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Abstract

Biometric Authentication (Biometrics) is a powerful tool that authenticates indi-
viduals using digital means, which includes biological or behavioral character-
istics. Biometrics harnesses biological features such as fingerprints, face, hand
geometry, speech, iris, and fingerphoto. Face and finger modalities have generated
the interest of biometric researchers thanks to their ease of use and high accuracy.
Face biometric modality, in particular, is easy to use as it can be acquired passively.
Furthermore, Face Recognition Systems (FRS) excel in real-world environments,
thanks to the advancements in deep learning. However, it’s important to know that
FRS are not immune to attacks. They are vulnerable to various types of attacks, in-
cluding presentation attacks and morphing attacks to a large extent and deepfakes
to a smaller extent.
This thesis focuses on Face Morphing Attacks (FMA), an active area of research
in Biometrics. An FMA can be generated by linearly blending facial images in
the color domain from two contributory data subjects. FMA has shown vulner-
abilities in FRS when evaluated automatically by software or manually by human
observers. Thus, FMA is a strong attack on FRS. Hence, detecting FMA is an
actual problem from a security standpoint. Most FMA systems currently use full
facial images from the two contributory data subjects. However, the part-based
face morphing/compositing problem has received little attention, i.e., using facial
parts from the two contributory data subjects to generate an FMA. Further, due
to Generative Adversarial Networks (GANs), generating full photo-real synthetic
faces or completing partial facial images is possible due to deep learning-based
image synthesis advances. Thus, part-based facial morphing using the advances of
deep learning could be a fruitful area of research.
Motivated by the challenges arising from attacks toward FRS, the thesis focus is
two-fold. The first is to increase the attack strength by generating higher quality
attacks and the second is to advance the mitigation measures, a.k.a countermeas-
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ures for the generated attacks. We focus on Morphing Attacks, which include
generation and detection, known as Morphing Attack Detection (MAD). Further,
evaluating vulnerabilities imposed by part-based facial morphing could be a novel
area of research and we have performed an extensive assessment of this nascent
area. Currently, the critical problem is performing robust MAD in real-world en-
vironments, which have the challenges of facial pose, expression, illumination,
image quality, print-scan variations and image capture distance. This brings us to
building robust classifiers for the facial morphing problem. Morphing has been
evaluated on face images, i.e., 2D image data. We generalize Morphing to 3D by
performing first-of-its-kind 3D Morph operations on point clouds and present the
results on both generation and detection. We generate a GAN-based facial com-
posite of face images from face images of two contributory data subjects, with an
extensive evaluation of different facial regions.
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Chapter 1

Introduction

Biometric authentication (biometrics) is the process of authenticating a person
through digital means. A broadly accepted definition of biometric authentication
is "the automatic recognition of individuals based on distinguishing between bio-
logical and behavioral traits. This field is a subset of the broader field of human
identification" [25]. Examples of biometric technologies include fingerprint re-
cognition, facial recognition, hand geometry, speaker recognition, and iris recog-
nition. The applications of these techniques include driver license authentication,
searching for known card cheats in casinos, home incarceration programs and con-
fidentiality of healthcare data [26].
The biometric system should avoid unauthorized access to the device and only al-
low a genuine user (bona fide), as it contains user-specific information. Recently,
deep-learning techniques such as Facenet by Schroff et al. [27] have been used for
high-quality face recognition to convert a face image into a 512-dimension feature
vector using a deep convolutional network and face similarity is then computed us-
ing Euclidean distance. The Facenet achieved an accuracy of 99.63% on a widely
used public dataset called Labeled Faces in the Wild (LFW). The Facenet was
trained using 200 million images with around eight million unique identities. The
large dataset limitations of Facenet were overcome in Deep Face Recognition by
Parkhi et al. [28], who used a clever combination of automation and humans in the
loop to create a dataset of 2.6 million images consisting of 2.62 thousand identities
and achieved state-of-the-art (SOTA) results using deep learning.
However, FRS is vulnerable to face morphing attacks generated by blending face
images from one or more contributory data subjects (best case is two). Thus, the
face morphing image shows vulnerability towards all contributory data subjects
(two is the usual case). It should be noted that face morphing images can de-
ceive both human observers (border control guards) and software (automatic FRS).
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Given the importance of face morphing, this thesis addresses its two aspects: gen-
eration and detection.
It must be mentioned that FRS is vulnerable to Presentation Attacks (PA), a.k.a
spoofing attacks, which can be achieved by presenting a biometric artefact to the
biometric capture device. PA can be performed by generating a Presentation At-
tack Instrument (PAI) that includes either a printed photo (print-photo), display-
ing an image (display-photo), displaying a video (replay-video), or the use of a
rigid/non-rigid 3D face mask (mask-attack). Biometric researchers had thus de-
vised Presentation Attack Detection (PAD) as a countermeasure to PA that is ex-
tensively discussed in [29], and [30]. Further, FRS is prone to deepfakes attacks,
which are generated by either expression replacement or facial replacement ini-
tially performed using Generative Adversarial Networks (GANs), which have been
proven a threat to FRS and thus need to be detected, as pointed out by Korshunov
et al. [31].

1.1 Motivation and Problem Statement
The primary motivation of this thesis is to make Morphing Attack Detection (MAD)
classifiers robust. The robustness of a MAD classifier can be defined as its ability
to perform with a similar level of accuracy irrespective of changes in pose, illumin-
ation, expression, print scan artifacts, and capture distance. This is important for
real-world applications of MAD. The secondary motivation was to use additional
cues, such as depth, to improve the accuracy of the MAD classifier, unlike just
color images in the primary motivation. In a typical scenario of automated border
control (ABC), a trusted live capture image is verified against an image stored in
an electronic machine-readable travel document (eMRTD or passport). The secur-
ity risk becomes especially high as there is a digital upload of facial images for
passports in several countries. Thus, a malicious user can upload a face-morphing
image and a single eMRTD can verify as two subjects. This scenario violates the
single-user, single-document rule. As a countermeasure to this security risk, the
MAD classifier should be robust to pose, illumination, and expression, as a person
standing in front of an ABC gate can have a face in an arbitrary pose, illumination,
and expression due to real-world settings.
Another scenario that can pose a security risk is on-the-fly (OTF) capture, where
surveillance cameras are mounted and a person walks in an aisle. A person can be
at an arbitrary distance from the camera and has an arbitrary facial pose, expres-
sion, and illumination. Furthermore, in the OTF scenario, the trusted surveillance
image must be compared with an enrollment image stored for that person. Thus,
the OTF scenario is even more challenging than the ABC gate scenario. Hence, as
a countermeasure to these challenges, the MAD classifier should be robust against
face pose, illumination, expression, and capture distance.
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Moreover, part-based (attribute-based) facial morphing images have received less
attention in the literature on facial morph generation. However, due to the increas-
ing visual fidelity of facial images generated by generative adversarial networks
(GANs), facial attribute-based morphing images can be generated, showing higher
vulnerability to FRS. Regarding security risk, a facial morphing image generated
by a facial attribute-based morph poses a threat similar to that explained previously
in both the ABC gate and the OTF scenarios encountered in real-world settings.
Finally, we consider a scenario in which face enrollment and the probe are in 3D.
3D face morph generation and detection would make the MAD classifier more ro-
bust in 3D than 2D, as a single 3D model can handle multiple facial poses, unlike
2D. It must be noted that 3D face morph generation and detection were considered
for the first time in this thesis and we have done extensive state-of-the-art (SOTA)
evaluation.

1.2 Research Objective
The research objective of this thesis is to evaluate and develop MAD algorithms
and further evaluate the impact of 3D data on these algorithms. This is depicted as
a block diagram in Figure 1.1, which shows the evaluated problems. The research
objectives of this thesis are summarized as follows:

• Perform an extensive literature review of existing algorithms for MAD in
general and with 3D information in particular.

• Evaluate and propose new algorithms for MAD, benchmarking these against
SOTA on public datasets.

• Evaluate and propose an algorithm with high generalization capability for
MAD.

• Evaluate the impact of high-quality ground truth depth data for the morphing
problem.

1.3 Research Questions
The following research questions are formulated based on the study of literature,
motivation, and thesis research objectives.

1.3.1 RQ1: Robustness of MAD Classifiers

RQ1 How can we improve the robustness of MAD classifiers in real-world en-
vironments that vary in the pose, expression, illumination, capture distance
and image quality? (Related Chapters 5, 6, 7)
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The MAD classifier’s robustness is not just a theoretical concept but a practical ne-
cessity. It must demonstrate superior performance under various challenging con-
ditions, such as pose, expression, illumination, probe capture distance and image
quality. This is crucial for the MAD classifier’s real-world application, particu-
larly in the context of on-the-fly (OTF) capture scenarios. Moreover, it is essential
to investigate which feature fusion or image alignment techniques could improve
the classifier’s performance in these challenging conditions that mimic real-world
environments.

1.3.2 RQ2: Effect of postprocessing on MAD Classifier

RQ2 What is the effect of postprocessing morphing images on the perform-
ance of the MAD classifier? Furthermore, what is the impact on the general-
ization of the MAD classifier trained using different mediums in the presence
of postprocessing morphing images? (Related Chapter 8)
FRS is susceptible to facial morphing images, and MAD methods have been em-
ployed to identify them. Despite minor artifacts, current state-of-the-art (SOTA)
MAD methods rely on datasets that involve postprocessing in the nasal, oral, or
ocular regions. This inspired us to investigate the impact of postprocessing on the
performance of the MAD classifiers on a broader scale. Moreover, in real-world
situations, MAD classifiers are expected to be applied in environments where the
training and testing media comprise digital or varied-resolution printers and scan-
ners. Therefore, we sought to examine the generalization of the MAD classifier in
the context of postprocessing and diverse mediums.

1.3.3 RQ3: Generation of Facial Attribute-based Face Morphs

RQ3 How can we generate facial attribute-based face morphing that shows
vulnerabilities of FRS, and are the current MAD methods suitable to detect
them? (Related Chapter 9)
FRS has been demonstrated to be susceptible to facial attribute-based compositing
using a non-deep learning-based method, where the entire face of one individual is
combined with a single facial feature of another individual. However, the vulner-
ability of FRS to compositing using a few or multiple facial attributes has yet to
be thoroughly examined. Thus, we aimed to create facial composites that display
vulnerability in the FRS using GAN-based facial image synthesis and to rank these
facial attributes according to their level of vulnerability.

1.3.4 RQ4: Generation of 3D Face Morph

RQ4 How can we generate 3D Face Morphing when ground-truth 3D data is
available from the two contributory data subjects and does the generated 3D
Face Morphing show vulnerabilities of FRS? (Related Chapter 10 and Chapter 11)
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Figure 1.1: Illustration for Research Topics in Thesis

The Face Recognition System (FRS) is susceptible to the threat of 2D Face Morph-
ing, created by combining facial images from two contributory data subjects. The
widespread adoption of 3D sensors that can capture 3D face models in access con-
trol and their natural extension to 3D face recognition are the driving factors for
the increased use of 3D face recognition. These factors have prompted us to in-
vestigate the problem of 3D Face Morphing, which is a novel form of attack. This
research question aims to generate 3D face morphing, expose the vulnerabilities
of FRS and develop methods for detecting such attacks.

1.4 Research Methodology
The thesis employs the research methodology outlined in this section to answer
the research questions posed. Figure 1.1 provides a visual representation of the
categorization of the research topics and associated research questions. The cent-
ral theme of this thesis is the detection of morphing attacks, with the sub-topics
encompassing the various types of data utilized. The systematic approach taken to
tackle the research questions is summarized as follows:

• Robust D-MAD Algorithms
MAD algorithms have demonstrated a high degree of accuracy when ap-
plied to individual public datasets. In particular, certain public datasets for
MAD have shown near-perfect detection rates. However, it should be noted
that these datasets are digital and do not contain print-scan artifacts, nor do
they have feature variations in facial pose and capture distance, which are
relevant factors in the context of an ABC Gate and OTF scenario. Therefore,
we created datasets for these specific scenarios. A MAD algorithm is con-
sidered robust if it can perform effectively in these challenging conditions.
Our proposed D-MAD algorithm was benchmarked against SOTA methods
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and achieved superior performance. Further information on this section can
be found in the relevant articles, which are included in Chapters 5, 6 and 7
where each chapter contains a single article.

• S-MAD with Post Processing
MAD datasets have low postprocessing, but postprocessing of face-morphing
images is expected in real-world environments. Thus, we generated a data-
set with post-processed face-morphing images. We benchmarked SOTA on
this dataset and proposed an algorithm that performed better than SOTA and
is described in Chapter 8.

• Facial Attribute-based Morphing: Morphing is usually applied on full-
face images from two contributory data subjects. The problem of facial-
attribute-based morphing has received little attention. Thus, we worked on
the problem of morphing using single/multiple facial attribute/s from the two
contributory data subjects. This included generating a facial attribute-based
dataset, evaluating its vulnerability towards FRS, and evaluating MAD al-
gorithms on it. The details of this part are provided in Chapter 9.

• 3D Morphing: In the existing literature, the generation of face-morphing
images is typically accomplished via a linear blend of two-dimensional fa-
cial images obtained from two contributory data subjects. However, the next
logical step in obtaining three-dimensional face morphing has yet to be ex-
plored. To address this gap, our work focused on the problem of generating
three-dimensional face morphing from point clouds sourced from two con-
tributory data subjects. To this end, we created a three-dimensional face
dataset and proposed using the 3DMAD algorithm while assessing its vul-
nerability to FRS. Further details are outlined in Chapter 10 and Chapter 11.

1.5 List of Research Publications

1.5.1 List of Included Research Publications

1. Jag Mohan Singh, Raghavendra Ramachandra, Kiran B Raja and Chris-
toph Busch. Robust morph-detection at automated border control gate using
deep decomposed 3D shape & diffuse reflectance. In 2019 15th Interna-
tional Conference on Signal-Image Technology & Internet-Based Systems
(SITIS), Sorrento (NA), Italy, pp 106-112. IEEE,
doi=10.1109/SITIS.2019.00028.

2. Jag Mohan Singh, and Raghavendra Ramachandra. Reliable Face Morphing
Attack Detection in On-The-Fly Border Control Scenario with Variation in
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Image Resolution and Capture Distance, In IEEE International Joint Con-
ference on Biometrics (IJCB 2022), Abu Dhabi, UAE, pp. 1-10, IEEE,
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1.6 Scope of Thesis
This thesis aims to develop reliable and robust MAD algorithms that can perform
well in difficult situations. This thesis addresses the challenges involved in devel-
oping such algorithms based on the following constraints:

• The thesis collected datasets that addressed the scenarios of ABC Gate,
OTF, facial image post-processing, faces with some or all facial attributes
and faces as 3D point clouds. Since these areas need to be better handled
by existing face morphing datasets, the thesis focussed on morphing attack
generation in some of these dataset formats.

• The benchmarking of SOTA was done, and novel MAD algorithms were
proposed, which achieved superior performance and increased robustness.

• The vulnerability of the proposed and SOTA methods towards FRS, both
commercial-off-the-shelf (COTS) and deep-learning-based, was calculated.
The metrics used for vulnerability calculation were from the literature, and
new ones were proposed where required.

1.7 Thesis Outline
The thesis is divided into two parts, where Part I presents the introduction, re-
search objective, research questions, research methodology and scope of thesis in
Chapter 1, background and related work in Chapter 2, a summary of published
articles in Chapter 3 and conclusions in Chapter 4. This is followed by Part II,
which presents the research papers formatted for the thesis. Chapter 5 presents
robust D-MAD where we take a trusted capture image from an Automated Border
Control (ABC) Gate and compare it with an image on eMRTD. We decompose
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the image into a diffuse reconstructed color image and normal map for robust D-
MAD. Chapter 6 presents robust D-MAD where we can capture images in an OTF
scenario and perform robust D-MAD using a Hierarchical Spherical Linear Oper-
ator (SLERP). Chapter 7 presents robust D-MAD where we handle multiple lights
utilizing the fusion of deep classifiers. Chapter 8 presents an analysis of D-MAD
classifiers in the presence of post-processing face morphing images and offers a
proposed method for D-MAD in the same scenario. Chapter 9 presents facial-
attribute-based morphing generation, including an exhaustive analysis of vulner-
ability dependence on single/multiple facial attributes. Chapter 10 introduces a
novel type of morph, 3D face Morphing generation, which uses input point clouds
from two contributory data subjects, unlike 2D image data. Chapter 11 performs
the 3D face morphing generation using two 3D facial point clouds directly in 3D.
This is followed by Part3 III, which presents the future work in Chapter 12.



Chapter 2

Background & Related Work

FRS achieves high accuracy in real-world environments primarily owing to ad-
vancements in deep learning. Deep learning networks such as Facenet [27] and Ar-
cface [22] have achieved high accuracy on public datasets, including labeled faces
in the wild (LFW) [32] and other public datasets. However, the FRS is susceptible
to direct and indirect attacks, revealing vulnerabilities. Among the attacks on FRS,
morphing attacks, which involve blending two facial images from contributory
data subjects, expose vulnerabilities in FRS, including automatic (based on soft-
ware) and manual (based on human observers) attacks. Biometric researchers have
developed countermeasures known as morphing attack detection (MAD) methods
to address these vulnerabilities. These methods can be classified as single-image-
based MAD (S-MAD), which requires only probe images, or differential-image-
based MAD (D-MAD), which requires probe images and enrollment images. This
chapter reviews the state-of-the-art works in the literature on facial morph gener-
ation and detection and discusses the different error metrics used in the literature
for vulnerability analysis of morph generation methods. FRS is vulnerable to face
spoofing attacks, also known as presentation attacks which can be performed by
presenting a biometric artefact such as a printed photo (print-photo), displaying an
image (display-photo), displaying a video (replay-video), or the use of a rigid/non-
rigid 3D face mask (mask-attack) for which countermeasures have been defined by
biometric researchers which are discussed briefly in this section. FRS is prone to
deepfakes, which can be generated by expression swap, i.e., changing the expres-
sion of the source image by a target image or identity swap, where the genuine
user’s face is replaced by another person’s face.

13
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2.1 Presentation and Deepfake Attacks on FRS

2.1.1 Presentation Attacks

As mentioned earlier, presentation attacks (PA) performed by showing a biometric
artefact to an automatic FRS are powerful attacks towards FRS and show its vul-
nerabilities. Thus, presentation attack detection (PAD) is essential and can be done
by either usage of textural feature descriptors such as Local Binary Pattern (LBP)
or through dynamic methods for videos based PA, which measure pulse, eye blink-
ing, lip movement or head rotation [30]. Presentation attacks can be detected by
CNNs, amongst which one is based on a deep tree network (DTN) with zero-shot
face anti-spoofing method, which generalizes to 13 types of PAs [33]. Further,
amongst the current challenges to PAD methods are robustness and generalization
across PAD datasets with reduced bias, as pointed out in the survey by Shaheed et
al. [34].

2.1.2 Deepfakes

Deepfake attacks which generated either by facial replacement which included
DeepFakes [35] and FaceSwap [36] or expression replacement which included
Face2Face [37] using computer graphics & visualization techniques and Neural-
Textures [38] using Generative Adversarial Networks (GANs)) amongst the initial
techniques. Further, with the advancement in visual fidelity of generation using
GANs, newer and better architectures were used for each deepfake category. The
reader is advised to look at a recent survey by Mirsky et al. [39] for newer GAN-
based architectures for deepfake generation. Further, with advancements in visual
fidelity due to the introduction of diffusion models and multimodal large language
models (LLMs), higher quality deepfakes were being generated, as pointed out in a
recent survey by Mubarak et al. [40]. Further, the generated deepfakes are strong
attacks on FRS and need to be detected [31]. It must be mentioned that deepfake
detection can be done using hand-crafted features based on eye-blink, disparit-
ies in lip movement, or irregularities in texture and lighting [40]. Convolutional
neural networks (CNNs), either directly or in combination with long short-term
memory (LSTMs), can be used for deepfake detection [40]. However, the chal-
lenges for the current deepfake detectors are performing well with blurry images,
fast-moving objects, sophisticated deepfakes, or unseen data.

2.2 Facial Morph Generation
The generation of facial morphs can be accomplished through the utilization of
full or partial facial images. Additionally, the methods of facial morph generation
can be categorized into two types: landmark-based morph generation and deep-
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Figure 2.1: Illustration of Landmark based Morph from Morph ABC Database (Chapter 5)

learning-based morph generation. The following subsections will delve into the
various facial morph-image generation techniques currently available.

2.2.1 Landmark-based facial morph generation

A landmark-based facial morph image generation consists of the following steps:

1. Facial Alignment: Since, the faces used are of frontal pose. The individual
faces are aligned by making the eye corners horizontal.

2. Landmark Specification and Correspondence Computation: The differ-
ent landmarks on a facial image can be specified manually or automatically
(Active Shape Models [41] or more recently Dlib [42]). Once the landmarks
are computed, the correspondences are established between the face images
of two contributory data subjects.

3. Delaunay Triangulation: Once the correspondences are established, the
point list of the face morphing image is generated by blending the point lists
from the two contributory data subjects. Delaunay triangulation [43] of the
point list of the face morphing image is performed.

4. Warping Computation: For each triangle of the face morphing image, an
affine warping is computed between the triangle from the contributory data
subjects to the triangle of the face morphing image. This results in the trans-
formed face images from both contributory data subjects, when each triangle
from both contributory data subjects is transformed.

5. Blending Operation: The transformed face images from two contributory
data subjects are blended using the blending factor, resulting in the face
morphing image which is the final result.

We now describe the different softwares used for the generation of face-morphing
images in the following subsections:
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Manual Landmarks: The software FotoMorph [44] and FantaMorph [45] were
utilized to create face morphing images from two contributory data subjects. The
landmarks were specified manually using these programs, with the number of land-
marks ranging from 20 to 45 for FotoMorph and 127 for FantaMorph. Once the
landmarks were specified, the software generated a morph animation, and the user
was required to select the face morphing image with the minimum visible artifacts.
Automatic Landmarks: The softwares OpenCVMorph [46] and FaceMorpher [47]
generate face morphing images by utilizing face images from two contributing
data subjects. These images are processed to create landmarks, with 68 landmarks
being automatically computed by OpenCVMorph and 77 by FaceMorpher. The
process of generating the face morphing image is accomplished through the use of
a script, which operates automatically.

2.2.2 Deep-Learning based facial morph image generation

In this section, we provide an overview of various deep learning-based techniques
that have been employed for facial morph-image generation. Initially, GANs were
utilized for this purpose, which was subsequently followed by image diffusion
and transformer-based methods. In addition, a few hybrid methods have been de-
veloped that combine both GANs and Landmarks. It is important to acknowledge
the developments in this field and are discussed in chronological order.

MorGAN: One of the earlier works in facial morph-image generation through
deep learning is MorGAN [48]. This work employs GANs for generating facial
morph-images and presents a dataset consisting of 1000 face-morphing images.
Additionally, the authors conducted a vulnerability analysis of the FRS of the gen-
erated facial morphing images. In terms of detecting MorGAN attacks, it was
found that LBPH outperformed CNN-based detectors. However, it is worth noting
that the MorGAN generated facial morphs had a resolution of 64 × 64 and the
image quality was slightly inferior to that of LMA morphs.
StyleGAN-based Morph: One of the early works on StyleGAN-based morph at
high quality and high resolution of 1024×1024 was by Venkatesh et al. [49]. They
generated a dataset of 2500 face morphing images. The proposed method first gen-
erates StyleGAN-based latents for the images from two contributory data subjects
based on perceptual loss. They averaged the latents obtained from two contribut-
ory data subjects and passed them through the StyleGAN synthesis network for
face morphing image generation. The authors benchmarked both GAN-generated
and landmark-based morphs using established MAD methods.
Regenmorph: This method [50] works by combining LMA and GAN-based morphs.
The primary motivation of Regenmorph is to increase the vulnerability towards
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FRS of the generated facial morphing images. Owing to the weaknesses of Mor-
GAN, which could not generate facial morphing images with high vulnerability
towards FRS. Regenmorph generates the face image morphing by LMA and elim-
inates the artifacts using GANs. Thus, the method generates better quality facial
morphing images when compared with MorGAN.
MIPGAN: The quality of the face morphing image was further improved in MI-
PGAN [51], which generated a face morphing image of 1024 × 1024 resolution.
Further, MIPGAN improved the vulnerability towards FRS. MIPGAN generated
the face morphing image by averaging StyleGAN2-based latents from both con-
tributory data subjects, which was followed by passing it through the synthesis
network of StyleGAN [12] and StyleGAN2 [52] to generate initial face morphing
image. This initial face morphing image is optimized using a loss function based
on identity, amongst other factors, to generate the final face morphing image.
StyleGAN2 based synthetic morphs: Sarkar et al. [53] performed an extens-
ive evaluation of LMA and GAN-based morphs, including modified MIPGAN-II
where they used pre-trained VGGFace model with Resnet50 backbone as feature
extractor for identity loss instead of Resnet50 backbone and Arcface loss proposed
in MIPGAN. They provided two facial morphing datasets and the first is based
on landmark-based morphing, including OpenCV and FaceMorpher. The second
dataset they offered includes two StyleGAN2-based methods, which consisted of
synthetic morphs. The authors computed vulnerabilities of the generated facial
morphs using the following FRS: Arcface [54], VGG-Face [55], Facenet [56] and
ISV [57]. They concluded that LMA-based morphs show vulnerabilities towards
FRS, and GAN-based morphs don’t show vulnerabilities towards FRS.
Landmark Enforcement for Generative Morphing: Price et al. [58] proposed
landmark enforcement, which is used to compute warped faces from both contrib-
utory data subjects to the average of individual landmarks. They further devised an
approach for landmark-based loss based on StyleGAN2 for geometric constraints
and explored principal component analysis (PCA) in latent space for reducing
identity loss in morph generation. Further, to enhance the high-frequency com-
ponent in the facial morphs they study the training of noise input for StyleGAN2.
MorDIFF: This method [59] uses diffusion autoencoders to generate the face
morphing image. They performed extensive vulnerability analysis of the generated
facial morphing images towards FRS. Further, MorDIFF generates more vulner-
able face morphing images towards FRS than GANs. The facial morphing images
generated by MorDIFF are challenging to detect, as indicated by their vulnerability
analysis. The detection of MorDIFF attacks improves when training is performed
on the synthetic dataset SMDD [60].
MorphGANFormer: This method [61] proposed a transformer-based alternative
to generate face morphing images compared to GANs. They use four specific-
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ally designed loss functions (landmarks, biometric loss, perceptual loss and pixel-
wise mean squared error) to increase the similarity between the generated facial
morph images and images from both contributory data subjects. They proposed a
transformer-based demorphing technique as an effective defense strategy to com-
plement their morph generation. It needs to be pointed out that the demorphing
technique can be compared to spectral unmixing of hyperspectral images, but it
operates in latent-space rather than pixel-space when compared to spectral unmix-
ing.
WALI: This method [62] generates worst-case (difficult) morphs for FRS by us-
ing concepts from Adversarially Learned Inference (ALI) and Wasserstein GANs
trained with gradient penalty. It needs to be pointed out that WALI uses these
methods to improve stability during training. They finetune WALI with loss func-
tions with a specific ability to manipulate identity, resulting in more challenging
morphs than landmark-based or GAN-based face morphing images. WALI has
improved the quality of facial morphing images generated using MIPGAN.
Extswap: This method [63] observes that the quality of generated facial morphing
images using GANs suffers due to an entangled representation. Thus, it gener-
ates SOTA face swapping by disentangling identity and attribute features in latent
space, resulting in rich semantic latent space. Further, the authors performed ex-
tensive experiments that prove that their method successfully disentangles identity
and attribute features. The experiments conducted by the authors during this art-
icle are of both quantitative and qualitative nature.
Approximating Optimal Generative Morphing: Colbois et al. [64] generated
the optimal face morphing image by inverting the images from both contribut-
ory data subjects to generate their latent embeddings. The latent embeddings are
then averaged to generate the face morphing image latent, passed through an im-
age synthesis network to generate the face morphing image. They created the
facial morphing images using several source datasets and study the effectiveness
of those attacks using several FRS. Further, their method is competitive against
previous deep-learning-based approaches in both black-box and white-box scen-
arios.
Optimal Landmark Guided Image Blending: He et al. [65] proposed to over-
come the lack of identity features in GAN-based face morphing image genera-
tion by optimizing landmarks and using Graph Convolution Networks (GCNs) for
combining landmark and appearance features. The authors model the landmarks as
nodes in the bipartite graph, which is fully connected, and utilize GCNs to model
their spatial and structural relationships. They performed extensive experiments
on two public datasets showcasing the advantages of previous landmark-based and
generation-based methods and generating higher-quality face morphing images,
making them more vulnerable to FRS.
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Summary: It needs to be pointed out that in terms of vulnerability of the gen-
erated face morphing images towards FRS, Landmark-based methods are more
vulnerable than Deep-Learning-based methods [53, 48]. Landmark-based meth-
ods generated by facial morphing images have higher vulnerability towards FRS
than deep-learning-based methods as they preserve the identity features more than
those generated from deep-learning-based methods. Vulnerability towards FRS is
affected by print-scan artifacts as they can induce quality degradation in the fa-
cial morphing images, making them less vulnerable towards FRS. Vulnerability
towards FRS can be affected by the FRS being used to calculate the vulnerability
as different FRS show different vulnerabilities.

2.2.3 3D Morph Generation

2D+3D Morph Generation: Liu et al. [66] formulated a 2D+3D approach for
facial morph generation. The authors first detected the faces in both input facial
images using Viola-Jones face detector [67], which is followed by facial interest
point detection using Ramanan method [68], and the key-points are triangulated
using Delaunay. Then, a forward warping is computed to the fusion (mean) ver-
tices from both the Delaunay meshes, and the pixels inside these triangles are blen-
ded to generate the 2D blend texture. The face images are then projected to 3D
using 3D Morphable Model [18] and a scaled orthographic projection (SOP(s,R,t))
is used to align the input face images and the two individual 3DMM models which
results in parameters (s1,R1,t1) and (s2,R2,t2). Finally, the average 3DMM model
is generated and the 2D blend texture is aligned with using mean of parameters
( s1+s2

2 , R1+R2
2 , t1+t2

2 ) to generate the textured morph face. The technique would
have the merit as the generated textured morphed face model would 2D identity
facial features from both the contributory data subjects resulting in high vulnerab-
ility for 2D FRS. However, since the 3D face model generated using 3DMM is not
physically accurate, it should show low vulnerability toward 3D FRS.

