimization model termed HEM 3. 



Chapter 4. Human evacuation problem formulation 

41 

 

4.3.1. Uncertainty in passenger walking speed and disruption in exit doors’ 

capacities 

In prior sections, the uncertainty of passenger walking speeds was examined. Now, the uncertainties 

related to the capacities of exit doors is addressed. Exit door capacity on passenger ships, defined by 

the number of individuals that can safely pass through within a specific period, is influenced by the 

door's size, design, and functional attributes. However, various disruptions can directly compromise 

this capacity and hinder the efficient and safe evacuation of passengers (Łozowicka, 2011): 

• Physical obstacles: debris, fallen objects, or even luggage can block exit pathways, which 

restricts the flow of evacuees. 

• Door failures: malfunctions, whether mechanical or electronic, could prevent doors from 

opening or cause them to only partially open. 

• Hazardous conditions: for example, water ingress near an exit from flooding could render exit 

doors inaccessible or unsafe. 

• Design limitations: some exit doors might have inherent design flaws or might not be 

adequately sized to handle high capacities. 

Uncertainty in exit door capacity refers to the uncertainty or inconsistency in the actual number 

of people that can pass through an exit door due to disruptions or other unforeseen factors, such as 

structural damage to the exit door mechanism (pull, push, and slide). In human evacuation modeling, 

the real-world dynamics of emergencies dictate that exit door capacities can be variable. Factors such 

as debris, door malfunctions, and other unforeseen obstacles can diminish the actual throughput of 

people through these exits. Furthermore, the efficiency of any evacuation route can be tied to the 

capacity of its exit doors; a disruption at any exit point can compromise an optimized route. Thus, 

factoring in the uncertainty in exit door capacity can be critical. It not only fosters more realistic and 

resilient evacuation models but also enables planners to establish a safety margin, which can provide 

timely evacuations even when faced with disruptions. 

Hybrid uncertainty refers to the combined uncertainty in both the walking speeds of passengers 

and the capacity of exit doors. Hybrid uncertainty encapsulates the simultaneous uncertainty associated 

with individual walking speeds and exit door capacities. In the web of real-world evacuation scenarios, 

uncertainties rarely manifest in isolation. An example is the Scandinavian Star disaster in 1990, where 

thick smoke and panic affected passengers' walking speeds while locked or inaccessible exit doors 

constrained evacuation routes, which led to the tragic death of 159 people (Shin et al., 2019; Thoresen 

et al., 2017). Such factors influencing walking speeds can interplay with those affecting door capacities, 

which can impact overall evacuation times. Integrating this multifaceted uncertainty enhances the 

realism and reliability of evacuation models, which can align them more closely with emergencies like 

the Scandinavian Star tragedy. 

Given these potential disruptions to exit door capacity, resilience becomes vital. This resilience, 

defined as the system's ability to adapt and return to safe operations after a disruption (Hosseini et al., 

2016), is essential for a robust HEM on passenger ships. Ensuring the safe and timely evacuation of all 

passengers is paramount, which makes the understanding of exit door capacities essential for predicting 

feasible evacuation durations and confirming they align with safety standards. In human evacuation 

modeling and irrespective of the evacuation route chosen, passengers must ultimately traverse an exit 

door, which positions the door's capacity as the concluding factor in the evacuation trajectory. 

4.3.2. HRSSRP for HEM 3 

This modeling technique merges two approaches: a risk-neutral, two-stage, scenario-based stochastic 

technique for managing walking speed uncertainties and a feasibility-based ρ-robust approach to tackle 

potential disruptions in exit door capacities. 
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The two-stage, scenario-oriented structure of the HRSSRP aligns with the dynamic nature of 

human evacuations. It divides decision-making into preliminary here-and-now decisions, made amidst 

information deficits, and subsequent wait-and-see decisions, refined as uncertainties unfold—a 

reflection of real-world evacuation scenarios (Birge and Louveaux, 2011). This duality is where 

decisions are rapidly initialized, even with partial data, and later modified based on emerging realities. 

By embedding diverse scenarios, which manifest potential outcomes of uncertain variables like walking 

speed and disruptions, the model becomes adaptable. Various disruption scenarios can be outlined in a 

way that could impact exit door capacities. A stochastic ρ-robust approach based on feasibility is applied 

to address potential exit door capacity challenges. A feasibility-based stochastic ρ-robust approach is a 

method that aims to find feasible solutions across various uncertain scenarios (Snyder and Daskin, 

2006). It provides that solutions meet specific constraints and operates the ρ parameter to determine 

how well these solutions can handle uncertainty. Integrating ρ-robust technique in HEM 3 can provide 

the following benefits: 

• Adaptive scenario planning: given the uncertainty of events like severe weather conditions 

affecting passenger ships, the ρ-robust method can model various types of door disruptions, 

from slight barriers to total obstructions, shaping flexible evacuation plans in response. 

• Optimizing safety and efficiency: rapid evacuation of a vast number of passengers necessitates 

a balance between swift movement and safety. Using the ρ-robust technique ensures a robust 

evacuation, even when faced with diverse exit door challenges. 

Such a framework is essential in human evacuation scenarios, which enables flexibility and 

informed decision-making to cater to evolving ground realities, from varying obstructions to fluctuating 

passenger speeds. The model combines the best of both SO and RO to manage uncertainties in 

evacuation planning. While aiming to reduce evacuation times like SO, it also ensures reliable 

performance in various evacuation situations, which highlights the benefits of RO. By adjusting certain 

parameters, the approach can be tailored to find a balance between average and worst-case evacuation 

times. Unlike some traditional methods that overly focus on worst-case scenarios, the method can offer 

a more balanced and realistic approach. This ensures consistent performance in different scenarios and 

can be applied to various ship designs. Moreover, the challenge of optimizing the cumulative evacuation 

time under such uncertainties is met with a risk-neutral outlook in HRSSRP. Unlike a risk-averse stance, 

which might emphasize worst-case scenarios leading to excessive caution and resource inefficiencies, 

the risk-neutral perspective aims for a balanced strategy. It neither actively sidesteps nor pursues risk 

but gauges the overall expected evacuation time for all passengers. This perspective navigates the 

randomness of uncertain parameters across the entire scenario spectrum than adhering strictly to 

extreme cases. This equilibrium can guarantee a practical approach, which optimizes resources while 

still being sufficiently prepared for less frequent but impactful scenarios. 

4.3.3. Mathematical optimization formulation of HEM 3 

The procedure begins by formulating a deterministic model. This is subsequently advanced to the phase 

of generating scenarios. Following this, a scenario-based version of the model is developed to tackle 

the hybrid uncertainty. 

4.3.3.1. Deterministic formulation 

The described human evacuation problem (section 3) can be deterministically formulated as a MIP 

mathematical optimization model as follows as well. 

Ζ3= α×(γ+β)×( ∑ ∑ ∑ ∑  (d
pe

i
 + (1 - θp) × ι / vpt) × Xpet ×

i ∈ It ∈ Te ∈ Ep ∈ P

ϑp
i

  

+ ∑ ∑ ∑ ∑ dfe
i

  + (1 - θf) × ι / v́ft)  × Hfet × ϑ́f

i

i ∈ It ∈ Te ∈ Ef ∈ F

) 
(60) 

The objective function (60) is subjected to the constraints (5-19).  
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The objective function (60) optimizes the total evacuation time based on travel distances, non-alert 

travel distances, walking speed, and the current starting locale affected by the counterflow correction 

and safety factors. Equation (60) is subjected to constraints (5-19), which were previously explained. 

4.3.3.2. Passenger’s walking speed and exit door’s capacity disruption 

scenarios 

This part focuses on generating scenarios for passenger walking speeds and potential disruptions to exit 

door capacities during evacuations. 

• Passenger walking speed scenarios: 

Scenarios for passenger walking speeds are derived using IMO data (Table 10), which provides insights 

into pedestrian walking speeds on level surfaces, specifically in the context of passenger ships. The 

justification for utilizing IMO data to derive scenarios for passenger walking speeds lies in the IMO's 

comprehensive and authoritative nature concerning maritime safety standards. This data is selected for 

its relevance, reliability, and representation of various people groups (IMO, 2016). It provides a robust 

basis for representing the walking speed effect in developing human evacuation plans. While in the 

earlier model, HEM 2, the k-means clustering technique was employed to discern general patterns and 

clusters in walking speeds, the current study, HEM 3, adopts a different approach. In HEM 3, walking 

speed scenarios are shaped by a deviation rate from the nominal value. This shift in methodology arises 

from the distinct objectives of the two studies. While HEM 2 focused on understanding patterns, HEM 

3 delves into the deviations in walking speeds under different conditions. The deviation rate, denoted 

as ϱ
s
, gauges the extent to which the speed diverges from the nominal walking speed in each scenario. 

As depicted in Figure 5, empirical studies have shown that walking speed can amplify and diminish in 

response to ship motions. The modeling process entails multiplying the benchmark walking speeds by 

the deviation factor, as detailed in Equations (61-62).  

vpt
s = ϱ

s
× vpt      ∀ p ∈ P, t ∈ T, and s ∈ S (61) 

v́ft
s
= ϱ

s
× v́ft       ∀ f ∈ F, t ∈ T,  and s ∈ S (62) 

Thus, a scenario with (ϱ
s
 = 0.6) signifies a condition where the walking speed is just 60% of the 

nominal value. Each of these scenarios is also complemented by a probability, (πs), which signifies the 

anticipated likelihood of each scenario's occurrence (Kaut and Stein, 2003). This methodology captures 

the variability within walking speed groups, which can provide an understanding not confined to a 

singular technique and providing robust and consistent conclusions across varied modeling techniques. 

 

Figure 5. The influence of rolling conditions of a passenger ship on evacuees’ walking speeds in athwartship (Ath) and fore-

aft (For) directions in fast (Fas) and normal (Nor) modes (Sun et al., 2018a; Wang et al., 2021a). 
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• Disruption scenarios to exit door capacities: 

In emergency evacuations, exit doors represent pivotal egress points, and their consistent functionality 

is paramount. However, in this study, scenarios have been crafted to reflect reduced exit door capacities 

during such evacuations. The varying door capacity denoted as cap
et

, is depicted across multiple 

scenarios. Specifically, a quantifier, 𝜍w, is introduced to measure the rate at which the exit door capacity 

dwindles. To illustrate, a value of 𝜍w=1 implies a decrement by a single unit in the exit door's capacity. 

This modeling approach seeks to simulate the model's efficacy under scenarios where the exit door's 

capacity is compromised. Real-world emergency evacuations are rife with uncertainties, and factors 

such as obstructions, door malfunctions, or even human-induced blockages can curtail the effective 

capacity of these exit points. 

4.3.3.3. Scenario-based HEM 3 under hybrid uncertainty 

The described human evacuation problem is presented as HEM 3, with the objective function 

expressed as a minimization optimization within the proposed HEM 3. 

 Min (Ζ4) = ∑ ∑ πs × πw × ψ
ws

 w ∈ Ws ∈ S  (63) 

Subjected to:  

ψ
ws

= α×(γ+β)×( ∑ ∑ ∑ ∑  (d
pe

iw
 + (1 - θp) × ι / vpt

s' ) × Xpet
sw  ×

i ∈ It ∈ Te ∈ Ep ∈ P

ϑp
i

+ ∑ ∑ ∑ ∑  (d
fe

iw
 + (1 - θf) × ι / v́ft) × Hfet

sw 

i ∈ It ∈ Te ∈ Ef ∈ F

× ϑ́f

i
)     ∀ w ∈ W and s ∈ S 

(64) 

Xpet
sw  ≤ Yet                                                                               ∀ p ∈ P, e ∈ E, t ∈ T, w ∈ U and s ∈ S (65) 

Hfet
su  ≤ Yet                                                                                ∀ f ∈ F, e ∈ E, t ∈ T, u ∈ U and s ∈ S (66) 

∑ Xpet
sw

p ∈ P

+ ∑ Hfet
sw× εf

f ∈ F

 ≤ (cap
et

- ςu)×Yet+M × Γw      ∀ e ∈ E, t ∈ T, w ∈ W and s ∈ S 
(67) 

∑ ∑ Xpet
sw

t ∈ Te ∈ E

 = 1                                                                  ∀ p ∈ P, w ∈ W and s ∈ S 
(68) 

∑ ∑ Hfet
sw

t ∈ Te ∈ E

 = 1                                                                  ∀ f ∈ F, w ∈ W and s ∈ S (69) 

Yet ≤ ∑ Xpet
sw

p ∈ P

                                                                       ∀ e ∈ E ,t ∈ T, w ∈ W and s ∈ S 
(70) 

Yet ≤ ∑ Hfet
sw

f ∈ F

                                                                       ∀ e ∈ E ,t ∈ T, w ∈ W and s ∈ S 
(71) 

∑ (Xpet
sw

p ∈ P

+ ∑ Hfet
sw×εf

f ∈ F

)× τ  ≤ ω × λt                            ∀ e ∈ E, t ∈ T, w ∈ W and s ∈ S 
(72) 

∑ πw× Γw

w ∈ W

 ≤1-ρ      (73) 

(17-19)  

The objective function (63) aims to minimize the overall evacuation time's present value, which 

considers various scenarios (w ∈ W and s ∈ S) influenced by their respective probabilities. This 

represents the duration required for passengers to evacuate from their initial location to an exit. 

Constraint (64) generates the total evacuation time based on travel distances, non-alert travel distances, 

adjusted walking speed, and the current starting locale affected by the counterflow correction and safety 

factors with consideration of s and w. To be more specific, the total travel distances are divided by the 

walking speed depending on where the passengers, solo travelers, and families are located. Constraints 

(65-66) state that an exit door must be available to be passed by a passenger in each period under s and 

w. Constraint (67) ensures that the number of evacuees moving towards an exit door in each period does 

not exceed the uncertain capacity of that exit, as can be determined under different scenarios (w ∈ W). 
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This uncertainty accounts for the dynamic nature of exit capacities, acknowledging that they can be 

reduced to accommodate varying emergencies under s and w. Constraints (68-69) imposes that each 

passenger is evacuated only one time over the horizon period under s and w. Constraints (70-71) 

ascertain that at least one evacuee must travel to the established exit door at each period under s and w. 

Constraint (72) assures that the number of evacuees past the corridor per unit of clear width of the 

corridor involved must be less than or equal the traffic flow of passengers in each period under s and w. 

Constraint (73) enforces the ρ-robustness condition. To keep feasible the constraint (67),  Γu takes value 

and costs by change in the confidence and reliability of the model in the constraint (73). Constraints 

(17-19) are established independent of scenarios s and u. 

The scale of the problem is driven from HEM 3 described in the following. This process involves 

computing all varieties of variables and constraints. 

Binary variables = (|T|×|S|×|W| )× ((|P|×|E|+|F|×|E|)+|T|×(|J|+|E|)) 
 

Free variables = (|I|+|T|+|S|×|W|+1) 

Constraint = (|S|×|W|)× (|P|×|E|×|T|+|F|×|E|×|T|+|P|+|F|+(3×|E|×|T|)+1+(|E|×|T|))+1. 

 

The developed model is a linear program. The multiplication of the number of variables and 

constraints influences the order and complexity of the model. For instance, an increase in the number 

of solo travelers (P) can heighten the complexity due to the additional variables and constraints 

introduced, affecting the computational resources required for solving the model. While adding 

variables and constraints increases the problem size linearly, the time it takes for solvers to find a 

solution can increase exponentially depending on the solver's efficiency and memory usage (Boyd and 

Vandenberghe, 2004). 
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5. Solution methodology 
Initially, various optimization packages suitable for solving the developed HEMs are discussed, 

followed by a detailed account of the optimization process employed in this research. 

5.1. Optimization packages 
Having formulated the human evacuation problem in section 3 through the development of three MIP-

based formulations (HEM 1 to HEM 3), the subsequent step involves resolving these models. Solving 

a mathematical optimization model is ascertaining the best solution for the described human evacuation 

problem within the given set of constraints and parameters. The best solution is synonymous with 

minimizing the total evacuation time, an operational metric indicative of the efficiency that the models 

seek to enhance. An optimization package, such as GAMS (General Algebraic Modeling System), can 

help solve the models. It works like a translator and a problem-solver. 

• Translator: The formulated models can be translated into a language that the optimization 

package understands. This includes the objective function (minimizing the total evacuation 

time), variables, and constraints. 

• Library of solvers: The package is not just one tool, but a collection of tools called solvers, such 

as CPLEX. Each solver is good at solving certain types of problems. Some are great for linear 

problems, others for non-linear, and some are specialized for MIP problems. 

• Problem-solving process: When the optimization package is run, it first converts the problem 

into a form that solvers can understand. Then, it can pick the most suitable solver for the 

problem. The solver uses mathematical techniques, such as branch-and-cut, to explore possible 

solutions and hone in on the best one. 

• Results: After the solver has done its job, the optimization package translates the solution back 

into a form that one can understand, which shows the values for the variables that give the best 

outcome according to the model's objective and constraints. 

Optimization packages like GAMS, Gurobi, and CPLEX are powerful tools used to code and solve 

mathematical optimization models. Here's a brief overview of each, including their advantages and 

challenges: 

• GAMS (GAMS, 2023): 

GAMS is known for its high-level, user-friendly modeling language, which makes it easier to formulate 

complex models. It is especially good for large-scale problems and has a broad range of solvers 

integrated into its system, which makes it versatile for different problem types. 

It can be costly, and while it's user-friendly, the performance can sometimes be outpaced by more 

specialized solvers for certain types of problems. Also, the flexibility in solver choice means users must 

know which solver is best for their problem type, which can be a learning curve. 

• Gurobi (Gurobi, 2020): 

Gurobi is renowned for its speed and robustness, often providing faster solutions to optimization 

problems, especially linear and MIP.  

The major downside of Gurobi is that it can be expensive, particularly for commercial use. It is 

also more of a solver than a modeling platform, which means it might require additional software or 

programming expertise to formulate the model. 

• CPLEX (Cplex, 2008): 

CPLEX is another optimization tool known for its performance and wide range of algorithms for 

different problem types.   
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Similar to Gurobi, CPLEX can be quite costly, and while it's powerful, it can have a steeper 

learning curve for those not familiar with its programming model. 

When it comes to choosing the right package for the formulated mathematical optimization 

models, GAMS can be a good option due to several factors (GAMS, 2023): 

• Algebraic modeling language: GAMS is designed with a high-level, algebraic modeling 

language that is intuitive for representing complex mathematical relationships and constraints, 

which are common in MIP problems. This makes it easier to translate real-world problems into 

mathematical models. 

• Solver integration: GAMS is not tied to a single solver. It provides the flexibility to choose 

from a wide range of solvers that are specialized for different types of optimization problems, 

including MIP. Users can switch between solvers like CPLEX, Gurobi, and others that are 

particularly efficient at solving MIP problems to find the most effective one for their specific 

case. 

• Preprocessing and automatic reformulation: Before solving, GAMS can preprocess and 

reformulate MIP problems to make them more tractable. This includes tightening bounds, 

removing redundancies, and identifying special structures that can be exploited by solvers, 

which improves computational efficiency. 

• Scalability: GAMS is designed to handle very large and complex models. This scalability is 

crucial for MIP problems, which can grow exponentially in size due to the binary or integer 

variables involved. 

• Branch-and-cut algorithm: The CPLEX uses an advanced method known as the branch-and-cut 

algorithm. This approach, which is an extension of the branch-and-bound technique, is 

instrumental in navigating a tree structure populated with a multitude of potential solutions 

(Abeledo and Ni, 2003). This algorithm divides the problem into subproblems, determines 

bounds for feasible solutions, and filters non-integer solutions. It navigates a solution tree, 

discarding non-viable nodes, and ultimately identifies the optimal solution meeting all 

constraints by exploring the tree structure and refining the search based on established bounds 

(Gadegaard et al., 2019). 

• Advanced features for MIP: It includes advanced features like user cuts and others. These 

advanced techniques are essential for improving the solution process of MIP problems by 

guiding the solver, reducing solution space, and accelerating convergence to an optimal 

solution. 

Consequently, despite the merits that other packages may present, GAMS is selected as the 

modeling platform and CPLEX as the solver to address the HEMs (HEM 1 to 3) outlined in this study. 

5.2. Optimization process 
Figure 6 presents a systematic depiction of the optimization process used to address the described 

human evacuation problem detailed in Section 3. It begins with the verbal formulation of the problem, 

followed by the development of three deterministic optimization models. The models are then expanded 

to include uncertainty, utilizing uncertainty sets in HEM 1 and scenario generation in HEM 2 and 3. 

Different modeling approaches are applied to manage uncertainty: RO for HEM 1, RSSP for HEM 2, 

and HRSSRP for HEM 3. The model also accounts for variations in walking speed over the evacuation 

process between solo travelers and families. This culminates in a stochastic optimization model, which 

is then solved using the CPLEX solver. Ultimately, the results are showcased, with decisions delineated 

across multiple tiers: not just strategic and tactical—like the quantity and placement of exit doors and 
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In the subsequent section, the results will be detailed, and further discussion will be provided on 

various managerial decision-making aspects. 
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6. Solution results 
This section describes the case study, details the data used, outlines the design of the experiments, and 

presents the computational results. 

6.1. Case study description 
This case study centers on Deck 10 of a Ro-Pax vessel. The selection of Deck 10 as the focal point for 

this study is strategic, due to its high density of passenger cabins. This characteristic renders it an 

environment for the validation and testing of the HEMs. Focusing on a deck that houses a number of 

cabins, and therefore has a higher potential passenger capacity, allows for a robust assessment of the 

models' performance in scenarios that are complex and indicative of peak occupancy conditions. This 

approach can enhance the relevance and applicability of the HEMs in real-world situations where 

efficient space utilization and passenger management are critical. The following attributes of the vessel 

are delineated, which provides a framework for the validation of the HEM 1 to HEM 3 models 

developed within the scope of this dissertation: 

• Breadth: The interior breadth of the vessel, defined as the distance from one side of the hull's 

inner plating to the other, is 30.50 meters. This dimension is crucial for the models that assess 

structural design and space optimization. 

• Length: The ship extends 223.72 meters from bow to stern. 

• Main Vertical Zones (MVZ 1 to MVZ 5): Deck 10 is segmented into five principal vertical 

zones, which serve as a basis for the models' analysis of compartmentalization and evacuation 

dynamics. 

• Cabins: The deck houses 286 passenger cabins, varying from standard (STD) accommodations 

to more exclusive Magic and owner-specific cabins. These variations are considered in the 

models, particularly in evaluating passenger comfort and space allocation. 

• Exit doors: On Deck 10, ten designated exit doors have been incorporated into the models to 

implement evacuation scenarios. While these doors are initially modeled as exit stairs for 

analysis purposes and to maintain consistency throughout the documentation, they are referred 

to as exit doors. The study explores the impact of additional potential exit doors on key 

performance metrics, such as total evacuation time, to understand their influence on evacuation 

efficiency. 

• Crew service locations: Four designated crew service areas are factored into the models, which 

are pivotal for analyzing operational efficiency and serviceability. While these areas are 

accounted for in the current modeling, the effects of introducing additional crew service areas 

on specific objectives, such as enhancing service to the slowest-moving passengers, will also 

be investigated. 

• Corridors: The 19 corridors across the deck are key parameters in the models that examine 

passenger flow and safety in emergencies. 

Figure 7 illustrates the detailed layout of Deck 10. 

 

Figure 7. General arrangement of Deck 10. 
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These elements of Deck 10 will be examined through the HEM 1 to HEM 3 models to validate 

their accuracy and reliability in enhancing the passenger ship's interior design for strategic decision-

making, optimizing human evacuation plans for operational effectiveness, and refining crew allocation 

for tactical decisions. 

6.2. Data description 
In the case study, passengers into ten distinct groups are categorized: five for females (F1 through F5) 

and five for males (M1 through M5), based on their respective age brackets. The categorization of 

passengers into ten distinct groups is based on the data presented in the case study, which delineates 

walking speeds into five categories, each for females and males. Groups F4, F5, M4, and M5 

comprise individuals with mobility limitations. The range of walking speeds (vpt and v́ft) for each 

group is as follows: 

• Females in group F1 had speeds between 0.25 to 1.24 m/s, with ages uniformly distributed 

between 10 and 20 years. 

• Group F2 females had speeds between 0.25 to 0.95 m/s, aged 20 to 40 years. 

• Group F3 females walked at speeds ranging from 0.25 to 0.75 m/s, aged between 40 and 60 

years. 

• For groups F4 and F5, the walking speeds were slower, ranging from 0.25 to 0.57 m/s and 0.25 

to 0.49 m/s, respectively, with ages spanning from 10 to 60 years due to their mobility 

impairment. 

• Males in group M1 had walking speeds from 0.25 to 1.48 m/s within the 10 to 20 age group. 

• Group M2 males had speeds ranging from 0.25 to 1.30 m/s, aged 20 to 40 years. 

• Group M3 males walked at speeds between 0.25 to 1.12 m/s, aged 40 to 60 years. 

• Groups M4 and M5, which included mobility-impaired individuals, had walking speeds ranging 

from 0.25 to 0.85 m/s and 0.25 to 0.73 m/s, respectively, with ages uniformly distributed 

between 10 and 60 years. 

The overall percentage distribution of various solo traveler categories in the experiments is, with 

groups F3 and M3 each constituting 15.98%, followed by groups M5, F4, F5, and M4 at 10.06%, and 

groups F1, M2, M1, and F2 each comprising 6.95% of the total demographic of solo travelers. 

However, the case study did not include family units. Upon further consideration, family groups are 

included with the following characteristics: 

• The size of a family is determined by a uniform integer distribution between 2 and 4 members. 

• A family may consist of adult females and males aged between 10 and 60 years, as well as 

children and infants under one year old. 

• Some family members may be mobility impaired. 

• While individual walking speeds vary, the family’s overall walking speed is considered to be 

the slowest member’s speed. 

Distance measurements (dpe
i

 and dfe
í

) and layout description, for different facilities, such as 

corridors, can be obtained from Figure 8. Figure 8 serves as the blueprint for Figure 7. For each 

passenger (solo travelers and families), 20 possible initial positions considered are on deck 10. The 

designation i1 indicates that the passenger is stationed in their private cabin, whereas designations i2 

through i20 signify that the passenger is located in one of the 19 corridors throughout the deck. 
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The response time for solo travelers is presumed to follow a uniform distribution ranging from 1 

to 3 meters (ι). Similarly, the response time for family groups is estimated to have a uniform distribution 

between 3 to 5 meters (𝜅). Each crew team is composed of 5 members (η
j
). Every team is tasked with 

overseeing a designated corridor, supplying service and assistance to passengers within that area. For 

instance, the crew assigned to j
1
 is responsible for attending to passengers in corridor 1. Each exit door 

is estimated to have a base capacity of accommodating four passengers per period (cap
et

). The safety 

factor is set at 1.25 (α), while the counterflow and correction factors are established at 0.5 ( 

β and γ). 

6.3. Experiment design 
Five distinct experiments (E) are designed, which incorporate variables such as diurnal/nocturnal 

settings, the initial distribution of passengers denoted by ϑp
i
 and ϑ́f

i
, along with the alertness levels of 

passengers, θp and θ́f. Table 11 presents the experimental design configurations influenced by the time 

of day (day vs. night), current location, and the alertness levels of passengers (alert vs. non-alert). For 

Es conducted under nocturnal conditions, the emphasis was on placing passengers predominantly within 

their respective cabins and in a non-alert state. Conversely, for diurnal conditions, the focus was on 

allocating passengers primarily to different locales and ensuring they were alert. 

Table 11. Experimental design configurations for passenger distribution and alertness levels. 

E ID Time of day % in i1 % in other locales % alert 

(θp and θ́f= 1) 

% non-alert 

(θp and θ́f= 0) 

E1-1 Night 100 0 0 100 

E1-2 Night 100 0 25 75 

E2-1 Day 0 100 100 0 

E2-2 Day 0 100 75 25 

E2-3 Day 5 95 50 50 

 

6.4. Computational results and validation 
In this section, the computational results are presented, which are pivotal in demonstrating the 

robustness and practical applicability of the developed models, HEM 1 to HEM 3. This analysis serves 

not only as a testament to the theoretical foundations of these models in terms of uncertainty modeling 

but also as an exploration of their real-world effectiveness. The validation process for each model begins 

with comparing their outputs against empirical data to establish accuracy and reliability across various 

scenarios. This is followed by a sensitivity analysis, systematically examining the influence of different 

parameters on the outcomes of each model. Such analysis is crucial for understanding the dynamics and 

dependencies within the models.  

6.4.1. The developed models versus the case study 

The first developed model, HEM 1, applies the RO approach to address uncertainty in passenger 

walking speed. The configuration of the RO parameters for this run is ∆
solo

 = 0.2 as well as v'̂
pt = 0.1. 

This model considers the variability of passenger walking speeds by constructing uncertainty sets based 

on the case study data. This approach is particular because it does not require complex statistical 

methods to predict walking speeds (following a specific probability distribution function). Instead, it 

looks directly at the minimum and maximum speeds individual/family passengers might have during 

an emergency on a ship.  

For instance, let's consider an evacuation scenario on a passenger ship. Each passenger has a 

different walking speed, which can vary under ship motion. Some might move very fast due to urgency, 

while others might be slower due to factors like age or physical ability. HEM 1 observes these variations 

and forms a range for each passenger, which covers their slowest and fastest possible walking speeds 
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during an evacuation. HEM 1 simplifies the complexity into a single representative set (i.e., uncertainty 

set) for each passenger's speed, leading to a single output upon each model run. Figure 9 illustrates the 

variation in passenger walking speeds, ranging from minimum to maximum values. 

 



Chapter 6. Solution results 

55 

 

 
Figure 9. Variation in passenger walking speeds: for constructing uncertainty sets in RO approach 

Moving to the second model, HEM 2, an improvement in the treatment of uncertainty using the 

RSSP technique is seen. This model departs from the single-set output of HEM 1 by employing the k-

means algorithm to cluster passenger walking speed data into four distinct scenarios for each passenger 

(s1, s2, s3, s4) based on Equation (46). Figure 10 presents the distribution of passenger walking speeds 

across different scenarios. 
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Figure 10. Passenger walking speeds across four different scenarios in RSSP approach. 

To further refine the model, travel distances for passengers are categorized into three scenarios 

(u1, u2, u3) utilizing the principles set forth in Equations (47-49), with associated deviation rates 

[dru1
=10, dru2

=5, dru3
=0]. As a result, HEM 2 offers 12 scenarios in total, enabling a multifaceted 

output of 12 different results upon completion of a single run. It encompasses combinations like (s1, 
u1), (s1, u2), (s1, u3) through to (s4, u3). Each pair represents a broader exploration of the potential 

outcomes, which provides a spectrum of possibilities that better captures the essence of uncertainty in 

evacuation scenarios. For example, when RSSPs1u1
 is discussed, this analyzes the combined (hybrid) 

effect of the first walking speed scenario (s1) and the first travel distance scenario (u1) within the RSSP 

framework.  

The scenario s1 represents the first cluster of walking speeds, which includes a range of speeds 

that a passenger might exhibit. This cluster captures the variability in a single passenger's walking speed 

under different conditions. It averages various walking speeds into a representative cluster, which 

reflects the speed a passenger might have when their speed falls into this first cluster. This category is 

crucial for understanding how individual/family differences in walking speed can influence evacuation 

dynamics. u1 is the path from a passenger/family's location to an exit, which might be around 50 meters. 

Under the u1 scenario, this distance is extended by ten units, which results in a travel distance of 60 

meters. Such an increase could be due to temporary obstructions, a detour in the evacuation route, or 

the closure of a nearer exit, which directs passengers to a more distant one.  

When the (s1, u1) scenario applies in the model, this scenario essentially optimizes the evacuation 

time for situations where passengers exhibit walking speeds from the first cluster (s1), but concurrently 

face an increased travel distance (u1). This combination reflects a realistic evacuation scenario, such as 

an exit blockage or an unforeseen obstacle, requiring passengers to use an alternative, longer route. This 

gives us an insight into the specific case where both variables are at their first scenario level, thus 

tailoring the evacuation time prediction to a particular set of conditions. 
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HEM 3, the third model, introduces the HRSSRP technique to handle uncertainty further. It 

considers three scenarios for passenger walking speed (s1, s2, s3), referenced in Equations (61-62), with 

associated deviation rates ϱ
s
= [0.7,1,1.2], to account for varying passenger walking speeds.  

Additionally, HEM 3 assesses the impact of exit door disruptions, considering three different 

scenarios (w1, w2, w3) with corresponding deviations 𝜍w= [0,1,2]. Consequently, HEM 3 concludes 

with 9 distinct scenarios. For example, when HRSSRPs1w2
is discussed, this scenario analyzes the 

combined (hybrid) effect of the first walking speed scenario (s1) and the second exit door capacity 

disruption scenario (w2) within the HRSSRP framework. 

The scenario s1 reflects a condition where every passenger's average walking speed is reduced 

to 70% of their normal speed. This could be due to various factors, such as slippery deck conditions or 

passengers being in a state of mild panic. For example, if the usual walking speed is 1.4 meters per 

second, under s1 it drops to 0.98 meters per second. Simultaneously, w2 represents a scenario where 

the capacity of exit doors decreases by one unit. This could happen if one of the main exit doors is 

partially obstructed or malfunctioning, reducing the number of passengers that can pass through it per 

unit of time. For instance, if an exit door typically allows ten passengers to pass through per minute, 

under w2 it might only accommodate nine passengers per minute.  

When these two conditions – (s1, w2) – co-occur, they create a compounded effect on the 

evacuation process. The slower walking speeds (s1) mean passengers take longer to reach the exits, and 

the reduced exit capacity (w2) leads to potential bottlenecks or delays at the exits. In the example, this 

might manifest during an evacuation where passengers (solo and family travelers), moving slower due 

to challenging conditions, face additional delays due to the reduced throughput at the exits. This 

scenario is critical for emergency planning as it provides insights into how combined factors can impact 

evacuation times. Figure 11 depicts walking speed and disruption scenarios. 

 
Figure 11. Walking speed and disruption scenarios for HRSSRP approach in HEM 3. 

The range of models, HEM 1 through HEM 3, are implemented for 646 passengers, all are solo 

travelers. This selection was chosen to align with the solo traveler focus of the case study, allowing for 

a direct comparison of the results with those specific to deck 10 in the case study (the same as E1-1). The 

passenger composition was divided into male and female categories, with the following percentage 

distributions: males were segmented into groups M1 through M5, with respective proportions of 6.95%, 

6.95%, 15.98%, 10.06%, and 10.06%. The female groups, F1 through F5, had the same percentage 

distribution as the male groups.  

Each model, HEM 1 to HEM 3, underwent a single run under a nighttime scenario, which mirrors 

the case study conditions where all passengers are in their cabins and not alert. When each model is run 

independently, HEM 1 results in a single total evacuation time (TET). In contrast, HEM 2 and HEM 3 

produced multiple distinct TETs, 12 and 9, respectively. These results have been recorded in Table 12. 

This table compares the HEMs, showcasing TETs before and after adjustments (applying an α =1.53) 

and detailing congestion times. The case study applied Evi for the evaluation analysis. Evi, Evacuation 

Index, is multi-agent certified software for evacuation analysis on passenger ships. It focuses on 

"evacuability" – a measure of a person's ability to evacuate the ship (Nasso et al., 2019; Vassalos et al., 
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2003). In the case study, the time required to evacuate deck 10 is calculated independently across 18 

simulations.  

Table 12. Comparative analysis of TETs (s) for HEM 1 to HEM 3 and the case study. 

Model Approach TET before affecting α TET after affecting α Congestion time 

H
E

M
 1

 

RO 754.12 1,153.80 0 

H
E

M
 2

 

R
S

S
P

 

RSSPs1u1
 1,051.59 1,608.94 

0 

RSSPs1u2
 868.03 1,328.09 

RSSPs1u3
 746.02 1,141.41 

RSSPs2u1
 1,259.10 1,926.42 

RSSPs2u2
 1,089.66 1,667.18 

RSSPs2u3
 916.42 1,402.12 

RSSPs3u1
 886.86 1,356.90 

RSSPs3u2
 785.44 1,201.72 

RSSPs3u3
 661.74 1,012.46 

RSSPs4u1
 1,037.51 1,587.39 

RSSPs4u2
 869.33 1,330.08 

RSSPs4u3
 715.01 1,093.97 

H
E

M
 3

 

H
R

S
S

R
P

 

HRSSRPs1w1
 1,282.81 1,962.69 

0 

HRSSRPs1w2
 1,295.55 1,982.19 

HRSSRPs1w3
 1,307.18 1,999.99 

HRSSRPs2w1
 903.30 1,382.05 

HRSSRPs2w2
 918.99 1,406.05 

HRSSRPs2w3
 902.72 1,381.16 

HRSSRPs3w1
 733.63 1,122.46 

HRSSRPs3w2
 768.58 1,175.93 

HRSSRPs3w3
 744.36 1,138.87 

Case 

study 
Evi Avg.

18 runs
= 923.64 Avg.

18 runs
= 1,413.17 580 

 

To focus the comparison on TET, the scenarios are clustered based on whether their evacuation 

times are lower or higher than Evi's average TET before α, which is 923.64 seconds (refer to Table 12). 

• Cluster 1: Scenarios with lower TET than Evi (before affecting α): 

o RO approach: the only output of HEM 1 under RO approach outperforms the Evi’ result. 

o RSSP approach: It includes scenarios  

RSSPs1u2
, RSSPs1u3

, RSSPs2u3
, RSSPs3u1

, RSSPs3u2
, RSSPs3u3

, RSSPs4u2
, and RSSPs4u3

where 

each scenario represents a different combination of walking speed and travel distance 

uncertainties. These scenarios have a TET of less than 923.64 seconds. 

o HRSSRP approach: It contains scenarios HRSSRPs2w1
, HRSSRPs2w2

, HRSSRPs2w3
, 

HRSSRPs3w1
, HRSSRPs3w2

, HRSSRPs3w3
. 

• Cluster 2: Scenarios with higher TET than Evi (before affecting α): 

o RSSP approach: It includes scenarios  

RSSPs1u1
, RSSPs2u1

, RSSPs2u2
, RSSPs4u1

, where each scenario represents a TET of more 

than 923.64 seconds. 

o HRSSRP approach: It contains scenarios HRSSRPs1w1
, HRSSRPs1w2

, HRSSRPs1w3
. 

Based on Table 12, the analysis of the different approaches is as follows. 

• Management of uncertainty: 
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o RO Approach: Integrates walking speed uncertainty using historical data, which offers a more 

realistic estimation of evacuation times compared to Evi. 

o RSSP approach: Incorporates uncertainties in walking speed and travel distance, generating 

12 possible outcomes per run, in contrast to Evi's single outcome. 

o HRSSRP approach: Addresses uncertainties in walking speed and exit door capacities, 

producing nine potential outcomes per run, which provides a broader evacuation scenario 

spectrum than Evi. 

• Congestion management: 

o All approaches report no congestion, which is attributed to strategic passenger allocation to 

exit doors and effective evacuation flow management. 

• Scenarios performance: 

o In Cluster 1, all approaches surpass the Evi results. This performance is attributed to the 

strategic allocation of passengers to the most suitable exit doors, which is determined based 

on their walking speed and proximity to these exits, with a focus on minimizing the total 

evacuation time. This optimization is further enhanced by effectively managing uncertainties 

related to walking speed, travel distance, and potential exit door disruptions. The utilization 

of various scenario combinations contributes to more efficient evacuation times. Additionally, 

the optimal distribution of passengers across exit doors, taking into account their walking 

speeds and the capacities of these doors, ensures that exit facilities are used in the most 

balanced manner. 

o In Cluster 2, scenarios such as RSSPs1u1
, RSSPs2u1

, and RSSPs4u1
, exhibit higher Total 

Evacuation Times due to increased travel distances, which in some cases extend by up to +10 

meters. Scenarios like RSSPs2u2
 present a situation where passengers experience the slowest 

walking speeds (in comparison to s1, s3, and s4 scenarios) along with a moderate increase in 

travel distance (+5 meters), resulting in prolonged evacuation times. Similarly, scenarios 

HRSSRPs1w1
, HRSSRPs1w2

, and HRSSRPs1w3
 show higher TETs than Evi, primarily due to a 

reduction (30%) in walking speed. This indicates a more cautious modeling approach, 

emphasizing safety and realism, potentially at the expense of evacuation speed. 

6.4.2. Family allocation optimization in in evacuation planning 

In the models (HEM 1 to 3), a crucial element that the case study overlooks—the consideration of 

families in the evacuation process—is introduced. This addition forms the basis of a new subsection, 

delving into the results derived from this aspect. Although data from the case study is utilized, the 

analysis is expanded upon by integrating family dynamics into the existing framework for uncertain 

parameters. This approach allows us to explore how family units, with their unique characteristics and 

speed, impact evacuation modeling and outcomes (for the configuration of the RO parameters, ∆
familiy

= 

0.2 and v'̂
ft = 0.1 are also needed). The suite of models, HEM 1 to HEM 3, was executed for a total 

of 715 passengers, encompassing 677 solo travelers and 38 members belonging to 16 families. 

Regarding family members, the breakdown is as follows: 

• Adult females constitute 42.11%. 

• Adult males make up 26.32%. 

• Children represent 7.89%. 

• Infants account for 23.68%. 

Furthermore, the population of families is differentiated by mobility, with 61.54% being non-

impaired and 38.46% being mobility-impaired. Each model, from HEM 1 to HEM 3, was run once for 

a daytime scenario, with the possibility of passengers commencing from any of 20 different locations 

(the same as E2-3). The outcomes are systematically documented in Table 13. It compares HEMs' 
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performance by showing pre- and post-adjustment TETs (applying an α =1.25 as applied by IMO and 

β+γ=1), optimization iterations, and model complexity.  

Table 13. Comparative analysis of TETs for HEM 1 to HEM 3 considering families. 

Model Approach TET before affecting 

α, β, and γ 

TET after 

affecting α, 

β, and γ 

Iterations Nodes Block of 

variables 

Block of 

equations 

H
E

M
 1

 

RO 848.21 1,060.17 505,987 467 9 19 

H
E

M
 2

 

R
S

S
P

 

RSSPs1u1
 1,243.13 1,553.92 

37,243 0 6 12 

RSSPs1u2
 1,074.41 1,343.02 

RSSPs1u3
 916.70 1,145.87 

RSSPs2u1
 1,487.93 1,859.92 

RSSPs2u2
 1,251.44 1,564.30 

RSSPs2u3
 1,064.96 1,331.19 

RSSPs3u1
 1,044.31 1,305.39 

RSSPs3u2
 895.32 1,119.15 

RSSPs3u3
 761.49 951.86 

RSSPs4u1
 1,101.52 1,376.90 

RSSPs4u2
 942.66 1,178.32 

RSSPs4u3
 809.15 1,011.44 

H
E

M
 3

 

H
R

S
S

R
P

 

HRSSRPs1w1
 1,463.42 1,829.27 

21,376 0 7 13 

HRSSRPs1w2
 1,476.34 1,845.42 

HRSSRPs1w3
 1,424.46 1,780.57 

HRSSRPs2w1
 991.35 1,239.18 

HRSSRPs2w2
 1,001.32 1,251.65 

HRSSRPs2w3
 979.62 1,224.53 

HRSSRPs3w1
 847.05 1,058.81 

HRSSRPs3w2
 864.53 1,080.66 

HRSSRPs3w3
 847.90 1,059.88 

 

Based on the data provided in Table 13, here is a description of the performance of the applied 

approaches in managing uncertainty in HEMs in terms of their TET before affecting α, β, and γ: 

• RO approach in HEM 1: It exhibits the most efficient evacuation time among the three 

approaches, with a TET of 848.21 seconds. This approach to handling uncertainty suggests a 

good efficiency level in the RO model due to its robust handling of uncertainties and optimized 

allocation of families/passengers to exit doors. The RO model's strength lies in its ability to 

minimize evacuation time while effectively managing potential variations in walking speeds 

and distances to exit doors. 

• RSSP approach in HEM 2: It shows a range of evacuation times across different scenarios, 

which indicates variability in its effectiveness. The TETs vary from 1,487.93 seconds in the 

RSSPs2u1
 scenario to as low as 761.49 seconds in the RSSPs3u3

 scenario. The varying TETs 

across scenarios suggest the RSSP approach's adaptability in handling different combinations 

of walking speed and travel distance uncertainties. It demonstrates the ability to model a broad 

spectrum of evacuation conditions. 

• HRSSRP approach in HEM 3: Like RSSP, HRSSRP also shows variability in evacuation times 

across its scenarios. The TETs range from 1,476.34 seconds in the HRSSRPs1w2
scenario to 

847.05 seconds in the HRSSRPs3w1
scenario. This approach's strength lies in its hybrid modeling 

of uncertainties, including walking speed and exit door capacities. The range of TETs indicates 
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an approach to modeling various evacuation scenarios, potentially providing a more resilient 

perspective of evacuation dynamics. 

• The HEM 1 to HEM 3 models optimize evacuation scenarios by incorporating a mix of families 

and solo travelers, which reflects the complexity of human behavior in emergencies. Families, 

which move slower due to group dynamics, and solo travelers, who are generally faster and 

more adaptable, are included to enhance realism. This diverse approach offers a more accurate 

prediction of evacuation dynamics and potential congestion. In contrast, studies focusing solely 

on solo travelers, such as the referenced case study, may underestimate evacuation times and 

congestion risks, lacking the broader perspective provided by including family groups. 

As a result, the RO approach stands out for its efficiency in evacuation time, suggesting a focused and 

effective optimization strategy. In terms of scenario flexibility, both the RSSP and HRSSRP approaches 

offer flexibility through multiple scenarios, which allows for a more detailed and varied analysis of 

potential evacuation conditions. In light of resilience and robustness, the HRSSRP approach, with its 

hybrid modeling of uncertainty in walking speed and disruption in exit doors, potentially provides a 

more robust and realistic assessment of evacuation scenarios compared to RSSP, factoring in additional 

complexities like exit door capacities along with walking speed and travel distance. 

Table 12 also provides computational outputs for HEM 1 to HEM 3, each employing a different 

approach to modeling uncertainty: RO, RSSP, and HRSSRP. These outputs, which are the result of using 

the CPLEX solver within the GAMS for solving MIP models, offer a quantitative basis to compare the 

complexity and computational effort required by each approach. 

• The number of iterations and nodes needed for each model to converge to a solution provides 

insight into the computational intensity of the optimization process. HEM 1 requires the most 

iterations and nodes, which indicates that the RO approach should explore more solution space 

to find the optimal solution. In contrast, HEM 3 requires the fewest iterations, which can 

suggest a more efficient search through the solution space, due to the hybrid nature of the 

HRSSRP approach that provide better initial estimates and bounds.  

Additionally, the HRSSRP approach does not incorporate the same number of uncertain 

parameters as the RSSP approach. Specifically, in the RSSP model, both the walking speed and 

travel distance of passengers and families are treated as uncertainties, with distinct scenarios 

assigned to each passenger. In contrast, the HRSSRP model primarily focuses on scenarios 

related to passenger walking speed and includes scenarios for exit door disruptions. However, 

these scenarios are fewer in comparison to the walking speed scenarios for each passenger in 

the RSSP model. 

• The formulation complexity of the HEM models varies, with HEM 1 exhibiting the most 

complexity. This is evidenced by its higher counts of variable and equation blocks. HEM 1's 

complexity primarily stems from modeling uncertainties related to passenger and family 

walking speeds within an uncertainty set. This approach necessitates additional constraints to 

represent these uncertainties.  

In contrast, HEM 2 and HEM 3 manage uncertainties through scenario-based approaches. 

These models integrate scenarios to address uncertainty without adding extra constraints to their 

deterministic counterparts. Therefore, while HEM 1 focuses on a more constraint-intensive 

method for uncertainty modeling, HEM 2 and HEM 3 opt for a scenario-based approach, which 

results in a relatively simpler formulation in terms of constraints. 

• The number of clique table members can indicate the complexity and the strategy employed in 

the optimization process. In the context of HEM 3, the notably high number of clique table 

members, totaling 501,597 compared to 77,612 for HEM 1 and 29,916 for HEM 2, suggests a 

more intricate and aggressive strategy in handling the model's complexities. This substantial 

figure in HEM 3 is reflective of a sophisticated approach to managing a broader range of 

uncertainties, which is essential for the model's efficiency. The larger number of clique table 
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members in HEM 3 contributes to the model's ability to navigate and simplify the complex 

solution space, which can lead to fewer iterations in finding the optimal solution. 

The data suggests a trade-off between model complexity and computational efficiency. HEM 1, while 

being the most complex, requires the most iterations to solve, which could be due to its thoroughness 

in encompassing uncertainty through RO. On the other hand, the RSSP and HRSSRP models 

demonstrate a reduction in structural complexity and the number of iterations needed. This reduction 

may be attributed to a more focused representation of uncertainty that balances model fidelity with 

computational speed.  

HRSSRP approach stands out for its use of cuts to refine the solution space, which aligns with its 

fewer iterations, suggesting an effective utilization of solver strategies to enhance computational 

performance. This efficiency might be especially beneficial when scaling the model for larger, more 

complex scenarios or when rapid solutions are necessary, as in real-time evacuation planning. 

Furthermore, the RO technique demands the most computational resources. The HRSSRP model strikes 

an effective balance, which potentially offers a more practical approach for large-scale applications 

where computational resources and time are constrained. The choice of model would thus depend on 

the specific requirements of the evacuation scenario and the availability of computational resources. 

6.4.3. Multi-period evacuation process in HEM 1 to HEM 3 

This section concentrates on the multi-period nature of the evacuation process, analyzing in detail each 

period, including the number of evacuees, the duration, and the reasons for these metrics. Additionally, 

since the scenario-based models (HEM 2 employing RSSP and HEM 3 applying HRSSRP) generate 

multiple scenarios, a single scenario from their outputs is selected for a concise comparison with HEM 

1, which applies the RO approach. This process allows us to contrast these models with the RO-based 

model. The chosen scenarios for this analysis are RSSPs1u3
 and HRSSRPs2w1

. The insights gained from 

this analysis also apply to other scenarios. Figure 12 illustrates the duration of each period and the 

number of evacuees, solo travelers (upper box), and families (lower box) evacuated under the three 

models per period. 

 
Figure 12. Comparative analysis of evacuation periods and evacuee numbers. 

HEM 1 manages uncertainties related to each passenger's walking speed, and HEM 2 addresses 

uncertainties related to each passenger's walking speed and travel distance. These uncertainties are 

integrated directly into the optimization objective function to minimize total evacuation time. In these 

models, the focus is on optimizing the allocation of passengers, solo travelers, and families, minimizing 

the total evacuation time within a set of constraints, allowing for a more straightforward and time-
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efficient evacuation process, which results in the 15-period duration. HEM 3 addresses uncertainties in 

passenger walking speed alongside disruptions in exit door capacities.  

Unlike HEM 1 and 2, which integrate uncertainties directly into their optimization objective, HEM 

3 treats exit door disruptions as constraints. This methodological shift impacts the model's optimization 

strategy. By treating exit door capacity disruptions as constraints, HEM 3 prioritizes the robustness of 

the evacuation plan against these potential disruptions. Constraints related to critical evacuation 

resources, like exit door capacities, inherently restrict the model's flexibility in routing and scheduling 

evacuations. In scenarios where exit door capacities are diminished, HEM 3, handled with p-robust 

feasibility stochastic optimization, is designed to explore and adopt alternative evacuation plans. These 

plans, while potentially less direct and therefore less efficient than those in HEM 1 and 2, are chosen to 

ensure the evacuation plan remains viable under a wider array of uncertain conditions. This emphasis 

on robustness and adaptability in the face of exit door disruptions naturally extends the evacuation 

process, accounting for why HEM 3 requires 20 periods for complete evacuation, as opposed to the 15 

periods in the other models. The extended period in HEM 3 reflects a strategic trade-off: prioritizing 

the resilience and reliability of the evacuation process over mere efficiency, which is crucial in ensuring 

safety in highly uncertain and dynamic environments such as passenger ship evacuations. Considering 

Equation (73), the reliability metric for HEM 3 is calculated at 66% (computed as (0.33 × 1 + 0.33 × 1 

+ 0.33 × 0) × 100), under the condition where the variable  Γw₃=1,  Γw₂, and Γw₁=0. This calculation is 

based on the example where each exit door can accommodate four passengers per period. 

Based on Figure 9, The statistical analysis offers insights into the outputs of the HEM 1, HEM 2, 

and HEM 3 models across their respective evacuation periods. By examining these statistics, it can be 

understood why evacuation times vary across models per period. 

• Average evacuation time: 

o HEM 1: 56.54 seconds 

o HEM 2: 61.11 seconds 

o HEM 3: 49.57 seconds 

HEM 3 shows the shortest average evacuation time, which might seem counterintuitive given its longer 

overall evacuation period. However, this indicates that while HEM 3 takes more periods to evacuate 

everyone, the average time per period is efficiently minimized due to its robust handling of uncertainties 

in both walking speed and exit door capacities. 

• Variance of period time: 

o HEM 1: 5.05 

o HEM 2: 100.42 

o HEM 3: 52.00 

The variance in HEM 2 is higher than in the other models, suggesting more significant inconsistency in 

evacuation times per period. This is attributed to the dual uncertainties in walking speed and travel 

distance that HEM 2 manages. 

• Skewness: 

o HEM 1: 0.45 

o HEM 2: 1.11 

o HEM 3: -0.99 

The skewness values indicate the asymmetry in the distribution of evacuation times per period. HEM 

3's negative skew suggests a concentration of shorter evacuation times. 

• Kurtosis: 
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It reflects the tailed property of the distribution. The closer to zero, the more normal-like the distribution 

is. HEM 3's value is closest to zero, telling a more normal distribution of evacuation times. 

• Median: 

It provides a measure of central tendency. HEM 3's median is closer to its mean, indicating a more 

symmetric data distribution. 

• Standard deviation: 

o HEM 1: 2.25 

o HEM 2: 10.02 

o HEM 3: 7.21 

The statistical analysis of the number of evacuees (both solo travelers and families) across the 

evacuation periods for HEM 1, HEM 2, and HEM 3 models also provides insights into how each model 

handles the evacuation process: 

HEM 1 and HEM 2 have the same average number of solo travelers and families evacuated per 

period (45.13 solo travelers and 1.07 families). This similarity suggests that despite different uncertainty 

factors (walking speed in HEM 1 and both walking speed and travel distance in HEM 2), the models 

achieve a similar rate of evacuation. HEM 3 shows a lower average (33.85 solo travelers and 0.80 

families), which aligns with its approach of managing both walking speed uncertainty and exit door 

capacity disruptions. The lower average indicates a more cautious and constrained evacuation process, 

likely due to the additional complexity of managing exit door capacity. 

• Variance: 

o HEM 1: 6.25 (solo travelers), 0.86 (families) 

o HEM 2: 6.65 (solo travelers), 1.00 (families) 

o HEM 3: 19.43 (solo travelers), 0.96 (families) 

The variance is higher in HEM 3 compared to HEM 1 and HEM 2, which suggests more fluctuation in 

the number of evacuees per period. This is expected, given HEM 3's additional constraints on exit door 

capacities. 

• Skewness: 

o HEM 1: -1.41 (solo travelers), 1.87 (families) 

o HEM 2: -0.38 (solo travelers), 0.27 (families) 

o HEM 3: -0.39 (solo travelers), 1.05 (families) 

The skewness values indicate the asymmetry in the distribution of the number of evacuees. HEM 1 

shows a more negative skew for solo travelers, which means a concentration toward higher numbers of 

evacuees in most periods. 

• Kurtosis: 

o HEM 1: 3.37 (solo travelers), 6.36 (families) 

o HEM 2: -1.02 (solo travelers), -1.30 (families) 

o HEM 3: -0.43 (solo travelers), 0.36 (families) 

HEM 1 shows a high kurtosis, especially for families, which implies a more peaked distribution with 

pronounced tails. This means periods of high and low family evacuations. 

• Median: 

o HEM 1 and HEM 2: 46.00 (solo travelers), 1.00 (families) 

o HEM 3: 35.00 (solo travelers), 0.50 (families) 
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The median values are consistent with the averages in HEM 1 and HEM 2, while HEM 3's median for 

solo travelers is slightly higher than its average, which signifies a skewed distribution. 

• Standard deviation: 

o HEM 1: 2.50 (solo travelers), 0.93 (families) 

o HEM 2: 2.58 (solo travelers), 1.00 (families) 

o HEM 3: 4.41 (solo travelers), 0.98 (families) 

The standard deviation is higher in HEM 3, consistent with its higher variance. This suggests a greater 

variability in the number of evacuees per period in HEM 3 because of the added complexity of managing 

door capacity disruptions. 

The statistical analysis of evacuation times and the number of evacuees for HEM 1, HEM 2, and 

HEM 3 models reveals distinct patterns: 

• HEM 1 and HEM 2: 

o Consistency in evacuees: Both models maintain a similar average number of evacuees per 

period, suggesting efficiency in managing passenger throughput. 

o Time variability in HEM 2: Despite this consistency, HEM 2 shows fluctuation in evacuation 

times due to its dual focus on passenger walking speed and travel distance. 

• HEM 3: 

o Efficient yet restrained: HEM 3 has the shortest average evacuation time per period but 

evacuates fewer individuals each time. This indicates a more cautious approach, which 

balances time efficiency with the added complexity of managing exit door capacities. 

o Greater variability: Higher variance and standard deviation in evacuation time and number of 

evacuees point to a more uncertain evacuation pattern in HEM 3. 

Overall, HEM 1 and HEM 2 demonstrate consistency in the number of evacuees despite differing 

approaches to uncertainty, whereas HEM 3's strategy of managing additional constraints results in 

quicker but less populated evacuation periods. This reflects the trade-offs between time efficiency and 

evacuation volume inherent in each model's design. 

6.4.3.1. Analysis of the maximum period durations 

Z-score analysis is employed to examine the longest evacuation periods in the HEM 1, HEM 2, and 

HEM 3 models. Z-scores are for identifying outliers, which focus on periods that deviate from the 

average, thus impacting evacuation efficiency. The standardization feature in the Z-score metric enables 

direct comparisons across models, regardless of their different evacuation time scales.  

Additionally, Z-scores provide insights into the variability of each period, which sheds light on 

the consistency/inconsistency of each model's performance. Figure 13 offers a visualization of Z-scores 

for each evacuation period in the HEM 1, HEM 2, and HEM 3 models. It illustrates how each period's 

evacuation time deviates from the respective model's average, with negative Z-scores indicating shorter 

times and positive ones indicating longer durations. 



Chapter 6. Solution results 

66 

 

 
Figure 13. Z-Score analysis of evacuation periods in HEM 1, HEM 2, and HEM 3. 

Figure 13 shows that in HEM 2, periods t11, t5, and t9 stand out as outliers, with Z-scores of 1.73, 

1.91, and 2.01, respectively. These scores indicate that the evacuation times for these periods are longer 

than the average for HEM 2. In contrast, HEM 1 and HEM 3 do not exhibit any such outliers. This 

suggests a variability in HEM 2's evacuation process for specific periods because of factors such as the 

model's handling of uncertainties in both walking speed and travel distance. The absence of outliers in 

HEM 1 and HEM 3 indicates a more consistent evacuation time across their periods, which reflects the 

different operational dynamics and uncertainty management strategies in these models. 

Figure 14 provides data explaining another reason for the extended evacuation times. It details the 

evacuation of the slowest-moving families during these specific periods: f
8
 in t5 with an evacuation time 

of 80.23 seconds, f
12

 in t9 taking 81.23 seconds, and f
11

 in t11 requiring 78.4 seconds. This information 

from Figure 11 helps us understand that the evacuation of these particular families influences the longer 

evacuation times for these periods. 

 
Figure 14. Analysis of extended evacuation times linked to slowest-moving families in HEM 2 

Figure 15 offers an analysis of the factors contributing to the extended evacuation times for 

families f
8
, f

11
, and f

12
 in HEM 2. It details the characteristics of these families, including their size (2, 
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3, and 2 members for f
8
, f

11
, and f

12
, respectively), walking speed (all at 0.35 m/s), alertness situation 

(all non-alert), response times (8.8 seconds for f
8
, 9.83 for f

11
, and 9.8 for f

12
), their specific locations 

within the deck 10 (i7, i3, i7), and the exit doors they are offered based on their characteristics, such as 

speed and closeness to the different exit doors. This granular information from Figure 15 allows for a 

deeper understanding of why these families contributed to longer evacuation times. Their larger size, 

particularly for family f
11

, slower walking speeds, lack of alertness, and longer response times all play 

a role in delaying their evacuation. Additionally, their locations and the exit doors they used have 

influenced the overall time taken.  

 
Figure 15. Analysis of factors affecting evacuation times for families f

8
, f

11
, and f

12
in HEM 2. 

Families f
8
, f

11
, and f

12
 are located in specific areas on deck 10, at locale i7, i3, and i7, respectively. 

Crew teams j
6
, j

2
, and j

6
 are assigned to these locations and are tasked with assisting these families. 

This arrangement suggests a strategic allocation of crew members to aid families in more challenging 

evacuation scenarios. The presence of crew members in the same locations as these families, 

particularly given their slower speeds and non-alert status, is a measure to ensure their safe and efficient 

evacuation. This assistance mitigates the impact of these families' characteristics on the overall 

evacuation time, which highlights the importance of effective crew deployment in emergencies. 

6.4.3.2. Analysis of passengers’ groups distribution across periods 

The demographic distribution of solo travelers across all periods in HEM 1 to HEM 3 is depicted in 

Figures 16-1, 16-2, and 16-3. 
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Figure 16-1. The specific demographic group across all periods in HEM 1. 

 
Figure 16-2. The specific demographic group across all periods in HEM 2. 
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Figure 16-3. The specific demographic group across all periods in HEM 3. 

Figure 16. The specific demographic group across all periods through HEM 1 to HEM 3 for solo travelers. 

 

For example, in HEM 1 and HEM 3, during period t3, the group with the lowest evacuation 

percentage was the M1 group, consisting of males aged 10-20 years. In contrast, in HEM 2, under the 

same conditions, the group with the most minor percentage of evacuees was the F2 group, including 

females aged 20-40. The distinct modeling approaches in each HEM version brought out different 

aspects of evacuation behavior, revealing how certain demographic groups might be more affected 

under specific uncertainties and scenario conditions. 

The demographic distribution of family travelers across all periods in HEM 1 to HEM 3 is depicted 

in Figures 17-1, 17-2, and 17-3. 
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Figure 17-1. The specific demographic group across all periods in HEM 1. 

 
Figure 17-2. The specific demographic group across all periods in HEM 2. 
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Figure 17-3. The specific demographic group across all periods in HEM 3. 

Figure 17. The specific demographic group across all periods through HEM 1 to HEM 3 for family travelers. 
 

In HEM 1, HEM 2, and HEM 3, the percentage of family evacuees varies across different periods, 

which echoes each model's specific uncertainty considerations. In HEM 1, the highest percentages of 

family evacuees are noted during periods t2-t6, t8-t11, and t13-t15, suggesting family evacuations during 

these intervals. HEM 2 shows a different pattern, with peak family evacuations occurring at t2, t5, and 

from t9-t15, pointing to specific times when families are more evacuating. In HEM 3, family evacuations 

are most notable at t2, t5, t8, t10, and during extended periods t13-t15 and t18-t20, indicating a varied 

distribution due to the complex interplay of uncertainty factors like walking speed and door capacity. 

6.4.4. Evacuation plan analysis 

The evacuation models, HEM 1, HEM 2, and HEM 3, are designed to create specific evacuation plans 

for every passenger, whether they are solo travelers or with families. These plans detail several key 

factors, such as response time (R), travel time (T), and evacuation time (ET), which is a combination of 

R and T. Additionally, the plans specify which exit door to go for evacuation, the period of evacuation, 

the starting time within the system, moving time point within the system, and the complete time point 

when the evacuation is finished for the corresponding passenger. For instance, p
78

, a 15-year-old girl 

from Family Group F5, originally located in Cabin 24 and currently at position i10, receives distinct 

evacuation plans across different models. Under the HEM 1 model, her evacuation is scheduled for 

period t3. She commences her evacuation at a system time of 110.52. Her preparation, or response time, 

is calculated to be 3.53 seconds. She is assigned to exit through door 5 (e5), which she can reach in 

27.91 seconds.  

In addition, she will receive assistance from the crew team j
9
 during her evacuation. Consequently, 

her evacuation is projected to be completed by a system time of 138.43. The final details of the 

evacuation plan for the same case, along with the results from models HEM 2 and HEM 3, are 

showcased in Figure 18. 
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Figure 18. Evacuation plan results for p

78
: HEM 1, HEM 2, and HEM 3. 

6.4.5. Initial location analysis 

One key aspect of the models is the consideration of varying starting points for each passenger, 

accounting for a range of possible locations, i ∈ I, where a passenger might be at the start of an 

evacuation. The evacuation plan for each individual is then tailored based on their specific starting 

location. For example, with passenger p
8
and family group f

2
. Their evacuation plans and exit doors 

vary based on their current locations, which are i1and i15. In the HEM 2 model, under the RSSPs1u3
, if  

f
2
 is at location i1, they are directed to exit door e2 during period t1. However, if they are at location i15, 

their plan changes to exit through door e10, also in period t1. Figure 19 displays how solo traveler p
8
 and 

family group f
2
 are allocated to different exit doors based on their current locations. 

 
Figure 19. Allocation of exit doors for p

8
 and f

2
 based on current locations in HEM 1 to HEM 3. 

6.4.6. Exit door quantity analysis 

Next, how increasing the number of exit doors affects total evacuation time (TET) in the models is 

examined across various scenarios. This section aims to understand better how more exits can improve 

evacuation efficiency. Figure 20 demonstrates how adding two more exit doors (e13 and e14) improved 

evacuation efficiency. This is evident in the reduction of TET across various scenarios. 

• HEM 2 results: 

o There's a consistent decrease in TET with the addition of e13 and e14. 

o The improvement percentage varies from 15.18% to 19.46%. 
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o Scenarios like (s1, u3) and (s3, u3) show the highest improvements (19.46% and 19.03%, 

respectively). 

o The T-test result shows 8.28E-10. It indicates that these improvements are statistically 

significant, meaning the chances are low that these results are due to random variation. This 

adds robustness to the conclusion that the additional exit doors improve evacuation efficiency. 

• HEM 3 results: 

o Similar to HEM 2, the TET decreased in all scenarios when adding e13 and e14. 

o The improvement is slightly lower compared to HEM 2, ranging from 5.02% to 13.58%. 

o The highest improvement was observed in (s3, w3) (13.58%). 

o The T-test result of 9.32E-05 again confirms the statistical significance of these 

improvements, reinforcing the confidence in the positive impact of the additional exits. 

Adding exit doors e13 and e14 enhances evacuation efficiency in both models, with HEM 2 showing 

slightly higher improvement percentages. The T-test results strongly support the effectiveness of these 

additional exits in reducing evacuation times. 

 
Figure 20. Impact of additional exit doors on TET in HEM 2 and HEM 3 models. 

6.4.7. Scenario stability analysis 

To consider a scenario generation approach as reliable, it should exhibit a quality called stability. 

Stability is apparent when various scenario trees, generated with the same input data and used for 

solving a specific problem, consistently produce similar optimal values for the objective function as 

determined by the scenario pattern (Kaut and Stein, 2003). For instance, f
11

 in HEM 2 under different 

scenarios have different walking speeds. In scenario s4, family f
11

 experiences the fastest evacuation 

speed, leading to its shortest evacuation time. Conversely, in scenario s2, f
11

 has the slowest speed, 

resulting in the longest evacuation time. These variations are depicted in Figure 21. 

Likewise, given that both solo travelers' and families' nominal walking speeds are influenced by [ 
ϱ

1
=0.7, ϱ

2
=1, ϱ

3
=1.2] in HEM 3 under HRSSRP approach it is anticipated that there would be a 

corresponding reduction in evacuation time since walking speed is increasing. For instance, family 

f
11

 shows a reduction in TET from scenario s1 to s3. These variations are depicted in Figure 22. More 
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details about family f
11

's evacuation strategies can be found in Figures 21 and 22. For instance, in the 

HEM 2 under RSSP approach, during scenarios (s1, u3) and (s4, u3), family f
11

 evacuates through exits 

e2 and e1 at times t14, taking 78.4 seconds and 54.88 seconds, respectively. 
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Figure 21. Scenario stability in TET for f

11
 across scenarios s1 to s4 in HEM 2 under RSSP approach. 

 
Figure 22. Scenario stability in TET for f

11
 across scenarios s1 to s3 in HEM 3 under HRSSRP approach. 

6.4.8. Conservatism level analysis 

Applying RO to manage uncertainty in passenger walking speed involves a component known as the 

conservatism level. The conservatism level plays a role in how the model balances the need for efficient 
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evacuation against the uncertainty of passenger walking speeds. The conservatism level in RO refers to 

how conservative or aggressive the model is in considering passenger walking speed uncertainty. 

In the context of human evacuation, a high conservatism level means the model prepares for 

worse-case scenarios regarding passenger walking speeds, such as assuming slower walking speeds for 

a larger portion of the passenger population. Conversely, a lower conservatism level assumes less 

variation in walking speeds, leading to a more optimistic evacuation plan. Furthermore, the chosen level 

of conservatism directly affects the evacuation time. A higher conservatism level results in longer 

planned evacuation times, as it prepares for slower walking speeds. A lower conservatism level 

optimizes for shorter evacuation times but could be less effective if actual walking speeds vary from 

the assumptions. The key to applying RO is to find a balance between evacuation efficiency (minimizing 

TET) and safety (accommodating variability in walking speeds). A model that is too conservative might 

lead to unnecessarily long evacuation times, while one that is not conservative enough might fail to 

accommodate slower passengers, potentially leading to bottlenecks or unsafe conditions.  