2.3 Facial Morph Detection
Morphing Attacks or facial morphing images can be used to expose vulnerabilities
in FRS. Biometrics researchers have proposed morph detection as a countermeas-
ure. Morph detection can be done in two ways: first, by using a pair of images
to perform the detection, which is known as Differential Morphing Attack Detec-
tion (D-MAD), or the second way, where morph attack detection is done based
on a single image where it is known as No Reference Morphing Attack Detection
(NR-MAD) or Single Morphing Attack Detection (S-MAD). We want to bring
the reader’s attention to a survey article on face morphing [69] where authors
have reviewed the current literature for S-MAD and D-MAD. According to the
survey, S-MAD can be based on one of the following: 1) Texture features, 2)
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Quality features, 3) Hybrid features, 4) Residual noise, or 5) Deep-learning. Fur-
ther, according to the survey, D-MAD can be based on 1) Feature Difference or
2) Demorphing. The feature difference can be texture-based (LBP, BSIF, or HOG
features) or deep-learning-based (Arcface or Alexnet features). Demorphing can
be done using either Landmarks or Deep-Learning (GANs). For further details, the
interested reader can go through the survey. We describe the literature for S-MAD
and D-MAD, which are more recent than this survey, in the following subsections:

2.3.1 S-MAD

Ensemble-based Morph Detection: Kashiani et al. [70] the authors proposed the
usage of ensemble-based morph detection to improve the generalization to a wide
range of morphing attacks and high robustness towards adversarial attacks. The au-
thors proposed combining convolutional neural networks (CNNs) and transformer
models to take advantage of their capabilities. Further, for robustness, they em-
ployed multi-perturbation adversarial training and generated adversarial examples
with high transferability for several single models. The proposed robust ensemble
model performed better than SOTA, as shown in their exhaustive evaluation over
several morphing attacks and face datasets.
Attention-based Morph Detection: Aghdaie et al. [71] proposed an end-to-end
attention-based deep morph detector which incorporates the most-discriminative
wavelet sub-bands of the input image obtained by group sparsity representation
learning scheme. The most discriminative wavelet sub-bands (channels) are ob-
tained using the attention mechanism. They employed three different attention
mechanisms for this: the Convolutional Block Attention Module, the compatibil-
ity scores across spatial locations and output of their DNN highlighting the most
discriminative regions, and the multi-headed self-attention augmentations. The
authors evaluated their proposed approach on several morph datasets and achieved
lower detection error rates than SOTA algorithms.
MAD-DDPM: This method [72] proposed a diffusion-based MAD method that
only learns from characteristics of the bona fide images. They detect different
forms of morphing attacks using their model as out-of-distribution samples. They
performed extensive experiments over the following four datasets: 1) CASIA-
WebFace, 2) FRLL-Morphs, 3) FERET-Morphs, and 4) FRGC-Morphs and com-
pared their proposed method with discriminatively trained one-class models. The
experiments done by the authors show that their proposed model performs com-
petitively on all four datasets used in the paper.
PCA of texture patterns based Morph Detection: Dargaud et al. [73] performs
S-MAD using RGB decomposition based on PCA of texture patterns. The authors
mention that their method has increased explainability compared to deep-learning-
based methods, as showcased by visualization of several relevant face areas used
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for morph detection. The authors extensively evaluated their approach in single,
cross-dataset, and cross-morphed scenarios and compared it with fine-tuned Mo-
bileNetV2 architecture. The results of the evaluation show that S-MAD is chal-
lenging in cross-domain scenarios involving a wide range of morphing algorithms.
The proposed method by the authors can be good or even better than the Mobile-
NetV2 approach in the cross-domain scenarios.
MorDeephy: This method [74] performs S-MAD by learning deep facial fea-
tures that carry the information about the authenticity of the features. The authors
achieve this by training two backbone CNNs using bona fide and face morphing
images, respectively. A single input image is passed (bona fide/face morphing)
whose features are extracted from these networks and the dot product of these is
used for classification. The authors also provide a public and easy-to-use face
morphing detection benchmark. They achieved SOTA performance and general-
ized the task of face morphing detection to unseen scenarios.
Learning Residuals for Morphing Detection: Raja et al. [75] proposed an ap-
proach for S-MAD based on learning the residuals of the morphing process us-
ing an end-to-end multi-stage encoder-decoder network. The authors use cross-
entropy and asymmetric losses to train their proposed network. The authors per-
form extensive experiments on two landmark-based and three GAN-based morphs
in digital, print-scan, and print-scan compression settings. The authors achieve a
near-perfect D-EER of 0% for the best case and 2.58% for the worst case in a di-
gital domain for closed set protocol. Using three complementary Class Activation
Maps (CAM) analysis methods, note the authors use CAMs for explainability.
Incremental Training for Morphing Detection: Borghi et al. [76] perform incre-
mental training of morphing detectors motivated by that fact that MAD methods
based on single images are not ready for real-world deployment due to low accur-
acy and generalization to datasets which are different from training set. Further,
it is difficult to share datasets amongst different research groups due to privacy
issues. This motivated the authors to devise an approach based on model sharing
instead of data sharing which incorporates the strategies of Continual Learning.
The authors proposed and released a framework based on incremental training of
MADs using new data progressively which is available during different times and
places. The authors use the paradigms of Learning without Forgetting (LwF) and
Elastic Weight Consolidation (EWC) for Continual Learning.
Continual Learning for Morphing Detection: Pellegrini et al. [77] perform a
continual learning (CL) paradigm for enabling incremental training for MAD. An
underlying assumption of CL is that old data is no longer required and can be de-
leted. Thus, the authors explore the CL model in the scenario where the learning
model is updated every time a new chunk of data is available, which can even be
of variable size. The authors mention that the Learning without Forgetting (LwF)
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method is one of the best-performing CL methods for this scenario. Thus, the au-
thors investigated its usage and parameterization in MAD and object classification.
IDistill: This method [78] proposed an interpretable identity distillation method
that provides information on both identity separation of face morphing samples
and their contribution to the final prediction. The authors learn domain informa-
tion by an autoencoder and distill it into a classifier system for teaching its separate
identity. The method proposed by the authors outperforms SOTA on three out of
five databases used in the paper.

2.3.2 D-MAD

Feature-wise Supervision based Morphing Detection: Qin et al. [79] detects
and localizes Morphing Attacks (MAs) using feature-wise supervision. The au-
thors constructed fine-grained classification loss based on different morphing pat-
terns and designed similarity-based and distance-based losses using the properties
of D-MAD scenarios. The experimentation conducted by the authors shows that
fine-grained classification loss can be used to locate the MA, whereas the D-MAD-
based losses can improve the generalization capability towards unseen MAs.
Wavelet Scatter Network based Morphing Detection: Ramchandra et al. [80]
performs morphing detection for face images of newborns as this task is important
from the viewpoints of both security and society. The authors propose a two-layer
wavelet scatter network (WSN) using 250×250 pixels with 6 rotations of wavelets
per layer, resulting in 577 paths. The authors evaluate their method on 852 bona
fide images and 2460 face morphing images from 42 unique newborns. The au-
thors achieved a 10% gain in detection accuracy over existing D-MAD methods.
Fusion of Demorphing and Deep Face Representations for Morph Detection:
Shiqerukaj et al. [81] have performed D-MAD using a fusion of two techniques,
Demorphing and Deep Face Representations. It should be mentioned that the de-
morphed image is passed through FRS to obtain the score. The authors performed
experiments in a cross-database scenario using high-quality facial image morphs
and live bona fide captures. The authors mention that a weighted sum-based score
fusion of Demorphing and Deep Face Representations results in better MAD. The
authors obtained a D-EER of 4.9% compared with 5.6%, 5.8% of SOTA.
Combining Identity and Artifact Features for Morph Detection: Domenico et
al. [82] mention that D-MAD approaches are based on the identity features of the
face images. Thus, current D-MAD approaches could improve the images of look-
alikes with similar identities. On the other hand, S-MAD approaches are based
on the analysis of artifacts of the input images. This motivated the authors to fuse
identity and artifact features for robust D-MAD.
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2.4 Performance Metrics
We discuss the different performance metrics used for the evaluation of MAD al-
gorithms in the biometrics literature as follows:
Attack Presentation Classification Error Rate (APCER): This metric measures
the misclassification of face morphing attacks as bona fide presentations with an
ideal value of 0% implying no misclassification.
Bona fide Presentation Classification Error Rate (BPCER): This metric meas-
ures the misclassification of bona fide presentations as face morphing attacks with
an ideal value of 0% implying no misclassification.
Mated Morphed Presentation Match Rate (MMPMR): MMPMR is defined as
the number of face morphing samples that can be verified by all the contributing
data subjects by the FRS. However, MMPMR does not factor the effect of the
number of attempts made into the metric computation. MMPMR is described by
the following equation, which is taken from [83]

MMPMR(τ) =
1

M

M∑
m=1

{[
min1···NmS

m
n

]
> τ

}
(2.1)

where τ is the verification threshold, Sm
n is the similarity score when subject n is

compared with morph m, Nm is the number of subjects used for generating morph
m and M is the total number of face morphing images.
Fully Mated Morphed Presentation Match Rate (FMMPMR): FMMPMR is
defined as the number of face morphing samples that the FRS can verify by all the
contributing data subjects across all the attempts. Thus, it alleviates the weakness
that is present in MMPMR. FMMPMR is described by the following equation,
which is taken from [84]

FFMPR =
1

P

∑
M,P

(S1PM > τ)(&&)(S2PM > τ) · · · (&&)(SkPM > τ) (2.2)

where P is the number of probe images, M is the number of face morphing im-
ages, τ is the verification threshold SkPM is the similarity score of kth generated
from comparison with M face morphing image with P th attempt (or probe) image.
Morphing Attack Potential (MAP): MAP is the vulnerability metric consider-
ing multiple FRS, probe attempts and face morphing images to arrive at a matrix
of vulnerabilities. MAP is described by the following equations, which are taken
from [85] and part of the ISO/IEC CD 20059 [86]:

mc(M,P, F ) = |Pi ∈ P : sF (M,Pi) > τ(F )| (2.3)

where mc(M,P, F ) returns the number of P probe images which are successfully
verified against face morphing image (M ) based on FRS (F ). Further, sF (M,P )
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is the similarity score between face morphing image (M ) and probe image (P )
based on pre-fixed threshold τ(F ).
Then, the authors define fmc(M,P,F, r) as the number of FRSs in F for which
at least r probe images in P are verified against the face morphing image M based
on the following equation which is taken from [85]

fmc(M,P,F, r) = |Fi ∈ F : (M,P, Fi) ≥ r| (2.4)

Finally, the authors define the proposed metric MAP[r, c] as the proportion of face
morphing images in M for which fmc(M,P,F, r) ≥ c for both contributory data
subjects. MAP[r, c] is defined by the following equation taken from [85]

CMAP [r,c](M) =
∧ fmc(M,P1,F, r) ≥ c

fmc(M,P2,F, r) ≥ c
(2.5)

where P1 and P2 are the set of probe images for subjects 1 and 2, respectively.
Generalized Morphing Attack Potential (G-MAP): G-MAP is the most generic
vulnerability metric, which generates a single vulnerability number considering
multiple probe attempts, multiple FRSs, morph attack generation type, and face
morphing images. This metric was proposed in the scope of this thesis and alle-
viated the weaknesses of previous metrics of MMPMR/FMMPMR/MAP by being
the most generic and generating a single value (irrespective of attempts), indicat-
ing the attack potential of morphing images. It was introduced in Chapter 9 and
presented in Equation 11.4.

2.5 Evaluation of MAD algorithms
Face Analysis Technology Evaluation (FATE), NIST IR 8292 NIST provides
an evaluation platform for benchmarking MAD algorithms. The National Institute
of Standards Technology (NIST) technical report [87] details this platform. The
report’s authors observed that S-MAD algorithms have reduced morph miss rates
at a false detection rate of 0.01 in the submitted algorithms for both low-quality and
automated datasets. However, they fail to generalize well across different unseen
morphing methods. Further, the report mentions that submitted algorithms have
shown promising improvements for the D-MAD algorithm and achieved a morph
miss rate ranging between 9% and 36% at a false detection rate of 0.01. The
authors pointed out that the better generalization of D-MAD could be attributed
to using identity information of image and live probe photo, not the morphing
artifacts.



Chapter 3

Summary of Published Articles

This chapter presents the summary of research articles included in this thesis. The
articles included the generation of face morphing attacks and their detection using
2D and 3D data. The articles are summarised in the following sections:

3.1 Article 1: Robust Morph-Detection at Automated Border
Control Gate using Deep Decomposed 3D Shape & Diffuse
Reflectance (RQ1)

This article presented robust D-MAD in the ABC gate scenario where the bona
fide image is taken from the trusted live capture (ABC gate) and is verified against
the face image on the passport or electronic Machine Readable Travel Document
(eMRTD). The proposed method decomposed both the bona fide and face images
from eMRTD into diffuse reconstructed images and a normal map. The proposed
method extracts Alexnet (fc7) features from the diffuse reconstructed image and
quantization features (21 bits) from the normal map. The features are then passed
through Linear SVM, whose scores are fused by the weighted sum rule to achieve
the final score for a single camera. Further, multiple cameras are used within
an ABC gate, whose individual scores are fused by the weighted sum rule for
final classification. We created a morph attack database with 588 images, where
bona fide images are captured in an indoor lighting environment using a Canon
DSLR Camera, and the morphed and bona fide passport images are printed and
scanned using an EPSON XP-860 printer and scanner. The EPSON XP-860 Printer
and Scanner, which is used for scanning the attack images, is done with 300 dpi
at an image resolution of 256 × 256 for detected faces. The proposed method
significantly outperforms SOTA on the created dataset.
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3.2 Article 2: Reliable Face Morphing Attack Detection in On-
The-Fly Border Control Scenario with Variation in Image
Resolution and Capture Distance (RQ1)

This article presented robust D-MAD in the OTF ABC gate scenario where the
bona fide image is obtained from the ABC gate and the verification image is taken
from the passport or eMRTD. The proposed method is based on the spherical linear
interpolation (SLERP) and hierarchical fusion of deep features obtained from six
pre-trained deep networks. The proposed method computes difference (residue)
features from VGG19, Alexnet, and VGG16 in the first group and Xception, Res-
net101 and Resnet50 in the second group. All the difference features are passed
through individual linear SVMs to obtain six classification scores. Further, we
generate two optimal pairs from each group. The residue features are SLERP in-
terpolated, whose L1 difference is taken and passed through linear SVM to obtain
two additional classification scores. Then, the eight classification scores are fused
using the sum rule to get the final classification score. It must be pointed out that
in the OTF scenario, both the camera resolutions and capture distances vary. We
created the SCFace-Morph dataset based on selected 77 subjects from the SCFace
dataset, which models the real-life scenario of ABC gates. The proposed method is
extensively evaluated using three different protocols. The first protocol is designed
to benchmark the performance impact of morph medium (digital or print-scan)
based on camera resolution and capture distance. The second protocol bench-
marks the performance impact of morph medium irrespective of camera resolution
and capture distance. The third protocol benchmarks the performance is based on
the camera resolution and capture distance regardless of the morph medium. We
obtained superior and competitive performance across all three protocols.

3.3 Article 3: Fusion of Deep Features for Differential Face
Morphing Attack Detection at Automatic Border Control Gates
(RQ1)

This article presented robust D-MAD in the ABC gate scenario where trusted live
capture is used as a bona fide image and eMRTD image is the probe image. The
proposed method first performs pair-wise image alignment using the global affine
transform computed between the two input images. This is followed by feature ex-
traction using two deep networks, Resnet50 and Alexnet, which are passed through
two linear SVMs, resulting in classification scores for each of the four cameras
and three lights. We then performed a weighted fusion of scores for all the cam-
eras from each light. The proposed performance was compared against existing
SOTA with fusion and we achieved superior results where we obtained the lowest
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EER=2.1% compared to the SOTA with an EER=8.6%. We generated the Morph
ABC dataset based on 39 subjects with 270 face morphing images and 1549 ABC
gate probe images. The first light in the dataset models a dark overcast day (180
lux), the second light models a sunrise/sunset (450 lux) and the third light models
a bright day (1500 lux) to mimic real-world scenarios.

3.4 Article 4: Robust Face Morphing Attack Detection Using
Fusion of Multiple Features and Classification Techniques
(RQ2)

This article analyzes the effects of post-processing on face morphing images at
a broader scale by introducing a new dataset of 10710 facial images before and
after processing to reduce visual artefacts and generate high-quality attacks. When
generated without artefacts, It must be pointed out that face morphing images can
deceive both automatic FRS and human observers (border control guards). Further,
the current morphing software generates ghosting artefacts, especially in the eye,
nose, and mouth regions. Moreover, we proposed a novel S-MAD classifier based
on an ensemble of features and classifiers. The proposed method first converts the
input RGB color image into YCbCr and HSV color spaces. This is followed by de-
composition into the Laplacian Pyramid. Then, in the generated scale space, mul-
tiple features, which include Local Binary Patterns (LBP), Histogram of Oriented
Gradients (HOG) and Binarized Statistical Image Features (BSIF), and various
classifiers, which include Support Vector Machine (SVM), Spectral Regression
Kernel Discriminant Analysis (SRKDA) and Probabilistic Collaborative Repres-
entation Classifier (P-CRC) are used. Finally, two levels of hierarchical fusion are
performed to make the final decision. We carried out extensive experiments on the
dataset before and after post-processing. We carried out extensive experiments in
two mediums: (a) Digital and (b) Print-Scan (with and without compression). Our
results indicated the superior performance of the proposed S-MAD over existing
SOTA present in the literature.

3.5 Article 5: Deep Face Attribute Composition Attacks: Gen-
eration, Vulnerability and Detection (RQ3)

This article proposed a novel method to generate Composite Face Image Attacks
(CFIA) based on single/multiple facial attributes utilizing Generative Adversarial
Networks (GANs). The proposed method first segments the two bona fide face
images independently into segmented face attributes. The selected face attrib-
utes from the corresponding face images are transparently blended to generate
the initial composite and face mask. This is then passed through an encoder
(Resnet-34) and decoder (StyleGAN) to generate CFIA (Face Composite). We
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generated 526 unique CFIA samples for two contributory data subjects. We gen-
erated a dataset of 1000 individual identities, resulting in 526000 CFIA samples
and 2000 unique bona fide samples. We benchmarked the attack potential of gen-
erated CFIA samples based on four automatic FRS. We introduced a new metric
named Generalized Morphing Attack Potential (G-MAP) for benchmarking the
generated CFIA samples. Further, we performed a human observer study and
perceptual quality on a subset of the CFIA dataset. Finally, we benchmarked
CFIA detection performance using three S-MAD algorithms. The dataset and
source code of the proposed method were made publicly available at https:
//github.com/jagmohaniiit/LatentCompositionCode.

3.6 Article 6: 3D Face Morphing Attacks: Generation, Vulner-
ability and Detection (RQ4)

This article proposed a novel 3D face morphing method that works on point clouds
in a 3D-2D-3D way, unlike previous 2D morphing approaches. The proposed
method first projects the point clouds from two contributory data subjects to color
images and depth maps using a single canonical view. The proposed method then
computes the locally affine warping between the generated color images. It then
uses the same local affine warping to transform the depth maps. The generated face
morphing color image and depth map are then back-projected using the single ca-
nonical view to create the face morphing point cloud. However, the generated face
morphing point shows holes from viewpoints other than the canonical viewpoint.
Thus, we proposed a hole filling using multiple translated views (color images and
depth maps) from the canonical view to fill the holes by using image inpainting
for the color image and depth maps. We then register the generated color images
with respect to the canonical view and average all the generated color images and
depth maps. The averaged color image and depth map are back-projected using
the canonical view to generate the final face morphing point cloud. We conducted
extensive experiments on our dataset comprising 675 3D scans from 41 unique
identities and 100 unique identities from the Facescape public dataset. We per-
formed a vulnerability analysis of the proposed method using 2D and 3D FRS
and conducted a human observer study. We performed a quantitative quality as-
sessment of the generated 3D face morphing models using eight different quality
metrics. Finally, we detected the generated 3D face morphing models based on
pre-trained 3D deep learning models. A sample implementation of the proposed
method is available at https://github.com/jagmohaniiit/3DFaceMorph.

https://github.com/jagmohaniiit/LatentCompositionCode
https://github.com/jagmohaniiit/LatentCompositionCode
https://github.com/jagmohaniiit/3DFaceMorph
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3.7 Article 7: 3D Face Morphing Attack Generation using Non-
Rigid Registration (RQ4)

This article presents a method for generating 3D face morphs from two bona fide
point clouds. The proposed method in this article first selects bona fide point
clouds with neutral expressions. The two input point clouds were then registered
using a Bayesian Coherent Point Drift (BCPD) without optimization, and the geo-
metry and color of the registered point clouds were averaged to generate a face-
morphing point cloud. BCPD works only with geometry, so the color is added
by applying the non-rigid-registration transformation to the source point cloud
geometry and appending per-vertex colors would generate source aligned to tar-
get with geometry and per-vertex colors. The proposed method generates 388
face-morphing point clouds from 200 bona fide subjects. The effectiveness of the
method was demonstrated through extensive vulnerability experiments, achieving
a Generalized Morphing Attack Potential (G-MAP) of 97.93%, which is superior
to the existing state-of-the-art (SOTA Chapter 10) with a G-MAP of 81.61%.
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Chapter 4

Conclusions

This thesis’s primary motivation is to make MAD classifiers robust, a crucial step
towards enhancing their applicability to real-world environments. The research
questions, introduced in Chapter 1 Section 1.3, form the backbone of this study. In
this chapter, we delve into the conclusions drawn from these questions.

4.1 Conclusion of research questions

4.1.1 RQ1: Robustness of MAD Classifiers

RQ1 How can we improve the robustness of MAD classifiers in real-world en-
vironments that vary in the pose, expression, illumination, capture distance
and image quality?

• The article in Chapter 5 presents a robust MAD classifier where the trusted
live capture is captured at an ABC gate. The robustness of this MAD clas-
sifier is valid for pose, expression and illumination. The proposed method
decomposes the input image into the diffuse reconstructed image and a nor-
mal map. The diffuse reconstructed image is mainly invariant to illumin-
ation. Further, the normal map is mostly invariant to pose and partially
invariant to expression. Thus making the proposed MAD classifier robust
for pose, expression and illumination. It needs to be pointed out that in the
camera-based fusion the weights for Camera1 is 0.2, Camera2 is 0.3, Cam-
era3 is 0.2 and Camera4 is 0.2. Thus, in our case the sum of weights is
only 0.9 for camera-based fusion. However, the sum of weights for each in-
dividual camera of diffuse reconstructed image (0.7) and normal map (0.3)
sum to 1. Further, we have used linear SVM as a classifier, means a con-
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stant scaling factor is applied to all scores. For e.g. lets consider weights
for each camera as w1,w2,w3 and w4 and the linear SVM classifiers as
a1×s1 + b1,a2×s2 + b2,a3×s3 + b3and a4×s4 + b4. Thus, the cur-
rent weight-fusion score would be w1×a1×s1 + b1 + w2×a2×s2 + b2 +
w3×a3×s3+b3+w4×a4×s4+b4.This implies that a linear scaling would
be applied to all the scores in our case and the final fusion accuracy should
not change theoretically. The proposed method in this chapter significantly
improved over SOTA [2] from an EER of 28.5±0.4 to an EER of 8.6±0.1.

• The article in Chapter 6 presents a comprehensive MAD classifier that cap-
tures the trusted live capture in the OTF scenario. This MAD classifier
demonstrates pose, expression, illumination, capture distance, and image
quality robustness. The proposed method is based on hierarchical fusion,
where the first level of classifiers takes deep feature residue (D-MAD scen-
ario) from six pre-trained deep networks as a feature. The division of six
pre-trained networks into two groups and the selection of two pairs overall
based on correlation and generalization ensures a comprehensive approach.
Each pair is interpolated using SLERP, and the difference is used for classi-
fication. The method achieves robustness due to hierarchical fusion, optimal
pair selection, and SLERP interpolation. The results of this chapter show
significant improvements compared to the SOTA [8], with the EER drop-
ping from 27.1% to 3.4% in the best case, and competitive results even when
the mediums are different (EER of SOTA is 34.3% compared to proposed
method EER of 26.0%).

• The article in Chapter 7 presents a superior MAD classifier that captures the
trusted live capture from an ABC Gate. This MAD classifier demonstrates
robustness to pose, expression, and illumination. The proposed method per-
forms pair-wise face alignment followed by deep feature extraction and clas-
sification. It then performs weighted score fusion for all cameras for a given
light. The pair-wise face alignment and weighted score fusion make the
MAD classifier robust and invariant to pose and camera capture distance.
The results of this chapter show that the proposed method achieves an EER
of 2.1%, outperforming the SOTA [9] with an EER of 8.6% in the best case,
thereby demonstrating its superior performance.

• Based on the obtained results from the proposed methods for the given re-
search question, one could mention that it has largely been answered. How-
ever, more work could be done to improve this area.
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4.1.2 RQ2: Effect of postprocessing on MAD Classifier

RQ2 What is the effect of postprocessing morphing images on the perform-
ance of the MAD classifier? Furthermore, what is the impact on the general-
ization of the MAD classifier trained using different mediums in the presence
of postprocessing morphing images?

• The article in Chapter 8 is robust to changes in postprocessing. The art-
icle generates a postprocessed dataset for digital and print-scan mediums
with and without compression. The proposed method converts the input
RGB image to HSV and YCbCr color spaces. This is followed by apply-
ing the Laplacian Pyramid to extract the scale space. The extracted scale
space is passed through an ensemble of features (LBP, BSIF and HOG) and
classifiers (Linear SVM, SRKDA and CRC) for final classification. Using
color spaces, scale space, and an ensemble of features and classifiers makes
the MAD robust against postprocessing and more generalizable than SOTA.
The proposed method achieved an EER=5.45% compared to SOTA [88]
EER=9.82%. Based on the results obtained from the proposed method for
the given research question, one could mention that we are one of the first
to address this question on a large scale and more work needs to be done to
improve this area.

4.1.3 RQ3: Generation of Facial Attribute-based Face Morphs

RQ3 How can we generate facial attribute-based face morphing which shows
vulnerabilities of FRS and are the current MAD methods suitable to detect
them?

• The article in Chapter 9) generates facial attribute-based face morphing and
shows vulnerabilities towards FRS. However, current MAD methods can
only partially detect them. The proposed method first generates segmen-
ted facial attributes from two contributory data subjects. This is followed
by transparently blending of selected facial attributes to generate the ini-
tial composite and face mask. The CFIA (final composite face image) is
generated by passing the initial composite through the encoder-decoder for
face completion. The method achieves vulnerability towards FRS by using a
transparent blending of facial attributes obtained from each contributory data
subject. MAD methods achieve low accuracy in detecting generated CFIA
as these methods work on full-face images, whereas CFIA has changed only
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in single/multiple facial attributes in the face image. The proposed method
achieved a Generalized Morphing Attack Potential (G-MAP) of 46.9% com-
pared to 52.4% of SOTA [3]. Based on the results, we have addressed this
research question to a large extent, though more work can be done to im-
prove further.

4.1.4 RQ4: Generation of 3D Face Morph

RQ4 How can we generate 3D Face Morphing when ground-truth 3D data is
available from the two contributory data subjects and does the generated 3D
Face Morphing show vulnerabilities of FRS?

• The article in Chapter 10 generates a 3D face morphing point cloud given
bona fide point clouds from two contributory data subjects. The generated
3D face morphing point cloud shows vulnerability towards 2D/3D FRS. The
proposed method is based on a 3D-2D-3D approach where the input bona
fide point clouds are projected onto 2D color images and depth maps. The
transformation is computed between the 2D color images, and the same
transformation is applied to depth maps. This is followed by a blending
operation to generate the 2D face morphing color image and depth map,
which is then back-projected to create a 3D face morphing point cloud. The
generated 3D face morphing point cloud is hole-filled to produce the final
3D face morphing point cloud. Since the blending and image registration is
performed in 2D, it is much more robust due to the stability of 2D face key
points. Further, corresponding facial parts are blended and 3D face morph-
ing point clouds with identity features from both contributory data subjects
are generated. Thus, the generated 3D face morphing point cloud shows
vulnerability towards 2D/3D FRS used in the article. It needs to be pointed
out that this article was one of the first in the biometrics domain, so SOTA
was not present. However, it achieved a vulnerability of 100% compared to
3DMM [18], which generated a vulnerability of 66.67% using 3D FRS of
LED3D [20].

• Further, we improved the results obtained from this proposed method with
the article in Chapter 11 where we perform direct 3D morphing between two
input facial point clouds based on Bayesian Coherent Point Drift (BCPD [89])
without optimization. This proposed method achieves a GMAP= 97.93%
with 3D FRS compared to the previous SOTA(Chapter 10) GMAP=81.61%.

• Based on the obtained results from the proposed methods for the given re-
search question, one could mention that it has largely been answered. How-
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ever, more work could be done to improve this area.
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Chapter 5

Article 1: Robust
Morph-Detection at Automated
Border Control Gate using Deep
Decomposed 3D Shape & Diffuse
Reflectance (RQ1)

Jag Mohan Singh, Raghavendra Ramachandra, Kiran B Raja and Christoph Busch.
Robust morph-detection at automated border control gate using deep decomposed
3D shape & diffuse reflectance. In 2019 15th International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS), Sorrento (NA), Italy, pp 106-
112. IEEE

5.1 Abstract
Face recognition is widely employed in Automated Border Control (ABC) gates,
which verify the face image on passport or electronic Machine Readable Travel
Document (eMTRD) against the captured image to confirm the identity of the
passport holder. In this paper, we present a robust morph detection algorithm that
is based on differential morph detection. The proposed method decomposes the
bona fide image captured from the ABC gate and the digital face image extrac-
ted from the eMRTD into the diffuse reconstructed image and a quantized normal
map. The extracted features are further used to learn a linear classifier (SVM)
to detect a morphing attack based on the assessment of differences between the
bona fide image from the ABC gate and the digital face image extracted from the
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passport. Owing to the availability of multiple cameras within an ABC gate, we
extend the proposed method to fuse the classification scores to generate the final
decision on morph-attack-detection. To validate our proposed algorithm, we cre-
ate a morph attack database with overall 588 images, where bona fide are captured
in an indoor lighting environment with a Canon DSLR Camera with one sample
per subject and correspondingly images from ABC gates. We benchmark our pro-
posed method with the existing state-of-the-art and can state that the new approach
significantly outperforms previous approaches in the ABC gate scenario.