In practical terms, setting the right conservatism level involves understanding the demographics 

and physical abilities of the passenger population and considering factors like age, mobility 

impairments, or the presence of families. The model can be adjusted to scenarios where there might be 

a higher concentration of slower-moving passengers (e.g., F4, F5, M4, and M5 groups) or scenarios 

with more varied walking speeds. Figure 23 visually depicts the impact of varying conservatism levels 

on the evacuation time of the slowest solo travelers and families, as well as the total evacuation time, 

in the context of the HEM 1. 

 
Figure 23. Analysis of conservatism level on TET and slowest solo traveler and family in HEM 1. 

Regarding solo travelers' conservatism level, as the level increases from 0.1 to 1.1, the evacuation 

time of the slowest solo traveler slightly increases, which hints that the model progressively accounts 

for slower walking speeds. TET shows a more dramatic increase, especially at higher conservatism 

levels (e.g., 596.40 seconds at 0.9 and 4,736.36 seconds at 1.1). This suggests that planning for worst-

case scenarios in walking speed extends the overall evacuation time. Regarding the family's 

conservatism level, a similar trend is observed with families. Increasing the conservatism level from 

0.1 to 1.1 results in a gradual increase in the evacuation time for the slowest family. The TET also rises 

notably as the conservatism level increases, which reflects the impact of accounting for slower speeds 

in family groups. When it comes to combined conservatism levels (solo travelers and families), once 

both solo travelers and families have their conservatism levels grow simultaneously, the evacuation 

time for the slowest individuals in both groups increases. The combined effect on TET is substantial, at 
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higher levels (e.g., 5,537.73 seconds at a conservatism level of 1.1 for both groups). It demonstrates 

that a high conservatism level across both groups can lead to prolonged evacuation times. 

The results show the impact of conservatism level on evacuation efficiency. Higher conservatism 

levels, while ensuring the model accounts for slower walkers, can lead to much longer evacuation times. 

In practical terms, this presents that while it's important to plan for slower-moving individuals, overly 

conservative assumptions can hinder overall evacuation efficiency. The key is to find an optimal 

conservatism level that strikes a balance between accommodating slower walkers and maintaining a 

practical total evacuation time. This might involve iterative testing and adjustments based on real-world 

scenarios and passenger demographics. Finally, the findings also reveal the need to differentiate 

evacuation plans for solo travelers and families, as their walking speeds and needs might vary. 

6.4.9. Exit door capacity analysis 

This section explores the role of exit door capacities in evacuation planning, focusing on 

comparing the capacities of four and five people per period. Such analysis is crucial because minor 

adjustments in exit capacity can enhance evacuation times, thereby impacting safety and efficiency 

during emergencies. The goal is to offer clear insights into how changes in capacity can optimize 

evacuation procedures, thereby enhancing safety in high-occupancy settings. A statistical approach, 

including T-tests, provides robust evidence to inform improved safety practices and emergency 

preparedness strategies. Table 14 compares TET under two different capacities at exit doors: four and 

five people per period in HEM 2. The focus on HEM 2 and observations from HEM 1 and HEM 3 

illustrate how changes in exit door capacities affect evacuation times. The findings from HEM 2, 

discussed here for streamlined analysis, show that increasing the capacity from four to five people per 

period reduces the total evacuation time across all scenarios. For example, in scenario RSSPs1u1
, the 

TET reduces from 1553.92 to 516.99, a 66.73% improvement. The improvement percentage is 

consistently above 65% across all scenarios, which signifies a robust strategy irrespective of the specific 

walking speed or travel distance conditions. Furthermore, the T-test result of 2.10 × 10-9
 confirms that 

these improvements are statistically significant and not due to random variation. 

Table 14. Analysis of TET (s) for different exit door capacities in HEM 2. 

Scenarios TET with Capacity = four TET with Capacity = five Improvement % 

RSSPs1u1
 1,553.92 516.99 66.73 

RSSPs1u2
 1,343.02 439.48 67.28 

RSSPs1u3
 1,145.87 373.64 67.39 

RSSPs2u1
 1,859.92 614.74 66.95 

RSSPs2u2
 1,564.30 534.91 65.80 

RSSPs2u3
 1,331.19 447.33 66.40 

RSSPs3u1
 1,305.39 421.83 67.69 

RSSPs3u2
 1,119.15 369.76 66.96 

RSSPs3u3
 9,51.86 314.03 67.01 

RSSPs4u1
 1,376.90 451.96 67.18 

RSSPs4u2
 1,178.32 384.52 67.37 

RSSPs4u3
 1,011.44 320.43 68.32 

RSSPs1u1
 1553.92 516.99 66.73 
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This data implies that a minor increase in the capacity of exit doors can have a profound impact 

on evacuation efficiency, which is crucial for emergency management and safety planning. The 

consistency and statistical significance of the data make it a reliable source for future evacuation 

planning and simulations. 

6.4.10. Corridor width analysis 

In this section, how the width of corridors (ω) on passenger ships can influence evacuation efficiency 

is explored, in terms of evacuation time. On passenger ships, where space is at a premium, and the 

movement of passengers is confined to specific pathways, ω becomes a critical factor in emergency 

management. The correlation between different corridor widths and their effect on the speed and safety 

of evacuations is analyzed. This analysis can improve emergency response plans on passenger ships to 

ensure faster and safer evacuation processes under various emergency scenarios. Figure 24 provides 

data from HEM 2, which explores the impact of corridor width on TET for an experiment for four 

families and ten solo travelers.

 

Figure 24. Impact of ω variations on TET in different scenarios over HEM 2. 

For every scenario, the evacuation times are identical when comparing corridor widths of 0.7 and 

0.8 meters. This suggests that within this narrow range, ω does not affect evacuation times. Meanwhile, 

a change in evacuation times becomes noticeable when ω is increased to 1 meter and then to 1.5 meters. 

This demonstrates that wider corridors can have an impact on evacuation efficiency. Moreover, the 

relationship between ω and TET is not linear. For example, in scenarios (s1, u3) and (s2, u1), evacuation 

times increase when ω is expanded from 1 meter to 1.5 meters, indicating that factors other than just ω 

influence evacuation times. However, in some scenarios, such as (s3, u1) to (s3, u3) and (s4, u2) to (s4, 
u3), there's a consistent decrease in evacuation times as ω increases, signifying that wider corridors 

facilitate faster evacuation in these specific cases. It is important to note that corridor widths less than 

0.7 meters render the optimization model infeasible, suggesting a minimum functional limit. 

Additionally, increasing ω beyond 1.5 meters does not yield any noticeable change in evacuation times, 

which shows a plateau in efficiency gains beyond this point. 

6.4.11. Waking speed adjustment strategy analysis 

This section delves into the integration of passenger walking speed adjustment over the evacuation 

process in the models, a critical enhancement over traditional methods that use static average walking 

speeds. Research, such as that by Kim et al. (2019), highlights the shortcomings of assuming constant 

speeds in evacuation scenarios. In real emergencies, factors like ship motion, psychological stress, and 
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physical fatigue influence the walking speed, often leading to a reduction, especially towards the end 

of evacuation periods.  

By incorporating these dynamic speed adjustments, the models aim to better reflect actual 

passenger walking speed under varying conditions and threats, thereby providing more accurate and 

reliable predictions of evacuation timelines. The focus on HEM 2 and observations from HEM 1 and 

HEM 3 is due to the consistent trends observed across these models regarding how alterations in the 

degradation constant influence TETs. Figure 25 visually illustrates the effect of varying the linear 

degradation constant in family (ϻ) travelers on TET for scenarios (s1, u1), (s1, u3), and (s2, u3)  in HEM 

2.  

 
Figure 25. Influence of linear degradation constant (Deg.) on TET in HEM 2. 

Figure 25 illustrates two distinct trends in TET as the linear degradation constant is adjusted from 

0% to 20%. Initially, from 0% to 10% degradation, TET decreases. This decrease occurs because the 

model starts evacuating slower passengers earlier, which prioritizes them for evacuation. For instance, 

in scenario (s1, u1), family f
1
 with a nominal walking speed of 0.4 m/s is evacuated at period t12 when 

the degradation constant is 0%. However, at a 3% degradation constant, they are evacuated right at the 

beginning (period t1) to prevent a further slowdown in their speed due to degradation. 

However, the trend reverses from 10% to 20% degradation. TET starts to increase. This is because 

not all passengers can be evacuated immediately in the first period due to exit door capacity limits. As 

a result, some passengers, like family f
1
, are evacuated later, say in period t2 or t3, increasing the TET. 

For example, at a 20% degradation constant, the model first evacuates slower passengers like family f
4
  

(speed = 0.35 m/s). If family f
4
 is not prioritized and evacuated later, their speed decreases more due to 

the 20% degradation, leading to a much longer evacuation time. So, in this case, family f
1
 is evacuated 

in period t2 with an adjusted speed of 0.2 m/s (referring to Equation (42)), resulting in a much longer 

evacuation time of 127.85 to allow family f
4
 to evacuate earlier. 

6.4.12. Day/night and alert/non-alert analysis 

This section analyzes how evacuation efficiency on passenger ships is influenced by the time of day 

(day vs. night) and the alertness levels of passengers (alert vs. non-alert). The criticality of this analysis 

lies in its ability to reveal how awareness levels intertwine to affect the TET during emergencies to 

refine emergency plans by studying evacuation time variations under different daylight conditions and 

passenger alertness levels. To gain a deeper insight into the effects of day/night and alert/non-alert 
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conditions on evacuation, five experiments are conducted, under HEM 2 for ten family travelers and 40 

solo travelers. The results of these experiments are illustrated in Figure 26. 

 
Figure 26. Evacuation experiment outcomes under day/night and alert/non-alert conditions in HEM 2. 

• Night Scenarios (E₁₁ and E₁₂):  

During the night (when passengers are in their own cabins), TET tends to be higher. For example, in 

scenario s₁u₁, TET is 484.75 under both E₁₁ and E₁₂, which is higher compared to the day scenarios. This 

suggests that nighttime conditions, potentially due to non-alert situations, negatively impact evacuation 

efficiency. Day-based experiments (E₂₁, E₂₂, E₂₃): During the day (when passengers are in other locales), 

TET generally decreases. In the same scenario s₁u₁, TET ranges from 327.23 to 356.63 under day 

conditions, which indicates more efficient evacuation. Daytime scenarios benefit from passengers being 

more alert. 

• Non-Alert conditions (100% non-alert in E₁₁) :  

High TET in scenarios like s₁u₁ and s₂u₁ under E₁₁ suggests that when all passengers are non-alert (likely 

sleeping during the night), evacuation efficiency is reduced. 

• Partial alert conditions (mix of alert and non-alert in E₁₂, E₂₂, E₂₃):  

Experiments with a mix of alert and non-alert passengers, like E₂₂ and E₂₃, show a moderate impact on 

TET. For example, in s₁u₂, TET decreases from 431.18 in E₁₂ to 271.61 in E₂₃ as the percentage of alert 

passengers increases, which implies that having more alert passengers can improve evacuation 

efficiency. 

• Fully alert conditions (100% alert in E₂₁):  

Lowest TETs are often observed in scenarios where all passengers are alert, as seen in E₂₁. For instance, 

in scenario s₂u₂, TET drops to 300.00, suggesting that complete alertness enhances evacuation speed. 

As a result, night conditions with non-alert passengers lead to longer evacuation times. Daytime 

experiments, for example, with higher alertness levels, show reduced evacuation times. Data reveals 
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that evacuation times are longer at night when passengers are less alert; emergency procedures could 

be adapted to include more effective wake-up alerts and guidance systems for nighttime scenarios. 

Additionally, recognizing that passengers may respond more quickly during the day, daytime 

emergency plans might focus on efficient crowd handling by allocating crew teams to passengers in 

demand. 

6.4.13. Specific flow of passengers analysis 

The specific flow of passengers (λ) on passenger ships is a measure used in emergency planning to 

determine how quickly people can move through the ship's corridors and exits during an evacuation. 

It's crucial to ensure everyone can evacuate safely and promptly in an emergency to avoid overcrowding 

and delays. This concept guides the design of the ship's layout and emergency procedures to keep 

passengers safe. Table 15 presents the TETs under different λ for a range of scenarios. 

Table 15. TET analysis for various specific flow rates in HEM 2. 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Scenarios λ = 0.8 λ = 0.9 λ = 1 λ = 1.3 λ = 1.6 λ = 2 

s₁u₁ 338.23 332.75 338.23 346.11 349.27 346.11 

s₁u₂ 292.54 281.50 286.89 292.54 281.50 300.25 

s₁u₃ 227.93 230.68 227.93 246.59 246.59 246.59 

s₂u₁ 407.58 407.58 407.58 392.00 392.00 403.79 

s₂u₂ 332.48 348.06 345.35 341.29 341.29 341.29 

s₂u₃ 280.65 265.92 288.54 288.54 280.65 288.54 

s₃u₁ 260.61 253.42 274.08 265.50 269.19 265.50 

s₃u₂ 217.14 225.06 225.22 218.94 231.34 218.94 

s₃u₃ 175.93 184.94 193.53 185.86 193.99 177.28 

s₄u₁ 259.68 247.93 244.68 246.30 259.68 257.28 

s₄u₂ 208.71 209.61 218.80 219.52 223.46 210.34 

s₄u₃ 180.79 187.24 187.24 181.77 187.24 187.24 

Average 265.19 264.56 269.84 268.75 271.35 270.26 

Variance 4,832.20 4,619.15 4,512.95 4,339.97 3,946.86 4,761.36 

 

The results across different λ values (0.8 to 2) show variation in evacuation times for different 

scenarios. Increasing λ does not consistently decrease evacuation times. This proposes that higher flow 

rates don't always lead to faster evacuations due to factors like exit door capacity. Different scenarios 

show varying evacuation times, which indicates that factors other than λ (like passenger walking speed, 

passenger travel distance, and exit door capacity) impact evacuation efficiency. Scenarios s₂u₁ tend to 

have higher evacuation times compared to others, pointing to less efficient evacuation in these setups. 

The elevated evacuation times observed in scenario (s₂,u₁) can be primarily attributed to two key factors: 

an increased travel distance and reduced walking speeds. In this scenario, passengers face an additional 

travel distance of 10 meters beyond the nominal values.  

Additionally, scenario s₂ is characterized by the slowest walking speeds experienced by 

passengers, further exacerbating the delay. The average evacuation time across all scenarios and λ 

values is around 267-271 seconds, with minor fluctuations. It tells a relatively stable evacuation duration 

regardless of the flow rate. This stability means that the specific flow rate, within the tested range, does 

not drastically alter the overall time it takes to evacuate. The variance (a measure of how much the 

values are spread out) shows notable differences across λ values. Lower variance at λ=1.6 and higher 

variance at other λ values suggest more consistency in evacuation times at λ=1.6. In practical terms, this 
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means that at λ=1.6, the evacuation times across various scenarios are more predictable and less subject 

to extreme variations, making this flow rate potentially more reliable or preferable in planning 

evacuations. The model becomes infeasible for λ less than 0.8, and for λ values greater than 2, the 

evacuation time remains the same and does not change. 

The single-factor ANOVA test is conducted to analyze the statistical significance of different 

values of λ on TETs. A very low F-statistic (0.02) and a high P-value (1.00) strongly suggest that there 

is no significant difference in evacuation times across different λ. This is further supported by the F-

statistic being much lower than the F Critical Value (2.35). The ANOVA test results suggest that the 

variability in evacuation times is more influenced by individual scenario differences within the same 

specific flow rate rather than by the differences in the flow rates themselves. The statistical significance 

of these differences is not supported, which demonstrates that the choice of λ might not be the primary 

factor affecting evacuation times in these scenarios. 
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7. Discussion and contribution  
In this portion of the dissertation, the discussion turns to the contributions made through this PhD work. 

These efforts can be seen as steps toward enhancing maritime safety, providing insights that can inform 

future academic inquiry in the field. The models developed as part of this research were designed using 

data from the IMO and underwent a partial validation process through a case study focusing on a single 

deck of a passenger ship. 

7.1. Over two-decade literature review in human evacuation models 
The systematic literature review presented in Paper 1 contributes to maritime safety, reviewing a 

wide range of research from January 1999 to August 2022. This analysis of 115 directly reviewed 

articles reveals a robust knowledge of passenger ship evacuation analysis. Paper 1 highlights the 

strength of existing literature while suggesting areas for future research, reflecting over two decades of 

scholarly dedication. 

This review emphasizes the solid foundation in the field, highlighting the substantial academic 

work that precedes and supports this dissertation. It serves not as the first word but as part of an ongoing 

conversation among scholars and practitioners in maritime safety, offering insights that can further 

refine and address evacuation plans and methodologies. In acknowledging the depth and breadth of 

previous research, this paper positions itself as a continuation of the dialogue, aspiring to contribute to 

the evolving landscape of maritime safety knowledge.  

Paper 1 offered insights into managing hybrid uncertainties, by examining the interplay between 

passenger walking speed, travel distances, and exit door capacities. It provided the application of new 

uncertainty modeling techniques in this field, such as robust optimization, stochastic optimization, and 

a hybrid robust-stochastic optimization approach, to address uncertainties. While these methodologies 

contribute to managing hybrid uncertainties, they also open the door for further refinement and 

exploration in future research. These initial findings lay a foundation for advancing the developed 

approaches, suggesting a direction for enhancing evacuation plans through more advanced uncertainty 

modeling techniques. 

Following the insights into hybrid uncertainties, this research developed a mathematical 

optimization model for a single deck of a passenger ship. This model was designed to examine the 

impact of the uncertainty modeling techniques—robust optimization, stochastic optimization, and a 

hybrid robust-stochastic optimization approach—on managing the highlighted sources of uncertainty, 

which led to the proposal of three human evacuation models in this research (HEM 1, HEM 2, and HEM 

3). Although these models represent a step forward in understanding and addressing hybrid 

uncertainties, it is acknowledged that the model is not without its limitations. The proposed approaches 

can be refined and expanded upon in future research. 

7.2. Model development and validation: a dual-data set approach 
This dissertation represents an effort in model development and validation grounded on the 

utilization of two distinct yet complementary data sets. Initially, the models, designated as HEM 1 to 

HEM 3, were developed using passenger walking speed data from the IMO data set.  

Subsequently, these developed models were further tested by incorporating passenger walking 

speed data and passenger travel distances based on the layout of Deck 10 of a passenger ship (case 

study). This phase aimed to assess the stability of the models against real-world data. This case study 

served as a preliminary test bed, highlighting the potential for future refinements and validations against 

a more comprehensive array of case studies. 

The dual approach of employing the IMO data set for model development and a case study for 

model validation, in terms of the applied uncertainty modeling techniques (i.e., robust optimization, 
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stochastic optimization, and hybrid robust-stochastic optimization) for handling hybrid uncertainties, 

underscores a contribution to maritime safety research. It demonstrates the potential of these models to 

provide new insights into the application of uncertainty modeling techniques, specifically in the context 

of evacuation or drill procedures on single decks of passenger ships. While the focus of this research is 

on a single deck, it lays the groundwork for potential expansion into more comprehensive multi-deck 

human evacuation plans. 

7.3. Operational, tactical, and strategical levels 
Evacuation plans for human safety at sea can benefit from uncertainty modeling techniques that address 

inherent uncertainties. Models HEM 1 to HEM 3 introduce methods to manage uncertainties related to 

passenger walking speed, travel distance, and exit door capacity. These models pursue three objectives: 

• Accelerating evacuation 

• Minimizing the number of exit doors  

• Maintaining crew proximity to passengers 

By incorporating critical parameters as sources of uncertainty, these models apply mathematical 

techniques to navigate these challenges. Although developed specifically for a single deck of a 

passenger ship, the insights provided by these models suggest a foundation for extending such 

uncertainty management approaches to multi-deck scenarios. This contribution to the field indicates a 

direction for future enhancements and broader applications, offering a perspective that may be practical 

in both academic and industrial contexts. The developed models can give insight and contribution to 

the academic and industrial settings as follows: 

• Operational level: They can generate individualized plans for each solo traveler or family 

based on how fast they can move (based on their age, gender, and physical mobility), where 

they are on the ship, how close they are to the exit doors, what is the level of alertness, how 

many members they have (for families),  what is the exit door capacities, what is the ship’s 

layout, what is corridor width, and what is the specific flow in a corridor considering the 

uncertainty in passenger walking speed (HEM 1), hybrid consideration of passenger walking 

speed and travel distance (in HEM 2), and hybrid consideration of passenger walking speed 

and potential disruption in exit doors capacities (in HEM 3). Furthermore, the models offer 

the flexibility to adapt the evacuation plans dynamically in response to real-time conditions 

and emerging hazards, such as intensifying ship motions, indicating that walking speeds are 

not static but can be adjusted as the evacuation progresses. This offer suggests that the 

evacuation plan for a passenger may change depending on which period of evacuation he/she 

is in. However, it is recognized that these models are subject to continuous improvement and 

refinement. 

• Tactical level: The tactical level of the evacuation model is about positioning crew members 

to maximize their ability to assist passengers, especially those who need the most help. The 

presence of crew members can have a calming effect on passengers. Their ability to provide 

reassurance and guidance in high-stress situations can be practical, especially for passengers 

who are vulnerable or at-risk (in the developed models they are recognized as outliers or the 

slower solo travelers and families). This allocation can maximize crew’s ability in assisting 

them. 

At the operational level, the model can form personalized evacuation plans for each passenger, be 

they solo travelers or families. These plans consider various factors like their specific location on the 

ship, their walking speed, their proximity to the exit doors, and the ship's layout. By tailoring these 

plans to individual needs and circumstances, the model can offer a more organized evacuation.  

The generated plans vary depending on different scenarios. Therefore, these plans can help 

different existing passenger ships to find their own plan depending on what scenarios they have 
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experienced during their emergencies. Furthermore, the plans can help the existing passenger ships for 

appropriate allocation of passengers to cabins depending on their estimated walking speed and mobility. 

Individualized plans can inform a more targeted communication strategy during an evacuation. 

Information can be tailored to the specific needs and locations of passengers, to ensure that they receive 

relevant and clear instructions. By providing clear and personalized guidance during an evacuation, 

passengers are likely to experience less stress.  

Concurrently, at the tactical level, the model can allocate crew members to assist passengers who 

need the most help. This can be important for managing areas that are prone to congestion (the prescence 

of outliers/slowest passengers). The crew can guide passengers, assist with crowd control, and help 

maintain a steady flow towards the exits. This assistance can be crucial in preventing bottlenecks. 

Crew members can be trained on various evacuation scenarios based on these individualized plans. 

This helps in preparing the crew for a range of potential emergencies, which can enhance their ability 

to respond effectively. 

Detailed plans enable better coordination among crew members. Each crew member can be 

assigned specific roles and responsibilities tailored to the needs of passengers in their designated area, 

to ensure that all areas of the ship can receive adequate attention and assistance. 

When the model's individualized evacuation plans (operational level) are combined with the 

placement of crew members (tactical level), congestion can be mitigated. By proactively addressing 

areas identified as potential congestion points, passengers can receive appropriate guidance and 

assistance. 

Crew members can be assigned to assist elderly passengers, those with disabilities, or families 

with young children or infants to ensure that these groups move more quickly and do not contribute to 

congestion. 

Regular drills can be conducted based on model predictions and scenarios, to help both crew and 

passengers to become familiar with evacuation procedures and reducing the likelihood of congestion 

during an actual emergency.  

For existing ships, the develped models can be practical for adhering to safety standards. When 

the model indicates that the total evacuation duration is too long, the detailed plans and crew allocation 

strategies can be reviewed and adjusted.  

Integrating family-centric strategies into the evacuation models aligns with stringent safety 

standards for maritime operations. By considering families, such as those with children or elderly 

members who may require additional assistance, the model can offer that evacuation plans are 

considerate of several family-needs. 

• Strategic level: At this level, the model can play a crucial role in determining the optimal 

number of exit doors required for an efficient and rapid evacuation. This level involves an 

analysis of the ship's layout (e.g., corridor width and transition point capacity like exit door) 

and passenger capacity to ensure that there are enough exits to handle an emergency without 

causing bottlenecks or delays. The goal is to balance safety with practicality, which can 

provide that each exit door is strategically placed and sufficient to accommodate the flow of 

passengers during an evacuation. 

The operational and tactical levels of the evacuation model can interplay with the strategic level, 

such as when considering the design of new ships; for example, in HEM 2, the interrelationship between 

hybrid consideration of passenger walking speed and passenger travel distance with the number and 

potential location of exit doors. Therefore, HEM 2, even if it is modeled for a single-deck passenger 
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ship, can give insight into how hybrid consideration of uncertainty in passenger walking speed and 

passenger travel distance can affect the closeness and quantity of transition points (e.g., exit doors). 

The individualized evacuation plans generated at the operational level can provide valuable data 

on where to go in emergencies. This data can reveal patterns and potential issues, such as areas prone 

to congestion. When this information is fed back into the strategic level, it can influence the positioning 

and number of transition points (e.g., exit doors) to manage the flow of passengers during an evacuation.  

At the tactical level, the way crew members are allocated helps identify the best methods for 

guiding passengers. If crew members often assist slow-moving passengers in certain areas, it indicates 

these spots are likely to get crowded. This information can be practical for making decisions about 

where to place more exits and how to design evacuation paths on new ships. Furthermore, it can be a 

sign in order to increase the number of trained crew members in this type of spot. 

In the context of new ships, where the total evacuation time is regulated not to exceed predefined 

limits, insights derived from operational and tactical analyses can guide compliance efforts. Ship 

designers can refine layouts and evacuation protocols by integrating potential scenarios identified at 

these levels. This approach can evaluate the impact of mixed uncertainties on evacuation efficiency, 

such as the combination of passenger walking speeds with travel distances or exit door capacities. Such 

insights can offer a practical perspective for ensuring ship designs adhere to safety standards across 

various emergencies. While these insights are from a single-deck, they invite further investigation 

through additional studies, such as applying these considerations to the complex dynamics of multi-

deck settings. 

7.4. Uncertainty analysis 
The following details how the developed models considering three uncertainty modeling techniques can 

assist in solving human evacuation problems on passenger ships by handling hybrid uncertainties, 

including passenger walking speed with passenger travel distance and passenger walking speed with 

disruption to a transition point (e.g., an exit door). 

• HEM 1 uses robust optimization to handle uncertainty in passenger walking speeds, making 

it suitable for situations where detailed data might not be available. It can assist in creating 

evacuation plans based on limited information (e.g., a minimum and maximum for a passenger 

walking speed), ensuring that variations in walking speeds are considered. While robust 

optimization is utilized in HEM 1 primarily to tackle uncertainty in passenger walking speed, 

this technique has the potential in managing other uncertainties in the development of 

evacuation plans for passenger ships, mainly where there is a scarcity of data. 

• HEM 2 employs a two-stage scenario-based stochastic approach to manage mixed 

uncertainties involving passenger walking speed and travel distance. This method enables the 

examination of different evacuation scenarios, simulating various conditions like changes in 

walking speeds and distances. It offers a broader perspective on possible evacuation 

outcomes. This model can be useful for ships with access to more detailed data, such as 

probability distributions for uncertain parameters or some historical data. 

• HEM 3 combines robust and stochastic methods to address walking speed uncertainties and 

exit door capacity disruptions. Its hybrid approach can be practical for complex and uncertain 

scenarios. It can simulate disruptions like blocked transition points (e.g., exit doors), providing 

insights into how these factors impact the evacuation process. This model can produce 

evacuation plans that are flexible and resilient to potential disruptions to transitional points 

(e.g., exit doors). 

• HEM 2 and HEM 3 have been designed from a risk-neutral perspective. Adopting a risk-

neutral perspective means that the model evaluates various evacuation scenarios without 

prioritizing those with lower risk. Essentially, it treats all scenarios - whether they are high-
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risk (like a decreased passenger walking speed and disrupted exit door scenarios,  

HRSSRPs1w3
) or low-risk (e.g., increased walking speed and no disrupted exit door,  

HRSSRPs3w1
) - with equal importance. The primary focus is on minimizing the average 

evacuation time rather than giving special consideration to scenarios based on their inherent 

risks. This perspective can ensure that the plans developed are robust across a wide range of 

possible scenarios, not just the safest or most controlled ones. 
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8. Limitations and future research 
The following discussion delineates the capability of the models (HEM 1, HEM 2, and HEM 3) to open 

new avenues for scholarly investigation in human evacuation planning for passenger ships. These 

models have undergone partial validation by implementing uncertainty modeling techniques (RO, 

RSSP, and HRSSRP). However, it is crucial to acknowledge that they have yet to attain full validation 

and necessitate further exploration through real-time testing to solidify their applicability and accuracy 

in future research endeavors. 

• Digital twins for passenger ships: The models can act as a catalyst in advancing the 

development of digital twins for human evacuation systems for passenger ships. They can 

provide a framework for simulating and analyzing evacuation scenarios within a virtual 

environment, which can enable a deeper understanding of evacuation dynamics. By 

employing these models, researchers can test and refine evacuation plans under a diverse array 

of scenarios. 

• Sensor technology system development for real-time passenger monitoring: The models can 

serve as a platform for proposing the design and testing of sensor technologies aimed at 

collecting real-time data on passengers during an evacuation. This research trajectory, 

enriched by the models, could focus on developing wearable technologies and environmental 

sensors. These sensors can be envisioned to track critical parameters such as passenger 

location, movement speed, and even physiological responses during emergencies. By 

harnessing the insights provided by the models (e.g., adjustment strategy for passenger 

walking speeds), the development of these sensor systems can offer a more accurate picture 

of evacuation dynamics, which can enhance the safety measures and emergency responses in 

maritime travel. 

• Sensor technology for hazard detection and response: By incorporating disruption scenarios, 

in the HEM 3 model that focuses on exit door failures, the models can play a crucial role in 

enhancing the understanding of the potential impacts of structural failures on human 

evacuation from large passenger ships. These models simulate various levels of exit door 

disruptions, which provide practical insights into the severity and consequences of such 

emergencies in terms of evacuation time and passenger allocations to exit doors. This 

approach can aid in assessing the uncertainty associated with different disruption scenarios 

and can equip decision-makers with the necessary data to select and prepare for appropriate 

evacuation scenarios. 

• Data-driven evacuation planning: The developed models can lay a foundational groundwork 

for constructing machine learning algorithms under hybrid uncertainties focused on 

optimizing passenger allocation to exit doors. Feeding features into these algorithms - such as 

passenger walking speeds categorized by age, gender, mobility level, travel distances, 

alertness levels, and the ship's specific layout - paves the way for predictive models. These 

machine-learning models can be designed to determine efficient allocations of passengers to 

various exits. This approach not only can enhance evacuation efficiency but also can 

revolutionize the way passenger ship evacuation strategies are developed and implemented. 

• The models, with the improvements made in HEM 3, can serve as a pivotal foundation for 

developing enhanced human evacuation models. By introducing the concept of resilience in 

evacuation plans, HEM 3 has already begun addressing the complexity of disruption 

scenarios, such as compromised exit door capacities. Building on this, there can be an 

opportunity to further evolve these models to factor in fire-related disruptions. Such 

improvements could lead to models that not only anticipate the direct impact of fire on 

evacuation routes and exit usability but also dynamically adapt evacuation plans in response 

to the rapidly changing conditions of a fire emergency. This evolution can represent a step 

forward in ensuring even greater safety and efficiency in maritime emergency responses. 
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While the study contributes by examining hybrid uncertainties and the application of uncertainty 

modeling techniques in shaping human evacuation plans, it also recognizes potential areas for 

enhancement. 

• The current binary model for assessing passengers' situational awareness could be enhanced 

by either integrating intelligent sensor technology or employing fuzzy numbers. This 

approach can enable the representation of a broader spectrum of awareness situations, which 

can offer a richer and more accurate depiction of passenger behavior for advanced human 

evacuation modeling purposes. 

• The current iterations of the models, HEM 2 and HEM 3, function as two-stage scenario-

based human evacuation models. There is potential for improvement by evolving these into 

multi-stage models. For example, this enhancement can involve incorporating various stages 

of hazard development, such as the progression of a fire, to formulate a more dynamic and 

comprehensive evacuation modeling framework. 

• The models have the potential for further enhancement by integrating additional human 

factors, mainly focusing on the impact of stress levels and panic behavior, to achieve a more 

holistic and realistic representation of human responses during evacuations. 

• The models currently incur substantial computational costs due to their iterative nature. 

However, the introduction of new algorithmic cuts presents a viable solution to accelerate 

these computational processes and enhances efficiency. 

• The model's present focus on single-deck scenarios opens up the opportunity for expansion 

into a multi-deck evacuation framework. Such development would add layers of depth and 

realism to the optimization, more accurately reflecting the complexities of real-world 

scenarios. 

• For future research, exploring other risk perspectives in uncertainty modeling of human 

evacuation optimization models could yield practical insights. A risk-averse perspective 

would prioritize scenarios with lower risk, potentially leading to safer, albeit possibly slower, 

evacuation strategies. This approach could focus on minimizing potential hazards or avoiding 

worst-case scenarios during evacuations. Conversely, a risk-seeking model might explore 

more aggressive evacuation plans that could lead to faster overall times but with higher 

variability in outcomes. 

• Another limitation of this thesis lies in its focused exploration of optimization techniques for 

evacuation planning without delving into the integration of these techniques with simulation 

methods to form simulation-optimization decision support systems. Although the research 

applies mathematical optimization models, it does not examine the development and practical 

application of systems that merge the predictive power of simulations with optimization's 

precision. This oversight skips the potential for a more real-time evacuation plan that is 

adaptable to changing conditions and behaviors. Addressing the creation, validation, and 

deployment of such integrated systems can represent an opportunity for future work to 

improve evacuation safety and efficiency on passenger ships. 

• One limitation of the current modeling approach is the initial exclusion of evacuation crew 

members. The model determines the placement of crew teams by assessing their proximity to 

passengers. While the model is capable of incorporating crew members as new agents at both 

the commencement and conclusion of the evacuation process—for the purposes of 

determining their evacuation times (including the time required to reach designated support 

locations plus the time needed to reach the evacuation exit)—this functionality has not been 

explored in the present study. This omission opens a path for future research to enhance the 

model by integrating these aspects, potentially improving the effectiveness of evacuation 

simulations. 



Chapter 9. Conclusion 

90 

 

9. Conclusion 
This dissertation navigates the realm of maritime safety, focusing on the optimization of human 

evacuation models for passenger ships under uncertainty. The journey began with a comprehensive 

systematic literature review that identified gaps in the existing body of evacuation modeling research. 

Following this work, the exploration delved into the complexities of human evacuation, resulting in the 

formulation of three distinct optimization models (HEM 1, HEM 2, and HEM 3). These models address 

the uncertainties characteristic of maritime evacuations, including variables such as passenger walking 

speeds, travel distances, and exit door capacities. A key contribution of this research is the development 

of three uncertainty modeling techniques that are unlike uncertainty modeling techniques: RO, RSSP, 

and HRSSRP. These methods are practical in addressing the complex variables of passenger behavior 

under emergency conditions, such as walking speed variability, travel distances, and exit door capacity 

disruptions. The optimization process, facilitated by the CPLEX solver, further shows the efficacy of 

these models. 