5.2 Introduction
Face recognition systems (FRS) are widely deployed at border crossings, which
use Automated Border Control (ABC) gates. The deployment has ever increased
since member states of the International Civil Aviation Organization (ICAO) fol-
low ICAO’s specification 9303 and store a standardized digital face image in the
electronic Machine Readable Travel Document (eMRTD). However, FRS has shown
to be vulnerable with respect to morphed face images - a new image as a result of a
weighted linear combination of two input images, as shown in Figure 5.1. The gen-
erated morphed image challenges the FRS as it can be used to verify two unique
identities (individuals), defeating the FRS’s ability to verify unique subjects [90].
The challenge becomes severe as some countries issue the passport based on the di-
gital photo uploaded by the applicant, which can provide an opportunity to upload
a morphed image that can later be verified by an FRS [90, 2]. Several counter-
measures have been proposed for Morphing Attack Detection (MAD). MAD can
be broadly classified into No-Reference MAD (NR-MAD), which uses a single
image for MAD and Differential MAD (D-MAD), which uses an image pair that
includes a trusted live capture, and an image extracted from eMRTD. In addition,
both MAD methods (NR-MAD and D-MAD) do or do not anticipate potential arti-
facts that have been introduced in the image signal with an optional print and scan
process of the facial image [91]. In the rest of the paper, we present related work
in Section 5.3, our proposed algorithm in Section 5.4, followed by experimental
setup, and results in Section 5.5, and conclusions and future-work in Section 5.6.

5.3 Related Work
In this section, we review the related-work for D-MAD for which there are several
algorithms, such as using landmark shifts proposed by Damer et. al [1], texture-
descriptors based approach proposed by Scherhag et. al [2], and image subtraction
based approach proposed by Ferrara et. al [7]. The authors in [1] conduct a face
alignment using a common facial landmark detector [42] for each image and com-
pute a distance-vector subsequently from landmark locations to train an SVM-RBF
for morph detection. The authors in [2] also employ the face-alignment from [42],
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Subject1 Morphing Subject2

Figure 5.1: Digital morphing example from our database

followed by computing the vector differences between texture-descriptors such as
LBP [92], BSIF [93], or SIFT [94]. The vector difference is then used to train an
SVM-RBF for differential morph detection. One of the existing state-of-the-art
(SOTA) schemes presented by authors in [7] tries to invert the morphing process
using image subtraction. The authors observe that given the warping functions and
alpha value, one could perfectly demorph a morphed image. However, in a prac-
tical scenario, the warping functions, and alpha value are unknown, so the authors
obtain warping functions by face alignment, and prescribe α = 0.45 for best qual-
ity demorphing. The following are the limitations of current SOTA in differential
MAD, landmark shifts could occur due to pose changes, texture-descriptor fea-
tures would have reduced efficacy in the presence of lighting, pose, and print-scan
artifacts [90], and image subtraction methods would have reduced efficiency in the
presence of lighting, pose, and print-scan artifacts as shown in Figure 5.4 some of
which are also shown in [7].

In a real border control scenario, the subject is verified with the captured face
image from the ABC gate, which is compared against the image stored in the eM-
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Figure 5.2: Pipeline of our approach showing the fusion of scores from Camera1, Cam-
era2, Camera3 and Camera4 where each camera features are in-turn generated by fusion.
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RTD. This is what we modeled in our work. We leverage this to verify if the
image on eMRTD is morphed by looking at the 3D shape and reflectance for both
captured images from ABC and image within the eMRTD. Specifically, we look
at the normal-map and the diffuse reconstructed image, to devise a classifier that
can distinguish bona fide (non-morphed) images from morphed images. We as-
sert that the morphed image presents significantly inconsistent information within
the image as compared to the non-morphed image. It has further to be noted that
many ABC gates operate with multiple cameras, which enable us to reinforce the
decision with fusion approaches to detect a morphing attack in a better manner, as
demonstrated in our work. To the best of our knowledge, this is the first method
to explore the strengths of a multi-camera capture set-up in border control oper-
ations to detect the morphing attacks. To assert our approach, we create a new
database with bona fide images of 39 subjects in an ideal enrolment setting and
correspondingly the probe images of the same 39 subjects, which were captured
while crossing the ABC gate. The images from the 39 subjects are used to create
morphed images (90).

The key contributions of this work, therefore, can be summarized as:

• Presents a new database of morphed images and trusted live capture probe
images captured in a realistic border crossing scenario with ABC gates.

• Presents a new approach employing the inherent border crossing scenario
to detect the morphing attacks using a fusion of scores from a quantized
normal-map approach and diffuse reconstructed image characteristics.

• Presents an extensive evaluation of state-of-art D-MAD techniques to bench-
mark the proposed algorithm, and demonstrate the superiority of the pro-
posed algorithm.

5.4 Proposed Algorithm
In this section, we describe the proposed algorithm for robust morph detection at
an ABC gate. In our approach, the probe face image, which is captured at the ABC
gate, is compared with a face image from the eMRTD. The ABC gate face image
and the digital face image from the eMRTD would likely have intensity changes
due to lighting differences in the capture environments, pose changes due to the
capture subject interaction, image quality differences along with the additional
noises introduced in the print-scan process preceding the storing of a given digital
face image in the eMRTD. Given that these changes may not optimally help in de-
termining a morph attack, we formulate the problem of morphing attack detection
first by normalizing the pose changes in the image, further to which we compute
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Figure 5.3: Illustration of feature extraction and classification for each camera

the features for D-MAD. The pipeline of the proposed approach is depicted in Fig-
ure 5.2, where pose normalization is carried out first. Further to this, we extract the
features to learn a robust classifier, as shown in Figure 5.3 for each camera. Given
the availability of multiple cameras, we further propose a weighted sum-rule score
level fusion for scores from each camera. Each of the components of the proposed
method is further detailed, as provided in the subsequent sections.

5.4.1 Pose Normalization

We also do pose normalization using the method from authors in [42] as the face
images from ABC Gate could be in a non-frontal pose. The method we use for
pose normalization is based on the key-points which are automatically detected in
a face, and it makes the line joining the eye-centers horizontal.
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Subject	1	 Morphing Subject	2 Bona	fide Demorphing

a

b

c

Figure 5.4: Demorphing using Image Subtraction based technqiue by Ferrara et. al [7]
of subjects in different conditions fails especially in (b), and (c) where Bona fide Image
is from our dataset. Rows: Digital Images in (a) Bona fide Image captured in similar
lighting & (b), Print-Scan (Inkjet EPSON TM) Images (c). Results are based on our own
implementation.

5.4.2 Feature Extraction and Classification

Given the images are now normalized for pose using the method described in Sec-
tion 5.4.1, we proceed to extract the features. We, therefore, decompose an input
image I into diffuse reconstructed image I(p) and a normal map n(p), which rep-
resents the shape of the face. We choose SfSNet [95], as it can decompose a single
input image into the diffuse reconstructed image, normal-map, albedo-map ρ, and
2nd order spherical harmonic based lighting coefficients lnm. The diffuse recon-
structed image can be written as with second order spherical harmonics using [96]
as follows:

I(p) = ρr(n(p)) (5.1)

where r(n(p)) which is reflectance of the material, is given by

r(n(p)) =

n=2∑
n=0

n∑
m=−n

lnmrnm(n(p)) (5.2)

where lnm for n = 0 are used from the ambient coefficients identified in Sec-
tion 5.4.1.
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Figure 5.5: Image decomposed into Normal-Map and Reconstruction (Diffuse Recon-
structed Image)

As it can be observed from Figure 5.5, the diffuse reconstructed image (pixel color
differences are highlighted), and the normal-map (especially around the eye, and
the nose regions) help to distinguish the bona fide and morph images, while in the
non-decomposed domain they look quite similar.

Feature Extraction

We extract the features as depicted in the Figure 5.3 within the proposed algorithm
shown in Figure 5.2. Owing to the robust nature of Alexnet [97] in obtaining reli-
able features, we employ the Alexnet to derive features from the diffusely recon-
structed image. Given that the image is diffuse, we assert that it is closer in feature
space than input image I . We use fc7 layer of Alexnet for extracting features res-
ulting in a feature vector of 4096 elements on which we compute reconstruction-
loss as L1-Loss. We compute a quantized normal map of 21-bits from the normal
map, which is output by SfSNet [95] as quantization would result in the normal
map being robust to small variations. This is followed by taking the simple differ-
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ence as L1-Loss.

Feature Classification

Given the set of features, we train a linear SVM for diffuse reconstruction-loss,
and normal-loss. The scores are fused by weighted fusion to generate the score for
each camera. This is followed by a weighted sum-rule fusion of scores from each
camera to achieve the final score, which can be used for the detection of morph, as
shown in Figure 5.2. The weights in both fusion steps are chosen based on a greedy
search optimization algorithm [98]. The weights chosen for each camera are 0.7
for the diffuse reconstructed image classifier and 0.3 for the normal-map classifier.
The weights chosen for the cameras are as follows, Camera1 0.2, Camera2 0.3,
Camera3 0.2, and Camera4 0.2.

5.5 Experimental Setup & Results
In this section, we provide details on our database and the corresponding exper-
imental protocols, following the results obtained. We report the performance of
the proposed D-MAD algorithm using the following metrics defined in the Inter-
national Standard ISO/IEC 30107-3 [99] described as follows:

• Attack Presentation Classification Error Rate (APCER), which is the mis-
classification rate of morph attack presentations.

• Bona fide Presentation Classification Error Rate (BPCER), which is the mis-
classification of bona fide presentation as morphs.

We also report Detection Equal Error Rate (D-EER %) and detection error trade-
off curves, to examine the rate of change of mis-classification errors.

5.5.1 Morph ABC Database

To simulate the operational scenario with attacks in the enrolment and trusted
probe images from ABC gates, we created a new database in this work. We want
to point out that in a realistic operational scenario, the digital image in the eMRTD
may be bona fide or morphed. First, we generate a set of enrolment images for 39
subjects captured in a realistic studio setting with multiple images using a Canon
DSLR camera of 21 megapixels. Secondly, we capture the face images of the
same 39 subjects in an ABC gate using a real-world equipment [100]. We employ
a single image per subject from DSLR images as a bona fide passport image and
treat the images, which were captured from the ABC Gate with four different cam-
eras (one sample each) as bona fide probe images. Employing another session of
DSLR images captured from the enrolment set up, we create a morphed passport
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image dataset using the images from 39 subjects and the approach and conditions
mentioned in work by Raghavendra et al. in [90] specifically subjects not wearing
glasses, and using the same gender, and ethnicity. The morphed images and bona
fide images are printed and scanned using EPSON XP-860 Printer, and Scanner.

Bona fide Passport Bona fide all Morphed Passport
ABC Gate Cameras

Train 19 237 52
Test 20 222 38

Bona fide per ABC Gate Camera
Camera1 Camera2 Camera3 Camera4

Train 58 64 58 57
Test 57 63 49 53

Table 5.1: Dataset Details

Performance Protocol: In D-MAD, as we need two images for morph detection,
we consider the bona fide passport images v/s bona fide gate images as the genu-
ine class samples, and morph passport image v/s bona fide gate image as the at-
tack class samples. We now go into details of the number of scores generated
during training as follows: From the enrolment, we have 19 bona fide passport
images, complemented with 52 morphed passport images. Further from Cam-
era 1 in the ABC Gate we have 58 bona fide probe images, which results in
19 × 58 = 1102 genuine scores, and 52 × 58 = 3016 attack scores, Camera2
results in 19 × 64 = 1216 genuine scores, and 52 × 64 = 3328, Camera3 results
in 19 × 58 = 1102 genuine scores, and 52 × 58 = 3016, and Camera4 results
in 19 × 57 = 1083 genuine scores, and 52 × 57 = 2964 attack scores. The
number of scores generated during testing is as follows: From the enrolment 20
bona fide passport images, complemented by 38 morphed passport images. From
Camera1 in the ABC Gate we have 57 bona fide probe images, which results in
20 × 57 = 1140 genuine scores, and 38 × 57 = 2166 attack scores, Camera2
results in 20 × 63 = 1260 genuine scores, and 38 × 63 = 2394, Camera3 results
in 20 × 49 = 980 genuine scores, and 38 × 49 = 1862, and Camera4 results in
20× 53 = 1060 genuine scores, and 38× 53 = 2014 attack scores. During fusion
of scores of the four cameras, we reach 980 genuine scores, and 1862 attack scores
as this are the minimum number of genuine and attack scores available in all four
cameras during testing.

5.5.2 Analysis of Results

Table 5.2 presents the results of the proposed method and compares it with two
state-of-the-art approaches including Landmark Shifts based Signed Distance pro-
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Method Cam EER BPCER20 BPCER10
Signed 1 43.7±0.2 90.5±0.3 83.4±0.3
Distance [1] 2 46.7±0.3 93.5±0.4 87.8±0.2

3 45.8±0.2 92.7±0.3 86.3±0.7
4 45.1±0.3 91.4±0.4 82.3±0.3
Fused 42.6±0.2 90.0±0.1 81.5±0.3

LBP & 1 41.7±0.4 81.1±0.6 72.4±1.0
SVM [2] 2 42.7±0.5 82.5±0.6 73.5±0.8

3 38.1±0.5 83.3±0.7 71.5±0.6
4 39.6±0.3 79.6±0.5 71.1±0.4
Fused 28.5±0.4 67.2±0.6 54.2±0.8

Proposed 1 18.1±0.1 36.3±0.7 27.1±0.3
Method 2 19.7±0.4 34.7±0.7 28.3±0.7

3 19.1±0.1 35.9±0.1 27.3±0.1
4 18.8±0.1 36.1±0.1 27.5±0.3
Fused 8.6±0.1 13.9±0.4 7.5±0.1

Table 5.2: Signed Distance by Damer et al. approach [1] using author’s implementation,
LBP and SVM by Scherhag et. al [2], and the proposed method where BPCER20 is
BPCER@APCER=5%, and BPCER10 is BPCER@APCER=10%

posed by Damer et al. [1] and Texture-Descriptors based LBP-SVM by Scherag
et. al [2]. As it can be noted from the Table 5.2, the proposed method outperforms
existing SOTA, we achieve an EER of 8.6 ± 0.1 compared to best EER of SOTA
of 28.5 ± 0.4. The results can also be seen in Figure 6.5, which presents the De-
tection Error Trade-off Curves, where it can be noted that fusion of scores leads to
further improvement for the proposed algorithm compared to the SOTA. Despite
outperforming the SOTA, we note that our proposed approach still has moderate
deficiency from single cameras, as shown in Table 5.2. We make the following
observations from the results:

• One can observe that in similar lighting capture environments, as shown in
Figure 5.1 (row (a)), Image Subtraction based technique proposed by authors
in [7] performs well, and one can generalize this argument texture descriptor
based method report by authors in [2]. However, the same cannot be said for
the technique proposed by authors in [1] as landmark shifts could happen
due to change in pose.

• Figure 5.1 shows the degrading performance of the Image Subtraction based
method proposed by authors in [7] in (rows (b), and (c)) which have lighting
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Figure 5.6: DET Curves for (a) LBP-SVM [2], (b) Signed-Distance [1], and (c) the pro-
posed method. DET Curves are for Scores from Camera1, Camera2, Camera3, Camera4,
and Weighted Sum-Rule Fusion of scores from these individual cameras.

changes and print-scan artifacts. The advantage of using features from a
diffuse reconstructed image which contains lower-order lighting terms, and
normal-map are shown in Figure 5.5.

• The proposed method achieves the best D-EER compared to the existing
SOTA mainly due to two factors, the use of a diffuse reconstructed im-
age that removes the higher-order lighting components and leads to a linear
light model without cast shadows as pointed out by Basri et. al [96, 101].
The second factor is the use of normal-map, which on integration gives
depth-map [102], and depth-map signifies the 3D shape of the bona fide
sample. The 3D shape, and consequently normal-map of the bona fide
sample, should be preserved across different cameras.

5.6 Conclusion & Future Work
In this paper, we presented a novel and robust scheme to perform D-MAD in
the presence of lighting, pose, and print-scan artifacts. We have constructed a
new database reflecting the real-life border crossing scenario and have validated
the results on our collected database. Our collected database models the real-life
print-scan artifacts in the passport image and the use of camera images from the
ABC gate. The proposed method outperforms the existing SOTA methods for D-
MAD mainly due to the combined effect of pose normalization, use of a diffuse-
reconstructed image, and normal map. In future works, the proposed algorithm
shall be tested on a large scale database.
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Chapter 6

Article 2: Reliable Face
Morphing Attack Detection in
On-The-Fly Border Control
Scenario with Variation in Image
Resolution and Capture Distance
(RQ1)

Jag Mohan Singh, and Raghavendra Ramachandra. Reliable Face Morphing At-
tack Detection in On-The-Fly Border Control Scenario with Variation in Image
Resolution and Capture Distance, In IEEE International Joint Conference on Bio-
metrics (IJCB)) 2022), Abu Dhabi, UAE, pp. 1-10, IEEE

6.1 Abstract
Face Recognition Systems (FRS) are vulnerable to various attacks that are per-
formed both directly and indirectly. Among these attacks face morphing attacks
are highly potential in deceiving both automatic FRS and human observers and
indicate the severe security threat especially in the border control scenario. In
this work, we present a face morphing attack detection especially in the On-The-
Fly (OTF) Automatic Border Control (ABC) scenario. We present a novel al-
gorithm for Differential-MAD (D-MAD) based on the spherical interpolation and
hierarchical fusion of deep features computed from six different pre-trained deep
Convolutional Neural Networks (CNNs). Extensive experiments are carried out
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Figure 6.1: Illustration showing eMRTD presentation at an ABC Gate and D-MAD based
decision.

on the newly generated face morphing dataset (SCFace-Morph) based on the pub-
licly available SCFace dataset by considering the real-life scenario of Automatic
Border Control (ABC) gates. Experimental protocols are designed to benchmark
the proposed and state-of-the-art (SOTA) D-MAD techniques for different camera
resolutions and the different capture distances. Obtained results have indicated the
superior performance of the proposed D-MAD method when compared with the
existing methods.

6.2 Introduction

Algorithm Algorithm Classification Brief Description
Landmark [1] Landmark Based Directed Landmark shifts used for classification

Feature-based [2] Feature difference based Feature Difference used for classification
Fusion of classifiers based [103] Fusion of classifiers Fusion of hand-crafted (LBPH) and CNN-based (TDCNN) features

FD-GAN [104] FD-GAN Image Demorphing using symmetric dual GAN
LRP [105] LRP Layer-Wise Relevance Propagation based on pixel-wise decision

Siamese [106] Siamese Architecture Siamese Architecture based on Inception ResNET v1 with weights from VGGFace2
Mutual Information Maximization [107] Disentanglement Disentaglement of Appearance and Landmarks based on CNN

Demorphing [108] Image Subtraction Inverting Morphing Equation with image-pair, and known correspondences and α

Fusion of CNN features [9] Fusion of Classifiers Shape (Normal-Map) and Reflectance (Diffuse Reconstruction) Decomposition: SfS-Net and Alexnet
DFR [109] DFR Signed Distance of Arcface and Facenet features

Demorphing [110] Demorphing Autoencoder-based demorphing and face simlarity analysis
Siamese [111] Siamese Siamese for D-MAD trained on wavelet basis chosen using Kullback-Liebler Divergence (KLD)

Double Siamese [112] Double Siamese Double-Siamese based D-MAD, indentity-based and artifact-based
GAN [113] GAN Conditional Identity Disentaglement using Conditional GAN for D-MAD

Legacy [114] Legacy Legacy Image and Face Verification Engine score based D-MAD

Table 6.1: State-of-the-art D-MAD techniques

Face biometrics are widely deployed in various high-security applications includ-
ing border control by considering usability, high accuracy, and non-intrusive cap-
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ture. The high accuracy of the face biometrics can be attributed to the advances
in deep-learning-based FRS methods [27, 28, 22]. The exponential growth in face
recognition applications has also increased the vulnerability to various attacks.
Among different types of attacks on the Face Recognition Systems (FRS), the
morphing attacks have mainly gained much interest due to their vulnerability in
the border control scenario. The morphing process will perform the blending op-
eration on the given face images (from contributory data subjects) to generate a
single Face Morphing Image (FMI). Thus, the generated FMI includes the facial
properties from all the contributory data subjects, thus demonstrating the vulnerab-
ility of both automatic FRS and human observers [115]. Since the morphing face
images could be used to obtain the electronic Machine Readable Travel Document
(eMRTD) or e-passports, the malicious person can exploit this process to cross the
border through Automated Border Control (ABC) gates.

Face Morph Attack Detection (MAD) algorithms are extensively addressed in the
biometric literature [116]. Available MAD algorithms can be classified into two
main categories [116] (a) Single image based-MAD (S-MAD), where morph at-
tacks are detected based on a single image (b) Differential MAD (D-MAD) al-
gorithms, where morphing attacks are detected based on two or more images.
Among these two approaches, the D-MAD-based MAD techniques have attracted
biometric researchers by considering their application in the border control scen-
ario. Figure 6.1 illustrates the D-MAD scenario in the border control application.
The early work on the D-MAD approach is based on the face demorphing [108]
which was followed by several existing methods that are summarised in Table 6.1.
The D-MAD approaches are developed using both conventional hand-crafted fea-
tures (such as LBP, HoG, LPQ) and deep features derived from pre-trained CNNs
based on natural and face images [116].

The deep learning approaches based on GAN, Siamese and Double Siamese have
also been proposed for D-MAD. The benchmarking of several existing D-MAD
techniques is presented in [116, 117] on the data captured using ABC gates indic-
ates the severity of the problem by showing the degraded results. The ABC gate
scenarios used in [117] are based on the one-stop such that the data subject will
stand still in front of the ABC gate camera. Thus, this scenario will generate con-
strained images less prone to the pose and environmental (external lighting) con-
ditions. In [9], the ABC scenario based on the ’on-the-fly’ face capture, and 3D
information based D-MAD method was introduced. Since ’on-the-fly’ (OTF) face
capture will result in variations in face pose, expression, and lighting, the D-MAD
techniques based on face demorphing and conventional features have indicated the
degraded performance [9]. The experimental results with different lighting condi-
tions indicate the further degradation of the 3D based D-MAD results. However, it
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is important to note that, the existing D-MAD literature did not consider the option
of different cameras with varying capture resolution and capture distance impact-
ing the detection performance. Since the D-MAD techniques are expected to work
with different ABC gates with varying camera resolutions, it is necessary to devise
a suitable D-MAD method for this scenario. Thus, in this work, we are motivated
to consider the OTF ABC gate scenario with the various camera resolutions and
different capture distances.

This work proposes a novel algorithm for a robust D-MAD especially in the OTF
ABC Gate scenario with varying image resolutions and capture distances. To this
extent, we introduce a novel D-MAD algorithm based on spherical interpolation
and the hierarchical fusion of deep features to detect morphing attacks. The deep
features are extracted using six different pre-trained deep CNN networks that are
combined using a hierarchical fusion at both score level and feature level. Extens-
ive experiments are carried out on the newly created database SCFace-Morph us-
ing the publicly available SCFace [118] database with 130 data subjects captured
using both controlled and uncontrolled scenarios with different resolution cam-
eras and different capture distances. We construct the new face morphing dataset
SCFace-Morph dataset using landmark-based face morphing tools [119] and we
also re-digitize (or print-scan) the face morphing images to represent the real-life
scenario of the border control.

The following are the main contributions of our work:

• Proposed a novel D-MAD algorithm based on spherical interpolation and
hierarchical fusion of deep features for robust face morphing detection.

• Introduced a new face morphing dataset (SCFace-Morph) constructed using
the publicly available dataset (SCFace [118]) for both digital and Print-Scan
(PS) morphing attacks. To the best of our knowledge, this is the first work
exploring morphing attack detection on the different camera resolutions and
at various capture distances suitable for the OTF ABC scenario. Further,
the database will be made available to the semi-public together with the
proposed method for the complete reproducible of the results presented in
this paper.

• Extensive experiments are carried out to benchmark the performance of the
proposed method with the SOTA techniques.

The rest of the paper is organized as follows: we present the proposed method
in Section 6.3, experiments and results are discussed in Section 6.4 and finally
conclusions and future work is discussed in Section 6.5.
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Algorithm 1: Proposed Method
Input: Face Images I1 and I2

Output: (FS (Fused-Score))

1: Compute the features from pre-trained networks for Image (I1).
2: for j ← 1 to 6 do
3: f j

1 ← feature from pre-trained network.
4: end for
5: Compute the features from pre-trained networks for Image (I2).
6: for j ← 1 to 6 do
7: f j

2 ← feature from pre-trained network.
8: end for
9: Assign features to Groups as follows:

10: G1← {f j
i } where i ∈ {1, 2} and j ∈ {1 . . . 3}

11: G2← {f j
i } where i ∈ {1, 2} and j ∈ {4 . . . 6}

12: Compute the feature difference
13: for j ← 1 to 6 do
14: DF j ← f j

1 − f j
2

15: end for
16: Train Linear-SVM using difference features and compute scores
17: for j ← 1 to 6 do
18: Sj ← L-SVM(DF j)
19: end for
20: Use the pre-computed pair of optimal features (x1, y1) and (x1, z1) for G1

and (x2, y2) and (x2, z2) for G2. They are computed once using
Equation 6.1.

21: Compute SLERP (Equation 6.3.2) based scores as follows where i denotes
Group Index and j denotes the pair of optimal SLERP features inside it:

22: for i← 1 to 2 do
23: for j ← 1 to 2 do
24: SRP j

i ← SLERP(fxj
i , fyj

i )
25: end for
26: Compute difference of SLERP features as SRPDi ← SRP 1

i − SRP 1
2

27: Compute score using Si+7 ← L-SVM(SRPDi)
28: end for
29: Generate final score by fusion using sum-rule as (FS =

∑8
j=1 Sj)
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Figure 6.2: Illustration of the proposed Hybrid SLERP for Differential Morph Attack
Detection (D-MAD).

6.3 Proposed Method
Figure 6.2 shows the block diagram of the proposed method for robust D-MAD,
especially in the OTF border control scenario. The proposed method is designed
effectively to capture the variation of the face quality in terms of environmental
changes due to lighting, pose, and expression that are normally encountered with
the probe image by introducing a hierarchical fusion of deep features. The novel
aspect of the proposed method is the feature interpolation fusion using Spherical
Linear Interpolation (SLERP) [120] tailored to D-MAD. The proposed method
will take two images I1 and I2 corresponding to the enrolment (from e-passport)
and the trusted capture (ABC Gate) face image respectively to detect the morphing
attack on enrolment face image.

The primary motivation for using SLERP [120] is that it can perform the exact in-
terpolation of quaternion vectors (representing a 3D rotation) on a 3D sphere. The
deep features obtained for a face image are assumed to lie on a high-dimensional
hypersphere [121]. Thus, linear interpolation of deep features would lie at a point
on the line joining them, but the actual interpolation should lie on the hypersphere
defining the face manifold. Thus, there would be an error due to linear inter-
polation of deep features when compared to spherical interpolation using SLERP,
which would interpolate features exactly on the hypersphere (which is also men-
tioned by Buss et al. [122] for 3D Sphere). This fact is illustrated in the Figure 6.3
where the error is highlighted in red. Hence, we are motivated to use SLERP to
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Figure 6.3: Illustration comparing SLERP and Linear Interpolation (LERP) where the
error is highlighted in red.

interpolate deep features obtained corresponding to the face image.

Owing to the availability of the small size face morphing datasets, the proposed
method is designed using pre-trained deep CNN networks. Hence, we propose a
hierarchical fusion framework to effectively capture the complementary informa-
tion from different deep features. The proposed D-MAD method can be structured
in two functional blocks: (a) Deep feature extraction and (b) Hierarchical fusion.

6.3.1 Deep feature extraction

In this work, we have employed six different pre-trained deep networks that are
trained on the ImageNet dataset [123]. The selected networks includes Alexnet [97],
Resnet 50 [124], Resnet 101 [124], Xception [125], and VGG16 [126] and
VGG19 [126]. These networks are selected based on their performance and gen-
eralization for transfer learning in various applications, including morph attack
detection [116]. Further, these six network have indicated a good face morph-
ing detection performance on various face morphing datasets [127]. Since the
proposed Spherical Linear Operator for feature interpolation requires the features
to have identical dimensions, we need to choose the feature extraction from the
pre-trained layers having identical dimensions. Hence, we made two groups of
pre-trained networks where the first group (G1) consists of VGG-19 (fc7), VGG-
16 (fc7), and Alexnet (fc7) such that each network in this group will result in a
feature dimension of 4096. The second group (G2) consists of Xception (average
pool), Resnet101 (pool5), and Resnet50 (average pool) and each of these networks
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will result in a feature dimension of 2048. Thus, given the face image I1 and I2
from both the passport and the trusted environment (e.g., Automatic border Con-
trol Gates (ABC)), we compute the features from all six different CNN networks
independently. Let the computed feature be: Fi = f i

1, f
i
2, ∀i = 1, . . . , 6. Where f i

1

indicates the features from the passport image (or enrolment) corresponding to ith

CNN network and f i
2 corresponds to the feature from trusted source corresponding

to ith CNN network.

6.3.2 Hierarchical fusion

In the next step, we propose the hierarchical fusion of the features extracted from
six different pre-trained deep CNN networks to achieve robust face morph detec-
tion performance. The proposed fusion scheme is implemented with both score-
level and feature-level fusion of the features extracted from deep CNN networks.
The score fusion is designed with the conventional score level fusion in which
the comparison scores obtained using Linear Support Vector Machines (L-SVM)
based on the feature difference vector from six different CNN networks are com-
bined using sum rule. Given the face images I1 and I2, let the computed features
be f i

1 and f i
2 ∀i = 1, . . . , 6. The feature difference (or residual feature com-

putation) is performed individually for the pre-trained network DF i = f i
1 − f i

2

that is then provided to L-SVM to compute the corresponding comparison score
Si, ∀i = 1, . . . , 6. The second step is designed to perform the feature level fusion
using Spherical Linear Operator (SLERP) [120]. As discussed earlier in Section
6.3.1, the feature interpolation requires the identical dimension of features. There-
fore, we have grouped six different networks into two main groups, and in each
group, we have three different networks. In this next step for each group, we
compute the optimal basis pairs for SLERP instead of using all possible random
combinations. In this way, our approach can reduce the computation and combine
the complementary features. Further, the feature combination is based on feature
correlation computed using residual features to achieve robustness and general-
ization. Thus, given the face image I1 and I2, we compute the residual feature
corresponding to G1 which is denoted as DF 1, DF 2 and DF 3. In the next step,
we compute the optimal basis pair from the triplet that can represent the comple-
mentary information to perform the residual feature combination using the SLERP
method. We derive the optimal basis by computing the minimum correlation on
the non-overlapping pairs generated from the given triplet, and this is indicated in
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Equation6.1.

Op = argmin

{
ρ(DF 1, DF 2) + ρ(DF 1, DF 3),

ρ(DF 2, DF 1) + ρ(DF 2, DF 3),

ρ(DF 3, DF 1) + ρ(DF 3, DF 2))

}
(6.1)

where ρ indicates the correlation operation and Op indicates the optimal pairs of
features. Thus,

S = {1, 2, 3}
Op = {{DF x, DF y}, {DF x, DF z}}
s.t.(x ∈ S) ∧ (y, z ∈ S \ i) ∧ (y ̸= z) (6.2)

where, x is the index of the optimal pairs, from the triplet 1, 2, 3 of features and
y and z are the indices of the remaining features. The first optimum pair be
O1

p = {DF x1, DF y1} and second optimum pair be: O2
p = {DF x1, DF z1}. In

the next step, we compute the SLERP feature interpolation independently for each
optimum pair Os

p, ∀s = 1, 2 as follows:

Slerp1(DF x1, DF y1, t) =

sin((1− t)Ω)

sin(Ω)
×(DF x1)

+
sin((t)Ω)

sin(Ω)
×(DF y1) (6.3)

where, t is the interpolation factor which is set to 0.5 as recommended in [120],
and Ω is the angle between the difference features DF x1 and DF y1 and can be
computed using inverse cosine on dot-product as Ω = arccosDF x1 ·DF y1. We
followed the similar procedure with O2

p to compute the Slerp2(DF x1, DF z1, t).

In the next step, we perform the difference between the computed SLERP features,
which is then used to compute the comparison score S7 using L-SVM for G1. The
procedures mentioned above are followed with G2 to compute the comparison
score S8. Finally, we perform the score level fusion using the sum rule to combine
the scores computed from both individual CNNs and from SLERP interpolated
feature differences to obtain the final score: FS =

∑8
i=1 Si to make the final

decision. The Algorithm of the proposed method is presented in 1.
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Figure 6.4: Example face images from SCFace-Morph Dataset (SCFM)

6.4 Experiments and Results
In this section, we discuss the details of the newly generated face morphing dataset
based on the SCFace dataset [118], performance evaluation protocols, and quant-
itative performance of the proposed D-MAD method.

6.4.1 SCFace-Morph Dataset (SCFM)

This work introduces a new dataset reflecting the OTF ABC systems with dif-
ferent camera resolutions and capture distances. We have employed the SCFace
dataset by considering its applicability to real-life OTF face recognition with vary-
ing resolutions of the cameras and capture distances. The SCFace database is
comprised of 130 data subjects that are captured with eight different cameras and
three different distances, which are denoted as Distance-1 (D1) is 4.2m, Distance-
2 (D2) is 2.6m, and Distance-3 (D3) is 1.0m. Face biometrics are captured as
the data subjects walk (without a stop) through cameras held still with the frontal
face capture. Since each data subject walks through these cameras, the captured
data will be of unconstrained conditions with varying face poses that can repres-
ent the real-life ABC scenario. To effectively utilize the SCFace dataset for the
face morphing application, we carefully selected the 77 unique data subjects by
considering the image quality following ICAO standards [128]. Further, to re-
flect the real-life scenario of e-passport and ABC gates, we have considered only
five different cameras that can capture visible images and high-quality mug shots.
The Cam1 is of resolution 540 TVL, Cam2 is of resolution 480 TVL, Cam3 is of
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resolution 350 TVL, Cam4 is of resolution 460 TVL, and Cam5 is of resolution
480 TVL. Thus, the mugshot images represent the face images in the e-passport,
and images captured using five different cameras and three different capture dis-
tances represent the trusted capture in the D-MAD algorithm evaluation. Next, we
generate the face morphing dataset, the SCFace-Morph database (SCFM), using
a mugshot images from the SCFace dataset. We have selected the neutral face
pose image corresponding to each data subject to perform the face morphing using
the landmark-based method from [119] by considering its attack potential. Before
performing the morphing, the whole dataset of 77 data subjects is divided into two
independent sets with 56 subjects in the training set and 21 subjects in the testing
set. The face morphing dataset is generated following the guidelines presented
in [129] that resulted in 92 face morphing images in the training set and 28 face
morphing images in the testing set. The total number of probe image samples cor-
responding to the training set is 840 and the testing set is 315. The full statistics of
the SCFace-Morph dataset are summarized in Table 6.2 which specifies the num-
ber of bona fide image samples, probe image samples for each camera and capture
distance and the generated face morphing images. Figure 6.4 shows the example
face images from SCFace-Morph database dataset. To reflect the real-life scenario
of border control, we also generate the re-digitized version of both morphing and
bona fide mugshot images by performing print and scan operations. We have used
Ricoh IM C6000 Color Laser multi-function printer and the scanner from same
printer. Facial images are scanned to have 300 dpi to match the requirement of
ICAO standards [128]. Thus, the newly generated database has both digital and
print-scan (PS) medium.

Digital Images
Bona fide Passport Probe Images All cameras and Distances Morphed Passport

Train 56 840 92
Test 21 315 28

Probe Images per Camera and Distance
Distance1 Distance2 Distance3

Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5
Train 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56
Test 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

Table 6.2: Statistics of SCFace-Morph Dataset (SCFM)

6.4.2 Performance evaluation Protocols

To effectively benchmark the performance of the proposed and existing D-MAD
methods, we propose three different performance evaluation protocols by consider-
ing data medium (Digital/PS), camera resolution and capture distances. Protocol
1 is designed to analyze the performance of the D-MAD techniques with both
intra and inter medium experiments independently performed on camera and cap-
ture distance. Thus, Protocol 1 will benchmark the generalization of the D-MAD
methods for the different morph data medium and their performance impact on
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Figure 6.5: DET Curves for Protocol 2(a) Train: Digital and Test: Digital (b) Train: Print
Scan and Test: Print Scan (c) Train: Digital and Test: Print Scan (d) Train: Print Scan and
Test: Digital

Figure 6.6: Illustration showing D-EER for Protocol 3 for DFR [8], 3D Shape and Re-
flectance [9], and Proposed Method

the image resolution and capture distance. Protocol 2 is designed to benchmark
the performance of the D-MAD techniques on intra and inter medium irrespect-
ive of the camera resolution and the capture distance. Thus, this protocol will use
all camera and distance data to train and test the D-MAD methods. Hence, this
protocol will indicate the generalization performance for a different medium. Pro-
tocol 3 is designed to benchmark the performance of the D-MAD for individual
cameras and capture distance. The D-MAD algorithms are trained and tested in
this protocol by merging the Digital and PS data independently for each camera
and capturing distance. This protocol will reflect the real-scenario testing as all
type of data is used of training the D-MAD algorithm. This protocol will indicate
the generalisation for different camera resolution and capture distance irrespective
of data medium.

6.4.3 Experimental results

In this section, we present the quantitative results of the proposed method together
with SOTA algorithms on D-MAD, namely Deep Feature Representation (DFR)
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Algorithm: Distance1 Distance2 Distance3
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital, Test: Digital

DFR [8] 23.5 23.5 28.6 20.2 23.5 28.6 28.6 28.6 24.4 28.6 33.6 24.4 28.6 28.6 23.5
3D Shape and Reflectance [9] 14.3 23.5 14.3 15.2 20.2 19.3 24.4 32.7 23.5 19.3 23.5 24.4 19.3 23.5 23.5

Proposed Method 0.9 5.1 0.0 8.3 5.1 5.2 0.9 5.1 8.3 9.2 9.2 4.2 5.1 5.1 9.2
Train: Print Scan, Test: Print Scan

DFR [8] 28.6 29.5 28.6 28.6 28.6 42.9 37.8 33.6 33.6 27.7 52.1 37.8 38.7 42.0 47.9
3D Shape and Reflectance [9] 19.3 23.5 42.0 23.5 23.5 19.3 20.2 33.6 27.7 23.5 28.6 32.7 23.5 28.6 23.5

Proposed Method 10.1 14.3 15.2 14.3 9.2 18.5 18.5 14.3 19.3 15.2 19.3 14.3 13.4 19.3 19.3
Train: Digital, Test: Print Scan

DFR 28.6 28.6 28.6 32.7 29.5 33.6 34.5 33.6 32.7 28.6 42.9 32.7 28.6 37.8 33.6
3D Shape and Reflectance 23.5 37.8 32.7 29.5 28.6 19.3 38.7 28.6 28.6 37.8 27.7 28.6 24.4 27.7 27.7

Proposed Method 28.6 23.5 28.6 29.5 29.5 32.7 24.4 28.6 37.8 28.6 33.6 33.6 34.5 37.8 33.6
Train: Print Scan, Test: Digital

DFR [8] 28.6 29.5 28.6 28.6 28.6 47.0 28.6 23.5 29.5 23.5 37.8 24.4 28.6 32.7 47.0
3D Shape and Reflectance [9] 24.4 33.6 42.9 33.6 32.7 27.7 28.6 24.4 23.5 27.7 32.7 29.5 29.5 28.6 24.4

Proposed Method 32.7 23.5 37.8 33.6 33.6 33.6 37.8 33.6 37.8 37.8 42.9 33.6 33.6 34.5 23.5

Table 6.3: Quantitative results of proposed method and SOTA on Protocol 1

Algorithm: Train: Digital Train: Print Scan Train: Digital Train: Print Scan
Test: Digital Test: Print Scan Test: Print Scan Test: Digital

D-EER (%) BPCER @ APCER = D-EER (%) BPCER @ APCER = D-EER (%) BPCER @ APCER = D-EER (%) BPCER @ APCER =
5%) 10%) 5%) 10%) 5%) 10%) 5%) 10%)

DFR [8] 27.1 69.5 56.8 34.7 93.3 89.2 34.3 89.2 84.1 30.9 84.1 67.3
3D Shape and Reflectance [9] 19.4 45.4 32.7 19.4 50.2 36.2 27.6 75.2 60.6 23.8 57.5 38.7

Proposed Method 3.4 3.2 0.6 11.5 29.8 13.3 26.0 68.3 52.1 32.4 59.4 47.6

Table 6.4: Quantitative results of proposed method and SOTA on Protocol 2

Algorithm: Distance1 Distance2 Distance3
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital and Print Scan Test: Digital and Print Scan

DFR [8] 32.7 32.7 32.7 28.6 30.7 35.7 32.7 30.7 35.7 35.7 40.8 42.9 32.7 32.7 37.8
3D Shape and Reflectance [9] 23.5 35.7 24.0 26.0 26.0 28.1 26.0 24.0 24.4 29.0 24.0 28.6 21.4 21.0 21.4

Proposed Method 6.7 7.6 9.7 7.6 7.6 7.1 7.6 9.7 12.2 7.6 11.8 7.6 7.6 7.1 7.1

Table 6.5: Quantitative results of proposed method and SOTA on Protocol 3

[109] and 3D Shape and Reflectance [9]. We choose the DFR method by consid-
ering its robust performance on the NIST FRVT benchmark [130] and 3D Shape
and Reflectance is selected by considering its application in the OTF ABC based
face morphing detection. The quantitative performance of the D-MAD techniques
is presented using the ISO/IEC metrics [131] namely the ´´Attack Presentation
Classification Error Rate (APCER (%)), which defines the proportion of attack
images (face morphing images) incorrectly classified as bona fide images and the
Bona fide Presentation Classification Error Rate (BPCER (%)) in which bona fide
images incorrectly classified as attack images are counted [131] along with the De-
tection Equal Error Rate (D-EER (%))´´ [132]. Table 6.3 indicates the quantitative
performance of the D-MAD techniques on Protocol 1. Based on the obtained res-
ults, the proposed method has indicated improved results when the medium is pre-
served during training and testing (Intra evaluation). Further, the proposed method
has indicated the best performance in the intra evaluation protocol irrespective of
the cameras and capture distances. When the medium changes during training and
testing (inter evaluation), the proposed method has indicated improved perform-
ance when training is performed on Digital and testing is performed on Print Scan.
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The degraded performance of the proposed method is noted primarily in the inter
evaluation when print-scan data is used for training, and digital data is used for
testing. This can be attributed to the limitation of the proposed method to gener-
alization, especially with the different image quality (because the quality of print-
scan is different from that of digital) that might be due to the lack of generalized
features extracted from six different pre-trained CNNs. In general, the proposed
D-MAD method has better performance than the SOTA methods on Protocol 1.

Table 6.4 indicates the quantitative performance of the D-MAD techniques on Pro-
tocol 2, which is shown as DET curves in Figure 6.5. It can also be noted in
this protocol that the proposed method has indicated improved performance when
compared with the existing methods. The proposed method shows the best per-
formance in the intra evaluation protocol and comparable performance with the
inter evaluation protocol. The results indicate that the proposed method is robust
to both camera resolutions and capture distances.

Table 6.5 shows the performance of the proposed method on Protocol 3. Based
on the obtained results, it can be noted that the proposed method has indicated
the best performance on both cameras and different capture distances. Further,
the performance of the proposed method is not influenced by the camera type and
capture distance. Figure 6.6 graphically illustrates the D-EER performance of the
D-MAD techniques on Protocol 3.

Based on the series of experiments performed, it can be noted that the D-MAD
algorithms are generally influenced by the camera resolution and the capture dis-
tance. Further, the data medium will strongly influence the performance of the
D-MAD algorithms in the unconstrained ABC scenario.

6.5 Conclusions and Future-Work
In this paper, we have presented a novel method for robust D-MAD in the ABC
gate scenario. The proposed method is developed based on the six different pre-
trained deep CNN combined using hierarchical fusion. The novelty of the pro-
posed method is in the use of spherical interpolation computed by SLERP to per-
form the residual feature fusion. Further, the hierarchical fusion is carried out
using both score and feature level to achieve the robust D-MAD. Extensive ex-
periments on the newly generated face morphing dataset (SCFM) based on the
publicly available SCFace database. The performance of the proposed method and
the existing techniques are extensively evaluated using three different protocols.
The evaluation protocols are designed to benchmark the D-MAD performance on
the different camera resolutions and the capture distance. The obtained results
have demonstrated the improved performance of the proposed method in all three
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protocols.
The future work includes improving the generalizability of the proposed method
across different morphing image quality. Moreover, the proposed method will be
submitted to the public benchmarks, including NIST FRVT MORPH. Further, the
database will be extended to have different print-scan and morphing methods.

6.6 Supplementary Material
This supplementary material presents the additional ablation results of the pro-
posed method. We devised two experiments such that Experiment 1: We report
both individual and intermediate results of the proposed method. Experiment 2:
This experiment is designed to indicate the efficacy of the proposed pair selection
by performing the ablation study on the different pairs. In the following, we briefly
discuss the outcome of the ablation study with both experiments.

6.7 Quantitative results of Experiment 1
Table 6.6, 6.7 and 6.8 indicates the performance of the proposed method and dif-
ferent components used to develop the proposed method evaluated in all three
protocols respectively. It can be noted that:

• The performance of the individual network varies with the train and test data
type. Typically, individual CNN networks perform better when trained and
tested with the same data type.

• Fusion of individual networks indicates the improved performance over the
individual CNN networks based on the proposed pair selection algorithm.
This intermediate fusion result is shown as SLERP Residue 1 and SLERP
Residue 2.

• The proposed method has indicated the best results compared to individual
and intermediate fusion results on all three protocols.

These quantitative results indicate the improved performance of the proposed method
in all three protocols.

6.8 Quantitative results of Experiment 2
The objective of this experiment is to justify the pair selection introduced as part of
the proposed method. Since pair selection is made within the groups, we proposed
the pair permutation as indicated in Table 6.9. Tables 6.10, 6.11 and 6.12 indicate
the quantitative results of the proposed method with different pairs in all three
protocols. It can be noted that:
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• The proposed algorithm for the pair selection has indicated the improved
performance over other possible pairs as indicated in the Table 6.10, 6.11
and 6.12.

• It can be noted that the proposed pair selection did not always show the best
performance in protocol 1. However, the performance of the proposed pair
is comparable. The proposed pair selection shows superior performance in
average statistics, as shown in Table 6.10.

• The proposed pair selection indicates superior performance on protocols 2
and 3. Thus, these results indicated the efficacy of the proposed pair selec-
tion algorithm, which is an integral part of the proposed method to reduce
the computation without compromising the detection performance.

Thus, experiments further justify the efficacy of the proposed method for reliable
face morphing detection, especially in the mixed resolution and distance ABC
scenario.
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Algorithm: Distance1 Distance2 Distance3
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital, Test: Digital

Alexnet 14.3 14.3 14.3 18.5 19.3 18.5 14.3 14.3 14.3 15.2 19.3 19.3 15.2 14.3 10.1
VGG16 52.1 33.6 33.6 33.6 42.9 28.6 33.6 33.6 47.9 42.9 47.9 33.6 42.9 42.9 37.8
VGG19 33.6 33.6 33.6 23.5 23.5 29.5 28.6 42.9 24.4 33.6 52.1 47.9 28.6 29.5 34.5

Resnet50 14.3 18.5 15.2 14.3 14.3 20.2 19.3 23.5 23.5 14.3 9.2 14.3 9.2 19.3 23.5
Xception 9.2 9.2 9.2 13.4 9.2 9.2 9.2 8.3 9.2 13.4 15.2 9.2 10.1 9.2 9.2

Resnet101 5.1 9.2 8.3 9.2 9.2 10.1 10.1 8.3 14.3 9.2 19.3 14.3 14.3 13.4 14.3
SLERP Residue 1 19.3 18.5 15.2 23.5 19.3 27.7 19.3 19.3 19.3 19.3 27.7 23.5 33.6 24.4 28.6
SLERP Residue 2 24.4 19.3 9.2 19.3 24.4 37.8 23.5 28.6 42 28.6 23.5 28.6 24.4 28.6 23.5

Proposed Method 0.9 5.1 0.0 8.3 5.1 5.2 0.9 5.1 8.3 9.2 9.2 4.2 5.1 5.1 9.2
Train: Print Scan, Test: Print Scan

Alexnet 23.5 15.2 15.2 23.5 19.3 24.4 20.2 28.6 23.5 23.5 24.4 23.5 24.4 20.2 23.5
VGG16 38.7 28.6 34.5 33.6 33.6 32.7 37.8 37.8 33.6 33.6 47.9 37.8 38.7 37.8 27.7
VGG19 42 28.6 29.5 23.5 24.4 23.5 42.9 28.6 23.5 37.8 42.9 33.6 25.3 42.9 29.5

Resnet50 28.6 28.6 42.9 33.6 28.6 29.5 37.8 42.9 33.6 42.9 33.6 23.5 33.6 28.6 33.6
Xception 29.5 34.5 29.5 27.7 28.6 23.5 28.6 33.6 38.7 28.6 27.7 32.7 33.6 33.6 33.6

Resnet101 19.3 23.5 24.4 23.5 23.5 18.5 28.6 23.5 28.6 23.5 28.6 23.5 23.5 28.6 33.6
SLERP Residue 1 24.4 27.7 28.6 37.8 23.5 27.7 27.7 33.6 37.8 37.8 23.5 28.6 28.6 33.6 37.8
SLERP Residue 2 28.6 32.7 33.6 37.8 28.6 28.6 47.9 33.6 37.8 37.8 37.8 29.5 27.7 33.6 32.7

Proposed Method 10.1 14.3 15.2 14.3 9.2 18.5 18.5 14.3 19.3 15.2 19.3 14.3 13.4 19.3 19.3
Train: Print Scan, Test: Digital

Alexnet 28.6 27.7 23.5 28.6 23.5 23.5 23.5 32.7 33.6 32.7 23.5 33.6 33.6 37.8 33.6
VGG16 38.7 37.8 28.6 28.6 37.8 28.6 37.8 33.6 32.7 33.6 38.7 33.6 37.8 33.6 37.8
VGG19 42 38.7 38.7 43.8 37.8 32.7 37.8 42.9 33.6 33.6 47.9 37.8 38.7 33.6 37.8

Resnet50 43.8 34.5 47.9 47.9 42.9 37.8 47.9 52.1 47 37.8 37.8 37.8 48.8 42.9 37.8
Xception 53 47.9 52.1 47.9 52.1 52.1 57.1 57.1 47.9 57.1 47.9 47.9 52.1 57.1 48.8

Resnet101 42.9 52.1 47.9 47 47.9 52.1 43.8 56.3 47.9 37.8 58 52.1 47.9 58 47
SLERP Residue 1 28.6 27.7 38.7 29.5 27.7 28.6 37.8 37.8 42.9 42 28.6 42.9 38.7 34.5 37.8
SLERP Residue 2 47.9 47.9 56.3 42.9 52.1 37.8 38.7 42.9 57.1 57.1 38.7 42.9 52.1 47.9 48.8

Proposed Method 28.6 23.5 28.6 29.5 29.5 32.7 24.4 28.6 37.8 28.6 33.6 33.6 34.5 37.8 33.6
Train: Print Scan, Test: Digital

Alexnet 37.8 33.6 28.6 33.6 33.6 33.6 28.6 28.6 33.6 37.8 33.6 28.6 37.8 28.6 28.6
VGG16 52.1 42.9 43.8 38.7 47 34.5 38.7 47.9 47.9 42.9 56.3 52.1 52.1 53 38.7
VGG19 53 34.5 47 39.6 56.3 42.9 52.1 42.9 48.8 57.1 52.1 56.3 42.9 53 33.6

Resnet50 29.5 33.6 47.9 29.5 23.5 28.6 43.8 42.9 42.9 42 34.5 29.5 37.8 34.5 33.6
Xception 42 43.8 53 33.6 37.8 33.6 37.8 47.9 57.1 34.5 42.9 37.8 37.8 37.8 37.8

Resnet101 37.8 37.8 38.7 42.9 37.8 42 37.8 43.8 42.9 52.1 42.9 33.6 37.8 47.9 52.1
SLERP Residue 1 33.6 28.6 28.6 39.6 37.8 28.6 33.6 28.6 42 33.6 37.8 37.8 42.9 47.9 29.5
SLERP Residue 2 47.9 47.9 47.9 47.9 47 29.5 38.7 42.9 37.8 47 42.9 53 47 32.7 37.8

Proposed Method 32.7 23.5 37.8 33.6 33.6 33.6 37.8 33.6 37.8 37.8 42.9 33.6 33.6 34.5 23.5

Table 6.6: Experiment1: Ablation Study Protocol 1

Medium Alexnet VGG19 VGG16 Resnet50 Xception Resnet101 Residue 1 Residue 2 Proposed
Train: Digital,Test: Digital 7.3 32 38.7 12 5.8 14.9 15.5 15.2 3.4

Train: Print Scan, Test: Print Scan 20.7 28.5 34.7 26.3 27 34.6 21.6 28.2 11.5
Train: Digital, Test: Print Scan 22.5 34.3 34.7 36.8 49.5 36.8 25.7 43.3 26.0
Train: Print Scan, Test: Digital 40.6 41 40 35.2 37.5 40.3 31.2 43.8 32.4

Table 6.7: Experiment1: Ablation Study Protocol 2

Algorithm: Distance1 Distance2 Distance3
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital and Print Scan Test: Digital and Print Scan

Alexnet 39.3 39.4 35.9 39.6 36.5 38.8 36.3 40 40 39.9 41.1 37.4 40.2 39.7 36.9
VGG16 46.4 48.5 47.6 46.9 47.3 49.1 48.5 46.9 48.2 47.3 50.3 49 50.7 49.1 49.4
VGG19 43.6 42 41.4 40.5 37.4 37.8 40.5 38.1 40.8 41.7 46 45.5 40.3 42 37.4

Resnet50 45.5 42 46.6 45.5 38.4 40.3 43.9 47.9 46.3 46.3 40.8 38.5 43 37.6 42.9
Xception 40.2 45.1 48.7 38.7 41.7 39.7 47.3 48.7 47.3 41.8 40 42.4 43.2 46.6 42.3

Resnet101 41.2 42 41.4 45.1 40.9 42.4 40.6 46 47 47.8 44.9 43.3 43.9 47.2 48.1
SLERP Residue 1 21.4 21.4 21.4 21.4 21.4 19.3 21.4 21.9 21.9 21.4 18.9 21 21.4 21.4 21.4
SLERP Residue 2 14.3 14.3 16.8 18.9 16.8 18.9 17.3 14.7 16.8 21.9 18.9 18.9 18.9 14.3 11.8

Proposed Method 6.7 7.6 9.7 7.6 7.6 7.1 7.6 9.7 12.2 7.6 11.8 7.6 7.6 7.1 7.1

Table 6.8: Experiment 1: Ablation Study Protocol 3



68 Article 2: Reliable Face Morphing Attack Detection in On-The-Fly Border Control
Scenario with Variation in Image Resolution and Capture Distance (RQ1)

Pair Description SLERP Residue 1 SLERP Residue 2
Proposed Method Pair (Alexnet,VGG16), (VGG16,VGG19) (Resnet50,Resnet101),(Resnet101,Xception)

Pair 1 (VGG16,VGG19), (VGG19,Alexnet) (Resnet101,Xception),(Xception,Resnet50)
Pair 2 (VGG19,Alexnet),(Alexnet,VGG16) (Xception,Resnet50),(Resnet50,Resnet101)

Table 6.9: Description of pairs used in the proposed method and Experiment 2

Algorithm: Distance1 Distance2 Distance3 Mean D-EER%
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital, Test: Digital

Proposed Method 0.9 5.1 0.0 8.3 5.1 5.2 0.9 5.1 8.3 9.2 9.2 4.2 5.1 5.1 9.2 5.4
Pair 1 5.1 9.2 0.9 5.1 8.3 14.3 0 5.1 0 5.1 8.3 5.1 9.2 8.3 9.2 6.2
Pair 2 5.1 9.2 4.2 9.2 4.2 9.2 0 5.1 0 5.1 9.2 4.2 5.1 5.1 8.3 5.5

Train: Print Scan, Test: Print Scan
Proposed Method 10.1 14.3 15.2 14.3 9.2 18.5 18.5 14.3 19.3 15.2 19.3 14.3 13.4 19.3 19.3 15.6

Pair 1 15.2 14.3 23.5 19.3 9.2 14.3 20.2 19.3 27.7 15.2 20.2 10.1 19.3 19.3 19.3 17.8
Pair 2 13.4 15.2 23.5 19.3 13.4 13.4 19.3 19.3 23.5 14.3 18.5 15.2 15.2 23.5 15.2 17.5

Train: Digital, Test: Print Scan
Proposed Method 28.6 23.5 28.6 29.5 29.5 32.7 24.4 28.6 37.8 28.6 33.6 33.6 34.5 37.8 33.6 31.0

Pair 1 23.5 28.6 33.6 42.9 27.7 28.6 32.7 33.6 28.6 24.4 33.6 34.5 37.8 37.8 32.7 32.0
Pair 2 24.4 27.7 33.6 28.6 27.7 24.4 29.5 38.7 34.5 23.5 37.8 37.8 38.7 42.9 33.6 32.2

Train: Print Scan, Test: Digital
Proposed Method 32.7 23.5 37.8 33.6 33.6 33.6 37.8 33.6 37.8 37.8 42.9 33.6 33.6 34.5 23.5 34.0

Pair 1 37.8 33.6 42.9 28.6 29.5 33.6 37.8 33.6 42.9 34.5 42.9 33.6 38.7 42.9 33.6 36.4
Pair 2 33.6 29.5 42.9 37.8 23.5 29.5 37.8 37.8 47 37.8 47 33.6 37.8 42.9 27.7 36.4

Table 6.10: Experiment2: Protocol 1 Ablation Study with Pair 1 and Pair 2 whose de-
scription is provided in Table 6.9

D-EER (%)
Medium Proposed Method Pair 1 Pair2

Train: Digital,Test: Digital 3.4 5 3.4
Train: Print Scan, Test: Print Scan 11.5 14.6 13.4

Train: Digital, Test: Print Scan 26.0 28.5 28.2
Train: Print Scan, Test: Digital 32.4 37.8 33.7

Table 6.11: Experiment2: Protocol 2 Ablation Study with Pair 1 and Pair 2 whose de-
scription is provided in Table 6.9

Algorithm: Distance1 Distance2 Distance3
Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5 Cam1 Cam2 Cam3 Cam4 Cam5

D-EER (%)
Train: Digital and Print Scan Test: Digital and Print Scan

Proposed Method 6.7 7.6 9.7 7.6 7.6 7.1 7.6 9.7 12.2 7.6 11.8 7.6 7.6 7.1 7.1
Pair 1 9.7 11.8 9.7 7.6 7.1 9.2 7.6 11.8 14.7 9.7 9.7 11.8 7.1 10.1 10.1
Pair 2 9.7 11.8 11.8 11.8 7.1 9.2 7.1 10.1 13.8 7.1 9.7 10.1 7.1 9.7 10.1

Table 6.12: Experiment2: Protocol 3 Ablation Study with Pair 1 and Pair 2 whose de-
scription is provided in Table 6.9
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7.1 Abstract
Face recognition systems (FRS) are showing increasing accuracy in an uncon-
trolled real world, leading to their usage in automated border control (ABC) gates.
However, both automatic and manual FRS are prone to Face Morphing Attacks
(FMA), which can be generated by linearly blending face images from two con-
tributory data subjects. Differential Morphing Attack Detection (D-MAD), which
compares the face image in an electronic Machine Readable Travel Document
(eMRTD) with a trusted live capture from an ABC gate, is thus a significant prob-
lem to address. This paper presents Robust D-MAD (RD-MAD), which performs
pair-wise pose normalization on the bona fide and probe face images based on
global affine alignment. The proposed D-MAD technique is based on the compar-
ison score level fusion of deep features extracted using off-the-shelves pre-trained
deep networks such as AlexNet and ResNet. The deep features are extracted cor-
responding to both enroled and probe face images independently from AlexNet

69
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and ResNet. Then the signed difference of the features is computed between en-
roled and probe face images independently on both AlexNet and ResNet. Two
linear SVMs are trained on the signed difference features corresponding to deep
networks whose comparison scores are fused using the weighted sum rule to make
the final decision. Extensive experiments are performed on a challenging dataset
having lighting, face pose, expression, illumination and print-scan variations. Ob-
tained results outperform the state-of-the-art (SOTA) as we achieve an EER=2.1%
compared to the SOTA with an EER=8.6%.

7.2 Introduction
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Figure 7.1: Block diagram of the proposed method

Face recognition systems (FRS) are known to achieve high accuracy in uncon-
trolled, real-world environments, mainly attributed to the evolution of deep-learning
networks [22, 27]. The increased accuracy of FRS enabled the magnitude of face
recognition applications, including border control. However, FRS is demonstrated
as vulnerable to face morphing attacks generated by linear blending of face im-
ages from two contributory data subjects. To counter the face morphing attack,
biometric researchers have devised Morphing Attack Detection (MAD) methods.
The available MAD techniques can be divided into two types [69]: Differential
Morphing Attack Detection (D-MAD) uses a reference while performing the clas-
sification and Single Morphing Attack Detection (S-MAD) is a no-reference based
classification. A summary of MAD, including primary datasets, benchmarks and
state-of-the-art methods, is provided in the recent survey [69]. Further, among the
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two morphing attack detection methods, D-MAD is more preferred by biometric
researchers as it has higher real-world applicability with ABC gates. Since ABC
gates provide a trusted live capture which is used a probe (reference) image and the
enrollment image is from the passport, which allows the usage of reference-based
D-MAD.