The models were initially developed using data from the IMO, and their validation was partially 

achieved through a case study on a single deck of a passenger ship. This approach has provided 

preliminary proof of their usefulness and robustness. Nonetheless, it is crucial to acknowledge that this 

validation is not yet complete. Further investigation and real-time testing are necessary to fully confirm 

their accuracy for broader applications, including multi-deck environments, in future studies. The 

incorporation of family dynamics and the optimal allocation of crew members during evacuations can 

demonstrate the practicality of the models and shift them toward real-world scenarios. The analysis, 

coupled with the development of advanced evacuation models, contributes to the field of maritime 

safety. It addresses some current challenges, such as uncertainty modeling and family considerations, 

and opens avenues for future research. 

The expansion of the tourism industry demonstrates the urgent need for enhanced evacuation 

plans. This work is in harmony with the efforts of international organizations like the IMO and safety 

communities such as the MSC, driving the improvement of maritime safety standards and regulations. 

In conclusion, this dissertation has the potential to make a contribution to maritime safety research, 

providing fresh insights and solutions to protect lives at sea. 
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Paper 1 
Determinants, methods, and solutions of evacuation models for passenger ships: A systematic 

literature review  

 

Hossein Arshada,*, Jan Emblemsvågb, Guoyuan Lic, Runar Ostnesd 

a,b,c,dDepartment of Ocean Operations and Civil Engineering, Faculty of Engineering, 

Norwegian University of Science and Technology, Postboks 1517, 6025 Ålesund, Norway 

*Corresponding author. E-mail address: hossein.arshad@ntnu.no 

Abstract  
Passenger ships facilitate the mobility of people at sea and are a significant revenue stream for societies. 

Simultaneously, they should meet safety standards. One of the main safety pillars is offering passengers 

a reliable emergency evacuation plan. The International Maritime Organization (IMO) has disseminated 

guidelines for passenger ships to enhance the evacuation process understanding. Although the number 

of passenger ships is rising worldwide, implementing IMO’s guidelines, particularly advance 

evacuation analysis, is still a young research area. Hence, this paper attempts to study previous research 

on human evacuation from the IMO perspective to uncover the current position of the issued guidelines 

in the literature. Accordingly, this research reviews 115 research publications published in scientific 

journals, peer-reviewed conferences, and doctoral and master dissertations from January 1999 to August 

2022. As a result, the authors present the literature review of state-of-the-art papers to establish a firm 

foundation of past research. After identifying gaps, breakthrough points are clarified for future research 

about the benefits of handling uncertainty in input parameters, understanding human evacuation 

behavior, mutual interrelation among evacuation factors, and potential adoption of digital technologies 

in human evacuation from passenger ships.  

Keywords: Passenger ship, Passenger behavior, Evacuation process, Methods, Solutions. 

1. Introduction 
During the last decade, the tourism industry significantly contributed to economic growth (Figini and 

Vici, 2010). Passenger ships carrying at least 12 passengers, including cruise ships and passenger 
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ferries, make up a significant part of society's revenue. Thirty million passengers are expected to travel 

on cruise ships, generating over $154 billion in revenues worldwide in 2019 (Cruise Lines International 

Association, 2021). Conversely, traveling by sea increases the safety risk for passengers. Allianz (2021) 

reported 69 passenger ship losses from 2011 to 2020. In addition, see Table 1, at least 2,526 people lost 

their lives due to incidents from 2011 to 2018.  

Table 1. Passenger ship incidents. 

Year Ship name Type Fatalities Reference 

2011 • MV Spice Islander • Passenger ferry 1,5292 (Fundi, 2018) 

2012 • Costa Concordia • Cruise ship 32 (Vanem and Skjong, 2006) 

2013 • MV ST Thomas Aquinas • Passenger ferry 120 (Fahcruddin et al., 2019) 

2014 • MV Sewol • Passenger ferry 304 (Kim et al., 2016) 

2015 • Dongfang Zhi Xing • Cruise ship 442 (Baird, 2018) 

2016 • Aung Soe Moe Kyaw 2 • Passenger ferry 99 (Christine and Bonnemains, 2018) 

Total  2,526  

The facts mentioned pushing IMO to enhance safety at sea. The Maritime Safety Committee (MSC), 

which is primarily responsible for coping with all safety issues at sea, published principal safety 

regulations through different circulars (Circ.) (IMO, 2016). They aim to upgrade basic maritime safety 

standards for ships, first released by the International Convention for the Safety of Life at Sea (SOLAS) 

in 1914. Evacuation models have been integral to the issued regulations. Xie et al. (2020a) pinpoints 

evacuation as an effective action for lowering the casualty rate at sea. A ship evacuation process occurs 

in three successive distinct periods: (1) response, (2) evacuation, and (3) embarkation and launching 

period (IMO, 2016). Evacuation time is the central part of the evacuation process. It must not exceed 

the onset of circumstances threatening passengers’ safety. Initially, the response period starts off 

noticing initial notifications (e.g., alarm) until deciding to move. Then, the evacuation period starts from 

the moving point to an assembly station. Afterward, the launching period commences. The mustered 

people in the assembly stations (or embarkation stations) must abandon the ship with a ship signal to 

reach a safe place. If the assembly and embarkation stations are separate, there is also a travel time 

between the assembly and embarkation stations.  

 
2 203 passengers died, and 1,326 passengers are still missing but presumably dead. 
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Meanwhile, evacuation factors have a critical function during the evacuation process. Various factors 

influence the process, including environmental, configurational, behavioral, and human. Table 2 

categorizes them according to definition (Lee et al., 2003). 

Table 2. Aspects of evacuation process for passenger ships. 

Aspect Definition Features 

• Environment 
• It defines the external drivers affecting the 

moving speed of passengers. 

• Static and dynamic conditions of the 

ship (ship motions, transverse, and 

longitudinal stability) and 

• hazard (e.g., fire products including 

heat, smoke, and toxic gases) 

• Configuration • It covers the layout of a passenger ship 
• The structure of evacuation routes 

and landing areas 

• Behavior 
• It encompasses the passenger's response to a 

situation. 

• Travel speed,  

• family and group interactions, and 

• crossing flows 

• Human • It consists of passenger properties.  

• Age,  

• gender, and 

• physical conditions 

 

Fig. 1 depicts a ship evacuation process sequence considering influencing elements. 

 

Fig. 1. Graphical representation of the evacuation process with evacuation factors. 
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The MSC has pushed ship designers to analyze the evacuation process by putting the evacuation factors 

into practice. Considering the factors in modeling at an early stage of ship design can preclude any extra 

safety assessment later in calculating evacuation time. Specifically, it can reduce the possibility of 

rebuilding ships for only satisfying new safety evacuation standards. Simplified and advanced analysis 

are two categories of evacuation analysis (IMO, 2016). A simplified analysis is according to a 

deterministic method assuming passengers as nonautonomous agents. However, the latter considers 

passengers autonomous agents under the uncertain influence of input parameters, such as ship motion 

(Nasso et al., 2019). Ship designers should implement relevant corrective actions if the evacuation time 

exceeds the allowed time. Existing passenger ships could also carry out appropriate evacuation actions 

to reach the permitted evacuation duration (IMO, 2016). Given the above discussion, two research 

questions arise: 

• What is the current situation of evacuation models for human evacuation from passenger ships 

regarding evacuation factors, modeling approaches, and solution methods? 

• How do evacuation factors affect human behavior in the event of an accident? 

This paper presents a review to identify the current situation and create a roadmap for future 

research in this area. The authors have not identified any comprehensive literature overview in this 

domain. This paper tries to cover this gap by reviewing, categorizing, and analyzing 105 publications 

released between January 1999 and August 2022. The specific review choices resulting from this 

sample of papers are explained in detail in Section 3.1. Before coming to that section, the authors first 

discuss earlier review/partial-review papers in Section 2. Research methodologies are clarified in 

Section 3. Detailed analyses and classifications are coming in Section 4. The current gaps analysis and 

future research opportunities are presented and discussed in Section 5. Finally, Section 6 contains the 

conclusion and directions for future research. 

2. Literature review 
Understanding the state of the current literature establishes a firm base for advancing knowledge and 

uncovering novel research areas (Pignatelli et al., 2005). Therefore, the previous review/partial review 

papers and IMO guidelines are listed in Table 3. 

https://studntnu-my.sharepoint.com/personal/hosseiar_ntnu_no/Documents/MyPhDProject/New%20folder/122/ntnu/My%20phd%20project/Uncertainty/Dissertation%20--%20PhD/Paper%201%20-%20literature%20review.docx#_3.1._Material_collection
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Table 3. Characteristics of earlier review/partial review studies in the passenger-ship evacuation research area. 

Scope 
Regulatory  

reference 
Range 

Sample 

size 
Paper 

• IMO’s requirements  • MSC/Circ.909 1995-2001 25 (Lee et al., 2003)  

• Determinants of passenger 

injuries 

• IMO, Athens 

Convention 
2001-2008 20 (Yip et al., 2015) 

• IMO guidelines analysis • IMO, MSC.1/Circ.1238 2002-2015 10 (Bucci et al., 2016)  

• Modeling, analysis, and 

planning of evacuation 

models 

• IMO, MSC.1/Circ. 

1533 
1973-2017 53 (Sarvari et al., 2018) 

• IMO guidelines analysis 

and evacuation projects 

description 

• IMO, MSC.1/Circ. 

1533 
1974-2018 57 (Stefanidis et al., 2019) 

• IMO guidelines analysis 
• IMO, MSC.1/Circ. 

1533 
1999-2017 23 (Nasso et al., 2019) 

• Evacuation factors, 

modeling approaches, and  

solution methods  

• IMO, MSC.1/Circ. 

1533 
1999-2022 115 Our study 

Given Table 3, the authors have been unable to identify any comprehensive review study for human 

evacuation analyzing state-of-the-art research papers considering evacuation factors. Most review 

papers in Table 3 are limited based on the scope and period. In this area, review papers are divided into 

two groups. The first group of review studies is based on assessing past findings and the current 

situation. For instance, Sarvari et al. (2018) and Yip et al. (2015) investigated a range of publications 

for a specific period. The second group of review papers is according to the IMO guidelines for 

analyzing evacuation methods for passenger ships. For example, Bucci et al. (2016), Lee et al. (2003), 

and Stefanidis et al. (2019) primarily focus on examining the IMO guidelines for passenger ships. 

Among all mentioned papers in Table 3, Sarvari et al. (2018) almost reviewed all relevant academic 

journals and conference papers on human evacuation from passenger ships. Although they analyzed the 

influencing evacuation factors on the evacuation process, the number of publications in their analysis 

is low. Furthermore, covered papers were published before 2017. The current work coincidences with 

Sarvari et al. (2018). The reason is about 60 percent of publications are released between 1999 and 

2017. Therefore, this paper attempts to include them in the database and examine them based on the 

defined objectives, for example clustering the collected publications according to research type, 

quantitative (modeling or data collection) or qualitative (questionnaire, case study description, or 

evacuation software analysis). In addition, although Gwynne et al. (2003) and Galea et al. (2014a), with 

61 and 31 citations until March 2022, are disregarded in the review of Sarvari et al. (2018), they are 
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reviewed in this paper since they offer a significant contribution to the process of data collection and 

validation for human evacuation from the passenger ships.  

Moreover, 1999 was a watershed year when the IMO issued the first circular regulations of evacuation 

analysis for passenger ships, so 1999 is applied as the cut-off year. Following this synthesis, this study 

intends to present a systematic review of the influencing factors on the human evacuation process for 

passenger ships and appropriately determine the modeling approaches and solution methods. At the 

same time, this paper looks at how emerging technologies such as digital twin (DT) and virtual reality 

(VR) can shift the performance of the evacuation process. Fig. 2 depicts the trend in the number of 

publications over the study period. Although research has been active during the first decade (1999-

2009), this area has received more attention over the second decade (2010-2022). 

 
Fig. 2. Publications distribution. 

3. Research methodology 
This paper applies a four-step process to analyze the content in literature reviews. This process aligns 

with the qualitative content analysis methodology (Mayring and Brunner, 2007). It consists of (1) 

material collection, (2) descriptive analysis, (3) category selection, and (4) material evaluation steps 

portrayed in Fig. 3.  
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Fig. 3. Holistic workflow diagram. 

3.1. Material collection 

The current research was carried out from September 2021 to June 2022. This paper covers peer-

reviewed papers, conference papers, and doctoral and master dissertations in scientific English language 

journals from January 1999 to August 2022. The material collection is conducted in five stages. The 

stages are as follows.  

• Identifying keywords: they are referred to our research questions to identify the keywords. 

Therefore, the keywords are defined as" passenger ship (cruise, ferry, ocean liners), evacuation, 

emergency, human/passenger behavior." 

• Defining search strategy: this paper pursues a search string strategy. It combines keywords, 

truncation symbol (keyword root + *), and boolean operators (AND to include all search terms, 
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OR to include alternative terms, NOT to exclude specific terms). The search is conducted in 

title, keywords, and abstract.  

• Searching in databases: the authors selected the Web of Science (WoS) database for gathering 

material. Likewise, the search is carried out on the Open Access Theses and Dissertations 

database (OATD) to identify relevant research. 

• Crosschecking in publishers: the collection is crosschecked by publishers to determine records' 

accuracy to include/exclude the intended keywords.  

• Reporting outputs: the selection set is first transferred to Excel sheets for data cleaning and 

organizing collected papers. Afterward, the database is called in Python data frames for analysis 

and visualizations. Pandas, NumPy, and Matplotlib libraries are employed to analyze data. 

Fig. 4 demonstrates the employed search strategy for retrieving relevant studies. 
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Fig 4. Records extraction.  

The authors initially searched on WoS. The search yielded papers consisting of at least one of the 

keywords in the first step and a word from the root of evacua (evacua*). It produced 4,300 records. 

After that, any paper concerning evacuation from buildings, hospitals, trains, aircraft, and stadiums is 

excluded. The excluding strategy stood on WoS's advance search option and the authors' inspection by 

reading the paper's title (if necessary, the abstract is read as well). Similarly, theses and dissertations 

are retrieved from the OATD database. Ultimately, 115 papers are downloaded and classified. The 

records are distributed as 27% from Elsevier, 24% from Springer, 6% from IEEE, 4% from MDPI, 3% 

from Taylor & Francis, 3% from National Taiwan Ocean University, 3% from Royal Institution of 

Naval Architects, 2% from OnePetro, and 2% from Hindawi. Other publishers with one publication had 
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an overall 26% contribution. Appendix A contains the list of publishers. The records' credibility in data 

collection, analysis, and reporting is fulfilled by the author checking (Creswell, J.W., & Miller, 2000). 

3.2. Descriptive analysis 

The authors found 111 journal and conference papers, two doctoral dissertations, and two master theses- 

115 research publications in total. The distribution of journals, conferences, and university publications 

is represented in Fig. 4. Those with more than two publications are described under the same name of 

journal/conference; however, others with one publication are allocated to the other categories named 

Others (Journal Papers /Conference Papers). They are listed in Appendix B. Appendix C is also 

constructed for the journal names’ abbreviations. Fig. 4 reveals a growing tendency in evacuation 

studies for passenger ships. Among journals, Ocean Engineering (Ocean Eng.) and Safety Science (Saf. 

Sci.) have the largest number of publications, with 10 and 6, respectively. They have been more active 

in this area. They mainly researched passenger behavior/awareness, walking speed, safety perception, 

and risk analysis during a human evacuation from passenger ships. Meanwhile, the Pedestrian and 

Evacuation Dynamics conference published more papers than others, with seven amid conferences. The 

released papers not only focus on data collection concerning movement and evacuation dynamics of 

passengers considering ship motions, but they also have worked on the simulation and modeling of 

human evacuation.  

Besides, Journal of Marine Science and Technology (JMST), Journal of Marine Science and 

Technology (J Mar Sci Technol), Physica A: Statistical Mechanics and its Applications (Phys. A: Stat. 

Mech. Appl.), Procedia Computer Science (Procedia Comput. Sci.), Mathematical Problems in 

Engineering (Math. Probl. Eng.), Reliability Engineering & System Safety (Reliab. Eng. Syst),  Journal 

of Marine Science and Engineering (J. Mar. Sci. Eng.), and  Computers in Industry (Comput Ind) with 

14.8% contribution attempted to reflect new insights in this research area. They tried to develop system 

simulation models considering passengers’ characteristics. While International Conference on Human 

Factors in Ship Design and Operation, Traffic and Granular Flow (TGF), and International Conference 

on Virtual, Augmented, and Mixed Reality (VAMR), with a 5% impact, push the research in this area 

forward. They are more inclined to manifest human factors into ship design. Moreover, the University 
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of Greenwich, University of Huddersfield, Norwegian School of Economics (NHH), and Aalto 

University (with a 3.5% impact) generate new knowledge in this area. They devoted considerable effort 

to advancing the understanding of passenger behavior during a ship evacuation. Furthermore, Springer 

with 40 %, Elsevier with 16 %, and the Royal Institution of Naval Architects with 8% have a remarkable 

impact on emerging the research area of human evacuation from passenger ships. They built the 

foundation of knowledge by conducting questionnaires, conducting onboard experiments, and 

simulating/modeling the human evacuation process from passenger ships. Afterward, IEEE (6 %), 

National Taiwan Ocean University (6 %), Hindawi (4 %), and Taylor & Francis (2 %), along with 

Springer (28 %) and Elsevier (26 %), shifted the state of research in this area and yielded fresh insights 

into the research by analyzing advanced evacuation methodologies and taking human behavior 

properties into account. Since 2019, evacuation studies have received more attention from MDPI and 

IOS Press databases. They accelerated development in this area by applying multidisciplinary 

approaches, particularly computer science, mathematics, engineering, and environmental science.  

 

Fig. 4. Distribution of different journals, conferences, and university publications. 

Further, it is essential to identify the subject areas of publications. The research area of each publication 

is placed using the WoS subject area feature. This identification can enable researchers to recognize the 

research area’s focus and open new research topics for future research. According to Fig. 5, engineering 
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with 38.3 % is more interested among researchers, followed by 36.5 % for multidisciplinary approaches. 

Afterward, computer science and mathematics accounted for 12.2% and 3.5 %, respectively. 

Moreover, those research areas with two or fewer publications are listed in the others’ category (physics, 

environmental science, psychology, construction building technology, neuroscience, and medicine). 

Interdisciplinary research pays increasing attention among scholars in this research area. The reason is 

the presence of different evacuation factors involved in the human evacuation process. There is a need 

to consider all together to fulfill IMO’s requirements. Integrating techniques from other disciplines, 

such as engineering, environmental science, oceanography, operations research, management science, 

etc., augment the understanding and describing human evacuation problems from passenger ships. 

 

Fig. 5. Distribution of publications’ research subject areas.  

Next, from Fig. 6, Asia (52.2 %) and Europe (44.3 %) have the most significant academic contribution 

among others (Africa and South America have zero publications). Most publications in Asia are 

researched in Chinese and South Korean maritime institutions, with 39 and 12 papers, respectively. One 

of the solid reasons for the importance of this area for Chinese and South Korean scholars can be the 

sinking of Dongfang Zhi Xing and MV Sewol passenger ships with the loss of 442 and 304 passengers 

and crew, respectively (Baird, 2018; Kim et al., 2016). Hence, the Chinese and South Korean maritime 
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sectors have inspired researchers and ship designers to reach safer evacuation solutions at sea. The UK 

(17 papers) and Norway (7 papers) have been more active and interested in Europe. Not only a disaster 

such as Costa Concordia and MS Scandinavian Star but also IMO’s guidelines have pushed the maritime 

industry to rise in research and development activities in terms of human evacuation modeling. Other 

countries on the list have a 34.8 % contribution (Japan, Greece, Germany, Poland, Taiwan, Finland, 

Italy, Spain, Netherlands, Sweden, Canada, USA, Australia, Croatia, and Turkey). It shows that the 

popularity of human evacuation problems is growing among scholars in different geographic regions. 

Eventually, according to the first author’s affiliations, Edwin Richard Galea from the University of 

Greenwich with seven publications, and Xinjian Wang from Dalian Maritime University with six 

publications, have the most considerable contribution in this research area.  

 

Fig. 6. Geographic locations of the corresponding author. 

3.3.  Category selection 

The structural dimensions of the current research and chief topics of analysis, including detailed 

analytical categories, are represented in Table 3. Each category consists of different features discussed 

in greater detail in Section 4. The MSC scope has various study subjects, such as updating the SOLAS 
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convention, piracy and armed robbery against ships, and cyber security. However, the current work 

focuses on emergency evacuation from passenger ships. The present study targets the evacuation factors 

listed in Table 2 to determine underlying features. Then, the collected papers are analyzed and 

categorized concerning the identified features. A detailed presentation of all publications in different 

analytical categories is described in Appendix D to H.  

Table 3. The principal analytical categories of the study.  

Analytical category Features Appendix 

Modeling approach • Mathematical, 

• simulation, 

• experimental, 

• conceptual- and analytical-based, and 

• hybrid 

D 

Traffic assignment 

formulation 
• System-optimal and 

• user equilibrium 

E 

Model parameters • Environmental factors 

o Fire products (smoke, heat, and toxic gas), 

o ship stability condition, 

o ship motions, and 

o other external forces (wave, sea state, and time of day) 

• Configurational factors 

o Ship layout, such as the layout of corridors, staircases, and 

doorways, and 

o initial distribution of passengers and crew across the ship. 

• Human factors 

o Passenger behavior, including walking speed and social 

relationship 

o passenger age, 

o passenger gender, 

o passenger physical condition (agility and mobility 

impairment), 

o passenger height, 

o passenger weight, and 

o passenger onboard evacuation experience. 

• Behavioral factors 

o Crow behavior (family group behavior, counter and 

crossing flows, and crow assistance) 

F  

Hazard type • Fire, 

• flooding, 

• sinking, 

• storm, and 

• capsizing 

G 

Solution method • They are presented based on methods applied in the paper, e.g., the Cellular 

Automata (CA) method. 

H 

 

Fig. 7 demonstrates the popularity of different modeling approaches for representing the behavior of 

the problem. The most significant portion of researchers prefers to apply simulation approaches for 

defining their model (with 52.2%). It is followed by hybrid (simulation/mathematical, 

simulation/experimental, simulation/questionnaire) and experimental approaches with 19.1% and 

17.4%, respectively. 7% of the used methods account for the mathematical approaches. Only a minority 
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of researchers, 4.3%, prefer to employ analytical modeling approaches. It shows the popularity of 

simulation techniques and increasing attention to hybrid and experimental methods. 

 

Fig. 7. Distribution of publications according to the modeling approach.  

The other analytical category is traffic assignment formulation. Karabuk and Manzour (2019) classified 

land-based evacuation models into an optimal system formulation and a user equilibrium formulation. 

Their definition is considered for ship-based models—the former attempts to offer an evacuation plan 

to improve the main objective (macroscopic perspective). In contrast, a user equilibrium formulation 

generates an evacuation plan based on the characteristics of each passenger and addresses the problem 

at a more granular level (microscopic perspective). For example, an evacuation model can minimize the 

overall evacuation time with and without considering passengers' physical condition. The former can 

be in the first category; however, the latter focuses on every passenger's mobility. Moreover, 64.3% of 

researchers address their problem from a user equilibrium perspective. It shows there is increasing 

attention to understanding passenger behavior in this area. 

Model parameters are the third analytical category. Parameters are concerned with the model's 

configuration. For example, the model's settings can vary according to the ship's motion mode. Fig. 8 

demonstrates how many times two parameters are assessed together in the collected papers. Thirteen 

factors interacted more with each other among other evacuation factors. The blue circles indicate how 
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many times two parameters are viewed in modeling simultaneously, while the green ones indicate a 

parameter is solely applied. For example, ship stability is repeated ten times with passenger age. 

Conversely, yellow squares ascertain the gaps for future research.  

 

Fig. 8. Cross-frequency analysis of evacuation parameters among the collected papers.  

The next category is the hazard type. Hazard refers to a potential source of damage to a passenger ship 

or people onboard. However, when the hazard happens, it can become a disaster (Shi, 2019). The most 

significant proportion of papers disregards considering the kind of hazard that threatens passengers' 

lives. In contrast, 21 publications consider fire as a hazard. Six research papers examine flooding and 

storm, with three for each. Although foundered (sunk and submerged) accidents with 54.4% of the total 

losses in the world ocean are the most frequent hazards that ships encountered from 2010 to 2020 
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(Allianz, 2021), only six papers addressed it in the literature. Three papers also take two hazards into 

account simultaneously. Also, Allianz reported wrecked (grounded): 19.6%, fire and explosion: 11.3%, 

machinery failure and damage: 5.8%, collision (involving vessels): 3.4%, hull damage (holed, cracks): 

3%, and other causes (piracy and miscellaneous): 2.5% are other hazards. They can be other directions 

for future research to consider in formulating and analyzing human evacuation models.  

Finally, the solution method category is analyzed. Applied solution methods are categorized based on 

the paper's objective. 31.3% of researchers used an evacuation tool to simulate the process. Some are 

based on discrete models allowing agents to occupy a discrete set of points in terms of space 

representation (such as MaritimeEXODUS and IMEX). In contrast, others are continuous models 

considering a constant sequence without interruption between different points in a defined space (such 

as VELOS and Pathfinder). Moreover, hybrid tools benefit from both models' properties (e.g., EVI and 

EvacSim). Appendix I lists available evacuation simulation tools in the literature. 

The collected papers are thus evaluated and analyzed according to the features described in Error! R

eference source not found.. The details of the analytical dimensions of the review study are thoroughly 

discussed in the following sections.  

3.4. Material evaluation 

The sample papers are cross-checked with another database, including Scopus whereby the authors 

verify the paper’s properties, such as the research area. The aim is to improve the validity of the analysis. 

The author checking technique is consequently applied to control the credibility of the sample papers. 

After reading the abstract, they would be kept if they are consistent with the study objectives. Finally, 

the collection with 115 publications is established for further analysis. 

4. Detailed analyses of the literature 
This section gives the results of the analysis. The collection is studied according to analytical categories 

to determine the status in this research area. The gaps are identified, and the future research agenda is 

accordingly established. Although there can be an overlap in classification, this paper tries to categorize 

them according to the objective of each paper appropriately. 
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4.1. Problem classifications 

There are various subjects in this area of study. Although the authors pursued particular aims, the papers 

can be classified into the following categories. Appendix J classifies papers according to their 

objectives. 

4.1.1. Traffic assignment category 

This subsection tries to classify the collected papers based on the traffic assignment analytical category. 

Papers with the aim of optimizing the overall performance of the egress system are placed in the 

evacuation time and route optimization subcategory. In comparison, the passenger behavior modeling 

subcategory pays attention to papers with user equilibrium formulation features.  

4.1.1.1. Evacuation time and route optimization 

Evacuation time optimization gains a significant portion of research objectives in the collected papers. 

All research subjects with the same subject matter are included in this classification (response time, 

assembly time, and embarkation time). The aim is to minimize the evacuation time considering 

evacuation factors. Furthermore, the route optimization module intends to provide safe evacuation 

routes in which the characteristics of passengers/crew distribution and the ship's layout are considered. 

The authors aim to determine the emergency evacuation routes available for evacuees or analyze the 

operational level considering congestion and counter-flow movements.  

This kind of research has several advantages. For instance, total evacuation time calculation can be 

employed for updating the whole evacuation time in a real-time emergency response. Specifically, it 

can assist crew and passengers in handling the remaining time based on the available evacuation routes 

(Lin and Wu, 2018). Conversely, it has some shortcomings. For example, it lacks to consider passengers 

as conscious agents in a real-life case. Explicitly, how different aspects of passengers, such as the level 

of compliance, can affect the total evacuation time. Critically, this paper attempts to categorize them to 

represent a clear view of estimating the whole evacuation time in the presence of evacuation factors. 

This category consists of 48.7 % of studies. 

4.1.1.2. Passenger behavior understanding 

31.3 % of publications attempted to focus mainly on understanding passenger behavior. It is critical 

during evacuation as it minimizes total evacuation time and casualties in emergency maritime situations 
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(Finiti, 2021). Many authors attempted to advance understanding of passenger behavior by finding the 

most significant drivers, such as ship stability (mostly considered trim and heel angle) and disaster 

development (most researchers considered fire), in their reaction to the emergency. Some carried out a 

series of evacuation trials at sea to calculate passenger gait speed under predefined emergency scenarios. 

In contrast, some conducted questionnaires to explore new insights with an interactive study with 

passengers (Deere et al., 2012; Wang et al., 2020b; Yip et al., 2015).  

The main advantage of considering passenger behavior is to design an effective emergency evacuation 

system to ensure safety standards (Wang et al., 2020b). Likewise, passenger behavioral responses to an 

emergency can enhance understanding of control efforts and crowd behavior (Li et al., 2019). While 

understanding the various source of uncertainty in passenger behavior calls for more investigations and 

quantifications in this research area. Specifically, how internal and external drivers, such as stress level 

and ship motions, can impact the behavior. Hence, the relevant samples are categorized to reveal the 

importance of evacuation factors in behaving passengers during an evacuation process. 

4.1.2. Solution methods 

The solution method category is the next analysis classification. It consists of three subcategories: (1) 

description of evacuation models, (2) data collection and validation, and (3) optimization solvers. 

4.1.2.1. Description of evacuation models 

Another category represents the description of evacuation models (11% of studies). Parts of the 

collected papers described maritime evacuation models to understand the evacuation process better. 

Some analyzed the current evacuation models considering simplified and advanced approaches, while 

others tried to evaluate evacuation simulation tools (Miyazaki et al., 2004; Sun et al., 2018a). The 

offered category can deliver a clear view for selecting a simulation-based evacuation tool according to 

the models’ configuration. K V Kostas et al. (2014a) reflected the applicability of VELOS for assessing 

passenger and crew activities in normal and hectic conditions of evacuation operations. Also, Guarin et 

al. (2014) described the concept of escape and evacuation from passenger ships using the pedestrian 

dynamics simulation tool EVI.  
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Although the available simulation-based evacuation models can provide solutions, there is a need to 

design a real-time decision support system to track the evacuation process. It is suggested that the 

system can be based on a data-driven multistage optimization framework. Various real-time operation 

data is obtained from different agents involved in the evacuation process. They can be modeled with 

machine learning (ML) techniques under the uncertain development of a disaster (Roy et al., 2021). 

4.1.2.2. Data collection and validation 

Researchers tried to collect data through either paper-based methods, including surveys or 

questionnaires, interviews, or computer-based techniques such as video cameras (7% of the collected 

papers). Regarding questionnaire surveys, some researchers tried to analyze different points of the 

passengers’ views during the evacuation process. They determined the impact of various factors on the 

evacuation process and passenger behavior. For example, Liu and Luo (2012) and Lozowicka (2021) 

analyzed the influence of demographic differences, including age, gender, educational level, mobility 

level, experience onboard, and traveling companion, on passengers’ behavior and safety awareness and 

perception during an emergency evacuation Ro-Ro passenger ship.  

Moreover, Finiti (2021) applied two different methodologies (case study and interview) as 

complementary tools. They attempted to understand likely passenger behavior by analyzing the 

collected data from some survivors of the Costa Concordia disaster in terms of gender, age, companions, 

and experience. Furthermore, data related to passenger behavior under different circumstances, such as 

ship stability angles, play an essential role in understanding the evacuation process. Actual onboard 

experiments can further shift our understanding of the evacuation process. A notable example is five 

full-scale semi-unannounced assembly trials performed at sea under the EU Seventh Framework 

Programme project SAFEGUARD (IMO Fire Protection Sub-Committee, 2012). The aim was to 

generate passenger response time data, validation, and calibration data sets for ship-based evacuation 

models and establish a set of fire and trim/heel scenarios. Studies with the same subject matter fall in 

this category. Video-based observation is another popular method for gathering data in evacuation 

studies (Galea et al., 2014a; Na et al., 2019; Wang et al., 2021a). 
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This category can deal with relations between different data collection methods and evacuation factor 

data. It can help researchers find a suitable database based on their problem requirements. For instance, 

Deere et al. (2012) is a source of human factors data for the passenger assembly process on large 

passenger ships. They utilized hybrid methods, including video cameras and infrared beacons. Still, 

there is room for measuring biological and psychological passengers' cognitive states, such as stress 

levels, and how they affect the evacuation process. Moreover, sociological-based data, such as cultural 

diversity, can give ship managers more insight into passenger behavior (Galea et al., 2015; D. Zhang et 

al., 2017). Therefore, they are another challenge in collecting and analyzing data in this research area.  

4.1.2.3. Optimization solvers 

In the simplified version of evacuation analysis, the overall performance of the evacuation system is 

critical, whereas, in the advanced version,  the egress of each human while various factors, such as 

hazards and ship motions, affect the behavior is the primary objective. In doing so, two types of 

methodologies are provided. 

On the one hand, researchers use various approaches to solve the formulated evacuation problems for 

passenger ships. The authors have split the applied methodologies into three main categories according 

to the paper's objective. Firstly, many authors use simulation and mathematical tools such as 

MaritimeEXODUS, VELOS, CPLEX, and MATLAB to reach a solution. Secondly, some employed 

optimization models to harness uncertainty of the different elements of the evacuation process, such as 

human evacuation behavior. They include Polynomial chaos- (PC) and Monte Carlo-based (MC). For 

instance, Xie et al. (2020a) applied PC expansion with Gauss quadrature to quantify the uncertainty of 

evacuation time for passenger ships. Furthermore, Wang et al. (2013) employed an MC-based sampling 

method to analyze available safety egress time under ship fire (SFAT). Thirdly, researchers applied 

meta-heuristic algorithms for solving real-life evacuation problems (Lozowicka, 2021). For example, 

Łozowicka (2010 and 2005) utilized the Genetic Algorithm (GA) to find the shortest evacuation time 

and route. Although GA can propose a feasible structure fitted to problem parameters, there is a 

possibility of falling to the local optimum for this algorithm. Also, the degree of complexity is raised 

by considering more evacuation factors. Therefore, it is suggested to employ hybrid techniques to 
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escape it. For example, Kaveh and Ghobadi (2020) presented a hybrid evacuation model using the graph 

theory and metaheuristic algorithms to find the best evacuation route under a fire situation considering 

human factors.  

On the other hand, passengers and crew are characterized as unique individuals with distinctive 

personality traits and cognitive abilities. Fifty publications applied microscopic models, including social 

force-based, velocity-based, acceleration-based, and CA, to work out the dynamic behavior of 

passengers. The most considerable contribution was seen for velocity-based models with 52%—cell-

based and social force-based models comprised 26% and 14%, respectively. The minor portion stands 

for accelerated-based models with 8%. However, there can be a potential extension to study the 

influence of evacuation factors, particularly dynamic conditions of the ship, on passenger behavior 

within microscopic-based models (IMO, 2016). In land-based evacuation path planning, Yang et al. 

(2022) integrated three forces, i.e., pedestrians' self-driving force, the pedestrian's interaction force, and 

the interaction force between pedestrians and obstacles, in the format of a social force model. 

Furthermore, Fang et al. (2022a and 2022b) improved social-force models to simulate the influence of 

inclination on passenger walking speed. These methodologies are documented in Appendix H. 