The process of face morphing image generation can be either based on land-
marks [133] or Generative Adversarial Networks (GANs) [134]. Among these
two morphing generation techniques, the landmark-based face morphing is more
vulnerable and challenging to detect [134]. Therefore, in this work, we employ the
landmark-based face morphing generation. The D-MAD techniques are well ex-
plored in the literature. The available D-MAD methods are broadly classified into
four types: (1) landmark-based, (2) face de-morphing, (3) texture and shape based
(4) deep feature-based. However, these methods are less reliable due to variation
in a pose during trusted capture and also landmarks are not robust enough to cap-
ture the variation in shape due to morphing. The face de-morphing [133] technique
will invert the face morphing operation such that it can retrieve the hidden face.
Thus, given the morphing image and the trusted capture image, the de-morphing
technique can generate the image of other data subjects by inverting the morph-
ing process. However, de-morphing is sensitive to the pose and lighting variation
and requires prior information on face morphing that is not available in real-life
conditions. The third type of D-MAD technique is based on the use of hand-
crafted features that includes micro-texture-based features (e.g., LBP, LPQ, BSIF)
[10], shape-based features (HoG) [10] and scale-space features [135]. These fea-
tures have a good performance on the controlled data settings. The fourth type
of DMAD is based on the deep learning techniques [136]. However, due to the
limited number of datasets and samples, almost all methods use the transfer learn-
ing of the off-the-shelf deep learning compared to the other three types. The deep
features have indicated better performance in detecting face morphing attacks.

In this work, we propose a novel framework for the D-MAD using the fusion of
deep features extracted from the aligned facial images. Given the facial image
pair corresponding to enrol and probe capture, in the first step, the images are
aligned and registered using piecewise-affine registration. We then process the re-
gistered image independently to extract deep features using pre-trained CNNs such
as ResNet50 and AlexNet. The signed difference is computed between the deep
components extracted independently for ResNet50 and AlexNet. These features
are classified using linear SVM trained separately for ResNet50 and AlexNet. Fi-
nally, the scores are fused using the weighted sum rule. We repeat this process for
all four cameras independently and combine the final scores corresponding to each
camera using the weighted sum rule to compute the final decision. The following
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are the main contributions of this work:

• We present the affine registration-based facial alignment concept to D-MAD
to improve the Detection Error Rate (D-EER%).

• The proposed method is evaluated on the Morph ABC Dataset comprised of
39 data subjects that are collected in real-life scenario in on-the-fly manner
with three different lighting conditions.

• We benchmark our proposed method with previous state-of-the-art (SOTA),
achieving the lowest EER=2.1% compared to the SOTA with an EER=8.6%
for Light1, lowest EER=4.6% compared to the SOTA with an EER=10.5%
for Light2, and the lowest EER=6.8% compared to the SOTA with an EER=13.5%
for Light3.

The rest of the paper, we discuss the proposed method in Section 7.3, followed
by experiments and results in Section 7.4 and conclusions and future work in Sec-
tion 7.5.

7.3 Proposed Method
The proposed D-MAD techniques are based on the off-the-shelf deep CNN fea-
tures that can extract the robust texture-based features for face morphing attack
detection. Figure 9.1 shows the block diagram of the proposed method designed
to work with the automatic border control gate with four cameras. Since the data
capture scenario represents the on-the-fly capture (i.e., the data subject will not
stop in front of the camera but instead walk in front of the camera). The challen-
ging issue in this scenario is the variation in the facial pose; hence it is necessary
to neutralize the pose before performing the D-MAD.

Since the ABC system used in this work is based on four cameras, every time data
subjects walk through the system will capture four-probe images corresponding to
four different cameras. The proposed method mainly consists of the three func-
tional blocks that are operated on each camera (1) Pair-Wise Face Alignment, (2)
Deep-Feature Extraction and Classification and (3) Weighted Score Fusion. In the
following, we discuss the proposed D-MAD technique.

7.3.1 Pair-wise Face Alignment

Given the reference image IR and the trusted image captured using ABC gate
IT1, IT2, IT3, IT4, we perform the pair-wise image alignment between the refer-
ence image and the trusted capture images independently. Since face alignment is
crucial in the D-MAD, we performed the following steps to achieve near-optimal
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Light 1
Algorithm Cam D-EER BPCER20 BPCER10
LBP& 1 41.7±0.4 81.1±0.6 72.4±1.0
SVM [10] 2 42.7±0.5 82.5±0.6 73.5±0.8

3 38.1±0.5 83.3±0.7 71.5±0.6
4 39.6±0.3 79.6±0.5 71.1±0.4
Fused 28.5±0.4 67.2±0.6 54.2±0.8

3D Shape & Diffuse 1 18.1±0.1 36.3±0.7 27.1±0.3
Reconstruction [9] 2 19.7±0.4 34.7±0.7 28.3±0.7

3 19.1±0.1 35.9±0.1 27.3±0.1
4 18.8±0.1 36.1±0.1 27.5±0.3
Fused 8.6±0.1 13.9±0.4 7.5±0.1

DFR [8] 1 30.7±8.2 81.6±0.2 63.3±0.2
2 30.7±8.2 67.3±0.2 53.1±0.2
3 24.9±7.7 57.1±0.1 44.9±0.1
4 26.2±7.8 44.9±0.1 36.7±0.1
Fused 14.0±6.2 24.5±0.1 18.4±0.1

Proposed Method 1 18.4±6.9 36.7±0.1 22.4±0.1
2 14.3±6.2 24.5±0.2 18.4±0.2
3 11.9±5.8 16.3±0.1 12.2±0.1
4 3.9±3.5 2.0±0.2 2.0±0.2
Fused 2.1±2.5 2.0±0.1 0.0±0.0

Table 7.1: Quantitative performance of the proposed method and SOTA on Light 1 where
BPCER20 is BPCER@APCER=5%, and BPCER10 is BPCER@APCER=10%

face alignment and registration. We now describe the process of our proposed
alignment method for piecewise affine alignment for a pair of images IR, IT i as
follows:

Facial Key-Point Detection

We detect the facial five key points using Dlib [42] as this would lead to the cre-
ation of large triangles during the next step of Delaunay.

Delaunay Triangulation with fewer keypoints

We compute the triangulation using the Delaunay algorithm of the facial key points
detected in the previous step. It is known that Delaunay could lead to skinny tri-
angles (slivers) according to Shewchuck et al. [137] and a few facial keypoints
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Light 2
Algorithm Cam D-EER BPCER20 BPCER10
LBP & 1 35.9±7.4 77.6±0.1 62.7±0.1
SVM [10] 2 34.1±7.3 79.1±0.1 74.6±0.1

3 40.3±7.6 88.1±0.1 64.2±0.1
4 34.5±7.3 80.6±0.1 74.6±0.1
Fused 34.3±7.3 62.7±0.1 53.7±0.1

3D Shape & Diffuse 1 17.9±5.9 32.8±0.1 23.9±0.1
Reconstruction [9] 2 14.9±5.5 29.9±0.1 16.4±0.1

3 13.5±5.3 31.3±0.1 16.4±0.1
4 19.4±6.1 34.3±0.1 26.9±0.1
Fused 10.5±4.7 14.9±0.1 10.4±0.1

DFR [8] 1 34.5±7.3 61.2±0.1 53.7±0.1
2 37.3±7.4 79.1±0.2 58.2±0.1
3 37.5±7.5 79.1±0.1 68.7±0.1
4 34.1±7.3 76.1±0.1 68.7±0.1
Fused 28.4±6.9 52.2±0.1 44.8±0.1

Proposed Method 1 10.5±4.7 16.4±0.1 10.4±0.1
2 13.5±5.3 26.9±0.1 13.4±0.1
3 6.0±3.6 9.0±0.1 3.0±0.1
4 7.5±4.1 16.4±0.1 6.0±0.1
Fused 4.6±3.2 4.5±0.1 3.0±0.1

Table 7.2: Quantitative performance of the proposed method and SOTA on Light 2 where
BPCER20 is BPCER@APCER=5%, and BPCER10 is BPCER@APCER=10%

lying outside the facial region are reasons for hole creation during the face image
morphing process. Cheng et al. [43] have mentioned in their book that both con-
strained Delaunay and conformal Delaunay triangulation can be used to generate
triangles with good areas. However, we have devised a simple approach of using
fewer facial keypoints 5 instead of 68 to create better quality fewer triangles.

Affine Transformation

We now estimate a global affine transformation between the pair of face images
using two key points from the eyes and one from the nose. The results of this
alignment are shown in Figure 7.2.
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Light 3
Algorithm Cam D-EER BPCER20 BPCER10
LBP& 1 41.2±7.2 79.2±0.1 72.2±0.1
SVM [10] 2 38.9±7.2 77.8±0.1 68.1±0.1

3 34.8±7.0 81.9±0.1 75.0±0.1
4 40.4±7.2 87.5±0.1 81.9±0.1
Fused 33.4±6.9 79.2±0.1 68.1±0.1

3D Shape & Diffuse 1 17.6±5.9 26.9±0.1 20.9±0.1
Reconstruction [9] 2 19.4±6.1 44.8±0.1 31.3±0.1

3 10.5±4.7 16.4±0.1 10.4±0.1
4 17.9±5.9 32.8±0.1 22.4±0.1
Fused 13.5±5.3 19.4±0.1 17.9±0.1

DFR [8] 1 29.2±6.7 61.1±0.1 50.0±0.1
2 33.3±6.9 72.2±0.1 52.8±0.1
3 33.3±6.9 73.6±0.1 65.3±0.1
4 37.8±7.1 83.3±0.1 69.4±0.1
Fused 27.8±6.6 55.6±0.1 38.9±0.1

Proposed Method 1 16.8±5.5 36.1±0.1 27.8±0.1
2 16.8±5.5 33.3±0.1 23.6±0.1
3 13.9±5.1 22.2±0.1 15.3±0.1
4 11.1±4.6 38.9±0.1 16.7±0.1
Fused 6.8±3.7 8.3±0.1 4.2±0.1

Table 7.3: Quantitative performance of the proposed method and SOTA on Light 3 where
BPCER20 is BPCER@APCER=5%, and BPCER10 is BPCER@APCER=10%

7.3.2 Deep-Feature Extraction and Classification

In this step we extract features from pre-trained deep-networks namely from the
‘avg_pool’ (average pooling) layer from Resnet50 [138] and ‘fc7’ layer from Alexnet [97].
Note that the choice of networks is based on their generalization ability on Im-
agenet Dataset [123]. The signed difference of features is computed and passed
through Linear-SVM for classification. We perform a weighted fusion of scores
from Resnet50 and Alexnet with fusion weights of 0.3 and 0.7 to generate the
camera-based score. Note that the weights for the fusion are chosen based on
grid-search.
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7.3.3 Weighted Score Fusion (All Cameras)

In this step, we perform weighted score fusion for the scores obtained from each
camera to generate the final classification of Bonafide/Morphing Attack. Note the
weights used for fusion of each camera-based score are w1 = 0.1, w2 = 0.1, w3 =
0.1, w4 = 0.7 for cameras C1, C2, C3, C4 for Light 1, w1 = 0.15, w2 = 0.15, w3 =
0.35, w4 = 0.35 for cameras C1, C2, C3, C4 for Light 2 and w1 = 0.25, w2 =
0.25, w3 = 0.25, w4 = 0.25 for cameras C1, C2, C3, C4, respectively. Note that
the weights for the fusion are chosen based on grid-search [139].

Input Image Pair (a)                                                        Global Affine Alignment (b)

Figure 7.2: Illustration showing the global affine alignment for an input pair of images
from our dataset. Notice the slant generated in the face images post alignment.

7.4 Experiments and Results
This section discusses experiments performed and results obtained using the pro-
posed method and SOTA. The SOTA D-MAD techniques employed in this work
are benchmarked on the Morph ABC Dataset [9] discussed below.

7.4.1 Morph ABC Dataset

We use the Morph ABC Dataset [9] which consists of 39 subjects, an overall
270 face morphing images and 1549 ABC gate probe images. Further, the face
morphing and bona fide images were print-scanned using Epson XP-860 Printer
and Scanner and more details can be found in the article by Singh et al. [9] and
shown in Figure 7.3. The dataset consists of four cameras and three different lights
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Figure 7.3: Illustration showing the Morph ABC Dataset, with real-world environment
conditions of pose, expression, illumination and capture distance.
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Figure 7.4: DET Curves for (a) LBP-SVM [10], (b) 3D Shape & Diffuse Reconstruc-
tion [9], (c) DFR [8] (d) Proposed Method. DET Curves are for Scores from Camera1,
Camera2, Camera3, Camera4, and Weighted Sum-Rule Fusion of scores from these indi-
vidual cameras for Light 1.
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Figure 7.5: DET Curves for (a) LBP-SVM [10], (b) 3D Shape & Diffuse Reconstruc-
tion [9], (c) DFR [8] (d) Proposed Method. DET Curves are for Scores from Camera1,
Camera2, Camera3, Camera4, and Weighted Sum-Rule Fusion of scores from these indi-
vidual cameras for Light 2.

to simulate different environmental conditions, where the first light is set to an in-
tensity of 180 lux to represent a dark overcast day. The second light is set to an
intensity of 450 lux to represent the light during sunrise or sunset, which comes
inside an office hallway, and finally, the third light is set to an intensity of 1500 lux
to represent the light inside an office hallway during a bright day.

7.4.2 Results and Discussion

We report the metrics according to ISO/IEC 30107-3 PAD metrics [131]: Attack
Potential Classification Error Rate (APCER) representing the mis-classification er-
ror rate of Attacks Samples, Bona fide Potential Classification Error Rate (BPCER)
representing mis-classification error rate of Bona fide Samples. Further, we report
Detection-Equal Error Rate (D-EER) and present results figuratively in the form
of DET Curves. Tables 7.1, 7.2 and 7.3 shows the results of the proposed method
in comparison with SOTA in tabular format and for Light1, Light2 and Light3 re-
spectively and Figures 7.4 and Figure 7.5 shows them figuratively as DET Curves
for Light1 and Light2 respectively.

We now discuss the results obtained using SOTA and the proposed method. Note
that the proposed method shows much higher performance than SOTA [9], which
can be attributed to two main reasons, namely facial alignment and score-fusion
using the original image. SOTA method by Singh et al. [9] performs score-level fu-
sion based on diffuse reconstructed image and normal map. However, we perform
score-level fusion based on an aligned image as the generated diffuse reconstruc-
ted image and normal map are not of high quality. Further, using both Alexnet and
Resnet-50 for feature extraction leads to more generalization than using Alexnet
alone for feature extraction from the diffuse reconstructed image as was done in
SOTA [9]. The proposed method performs well on Light 1 which represents a
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dark overcast day compared to Light 2, which represents sunrise/sunset or Light
3. This can be attributed to the fact that Light 1 has low lighting and thus the dy-
namic range of these images is low, resulting in a smoother image, as seen from
Figure 7.3.

7.5 Conclusions and Future-Work
In this paper, we presented a novel method for D-MAD using a fusion of deep fea-
tures which outperforms the SOTA. Further, we presented an approach for facial
image alignment, which is crucial in improving the detection accuracy in D-MAD
techniques. Our proposed approach for facial alignment is based on global affine
alignment since the pose variation in input face images is not high. However, our
alignment technique does not handle non-rigid deformations. Further, our align-
ment technique does not generate holes in the face morphing image. Hence, in
future work, we want to work on facial alignment without generating holes but
still handle non-rigid deformations.
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Article 4: Robust Face Morphing
Attack Detection Using Fusion of
Multiple Features and
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Jag Mohan Singh, Sushma Venkatesh and Raghavendra Ramachandra. Robust
Face Morphing Attack Detection Using Fusion of Multiple Features and Classi-
fication Techniques. In IEEE Fusion, 2023, In 26th International Conference on
Information Fusion 2023, South Carolina, USA, pp. 1-8

8.1 Abstract
The face morphing process will combine two or more facial images to generate a
single morphed facial image demonstrating Face Recognition Systems (FRS) vul-
nerability. The attack potential of the morphing image directly depends on the per-
ceptual image quality, and when generated with no visible artefacts, it can deceive
both human observers and automatic FRS. The current softwares for face morph-
ing generates a morphing image with ghosting artefacts, especially in the eye re-
gion, nose and mouth area, which may serve as a potential cue to detect morphing
attacks. Hence in this work, we introduce a new dataset comprising 10710 facial
images before and after manual post-processing to reduce the visual artefacts and
to generate high-quality attacks. Further, we propose a novel single image-based
Morph Attack Detection (S-MAD) technique based on the ensemble of features
and classifiers using the scale-space domain. The novel concept in the proposed
method is the multi-level fusion that combines the comparison scores from dif-
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ferent features and classifiers. Extensive experiments are carried out on the newly
generated high-quality face images with (i) Morphs before post-processing and (ii)
Morphs after post-processing. Further, the experiments are also carried out on two
different mediums such as (i) Digital and (ii) Print-scan (or re-digitized) with and
without compression. Extensive experimental results are performed to benchmark
the detection performance with the existing S-MAD techniques. Obtained results
indicate the best performance of the proposed method over existing methods.

8.2 Introduction
Biometrics has been widely studied and applied globally for person identification
[140]. The trustworthiness of biometric features has gained immense popularity
over multi-factor authentication. Among several other physiological modalities
like a fingerprint, palmprint, finger vein and iris, face biometrics-based applica-
tions have had a wide range of applications for several decades. The face is a
unique modality and humans easily identify an individual based on facial features.
As identification of a person based on facial features can be achieved through
the naked eye, facial biometrics has been well accepted for national ID programs
and security-related applications, especially in highly secure places such as border
control scenarios.

Although Face Recognition Systems(FRS) are widely installed to provide reliable
person identification and recognition, it also encounters threats due to various at-
tacks that highlight the vulnerability of FRS. Presentation attacks, adversarial at-
tacks, and imposter attacks are some example attacks that pose a risk to the reliable
performance of FRS [29, 141]. In addition to these attacks, a face-morphing at-
tack is one such attack that can efficiently make the FRS vulnerable, especially
in border control applications. Although face morphing was initially performed
merely for entertainment, it has gradually transformed into a potential threat in the
recent past [142]. As face morphing is achieved by blending the facial features of
two or more facial identities to generate a morphing image, this will lead to the
vulnerability of FRS to reliably recognize the person.

Based on the International Civil Aviation Organisation (ICAO) recommendation,
the face is the prominent modality employed for person recognition and verifica-
tion in the border control scenario [143, 144]. Hence all passport holders must en-
roll their facial image in the eMRTD to serve as an identification document for bor-
der control authority during travel. Face enrolment procedure varies with the coun-
try’s passport application procedure. Scandinavian countries have installed a photo
booth to perform live capture of the facial image [145]. However, most Asian
countries accept printed passport-size facial images during the application process
[146]. But New Zealand, Ireland and the UK have a web portal where the applicant
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has to upload the facial image for the passport renewal process [147, 148]. Even
though the facial image undergoes manipulation and makes it easier to identify
the existence of morphing, the availability of a variety of high-quality morphing
software makes it challenging even for an expert human observer.

Several open-source morphing software yield superior quality morphed facial im-
age that does not require any technical expertise [45, 149, ?, 150, 47]. Hence
a person with malicious intentions can easily generate a morphed facial image
with a look-alike accomplice’s facial image and successfully submit for the pass-
port enrolment process. As it is challenging to detect unknown facial identities
from the morphing image, even a trained border control official finds it difficult
to detect the existence of morphing [151, 152]. Eventually, the morphing facial
image will be enrolled in the eMRTD that can be claimed by both the identities
involved in the morphing process. This disregards the rule of single ownership for
the passport/eMRTD document and eventually creates a loophole in the security.
Considering the risk of face morphing and its impact on building a secure society,
extensive research has been performed to generate robust techniques for Morph
Attack Detection(MAD) [153, 88, 154, 155, 156, 157, 9, 158]. Based on the MAD
techniques developed by several researchers, morph attack detection techniques
can be broadly classified into single image-based MAD (without reference image)
and differential image-based MAD (with reference image). S-MAD techniques are
applicable where single facial image-based person verification is required. In the
case of the passport renewal process in Ireland, [159], since it is an online passport
service, the applicant’s facial image must be uploaded into the web portal. As no
supervision exists while uploading the facial image into the web portal, an applic-
ant with malicious intentions may end up uploading the morphed facial image.

Hence several researchers have investigated the problem of face morphing and
developed reliable techniques. The first work on the S-MAD technique is invest-
igated by Raghavendra et al. [160] using the texture-based approach. Since then,
several S-MAD approaches have been proposed that can be broadly divided into
[69] three types (1) Hand-crafted features: These techniques include the different
types of features such as: texture-based [161] [162] , time-frequency based [163],
color based [88], residual noise [164], image quality based [165, 166, 167] (2)
Deep learning features: These includes the use of pre-trained deep CNN networks
[168, 169, 170], fusion of pre-trained CNNs [171, 163], pixel based DCNN MAD
[172] (3) Hybrid Features: These MAD techniques are based on using multiple
features and classifiers for face morphing detection. The outcome of the mul-
tiple classifiers is combined at either feature or comparison level. Several works
proposed in this category includes [173], [174], [163], [175]. Among these tech-
niques, the hybrid approaches have indicated the best performances in detecting
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face-morphing attacks.

All the available State-Of-The-Art (SOTA) techniques are evaluated on the morphed
datasets that are not manually and professionally post-processed. Even though the
early work [176] attempts to use the manual post-processing morphs, the dataset
size is tiny. In this work, we introduce a new dataset to benchmark the S-MAD
techniques’ performance systematically. The new dataset is constructed using dif-
ferent mediums such as: digital, print-scan using a DNP printer and print-scan
using a Canon printer. We have used standard (Canon) and sublimation (DNP)
printers to study the influence of printer noise on face morphing attack detection.
The new dataset consists of a total of 10710 facial images before and after post-
processing. Further, we have also proposed a new S-MAD technique based on the
multi-level fusion of ensemble features and classifiers.

To efficiently evaluate the performance of the proposed MAD technique and its
performance over SOTA MAD techniques, we investigate the following research
questions that facilitate this study.
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Figure 8.1: Illustration of issues of morphing before and after post-processing database
from (i) Digital (ii) Print-Scan from DNP (PS-1) (iii) Print-Scan from Canon (PS-2)
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Figure 8.2: Illustration of before and after post-processing database from (i) Digital com-
pression (ii) DNP compression (PS-1) (iii) Canon compression (PS-2)
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• Q1 Does the performance of the proposed method improves when the morph
attack detection is performed on post-processed morphing images compared
with the morph images before post-processing?

• Q2 Is the proposed method generalizable for morphed facial images gener-
ated from various mediums and the morphing images before and after post-
processing?

In the course of answering the research questions as mentioned above, the follow-
ing are the main contributions of this work:

• We present a novel S-MAD approach based on the multi-level fusion of
ensemble features and classifiers to detect face-morphing attacks reliably.

• We introduce a new dataset with manual post-processing to achieve high-
quality face morphing images free from morphing noise and artefacts. The
new dataset is collected using three different mediums that include both di-
gital and two different printers.

• Extensive experiments are carried out to benchmark the detection perform-
ance of the proposed method on three different mediums with and without
post-processing. Further, the influence of image compression on detection
performance is also benchmarked.

• The detection performance of the proposed method is benchmarked with the
existing S-MAD techniques in two different experimental protocols.

The rest of the paper is organised as follows: Section 8.3 details the newly gen-
erated dataset. Section 8.4 presents the proposed method using an ensemble of
features and classifiers. Section 8.5 details the experimental protocols and corres-
ponding results. Section 8.6 provides a discussion on the observation made from
the experimental results. Finally, Section 8.6 concludes the current work.

8.3 Face Morphing Dataset
This section presents a new facial morphing dataset constructed using high-quality
face images sampled from FRGC V2. The facial images are carefully selected to
meet the enrolment guidelines, including zero pose, no shading on the face region,
and no occlusion. The new dataset comprises 147 unique data subjects, further
divided into two independent groups for training and testing. The training partition
consists of 77 unique data subjects and the testing partition consists of 70 unique
data subjects. In the next step, we perform the face morphing operation separately
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on the training and testing set. In this work, we employ the open-source face
morphing tools [177, 119] based on landmarks. Further, we have used only two
face images with equal weights to perform morphing based on the earlier studies
[84, 176] that have indicated high vulnerability on FRS.

In general, the morphing process will result in various types of noises, especially in
the eyes and nose region. These noises include double edges in the eye region and
the spreading of edges in the nose region. Figure 8.1 illustrates the noises resulting
from the morphing process that can be attributed to the variation in the geometry of
the faces used for morphing. Even though these morphing noises are not common
but exist in most cases, as shown in Figure 8.1, the morphing noises can also be
predominantly observed even after the print-scan process. However, the quality
of the print-scan process can also affect the visibility of edge spreading, as shown
in Figure 8.1(c). Further, as noticed from Figure 8.2, even after the images are
compressed to follow the guidelines of ICAO [178, 179], the morphing noises are
still visible in both digital and print-scan versions. Therefore, it is essential to
post-process the morphing face image to weed out these noises so that the human
observer cannot identify the morphing based on these noises.

Image Type before post-
processing

after post-processing Total

Digital images 1071 1071 2142
Print & Scan 1071X2

(printers)
1071 X 2 (printers) 4284

Print & Scan compression 1071X2
(printers)

1071X2 (printers) 4284

Total 5355 5355 10710

Table 8.1: Total number of morphing images before and after manual post-processing.

Table 8.2: Database statistics: training and testing partitions

Data Partition

Data Type
Digital PS-1 PS-2
Bona fide Morph Bona fide Morph Bona fide Morph

Training 689 517 689 517 689 517
Testing 583 554 583 554 583 554

Table 8.1 tabulates the statistics of the newly developed face morphing dataset
with morphing samples before and after manual post-processing. The manual
post-processing is carried out using Adobe Photoshop [180] to obtain professional-
quality passport face images. Figure 8.1 and 8.2 illustrates the manual post-processing
images in which the morphing noises are corrected to achieve the highest quality
of the morphed face images. In this work, face morphing uses the alpha value (or
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morphing factor) of 0.5 by considering the highest vulnerability demonstrated in
several earlier works [84, 176].

We first generate the face morphing images separately for the training and test-
ing sets. In the next step, we used two different printers, which are DNP and a
Canon printer, to digitize the digital images by print & scan. The DNP printer
used in this work is the dye-sublimation photo printer that can generate the highest
quality passport face images and is widely deployed in photo studios. In con-
trast, the CANON PIXMA printer is a conventional inkjet printer used for printing
passport face images. We term the data generated using the DNP printer as PS-
1 and CANON PIXMA printer as PS-2, respectively. Figure 8.2 illustrates the
example images from the newly developed datasets before and after manual post-
processing.

8.3.1 Dataset partition: Train and Test

To effectively evaluate the Morph Attack Detection (MAD) algorithms, the whole
dataset is partitioned into two independent sets: training and testing. The train-
ing set consists of 77 unique data subjects and the testing partition consists of 70
unique data subjects. The morphing images are generated by using the data sub-
jects within each partition. Thus, the training set comprises 689 bona fide and
517 morph face images. Table 8.2 indicates the statistics of training and testing
independently for morphing samples before and after manual post-processing.
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Figure 8.3: Block diagram of the proposed method

8.4 Proposed Method
Figure 8.3 shows the block diagram of the proposed method leveraged on the
multi-level score level fusion of multiple features. The main objective of the pro-
posed method is to exploit the complementary features of the different feature
extractors and classifiers combined at two different levels. We assert that the use
of complementary features and classification scores can capture the discriminant
information useful for reliable face morph detection. The proposed method is
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designed using four different functional units, namely: (a) color space, (b) scale-
space decomposition, (c) multiple features and classifiers (d) multi-level fusion.
We discuss each of the functional units in detail in the following subsections.

8.4.1 Color space representation

Given the input image I , the first step is to extract the different color spaces using
Y CbCr and HSV . We have selected these two color spaces by considering their
robustness to capture the morphing noises as is demonstrated in earlier works [88].
Thus, for the given image I , we get six different representations such as:ICol =
IH , IS , IV , IY , ICb

, ICr .

8.4.2 Scale-Space decomposition

In the next step, we extract the scale-space features on each color space image
using the Laplacian pyramid [181]. The choice of Laplacian pyramid-based scale-
space features extraction is made by considering the effectiveness in extracting
the discriminant features compared to similar techniques such as steerable pyr-
amids [175]. We use three-level decomposition on each color image based on
their empirical evaluation. Thus, given the color image IH , the corresponding
scale-space images can be represented as IH1, IH2, IH3. In this work, we have
used six different color channels and thus, the corresponding scale-space rep-
resentation will result in 6 × 3 = 18 sub-images that are independently pro-
cessed to extract the multiple features. Let the sub-images be represented as:
SIk = SI1, SI2, . . . , SI18, ∀k = 1, 2, . . . , 18.

8.4.3 Multiple features and classifiers

Multiple features and classification systems used in this work are based on three
types of feature extraction and three different classifiers. Three different feature
extraction techniques include Local Binary Patterns (LBP), Histogram of Gradi-
ents (HoG) and Binary Statistical Image Features (BSIF). These three features are
selected by considering the complementary features that include texture features
extracted using both hand-crafted and naturally learned in addition to the gradient
information. These features represent the image’s different characteristics, espe-
cially the pixel discontinuities, and thus can provide rich information to detect the
morphing processing. Given the sub-image SIk, ∀k = 1, 2, . . . , 18, three different
types of features are extracted independently.

In the next step, we employ three different types of classifiers, including linear
Support Vector Machine (SVM) [182], Spectral Regression Kernel Discriminant
Analysis (SRKDA) [183] and Probabilistic Collaborative Representation Classi-
fier (P-CRC) [184]. We have considered these three classifiers by considering
the high performance and robustness of various data sources[69]. Further, the
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non-availability of the large-scale morphing database justifies the choice of the
ensemble of these three classifiers to achieve reliable morph detection. Given
the features independently from the three different feature extraction techniques,
we independently obtain the comparison scores from three different classification
techniques.

8.4.4 Multi-level fusion

This work proposes the two-level fusion of comparison scores obtained using mul-
tiple classifiers. The first level of fusion will combine the comparison scores ob-
tained using individual classifiers corresponding to three different feature extrac-
tion techniques. Therefore, first-level fusion has three independent fusion units
corresponding to three independent classifiers. In the second level, we combine
the comparison scores from the first level corresponding to individual classifiers to
make the final decision. The multi-level fusion is designed based on empirical ex-
periments that have indicated superior performance compared to serial fusion. At
both levels, we have used the weighted sum rule to perform the fusion and weights
are computed using the bootstrap method [185] on the development dataset and
kept constant through the experiments.

8.5 Experiments and Results
In this section, we present and discuss the proposed method’s quantitative res-
ults and the existing methods such as Hybrid features [88] and Ensemble features
[154]. We particularly select these two existing methods as (1) these methods in-
dicate the best performance in several reported studies [69] and one of them is
benchmarked on the NIST FRVT morph [186] (2) these methods are based on
the hand-crafted features thus are more appropriate to be compared with the pro-
posed method (3) these methods are more appropriate by considering the size of
the databases used in this work. The use of deep learning methods may result in
overfitting due to the small datasets. The performance of the S-MAD techniques
is benchmarked using ISO/IEC 30107-3 [187] metrics such as Attack Presenta-
tion Classification Error Rate (APCER (%)), Bona fide Presentation Classification
Error Rate (BPCER(%)) and Detection-Equal Error Rate (D-EER(%)).

8.5.1 Experimental protocols:

To effectively evaluate the performance of the MAD algorithms using the proposed
method, our experiments are categorized into three different protocols discussed
as follows:

• Experiment-1: Intra-dataset evaluation: is performed within the same
dataset type. This evaluation protocol performs training and testing on the
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Table 8.3: Experiment-1: Quantitative results of MAD algorithms on different datasets

Dataset
Post-processing

MAD Algorithms

Detection Performance Detection Performance

D-EER (%)
BPCER @APCER D-EER

(%)
BPCER @APCER

=5% =10% =5% =10%
Training Testing without compression with compression

Digital

Before Before

Proposed Method 0 0 0 0 0 0
Ensemble Features
[154]

0.18 0 0 0.18 0 0

Hybrid Features
[88]

0 0 0 0.18 0 0

After After

Proposed Method 0.18 0 0 0.36 0 0
Ensemble Features
[154]

0.18 0 0 0.36 0 0

Hybrid Features
[88]

0.18 0 0 0.18 0 0

PS-1

Before Before

Proposed Method 0 0 0 3.45 2.47 1.02
Ensemble Features
[154]

0 0 0 4.27 3.6 1.71

Hybrid Features
[88]

0 0 0 5 5.14 2.4

After After

Proposed Method 0 0 0 3.09 2.22 1.02
Ensemble Features
[154]

0 0 0 3.28 2.4 1.54

Hybrid Features
[88]

0 0 0 4.46 4.28 2.74

PS-2

Before Before

Proposed Method 10.00 15.01 10.66 7.72 11.83 7.2
Ensemble Features
[154]

11.00 16.98 11.66 8.72 11.66 8.06

Hybrid Features
[88]

14.09 29.33 19.38 8.54 14.4 6.86

After After

Proposed Method 5.74 6.34 3.75 5.19 5.14 2.91
Ensemble Features
[154]

6.01 7.03 4.11 5.19 5.14 3.77

Hybrid Features
[88]

8.56 12.34 7.2 5.64 6.17 2.91
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Table 8.4: Experiment-2: Quantitative performance of MAD algorithms on before post-
processing data generated using different morphing types

Training data Testing Data MAD Algorithms

Detection Performance Detection Performance

D-EER (%)
BPCER @APCER D-EER

(%)
BPCER @APCER

=5% =10% =5% =10%
without compression with compression

Digital

PS-1

Proposed Method 31.90 78.38 67.12 31.64 77.53 67.58
Ensemble Features
[154]

38.27 87.82 80.27 38.09 89.02 81.3

Hybrid Features [88] 37.72 88.67 78.9 35.73 86.96 76.67

PS-2

Proposed Method 47.08 94.68 88.16 45.45 92.79 86.96
Ensemble Features
[154]

50 97.77 93.31 50 97.42 92.28

Hybrid Features [88] 50 96.22 93.65 50 94.85 90.73

PS-1

Digital

Proposed Method 3.63 2.22 0.68 5.26 5.48 3.77
Ensemble Features
[154]

8.09 14.23 6.51 8.09 15.6 6.51

Hybrid Features [88] 8.54 13.2 7.54 20.72 43.91 33.1

PS-2

Proposed Method 20.9 55.74 41.16 12.18 23.67 15.95
Ensemble Features
[154]

19.72 45.11 33.44 13.18 21.09 15.26

Hybrid Features [88] 24.91 57.11 45.45 13.36 22.98 18.01

PS-2

Digital

Proposed Method 9.45 16.63 8.74 9.63 16.98 9.6
Ensemble Features
[154]

21.09 46.31 36.02 17.63 40.13 26.92

Hybrid Features [88] 9.63 20.41 9.26 23.18 43.05 33.1

PS-1

Proposed Method 12.27 30.1 18.09 0.16 0 0
Ensemble Features
[154]

14.27 28.64 19.72 0.16 0 0

Hybrid Features [88] 19.72 42.19 31.73 0.72 0 0
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Table 8.5: Experiment-2: Quantitative performance of MAD algorithms on after post-
processing data generated using different morphing types

Training data Testing Data MAD Algorithms

Detection Performance Detection Performance

D-EER (%)
BPCER @APCER D-EER

(%)
BPCER @APCER

=5% =10% =5% =10%
without compression with compression

Digital

PS-1

Proposed Method 31.24 78.55 65.69 31.87 78.9 68.09
Ensemble Features
[154]

34.15 83.53 76.67 37.52 87.13 77.53

Hybrid Features [88] 38.06 89.87 80.78 37.7 88.67 81.3

PS-2

Proposed Method 35.6 87.3 71.18 36.15 87.47 74.09
Ensemble Features
[154]

39.25 93.31 84.21 42.26 94.51 84.56

Hybrid Features [88] 44.44 91.25 82.16 41.71 91.59 80.61

PS-1

Digital

Proposed Method 4.09 3.94 2.91 6.82 9.43 5.83
Ensemble Features
[154]

9.37 15.43 8.06 8.19 12 12.17

Hybrid Features [88] 20.03 32.76 27.44 28.14 60.2 49.05

PS-2

Proposed Method 12.12 25.27 15.32 7.47 10.69 6.83
Ensemble Features
[154]

13.02 26.75 16.63 8.19 12 6.86

Hybrid Features [88] 24.86 50.08 42.19 10.47 16.46 10.46

PS-2

Digital

Proposed Method 10.47 21.09 11.49 11.84 23.15 13.2
Ensemble Features
[154]

18.48 45.11 31.9 15.93 38.59 25.38

Hybrid Features [88] 11.1 26.92 13.89 23.13 44.94 36.87

PS-1

Proposed Method 13.93 28.98 19.55 0 0 0
Ensemble Features
[154]

9.92 18.18 9.94 0.16 0 0

Hybrid Features [88] 18.48 41.16 30.7 0.55 0 0
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Table 8.6: Experiment-3: Quantitative performance of MAD algorithms by training after
post-processing data and testing before post-processing data generated using different
morphing types

Training data Testing Data MAD Algorithms

Detection Performance Detection Performance

D-EER (%)
BPCER @APCER D-EER

(%)
BPCER @APCER

=5% =10% =5% =10%
without compression with compression

Digital

PS-1

Proposed Method 30.72 80.44 68.95 31.9 80.44 67.92
Ensemble Features
[154]

36.18 86.96 79.07 37.72 88.67 79.41

Hybrid Features
[88]

37.54 89.7 81.3 35.99 86.1 78.55

PS-2

Proposed Method 46.45 94.16 88.67 46.63 93.31 87.99
Ensemble Features
[154]

50.27 97.25 93.31 51.27 96.91 92.1

Hybrid Features
[88]

50.9 94.16 90.39 52.09 95.54 91.76

PS-1

Digital

Proposed Method 5.45 5.83 3.6 8.9 13.55 8.57
Ensemble Features
[154]

13.1 25.55 18.52 13.18 25.72 16.12

Hybrid Features
[88]

9.82 19.72 9.6 27.09 60.89 51.11

PS-2

Proposed Method 17.9 37.77 26.7 11.81 22.29 12.52
Ensemble Features
[154]

18.54 41.16 29.5 11.99 20.06 12.69

Hybrid Features
[88]

28.08 56.43 45.62 12.36 21.95 15.09

PS-2

Digital

Proposed Method 11.81 21.44 14.92 13.72 31.73 21.09
Ensemble Features
[154]

22.08 50.94 39.1 18.81 44.59 28.47

Hybrid Features
[88]

13.36 29.15 17.15 22.63 46.68 34.47

PS-1

Proposed Method 12.72 21.56 13.32 0.3 0 0
Ensemble Features
[154]

13.18 22.81 16.46 0.16 0 0

Hybrid Features
[88]

18.99 40.13 30.7 0.72 0 0
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Table 8.7: Experiment-3: Quantitative performance of MAD algorithms by training be-
fore post-processing data and testing after post-processing data generated using different
morphing types

Training data Testing Data MAD Algorithms

Detection Performance Detection Performance

D-EER (%)
BPCER @APCER D-EER

(%)
BPCER @APCER

=5% =10% =5% =10%
without compression with compression

Digital

PS-1

Proposed Method 32.05 79.93 69.12 32.6 79.07 71.01
Ensemble Features
[154]

36.52 87.82 80.96 38.88 89.36 80.96

Hybrid Features
[88]

39.25 89.87 83.87 37.7 88.5 80.78

PS-2

Proposed Method 37.25 90.05 75.64 36.15 88.67 74.95
Ensemble Features
[154]

40.61 95.54 87.13 42.34 95.71 86.44

Hybrid Features
[88]

45.44 93.13 83.87 41.16 91.93 80.96

PS-1

Digital

Proposed Method 3.46 2.57 1.02 5.64 6.68 3.94
Ensemble Features
[154]

8.92 15.6 7.54 9.92 16.63 9.77

Hybrid Features
[88]

17.3 32.76 24.52 22.13 45.45 34.81

PS-2

Proposed Method 16.4 40.96 29.81 10.29 20.92 10.97
Ensemble Features
[154]

17.66 42.02 31.73 10.65 18.01 11.32

Hybrid Features
[88]

24.31 50.08 41.16 11.84 19.03 13.55

PS-2

Digital

Proposed Method 9.74 16.46 8.91 10.47 17.32 10.97
Ensemble Features
[154]

22.41 47.51 37.9 17.66 42.53 28.47

Hybrid Features
[88]

9.74 25.9 9.6 24.04 47.68 37.56

PS-1

Proposed Method 12.48 23.04 16.26 0.16 0 0
Ensemble Features
[154]

13.93 26.75 18.01 0.16 0 0

Hybrid Features
[88]

20.94 44.25 34.3 0.55 0 0



8.5. Experiments and Results 95

same dataset type. As shown in Table 8.3, the three dataset types (di-
gital, PS-I and PS-II) are independently evaluated before and after post-
processing. For instance, the digital dataset type before post-processing is
trained and the same dataset type is tested. A similar protocol is followed for
the digital dataset type after post-processing, followed by the two different
print-scan dataset types PS-I (before and after post-processing) and PS-II
(before and after post-processing). All experiments are carried out with and
without compression.

• Experiment-2: Inter-medium evaluation: is performed to analyze the
MAD performance of the proposed method in cross-dataset types. This
protocol is designed to investigate the robustness of the proposed method
when it is trained and tested on different dataset types (digital, PS-1 and PS-
2) generated from different mediums (digital, print-scan with and without
compression). Tables 8.4 and 8.5 indicates the two different experiments
performed for cross-dataset evaluation in the inter-medium scenario. Among
the three dataset types employed in this work, we train one dataset type and
test it on the other two. For instance, if the digital dataset type is trained,
the two different print-scan dataset types, PS-I and PS-II, are tested. The
same evaluation protocol is followed for the two print-scan dataset types. To
better evaluate the cross-dataset performance of the proposed method, we
have performed two different experiments (i) inter-medium evaluation be-
fore post-processing and (ii) inter-medium evaluation after post-processing.

• Experiment-3: Inter-medium varied post-processing: is performed to
evaluate the performance of MAD in cross datasets generated from vari-
ous mediums (digital, print-scan with and without compression) in both be-
fore and after post-processing scenarios. Tables 8.6 and 8.7 indicates the
two experiments conducted for inter-medium and varied post-processing
scenario. Two different experiments were conducted to evaluate the pro-
posed method’s performance. Following the similar experimental protocol
as inter-medium evaluation, the first experiment is performed by (i) training
the dataset types after post-processing and testing the dataset types before
post-processing. The second experiment is performed by training the dataset
types before post-processing and testing after post-processing.

8.5.2 Experimental results

In this section, we present the quantitative results of the proposed method and
the existing methods of the three different evaluation protocols. The quantitat-
ive results obtained from the three different protocols designed for intra-dataset
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evaluation, inter-medium evaluation and inter-medium with varied post-processing
evaluation scenarios are tabulated in the Tables 8.3, 8.4, 8.5, 8.6, 8.7.

Results on Experiment-1: Intra-dataset evaluation

Based on the obtained results presented in Table 8.3 following are the main obser-
vations:

• The proposed method has indicated the best performance on all three data
mediums before and after post-processing. Thus, the proposed method has
emerged as the best-performing method before and after post-processing.

• The detection performance of the existing methods also indicates the com-
petitive performance, especially with digital and PS-1 data mediums both
before and after post-processing.

• The detection performance of the S-MAD techniques indicates the degraded
performance, especially with the PS-2 data medium that can be noticed be-
fore and after post-processing data. Thus, the morph generation quality will
impact the detection accuracy of both the proposed and existing S-MAD
techniques.

• Performing the post-processing indicates the impact on the detection per-
formance. In some cases, the detection performance of the proposed method
and the existing methods indicates improvement. This can be attributed to
the possible variations in the image quality that might have resulted from
post-processing operation. However, with data compression, the perform-
ance difference is not noticeable.

• The performance of the S-MAD algorithms also varies with and without
compression, irrespective of the post-processing.

Results on Experiment-2: Inter-medium evaluation

Table 8.4 and 8.5 indicates the quantitative performance of the proposed method
together with existing methods in Experiment 2. Based on the obtained results
following can be noted:

• The Inter-medium training and testing indicate the drastic degradation of the
detection accuracy of both the proposed method and the existing methods.
The degradation is noticed both before and after post-processing.
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• The S-MAD algorithms degrade more when algorithms are trained with di-
gital and tested against PS-I and PS-II. Less degradation is noted when S-
MAD algorithms are trained with PS-I and tested against digital and PS-II.
Similar degradation is noticed both before and after post-processing.

• The S-MAD algorithms have indicated a better detection accuracy on the
print-scan compression when compared to without compression, especially
on the before post-processing data. However, the S-MAD algorithms did
not show much difference in the detection performance on the before post-
processing data. This indicates that using the post-processing data to train
and test the S-MAD algorithms might be key to achieving the generalisation
in cross-medium experiments.

• Based on the experimental results in Experiment-2, the proposed method
has indicated the best performance compared to existing methods on both
before and after post-processing data.

Experiment-3: Inter-medium varied post-processing

In this section, we discuss the quantitative results of the proposed method and the
existing S-MAD techniques, especially to study the influence of post-processing
operation versus different mediums on detection accuracy. Tables 8.6 and 8.7 in-
dicate the quantitative results of the S-MAD techniques, including the proposed
method. Based on the obtained results, the following can be noted:

• The performance of the S-MAD algorithms indicates the degraded detection
rate irrespective of the data post-processing type.

• In general, the performance of the S-MAD algorithms, including the pro-
posed method, indicates the marginal improvement in the detection per-
formance when trained using post-processed data irrespective of the data
medium.

• The performance of the proposed method indicates the best performance
compared with the existing methods, irrespective of the data type (before
or after post-processing) used for the training. The best performance of the
proposed method is when PS-1 is trained and tested on digital data before
and after post-processing.

8.6 Discussion
The research questions formulated in Section 8.2 are answered below based on
the extensive experiments conducted, obtained results and the observations made
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above.

• Q1. Does the performance of the proposed method improve when the morph
attack detection is performed on post-processed morphed images when com-
pared with the morph images before post-processing?

– As noted by the obtained experimental results reported in Table 8.4
8.5, the performance of the proposed method shows a marginal im-
provement when used with the morph images after post-processing
in Experiment-1, especially on the PS-2 data medium. However, the
proposed method’s performance did not significantly influence (even
though the proposed method has shown little improvement in some
cases) the post-processing in Experiment-2.

• Q2.Is the proposed method generalizable for morphed facial images gen-
erated from various mediums and also for the morphed images before and
after post-processing?

– Based on the experimental results (see Table 8.3 8.4, 8.5, 8.6, 8.7), the
proposed method has indicated the best performance in two different
experimental protocols.

Thus, based on the obtained results, one can attribute the improvements to using
multiple features with multiple classifiers, which would increase generalization.

8.7 Conclusions and Future Work
Reliable face morphing attack detection using a single image is a challenging prob-
lem due to the variation in image quality attributed to the various source of the
morph generation and digitisation processes. In this work, we proposed a new
framework for S-MAD using multiple features and classifiers whose comparison
scores are combined at multiple levels to detect face-morphing attacks reliably.
We have also introduced a new dataset based on manual post-processing to gen-
erate high-quality face morphing images free from morphing artefacts. The data-
set constructed has three different mediums: digital, Print-Scan (PS-1 re-digitised
using DNP printer and PS-2 re-digitised using CANON printer) and print-scan
compression. Extensive experiments are carried out using two different evaluation
protocols to benchmark the performance of the proposed method together with the
existing methods. The obtained results demonstrated the best performance of the
proposed method in two different evaluation protocols compared with the exist-
ing methods. In future work, we could evaluate more advanced fusion techniques,
benchmarking the proposed method and comparison with more SOTA approaches.
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9.1 Abstract
Face manipulation attacks have drawn the attention of biometric researchers be-
cause of their vulnerability to Face Recognition Systems (FRS). This paper pro-
poses a novel scheme to generate Composite Face Image Attacks (CFIA) based on
facial attributes using Generative Adversarial Networks (GANs). Given the face
images corresponding to two unique data subjects, the proposed CFIA method
will independently generate the segmented facial attributes, then blend them us-
ing transparent masks to generate the CFIA samples. We generate 526 unique
CFIA combinations of facial attributes for each pair of contributory data subjects.
Extensive experiments are carried out on our newly generated CFIA dataset con-
sisting of 1000 unique identities with 2000 bona fide samples and 526000 CFIA
samples, thus resulting in an overall 528000 face image samples. We present a
sequence of experiments to benchmark the attack potential of CFIA samples us-
ing four different automatic FRS. We introduced a new metric named Generalized
Morphing Attack Potential (G-MAP) to benchmark the vulnerability of generated
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attacks on FRS effectively. Additional experiments are performed on the repres-
entative subset of the CFIA dataset to benchmark both perceptual quality and hu-
man observer response. Finally, the CFIA detection performance is benchmarked
using three different single image based face Morphing Attack Detection (MAD)
algorithms. The source code of the proposed method together with CFIA data-
set will be made publicly available: https://github.com/jagmohaniiit/

LatentCompositionCode

9.2 Introduction
FRS demonstrates highly accurate verification rates, which has led to their wide-
spread usage in eCommerce, online banking, surveillance and security applica-
tions. The recent advances in deep learning techniques have further increased the
accuracy of the FRS [27], [22] that enabled them to be deployed in the border
control applications. However, the FRS is vulnerable to various attacks, among
which the face morphing attacks have gained attention due to their impact on the
border control applications. Recent benchmarking results reported in NIST FRVT
MOPRH [130] indicate that the higher the accuracy of the FRS, the higher the
vulnerability for the morphing attacks.

One of the most widely used attacks toward FRS is the Presentation Attacks (PA),
a.k.a spoofing attacks, which can be achieved by presenting a biometric artefact
to the biometric capture device. PA can be performed by generating a Present-
ation Attack Instrument (PAI) that includes either a printed photo (print-photo),
displaying an image (display-photo), displaying a video (replay-video), or the use
of a rigid/non-rigid 3D face mask (mask-attack). Biometric researchers had thus
devised Presentation Attack Detection (PAD) as a countermeasure to PA that is
extensively discussed in [29], and [30].

The second type of widely studied attack on the FRS is the adversarial attack,
which can be performed by applying a small perturbation (noise), a.k.a adversarial
perturbation, to a facial image. Even though the introduced perturbation is in-
distinguishable to the human eye but can lead to mis-classification with high-
confidence [188] and can be used to expose vulnerabilities of the FRS. Adversarial
attacks have shown high vulnerability in FRS, especially on the deep learning-
based FRS [189]. The white box adversarial attack requires complete knowledge
of the underlying deep learning model.. Adversarial attacks could also be black-
box attack performed during testing, and the attacker does not know the underlying
deep-learning model. Several countermeasures to address the adversarial attacks
are extensively discussed in [190], [191]. It needs to be pointed out that adversarial
attacks are digital when performed on images, but they can also be performed in
the physical world by using a unique eyeglass for impersonation [190].

https://github.com/jagmohaniiit/LatentCompositionCode
https://github.com/jagmohaniiit/LatentCompositionCode
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Face morphing attacks are gaining high momentum in the biometric community.
The face morphing process seamlessly combines face images from two or more
subjects (also called contributory subjects) to generate a morphing image. The
generated morphing image shows substantial visual similarity to both contributory
subjects therefore challenging to detect by the experts (border guards and police)
[69, 142, 115, 192]. Notably, the morphed images will get verified to both the con-
tributory subjects when used with automatic FRS [69]. Therefore, the morphing
attacks can be instrumented to acquire the ID documents like passports, driving
licenses, bank accounts, etc. For example, a subject with criminal background
can obtain a passport by collaborating with an accomplice to generate a morphing
image. Then, the accomplice can apply for an ID document using the morphed
image. The subject with a criminal background can use the obtained ID document
to cross the border [69, 142].

Face morphing can be generated using algorithms based on facial landmarks such
as Face Morpher [193] and UBO-Morph [194]. More recently, algorithms based on
Generative Adversarial Networks (GANs) such as MorGAN [48], MIPGAN [51]
and ReGenMorph [50] have also been used to generate face morphing images.
These generated face morphing images have demonstrated the high vulnerability
of FRS, especially in the passport application scenario, including automatic border
control. Further, morphing attacks can deceive both human observers (border con-
trol officers) and automatic FRS in Automatic Border Control (ABC) [115, 69],
[115]. Following the initial paper [142], there have been several papers on morph-
ing detection, and the reader is advised to refer to the survey by Venkatesh et
al. [69] to get a detailed overview on face morphing.

Most face morphing generation works are devised by performing the blending op-
eration on the complete (or total) face images [69]. However, the success rate of
the full-face morphing attack is high when contributory subjects are lookalikes to
deceive the super-recognizer and highly trained border guards [115]. Therefore,
partial face morphing was introduced in [195] where the blending operation is
carried out using Poisson image editing [196]. The generated composite morphs
have shown vulnerabilities of FRS based on deep-learning features such as VGG-
Face [28], Arcface [22] and commercial-off-the-shelf (COTS) that includes Neur-
otech [197] and Cognitec [198]. Further, the human observer analysis is also dis-
cussed. However, the work presented in [195] has several limitations, including
(1) it is based on landmarks, and this would lead to pixel-based artifacts due to
alignment issues, and correction of these would require manual intervention [69]
(2) Only a few arbitrary regions are used to generate the composite images (3)
Limited only to the base regions like nose, mouth, eye and forehead. (4) Limited
only to the single facial attribute composite generation (5) failure to achieve a high
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vulnerability of FRS.
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Figure 9.1: Block diagram of the proposed approach where FS is based on UPerNet Face
Segmenter from Zhou et al. [11], the Encoder is based on Resnet-34 [3], and Decoder is
based on StyleGAN [12] and the encoder-decoder synthesizes the final composite.

Thus, motivated by the limitations of the existing method [195], we aim to generate
the composite images in a fully automatic fashion using GANs. Even though the
GANs are extensively used for full face morphing attack generation [51, 49, 50],
the composite (or facial attribute) based attack generation is presented for the first
time in this work. The recent work by Chai et al. [3] presented a highly realistic
facial image synthesis with missing regions using GAN-inversion. In this work,
we modified the approach from Chai et al. [3] to generate the CFIA samples with
the primary motivation to demonstrate the vulnerabilities of FRS to CFIA. Further,
we exhaustively varied the regions based on facial attributes to evaluate their attack
potential. The proposed method for CFIA generation is designed to consider the
optimal pairing of the input images used during the compositing process to ensure
high-quality CFIA generation. The CFIA samples are generated based on multiple
facial attributes. Both single and multiple facial attributes are blended using the
transparent (or real) value that can further improve the attack potential and chal-
lenge the detection of CFIA samples. Use of facial attributes or partial morphing
will not alter the entire face and thus results in less distortion because the proposed
CFIA approach will only choose the facial attributes from the contributory subjects
and then synthesize the rest of the facial image using GAN. Hence, the generated
CFIA images are challenging to be detected by expert border guards. The key
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Figure 9.2: Illustration showing the comparison between the single face attribute based
regions and multiple face attribute based regions for the generation of the initial composite
using the proposed method.

contributions of our proposed method are as follows:

• We propose a novel framework for Composite Face Image Attack (CFIA)
generation using regression and GAN-based image synthesis. The primary
motivation of the proposed CFIA approach is to generate high-quality facial
attack images using facial attributes with high attack potential. Further, it
should be challenging to detect by both human and automatic morph detec-
tion techniques. Therefore, we generate CFIA based on single and multiple
face attributes for given contributory data subjects. Further, we propose a
transparent blending to improve the attack potential of the generated CFIA.
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Thus, we introduce 526 different types of CFIA based on various combina-
tions of facial attributes from contributory data subjects.

• We present a new CFIA dataset generated using 1000 unique data subjects
(synthetic identities). The dataset consists of 526000 CFIA samples and
2000 bona fide samples.

• We present extensive vulnerability analysis on the newly generated CFIA
dataset using deep learning-based FRS.. We also introduce an vulnerability
metric called Generalized Morphing Attack Potential (G-MAP) to bench-
mark the attack potential effectively by considering real-life scenarios.

• We present the perceptual image quality analysis of the CFIA dataset us-
ing the Peak-Signal-to Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) to benchmark the quality of the generated CFIA samples
on a sub-set of the CFIA dataset with 14 unique combinations selected from
the 526 combinations.

• We present the human observer study on the newly generated CFIA dataset
(subset of 14 combinations) with 43 observers with and without face image
manipulation detection background.

• We present extensive experiments benchmarking the performance to auto-
matically detect the CFIA (subset of 14 combinations) using three different
existing single image based face MAD techniques.

• The CFIA dataset, together with the source code of the proposed method,
will be made publicly available to enable the reproducibility of the results
presented in this paper
https://github.com/jagmohaniiit/LatentCompositionCode.

In the rest of the paper we introduce the proposed method in Section 9.3, discus-
sion on database generation methodology in presented in Section 9.4, vulnerability
analysis and G-MAP is discussed in Section 9.5, Section 9.6 discuss the quantitat-
ive results of the perceptual quality evaluation, human observer study is discussed
in Section 9.7, and discussion on CFIA detection (CAD) is presented in the Sec-
tion 9.8. Lastly, the Section 9.9 draws the conclusions and future-work.

9.3 Proposed CFIA Generation Technique
Figure 9.1 shows the block diagram of the proposed CFIA method. The proposed
CFIA method aims to automatically select single and multiple facial attribute re-
gions from the given face images and blend them to generate a composite face

https://github.com/jagmohaniiit/LatentCompositionCode
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image. The proposed CFIA method consists of three main functional blocks (1)
generation of individual segmented faces and masks from given face images, (2)
computation of the initial composite image and transparent blending face mask
and (3) final CFIA generation based on pre-trained GANs.

9.3.1 Individual Segmented Faces and Masks

The proposed CFIA composite image generation is based on the different facial
parts from the two contributory data subjects (e.g., skin from the first data subject
and eyes from the second data subject). Therefore, we employed a high precision
and accurate method to segment different facial parts. In this work, we choose
the unified parsing network (UPerNet) [199] for automatic facial region segment-
ation, which is denoted as FS. UPerNet [199] is based on multi-task learning and
semantic segmentation to achieve high-quality results on facial segmentation and
classification tasks. Thus, given the face image, UPerNet [199] provides six facial
regions (or attribute) masks, including Skin (S), Eye (E), Nose (N), Mouth (M),
Hair (H), and Background (B).

In this work, we have considered only two contributory face images based on
real-time use-case applicability (for e.g. attacks on eMRTD or ID cards) [195,
69]. We denote the first contributory face image by F1 and the corresponding
part-based segmented masks obtained using UPerNet [199] be SM1i, where i =
{1, 2, . . . , 6} and its corresponding segmented image be IS1i. Similarly, the second
contributory face image be F2 and the corresponding part-based segmented masks
be SM2j , where j = {1, 2, . . . , 6} and its corresponding segmented image be
IS2j . The face region segmentation process to obtain individual segments can be
expressed as follows:

{SM1i, IS1i} = FS(F1), ∀i = {1, 2, . . . , 6}
{SM2j , IS2j} = FS(F2),∀j = {1, 2, . . . , 6}

(9.1)

Based on these six part-based segmentation masks (or region or facial attributes),
we generate an exhaustive list of combinations from SM1i and SM2j that res-
ulted in 526 unique CFIA samples as listed in Table 9.2. It needs to be pointed
out that the selected areas are exhaustive as listed in Table 9.1. Table 9.1 mentions
the CFIA Region Index, through which we give a numerical index to the output
segments so that overall, it increases with the number of combinations. E.g., if we
consider two combinations case, we select two regions from SM1 and choose a
maximum of two regions out of six (in a step-wise manner) from SM2. Therefore,
in two combinations case (see Table 9.1), we have CFIA region index 2, in which,
we select 2 regions from SM1 and one region from SM2. Similarly, for CFIA
region index 3 we select 2 regions from SM1 and 2 regions from SM2. We repeat
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CFIA Region Index Output Segments Possible Pairs (Unique)
One Combinations

1 2
(5
1

)
×

(5
1

)
= 25(13)

Two Combinations
2 3

(5
2

)
×

(5
1

)
= 50(26)

3 4
(5
2

)
×

(5
2

)
= 100(100)

Three Combinations
4 4

(5
3

)
×

(5
1

)
= 50(50)

5 5
(5
3

)
×

(5
2

)
= 100(78)

6 6
(5
3

)
×

(5
3

)
= 100(86)

Four Combinations
7 5

(5
4

)
×

(5
1

)
= 25(25)

8 6
(5
4

)
×

(5
2

)
= 50(50)

9 7
(5
4

)
×

(5
3

)
= 50(47)

10 8
(5
4

)
×

(5
4

)
= 25(25)

Five Combinations
11 6

(5
5

)
×

(5
1

)
= 5(5)

12 7
(5
5

)
×

(5
2

)
= 10(10)

13 8
(5
5

)
×

(5
3

)
= 10(10)

14 9
(5
5

)
×

(5
4

)
= 5(5)

15 10
(5
5

)
×

(5
5

)
= 1(1)

Six Combinations
16 12

(6
6

)
×

(6
6

)
= 1(1)

Total Output Segments Possible
607

Total Unique Segments Possible
526

Table 9.1: Table showing the generation process of 526 unique CFIA combinations which
are listed in detail Table 9.2.