4.2. Modeling approaches 

Researchers apply various modeling approaches in this research area to formulate the behavior of the 

problem. The collected papers can be divided into five categories according to the modeling approaches. 

This paper specifies which methods are more widely employed and offer more significant research 

advancement opportunities among these categories. 

4.2.1. Simulation-based approaches 

One of the popular techniques in human evacuation modeling is simulation. The reason can be financial, 

ethical, and safety issues posed by full-scale evacuation trials for passenger ships (Deere et al., 2012; 

Galea et al., 2014b). Full-scale human evacuation experiments are time-consuming (Q. Xie et al., 

2020c). Therefore, researchers attempt to understand the dynamics of passenger behavior during human 

evacuation through simulation techniques. Balakhontceva et al. (2015), Chen and Lo (2019), and Kim 

et al. (2019 and 2020) addressed passenger behavior under particular environmental factors such as ship 

motions, heeling, trimming, and listing the ship. Moreover, Azzi et al. (2011) and Salem (2016) 
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described passenger behavior under ship fires. They tried to understand how fire outbreaks onboard can 

affect the life safety of passengers and crew. They simulate the development of fire and the spread of 

combustion products under different fire scenarios. Furthermore, Balakhontceva et al. (2016), Ruponen 

et al. (2015), and Spanos and Papanikolaou (2014) simulated evacuation processes under storms and 

flooding. They draw an emergency response to abandon the ship. Łozowicka (2010) and Ni et al. (2018) 

reflect evacuees' movements and behavior in the presence of the contraflow and obstacles. Also, 

Brumley and Koss (2000) and Zhang et al. (2017) observed different patterns of passenger behavior 

according to their characteristics, such as age, gender, height, and weight, during the evacuation process.  

Simulation approaches are commonly applied to modeling evacuation problems at a microscopic level. 

For instance, CA simulation techniques are employed to capture passenger behavior during movement 

(Hu and Cai, 2017; Wang et al., 2020b). However, tracking passenger behavior in the presence of other 

evacuation factors, such as disaster development, can generate more scenarios and accordingly produce 

a more complicated problem. The generated problem cannot be easily tackled with only a simulation-

based approach. Therefore, it is recommended to integrate this technique with other techniques. For 

example, Xie et al. (2020c)  recently constructed a surrogate model of passenger assembly time with 

response time parameters to improve the simulation time of a large-scale crowd for passenger ship fire 

evacuation.  

4.2.2. Experimental-based approaches 

Another approach to analyzing ship evacuation is based on an experiment. Researchers conduct 

experiments either in a simulator or onboard. They collect data regarding passenger walking speed 

under moving characteristics of the ship, such as heeling and trim. In this stream, Bles et al. (2001), Sun 

et al. (2018a), and Zhang et al. (2017) designed their experiments in a ship corridor simulator or ship 

operating simulator. Katuhara et al. (2003) and Liou and Chu (2016) conducted a series of onboard 

walking experiments to gather data in various sea conditions on training ships. Furthermore, several 

evacuation trials were conducted on passenger ships to validate marine-based computer models 

(Gwynne et al., 2003; Murayama et al., 2000; Walter et al., 2017).  
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The advantage is that researchers can have greater control of the basic experimental setup. For example,  

Wang et al. (2021b) considered the test area of the experiment to be larger than the calculation area to 

improve the accuracy of the experimental consequences. Also, Wang et al. (2021a) calculated the 

walking speed of about 90 cadets in diverse sea areas and conditions on different days due to the ship's 

uncontrollable motion states. Nevertheless, there is a deficiency in carrying out onboard experiments 

by taking evacuation factors, such as disaster development (e.g., fire), ship motions (e.g., pitching), and 

crossing flows, into account simultaneously. Moreover, the authors found that research participants are 

well-trained people in onboard experiments. They understand how to act in abnormal and emergency 

occurrences; the results may lead to overfitting issues. Therefore, new technologies, such as VR, can 

raise the possibility of involving untrained passengers considering evacuation factors. VR technology 

is discussed later in Section 5.7.2. 

4.2.3. Mathematical-based approaches 

Another category of modeling is mathematical. Modelers utilize quantitative techniques to describe the 

relations between parameters or variables. Chu et al. (2013), Lozowicka (2021), and Xie et al. (2020c) 

represented the behavior of the evacuation problem using mathematical properties and arguments, such 

as Legendre polynomials and Leung–Ng algorithms. They dealt with evacuation times and routes. 

Mathematical approaches, such as the minimum cost model and the quickest path/flow, are generally 

employed to find an optimal lower bound for evacuation time, considering the distance to the destination 

and queue length (Hamacher and Tjandra, 2001). They disregard passenger behavior during the 

emergency. Therefore, it is suggested to integrate the mathematical model into a simulation model, such 

as the social force model. This integration propagates the movement law and path selection behavior of 

pedestrians. 

4.2.4. Conceptual- and analytical-based approaches 

These studies analyze practical factors to find a framework for different aspects of human evacuation 

studies. For example, Guarin et al. (2014) presented the concept of escape and evacuation from the 

point of ship design and risk management. Nevalainen et al. (2015) broke an evacuation problem into 

the elements and tried to work out human evacuation from the passengers' perspective. They 
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investigated four accident reports to map environmental factors influencing passenger behavior during 

ship evacuation.  

This type of research can give a clear view of the interaction between passengers and evacuation factors. 

Specifically, it can unlock passengers' perception and interpretation of the evacuation process and ship-

based disasters. For instance, Finiti (2021) tried to find indications of passengers' behavior from the 

survivors of the Costa Concordia disaster using the Talk-Through method. Nevertheless, it is typically 

a challenging task to have survivors view a real-life disaster or talk with every passenger. Instead, it is 

recommended to analyze the passenger behavior under emergency with crew and safety engineers 

onboard. 

4.2.5. Hybrid approaches 

Some researchers combined two modeling methodologies, which are indicated as hybrid approaches. 

They can reinforce the precision of evacuation models and simultaneously control different aspects of 

the evacuation process. For instance, Chen et al. (2016), Jasionowski et al. (2011), Qiao et al. (2014), 

Dracos Vassalos et al. (2002), and Xie et al. (2020a) integrated simulation and mathematical modeling 

approaches to track the evacuation process in light of at least two evacuation factors (e.g., fire and 

passenger properties). They attempted to reduce the complexity of the evacuation model for a large-

scale passenger ship. Meanwhile, Kang et al. (2010), Miyazaki et al. (2004), Murayama et al. (2000), 

and Sarvari et al. (2019) simultaneously employed simulation and experimental approaches. In addition, 

Brown et al. (2008) and Casareale et al. (2017) applied questionnaire approaches with simulation and 

experimental techniques to improve modeling efficiency. 

Nevertheless, the majority of the proposed hybrid models lack generalization features. For instance, 

Sarvari et al. (2019) presented a user equilibrium formulation-based model for a Ro-Ro ferry boat 

sinking regarding evacuation time, death toll minimization, and evacuation plans. However, how 

effective the proposed model is while being fed with real-time data obtained from a passenger ship 

under the same emergency can improve the model's validity. Consequently, the potential extension 

includes the development of a robust hybrid modeling approach that can be operated across a variety of 

ship-based evacuation models is suggested. 
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4.3. Case study 

37.4 % of the collected papers evaluated the performance of the proposed methodology within a case 

study. Remarkably, researchers analyzed various subjects, including understanding passenger behavior, 

emergency evacuation route, travel time, the influence of obstacles in cabins, social impact on 

evacuation behavior, passengers' walking speed and safety awareness, the concept of dynamic 

affordances, and the application of wireless sensor networks in the ship evacuation process. They 

attempted to provide managerial insights regarding passenger behavior or ship interior design to ship 

designers. However, researchers considered specific passenger ships, demographic, and 

transverse/longitudinal stability angles. Therefore, testing the proposed evacuation models by other 

real-life cases is suggested to increase the generalizability of results to different settings. The case 

studies are listed in Appendix K. 

4.4. Model parameters 

Parameters are quantities driving the evacuation process. Understanding these parameters can hence 

facilitate modeling of the evacuation process more reliably. Parameters are represented through four 

evacuation factors. Most publications (38.7%) considered human factors in their modeling, while 29% 

of authors tried to reflect the impact of environmental factors on the evacuation process. The other 

significant factors were configurational (20%) and behavioral, 12.3%. Hindrances and obstacles are 

highlighted in calculating passengers' travel speed on flat terrain and stair up/down in the advanced 

version of guidelines for passenger ships. Therefore, such considerations about behavioral factors are 

necessary and a gap in the literature. Appendix F can indicate a clear view of engaging the evacuation 

factors in the literature. 

5. Discussion and future opportunities 
This section outlines the deficiencies of the current studies and accordingly provides future research 

directions on human evacuation studies. Based on the classifications presented in Section 4, the authors 

categorize the findings into five sub-sections. 

5.1. Handling uncertainty 

Future research based on the identified gaps in uncertainty issues can be conducted in three category 

levels: (1) parametric, (2) modeling methods, and (3) solution methods. In the remainder of the paper, 
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the term uncertainty is utilized, but it must be defined first. Wallace (2003) defined uncertainty as a lack 

of predictability for outcomes. It is due to the gap between the needed and available information for 

fulfilling a task. Emblemsvåg and Endre Kjølstad (2002) also specified that uncertainty is intertwined 

with the complexity of factors influencing a system. 

5.1.1. Modeling uncertainties on parametric level 

Availability of perfect or imperfect/partial information drives the decision-making process into certain 

or uncertain situations, respectively. Uncertainty is presented as randomness, hazard, and deep 

uncertainty. Firstly, the randomness stems from the random nature of low-impact events. To presume 

that input data varies randomly, the existence of sufficient and reliable historical observations for 

estimating the probability distribution and validity of the data are requisites (Marchau et al., 2019). 

Secondly, low-probability peculiar events with high impact characterize hazard. Thirdly, the deep 

uncertainty comes from insufficient information to estimate the objective or subjective probability of 

plausible future events (Marchau et al., 2019). Besides, Obaidurrahman et al. (2021) classified 

uncertainty into fuzziness and epistemic uncertainty. The former is related to flexibility in constraints 

and goals. The latter concerns a lack of knowledge of the input data and is often presented as linguistic 

attributes.  

Passenger behavior, ship motion, and disaster development can be possible sources of uncertainty in a 

ship evacuation process. They can be classified according to the uncertainty type. Under the second 

research question, this paper discusses the uncertain influence of evacuation factors on human behavior. 

Passenger behavior is the main element in managing an evacuation process (Wang and Wu, 2020a). 

One's behavior is simultaneously influenced by environmental factors, such as disaster products, and 

physiological, psychological-, and sociological-based factors, for instance, physical condition and 

cultural differences (Nevalainen et al., 2015). Finding the correct type of uncertainty considering 

passengers' behavior can approach ship managers to have a more reliable evacuation plan. Disaster 

development is another source of uncertainty that affects the evacuation process, particularly passenger 

behavior. Disaster develops over time, and exposure to a threat makes the cognitive function of 

decision-making more challenging, and one's choices become limited. Depending on the disaster type, 
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the uncertainty assessment process can vary. For example, a fire progresses and may need a different 

realization than flooding. Ship motions are another uncertain driver affecting evacuees. They are 

movements that a ship can witness in different directions by forces, such as waves and storms. Each 

move can affect passengers' behavior in other ways (Wang et al., 2021a).  

There is room for further progress in uncertainty assessment for human evacuation studies at a 

parametric level. Moreover, taking these uncertainties into modeling paves the way to represent reality, 

minimize risk, bring remarkable competitive merit for ship designers, and enhance usability (Van Reedt 

Dortland et al., 2014). 

5.1.2. Uncertainty modeling methods 

After identifying the uncertainties, the next step is to model them. As the problem variables mentioned 

above constantly change and it is questioning to find their clear values, uncertainty modeling can 

harness their fluctuations. Uncertainty modeling approaches can deal with this type of problem. They 

include robust optimization, stochastic programming, Bayesian-based network (BN), MC-based 

simulation, ML-based, and hybrid techniques. This section presents more explanations regarding these 

approaches and how they can handle an evacuation problem. 

5.1.2.1. Robust optimization 

Robust optimization (RO) is a methodology for handling optimization problems under uncertainty. RO 

calls data from an uncertainty set instead of running a specific probability distribution. As objective 

function and constraints are assumed to belong to a given uncertainty set, the decision-maker establishes 

a feasible solution for any realization of the uncertainty (Bertsimas and Sim, 2003). RO-based 

methodologies have a significant drawback. The proposed solution can be highly conservative as this 

methodology aims to harness all possible worst-case realizations of the uncertainty (Bertsimas et al., 

2012).  Another challenge is that while mathematically finding an optimum is relatively straightforward 

once all the parameters are defined, proving that this optimum is a global optimum for real-life satiation 

is an entirely different and far more challenging aspect. However, this is where the robustness comes 

into play and lessens this challenge, albeit not eliminating it completely. 



Appendix. Paper 1 

141 

 

In contrast, they offer two main merits that can be appropriate for evacuation problems. First, the robust 

counterpart, a deterministic equivalent of the original model, is still computationally tractable regardless 

of the number of uncertain parameters. Second, experts' opinions can be involved in constructing 

uncertainty sets (Bertsimas et al., 2012). Ship motions and disaster development intertwine and affect 

passenger behavior. They can be established in an uncertainty set. At the same time, maritime experts 

and ship designers can provide their views to specify the boundaries of uncertainty set. Although 

researchers apply this technique in a land-based situation (Rabbani et al., 2018), investigating the 

influence of RO-based approaches on human evacuation models is recommended in ship evacuation. 

5.1.2.2. Stochastic programming 

Another approach is stochastic programming. This modeling paradigm can provide decision-makers 

with the expected objective value subject to various constraints over uncertainty realizations in a 

sequential decision-making process (Birge and Louveaux, 2011). Although this tool fulfills the 

objective functions, it needs an accurate estimation of the probability distribution of the random 

variables (Bertsimas et al., 2012). Insufficient verified data in this area of research can hinder estimating 

an accurate probabilistic description of the random variables.  

The ship evacuation process can also be formulated as a multi-stage stochastic programming model. 

For example, based on a two-stage stochastic programming model, the first-stage decisions can be 

related to the availability of evacuation routes at the beginning of the disaster event. Passengers' 

behavior is realized after knowing which routes are available under disaster developments or ship 

motions scenarios. Each scenario can correspond to how a hazard or ship motion can affect the ship's 

availability or passenger behavior. Afterward, recourse decisions are made to determine which 

evacuation routes are still available and what corresponding travel time is. Therefore, further studies 

focusing on stochastic-based approaches are suggested to assess the simultaneous influence of disaster 

development and ship motion on the ship evacuation process. 

5.1.2.3. BN-based approaches 

BN is a robust potential method to address decision-making in uncertain situations where variables are 

highly interlinked (Marcot and Penman, 2019). However, this approach increases the computational 

cost when variables rise. Another drawback of this methodology is that translating variables' 
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dependencies into the mathematical formulation can be tricky and produce misleading results (Robert, 

2007). A BN can formulate an evacuation guidance model with conditional dependencies among input 

parameters. For instance, when different ship motions meet other hazards, an evacuation plan can be 

distinct based on how the combination will affect human evacuation behavior. Specifically, the roll 

motion of a ship in the presence of a fire accident can result in different passengers’ walking speeds 

compared to pitch motion combined with flooding. Accordingly, passengers demand different 

evacuation routes depending on how fast they move. Therefore, a BN technique can model the 

dependency among influencing drivers on human evacuation behavior.   

Moreover, there is a feature within BN techniques that facilitates representing maritime specialists' 

knowledge in modeling. This feature can cover the lack of sufficient verified data in this area of 

research. Although Sarshar et al. (2013a and 2014) applied BN-based methods through evacuation 

modeling under uncertainty, additional studies will be needed to develop a complete picture of this 

technique. 

5.1.2.4. MC-based simulation approaches 

MC simulation technique has been commonly used to explore uncertainty analysis of the random inputs 

in ship-based evacuation models. It is a reliable and cost-effective technique (J. Wang et al., 2013). 

Nevertheless, MC-based methods require many scenarios due to the slow convergent rate. The more 

scenario you design, the higher complexity the problems face (Matala, 2008). To overcome the first 

issue, researchers tried to fuse evacuation models with Latin hypercube sampling in the ship-based 

evacuation problems. Xie et al. (2020a) proposed PC expansion based on the corresponding distribution 

of random variables to reduce the number of evaluation samples. 

Surrogate-based models, such as the Gaussian process, can also be integrated into MC techniques and 

reduce the run time. Furthermore, variance reduction techniques can improve the computational 

efficiency of MC simulations (Turner and Davis, 2013). Another main drawback of MC-based 

techniques is the necessity of knowing an accurate probability distribution of the random variables. One 

of the main requirements to estimate an exact distribution is access to a large amount of historical data, 

which, undoubtedly, many projects face data scarcity. In this regard, examining methods, such as the 
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bootstrapping technique, can lessen the amount of data. Another solution to escape data scarcity is 

applying the fuzzy analysis method. Fuzzy numbers are employed to track the effect of uncertainty. 

Kong et al. (2014) presented a framework of fuzzy assessment for a building under fire. They 

determined fire development rate and pre-evacuation time using fuzzy numbers to describe the 

uncertainty associated with fire development. Future works could study the influence of these 

extensions on MC-based approaches. 

5.1.2.5. ML-based approaches 

ML-based techniques can also model uncertainty in decision-making processes. Bayesian deep 

learning, ensemble learning, and neural network-based techniques are three widely-used types of 

uncertainty quantification methods that can significantly increase the reliability of results (Abdar et al., 

2021). In a land-based evacuation, Zhao et al. (2020) leveraged the random forest technique to estimate 

people's emergency behavior based on social and environmental factors during the pre-evacuation stage. 

Also, Katzilieris et al. (2022) developed logistic regression models and ML-based techniques to analyze 

the evacuees' response behavior in communities under the emergence of wildfires. Moreover, 

researchers tried to apply deep learning-based techniques to deal with evacuation problems. Zhang et 

al. (2021) proposed a deep reinforcement learning algorithm with a social force model to train agents 

to find the fastest evacuation route in an evacuation of a room with obstacles. Future research can 

consider the potential effects of ML-based algorithms more carefully.  

5.1.2.6. Hybrid approaches 

Some researchers consider simultaneously macroscopic and microscopic models in describing 

evacuation problems to formulate an emergency evacuation problem closer to a real-life situation. They 

apply hybrid approaches. Hassanpour et al. (2022) modeled human evacuation behavior and the 

building's interior design using a hierarchical hybrid agent-based framework combining CA and graph-

based models in a land-based problem. Zhang and Jia (2021) proposed a hybrid multiscale approach to 

work out the movement of followers, the guidance behavior of leaders, and the follower-leader 

interaction. IMO (2016) pays attention to environmental aspects of the evacuation plan together with 

geometrical, population, and procedural elements. Future research can be devoted to developing hybrid 

approaches to bring these aspects into play. A hybrid robust-stochastic programming approach can be 
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a potential solution. Disaster development can be described through various stochastic scenarios, and 

uncertainty sets can be established for defining different ship motions.  

5.1.3. Uncertainty solution approaches 

Researchers deployed different solution methods to tackle a modeled evacuation problem under 

uncertainty. Many benefits from simulation tools. While a few scholars have used general solvers such 

as CPLEX and MATLAB to test evacuation problems. Furthermore, some employed metaheuristic 

algorithms, such as GA to improve the performance and quality of solutions. However, the above-

mentioned methods focus mainly on human behavior under fire situations. Future research can focus 

on applying simulation technology, such as DT, or metaheuristic algorithms, such as a tabu search, to 

model sources of uncertainty affecting passenger and crew behavior, evacuation time, and escape 

routes. New guidelines for an advanced evacuation analysis document that a congestion region is not 

precisely known in advance. Applying uncertainty analysis techniques, such as the Benders 

decomposition algorithm and ML-based techniques, can close us to more quality solutions beforehand 

in a reasonable time based on various scenarios affecting the congestion points density (Romanski and 

Van Hentenryck, 2016).  

5.2. Multi-objective optimization modeling 

Future studies can also consider multi-objective optimization modeling direction in this research area. 

Multi-objective models can provide solutions for different objectives in one single run. Also, they can 

reduce the number of assumptions about the problem and near modeling to a real-life situation (Pilát, 

2010). For instance, minimizing evacuation time, maximizing crew assistance, and passengers' 

satisfaction levels subject to the ship layout configuration can be formulated as a multi-objective 

evacuation model. Meanwhile, multi-criteria decision-making techniques, such as the Analytic 

Hierarchy Process (AHP) or the analytic network process, can be applied to analyze the weights of the 

multiple factors affecting objectives. Afterward, weights are employed in formulating a multi-objective 

evacuation model. Ping et al. (2018) proposed a quantitative analysis model in an offshore incident by 

integrating BN and fuzzy AHP to calculate the probability of successful escape, evacuation, and rescue 

in light of experts' opinions. 
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5.3. Human evacuation behavior understanding 

Human behavior is a central ingredient for analyzing and designing an egress system. Modeling human 

behavior and two psychological properties regarding human behavior named passenger compliance 

behavior and risk perception are considered the potential research directions. In doing so, they are 

analyzed in this subsection, and suggestions for a better understanding of these topics are provided. 

5.3.1. Modeling human evacuation behavior 

Passenger behavior is a complex phenomenon affected by various environmental, human, and 

behavioral factors. Taking these elements into modeling subject to different constraints such as 

configurational factors has been a challenging research question in this area. Researchers primarily 

attempt to harness passenger behavior with the help of social force-, velocity-, acceleration-based, and 

CA models. The social-force models are based on complex rules; they do not provide satisfactory 

calculation efficiency (Ni et al., 2018). CA-based models are discrete in space, time, and state variables; 

they do not track the dynamic behavior of passengers varying instantly (Ha et al., 2012). Velocity- and 

acceleration-based models cannot take the behavior pressure from the crowd into consideration (Cho et 

al., 2016). Surrogate-based models can be, therefore, a solution for covering challenges. They can 

estimate outputs of simulations across the whole design space, substituting the original (more expensive 

and time-consuming) model and improving the computational efficiency (Dias et al., 2019). Xie et al. 

(2020c) developed a surrogate-based model of passenger assembly time using the Legendre PC 

expansion. They predicted the optimal time for the issuance of evacuation orders. Future studies can 

pay more attention to this technique for approximating the projections of the original model.  

In addition, researchers can employ ML-based algorithms to predict human evacuation behavior. Ning 

and You (2019) elucidated the integration of a data-driven with a mathematical-based optimization 

model. An ML model interacts with a mathematical model. Concretely, information is circulated 

between the two models in an iterative process, improving the output's performance and reliability. 

These two models can be integrated using the loss function in the ML model and the objective function 

in the mathematical model. On the ML side, evacuation factors can be represented as features per 

passenger, while the mathematical side can minimize the total evacuation time. 
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5.3.2. Passenger compliance behavior 

Understanding the compliance psychology of passengers can be a critical part of more effectively 

tracking the evacuation process. Also, it aligns with the advanced evacuation analysis guidelines that 

consider passengers as sentiment agents. Compliance behavior is the coincidence of human behavior 

with what they should do based on rules, instructions, and others' advice (Chu et al., 2017). Human 

factors (e.g., cultural differences), and environmental factors (e.g., crowd behavior), can influence the 

compliancy level (Hamad et al., 2003). Furthermore, Karabuk and Manzour (2019) categorized 

compliance behavior in a land-based evacuation situation into three classes: (1) hard, (2) soft, and (3) 

non-compliance behavior. Ditlev Jorgensen and May (2002) empirically studied the attitudes and 

behavior of passengers regarding non-compliance with instructions and how it can affect assembly time 

in case of an emergency on ferries. In a land-based evacuation, Chu et al. (2017) proposed a bi-level 

optimization methodology for modeling the compliance behavior of evacuees under environmental 

factors. Therefore, understanding this human attribute according to evacuees' compliance class can be 

another future direction in this research area. 

5.3.3. Passenger risk perception 

During the response period, the critical point is the decision of passengers whether to move after they 

have noticed initial cues. This decision mainly depends on passengers' risk perception (RP) (Kinateder 

et al., 2015). RP originates from ambiguity in the evacuation process and passengers' subjective 

judgments about the probability of negative occurrences such as death. Taking RP into account aids in 

understanding the human cognitive process and may minimize the total evacuation time (Kinateder et 

al., 2015). In land-based fire evacuation, researchers attempted to theoretically frame the RP and 

discover its role during the evacuation process (Kinateder et al., 2014), while there is still a significant 

gap in the ship-based evacuation process to modulate RP. This lack can be owing to the absence of 

insufficient actual evacuation at sea.  

Viking Sky cruise ship is a successful rescue operation in Norway. She faced an engine failure, which 

led the system to shut down the engines. She next started listing in the stormy weather. Meanwhile, 

1,373 passengers and crew passengers perceived uncertainty about what was going on and judged 

subjectively about the likelihood of unfavorable events, such as incidents (Ibrion et al., 2021). This 
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interpretation might foster the pilot to issue the evacuation order at the best possible time. Analysis of 

disasters such as the Viking Sky passenger ship can smooth the path to understanding the evacuation 

process at sea. There is no single study in this stream to analyze the impact of passengers' RP on the 

evacuation process. This topic can be, therefore, another research direction. 

5.4. Mutual interrelations 

A significant research opportunity is investigating the relationships among evacuation parameters and 

how their concurrent existence can affect the human evacuation process from passenger ships. Some 

opportunities are listed in Error! Reference source not found. as cross-frequency analyses of two p

arameters.  

However, additional opportunities can be when there are more than two parameters in analyzing the 

evacuation plan. Table 4 indicates the simultaneous influence of three parameters on the evacuation 

process. For example, three papers (Brown, 2016; Sarshar et al., 2014, 2013c) performed the evacuation 

analysis by considering the coexistence of three parameters during the evacuation process, including 

fire, ship layout, and physical condition. In contrast, there is no study to analyze the interplay of fire, 

counterflow movements, and passenger walking speed. These future directions are listed in Error! R

eference source not found.. Furthermore, considering four elements or even more is also applicable; 

however, it could be more complicated (such as counter and crossing flows, passenger physical 

conditions, fire, and flooding). 

Table 4. Mutual interrelation among evacuation factors.  

 Fire  Passenger physical 

condition 

(Ship layout, passenger physical condition) 3  (Ship motion, crowd behavior) 0 

(Ship layout, crowd behavior) 0 (Ship motion, hazard) 0 

(Passenger physical condition, other forces) 0 (Walking speed, counter and crossing 

flows) 

0 

(Ship motion, passenger physical condition) 0 (Walking speed, family group behavior) 0 

(Passenger walking speed, counter and 

crossing flows) 

0   

 

As a result, this study reveals that such mutual interrelations are necessary and a gap in the literature. 
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5.5. Digital transformation 

This section tries to introduce two enabling technologies that may enhance safety and emergency 

response in human evacuation from passenger ships. 

5.5.1. DT technology 

DT is a virtual model for a physical object. It mirrors the behavior of a physical counterpart using a 

simulation/optimization model (Kaur et al., 2020). A bi-directional data flow is crucial in 

communicating between the object and the model. Data is collected from Internet of Things-based (IoT) 

devices such as sensors installed in the physical asset and transmitted to the model in real-time. 

Afterward, the model is run, tested, and validated on a DT. Then, faults are diagnosed, and possible 

improvements will accordingly be produced. Finally, the solutions are transmitted back to the physical 

object. Although the application of a DT is witnessed in other industries, such as the manufacturing 

industry (Tao et al., 2019), there is no passenger ship-based DT. This absence can be due to many 

reasons. Firstly, it can be owning to the lack of a cost-effectiveness evaluation for creating a DT of a 

passenger ship. Specifically, this technology targets academia and industry for teaching purposes and 

as a source of income. Academics and ship managers need to meet their financial requirements 

regarding this technology for applying it through their activities. Secondly, the absence of a data-driven 

simulation/optimization model can be another reason. Data-driven decision-making for the evacuation 

process demands exponentially many data points. At the same time, human evacuation behavior is a 

central ingredient for analyzing and designing an evacuation model. In this regard, the 

simulation/optimization model should be fed with data concerning human properties such as age, 

gender, and stress. Therefore, data privacy issues are the third sign restricting the creation of a DT in 

this area. Fourthly, even though a DT can be built by tackling the challenges mentioned above, how to 

generalize and transfer findings from a specific demographic on a passenger ship to others can cause 

additional concerns.  

On the other hand, a DT can benefit the maritime industry, especially when maritime transport is 

approaching the era of autonomous shipping. It can highlight real-time collaboration between a ship 

and its digital counterpart. This connection can remove human errors and improve safety at sea by 

establishing a correct relationship among parties, such as passengers and crew, during evacuation.  
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5.5.2. VR technology 

VR is a three-dimensional simulated environment where the agents can feel a spatial sense (Huang et 

al., 2022). The applicability of VR is presented in many fields, for instance, tourism (Beck et al., 2019). 

In this stream, Vukelic et al. (2021) evaluated the possibility of adopting new technologies to the human 

evacuation process, including VR. There is an opportunity to expand the VR application in passenger 

ship-based emergency circumstances. Precisely, it can be employed for data collection purposes, such 

as passenger walking speed. Not only conducting an actual full-scale onboard experiment is time-

consuming and costly, but it also can be dangerous for passengers while sailing. In this regard, a set of 

onboard experiments can be designed in the presence of virtual reality devices like headsets. Headsets 

can be programmed based on the influence of a disaster on human behavior. Similarly, this technology 

can transport participants to an interactive digital world considering ship motions. Then, how 

participants react to a virtual hazard or ship motions can affect their evacuation behavior and speed. 

Therefore, further research can be undertaken to investigate the application of VR in a passenger ship-

based data collection process, especially in a spatial environment while a ship berths.  

6. Conclusion  

This paper comprehensively summarizes recent and state-of-the-art publications on human evacuation. 

115 studies in scientific journals, peer-reviewed conference papers, and doctoral and master 

dissertations are selected and reviewed between January 1999 and August 2022. Afterward, the authors 

analyzed the collected studies regarding evacuation factors, modeling approaches, and solution 

methods. Finally, future gaps and research opportunities are outlined in three aspects: uncertainty 

analysis of evacuation parameters, passenger characteristics, and digital transformation adaptation. 

Employing modeling approaches, including RO, stochastic optimization, BN, MC-based, AI-based, and 

hybrid approaches, are identified as future opportunities in formulating uncertainty. Accordingly, 

possible future directions are provided regarding algorithms for tackling the modeled evacuation 

problems under uncertainty. Other future suggestions include paying attention to multi-objective 

optimization problems and employing the corresponding approaches. 

Further, mutual interrelations evacuation parameters propose future trends in the problem 

classifications. Also, surrogate-based models are recommended for estimating the underlying model to 
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ease the complexity of evacuation problems. Moreover, opportunities associated with passengers' 

compliance psychology and risk perception are offered. Ultimately, the possibility of adapting the two 

latest enabling technologies named DT and VR is suggested for this research area. The authors attempt 

to conduct the current study as a comprehensive literature review as possible; however, there are still 

some shortcomings. For instance, the number of the collected publications is not large, and the results 

of the visual network analysis may not be comprehensive. Hence, scholars can also examine the released 

investigation report from different maritime accidents, such as the Costa Concordia disaster and the 

MV Viking Sky, and how the literature can study them from an advanced evacuation analysis 

perspective. Also, most non-English publications have an English summary section. Therefore, they 

can be represented in the review analysis.  
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(Kim et al., 2019) International Journal of Naval Architecture 

and Ocean Engineering 

(Ng et al., 2021) Annals of Operations Research 

(Park et al., 2015) Procedia Engineering 

(Sarshar et al., 2013a) IEEE Symposium on Computational 

Intelligence in Dynamic and Uncertain 

Environments 

(Casareale et al., 2017) Building Simulation 

(D. Zhang et al., 2017) IEEE International Conference on 

Networking, Sensing, and Control 

(Qiao et al., 2014) IEEE International Conference on Systems, 

Man and Cybernetics 

(Montecchiari et al., 2018) Proceedings of the Institution of 

Mechanical Engineers, Part O: Journal of 

Risk and Reliability 

(Bellas et al., 2020) Computer Modeling in Engineering & 

Sciences 

(Liu et al., 2021) Journal of Marine Science and Engineering 

(Sun et al., 2019) International Conference on Fire Science 

and Fire Protection Engineering  

(Sarvari et al., 2019) Maritime Policy & Management  

(Azzi et al., 2011) Fire and Evacuation Modeling Technical 

Conference 

(Boulougouris and Papanikolaou, 2002) Proceedings of the 10th International 

Congress of the International Maritime 

Association of the Mediterranean 
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(Brown et al., 2008) International Conference on Ocean, 

Offshore, and Arctic Engineering 

(Galea et al., 2013) Journal of Ship Research 

(Kang et al., 2010) Marine Technology Society Journal 

(Klüpfel et al., 2001) Theory and Practical Issues on CA 

(Łozowicka, 2010) Akademia Morska w Szczecinie 

(Miyazaki et al., 2004) Maritime Research Institute, Japan 

(Nevalainen et al., 2015) Proceedings of Marine Design 

(A. López Piñeiro et al., 2005) Journal of Maritime Research 

(D. Vassalos et al., 2002) Safety at Sea and Marine Equipment 

Exhibition (SASMEX) 

(Rutgersson and Tsychkova, 1999) Proceedings of RINA Conference on 

Learning from Marine Incidents 

(Liu and Luo, 2012) Journal of Shanghai Maritime University 

(Sun et al., 2020) International Conference on Big Data 

Analytics for Cyber-Physical-Systems 

(Wang et al., 2020b) Journal of Shanghai Jiaotong University 

(Science) 

(Chen et al., 2011) Journal of Marine Science and Application 

(Gwynne et al., 2003) Fire Technology 

(Łozowicka, 2005) International Journal of Automation and 

Computing 

(Couasnon et al., 2019) International Symposium on Web and 

Wireless Geographical Information 

Systems 

(Sarshar et al., 2014) Transactions on Engineering Technologies 

(Kwee-Meier et al., 2017) Advances in Human Aspects of 

Transportation 

(K V Kostas et al., 2014a) Virtual Realities 

(Jasionowski et al., 2011) Contemporary Ideas on Ship Stability and 

Capsizing in Waves 

(Q. Xie et al., 2020a) Applied Ocean Research 

(Lozowicka, 2021) Plos One 

(Na et al., 2019) Medico Legal Update 

(Walter et al., 2017) Experimental Brain Research 

(Murayama et al., 2000) Research Institute of Marine Engineering, 

Japan 

(Zhang et al., 2016) Xitong Gongcheng Lilun yu Shijian/System 

Engineering Theory and Practice 

(Deere et al., 2006)  International Journal of Maritime 

Engineering 

(J. Wang et al., 2013) China Ocean Engineering 

(Sarshar et al., 2013b) International Conference on Innovative 

Computing Technology 

(Galea et al., 2014b) Fire Safety Science 

(Hu and Cai, 2020) International Journal of Computers and 

Applications  

(Hu and Cai, 2017) Advances in Computer Science Research 

(Hu et al., 2019) Symmetry 

(Kim et al., 2004) Computers & Industrial Engineering 

(Deere et al., 2012) RINA SAFEGUARD Passenger Evacuation 

Seminar 

(Yip et al., 2015) Accident Analysis & Prevention 

(Meyer-König et al., 2002) Gerhard-Mercator-Universität 

(Ruponen et al., 2015) Stability of ships and ocean vehicles 

(Wang and Wu, 2020a) Journal of Ship Production and Design 

(Ni et al., 2018) Journal of Statistical Mechanics: Theory 

and Experiment 

(Ni et al., 2017a) Polish Maritime Research 

(Y. Li et al., 2021) International Journal of Maritime 

Engineering 

(Montecchiari et al., 2021) International Shipbuilding Progress 

(Chen and Lo, 2019) International Conference on Fire Science 

and Fire Protection Engineering 
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(Yue et al., 2022) Process Safety and Environmental 

Protection 

(Liu et al., 2022a) Journal of Marine Science and Engineering 

(Kim et al., 2020) International Journal of Environmental 

Research and Public Health 

(Ma et al., 2020) IEEE Access 

Appendix C. Abbreviations 
Table C.1. Journal and conference title abbreviations. 

Journal/conference  Abbreviation 

Ocean Engineering Ocean Eng. 

International Journal of Naval Architecture and Ocean 

Engineering 

Int. J. Nav. Archit. 

Ocean Eng. 

Annals of Operations Research Ann. Oper. Res. 

Safety Science Saf. Sci. 

Procedia Engineering Procedia Eng. 

IEEE Symposium on Computational Intelligence in Dynamic 

and Uncertain Environments 

IEEE CIDUE 

Physica A: Statistical Mechanics and its Applications Phys. A: Stat. Mech. 

Appl. 

Procedia Computer Science Procedia Comput. Sci. 

Building Simulation Build. Simul. 

Journal of Marine Science and Technology (Taiwan) JMST 

IEEE International Conference on Networking, Sensing, and 

Control 

IEEE ICNSC 

IEEE International Conference on Systems, Man and 

Cybernetics 

IEEE SMC 

Proceedings of the Institution of Mechanical Engineers, Part O: 

Journal of Risk and Reliability 

Proc Inst Mech Eng 

Computer Modeling in Engineering & Sciences Comput Model Eng 

Sci 

Reliability Engineering & System Safety Reliab. Eng. Syst. Saf. 

Journal of Marine Science and Engineering J. Mar. Sci. Eng. 

International Conference on Fire Science and Fire Protection 

Engineering  

ICFSFPE 

Maritime Policy & Management  Marit. Policy Manag. 

Fire and Evacuation Modeling Technical Conference FEMTC 

International Conference on Ocean, Offshore, and Arctic 

Engineering 

OMAE 

Journal of Ship Research J. Sh. Res. 

Marine Technology Society Journal Mar. Technol. Soc. J. 

Journal of Maritime Research JMR 

Mathematical Problems in Engineering Math. Probl. Eng. 

International Conference on Big Data Analytics for Cyber-

Physical-Systems 

BDCPS 

International Conference on Virtual, Augmented, and Mixed 

Reality 

VAMR 

Journal of Shanghai Jiaotong University (Science) J. Shanghai Jiaotong 

Univ. (Sci.) 

Pedestrian and Evacuation Dynamics PED 

Journal of Marine Science and Application JMSA 

Fire Technology Fire Technol. 

International Journal of Automation and Computing Int. J. Autom. 

Comput. 

Journal of Marine Science and Technology (Springer) 

  

J Mar Sci Technol 

International Symposium on Web and Wireless Geographical 

Information Systems 

W2GIS  

Transactions on Engineering Technologies Trans. Eng. Technol. 

Advances in Human Aspects of Transportation AHFE  

Traffic and Granular Flow Conference TGF 

Virtual Realities Virtual Real. 

Applied Ocean Research Appl. Ocean Res. 

Computers in Industry Comput Ind 
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Plos one Plos one 

Medico Legal Update Med.-Leg. Update  

Experimental Brain Research Exp. Brain Res. 

 International Journal of Maritime Engineering IJME 

China Ocean Engineering China Ocean Eng. 

International Conference on Innovative Computing Technology ICICC  

Fire Safety Science Fire Saf. Sci. 

International Journal of Computers and Applications  Int. J. Comput. Appl. 

Advances in Computer Science Research Adv. Comput. Sci. 

Res. 

Symmetry Symmetry 

Computers & Industrial Engineering Comput Ind Eng 

Process Safety and Environmental Protection Process Saf Environ 

Prot 

Accident Analysis & Prevention Accid Anal Prev 

Journal of Ship Production and Design J. Ship Prod. Des. 

Journal of Statistical Mechanics: Theory and Experiment JSTAT 

Polish Maritime Research Pol. Marit. Res. 

International Journal of Maritime Engineering IJME 

International Shipbuilding Progress  Int. Shipbuild. Prog 

International Conference on Fire Science and Fire Protection 

Engineering 

ICFSFPE  

International journal of environmental research and public 

health 

Int. J. Environ. Res. 

Public Health 

Journal of Statistical Mechanics: Theory and Experiment J. Stat. Mech. Theory 

Exp. 

Proceedings of the Institution of Mechanical Engineers, Part M: 

Journal of Engineering for the Maritime Environment 

P I MECH ENG M-J 

ENG 

Journal of Marine Science and Engineering J. Mar. Sci. Eng. 

Applied Sciences Appl. Sci 

Appendix D. Modeling approach  
Table D.1. List of publications categorized by modeling approach analytical category. 

Paper Modeling Approach 

(Azizpour et al., 2022; Azzi et al., 2011; Balakhontceva et al., 2016; Bellas et al., 2020; 

Boulougouris and Papanikolaou, 2002; Brumley and Koss, 2000; Chen and Lo, 2019; Cho 

et al., 2016; Couasnon et al., 2019; Deere et al., 2006; Ditlev Jorgensen and May, 2002; Fang 

et al., 2022b, 2022a; Fukuchi and Imamura, 2005; Galea et al., 2013, 2003; Ha et al., 2012; 

Hu and Cai, 2022, 2017; Katuhara et al., 2003; Kim et al., 2019, 2020; Klüpfel et al., 2001; 

K V Kostas et al., 2014a; Lee et al., 2022; Li et al., 2021; Liou and Chu, 2016; Liu et al., 

2022b; Łozowicka, 2010; Meyer-König et al., 2002; Montecchiari et al., 2018; Ni et al., 

2018, 2017b, 2017a; Park et al., 2004; Piñeiro et al., 2005; Roh and Ha, 2013; Ruponen et 

al., 2015; Rutgersson and Tsychkova, 1999; Salem, 2016; Sarshar et al., 2014, 2013a; 

Spanos and Papanikolaou, 2014; Sun et al., 2020; Vanem and Skjong, 2006; Vassalos et al., 

2002; Vassalos et al., 2002; Vilen, 2020; Wang et al., 2013, 2014, 2022a; Wang et al., 2020a; 

Wu et al., 2018; Xie et al., 2020b; Yuan et al., 2014; Zhang et al., 2017, 2016) 

Simulation 

(Bles et al., 2001; Deere et al., 2012; Galea et al., 2014b, 2014a, 2011; Grandison et al., 

2017; K V Kostas et al., 2014; Kwee-Meier et al., 2017; Lee et al., 2004; Meyer-König et 

al., 2007; Na et al., 2019; Park et al., 2015; Sun et al., 2019, 2018b, 2018a; Walter et al., 

2017; Wang and Wu, 2020a; Wang et al., 2021a, 2021b; Yip et al., 2015) 

Experimental 

(Brown, 2016; Brown et al., 2008; Casareale et al., 2017; Chen et al., 2016, 2011; Gwynne 

et al., 2003; Hu et al., 2019; Hu and Cai, 2020; Jasionowski et al., 2011; Kang et al., 2010; 

Luo, 2019; Ma et al., 2020; Miyazaki et al., 2004; Montecchiari et al., 2021; Murayama et 

al., 2000; Qiao et al., 2014; Sarshar et al., 2013b; Sarvari et al., 2019; Q. Xie et al., 2020a) 

Hybrid 

(Simulation/Mathematical, 

Simulation/Experimental, 

Simulation/Questionnaire, 

and 

Experimental/Questionnaire) 

(Chu et al., 2013; K V Kostas et al., 2014b; Liu and Luo, 2012; Liu et al., 2021; Lozowicka, 

2021; Łozowicka, 2005; Ng et al., 2021; Xie et al., 2020c) 

Mathematical 

(Guarin et al., 2014; Kim et al., 2004; Nevalainen et al., 2015; Vanem and Ellis, 2010; 

Vukelic et al., 2021) 

Analytical 

(Finiti, 2021; Wang et al., 2021c; Wang et al., 2020c) Questionnaire and Interview 
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Appendix E. Traffic assignment formulation 
Table 16. List of publications categorized by traffic assignment formulation analytical category. 

Paper Model type 

User equilibrium formulation 

(Azizpour et al., 2022; Bellas et al., 2020; Bles et al., 2001; Brown et al., 2008; 

Brumley and Koss, 2000; Casareale et al., 2017; Chen et al., 2016; Cho et al., 2016; 

Chu et al., 2013; Couasnon et al., 2019; Deere et al., 2006, 2012; Ditlev Jorgensen and 

May, 2002; Fang et al., 2022a, 2022b; Finiti, 2021; Fukuchi and Imamura, 2005; 

Galea et al., 2014a, 2014b, 2013; Ha et al., 2012; Hu et al., 2019; Hu and Cai, 2022, 

2020; Kang et al., 2010; Katuhara et al., 2003; Kim et al., 2019, 2020; K V Kostas et 

al., 2014a; Kwee-Meier et al., 2017; Lee et al., 2004, 2022; Liou and Chu, 2016; Liu 

et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Meyer-König et al., 2002; Miyazaki 

et al., 2004; Montecchiari et al., 2021; Murayama et al., 2000; Na et al., 2019; Ng et 

al., 2021; Ni et al., 2018; Park et al., 2015; Qiao et al., 2014; Roh and Ha, 2013; 

Rutgersson and Tsychkova, 1999; Sarshar et al., 2013b, 2013a; Sun et al., 2020, 2019, 

2018a; Walter et al., 2017; Wang et al., 2020a; Wang et al., 2022, 2021a, 2021c; X. 

Wang et al., 2020; Wu et al., 2018; Yue et al., 2022; Zhang et al., 2017) 

Microscopic 

(Azzi et al., 2011; Balakhontceva et al., 2016, 2015; Brown, 2016; Chen et al., 2011; 

Gwynne et al., 2003; Hu and Cai, 2017; Klüpfel et al., 2001; Li et al., 2021; 

Montecchiari et al., 2018; Ni et al., 2017b, 2017a; Sarshar et al., 2014; Sarvari et al., 

2019; Sun et al., 2018b; Vassalos et al., 2002; Vilen, 2020; Wang et al., 2014, 2021b; 

Yuan et al., 2014) 

Microscopic and 

Macroscopic 

System-optimal formulation 

(Chen and Lo, 2019; Galea et al., 2011, 2003; Grandison et al., 2017; Jasionowski et 

al., 2011; Lozowicka, 2021; Łozowicka, 2005; Luo, 2019; Ma et al., 2020; Park et al., 

2004; Ruponen et al., 2015; Salem, 2016; Spanos and Papanikolaou, 2014; Vanem 

and Skjong, 2006; Wang and Wu, 2020a; Wang et al., 2013; Xie et al., 2020a, 2020c, 

2020b) 

Macroscopic 

Not available 

(Boulougouris and Papanikolaou, 2002; Guarin et al., 2014; Kim et al., 2004; K V 

Kostas et al., 2014; K V Kostas et al., 2014b; Liu and Luo, 2012; Łozowicka, 2010; 

Meyer-König et al., 2007; Nevalainen et al., 2015; Piñeiro et al., 2005; Vanem and 

Ellis, 2010; Vassalos et al., 2002; Yip et al., 2015; Zhang et al., 2016)(Vukelic et al., 

2021) 

NA 

Appendix F. Model parameter 
Table F.1. List of publications categorized by model parameter analytical category. 

Paper Parameter 

(Q. Xie et al., 2020d) • Fire (heat, smoke, and toxic gases) and 

• ship layout (stairs, assembly stations, and different functional 

zones including seating zone, general area, bar zone, locker zone, 

restaurant zone, and retail zone) 

(Azizpour et al., 2022) • Ship stability (heeling angle (0, 10, 15, and 20 degrees),  

• passenger age (18-72),  

• passenger gender (male and female),  

• passenger height (154-195),  

• passenger weight (48-123),  

• other forces (thermal protective immersion suits) 

(Fang et al., 2022a) • Ship stability (trim angles from −30 to 30 degrees and heeling 

angles from 0 to 30 degrees) 

(Wang et al., 2022) • Passenger age,  

• passenger gender,  

• passenger physical condition,  

• exit and staircase layout 

(Kim et al., 2019) • Ship stability (heeling angle (0,30,52.2 degrees)), 

• passenger load (human density) 

• passenger gender (crew, male, female), and 

• crowd behavior (counter flow) 

(Liu et al., 2022b) • Ship layout (passage, exit, and number of corners in a deck) 

(Fang et al., 2022b) • Ship stability (inclination angles (0,5,10,15,20 degree),  

• passenger gender (male, female),  

• passenger age 
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(Yue et al., 2022) • Passenger gender,  

• passenger age,  

• passenger size,  

• passenger mass, 

• other factors (neighborhood radius, information value, information 

threshold, information attenuation ratio, location in a two-

dimensional (2D) environmental network, physical quality, and 

psychological quality) 

(Hu and Cai, 2022) • Passenger age,  

• passenger gender 

(Lee et al., 2022) • Passenger age,  

• passenger gender,  

• passenger physical condition,  

• ship layout,  

• ship stability (heel and trim angle (0-30 degree)) 

(Ng et al., 2021) • Passenger age (children, women, and seniors)  

(Wang et al., 2021b) • Ship stability (heeling angle of 15–20 degrees), 

• ship motion (ship berthing and sailing operations), 

• passenger age (25.8+-10,5),  

• passenger height (175.3 cm ± 6.6 cm),  

• passenger weight (71.3 kg ± 8.6 kg.), and 

• passenger physical condition 

(Ha et al., 2012) • Ship layout (corridors, staircase), 

• crowd behavior (counter flow), and 

• passenger behavior 

(Finiti, 2021) • Passenger age, 

• passenger gender, and  

• passenger behavior (individually based on companions and 

experience) 

(Vanem and Skjong, 2006) • Fire (starting point of fire within each fire zone), 

• ship stability (list direction), 

• ship layout, and 

• passenger and crew load  

(Wang et al., 2014) • Ship layout (staircase and restaurant) 

(Sun et al., 2018a) • Ship stability (heeling (between -15 and +15 degrees), trimming (-

20 and 20 degrees), and both),  

• ship layout (corridors (10m1.8m2.2m)), 

• passenger age (24.6+-1.45),  

• passenger gender, 

• passenger weight (60.5+-9.1), and 

• passenger height (167.7+-6.4cm) 

(Sarshar et al., 2013a) • Fire (fire location, fire condition (controllable/uncontrollable),  

• ship stability (trim and heel)  

• passenger age,  

• passenger gender, and  

• passenger physical condition 

(Sun et al., 2018b) • Ship stability (trim and heeling),  

• ship layout (corridors 

(10m(Length)*1.8m(Width)*2.2m(Height))), 

• passenger age (23-26),  

• passenger gender, 

• passenger weight (45-72 kg), and 

• passenger height (157-185cm) 

(Balakhontceva et al., 2015) • Passenger age,  

• passenger gender, and  

• passenger physical condition, and  

• other external forces (intensity of waves (5, 7, 9 sea forces), rate of 

sailing (0, 5, 15, 25 knots)) 

(Casareale et al., 2017) • Passenger behavior (familiarity with emergencies, such as disaster 

and drills experience, seek for emergency procedures information 

(e.g., emergency plan, emergency signs, and path escape routes), 

interacting with unknown people (e.g., social attachment), leaving 

immediately after the alarm or ignore it (risk denial)) 
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(Chu et al., 2013) • Ship layout (corridors, doorways, and stairs)  

(D. Zhang et al., 2017) • Ship motion (rolling), 

• passenger age (21-40),  

• passenger gender,  

• passenger height (160-187 cm),  

• passenger weight (50-95 kg), and  

• other external forces (wind-wave dynamics) 

(Wu et al., 2018) • Fire (smoke and temperature (fire growth rate is 

0.0029,0.0117,0.0469,0.1846 kw/s^2) and 

• ship layout (corridors (initial speed is 1.2 m/s), stair descent (1.0 

m/s), stair ascent (0.8 m/s)) 

(Qiao et al., 2014) • Ship layout (stairs, corridors, and doorways), 

• passenger age (23-26),  

• passenger gender,  

• passenger height (157-185cm), and 

• passenger weight (45-72 kg),  

(Liou and Chu, 2016) • Ship layout (corridors and stairway), 

• passenger behavior (walking speed),   

• passenger age, and 

• passenger gender 

(Montecchiari et al., 2018) • Crow behavior (counter flow) 

(Bellas et al., 2020) • Ship layout (the location of corridors, doors, stairways, and ladders 

along with the ship), 

• passenger age, and  

• passenger gender 

• passenger behavior (walking speed)  

(Brown, 2016) • Fire (heat, smoke, toxic products), 

• ship stability (heel and trim), 

• passenger age,  

• passenger gender,  

• passenger physical condition (agility and mobility impairment),  

• passenger behavior (experience and walking speed) 

(Liu et al., 2021) • Crowd behavior (crowd density) and  

• passenger behavior (passenger walking speed) 

(Vilen, 2020) • Ship layout (the topology and geometry of the ship), 

• passenger age, and 

• passenger gender 

(Sun et al., 2019) • Passenger stability (heeling (-15 to +15 degrees), trim (-20 to +20 

degrees), 

• passenger age (21-26), 

• passenger height (157-173 cm), and  

• passenger weight (45-78) 

(Sarvari et al., 2019) • Ship stability (trim and heel -20 to +20 degrees) 

(Azzi et al., 2011) • NA 

(Cho et al., 2016) • Crowd behavior (flock behavior, emergency behavior (counter 

flow), and other is a leader following behavior), 

• passenger behavior (and individual behavior (body shape, walking 

speed, walking direction, and rotation of each passenger), 

•  ship layout (corridor and staircase), 

• passenger age (around 30 to older than 50), and 

• passenger gender 

(Boulougouris and Papanikolaou, 2002) • Passenger age (children, adults, and elderly)  

(Brown et al., 2008) • Passenger age, 

• passenger gender, 

• passenger height, 

• passenger weight 

(Brumley and Koss, 2000) • Ship layout (ship corridors and on stairs), 

• passenger age, 

• passenger gender, and 

• passenger physical condition (degree of handicap) 

(Galea et al., 2013) • NA 

(Ditlev Jorgensen and May, 2002) • Ship layout,  
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• passenger behavior (non-compliance with instructions), and  

• passenger physical condition (disabled, asthmatic, heart trouble, 

and hearing impaired) 

(Kang et al., 2010) • NA 

(Klüpfel et al., 2001) • Crowd behavior (crowd motion) 

(Łozowicka, 2010) • Crowd behavior (counter flow) 

(Miyazaki et al., 2004) • Passenger gender, 

• passenger physical condition (disabled people and wheelchair), 

• passenger behavior (kind mental state, (non-)competitive spirits or 

mean mental state) 

(Nevalainen et al., 2015) • Ship layout (spaces such as staircases, objects such as escape 

routes), 

• passenger behavior (perception, decision making, passenger 

activities) 

(Piñeiro et al., 2005) • Passenger age, 

• passenger gender, 

• passenger behavior (walking speed), 

• passenger and crew load 

(Vanem and Ellis, 2010) • NA 

(Vassalos et al., 2002) • Passenger behavior 

(Rutgersson and Tsychkova, 1999) • Passenger behavior (Human factors) and 

• other external forces (environment factors, guidance systems, 

arrangements onboard, and technical equipment) 

(Ni et al., 2017b) • Ship layout (interior layout of passenger ship cabins (tables and 

stools) and obstacles) 

• passenger behavior (interaction forces between the individual and 

crew) 

(Liu and Luo, 2012) • NA 

(Sun et al., 2020) • Passenger age (30-50) 

(Guarin et al., 2014) • Other external forces (sea State, time of day) 

• human and organizational factors and crew emergency) 

(Wang et al., 2020b) • NA 

(Galea et al., 2014a) • NA 

(Chen et al., 2011) • NA 

(Gwynne et al., 2003) • Ship stability (tilting (20 degrees left), listing (20 degrees right)), 

• crowd behavior (contra-flow situation) 

• passenger physical condition 

(Łozowicka, 2005) • NA 

(Spanos and Papanikolaou, 2014) • Ship layout (hull breach and ship’s loading) 

(Fukuchi and Imamura, 2005) • Fire (smoke and fire) 

• ship layout (enclosure layout, the number and type of exits, 

corridor widths, and travel distances) 

• passenger age (children, youth, elderly) 

• passenger behavior (evacuation movements and the reaction of 

emotions and action) 

(Couasnon et al., 2019) • Passenger behavior (crew members, disoriented passengers, and 

“normal” passengers) 

(Galea et al., 2011) • Passenger age (exclude children under the age of 12) 

(Sarshar et al., 2014) • Ship layout (the structure of the ship), 

• passenger age  

• passenger gender, 

• passenger behavior (panic) 

(Kwee-Meier et al., 2017) • Passenger age (mean age = 24.31), 

• ship stability (a treadmill at 0°, 7°, and 14° with and without 

applied mental and emotional stressors, i.e., time limit and acoustic 

background noise) 

(Katuhara et al., 2003) • Passenger behavior (getting information using a sense of sight, 

hearing, and smell), Influence of Imaginary 

• distances, and walking speed) 

• passenger age (an adult, a child, an elderly), 

• passenger physical condition (disabled persons) 

(K V Kostas et al., 2014b) • NA 
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(K V Kostas et al., 2014a) • Fire (with and without a concurrent fire event), 

• ship motion (and 90-degree ship heading (beam seas)) 

• crow behavior (with and without crew assistance) 

• other external forces (No Waves, 4 m significant wave height, 11 s 

peak period) 

(Jasionowski et al., 2011) • Other external forces (wave (length, amplitude, elevation), 

flooding), 

• ship stability (heel and trim), and 

• ship motion (water accumulation and heave motion) 

(K V Kostas et al., 2014) • Ship motion (with and without ship motions), 

• crowd behavior 

(Q. Xie et al., 2020a) • NA 

(Balakhontceva et al., 2016) • Ship motion (ship roll and pitch angles under the influence of sea 

waves), 

• passenger age, 

• passenger gender, 

• passenger physical condition, and 

• other external forces (sea waves dynamics) 

(Park et al., 2015) • Ship layout (corridors, staircase, ship layout, (11 tests specified in 

IMO MSC/Circ. 1238 were performed), 

• passenger age (age (younger than 30 and older than 50)) 

(Grandison et al., 2017) • NA 

(Roh and Ha, 2013) • Ship layout (corridors, staircase, ship layout, (11 tests specified in 

IMO MSC/Circ. 1238 were performed), 

• passenger age (age (younger than 30 and older than 50)), 

• crowd behavior (counterflow-avoiding behavior), and 

• passenger behavior 

(Lozowicka, 2021) • NA 

(Wang et al., 2021a) • Ship motions (rolling (0,1,3,5,9) & pitch (less than 1)), 

• ship layout (flat terrains and staircases, corridors (L7.4m, W5.4m, 

H1.2m)), 

• passenger age (20-53), 

• passenger weight (55-96kg), and  

• passenger gender 

(Bles et al., 2001) • Ship motion (dynamic ship motion) 

• ship layout (stairs and corridors), 

• ship stability (ship listing), and  

• passenger age (age (18 - 83)) 

(Lee et al., 2004) • Ship motion (roll angle between 3 and 4 degrees and pitch 

motions), 

• passenger behavior, 

• crowd behavior,  

• ship layout (corridors (10m*1.2m*1.9m)), and 

• ship stability (trim angle between -20 and +20 and heel angle 

between 0 and 20) 

(Meyer-König et al., 2007) • Ship stability (heel (0-15 and 15- 35 degrees)) and 

• ship motion (roll motion) 

(Na et al., 2019) • Ship motion (roll angular magnitude (1 degree)), 

• ship stability(berthing), 

• passenger age, and 

• passenger gender 

(Walter et al., 2017) • Ship motion (roll and pitch), 

• passenger age (20-72), and 

• passenger gender 

(Wang et al., 2021c) • Passenger age (16-61 and above), 

• passenger gender, 

• passenger behavior (educational level, mobility level, experience 

on board), 

• crowd behavior (family group experience in evacuation education) 

(Wang et al., 2020c) • Passenger age (16-61 and above), 

• passenger gender, 

• passenger behavior (educational level, mobility level, experience 

on board), 
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• crowd behavior (family group experience in evacuation education) 

(Q. Xie et al., 2020c) • Passenger load (initial passenger density) and 

• ship layout (stairs, different functional zones in this passenger ship 

including bar, general area, retail, seating, restaurant, and locker 

zone) 

(Murayama et al., 2000) • Ship stability (fore and aft inclination (+20 to -20 degrees)) and 

• ship motion (roll and pitch cycle (10 degrees and for 5 and 10 

seconds), 

• passenger height (1.56 to 1.81 cm), and 

• passenger weight (51 to 90 kg) 

(Zhang et al., 2016) • Ship motion (different rolling angle) and  

• other external forces (wave scales) 

(Chen et al., 2016) • Ship motion (water motion) 

(Deere et al., 2006) • NA 

(Vassalos et al., 2002) • Ship motions 

(J. Wang et al., 2013) • Fire (oxygen concentration, smoker layer height, and temperature) 

(Sarshar et al., 2013b) • Fire (fire location, hat, and smoke exposure), 

• passenger age, 

• passenger gender, and 

• passenger physical condition 

(Galea et al., 2014b) • NA 

(Hu and Cai, 2020) • Ship layout (cabins) 

(Yuan et al., 2014) • Ship stability (heel (0 to 35 degrees) and trim (-20 to 20 degrees) 

• ship layout (door sizes (0-8m)) 

(Hu and Cai, 2017) • Crowd behavior (the attraction of the mainstream crowd and the 

repulsion impact and static and dynamic floor fields) 

(Luo, 2019) • Ship layout (cabin, a hall, a doorway, and an intersection of 

corridors), 

• passenger load, and  

• passenger behavior 

(Hu et al., 2019) • Ship stability (listing, trimming (-30 to +40 degrees), and heeling), 

• passenger age (30 and younger to 50 and older), 

• passenger gender,  

• passenger behavior (walking speed), and 

• passenger physical condition (mobility-impaired people) 

(Galea et al., 2003) • Fire (smoke) 

(Kim et al., 2004) • Ship stability (listing), 

• ship motion, 

• crowd behavior (crowd density), 

• passenger behavior (cultural differences and behavior under 

panic), 

• passenger age, and  

• passenger gender 

(Park et al., 2004) • Ship motion,  

• ship layout (exit doors width), and  

• passenger behavior 

(Deere et al., 2012) • NA 

(Salem, 2016) • Fire (fire toxicity, heat, and smoke) and 

• ship layout (stairwell, corridor, and cabin) 

(Yip et al., 2015) • NA 

(Meyer-König et al., 2002) • Passenger age, 

• passenger gender, and 

• passenger behavior (the patience and stamina) 

(Ruponen et al., 2015) • Ship stability (heeling angle (-5 to 20)), 

(Wang and Wu, 2020a) • Ship layout (stairs, corridors, and doors)  

(Ni et al., 2018) • Crowd behavior (counter flow) 

(Ni et al., 2017a) • Crowd behavior (crowd movement), 

• passenger behavior (agent (perception, decision-making, walking 

speed, and locomotion)),  

• passenger gender (male and female), and  

• passenger age 
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(Y. Li et al., 2021) • Ship layout (stairs, corridors, and doors) and 

• passenger behavior (layout familiarity and social relationship) 

(Montecchiari et al., 2021) • Crowd behavior (counter flow), 

• passenger age, and 

• passenger gender 

(Chen and Lo, 2019) • Ship stability (trim angle (-0.38,0, +0.38 degrees), rolling rate, and 

Influence of fore-aft direction) and 

• ship motion (pitching rate and yaw rate, and sway) 

(Kim et al., 2020) • Ship stability (heeling angle (0, 5, 10, 15, 20, 25, and 30 degrees), 

• passenger age, and 

• passenger gender 

(Ma et al., 2020) • Ship stability (heeling angle and trim angle) and  

• passenger behavior (passenger walking speed and reduction factor 

of the walking speed) 

Appendix G. Hazard type 
Table G.1. List of publications categorized by hazard type analytical category. 

Paper Hazard Type 

(Azzi et al., 2011; Bellas et al., 2020; Brown, 2016; Fukuchi and Imamura, 2005; Galea 

et al., 2003; K V Kostas et al., 2014a; Liu and Luo, 2012; Liu et al., 2022a; Łozowicka, 

2010; Luo, 2019; Miyazaki et al., 2004; Salem, 2016; Sarshar et al., 2014, 2013a, 2013b; 

Sarvari et al., 2019; Wang et al., 2013; Wu et al., 2018; Xie et al., 2020b, 2020c, 2020a) 

Fire 

(Casareale et al., 2017; Finiti, 2021; Kim et al., 2019, 2020; Ma et al., 2020; Piñeiro et 

al., 2005) 

Foundered (capsizing and 

sinking) 

(Jasionowski et al., 2011; Ruponen et al., 2015; Spanos and Papanikolaou, 2014) Flooding 

(Balakhontceva et al., 2016, 2015; Zhang et al., 2016) Storm 

(Vanem and Skjong, 2006) Fire and sinking 

(Vassalos et al., 2002) Fire and flooding 

(Yip et al., 2015) Fire, grounding, flooding, 

and sinking  

(Azizpour et al., 2022; Bles et al., 2001; Boulougouris and Papanikolaou, 2002; Brown 

et al., 2008; Brumley and Koss, 2000; Chen et al., 2016, 2011; Chen and Lo, 2019; Cho 

et al., 2016; Chu et al., 2013; Couasnon et al., 2019; Deere et al., 2006, 2012; Ditlev 

Jorgensen and May, 2002; Fang et al., 2022b, 2022a; Galea et al., 2014a, 2014b, 2013, 

2011; Grandison et al., 2017; Guarin et al., 2014; Gwynne et al., 2003; Ha et al., 2012; 

Hu et al., 2019; Hu and Cai, 2022, 2020, 2017; Kang et al., 2010; Katuhara et al., 2003; 

Kim et al., 2004; Klüpfel et al., 2001; K V Kostas et al., 2014; K V Kostas et al., 2014b; 

Kwee-Meier et al., 2017; Lee et al., 2004, 2022; Li et al., 2021; Liou and Chu, 2016; Liu 

et al., 2021; Liu et al., 2022b; Lozowicka, 2021; Łozowicka, 2005; Meyer-König et al., 

2007, 2002; Montecchiari et al., 2021, 2018; Murayama et al., 2000; Na et al., 2019; 

Nevalainen et al., 2015; Ng et al., 2021; Ni et al., 2018, 2017a, 2017b; Park et al., 2004, 

2015; Qiao et al., 2014; Roh and Ha, 2013; Rutgersson and Tsychkova, 1999; Sun et al., 

2020, 2019, 2018a, 2018b; Vanem and Ellis, 2010; Vassalos et al., 2002; Vilen, 2020; 

Vukelic et al., 2021; Walter et al., 2017; Wang and Wu, 2020; Wang et al., 2020a; Wang 

et al., 2014, 2022, 2021c, 2021a, 2021b; Wang et al., 2020b; Yuan et al., 2014; Yue et 

al., 2022; Zhang et al., 2017) 

NA 

Appendix H. Solution method 
Table H.1. List of publications categorized by solution method analytical category. 

Paper Objective 

Velocity-based Model 

(Kim et al., 2019) Analyzing the influence of heel angle on passenger walking speed 

during the sinking 

(Vilen, 2020) Calculating reaction time, travel time, congestion time, and 

completion time  

(Sun et al., 2019) Calculating the correlation between passenger walking speed and gait 

parameters of individuals on board 

(Sarvari et al., 2019) Designing real-time decision support for estimating evacuation time 

and the death toll 

(Azzi et al., 2011) Evacuation time minimization 

(Cho et al., 2016) Passenger behavior analysis during ship evacuation 

(Boulougouris and 

Papanikolaou, 2002) 

Route finding 
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(Brown et al., 2008) Abandonment of passenger vessels with untrained and ambulatory 

subjects 

(Sun et al., 2018a) Analyzing the influence of heel/trim angle on passenger walking 

speed during ship evacuation 

(Bellas et al., 2020) Evacuation time minimization 

(Brown, 2016) Data production, human performance understanding, and passenger 

response time calculation 

(Galea et al., 2013) Finding passenger response times, starting locations, end locations, 

and arrival times in the assembly stations 

(Vassalos et al., 2002) Calculating the cumulative probability distribution (CDF) of 

evacuation time under uncertainties regarding human behavior 

(Sun et al., 2020) Determining the number of passengers assembled 

(Guarin et al., 2014) Developing a pedestrian dynamics simulation tool 

(Galea et al., 2014a) Determining response time, starting locations, arrival time at the 

designated assembly stations, and the paths taken 

(K V Kostas et al., 2014b) Description of the enhanced crowd modeling approaches in VELOS 

(K V Kostas et al., 2014a) Description of VELOS’ components and functionalities 

(Deere et al., 2006) Passenger response time calculation 

(Vassalos et al., 2002) Passenger behavior and movement analysis 

(Galea et al., 2014b) Data validation related to response times, starting locations, end 

locations, and arrival times in the assembly stations 

(Galea et al., 2003) Assembly time determination 

(K V Kostas et al., 2014) Analyzing the effect of ship motions on passengers and/or crew 

movements 

(Kim et al., 2004) Meeting requirements of IMO and current research works for 

evacuation from the ship 

(Park et al., 2004) Distance walking time determination 

(Gwynne et al., 2003) Number of evacuees calculation, evacuation time minimization, and 

data collection 

Cell-based Model 

(Ha et al., 2012) Passenger behavior understanding 

(Klüpfel et al., 2001) Crowd motion description 

(A. López Piñeiro et al., 

2005) 

Conceptual design, evacuation models during ship emergency 

(Hu and Cai, 2020) Evacuation time minimization 

(Hu and Cai, 2017) Evacuation time minimization 

(Meyer-König et al., 2007) Analyzing the influence of ship motion on passenger walking speed 

(Hu et al., 2019) Evacuation time minimization 

(Wang et al., 2020b) Path planning of passenger ships 

(Chen et al., 2011) Continuity of the passengers’ track and evacuation time steps 

(Meyer-König et al., 2002) Pedestrians' movements analysis 

(Roh and Ha, 2013) Evacuation time minimization 

Social Force-based Model 

(Ni et al., 2017b) Evacuation time minimization 

(Fang et al., 2022a) Pedestrians' movements analysis 

(Fang et al., 2022b) Evacuation time calculation in the presence of inclination angle 

(Balakhontceva et al., 2016) Estimating evacuation time under environmental conditions 

(Chen et al., 2016) Analyzing the effect of ship swaying on pedestrian evacuation 

efficiency 

(Ni et al., 2018)  Life jacket’s location determination 

(Ni et al., 2017a) Agent's target and shortest path determination  

(Balakhontceva et al., 2015) Estimating evacuation time under ship motions 

(Montecchiari et al., 2021) Real-time human participation implementation using virtual reality 

Acceleration-based Model 

(Casareale et al., 2017) Risk perception analysis, passenger behavior analysis, and finding 

the similarities between building and cruises evacuation processes 

(D. Zhang et al., 2017) Human behavior under different ship rolling angles, the data on 

adjustment actions, walking pauses, and the influence of rolling angle 

on walking speed. 