.

this process for the various combinations of regions (or facial attributes), such that
CFIA region index 2 results in 50 combinations corresponding to 3 output seg-
ments. Similarly, CFIA region index 3 results in 100 combinations corresponding
to 4 output segments. These steps are repeated for different CFIA region indexes
from 1 to 16, resulting in a total of 607 combinations. However, out of 607 com-
binations some of the combinations are redundant. For example, selecting face
attributes from SM1 and SM2 such as SE-NM (SkinEyes-NoseMouth) can oc-
cur in two ways, firstly Skin, Eyes from SM1 and Nose, Mouth from SM2 and
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secondly SEN-M (SkinEyesNose-Mouth), Skin, Eyes and Nose from SM1 and
Mouth from SM2 resulting in a redundant combination. Therefore, we removed
all such redundant combinations and considered unique combinations. Hence, we
generate 526 unique CFIA samples corresponding to two unique facial identities.

Region List
S1-S2 S1-S2 S1-S2 S1-S2 S1-S2 S1-S2 S1-S2
E-H H-E H-H H-M H-N H-S M-H
N-H S-H S-E S-N S-M S-S EM-H

EN-H HE-E HE-H HE-M HE-N HE-S HM-E
HM-H HM-M HM-N HM-S HN-E HN-H HN-M
HN-N HN-S HS-E HS-H HS-M HS-N HS-S
NM-H SE-H SM-H SN-H EM-EM EM-EN EM-HE

EM-HM EM-HN EM-HS EM-NM EM-SE EM-SM EM-SN
EN-EM EN-EN EN-HE EN-HM EN-HN EN-HS EN-NM
EN-SE EN-SM EN-SN HE-EM HE-EN HE-HE HE-HM
HE-HN HE-HS HE-NM HE-SE HE-SM HE-SN HM-EM
HM-EN HM-HE HM-HM HM-HN HM-HS HM-NM HM-SE
HM-SM HM-SN HN-EM HN-EN HN-HE HN-HM HN-HN
HN-HS HN-NM HN-SE HN-SM HN-SN HS-EM HS-EN
HS-HE HS-HM HS-HN HS-HS HS-NM HS-SE HS-SM
HS-SN NM-EM NM-EN NM-HE NM-HM NM-HN NM-HS

NM-NM NMS-E NMS-M NMS-N SEE-M SEE-N SEH-E
SEH-M SEH-N SEH-S SEN-M SES-E SES-M SES-N
SME-M SME-N SMH-E SMH-M SMH-N SMH-S SMN-M
SMS-E SMS-M SMS-N SNE-M SNE-N SNH-E SNH-M
SNH-N SNH-S SNN-M SNS-E SNS-M SNS-N ENM-E
ENM-H ENM-M ENM-N ENM-S HEM-E HEM-H HEM-M
HEM-N HEM-S HEN-E HEN-H HEN-N HEN-S HNME
HNM-H HNM-M HNM-N HNM-S HSE-E HSE-H HSE-S
HSM-E HSM-H HSM-M HSM-N HSM-S HSN-E HSN-H
HSN-N HSN-S SEM-E SEM-H SEM-M SEM-N SEM-S
SEN-E SEN-H SEN-N SEN-S SNM-E SNM-H SNM-M
SNM-N SNM-S ENM-HE ENM-HM SEN-EM SEN-EN ENM-HN

ENM-HS HEM-EM HEM-EN HEM-HE HEM-HM HEM-HN HEM-HS
HEM-NM HEM-SE HEM-SM HEM-SN HEN-EM HEN-EN HEN-HE
HEN-HM HEN-HN HEN-HS HEN-NM HEN-SE HEN-SM HEN-SN
HNM-EM HNM-EN HNM-HE HNM-HM HNM-HN HNM-HS HNM-NM
HNM-SE HNM-SM HNM-SN HSE-EM HSE-EN HSE-HE HSE-HM
HSE-HN HSE-HS HSE-NM HSE-SE HSE-SM HSE-SN HSM-EM
HSM-EN HSM-HE HSM-HM HSM-HN HSM-HS HSM-NM HSM-SE
HSM-SM HSM-SN HSN-EM HSN-EN HSN-HE HSN-HM HSN-HN
HSN-HS HSN-NM HSN-SE HSN-SM HSN-SN SEM-HE SEM-HM
SEM-HN SEM-HS SEN-HE SEN-HM SEN-HN SEN-HS SNM-HE
SNM-HM SNM-HN SNM-HS ENM-HEM ENM-HEN ENM-HNM ENM-HSE

ENM-HSM ENM-HSN HEM-ENM HEM-HEM HEM-HEN HEM-HNM HEM-HSE
HEM-HSM HEM-HSN HEM-SEM HEM-SEN HEM-SNM HEN-ENM HEN-HEM
HEN-HEN HEN-HNM HEN-HSE HEN-HSM HEN-HSN HEN-SEM HEN-SEN
HEN-SNM HNM-ENM HNM-HEM HNM-HEN HNM-HNM HNM-HSE HNM-HSM
HNM-HSN HNM-SEM HNM-SEN HNM-SNM HSE-ENM HSE-HEM HSE-HEN
HSE-HNM HSE-HSE HSE-HSM HSE-HSN HSE-SEM HSE-SEN HSE-SNM
HSM-ENM HSM-HEM HSM-HEN HSM-HNM HSM-HSE HSM-HSM HSM-HSN
HSM-SEM HSM-SEN HSM-SNM HSN-ENM HSN-HEM HSN-HEN HSN-HNM
HSN-HSE HSN-HSM HSN-HSN HSN-SEM HSN-SEN HSN-SNM SEM-HEM
SEM-HEN SEM-HNM SEM-HSE SEM-HSM SEM-HSN SEN-HEM SEN-HEN
SEN-HNM SEN-HSE SEN-HSM SEN-HSN SNMHEM SNM-HEN SNM-HNM
SNM-HSE SNM-HSM SNM-HSN SEN-SEM SEN-SEN HENM-E HENM-H
HENM-M HENM-N HENM-S HSEM-E HSEM-H HSEMM HSEM-N
HSEM-S HSEN-E HSEN-H HSEN-N HSEN-S HSNME HSNM-H
HSNM-M HSNM-N HSNM-S SENM-E SENM-H SENM-M SENM-N
SENM-S HENM-EM HENM-EN HENM-HE HENM-HM HENM-HN HENM-HS

HENM-NM HENM-SE HENM-SM HENM-SN HSEM-EM HSEM-EN HSEM-HE
HSEM-HM HSEM-HN HSEM-HS HSEM-NM HSEM-SE HSEM-SM HSEM-SN
HSEN-EM HSEN-EN HSEN-HE HSEN-HM HSEN-HN HSEN-HS HSEN-NM
HSEN-SE HSEN-SM HSEN-SN HSNM-EM HSNM-EN HSNM-HE HSNM-HM

HSNM-HN HSNM-HS HSNM-NM HSNM-SE HSNM-SM HSNM-SN SENM-EM
SENM-EN SENM-HE SENM-HM SENM-HN SENM-HS SENM-NM SENM-SE
SENM-SM SENM-SN SENM-ENM HENM-ENM HENM-HEM HENM-HEN HENM-HNM

HENM-HSE HENM-HSM HENM-HSN HENM-SEM HENM-SEN HENM-SNM HSEM-ENM
HSEM-HEM HSEM-HEN HSEMH-NM HSEMH-SE HSEMH-SM HSEM-HSN HSEM-SEM
HSEM-SEN HSEM-SNM HSEN-ENM HSEN-HEM HSEN-HEN HSEN-HNM HSEN-HSE
HSEN-HSM HSEN-HSN HSEN-SEM HSEN-SEN HSEN-SNM HSNM-ENM HSNM-HEM
HSNM-HEN HSNM-HNM HSNM-HSE HSNM-HSM HSNM-HSN HSNM-SEM HSNM-SEN
HSNM-SNM SENM-HEM SENM-HEN SENM-HNM SENM-HSE SENM-HSM SENM-HSN

HENMH-ENM HENMH-SEM SENM-SENM HENM-HSEN HENM-HSNM HENM-SENM HSEM-HENM
HSEM-HSEM HSEM-HSEN HSEM-HSNM HSEM-SENM HSEN-HENM HSEN-HSEM HSENH-SEN
HSENH-SNM HSEN-SENM HSNM-HENM HSNM-HSEM HSNM-HSEN HSNM-HSNM HSNM-SENM
SENM-HENM SENM-HSEM SENM-HSEN SENM-HSNM HSENM-E HSENM-H HSENM-M

HSENM-N HSENM-S HSENME-M HSENME-N HSENMH-E HSENMH-M HSENMH-N
HSENMH-S HSENMN-M HSENMS-E HSENMS-M HSENMS-N HSENMEN-M HSENMH-EM

HSENMH-EN HSENMH-NM HSENMH-SE HSENMH-SM HSENMH-SN HSENMS-EM HSENMS-EN
HSENMS-NM HSENMH-ENM HSENMH-SEM HSENMH-SEN HSENMH-SNM HSENM-SENM HSENM-HSENM

HBSENM-HBSENM

Table 9.2: Exhaustive List of Regions used for Composition where the compositions
S1 are used for Subject 1 and S2 are used for Subject 2 where the facial attributes are
B=Background, S=Skin, E=Eye, N=Nose and M=Mouth. The compositions listed in left
to right order are in increasing order of Composition Region Index (for Composition Re-
gion Index, please refer Table 9.1)

.
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9.3.2 Initial Composite Image and Transparent Blending Face-Mask

In the next step, we generate the initial composite image and transparent blending
of face segments by applying the blending operation on the individual segmen-
ted faces (IS1i & IS2j) and their corresponding masks (SM1i & SM2j) from
contributory data subjects (F1 & F2). The blending operation is carried out inde-
pendently for the mask and the individual segmented faces. The blended mask mc

is generated by a simple union operation that can represent the combined facial
region from SM1i and SM2j as described in Equation 9.2. The generation of the
initial composite image (IC) is done in three consecutive steps shown in Equa-
tion 9.3, where first IC is initialized 0, then in the next step, IC is updated using
the compositing equation with the segmented region (IS1i) from the data subject
F1 as input. Finally, IC is updated using the compositing equation with the seg-
mented region (IS2j) from data subject F2, and its segmentation masks SM2j as
an input. These steps are mathematically presented in Equation 9.3.

mc = SM1i
⋃

SM2j (9.2)

IC = 0

IC = IS1i

IC = IS2j + (1− SM2j)×IC
(9.3)

Figure 9.2 shows the qualitative results of the initial composite image and the cor-
responding mask for both single-face attribute-based composite regions & multiple-
face attribute-based composite regions.

9.3.3 Final CFIA samples Generation

Once the initial composite image and the transparent blending face mask are gen-
erated, we generate the final CFIA samples using the image inpainting based on
pre-trained regressor and GAN [3]. The input composite image and its mask are
passed through a pre-trained encoder (E) and then to the decoder (G) to generate
the final composite image (FCI). The process of generating the CFIA sample is
as indicated in Equation 9.4.

CFIA = D(E(IC,mc)) (9.4)

The encoder network (E) selected in our work is pre-trained Resnet-34 [3], and
the decoder network (G) is a pre-trained StyleGAN-I decoder which was trained
on FFHQ dataset [12]. The primary motivation for the choice of the encoder and
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decoder networks was that image to latent conversion is posed as a regression
problem [3]. Further, it is found that Resnet-34 is suitable for regressing the lat-
ent from a face image with missing information and renders the high-quality face
image. Lastly, we use the decoder (D) based on StyleGAN-I as it provides a lin-
ear latent subspace [200]. Hence, reconstruction from the generated latent is of
good perceptual quality even with missing information in the input image. Fig-
ure 9.3 shows example results corresponding to five combinations generated using
the proposed method. For the simplicity, we have included the illustration for five
combination and full 526 CFIA samples are included in the supplement material.

Subject 1
Subject 2

Composites from Five Combinations

HSENMHM HSENMHN HSENMHS HSENMNM HSENMSE HSENMSM HSENMSN HSENMENM

HSENME HSENMH HSENMM HSENMN HSENMS HSENMEM HSENMEN HSENMHE

HSENMHEM HSENMHEN HSENMHNM HSENMHSE HSENMHSM HSENMHSN HSENMSEM

HSENMSEN HSENMSNM HSENMHENM HSENMHSEM HSENMHSEN HSENMHSNM

HSENMSENM HSENMHSENM

Figure 9.3: Illustration showing five combinations based composites.

9.4 CFIA Database Generation
This section presents the dataset generation process used to evaluate the proposed
composite image generation. Owing to the ethical and legal challenges with face
biometric datasets that will eventually limit the distribution, in this work, we gen-
erate the synthetic face images corresponding to the unique identities using Styl-
eGAN inversion [3]. Earlier works [201, 51, 202] indicated that generating the
synthetic face images have demonstrated both realness in terms of quality, unique-
ness and verification accuracy. Further, synthetic face images will overcome the
need for privacy and legal limitations to make the database public, which is vi-
tal for reproducible research. Figure 9.4 illustrates the CFIA dataset generation
process.
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Figure 9.4: Illustration showing the CFIA dataset generation process

9.4.1 Synthetic Face Image Generation

Given a random latent vector, we use the approach from Chai et al. [3] to generate
a synthetic face corresponding to unique data subjects using StyleGAN inversion.
We further perturb the random latent by an ϵ amount to generate the mated face
image corresponding to the given identity. The choice of ϵ is made empirically,
which is small enough not to alter the identity of the generated face. However,
the generation of synthetic face images with corresponding mated face images
with unique identities will result in non-ICAO compliant photos with glasses, non-
frontal pose, and a non-neutral face expression, as shown in Figure 9.5. Therefore,
it is necessary to detect the ICAO-compliant faces for which we select faces with
frontal pose automatically and remove photos with glasses and non-neutral face
expressions manually.

9.4.2 Hyperparameters Selection

Hyper-parameters SOTA [3] Proposed Method
Frontal Pose Selection No Yes

Optimal Pairing No Yes
Epsilon(ϵ) No 10−7

Alpha(α) 1 0.5

Table 9.3: Different Hyper-parameters used for the proposed method. Note the proposed
method modifies a large number of hyper-parameters compared with SOTA [3].

This section discusses the choices of the parameters associated with SOTA and
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Figure 9.5: Illustration showing faces selected and rejected by our proposed frontal-pose
detection Algorithm 2. Note face images with glasses and GAN-based artifacts are rejected
manually.

Original                 (1e-7)             (1e-6)             (1e-5)            (1e-4)               (1e-3)              (1e-2)            (1e-1)                (1e0) 

Original                 (1e-7)             (1e-6)             (1e-5)            (1e-4)               (1e-3)              (1e-2)            (1e-1)                (1e0) 

Figure 9.6: Illustration of the effect of perturbation based on epsilon (ϵ) for synthetic face
generation, note artifacts start appearing when (ϵ = 0.1) and results in change in identity
when (ϵ = 1)
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the proposed method as tabulated in Table 9.3. In total, we have four different
hyperparameters that are discussed as follows:

• Epsilon(ϵ): The value of ϵ is empirically chosen as 10−7. Since values
higher than 10−1 lead to artifacts and a sample of different identities as
shown in Figure 9.6. Thus, we choose an ϵ conservatively.

• Alpha: We choose α=0.5 as it is known to create the highest vulnerability
towards FRS for Face Morphing Image Attack (FMIA) [69]. of segments
possible is shown in Table 9.2

9.4.3 Frontal Face Pose Selection

We have developed the algorithm to automatically select the ICAO compliant face
images corresponding to each unique identity as indicated in the Algorithm 2. The
primary motivation behind this algorithm is that the face in a frontal pose would
have similar angles between Left-Eye, Nose, and Mouth (Left Part) and Right-Eye,
Nose, and Mouth (Right Part). A slight change in the face pose from a frontal face
to a profile face would result in a skew, which would cause these two angles to be
different. The qualitative results of the proposed frontal face selection algorithm
are as shown in Figure 9.5. Since we are currently not interested in the computation
of exact face pose, the heuristic works sufficiently well for our dataset, which does
not consist of extreme face poses.

Algorithm 2: Non-Frontal Pose Identification
Input: Face Image with 5 Landmarks (Left-Eye (LE), Right-Eye (RE),

Nose (N ), Left-Mouth (LM ), and Right-Mouth (RM )
Output: True if Face Image is Frontal

1: Compute the angle between the vectors of Left-Eye, Nose, and Left-Mouth,
Nose
θ1← arccos((

−−−→
LEN ·

−−−→
LMN)).

2: Compute the angle between the vectors of Nose, Right-Eye, and Nose,
Right-Mouth
θ2← arccos((

−−−→
NRE ·

−−−−→
NRM)).

3: Compute absolute difference between the angles, as angleDiff ← |θ1 − θ2|
4: if angleDiff ≤ τ then
5: Face is Frontal
6: return True
7: end if
8: return False
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9.4.4 Optimal Face Pair Generation for composite image generation

Algorithm 3: Optimal Pair Finding Algorithm

Input: Random Image Pairs (I11 , I
1
2 ),· · ·,(IN1 , IN2 )

Output: Optimal Image Pairs (O1
1,O1

2),· · ·,(ON
1 ,ON

2 )
1: Compute Arcface features on the input face images.
2: Optimal-Pair← []
3: for i← 1 to N do
4: Compute Index of nearest arcface feature j to i
5: if (j, i) /∈ Optimal-Pair then
6: Append (i, j) to Optimal-Pair
7: else
8: Compute Index of second-nearest arcface feature k to i
9: Append (i, k) to Optimal-Pair

10: end if
11: end for
12: return Optimal-Pair

It is essential to select the look-alike data subjects to achieve the optimal attack
potential with the proposed composite face image generation. We choose the op-
timal pairs to generate the composite face images to this extent. Given n synthetic
samples, the total number of pairs possible is ((n)×(n − 1))/2, and thus find-
ing optimal pairs using this approach is quadratic (O(n2)) as we have to compute
the pair-wise distance for all pairs. The quadratic time for pair-finding is within
the computing limits as our dataset now consists of 1000 unique data subjects.
We have put an additional constraint in the pair-finding algorithm not to return
swapped pairs, i.e., if (i,j) is the list, then (j,i) is not added to the optimal pair list.
The approach for optimal pair finding is summarized in an algorithmic format in
Algorithm 3 and a few optimal pairs are shown in Figure 9.4. The distance metric
used in our approach is cosine-distance from Arcface [22] features.

Thus, the CFIA dataset has 1000 unique identities with 2000 bona fide samples
and 526000 CFIA samples. The whole dataset will made publicly available for
research purposes along with code at the following link https://github.com/
jagmohaniiit/LatentCompositionCode.

9.5 Vulnerability Analysis
This section presents the vulnerability analysis of the proposed CFIA samples on
the automatic FRS. We have benchmarked four different FRS based on deep learn-
ing. The deep learning FRS employed in this work are Arcface [54] (Model R100

https://github.com/jagmohaniiit/LatentCompositionCode
https://github.com/jagmohaniiit/LatentCompositionCode
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Utility Features MMPMR [83] FMMPMR [84] MAP [85] G-MAP
Multiple Attempts for individual morphing Image ✓ ✓ ✗ ✓

Pairwise comparison of probe samples ✗ ✓ ✓ ✓

Multiple FRS ✗ ✗ ✓ ✓

Multiple Morphing Types ✗ ✗ ✗ ✓

Accountability for FTAR ✗ ✗ ✗ ✓

Vulnerability as a single number ✓ ✓ ✗ ✓

Table 9.4: Utility Features of existing and proposed vulnerability metrics

V1), VGGFace [55] (Version 2), Facenet [56] and Magface [203]. The pro-
posed CFIA samples are generated based on the face images corresponding to two
contributory subjects. Therefore, we benchmark the attack potential of CFIA by
comparing the FRS scores computed from both contributory subjects against the
pre-set threshold of FAR = 0.1%. The comparison scores from FRS are computed
by enrolling the attack samples to FRS and then probing the face images from the
contributory subjects.
In the literature, the vulnerability of FRS can be calculated using three differ-
ent types of metrics namely: Mated Morphed Presentation Match Rate (MMPMR)
[83], Fully Mated Morphed Presentation Match Rate (FMMPMR) [84] and Morph-
ing Attack Potential (MAP) [85]. The MMPMR metric is based on the independ-
ent attempts, while FMMPMR employs pair-wise probe attempts of the contrib-
utory subjects. The MAP metric improves existing metrics by accommodating
multiple FRS together with pair-wise probe attempts. However, the MAP met-
ric will represent the vulnerability results in the matrix form as attempts versus
multiple FRS. Hence, MAP does not quantify the vulnerability as a single num-
ber. Further, the constant number of attempts will also limit the evaluation as it
enforces all enrolled attack samples to have the same number of attempts which
is not true in a real-life scenario. Additionally, while computing the vulnerabil-
ity, the existing metrics do not consider accommodating Failure-to-Acquire Rate
(FTAR) and multiple morphing generation techniques. Even though the enroled
face image (attack/CFIA/morphing or bona fide) is captured in the constrained
conditions, the probe images are not essentially captured in the constrained condi-
tions due to the nature of ID verification scenarios (for example, in border control
gates, smartphone authentication, etc.). Further, the availability of different types
of morphing (or attack) generation techniques (full face/partial face/facial attrib-
ute) allows an attacker to generate various attack samples. Hence, the vulnerab-
ility computation needs to accommodate different types of morphing generation.
These factors motivated us to enhance the existing vulnerability metrics (MAP) to
include more utility features such as (a) Dynamic attempts per morph image, (b)
Accountability for FTAR, (3) Accountability for multiple morphing techniques,
and (4) Single numeric value indicating the vulnerability. The enhanced vulnerab-
ility metric is termed as Generalised Morphing Attack Potential (G-MAP). Table
9.4 presents utility features of the proposed G-MAP compared to existing metrics
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such as MMPMR [83], FMMPMR [84] and MAP[85].

9.5.1 Mathematical Formulation of G-MAP

Let P denote the set of paired probe images (which can also be denoted as number
of attempts), F denote the set of FRS, D denote the set of Morphing Attack Gen-
eration Type, Md denote the face morphing image set corresponding to Morphing
Attack Generation Type d, τl indicate the similarity score threshold for FRS (l),
and || represents the count of elements in a set during metric evaluation. The G-
MAP metric is presented as below:

G-MAP =
1

|D|

|D|∑
d

1

|P|
1

|Md|
min
Fl

|P|,|Md|∑
i,j

{[
(S1ji > τl) ∧ · · · (Skji > τl)

]
× [(1− FTAR(i, l))]

}
(9.5)

where, FTAR(i, l) is the failure to acquire probe image in attempt i using FRS
(l). The algorithm for G-MAP is presented in 4 and the code is made available in
the link [204].

9.5.2 Computing G-MAP

Given the fact that G-MAP can be computed with different parameters, which
include multiple probe attempts, multiple FRS and the morph attack generation
types. G-MAP with multiple probe attempts is calculated from Equation 11.4
by setting D = 1 and F = 1 where the similarity scores (S1ji ) should be greater than
threshold (τl) and FTAR(i,l) is calculated for each probe attempt and FRS. Thus,
making G-MAP with multiple probe attempts identical to FMMPMR when
FTAR=0. Further, G-MAP with Multiple FRS and multiple probe attempts
is computed by taking minimum across FRS and using D=1. Finally, the full G-
MAP metric would provide a single value indicating the vulnerability which is by
taking the average as shown in Equation 11.4.

9.5.3 Quantitative evaluation of vulnerability

In this section, we present the qualitative and quantitative evaluation of the vulner-
ability corresponding to FRS for all 526 CFIA samples generated using a different
combination of facial attributes. Since G-MAP is a function of attempts, FRS, and
morphing types, this will allow one to analyse the quantitative results correspond-
ing to (a) probe attempts independently to FRS and attack image generation type
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Figure 9.7: Vulnerability Plots G-MAP (Probe Attempts). X-axis indicates the number of
unique CFIA generated where the index 0 corresponds to E-H, the index 1 corresponds to
H-E, and the following indices in the left to right order corresponding to Table 9.1. Thus,
finally, index 525 to HBSENM-HBSENM.
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Figure 9.8: Most and Least Vulnerable CFIA Samples from the dataset.
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Figure 9.9: Vulnerability Plots G-MAP (Multiple FRS and multiple probe attempts-
based). X-axis indicates the number of unique CFIA generated where the index 0 cor-
responds to E-H, the index 1 corresponds to H-E, and the following indices in the left to
right order corresponding to Table 9.1. Thus, finally, index 525 to HBSENM-HBSENM.
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Algorithm 4: Generalized Morph Attack Potential (G-MAP)
Input: Set of Probe Images P, Set of FRS F, Set of Morphing Attack

Generation Type D, Set of Morphing Attack Images in dth attack Md,
τl indicate the similarity score threshold for FRS.

Output: G-MAP
1: Compute G-MAP Metric as follows.
2: for j ← 1 to |Md| do
3: for d← 1 to |D| do
4: for l← 1 to |F| do
5: for i← 1 to |P| do
6: Compute QF(i,l)=(1-FTAR(i,l))
7: Compute G-MAP(d)= 1

|P|
1

|Md| minl
∑|P|,|Md|

i,j (S1ji > τl) ∧ · · ·
(Skji > τl)×QF (i, l)

8: end for
9: end for

10: end for
11: end for
12: Compute G-MAP= 1

|D|G−MAP (d)
13: return G-MAP

(b) Multiple FRS with multiple attempts independent of attack image generation
type (c) Final G-MAP value as a function of attempts, multiple FRS and different
types of attack image generation together with FTAR.
In this work, we first present the vulnerability of the full CFIA dataset using four
different FRS such as Arcface [54] (Model R100 V1), VGGFace [55] (Version 2),
Facenet [56] and Magface [203]. The vulnerability reported in this work is com-
puted by setting the threshold of FRS at FAR = 0.1%. Figure 9.7 shows the plot
of G-MAP values that are computed for multiple probe attempts independent of
FRS and CFIA generation type. The composite region index started from the out-
put segment with two regions (left extreme of x-axis in Figure 9.7) and continued
till six combinations (right extreme of x-axis in Figure 9.7). Table 9.5 shows the
quantitative values of G-MAP with probe attempts corresponding to four different
FRS. For simplicity, we have only indicated the quantitative results to 14 combina-
tions sampled from 526 regions. It needs to be pointed out that these 14 regions are
indicative of least, moderate and most vulnerable regions from 526 unique CFIA
combinations.

Based on the obtained results following are the main observations:
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• The number of composite regions used to generate the CFIA samples plays
a vital role in the vulnerability of FRS. Using a smaller number of regions
(for example, 2, 3 and 4) to generate the CFIA will result in a lower vul-
nerability of FRS. This it can be attributed to the fact that in these regions,
the blending for the generation of composite happens in a small region and
the remainder of the face is generated by GAN-based image inpainting. For
example, if we consider the two regions (or facial attribute) CFIA genera-
tion, then one region is taken from the contributory subject 1 and another
region is taken from the contributory subject 2, from these selected regions,
the whole face is generated using the GAN. This process results in the loss
of identity information in the generated CFIA due to the availability of a few
regions. Figure 9.8 illustrates the example of low vulnerable CFIA samples
generated using two and three region combinations. The lower vulnerability
is noted with both SOTA and the proposed CFIA generation.

• The CFIA samples generated using 4, 5 and 6 regions have indicated higher
vulnerability of FRS. This can be attributed to the fact that the larger the
number of facial attributes used from both the contributory data subjects,
the higher the vulnerability of the FRS. This trend is noticed equally with
both SOTA and the proposed CFIA generation. Figure 9.8 shows the CFIA
samples for the top 5 highest vulnerable combinations indicating the rich
identity features corresponding to both contributory subjects.

• Among the four different FRS employed in this work, the Facenet [56] in-
dicates the higher vulnerability across different region combinations. The
lowest vulnerability is noted with the VGG FRS [55].

• The proposed CFIA generation technique indicates the higher vulnerability
of FRS when compared with the SOTA [3]. The higher vulnerability of FRS
to the proposed technique is noted with the CFIA samples that are generated
using five and six-region combinations.

• Additional experiments on Commercial-Off-The-Shelf (COTS) to indicate
the importance of FTAR is included in the Appendix A.

Figure 9.9 shows the vulnerability of FRS with G-MAP computed across multiple
FRS and multiple attempts for both SOTA and proposed CFIA with 526 com-
binations. Given CFIA sample is said to be vulnerable if the multiple probe at-
tempts must successfully deceive the multiple FRS. Thus, the G-MAP will provide
a single value indicating the vulnerability by taking the average probe attempts
while accounting for FTAR. Table 9.6 indicates the G-MAP (multiple FRS and
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G-MAP % (Multiple probe attempts)
FRS Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

Arcface (FAR=0.1%) SOTA [3] 70.5 58.7 60.6 52.7 70.8 69.2 72.9 71.6 69.1 69.1 67.6 74.1 69.6 72.3
Proposed 67.3 58.1 60.2 72.4 70.4 68.4 72.5 71.9 71.4 84.2 82.8 76.4 86.8 89.9

MagFace (FAR=0.1%) SOTA [3] 57.6 45.0 48.7 42.7 58.0 57.3 61.0 60.7 61.1 59.0 52.6 65.1 57.7 54.0
Proposed 67.3 58.2 60.1 72.4 70.4 68.6 72.5 72.0 71.4 84.2 82.8 76.4 86.7 89.8

VGGFace (FAR=0.1%) SOTA [3] 65.2 64.2 62.7 63.6 64.9 63.9 66.1 65.7 67.0 67.2 65.4 65.9 68.1 67.7
Proposed 65.4 64.4 63.0 65.9 66.4 68.1 69.1 66.0 68.5 70.5 70.5 68.6 71.0 71.9

Facenet (FAR=0.1%) SOTA [3] 95.8 96.9 95.4 93.8 95.3 96.5 95.9 95.8 96.1 95.6 94.5 96.4 94.7 95.2
Proposed 96.1 97.7 96.3 97.4 95.5 97.3 95.4 96.4 97.4 97.2 97.3 96.6 96.6 97.0

Table 9.5: Vulnerability analysis using the G-MAP metric (probe attempts-based) for
the proposed method and the SOTA [3], where the description of regions is provided in
Table 9.1. Where R1 is (S-E), R2 is (S-N), R3 is (S-M), R4 is (S-S), R5 is (SEN-M), R6
is (SEM-N), R7 is (SNM-E), R8 is (SEN-EM), R9 is (SEN-EN), R10 is (SEN-SEM), R11
is (SEN-SEN), R12 is (SENM-ENM), R13 is (SENM-SENM), and R14 is (HBSENM-
HBSENM)).