(Montecchiari et al., 2018) Testing real-time people participation through immersive virtual 

reality during ship evacuation 

(Zhang et al., 2016) Analyzing the impact of adjustment action, pause phenomenon, and 

linear velocity on pedestrian walking speed 

Other Techniques 

(Q. Xie et al., 2020d) Passenger Response Time Calculation under ship Fires PC expansion and GA 
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(Y. Li et al., 2021) Route choice Agent-based modeling 

technique 

(Azizpour et al., 2022) Assessing the impact of survival suit on passenger walking speeds Regression analysis 

(Yue et al., 2022) Evaluation of passenger evacuation capacity  AnyLogic software 

(Liu et al., 2022a) Evacuation time minimization PyroSim software 

   

(Wang et al., 2022) Assessing the effects of the passenger population composition on 

evacuation time 

FDS + EVAC 

(Liu et al., 2022b) Realizing spatial modeling of the spatial-temporal characteristics of 

evacuation 

Geographic information 

system 

(Hu and Cai, 2022) Analysis of the passenger characteristics AnyLogic software 

(Lee et al., 2022) Passenger walking speed calculation and analysis UNITY engine 

(Vukelic et al., 2021) Assessing the possibility of adopting new technologies to the human 

evacuation process 

Literature analysis method 

(Ng et al., 2021) Evacuation time minimization Dynamic programming 

(Wang et al., 2021b) Analyzing the influence of ship motion on passenger walking speed Collecting data with a camera 

(Finiti, 2021) Data production and understanding of human performance Behavioral sequence 

Analysis, talk-through, and 

comparison methods 

(Vanem and Skjong, 2006) Evacuation time minimization and number of fatalities calculation Risk-based technique 

(Wang et al., 2014) Finding the number of the assembled passengers  An agent-based microscopic 

evacuation model—city flow-

M 

(Sarshar et al., 2013a) Evacuation time minimization under ship fire Simulation tool 

(Sun et al., 2018b) Analyzing the influence of heel/trim angle on passenger walking 

speed during ship evacuation (athwartship and fore-aft walking) 

Electrical monitoring system 

with four cameras (AVI 

format, 25 fps) 

(Chu et al., 2013) finding Evacuation route, travel distance, the number of people 

moving from node i to node j 

Mathematical tool 

(Wu et al., 2018) ASET and RSET calculation Simulation tool 

(Qiao et al., 2014) Finding optimum evacuation route Simulation tool 

(Liou and Chu, 2016) Evacuation time minimization ((1) walking speed, (2) the number of 

cadets turning to the left or right at T junctions, and (3) the number of 

cadets moving forward or aft in the corridors.) 

Developed program  

(Liu et al., 2021) Evacuation time minimization and Developing Evacuation route 

planning 

Improved ant colony system 

and flow method-based 

cardinal number 

(Brumley and Koss, 2000) Observations on passenger walking speed in ship corridors and on 

stairs 

Simulation tool 

(Ditlev Jorgensen and May, 

2002) 

Analyzing the attitudes and behavior of passengers about wayfinding, 

reactions to alarms, effects of “group binding,” and non-compliance 

with instructions on assembly time 

Simulation tool 

(Kang et al., 2010) Real-time location recognition and escape route determination Simulation tool 

(Łozowicka, 2010) Opposite flow analysis GA 

(Miyazaki et al., 2004) Estimating Evacuation time and optimal evacuation routes Video camera for collecting 

data 

(Nevalainen et al., 2015) Human-environment interaction investigation (Source of stimuli, 

human behavior, Spatial environment, social environment) 

NA 

(Vanem and Ellis, 2010) Evaluation of a Monitoring System according to RFID technology in 

terms of the cost-effectiveness for passenger ships 

Risk-based 

(Rutgersson and 

Tsychkova, 1999) 

Simulate the mustering operation NA 

(Liu and Luo, 2012) Evacuation routes determination Mathematical tool 

(Łozowicka, 2005) Finding evacuation time as a function of the initial distribution of 

passengers and Evacuation routes 

GA 

(Spanos and Papanikolaou, 

2014) 

Estimation of the probability to capsize MC method 

(Fukuchi and Imamura, 

2005) 

Analyzing smoke diffusion state, evacuation movements, and risk 

index analysis under ship fires 

Analytical model 

(Couasnon et al., 2019) Developing an evacuation simulation model Mathematical tool 

(Galea et al., 2011) Determining response time, starting locations, arrival time at the 

designated assembly stations, and the paths taken 

31 Infra-Red beacons 

(Sarshar et al., 2014) Congestion prediction Simulation tool 
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(Kwee-Meier et al., 2017) Analyzing the influence of physical demands on escape routes, i.e., 

uphill grades, and mental and emotional stress influence decision-

making in terms of decision times? 

Analysis of variance  

(Katuhara et al., 2003) Evacuation route selection and evacuation time minimization Twenty video cameras 

(Jasionowski et al., 2011)  Predicting ship survival time Envelope process technique 

(Q. Xie et al., 2020a) Analysis of evacuation time, travel time, and safety factor PC expansion 

(Park et al., 2015) Evacuation time minimization Simulation tool 

(Couasnon et al., 2019) Developing an evacuation simulation model Mathematical tool 

(Grandison et al., 2017) Determining the confidence interval of evacuation time Binomial-distribution 

technique 

(Lozowicka, 2021) Analyzing the arrangement of evacuation routes, and evacuation time 

minimization 

GA 

(Wang et al., 2021a) Analyzing the influence of ship rolling on passenger walking speed  Video camera for collecting 

data 

(Bles et al., 2001) Analyzing the influence of ship motion on passenger walking speed TNO ship motion simulator 

(Lee et al., 2004) Passenger walking speed analysis Camera and ship motion 

measuring for collecting data 

(Na et al., 2019) Passenger walking speed analysis  CCTV cameras for collecting 

data 

(Walter et al., 2017) Passenger walking speed analysis in athwart and fore-aft directions Video camera for collecting 

data  

(Wang et al., 2021c) Illustrating the status of ship passengers’ safety awareness, the 

perception of Evacuation wayfinding tools, and the demographic 

differences regarding safety awareness and perception.  

Regression model 

(Wang et al., 2020c) Passenger behavior according to demographic differences during the 

human evacuation 

Regression model 

(Q. Xie et al., 2020c) Travel time determination under ship fires PC expansion 

(Murayama et al., 2000) Determining assembly time and passenger walking speed 27 Video cameras for 

collecting data 

(J. Wang et al., 2013) Uncertainty analysis for ASET under ship fire MC method 

(Sarshar et al., 2013b) Panic quantification and modeling Simulation tool 

(Yuan et al., 2014) Evacuation time minimization Mathematical tool 

(Deere et al., 2012) Data collection related to response times, Starting locations, end 

locations, and arrival times in the assembly stations 

Infra-red and video cameras 

(Salem, 2016) ASET calculation MC method 

(Yip et al., 2015) Determinants of the crew and passenger injuries in passenger vessel 

accidents 

Regression model 

(Ruponen et al., 2015) Assessment of the survivability of the people onboard, evaluation of 

the survivability of the people onboard, breach detection 

124 level sensors for 

collecting data 

(Wang and Wu, 2020a) Total evacuation time and congestion points determination NA 

(Chen and Lo, 2019) Determining pedestrian movement dynamics subject to ship motion NA 

(Kim et al., 2020) Analyzing the occupants’ moving speeds according to the inclination 

of the ship, and evacuation time minimization 

Mathematical tool 

(Ma et al., 2020) Determining path length, user escape time, navigation success ratio, 

and minimum distance to hazardous regions 

 26 sensors for collecting 

data, and ANT (a deadline-

aware adaptive emergency 

navigation strategy) 

Appendix I. Evacuation tools 
Table I.1 Evacuation simulation tools 

Name Year Field 
Space 

representation 
Purpose Reference 

Simulex 1995 

• Maritime, 

• Civil 

Engineering 

• Discrete 

• Evacuation time 

estimation 

• Calculation of 

individuals’ walking 

speed 

(Thompson and 

Marchant, 1995) 

EVAC 1999 • Maritime • Continuous 
• Simulation of 

mustering operation 

(Rutgersson and 

Tsychkova, 

1999) 

AnyLogic 2000 

• A broad 

range, 

including 

maritime 

• Hybrid 

• Combined discrete-

continuous 

simulation,  

(AnyLogic, 

2000) 
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• Agent-based 

modeling, 

• System dynamic 

simulation 

SMARTFIRE  

• Maritime, 

• Aerospace, 

and 

• Civil 

Engineering 

• Continuous 
• Simulation of the fire 

environment 

(Galea et al., 

2004) 

MaritimeEXODUS 2003 • Maritime • Discrete 

• Simulation of 

evacuation behaviors 

and 

• Pedestrian dynamics 

(Gwynne et al., 

2003) 

IMEX 2004 

• Maritime, 

• Aerospace, 

and 

• Civil 

Engineering 

• Discrete 

• Pedestrian dynamics 

and 

• Human behavior 

simulation 

(Park et al., 

2004) 

ODIGO 2000-2005 

• Maritime, 

• Aerospace 

and 

• Civil 

Engineering 

• Continuous 
• Crowd motion 

simulation 
(Pradillon, 2004) 

FDS+Evac 2007 
• Civil 

Engineering 
• Continuous 

• Simultaneous 

simulation of fire and 

Evacuation process 

(Korhonen et al., 

2010) 

AENEAS/PedGo 2007 • Maritime • Discrete 

• Distribution of 

passengers and 

• Route 

definition/evacuation 

simulation 

(Meyer-König et 

al., 2007) 

UNITY engine 2008 

• A broad 

range, 

including 

maritime 

• Hybrid • Simulation (Unity, 2008) 

VELOS 2010 • Maritime • Continuous 

• Assessment of 

passenger and crew 

activities 

(Ginnis et al., 

2010) 

Pathfinder 2011 
• Civil 

Engineering 
• Continuous 

• Simulation of human 

behavior and 

interactions 

(Thunderhead 

Engineering, 

2021) 

EVI 2011 • Maritime • Hybrid 
• Pedestrian movement 

simulation 

(Guarin et al., 

2014) 

SIMPEV 2012 • Maritime • Discrete 

• Evacuation analysis 

based on human 

behavior 

(Roh and Ha, 

2013) 

EvacSim 2013 
• Civil 

Engineering 
• Hybrid 

• Simulation of 

pedestrian egress 

(Murphy et al., 

2013) 

Appendix J. Problem type 
Table J.1. List of publications categorized by problem type. 

Paper Category 

(Azzi et al., 2011; Balakhontceva et al., 2016, 2015; Bellas et al., 2020; Boulougouris and 

Papanikolaou, 2002; Chen et al., 2011; Chu et al., 2013; Deere et al., 2006; Fang et al., 

2022b; Galea et al., 2003, 2013; Grandison et al., 2017; Gwynne et al., 2003; Hu et al., 2019; 

Hu and Cai, 2020, 2017; Jasionowski et al., 2011; Kang et al., 2010; Katuhara et al., 2003; 

Kim et al., 2020; Kwee-Meier et al., 2017; Li et al., 2021; Liou and Chu, 2016; Liu and Luo, 

2012; Liu et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Lozowicka, 2021; Łozowicka, 

2005; Luo, 2019; Ma et al., 2020; Miyazaki et al., 2004; Murayama et al., 2000; Ng et al., 

2021; Ni et al., 2017a, 2017b; Park et al., 2015; Qiao et al., 2014; Roh and Ha, 2013; 

Rutgersson and Tsychkova, 1999; Salem, 2016; Sarshar et al., 2014, 2013a; Sarvari et al., 

2019; Spanos and Papanikolaou, 2014; Sun et al., 2020; Vanem and Skjong, 2006; Vilen, 

2020; Wang and Wu, 2020; Wang et al., 2013, 2022b; P. Wang et al., 2020; Wu et al., 2018; 

Xie et al., 2020a, 2020b, 2020c; Yuan et al., 2014; Yue et al., 2022) 

Evacuation time 

optimization  
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(Bles et al., 2001; Brown et al., 2008; Brumley and Koss, 2000; Casareale et al., 2017; Chen 

et al., 2016; Chen and Lo, 2019; Cho et al., 2016; Ditlev Jorgensen and May, 2002; Fang et 

al., 2022a; Fukuchi and Imamura, 2005; Ha et al., 2012; Hu and Cai, 2022; Kim et al., 2019; 

K V Kostas et al., 2014; Lee et al., 2004; Łozowicka, 2010; Meyer-König et al., 2007, 2002; 

Na et al., 2019; Nevalainen et al., 2015; Ni et al., 2018; Park et al., 2004; Sarshar et al., 

2013b; Sun et al., 2019, 2018a, 2018b; Vassalos et al., 2002; Vassalos et al., 2002; Walter 

et al., 2017; Wang et al., 2021b, 2021a, 2021c; Wang et al., 2020b; Zhang et al., 2017, 2016) 

Passenger behavior 

understanding 

(Couasnon et al., 2019; Guarin et al., 2014; Kim et al., 2004; Klüpfel et al., 2001; 

Konstantinos V Kostas et al., 2014b, 2014a; Montecchiari et al., 2021, 2018; Piñeiro et al., 

2005; Ruponen et al., 2015; Vanem and Ellis, 2010; Yip et al., 2015) 

Evacuation models 

description 

(Brown, 2016; Deere et al., 2012; Finiti, 2021; Galea et al., 2014b, 2014a, 2011; Wang et 

al., 2014) 

Data collection and 

validation 

Appendix K. Case studies 
Table K.1. List of case studies. 

Paper Emergency evacuation environment 

(Fang et al., 2022a) • Training vessel “YUKUN” of Dalian Maritime University 

(Wang et al., 2022) • Ro-Ro passenger ship “Yong Xing Dao” 

(Liu et al., 2022b) • Training vessel “YUKUN” of Dalian Maritime University 

(Q. Xie et al., 2020d)  • 3-storey passenger ship 

(Finiti, 2021)  • Costa Concordia cruise ship 

(Wang et al., 2014)  • 3-storey passenger ship 

(Balakhontceva et al., 2015)  • MS Costa Allegra cruise ship 

(Casareale et al., 2017)  • Costa Concordia ccccruise ship (Deck 4) 

(Chu et al., 2013) • Ro-Ro passenger ferry (TAI WHA) 

(Liou and Chu, 2016) • Training ship (Yu-Ying No. 2) 

(Brown, 2016) • Ferry without/with cabins (RoPax ferry) and  

• Cruise ship 

(Liu et al., 2021) • 3-tier cruise ship 

(Vilen, 2020) • Ferry without/with cabins (RoPax ferry) and  

• Cruise ship 

(Sarvari et al., 2019) • Ro-Ro ferryboat (Osman Gazi) 

(Galea et al., 2013) • Ferry without/with Cabins (Ro-Pax ferry) and  

• Cruise ship 

(Ditlev Jorgensen and May, 2002) • MS Kronprins Frederik Ro-Ro ferry vessel 

(Miyazaki et al., 2004) • Ferryboat (Yuukari) 

(Ni et al., 2017b) • Restaurant area in a passenger ship 

(Sun et al., 2020) • Ferry without/with cabins (Ro-Pax ferry) and  

• Cruise ship 

(Wang et al., 2020b) • An exhibition hall in a large cruise ship 

(Galea et al., 2014a) • Large RO-Pax ferry 

(Gwynne et al., 2003) • Passenger/tour boat 

(Spanos and Papanikolaou, 2014) • Ro-Ro ferry and 

• Panamax cruise ship 

(Galea et al., 2011) • RO-Pax ferry super speed 

(Katuhara et al., 2003) • Training ship (Seiun-maru) 

(Q. Xie et al., 2020a) • Two hypothetical main vertical zones of passenger ships 

(Balakhontceva et al., 2016) • MS Costa Allegra cruise ship 

(Park et al., 2015) • Large RO-Pax ferry 

(Roh and Ha, 2013) • Car ferry 

(Na et al., 2019) • Ro-Pax cruise ship 

(Walter et al., 2017) • Research vessel (Thomas G. Thompson) 

(Wang et al., 2021c) • Ro-Ro passenger vessel 

(Wang et al., 2020c) • Ro-Ro passenger vessel 

(Q. Xie et al., 2020c) • 3-storey passenger ship 

(Murayama et al., 2000) • Passenger ferry 

(Vassalos et al., 2002) • Ro-Pax cruise ship 

(Galea et al., 2014b) • Ferry without/with cabins (Ro-Pax ferry) and  

• Cruise ship 

(Deere et al., 2012) • Ferry without/with cabins (Ro-Pax ferry) and  

• Cruise ship 
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(Salem, 2016)  • Ro-Ro passenger ship and  

• Cruise ship 

(Ruponen et al., 2015) • Large passenger ship 

(Wang and Wu, 2020a) • Ro-Ro passenger ship (MV Tai Hwa) 

(Ni et al., 2018) • Deck 5 of a passenger ship 

(Kim et al., 2020) • MV Sewol vehicle-passenger ferry 

(Ma et al., 2020) • Passenger ship (Yangtze Gold 7) 

Reference 
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Paper 3 
A data-driven, scenario-based human evacuation model for passenger ships addressing hybrid 

uncertainty 

Abstract 
In a disaster at sea, the safe and timely removal of passengers from the ship is paramount. Here, a human 

evacuation plan enables passengers to be swiftly displaced from a risk area to one less so. Despite 

existing research on evacuation planning, there is a need for a more comprehensive model that considers 

various uncertainties and factors. This paper proposes an optimization evacuation model that balances 

uncertain variables, including passenger walking speed and travel distance, and deterministic factors 

like deck layout, door capacity, initial density, and corridor traffic flow. The model also accounts for 

varying starting locations and two levels of awareness—alert and non-alert. The model utilizes a data-

driven technique, i.e., the k-means algorithm, to cluster historical data on speeds and generate scenarios. 

An adjustment scheme is applied to account for the ship's rolling motion, affecting passenger speeds 

during the evacuation planning period. Travel distance scenarios are produced to capture the impact of 

different route choices per passenger. A risk-neutral two-stage programming model is constructed to 

handle uncertainties. The model is tested on multiple problems for a passenger ship deck in day and 

night modes, revealing valuable managerial insights for the maritime safety sector. 

Keywords: Passenger ship, Walking Speed, Travel Distance, Evacuation Model, Data-driven 

Optimization, Scenario-based Approach. 

1. Introduction 
In maritime emergencies, the importance of executing a prompt and precise human evacuation cannot 

be overstated, as it is vital for minimizing casualties and averting significant loss of life (Montewka et 

al., 2014). Acknowledging this necessity, the Maritime Safety Committee (MSC) protects individuals 

at sea from potential hazards by emphasizing the development and implementation of proper and 

efficient evacuation strategies, ultimately benefiting all stakeholders, including passengers, crew 

members, ship owners, maritime authorities, and emergency response teams. Human evacuation is a 

common strategy to ensure safety during emergencies, relocating individuals from high-risk areas to 

safer locations. Planning evacuations for passenger ships poses a challenge, as it requires addressing 

four essential aspects: human, behavioral, environmental, and configurational factors (Lee et al., 2003). 

Research in this field often targets evacuation time (ET) minimization, route optimization, 

understanding human behavior, and determining walking speeds (Arshad et al., 2022).  

Upon initiating the evacuation process with an alarm notification, a passenger's alertness level can 

significantly impact preparation and ETs (Mossberg et al., 2022). Notably, individuals who are not fully 

aware (e.g., asleep, eating, or on the phone) may necessitate more time to evacuate than their alert 

counterparts.  

Subsequently, updated guidelines for evacuation analysis of passenger ships highlight the importance 

of passenger load and initial distribution across decks. Individuals' starting locations at the time of 

alarms are crucial for successful evacuation (IMO, 2016). Simultaneously, managing the initial 

passenger density across various locations can alleviate congestion at the onset of the evacuation 

process, ultimately influencing ET and facilitating a smoother, more controlled emergency response 

(Deng et al., 2022).  

Additionally, the new regulations emphasize passengers' walking speed, which impacts ship layout, 

corridor, and cabin capacity, and ET (Aghabayk et al., 2021). Furthermore, as passengers begin to move, 

they face a confusing array of routes and directions (Ni et al., 2017b). Some may need to adjust their 

paths upon encountering obstacles, such as displaced furniture and appliances, while others can jump 

over them or have clear routes. The ship's motion may also force particular passengers to reduce their 
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speed as it causes their bodies to sway. Consequently, these two factors (i.e., speed and travel distance) 

are sources of uncertainty, making it essential to consider them when developing a human evacuation 

plan (G. Zhang et al., 2017). This consideration enables decision-makers to anticipate and identify 

potential evacuation measures based on varying passenger speed and travel distance representations. 

One approach for handling such uncertainties is generating scenarios using selections from historical 

data (Kaut, 2021). Scenarios can enhance the model's flexibility and robustness by accounting for 

multiple potential ET outcomes from hybrid uncertainty, which combines uncertainties in walking 

speed and travel distance within a single optimization framework to enhance the model's adaptability 

to complex real-world evacuation scenarios (Liu, 2010). Analyzing historical data can reveal patterns, 

trends, and correlations, enabling the creation of informed and targeted scenarios and ultimately 

improving model quality and effectiveness while exploring potential outcomes based on past events. 

The k-means algorithm is a data-driven technique for clustering historical walking speed data and 

representing each cluster as a specific scenario according to the clusters' means (Hartigan and Wong, 

1979; K. Wang et al., 2023). It stands out for its computational efficiency and ability to handle large 

datasets. It can rapidly converge to distinct clusters and suit scenarios requiring quick insights from 

large-scale data. Besides, its inertia metric aids in pinpointing the optimal cluster count for a dataset 

(Jain, 2010). Data-driven scenario generation can improve the model's scalability and accuracy by 

analyzing vast amounts of data (Bounitsis et al., 2022). It is followed by adjusting the scenarios process 

to regulate the speed of the evacuation process. Specifically, the speed will be affected by the ship’s 

rolling motions, which increasingly diminish the speed as the evacuation duration extends. Scenario 

adjustment can ensure the evacuation remains updated by changing the evacuation situation 

dynamically and providing an updated solution for the evacuation plan (Cameron et al., 2011). 

Regarding travel distance, a number of scenarios are generated to understand the influence of different 

spaces between the initial position and destination. Scenarios represent possible outcomes for the 

distance traveled by each passenger between the starting point and the exit door (Bode and Codling, 

2013; Daamen et al., 2005).  

Managing traffic flow is crucial once individuals have traversed the corridor during an evacuation. 
International Maritime Organization (IMO [5]) determines passenger flow based on the type of 

evacuation route, such as a corridor. Traffic congestion arises when demand surpasses corridor capacity, 

leading to queue formation near bottlenecks (Na, 2019). By controlling evacuation traffic flow after 

individuals leave their initial area, it is possible to maintain steady movement along the evacuation 

route, minimize bottleneck occurrences, and reduce evacuation delays.  

Besides, exit doors have limited capacity, restricting the number of passengers who can pass through 

during a single period. As a result, the evacuation process occurs across multiple periods. Further, the 

value of speed changes over time and is subjected to traversed distance; the objective function, 

consequently, minimizes the ET of all passengers over the entire process. As the total ET optimization 

is the core objective of the evacuation process and is considered the average minimization of the entire 

passengers' ET (i.e., general expectation), a risk-neutral perspective can be beneficial for coping with 

uncertainty. Risk-neutral assumption handles the randomness of uncertain parameters on the entire 

scenario set instead of focusing on the worst-case scenario and becoming conservative (Bayram and 

Yaman, 2018; Liang et al., 2019). IMO [5] computed the total ET under day and night modes, 

considering passenger load and initial distribution. Accordingly, eight cases are generated to calculate 

ET based on passengers' initial positions and awareness levels. Afterward, evacuee scheduling is 

organized from their cabins to the right exit door, considering factors such as speed, proximity to the 

nearest exit stair, traffic flow, and passengers' current locations.  

Drawing from the aforementioned analysis and MSC guidelines, this study strives to quantify 

uncertainties and devise an optimization model for human evacuation. This initiative is essential for 
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addressing critical safety concerns that stakeholders face during passenger ship evacuation operations. 

In summary, this research contributes to the literature by: 

− Developing a risk-neutral, two-stage, scenario-based mixed-integer programming (MIP) model 

for planning human evacuation under uncertainty. 

− Applying a data-driven approach for generating scenarios from historical data on passenger 

speeds and travel distance scenarios, along with an adjustment scheme for speed based on the 

ship's rolling motion. 

− Incorporating factors such as passenger starting locations, situational awareness, corridor traffic 

flow, and initial density at each location into the proposed model. 

The remainder of this paper is organized as follows: Section 2 provides an overview of relevant studies 

on human evacuation plans for passenger ships. Section 3 describes the problem, and Section 4 

formulates the optimization model. Section 5 details the solution process for the developed MIP model. 

Computational results are presented in Section 6, while Section 7 discusses the relevant managerial 

insights, notes limitations, and suggests potential directions for future research. Finally, Section 8 

highlights the contributions and the primary findings.  

2. Summary of relevant literature 
A human evacuation plan is a safety measure that regards emergency issues while considering the time 

aspect. Over the past few years, researchers have investigated human evacuation planning extensively 

across various contexts, including on land and at sea. Arshad et al. [3] summarize the research on human 

evacuation models for passenger ships. They identified one of the most pressing problems in this field 

is the need to understand human evacuation plans under uncertainty. It enhances decision-making 

efficiency in an emergency, the accuracy of ET calculation, and resource allocation (e.g., crew 

allocation) by considering different possible outcomes (Doyle et al., 2014). Furthermore, although 

initial distribution, density, and traffic flow of passengers have been accounted for in calculating ET 

within the revised guidelines on evacuation analysis for passenger ships, these parameters need to 

receive more attention in modeling. In doing so, this literature review elaborates on human evacuation 

modeling in the presence of uncertainty sources and evacuation parameters. 

Uncertainty can be described as the inability to understand certain circumstances fully. Uncertainty 

modeling methods attempt to model the input's variability and predict the outcome to compensate for 

this weakness (Canavero, 2019). Several techniques have driven researchers to handle uncertainty in 

evacuation planning problems, including stochastic programming (SP), scenario-based optimization 

(SO), Monte Carlo (MC), fuzzy programming (FP), and robust optimization (RO). A large amount of 

archived data has already been collected, allowing researchers to implement SP and SO in this field of 

study. SO is a technique that involves generating a set of scenarios and then optimizing decision-making 

based on the probabilities assigned to each scenario. This method does not presume that the uncertainty 

in the problem can be modeled using a probability distribution (Rocchetta and Crespo, 2021). In 

contrast, SP is best applied to situations where uncertainty can be managed by fitting a probability 

distribution to the input data (Schkufza et al., 2016).  

In this study, SO is used to explicitly analyze a variety of alternative outcomes and their related 

probabilities, as the probability distributions for passenger walking pace and travel distance are 

unavailable. Giuliani et al. [25] and Lv et al. [24] have employed SO modeling to cope with multiple 

uncertainties during a land-based emergency evacuation. Their findings demonstrated that the model's 

effectiveness and decision-making during the evacuation process have been improved. In a land-based 

case study,  Pourrahmani et al. (Pourrahmani et al., 2015) applied fuzzy credibility theory to handle 

uncertainty in demand (number of evacuees), which is a type of robust optimization approach where 

demand is modeled as a fuzzy number belonging to a convex set. The genetic algorithm then optimizes 

the evacuation routing based on this fuzzy demand information. 
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Wang et al. [26] presented a framework of uncertainty analysis for available safety egress time (SFAT) 

under ship fires. They developed an evacuation model handling uncertainties from fire parameters, 

including heat release rate, fire growth coefficient and ventilation, a thermal detector, auto-sprinkler, 

and manual extinguisher. Lovreglio et al. [27] investigated the influence of human behavior uncertainty 

on experimental and simulation data. In this regard, they introduced an evacuation model validation 

procedure to study the impact of behavioral uncertainty in ship fires. They applied functional analysis 

operators and statistical testing for converging the evacuation simulation and experimental data. Salem 

[28] offered a model to characterize the impact of stochastic input factors on the distribution of 

uncertainty when estimating the available safe escape time (ASET). They resulted in the fact that ASET 

is always affected by uncertainties propagated from random inputs. The time to reach an untenable 

condition owing to fire toxicity is the most severely influenced output in almost all studied cases. Xie 

et al. [29] proposed an uncertainty analysis technique to quantify the uncertainty of passenger travel 

time affected by the initial passenger density. They constructed a polynomial chaos expansion and a 

Gaussian quadrature rule to deal with the uncertainty. Further, Xie et al. (Q. Xie et al., 2020c) improved 

their model efficiency by applying a nested sampling method. They decreased the number of evacuation 

simulations for calculating passenger travel time for a ship under fire.  

Passenger walking speed directly impacts ET in an emergency, which varies considerably by age, 

gender, health, and other factors. In this respect, researchers investigated the impact of different drivers, 

such as ship motions, on speed quality in great detail. Sun et al. [31] designed a ship corridor simulator 

to examine how heeling and trimming influence one's speed while walking freely and fast. They 

observed that increasing heeling and/or trim angles could significantly reduce average individual 

walking speed. Wang et al. [32] deduced the effects of ships docking and sailing by measuring how fast 

people moved in experiments. They found that, during the sailing, an individual's speed reduction ratio 

was between 86.0 and 96.2 percent, and the value decreased as the deck height grew. Wang et al. [33] 

examined human behavior in emergencies based on responding to evacuation alarms, observing others' 

actions, following evacuation instructions, obeying the crew, queuing patiently, returning to the cabin 

when their families are left behind, and being cooperative rather than competitive. They indicated that 

older passengers who have limited mobility, have more experience aboard ships, and are part of a larger 

group will be more likely to confirm the authenticity of evacuation events proactively. In land based 

setting, Alam et al. (Alam et al., 2022) investigated the resources and traffic operation requirements for 

evacuating persons with mobility needs. The study crucially pilots emergency planners and engineers 

to improve mass evacuation strategies for individuals with disabilities, especially those needing 

mobility assistance. 

Further, another important factor is the distance traveled to reach a safe location during evacuation. It 

can affect the route choice and total ET. In this regard, Zhang et al. [34] proposed a probabilistic 

occupant evacuation model for fire emergencies. They modeled the distance occupants traveled from 

the initial point to a safe point in the land-based setting. Li et al. [35] proposed an agent-based simulation 

model with a route choice process to predict crowd behaviors. The paper concluded that passenger 

characteristics of layout familiarity and social relationships in the evacuation process on board caused 

route choice behaviors. Qiao et al. [36] proposed a method to select an optimum evacuation route. They 

offered each evacuee an escape route considering the length of the passage, actual congestion, and 

individual complex behavior attributes. 

Understanding the initial density and traffic flow of passengers play a critical role in designing human 

evacuation plans. A safe and swift evacuation can be the byproduct of considering these two elements 

in modeling (Moriarty et al., 2007). Piñeiro et al. [38] researched the movement of people in complex 

and size-limited scenarios in terms of traffic flow. They presented a unique requirement to use findings 

on ship emergency evacuation simulations. 
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Lastly, assuring that passengers in the affected area are made aware of the emergency is critical. In 

doing so, it is crucial to consider the awareness component in modeling the human evacuation plan; 

otherwise, passengers will be treated at the same level of consciousness in modeling, which is 

unrealistic. Wang et al. [39] demonstrated the demographic variations in safety awareness and 

perception, the understanding of emergency wayfinding tools, and the demographic differences 

regarding safety awareness and perception. Table 1 showcases the distinctiveness of this study 

compared to existing literature, considering factors such as initial density (ID), traffic flow (TF), 

different starting locations (DSL), night and day mode (NDM), uncertainty, solution method (SM), and 

objective function (OF). 

Table 1. A brief review of the literature. 

Reference Model features Uncertain 

parameters 

SM OF 

ID TF DSL NDM 

Piñeiro et al. 

[38] 

● ●    Simulation Studying pedestrian 

movement 

Wang et al. [26]     Fire 

parameters 

Monte Carlo sampling, 

sensitivity analysis 

Studying the SFAT under 

ship fires 

Lovreglio et al. 

[27] 

    Human 

behavior 

Functional analysis 

operators, statistical testing 

Studying the evacuation 

simulation and 

experimental data 

Qiao et al. [36]      Mathematical and 

simulation-based heuristic  

Studying route choice 

Salem [28]     Fire 

parameters 

Monte Carlo Simulation, 

CFAST 

Studying the ASET under 

ship fires 

Sun et al. [31]      Experimental-based 

approach 

Studying evacuation 

behaviors of passengers 

under listing conditions 

Xie et al. [29] ●    Passenger 

travel time 

Polynomial chaos, Gaussian 

quadrature rule 

Passenger travel time 

optimization under ship 

fires 

Xie et al. [30] ●    Passenger 

travel time 

Polynomial chaos, Nested 

sampling 

Passenger travel time 

optimization under ship 

fires 

Wang et al. [33]     Human 

behavior 

Multinomial logistic 

regression 

Examining human 

evacuation behavior 

Wang et al. [32]      Experimental-based 

approach 

Studying individual 

walking speed under ship 

motion 

Li et al. [35]      Simulation runs Studying route choice 

behaviors 

Azizpour et al. 

[40] 

     Regression modeling and 

simulation runs 

Studying individual 

walking speed under 

thermal protective suit 

and heeling angle 

The research ● ● ● ● Passenger 

walking 

speed, travel 

distance 

Data-driven, risk-neutral, 

scenario-based 

Minimizing the total ET 

Designing a human evacuation plan considering the combined influence of passenger walking speed 

and travel distance uncertainties has been largely unexplored in the existing literature. This study is the 

first to address the effects of factors such as initial density, passenger traffic flow, diverse starting 

locations, and situational awareness in both day and night conditions on the total ET. Moreover, our 

research is unique in utilizing machine learning techniques to generate data-driven scenarios that 

partition passenger walking speed observations into distinct clusters for ship-based human evacuation 

planning.  

3. Problem description  
This section is split into two parts: (1) the problem statement and (2) the framework of the solution 

methodology. 
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3.1.Problem statement 

This section outlines the optimization problem of emergency human evacuation planning tackled in this 

research. In the event of a potential or actual threat to passengers, they should prepare to leave the ship. 

The ship's crew and emergency personnel give an obligatory evacuation order when the projected effect 

is destructive and costly. A single deck of a passenger ship is explored in this research. The deck plan 

is depicted as a network graph comprising nodes that represent various functional areas such as cabins, 

restaurants, jacuzzi, bar, exit doors, and distinct segments along the corridor. The edges in this network 

graph denote the connections between these functional areas. This representation aids in visualizing the 

deck layout and facilitates a more informed decision-making process. A group of passengers is situated 

on a single deck of a passenger ship, divided into two corridors. These passengers are allocated across 

l cabins, represented by the set J ={j
1
,j

2
,…,jl}.  The passenger group is diverse in several aspects: 

− Age: Passengers vary in age. 

− Gender: The group includes both male and female passengers. 

− Physical condition: Variations in mobility levels are observed among passengers. 

− Awareness level: Some passengers may be less alert due to various factors; for example, they 

could be asleep, eating, or engaged in a phone conversation. 

− Walking speed: Individual walking speeds differ among passengers. 

The set of passengers is symbolized as P = {p
1
,p

2
,…,p

n
}, where n indicates the total number of 

passengers. Non-alert passengers are penalized for a longer distance in their travel. Cabins' capacity is 

limited. They are situated on one side of each corridor. Seven exit doors, E ={e1,e2,…,e7}, as a means 

of evacuation are located at various locations throughout the corridors. The deck is also facilitated by a 

restaurant, bar, and jacuzzi. Furthermore, seven different starting locales are considered for starting 

points per passenger. Specifically, I ={i1,i2,…,i7} denotes different starting locales (i1 means 

passengers berth in their own cabin, and other locales are marked in Fig. 1) for each passenger 

depending on where he/she is located at the time of emergency. Denote (p
n
i ,em), ∀ n ∈ N and m ∈ 

{1, 2,…,7} as an edge representing evacuation route for passenger p
n
 located at area i traveling to exit 

door em. Fig. 1 represents the structure of the examined network in this research. It displays how 

different passengers, including male and female, alerted and sleeping, are distributed across the deck. 
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Fig. 1. Schematic structure of considered human evacuation model.  

The model is formulated as an optimization model subjected to uncertain parameters, incorporating 

passenger walking speed and travel distance between passengers and exit doors and deterministic 

factors, comprising the deck's layout, doors' capacity, initial density, and traffic flow of passengers. Let 

T= {t1,t2,…,to} be a set of time periods for the considered evacuation planning horizon, and o ∈ O is an 

optional value indicating the number of periods. Each period is ended when there is no capacity 

available for exit stairs. Denote cap
et

, ∀ e ∈ E and t ∈ T as the capacity of the exit stair e ∈ E during a 

period t ∈ T. Each passenger is advised to travel towards a certain exit stair which the capacity allows. 

In this regard, the evacuation route capacity is set according to the exit stair capacity in each period. 

Specifically, the nominal capacity of a route may be higher than the exit stair. Lastly, the counterflow 

correction factor is applied to the total ET in case of disruption and corridor closure by passengers and 

crew activities.  

3.2.Solution methodology architecture 

Fig. 2 delivers a schematic representation of the proposed solution methodology. The framework 

consists of seven stages, detailed in subsequent sections, which encompass data clustering, scenario 

generation, scenario adjustment, mathematical modeling and optimization of the human evacuation 

model using the generated scenarios. The scenarios capture evacuation uncertainties, including 

passengers' walking speed and travel distance. They're adjusted and used in the optimization model to 

generate various outcomes. The mathematical model is formulated and optimized using the CPLEX 

solver within the Generic Algebraic Modeling System (GAMS) software environment. The model is 

backed by a series of experiments under different conditions to validate its performance. All the 

experiments are conducted on a computer equipped with an Intel(R) Core i5 processor running at a 

speed of 1.70 GHz to 2.21 GHz and a memory capacity of 16 GB of RAM. 
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Fig. 2. Solution methodology architecture. 

Operational decisions are preoccupied with formulating individualized evacuation plans to guarantee 

safe egress for each passenger. Tactical decisions pivot on allocating resources to optimize the 

throughput and efficiency of the evacuation process. On the other hand, strategic considerations involve 

identifying the optimal number of exit doors, thereby providing a structural framework that improves 

the usefulness of operational and tactical implementations. 

4. Problem formulation 
This section presents a mathematical formalism for the problem as an optimization model. After a verbal 

formulation is given, the model's notations are provided. Lastly, the mathematical optimization model 

is formulated. 

4.1.Notations  

Notations used in the mathematical model are described in Table 2.  

Table 2. Mathematical notations. 

Sets and indices 

P Set of passengers, indexed by p ∈ P 

E Set of exit stairs, indexed by e ∈ E 

I Set of starting locales, indexed by i ∈ I 

T Set of periods, indexed by t ∈ T 

S Set of walking speed scenarios, indexed by s ∈ S 

U Set of travel distance scenarios, indexed by u ∈ U 

J Set of cabins, indexed by j ∈ J 

Parameters  

vpt Nominal walking speed of passenger p ∈ P in period t ∈ T (meters/second) 

vpt
s  Walking speed of passenger p ∈ P in period t ∈ T in scenario s ∈ S 

(meters/second) 

vpt
s'  Walking speed of passenger p ∈ P in period t ∈ T in scenario s ∈ S adjusted by 

rolling angle of a ship (meters/second) 
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dpe
i  Nominal travel distance by passenger p ∈ P located in starting locale i ∈ I to exit 

door e ∈ E (meter) 

dpe
iu

 Travel distance by passenger p ∈ P located in starting locale i ∈ I to exit door e ∈ 

E in scenario u ∈ U (meter) 

cap
et

 Capacity of exit door e ∈ E in period t ∈ T (per passenger) 

rpe
t  Equal to 1 if passenger p ∈ P is in a radius of exit door e ∈ E in period t ∈ T; 0, 

otherwise 

θp Equal to 1 if passenger p ∈ P is fully alert; 0, otherwise 

𝜗p
𝑖 Equal to 1 if passenger p ∈ P is located in starting locale i ∈ I; 0, otherwise 

πs Probability occurrence of scenario s ∈ S 

πu Probability occurrence of scenario u ∈ U 

σi Availability area of locale i ∈ I (meter2) 

ω Corridor width (meter) 

τ Average shoulder width of passengers (meter) 

ι Non-alert distance factor 

γ Correction factor 

δ Counterflow correction factor 

Decision variables  

Free variables  

ψ
us

 The total ET in scenario u ∈ U and s ∈ S 

Ft Traffic flow of passengers in period t ∈ T (passengers) 

Di Initial density of passengers in locale i ∈ I (passengers) 

Ζ The total ET  

Binary variables  

Yet Equal to 1 if the potential exit door e ∈ E in period t ∈ T; 0, otherwise 

Xpet
su  Equal to 1 if passenger p ∈ P is traveling to the exit door e ∈ E in period t ∈ T in 

scenario u ∈ U and s ∈ S; 0, otherwise 

4.2.Uncertainty modeling 

By incorporating a scenario for each possible outcome of the stochastic event, uncertainty is integrated 

into the optimization model. The researched model comprises the passenger's walking speed and 

distance as stochastic parameters. Clustering algorithms are practical for scenario generation because 

they enable data reduction, pattern discovery, and the creation of robust, flexible, and customizable 

scenarios that incorporate uncertainty. This leads to more informed decision-making processes and an 

improved understanding of complex problems while considering uncertainty (Xu and WunschII, 2005). 

The k-means algorithm is beneficial for clustering historical data due to its scalability, efficient handling 

of large datasets, and quick convergence speed. It results in being computationally efficient and creates 

distinct, non-overlapping clusters, which helps identify clear patterns and trends (Jain, 2010). In this 

regard, the k-means clustering algorithm can generate scenarios for speed. As such, each scenario 

contains a realization of the speed for each passenger in each period. Regarding travel distance, some 

scenarios that are varied enough to represent the possibilities that might happen are produced at random. 

In the proposed model formulation, four assumptions and simplifications are used to frame the 

boundaries of the research. 

− Passengers' walking speed and travel distance are subjected to uncertainty. 

− All passengers must be evacuated. 

− The location of cabins, exit doors, and corridors' layout are fixed and predefined. 

− The capacity of exit doors is known and fixed. 

The described human evacuation optimization problem can be developed as a two-stage scenario-based 

MIP model under the risk-neutral perspective (Birge and Louveaux, 2011). In this regard, Oksuz et al. 

(Oksuz and Satoglu, 2020) introduced a two-stage stochastic model for the strategic placement of 

temporary medical centers during disasters, using stochastic optimization to accommodate uncertain 

parameters. The model incorporates initial decisions like the location of the centers and later decisions, 

such as patient load, allowing for adaptability to evolving circumstances in a terrain-oriented 

environment. 
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The decision variables are categorized into (1) the here-and-now and (2) wait-and-see. 

4.2.1. Here-and-now variable 

Here-and-now variables (Yet, Ft and Di ) are independent of scenarios and determined based on the 

available information. It means that such decisions are made before the realization of uncertain 

parameters (vpt
s'  and dpe

iu
). Yet, Ft and Di decisions are made in such a way that the model can resist the 

variation in passengers' walking speeds and travel distances, and accordingly, the expected ET is 

optimized. These first-stage decisions are not directly related to uncertain parameters, whereas they can 

stabilize decision-making in the first and second stages of the optimization process by enhancing the 

robustness of the model (Wets, 2002). 

4.2.2. Wait-and-see variable 

Wait-and-see decision variables (Xpet
su ) depend on the realization of uncertain parameters. After deciding 

on the here-and-now decision variables, a random event occurs, and the values of the uncertain 

parameters become clearer (Li and Grossmann, 2021). In other words, determining Xpet
su  is performed 

with flexibility and robustness. For instance, once the random parameters, including  vpt
s'  and dpe

iu
 are 

realized, based on the here-and-now decisions made, the scenario-based optimization model confidently 

decides on allocating different passengers to different exit doors in each period t ∈ T. In other words, 

Xpet
su  is optimally established.  

4.3.Mathematical modeling 

The described human evacuation problem can be formulated as follows. The objective function, a 

minimization optimization expression of the proposed model, offers the optimal value of Equation (1) 

considering the constraints.  

Minimize (Total Evacuation Time) = ∑ ∑ πs × πu × ψ
us

 

u ∈ Us ∈ S

 (1) 

The objective function (1) minimizes the present value of total ET in hybrid consideration of scenario 

u and s affected by the likelihoods of occurrence. It represents the time passengers need to evacuate 

from the starting point to an exit. 

ψ
us

= (δ × γ)× ∑ ∑ ∑ ∑  (d
pe

iu
 + (1 - θp) × ι / vpt

s' ) × Xpet
su  ×

i ∈ It ∈ Te ∈ Ep ∈ P

ϑp
i

    ∀ u ∈ U and s ∈ S  (2) 

Constraint (2) generates the total ET based on travel distances, non-alert travel distances, adjusted 

walking speed, and the current starting locale affected by the counterflow correction factor in 

combination consideration of s and u. To be more specific, the total travel distances are divided by the 

walking speed depending on where the passenger is located.  

Xpet
su  ≤ Yet    ∀ p ∈ P, e ∈ E, t ∈ T, u ∈ U and s ∈ S  (3) 

Constraint (3) states that an exit door must be available to be passed by a passenger in each period. 

∑ Xpet
su

p ∈ P

 ≤ cap
et
×Yet    ∀ e ∈ E, t ∈ T, u ∈ U and s ∈ S (4) 

Constraint (4) stipulates that evacuees traveling toward an exit door at each period must be less than 

the capacity of the corresponding facility. 

Ye(t-1) ≤ Yet   ∀ e ∈ E and t ∈ T (5) 

Constraint (5) ensures that once established, an exit door must be available by the end of the planning 

horizon. 



Appendix. Paper 3 

238 

 

∑ ∑ Xpet
su

t ∈ Te ∈ E

 = 1    ∀ p ∈ P, u ∈ U and s ∈ S 
(6) 

Constraint (6) imposes that each passenger is evacuated only one time over the horizon period. 

Yet ≤ ∑ Xpet
su

p ∈ P

   ∀ e ∈ E ,t ∈ T, u ∈ U and s ∈ S (7) 

Constraint (7) ascertains that at least one evacuee must travel to the established exit door at each 

period. 

∑ (Xpet
su

p ∈ P

× τ) / ω ≤ Ft    ∀ e ∈ E, t ∈ T, u ∈ U and s ∈ S (8) 

Constraint (8) assures that the number of evacuees past the corridor per unit of clear width of the 

corridor involved must be less than or equal the traffic flow of passengers in each period. 

∑ ∑ Xpet
su

t ∈ Te ∈ E

× ϑp
i  ≤ Di  × σi      ∀ p ∈ P, u ∈ U and s ∈ S 

(9) 

Constraint (9) enforces that the number of passengers available in each starting area must be less than 

or equal to the initial density of passengers in the corresponding area. 

The developed model contains (|P|×|E|×|T|×|S|×|U|+|E|×|T|) binary decision variables, 

(|I|+|T|+|S|×|U|+1) free variables, and 

(|P|×|E|×|T|×|U|×|S|+(3×|P|×|U|×|S|)+(3×|E|×|T|×|U|×|S|)+(|U|×|S|)+(|E|×|T|)) constraints. 

5. Solution method  
The problem was set up as a scenario-based MIP optimization model in the final part. Strategic 

decisions, which are challenging to change over time, are made in the proposed model. The number of 

exit doors, for instance, cannot be altered after installation. As such, making correct choices in the 

planning stages is crucial early on. Due to the high costs of inaccuracy in strategic decisions, offering 

an optimal solution can be beneficial. This matter leads the authors to seek an exact procedure for 

solving the model. The researched problem is small in scale; therefore, its computational complexity is 

well within the capabilities of the GAMS. The CPLEX solver in GAMS can optimize the mathematical 

model. Realization of the model's parameters via data is required prior to optimization. Afterward, the 

mathematical optimization model can represent the described model's behavior. 

Two uncertain parameters, passenger walking speed and travel distance, are presented in this 

subsection. As an assumption, scenarios with equal probabilities of occurrence are generated. 

5.1.Passenger's walking speed scenarios 

IMO features passengers' walking speeds on flat ground in real-world conditions based on age, 

gender, and mobility. As shown in Table 3, the measured speed follows a statistically uniform 

distribution with a minimum and maximum. 

Table 3. Walking speed on flat terrain (e.g., corridors). 

Passenger's characteristics Min. (
meters

second
) Max. (

meters

second
) 

Females younger than 30 years 0.93 1.50 

Females 30–50 years old 0.71 1.19 

Females older than 50 years 0.56 0.94 

Females older than 50, mobility impaired (1) 0.43 0.71 

Females older than 50, mobility impaired (2) 0.37 0.61 

Males younger than 30 years 1.11 1.85 

Males 30–50 years old 0.97 1.62 
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Males older than 50 years 0.84 1.40 

Males older than 50, mobility impaired (1) 0.64 1.06 

Males older than 50, mobility impaired (2) 0.55 0.91 

Mobility impaired (1) and (2):  limited mobility without and with the need 

for assistance, respectively. 

Based on the maximum and minimum values, random realizations for walking speed are generated 

according to Equation (10). NumPy (np), a Python library, is employed for producing ς = 1,000,000 

samples for each passenger's walking speed. 

vpt

{passenger's characteristics}
= (Max. value of speed - Min. value of speed) × np.random.random_sample(ς) 

                                      + Min. value of speed      ∀ p ∈ P 
(10) 

Next, the k-means algorithm, an unsupervised clustering machine-learning technique, is employed to 

cluster the generated data, utilizing the NumPy and scikit-learn libraries in Python. According to the 

inertia metric, which determines the optimal number of clusters for a given dataset, three clusters are 

offered. Fig. 3 illustrates that the position of the cluster centroids is chosen in such a way that minimizes 

the total variation sum of squares within the clusters and decreases as the number of clusters increases 

since the data points are split into smaller groups. The generated clusters can be as many as three 

scenarios (plus one scenario representing the nominal value of the passenger's speed). The center of 

each cluster (centroid) is considered the walking speed value under the corresponding scenario. Besides, 

as the generated scenarios follow the historical data in Table 3, it can prove their validity. Afterward, 

walking speed scenarios are represented as S = [S1, S2, S3, S4] so that Ss= centroid of cluster s = 1,2,3 

and S4 is the nominal representation of the walking speed of a passenger.  

 

Fig. 3. Evaluation of the clustering results quality. 

Ultimately, an adjustment scheme based on the ship's rolling motion is applied to adapt to current 

uncertainties, such as an intensified ship motion, and generate a new speed setting per passenger over 

the evacuation planning period (t ∈ T). By adjusting the scenarios, the model can reflect actual 

unforeseen circumstances and trends and provide more accurate projections (Schwartz, 2012). Wang et 

al. (Wang et al., 2021b) demonstrated how the ship's rolling angle (0 - 4º) could variously affect the 

walking speed in different walking directions (athwartship and fore-aft). As one also draws nearer to 

the horizon's end, Kim et al. (Kim et al., 2019) observed that one's walking speed drops more steeply. 

In this respect, Table 4 describes the influence rate (IR) of the rolling angle on the walking speed of 

passengers over the horizon. As such, the walking speed is updated in each period based on Equation 

(11). 

vpt
s' = vpt

s  × (IRt) (11) 
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Table 4. The walking speed after adjusting to a new situation. The o is an integer value representing the number of 

evacuation periods. 

 IR t1 t2 … to 

Rolling 0 - 4º 

(athwartship) 0.9295 v
pt1
s'  =v

pt1
s  × (0.92951) v

pt2
s'  =v

pt2
s  × (0.92952) … 

vpto
s'  =vpto

s × (0.9295o) 

Rolling 0 - 4º 

(fore-aft) 
0.9114 

v
pt1
s'  =v

pt1
s  × (0.91141) v

pt2
s'  =v

pt2
s  × (0.91142) 

… 
vpto

s'  =vpto
s  × (0.9114o) 

5.2.Passenger's travel distance scenarios 

Distance is measured according to how far a passenger is from different potential exit doors, which are 

assumed to be in 7 possible locations. Scenarios for the travel distances for passengers are produced 

using a deviation rate (dr𝑢𝑘
) applied to the nominal values of distance. The unit of dr𝑢𝑘

 is the meter and 

adds up to the nominal value of the travel distance. The travel distance scenarios are produced as 

Equation (12) so that Equation (13) generates the travel distance scenarios. Equation (14) produces five 

scenarios for each passenger's travel distance. 

dr𝑢𝑘
=U𝑘  for k=1, 2, 3,…, K (12) 

travel distance under scenario U𝑘 = dr𝑢𝑘
 + nominal value of travel distance (13) 

 dpe
iu

= dr𝑢𝑘
+ dpe

i
  and dru𝑘∈[1,2,3,4,5]

= [dru1
=7, dru2

=5, dru3
=3, dru4

=1, dru5
=0] 

 
(14) 

The provided dru𝑘∈[1,2,3,4,5]
 are illustrative examples of how uncertainties can influence travel distance. 

In scenarios U1 to U5, route choice uncertainties add 7, 5, 3, 1, 0 units to the nominal distance. 

5.3.Deterministic parameters 

All other model's parameters are listed in Table 5.  

Table 5. deterministic parameters. 

Parameter Value 

ω 3 meters 

τ 0.42 meter 

ρ 1.74 meters 

ι 1.5 meters 

γ 2 

δ 1 

cap
et

 5 passengers 

6. Computational results 
Based on the nature of the evacuation process and various factors, such as passengers' visibility and 

alertness, a series of experiments are set up before the results are presented.  

6.1.Experiment design 

Eight cases (C) are designed depending on the day and night modes, initial distribution of passengers 

(𝜗p
𝑖), and passengers' alertness situation (θp) (IMO, 2016; Nasso et al., 2019). The cases can offer a better 

understanding of evacuation times under varying initial conditions and passenger awareness situations. 

Table 6 illustrates how eight different cases are set. 

Table 6. Experiment's setting. Passengers' walking speed is affected by the rolling motion of the ship (0 to 4º - athwartship 

walking direction) 

Case  Day  Night 𝜗p
𝑖 θp 

C1  ● All passengers berth in i1 all passengers are non-alert (θp= 0) 

C2  ● All passengers berth in i1 
25% are alert (θp= 1) and 75% are non-alert 

(θp= 0) 

C3 ●  
10% berth in i1 and 90% in other 

locales 

95% are alert (θp= 1) and 5% are non-alert 

(θp= 0) 
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C4 ●  
1% berth in i1 and 99% in other 

locales 

99% are alert (θp= 1) and 1% are non-alert 

(θp= 0) 

C5  ● All passengers berth in i1 
50% are alert (θp= 1) and 50% are non-alert 

(θp= 0) 

C6 ●  
50% berth in i1 and 50% in other 

locales 

80% are alert (θp= 1) and 20% are non-alert 

(θp= 0) 

C7 ●  All passengers are in other locales all passengers are alert (θp= 1) 

C8 ●  All passengers are in other locales all passengers are non-alert (θp= 0) 

In each case under consideration, 396 passengers are distributed across 96 cabins.  

6.2.Findings 

Depending on the described cases, eight test problems (TP) are tailored to demonstrate the performance 

of the proposed solution approach. In Table 7, the size of each test problem, computational time (CT), 

number of iterations, and nodes to obtain optimal value are presented. The number of iterations refers 

to the number of steps performed by CPLEX to acquire the optimal solution.  

Table 7. Performance of the solution method. 

  Input   Output  

Test Problem   Case |P| |E| |I| |S| |U|  |T| CT (second) Iterations Nodes 

TP1  C1 396 7 7 4 5  15 ≈3,731 306,602 3,931 

TP2  C2 396 7 7 4 5  15 ≈4,001 218,475 3,145 

TP3  C3 396 7 7 4 5  15 ≈3,406 294,491 3,471 

TP4  C4 396 7 7 4 5  15 ≈4,298 200,069 3,052 

TP5  C5 396 7 7 4 5  15 ≈4,637 261,014 3,318 

TP6  C6 396 7 7 4 5  15 ≈4,007 245,604 3,209 

TP7  C7 396 7 7 4 5  15 ≈3,834 214,968 3,273 

TP8  C8 396 7 7 4 5  15 ≈4,082 313,307 3,528 

The given data in Table 7 shows that the computational complexity varies significantly across the 

different TPs. TP5 demanded the highest computational time of approximately 4,637 seconds. In 

contrast, TP3 was the least time-consuming, requiring about 3,406 seconds. It indicates that TP5 present 

a more intricate challenge for the solver, while TP3 appears relatively simpler. Moreover, in terms of 

iterations, TP8 leads with 313,307 iterations, whereas TP4 necessitates the least, with 200,069 iterations. 

This disparity in iterations can be viewed as a measure of the solver's effort in pinpointing the optimal 

solution. A higher iteration count implies a more complex search space. Regarding the number of nodes 

traversed by the solver, TP8 also dominates with the most nodes at 3,528. Meanwhile, TP4 has the least, 

with 3,052 nodes. Given that each node in the tree structure corresponds to a subproblem, the data 

suggests that TP8 has a greater number of subproblems to explore and solve. 

Fig. 4 reveals that TP1takes the longest time, followed closely by TP2, while TP6 has the shortest 

evacuation duration. The sequence of total ETs in different TP progresses as: TP1, TP2, TP8,  

TP5, TP7, TP4, TP3, and finally TP6. ETs are predominantly influenced by the time of day, passenger 

distribution, and alertness. Specifically, scenarios conducted during the night, such as TP1, TP2, and  

TP5, typically experience longer evacuation times, ranking them at 1, 2, and 4, respectively. The 

location of passengers further impacts evacuation times. When all passengers are situated in i1 during 

nighttime scenarios (as observed in TP1 and TP2), the evacuation duration is notably extended. As the 

proportion of passengers in i1  diminishes, a corresponding decrease in evacuation time is generally 

observed. 

Furthermore, the level of passenger alertness also holds significance. TPs with a higher prevalence of 

alert passengers, such as TP3, TP4, and TP7, tend to finalize evacuation procedures more promptly 

compared to their counterparts with lesser alert passengers, like TP1 and TP8. After solving TPs, the 

optimization model established all seven potential exit doors to evacuate all passengers as quickly and 

safely as possible in all tests. They are located as marked in Fig. 1. 
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Fig. 4. ET through different cases and scenarios. 

Under the circumstances of U1, passengers travel more distance to reach their nearest exit doors. In this 

regard, the optimization model reflects it (Fig.4 conveys it). This critical scenario needs special attention 

as it corresponds to the worst-case scenario.  

Seven more TPs are implemented for a specific passenger (p
197

 and θ197 = 1) to figure out how starting 

point can affect the total ET. Fig. 5 displays the way passenger's starting locale affects the total ET in 

different scenarios. 
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Fig. 5. The impact of passenger's starting placements on ET and passenger's plan under C4. 

As seen in Fig. 5, varying a passenger's starting location causes different plans for the corresponding 

passenger to be formulated and alter the tactical and operational decisions.  

The identification of the slowest passengers is another major observation. It helps prioritize assistance 

and allocate appropriate personnel and emergency services to those who require them immediately, 

such as aged, disabled, or limited-mobility individuals. Moreover, identifying the slowest passengers 

can minimize the likelihood of bottlenecks and implement a staged evacuation process where the 

slowest passengers are evacuated first, followed by the remainder of the occupants. Fig. 6 marks the 

passengers with the highest ET under the different scenarios in C2. The slowest passengers are clustered 

based on their proximity during evacuation in each scenario. 

 
Fig. 6. The statistical visualization of the slowest passengers. 

Considering S1U1 and cluster 1, the distribution of the corresponding passengers is illustrated in Fig. 

7. 
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Fig. 7. The graphical illustration of the slowest passengers in cluster 1 evacuated in periods 1 and 2. 

Passengers in group 1 belong to the female category, aged 30–50 or older than 50, with mobility 

impairments (1) and (2). While group 2 represents females over the age of 50 who are in good physical 

condition. Fig 7 displays that group 1 passengers took an average of 79.88 (period 1) and 73.76 (period 

2) seconds to evacuate, whereas group 2 passengers traveled an average of 77.04 (period 1) seconds. In 

addition, the average walking speeds for periods 1 and 2 are 0.75 and 0.78 meters per second for groups 

1 and 2, respectively. Thus, the emergency response team may tailor targeted training programs and 

evacuation drills considering these individuals' specific needs and limitations, guaranteeing they are 

better prepared for an emergency. The timeframe it will take to evacuate each group of people safely, 

for instance, may be roughly estimated. 

According to IMO regulations, the corridor passenger density must be less than 3.5, which is reported 

by the optimization model. For a specific TP, Di
i ∈ [i2, i3, i4]

= [0.04, 0.08, 0.04] and for other locales than 

corridors, including cabins, bar, jacuzzi, and restaurant, Di
i ∈ [i1, i5, i6, i7]

= [1.1, 0.16, 0.21, 0.27] at the 

beginning of an emergency situation onboard. Safety planners can pinpoint areas where congestion will 

probably ensue during an evacuation by gauging the initial density in corridors. This information can 

enable them to design alternative routes (for existing passenger ships) or install more exit points (for 

new passenger ships) to ease congestion. 

The optimization model also regulates the flow of passengers across the corridors to ensure the 

evacuation is safe, efficient, and comfortable for passengers in each period. This value for the developed 

model accounts for 0.56 in each period, depending on the clear width of the corridor and passengers' 

shoulders.  

7. Discussion 
Advanced evacuation analysis involves the use of computer-based standards to construct detailed 

models of the evacuation process. These models incorporate a multitude of evacuation factors such as 

passenger walking speed, physical obstructions, ship layout, and environmental conditions (e.g., ship 

motions). These models optimize evacuation plans by enabling the exploration of various scenarios and 

evacuation features. Besides this, they may provide more precise estimates of ET and the number of 

individuals at risk by evaluating the inherent uncertainty and variability in evacuation constituents like 

passenger speed and travel distance.  
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In this study, we delved into these aspects by proposing a mathematically optimized model for 

formulating human evacuation plans for passenger ships, prioritizing the safe and efficient removal of 

all occupants from a ship's deck during emergencies while taking uncertainty into account.  

7.1.Managerial insights 

The outcomes generated numerous valuable managerial insights. 

Managerial insight 1: how can the developed human evacuation model for passenger ships enhance 

safety at sea?  

The proposed human evacuation optimization model can enhance the evacuation process by 

1. enabling dynamic decision-making based on the current location of passengers, 

guaranteeing that guidance stays relevant and practical as the circumstances evolve. 

2. minimizing congestion by strategically distributing passengers across multiple exit 

routes and safety areas, the model prevents bottlenecks and overcrowding, which can 

slow down the evacuation process. 

3. providing customized instructions by delivering tailored guidance for different groups 

of passengers, such as those with mobility impairments, and 

4. coordinating crew member responsibilities by assigning evacuation roles and duties to 

crew members, for example, managing the use of life-saving equipment and enabling 

the crew to focus on particular tasks, allowing targeted training, and better emergency 

preparedness. 

The model can offer clear guidance to passengers, reducing disorganization during emergencies and 

ensuring a timely and efficient evacuation. The designed optimization model can determine the optimal 

number of exit doors and evacuation routes by taking into account the current location of passengers, 

the ship's layout, passenger walking speed, passenger travel distance, passenger awareness situation, 

rolling motion of the ship, and day and night mode. This can help minimize the time required for 

evacuation and the risk of injury or loss of life. 

Managerial insight 2: how can uncertainty management in this research improve the robustness of 

human evacuation on passenger ships?  

By hybrid consideration of uncertainty in passengers' walking speed and travel distance, the evacuation 

model can be more effective in the decision-making process during an emergency. It can provide a 

complete picture of the potential outcomes and risks of a particular decision. Crew and safety engineers 

can weigh the risks and benefits more effectively and make more informed decisions by understanding 

the uncertainty level of different walking speeds, travel distances, age groups, fitness levels, and 

mobility conditions. Furthermore, uncertainty modeling can assist safety managers and engineers 

onboard better handling risks by developing the relevant strategies for corresponding risks, for example, 

allocating critical resources, such as experienced crew, to the worst-case scenarios where the number 

of slowest passengers is high and needs special assistance. Moreover, by incorporating uncertainty 

management into the human evacuation model, it can account for the variability in passenger speed and 

movement and simulate different scenarios that may occur during an evacuation. This allows the crew 

to identify potential bottlenecks and evaluate the effectiveness of varying evacuation strategies, such as 

the placement of exits, the use of alternative routes, or the provision of clear guidance and 

communication. 

The generated data-driven scenarios for passenger walking speed have been used to assess the impact 

of passenger performance on different emergencies. They are representative of a cluster of similar 

walking speed data per passenger. By clustering similar data points together, the k-means algorithm can 

help identify patterns that might not be immediately obvious by examining the data as a whole. For 

example, it can assist in identifying groups with similar physical behavior of each passenger in a large 

dataset, which can then be used to tailor evacuation strategies or offerings to each cluster. The applied 
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adjustment scheme on speed allowed the optimization model to be more resilient to unexpected changes 

in speed. 

Managerial insight 3: how can the considered situational awareness of passengers better the human 

evacuation model? 

By considering situational awareness, evacuation models can better represent how humans perceive and 

react to the environment during an evacuation, improving the model's accuracy and reliability. It 

involves the perception and understanding of the current situation, potential hazards, and available 

options for action. For example, when a passenger is fully alert, the response time will go down, and 

the risk of injury will be minimized. In this regard, it can optimally offer the closest exit door 

considering other passengers. The considered feature in this research enables the model to apply smart 

sensors and accordingly define a more precise non-alert distance factor for calculating ET. As advanced 

evacuation analysis concentrates on the sentimental side of passengers, the awareness attribute can 

represent passengers' feelings more precisely and lead safety engineers to conceive appropriate post-

event analysis, such as allocating proper crew to the feared and confused passengers. 

Managerial insight 4: how can the imposed constraints on the initial density and traffic flow of 

passengers in this paper improve the human evacuation procedure?  

As initial walking speed depends on the density of passengers on a passenger ship (IMO, 2016), the 

determined Di in each starting point can help calculate the optimal capacity for each locale area i. for 

instance, the number of passengers who are being served in a restaurant or bar must be restricted. 

Besides, if it exceeds a threshold, consider proactive resilient measures such as allocating more crew to 

the spot. Constraint (8) and capacity of exit doors handle the traffic flow of passengers to reduce 

congestion in critical areas such as corridors and exits. These make it easier for passengers to move 

quickly and smoothly toward the exits, mitigating the risk of bottlenecks and delays. 

Managerial insight 5: how can the optimized human evacuation model contribute to the design of a 

passenger ship?  

The developed model can optimize the capacity and layout of different areas of the ship and doors and 

identify areas that may be overcrowded or difficult to navigate. This can inform decisions about the size 

and configuration of different areas of the ship to ensure they can accommodate an appropriate number 

of passengers during an emergency. 

7.2.Limitations and future works 

Despite its contributions, the study recognizes certain limitations. The binary representation of 

passengers' situational awareness could be refined using intelligent sensors to provide a continuous 

measure between zero and one, leading to more accurate modeling of passenger behavior. Moreover, 

while the current model focuses on a single deck of a passenger ship, its applicability could be extended 

to a multi-deck human evacuation framework for enhanced realism. Additionally, the exploration of 

ship roll's impact on walking directionality was limited, an aspect that is crucial for understanding speed 

changes due to ship rolling and presents a promising avenue for future research. 

8. Conclusion  
This research develops a data-driven, risk-neutral, scenario-based optimization framework for the 

human evacuation model under hybrid uncertainty. Passenger walking speeds and travel distances are 

described as scenarios representing the centroids of the clusters and random scenarios, respectively. 

The k-means algorithm generates data-driven scenarios (i.e., derived from historical data) for passenger 

walking speed, and a deviation rate is applied for generating travel distance scenarios. The effects of 

ship rolling motions on the evacuation process further compound the scenario. The model adjusts 

scenarios to update the evacuation plan based on changing situations. Primarily, the adjusted scenarios 

are fed into an MIP mathematical model, which is in charge of minimizing the total evacuation time of 
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the whole passenger over the planning horizon. The formulated model not only determines the optimal 

number of exit stairs but also allocates and schedules passengers across multiple periods. The 

passengers' starting locations and awareness are considered to shift the model to real-life settings. 

Besides, a traffic flow constraint is applied to control the risk of bottlenecks and delays across the 

corridors and exit doors. In addition, seven locales are considered starting points for passengers to 

represent their current location. In this regard, the density of passengers is regulated in these locations. 

Analysis of the multiple test problems reveals those factors like passenger walking speed, travel 

distance, alertness, and starting location influence the total evacuation time. Furthermore, extended 

distances and passengers' lack of alertness significantly augment the total evacuation time. It 

demonstrates the imperative for immediate attention and aid during an emergency. The model identifies 

passengers with protracted evacuation time. It signals those who might need specialized assistance. 

Moreover, a passenger's specific locale can markedly alter their evacuation plan (i.e., evacuation time 

and exit period and door) amidst varying uncertainties. 
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