G-MAP % (Multiple FRS and multiple probe attempts)
Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

SOTA [3] 57.6 45.0 48.7 42.7 58.0 57.3 61.0 60.7 61.1 59.0 52.6 65.1 57.7 54.0
Proposed 65.4 58.1 60.1 65.9 66.4 68.1 69.1 66.0 68.5 70.5 70.5 68.6 71.0 71.9

Table 9.6: Vulnerability analysis using the G-MAP metric (Multiple FRS and multiple
probe attempts-based) for the proposed method and the SOTA [3].

multiple probes) for 14 different regions (that are the same as Table 9.5) for sim-
plicity. Based on the obtained results
following are the main observations:

• The CFIA samples generated with five and six regions combinations indicate
higher vulnerability of multiple FRS. This is noted with both SOTA and the
proposed CFIA technique.

• The proposed CFIA samples indicate the higher vulnerability of FRS com-
pared to SOTA.

• Figure 9.10 shows the box plots of proposed method and SOTA computed
across CFIA region index as mentioned in Table 9.1 indicates the mean and
variance computed by taking the average of G-MAP values computed over
all region combinations within the CFIA region index. As noticed from
Figure 9.10 and Table 9.8, the combinations with less number of regions do
not significantly increase the vulnerability. The combination of five regions
with CFIA region index of 13, 14 and 15 indicates the higher vulnerability
of FRS with the proposed CFIA technique.

Table 9.7 indicates the vulnerability computed with full capacity of G-MAP in
which multiple attempts, multiple FRS, multiple attack types and FTAR. The G-
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G-MAP %
SOTA Method [3] Proposed Method

46.9% 52.4%

Table 9.7: G-MAP for SOTA Method and the Proposed Method computed using 526
CFIA compositions.

CFIA Region Index Proposed Method SOTA Method [3]
1 37.3±36.3 40.7±34.5
2 38.8±34.0 32.9±33.9
3 39.1±47.3 37.8±41.2
4 41.9±41.7 39±31.1
5 50.4±36.7 43.8±30.8
6 52.8±34.3 46.5±33.2
7 47.9±23.6 48.4±22.0
8 54.2±29.4 48.4±24.7
9 60.3±26.9 48.8±28.4
10 65.3±20.0 53.6±21.0
11 54.1±11.8 53.8±11.0
12 64.3±17.9 59.2±9.1
13 72.2±13.2 58.4±12.0
14 78.1±5.5 51.0±7.7
15 75.5±0 43.5±0
16 71.8±0 61.1±0

Table 9.8: Table showing mean and standard deviation for each CFIA region index based
on SOTA [3] and the Proposed Method. (for CFIA region index please refer Table 9.1)
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Figure 9.10: G-MAP Combinations (FRS-Based) where the number denotes the CFIA
Region Index of (a) Proposed and (b) SOTA Method [3] (Table 9.1)

MAP values indicated in the 9.7 quantify the vulnerability of the proposed and
SOTA for the complete CFIA dataset with 526 attack types and four different FRS.
The obtained results indicate that the proposed method gives higher bounds of
vulnerability for all 526 attack types.

9.6 Perceptual quality evaluation of the composite images
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Figure 9.11: Box plots showing PSNR of SOTA [3] and the proposed Method for 14
regions. These 14 regions are same as indicated in Table 9.5

This section presents the quantitative analysis of the proposed CFIA samples using
two perceptual image quality metrics, namely, PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index). We present the results pertaining to 14
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Region PSNR SSIM
R1 SOTA [3] Proposed SOTA [3] Proposed
R1 15.4±10.2 15.6±7.0 0.68±0.01 0.71±0.00
R2 15.5±9.5 15.7±6.6 0.68±0.01 0.71±0.00
R3 15.5±10.2 15.6±7.0 0.68±0.01 0.71±0.00
R4 15.6±8.6 15.9±4.6 0.69±0.01 0.71±0.00
R5 15.4±10.6 15.6±7.4 0.68±0.01 0.71±0.00
R6 15.5±10.0 15.7±6.9 0.68±0.01 0.71±0.00
R7 15.5±10.6 15.7±7.4 0.68±0.01 0.71±0.00
R8 15.4±9.6 15.6±6.8 0.68±0.01 0.71±0.00
R9 15.4±8.6 15.7±6.7 0.68±0.01 0.73±0.00
R10 15.7±8.7 16.0±4.7 0.69±0.01 0.72±0.00
R11 15.6±9.9 16.0±5.0 0.69±0.01 0.72±0.00
R12 15.3±7.8 15.7±6.4 0.67±0.00 0.71±0.00
R13 15.7±10.3 16.0±5.2 0.69±0.01 0.72±0.00
R14 15.8±14.4 16.0±6.4 0.68±0.01 0.71±0.00

Table 9.9: Perceptual Image Quality Metrics PSNR and SSIM comparison for SOTA [3]
and proposed Method on 14 different regions mentioned in the Table 9.5

regions out of 526 unique regions for the simplicity and these regions are same as
mention in Section 9.5 and in Table 9.5. It is worth noting that, these 14 regions
will represent the lower, moderate and high vulnerability of FRS. Both PSNR and
SSIM are reference image-based quality metrics and thus require a pair of images
for evaluation (face image from the contributory data subject and the generated
face composite image). Table 9.9 indicates the quantitative analysis of the percep-
tual quality analysis on both SOTA [3] and the proposed CFIA method. Figure
9.11 illustrates the box plots corresponding to both SSIM and PSNR computed on
all 14 regions. Following are the main observations from the obtained results:

• The PSNR metric has a higher mean-value and less variance for the pro-
posed CFIA method compared with SOTA [3] indicating lesser noise in the
face composites generated using the proposed CFIA method. This is ex-
pected as transparent blending would produce a lower contrast image, as
the choice of blending-factor (α = 0.5) would generate a pixel value lower
than those from contributory data subjects as the blending equation is ap-
plied twice refer Equation 9.3. Thus, the proposed CFIA method generates
a more consistent image quality irrespective of the region compared with
SOTA [3].
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Figure 9.12: Illustration showing average accuracy quantitatively for the human observer
study where bona fide or Synthetic Face Image (without any modification) is denoted as
SIF.

• The SSIM metric produces a more stable value for both the proposed CFIA
method and SOTA [3]. The proposed CFIA method gives a higher value
for SSIM than the SOTA [3]. Since SSIM is a metric more tuned to the
Human Visual System (HVS), [205] as it measures luminance distortion,
contrast distortion, and loss of correlation. Thus, our proposed CFIA method
generates higher-quality composites for HVS.

9.7 Human Observer Study

Figure 9.13: Screenshot from the GUI (Full Page) of human observer web page.

We perform a Human Observer Study (HOS) of the generated composites to evalu-
ate the detection performance by human experts. We present the results pertaining
to 14 regions out of 526 unique regions for the simplicity and these regions are
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same as mention in Section 9.5 and in Table 9.5. It is worth noting that, these
14 regions will represent the lower, moderate and high vulnerability of FRS. The
HOS is conducted using a web-based application 1 where a dedicated web page
is set up with the use of PHP and HTML-CSS. In this study, GDPR norms are
respected, and we only store the individual’s email, gender, experience with the
composite problem, and age group. We have made sure that the user remains an-
onymous during the study. Figure 9.13 shows the screenshot of the GUI of our
website where the HOS is carried out. In this study, a human observer is shown
a webpage with two images at a time where the observer has to decide independ-
ently on whether each of them is real/composite (or manipulated). The current
study shows 43 image pairs, and it takes around 20 minutes to complete the study.
The study includes synthetic face images and 14 different types of composites as
mentioned in Table 9.5. Further, the human observer is explained in detail the step-
wise instructions to perform the study. This enables people without awareness of
the image manipulation problem and those with basic and advanced awareness of
the composition problem to participate in the study. In the current evaluation, 51
human observers have participated and completed the study, including 40 parti-
cipants without awareness, 6 with basic awareness, and 5 with an advanced aware-
ness of the composition problem.

The quantitative results of HOS are as shown in Figure 9.12 and the following are
the important observations:

• The average detection accuracy is similar for human observers without aware-
ness of the composition problem and those with basic awareness. This can
be attributed to the innate human ability to detect composites. However, the
average detection accuracy for human observers with advanced awareness of
the composition problem is much higher than both without awareness and
basic awareness.

• The average accuracy is not very high for faces based on the composition,
which utilizes a single facial attribute except for R2 with advanced aware-
ness. This can be attributed to the fact that a large part of the facial region
needs to be inpainted in the case of single facial attribute composition.

• The average detection accuracy is high for the regions R8, R10, R12, and
R14. R8 has moderate parts of faces being used for compositing from the
two contributory data subjects. The reason for high detection accuracy can
be attributed to the fact that R8 has only eyes from both the contributory data
subjects but his nose and mouth from different contributory data subjects.

1https://folk.ntnu.no/jagms/indexCompositeUpdated.html

https://folk.ntnu.no/jagms/indexCompositeUpdated.html
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The same reasoning with more significant facial parts used for compositing
can be extended to R10 where the nose and mouth are from different con-
tributory data subjects but have skin and eyes from both contributory data
subjects. Now for the compositing region R12, the skin region is only from
one contributory data subject. Thus, in all three cases, the asymmetry in
the regions from the contributory data subjects aids the human observer in
performing the detection at high accuracy.

• However, the average performance of the human observers for detecting a
normal face image (or non-composite) is 46%. Further, it is also interesting
to observe that degraded performance is noted in the advanced experience
group. Thus, our analysis indicates that human observers are limited in de-
tecting the normal face images compared to the composite face images.

• Now, for the compositing region R14 all facial parts from the contributory
data subjects are being used. Thus, the composited image can be distin-
guished from a synthetic face image using global image-based cues.

• In summary, we could say that either asymmetric regions or global level
cues can help the human observer perform detection at high accuracy rates.
However, our analysis indicates that it is very challenging for humans to
detect composite attacks.

9.8 Composite Face Image Attack Detection
In this section, we benchmark CFIA detection based on a single image. Since the
generation of CFIA is procedurally similar to morphing generation with transpar-
ent blending. Therefore, we have employed three different Face Morphing At-
tack Detection (MAD) techniques to benchmark the CFIA detection. MAD meth-
ods are selected by considering their detection performance on various morphing
data sources, including NIST FRVT MORPH benchmarking. To this extent, we
have chosen three different S-MAD approaches, namely: Color denoising based
S-MAD (DetAlgo1) [4], Hybrid features (DetAlgo2) [5] and Residual noise-based
S-MAD Network (DetAlgo3) [6]. We also report the performance of CAD al-
gorithms on 14 different regions for the same reasons that were descried in previ-
ous section 9.5. These algorithms are briefly explained as follows:

Color denoising based S-MAD (DetAlgo1) [4]: DetAlgo1 is based on using the
color information by converting the RGB image HSV color space. Then, each
color channel is denoised using a Deep Convolutional Neural Network to compute
the corresponding residual noise. In the next step, Pyramid LBP (P-LBP) and an
SRKDA classifier for final detection.
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Detection Method (Region) D-EER (%) BPCER @ APCER =
5% 10%

R1 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 42.9 96.0 92.1 92.5 86.3
DetAlgo2 [5] 50.0 50.0 95.9 94.3 92.4 89.2
DetAlgo3 [6] 38.2 28.7 85.4 74.0 78.5 57.2

R2 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 44.6 96.0 93.0 92.3 86.0
DetAlgo2 [5] 50.0 50.0 96.2 94.4 92.3 91.2
DetAlgo3 [6] 39.5 29.3 87.1 78.5 78.9 64.8

R3 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 47.0 95.5 93.9 92.1 88.7
DetAlgo2 [5] 50.0 50.0 96.3 94.7 92.8 91.5
DetAlgo3 [6] 40.6 32.2 88.3 79.1 80.3 65.8

R4 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 49.0 39.6 94.3 90.5 89.0 81.7
DetAlgo2 [5] 50.0 50.0 96.1 92.6 92.8 88.9
DetAlgo3 [6] 42.8 32.4 89.8 77.7 82.2 64.6

R5 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 45.0 95.0 93.3 91.0 86.6
DetAlgo2 [5] 50.0 50.0 96.6 93.9 92.7 90.8
DetAlgo3 [6] 42.0 31.6 87.9 76.5 80.7 64.8

R6 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 44.1 95.5 92.5 91.8 84.6
DetAlgo2 [5] 50.0 50.0 95.3 92.7 91.0 88.9
DetAlgo3 [6] 38.0 29.3 85.3 73.2 78.5 60.2

R7 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 43.5 95.0 92.5 90.8 85.8
DetAlgo2 [5] 50.0 49.7 95.8 92.8 92.1 87.5
DetAlgo3 [6] 39.5 29.8 87.9 73.7 78.9 60.0

R8 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 44.6 96.2 94.0 92.2 85.9
DetAlgo2 [5] 50.0 49.8 96.0 92.5 92.0 87.4
DetAlgo3 [6] 41.7 30.6 87.4 75.4 81.3 61.5

R9 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 43.4 95.7 91.8 90.6 84.5
DetAlgo2 [5] 50.0 50.0 95.8 91.6 91.5 86.3
DetAlgo3 [6] 40.5 28.4 87.5 78.5 81.7 63.2

R10 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 48.2 38.5 94.2 86.6 87.9 77.9
DetAlgo2 [5] 50.0 48.0 94.7 91.8 90.7 87.4
DetAlgo3 [6] 41.6 30.2 87.0 76.2 80.9 61.9

R11 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 49.0 37.3 95.2 88.0 89.6 76.3
DetAlgo2 [5] 50.0 50.0 93.7 92.7 92.2 88.6
DetAlgo3 [6] 41.9 31.7 87.1 80.0 80.7 67.8

R12 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 43.7 95.4 90.6 91.4 83.0
DetAlgo2 [5] 50.0 48.8 94.8 91.4 91.4 86.0
DetAlgo3 [6] 41.8 30.8 87.6 76.4 80.5 64.1

R13 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 48.7 37.4 94.2 86.8 89.0 76.6
DetAlgo2 [5] 50.0 49.1 93.6 91.6 91.4 86.7
DetAlgo3 [6] 41.4 32.2 86.9 78.5 80.2 64.8

R14 SOTA [3] Proposed SOTA [3] Proposed SOTA [3] Proposed
DetAlgo1 [4] 50.0 42.6 97.6 90.2 94.8 83.7
DetAlgo2 [5] 50.0 49.5 97.2 95.7 93.4 88.0
DetAlgo3 [6] 46.4 34.0 92.2 83.8 83.2 72.1

Table 9.10: CFIA Attack Detection using DetAlgo1 [4], DetAlgo2 [5], and DetAlgo3 [6]

Hybrid features (DetAlgo2) [5]: DetAlgo2 is based on two different colors spaces.
Given the RGB image, firstly, it is converted to HSV and YCbCr color space. In
the next step, micro-texture features are computed using pyramid-LBP and passed
through the SRKDA classifier. The final classification is performed using SUM
rule fusion to make the final decision on detection.
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Residual noise-based S-MAD Network (DetAlgo3) [6]: DetAlgo3 is based on
the computing the residual noise using the Multi-Scale Context Aggregation Net-
work (MS-CAN). The residual noise is further processed through Alexnet to obtain
the classified features using the Collaborative Representative Classifier (CRC) to
make the final decision to detect the attack.

To benchmark CFIA detection performance we resort to the off-the-shelf S-MAD.
Three different S-MAD methods employed in this work are trained using different
morph generation types (landmark-based and deep learning) and three different
mediums (Digital, print-scanned, and print-scanned compression) generated using
the publicly available FRGC face database. The quantitative results are presen-
ted using the ISO/IEC metrics [187] which are as follows: 1) Attack Present-
ation Classification Error Rate (APCER (%)) defining the percentage of attack
images (morph images) incorrectly classified as bona fide images [187] , 2) Bon-
afide Presentation Classification Error Rate (BPCER (%)) defining the percentage
of bona fide images incorrectly classified as attack images [187] and 3) Detection
Equal Error Rate (D-EER (%)) [51]. The detection performance is benchmarked
with both SOTA and proposed CFIA images and quantitative results are presented
in Table 9.10 and bar chart with D-EER (%) on all 14 different regions. Based on
the obtained results following are the main observations:

• The CFIA detection performance is degraded with all three detection al-
gorithms.

• Among three different detection algorithms. DetAlgo3 indicates the better
detection accuracy attributed to the quantification of residual noise.

• Among the 14 different regions, the degraded detection performance is noted
with the R14 on all three detection algorithms.

Thus, based on the obtained results, we can conclude that the detection of CFIA
attacks is very challenging and this needs more sophisticated detection algorithms
to be devised for reliable detection.

9.9 Conclusions and Future-Work
In this work, we presented a new type of digital attack based on the facial attributes
and we termed it as Composite Face Image Attack (CFIA). Given the facial images
from the two contributory data subjects, the proposed CFIA will first segment the
face images into six different attributes independently. Then, these segments are
blended using a transparent mask based on both single face-attribute and multiple
face attributes. These attributes are processed using the image inpainting based
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on pre-trained GAN to generate the final CFIA samples. In this work, given the
face images from two contributory data subjects, we generate 526 different com-
posite face images based on single and multiple face attributes. We contributed a
new dataset with 1000 unique identities that will result in 526000 CFIA samples.
Extensive experiments are performed to evaluate the attack potential of the newly
generated CFIA using four different FRS. To effectively benchmark the vulnerabil-
ity of the generated CFIA, we have introduced a generalized vulnerability metric.
Further, we benchmark the detection accuracy using both human and automatic
detection techniques. Our results demonstrated that the proposed CFIA could in-
dicate the vulnerability of the FRS while it is difficult to detect using both human
and automatic detection techniques. In the future work, we would like to extend
the present work in several directions: 1) Generation of composites of higher qual-
ity, 2) Evaluation of the proposed method on real face images on public datasets,
3) Development of novel detection techniques.
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9.10 Appendix: Role of FTAR in computing vulnerability
In this appendix, we present additional results on the vulnerability of COTS to il-
lustrate the importance of FTAR in computing the G-MAP. The use of academic
FRS does not include quality estimation to optimize the verification performance;
thus, FTAR can be assumed to be zero. However, with COTS FRS (which is more
practical), the captured face quality is imposed because of which the FRS seeks
good-quality face images to optimize the verification performance. The require-
ment of good quality will result in the rejection of probe attempts deemed low-
quality face capture and, thus, the failure of verification with reasonable attempts.
Hence the proposed FTAR will penalise the failure to verify with a reasonable
attempt.

Table 10.3 and 9.12 indicates the quantitative results of two different Commercial-
Off-The-Shelf (COTS) such as Neurotechnology Version 10.0 [197] and Cognitec
FaceVACS-SDK Version 9.4.2 [198] 2 in which G-MAP is computed with the
multiple attempts on 14 different combinations. These 14 regions are the same
as those used in the earlier sections of the papers that are representative of low,
moderate and high vulnerability combinations. As noticed from the Tables 10.3
and 9.12 the G-MAP with FTAR will indicate the less vulnerability meaning that,
the COTS FRS fail to perform the verification. Therefore accountability to FTAR
is important to be consider for vulnerability calculation.

G-MAP % (Probe Attempts) with FTAR
FRS Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

Neurotech (FAR=0.1%) SOTA [3] 18.2 10.4 10.9 8.1 16.2 14.6 19.0 18.8 19.3 14.2 14.0 21.6 15.0 11.3
Proposed 13.8 10.2 9.7 17.6 13.5 14.4 16.0 17.1 19.3 22.2 22.9 21.0 23.7 23.3

Cognitec (FAR=0.1%) SOTA [3] 31.6 22.2 23.3 19.8 27.7 28.8 33.1 34.0 37.9 30.0 24.8 41.1 25.1 21.3
Proposed 30.5 22.9 22.3 43.9 28.1 26.9 31.9 34.7 35.3 54.6 55.1 43.0 57.6 60.7

Table 9.11: Vulnerability analysis using the proposed GMAP metric (probe attempts-
based with FTAR) for the proposed method and the SOTA [3]

G-MAP % (Probe Attempts) without FTAR
FRS Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

Neurotech (FAR=0.1%) SOTA [3] 54.4 33.1 35.1 32.4 50.0 44.3 59.1 58.1 59.5 51.3 50.3 65.4 55.0 45.3
Proposed 43.1 31.6 33.1 57.8 41.8 43.5 49.7 51.9 56.9 72.2 75.2 63.9 79.5 79.2

Cognitec (FAR=0.1%) SOTA [3] 31.9 22.5 23.5 20.0 28.0 29.2 33.5 34.4 38.3 30.3 25.2 41.6 25.5 21.6
Proposed 30.8 23.2 22.6 44.4 28.4 27.2 32.2 35.1 35.7 55.2 55.8 43.4 58.3 61.4

Table 9.12: Vulnerability analysis using the G-MAP metric (Probe Attempts- without
FTAR) for the proposed method and the SOTA [3]

2Disclaimer: These results were produced in experiments conducted by us and should; therefore,
the outcome does not necessarily constitute the best the algorithm can do.
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Figure 9.14: Bona fide subjects used for composition results as shown in Figures 9.15-
9.16, 9.17, 9.18, 9.19, 9.20 and 9.21

9.11 Supplementary Material: Deep Composite Face Image At-
tacks: Generation, Vulnerability and Detection

9.11.1 Full Composition Results for two contributory data subjects.

In this section, we present the 526 composition images for bona fide images from
Figure 9.14 in Figures 9.15- 9.16, 9.17, 9.18, 9.19, 9.20 and 9.21. Note the com-
position figures are in left to right order of the composition regions mentioned in
Table 2 from the main manuscript. Further. each figure mentions the combination
for the starting and ending CFIA.
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Figure 9.15: Bona fide subjects used for composition results where starting composition
is E-H and ending composition is HN-EM
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Figure 9.16: Bona fide subjects used for composition results where starting composition
is HN-EN and ending composition is HSE-H
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Figure 9.17: Bona fide subjects used for composition results where starting composition
is HSE-S and ending composition is HSM-SN
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Figure 9.18: Bona fide subjects used for composition results where starting composition
is HSN-EM and ending composition is HSN-HEM
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Figure 9.19: Bona fide subjects used for composition results where starting composition
is HSN-HEN and ending composition is HSEN-SE
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Figure 9.20: Bona fide subjects used for composition results where starting composition
is HSEN-SM and ending composition is HSEM-SENM
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Figure 9.21: Bona fide subjects used for composition result where starting composition is
HSEN-HENM and ending composition is HBSENM-HBSENM
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10.1 Abstract
Face Recognition systems (FRS) have been found vulnerable to morphing attacks,
where the morphed face image is generated by blending the face images from
contributory data subjects. This work presents a novel direction toward generating
face-morphing attacks in 3D. To this extent, we have introduced a novel approach
based on blending the 3D face point clouds corresponding to the contributory data
subjects. The proposed method will generate the 3D face morphing by projecting
the input 3D face point clouds to depth maps and 2D color images, followed by
the image blending and wrapping operations performed independently on the color
images and depth maps. We then back-project the 2D morphing color map and the
depth map to the point cloud using the canonical (fixed) view. Given that the
generated 3D face morphing models will result in holes due to a single canonical
view, we have proposed a new algorithm for hole filling that will result in a high-
quality 3D face morphing model. Extensive experiments are carried out on the
newly generated 3D face dataset comprised of 675 3D scans corresponding to

139
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41 unique data subjects and the publicly available Facescape database with 100
unique identities. Experiments are performed to benchmark the vulnerability of the
proposed 3D morph generation scheme against automatic 2D, 3D FRS and human
observer analysis. We also present the quantitative assessment of the quality of the
generated 3D face morphing models using eight different quality metrics. Finally,
we have proposed three different 3D face Morphing Attack Detection (3D-MAD)
algorithms to benchmark the performance of the 3D face morphing attack detection
techniques.

10.2 Introduction
Face Recognition Systems (FRS) are being widely deployed in numerous applica-
tions related to security settings such as automated border control (ABC) gates and
commercial settings like eCommerce and e-banking scenarios. The rapid evolu-
tion of FRS can be attributed to the advances in deep learning FRS [27, 22], which
improved accuracy in real-world and uncontrolled scenarios. These factors ac-
celerated the use of 2D face images in electronic machine-readable documents
(eMRTD), which are exclusively used to verify the owner of a passport at various
ID services, including border control (both automatic and human). Because most
countries still use printed passport images for the passport application process, the
face morphing attack has indicated the vulnerability of both human and automatic
FRS [142, 160]. Face morphing is the process of blending multiple face images
based on either facial landmarks [206] or Generative Adversarial Networks [207]
to generate a morphing face image. The extensive analysis reported in the literat-
ure [83, 208, 48, 49] demonstrated the vulnerability of 2D face morphing images
to both deep learning and commercial off-the-shelf FRS.

There exist several techniques to detect the 2D face morphing attacks that can
be classified as [69] (a) Single image-based Morph Attack Detection (S-MAD):
where the face Morphing Attack Detection (MAD) techniques will use the single
face image to arrive at the final decision (b) Differential Morphing Attack De-
tection (D-MAD): where a pair of 2D face images are used to arrive at the final
decision. S-MAD and D-MAD techniques have been extensively studied in the
literature, resulting in several MAD techniques. The reader is advised to refer to
a recent survey by Venkatesh et al. [69] to obtain a comprehensive overview of
existing 2D MAD techniques. Despite the rapid progress in 2D MAD techniques,
a recent evaluation report from NIST FRVT MORPH [130] indicates the degraded
detection of 2D face morphing attacks. Thus, 2D MAD attacks, especially in the S-
MAD scenario, present significant challenges for reliable detection. These factors
motivated us to explore 3D face morphing so that depth information may provide
a reliable cue that makes morphing detection easier. 3D face recognition has been
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widely studied over the past several decades, resulting in several real-life security-
based applications with 3D face photo-based national ID cards [209], [210], [211],
3D face photo-based driving license cards [211] and 3D face-based automatic bor-
der control gates (ABC) [212]. The real case reported in [213] demonstrated using
a 2D rendered face image from a 3D face model instead of a real 2D face photo to
obtain the ID card bypassing the human observers in the ID card issuing protocol.
Although most real-life 3D face applications are based on comparing 3D face mod-
els against 2D face images for verification, this is mainly because e-passports use
2D face images.
However, the use of 3D to 3D comparison will be realistic, especially in the border
control scenario, as both ICAO 9303 [214] and ISO/IEC 19794-5 [215] stand-
ards are well defined to accommodate the 3D face model in the 3rd generation e-
passport. The 3D face ID cards are a reality as they are being deployed in countries
such as the UAE [209], which can facilitate both human observers and automatic
FRS to achieve accurate, secure, and reliable ID verification. Further, the evolving
technology has made it possible for 3D face imaging on handheld devices and
smartphones (e.g., Apple Face ID [216] uses 3D face recognition) that can further
enable remote ID verification based on 3D face verification. These factors motiv-
ated us to investigate the feasibility of generating 3D face morphing and studying
their vulnerability and detection. An early attempt in [217] (master’s thesis) em-
ployed the 3DMM [18] technique to generate a 3D face morphing model. How-
ever, the reported results indicate the lowest vulnerability to conventional FRS,
indicating the limitation of the 3DMM..

This work presents a novel method for generating 3D face morphing using 3D
point clouds. Given the 3D scans from the accomplished and malicious actors,
the proposed method will project the 3D point clouds to the depth maps & the
2D color images, which are independently blended, warped, and back-projected
to the 3D to obtain 3D face morphing. The motivation for projecting to the 2D
for morphing is to effectively address the non-rigid registration, especially with
the high volume of point clouds ( 85K) that needs to be registered between two
unique data subjects. Further, using canonical view generation to project from 3D
to 2D and back project to 3D will assure a high-quality depth even for the morphed
face images, thus indicating the high vulnerability of the FRS. Therefore, this is
the first framework to address the generation of 3D face morphing of two unique
face 3D scans that can result in vulnerability to FRS. More particularly, we aim to
answer the following research questions, which will be answered systematically in
this study:

• RQ#1: Does the proposed 3D face morphing generation technique yield a
high-quality 3D morphed model?
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• RQ#2: Does the generated 3D face morphing model indicate the vulnerab-
ility for both automatic 3D FRS and human observers?

• RQ#3: Are the generated 3D face morphing models more vulnerable when
compared to 2D face morphing images for both automatic 3D FRS and hu-
man observers?

• RQ#4: Does the 3D point cloud information be used to detect the 3D face
morphing attacks reliably?

We systematically address these research questions through the following contri-
butions:

• We present a novel 3D face morphing generation method based on the point
clouds obtained by fusing depth maps and 2D color images to generate the
3D face morphing model.

• Extensive analysis of the vulnerability of the generated 3D face morphing is
studied by quantifying the attack success rate to 3D FRS. The vulnerability
analysis is also performed using 2D FRS (deep learning and COTS).

• Human observer analysis for detecting the 3D face morphing and 2D face
morphing is presented to study the significance of depth information in de-
tecting the morphing attack.

• The quantitative analysis of the generated 3D morphed face models is presen-
ted using eight different quality features representing color and geometry.

• We present three different 3D MAD techniques based on the deep features
from point clouds to benchmark the 3D face MAD.

• A new 3D face dataset with bona fide and morphed models is developed
corresponding to 41 unique data subjects resulting in 675 3D scans. We
collected a new 3D face dataset as we were interested in capturing high-
resolution (suitable for ID enrolment) inner face data [218] Our 3D face
dataset consists of raw 3D scans (number of 3D vertices between 31289 &
201065) and processed 3D scans (number of 3D vertices between 35950 &
121088), which is much higher than existing 3D face datasets1.

• The proposed method is benchmarked on a publicly available dataset from
FaceScape and the newly constructed dataset.

1The reader is referred to Table 1 of 3D face datasets (inner face data only) from the survey by
Egger et al. [218])
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In the rest of the paper, we introduce the proposed method in Section 10.3 and
experiments & results in Section 10.4. This is followed by a discussion about the
different aspects of the proposed method in Section 10.5, followed by limitations
& potential future-works in Section 10.6 and finally conclusions in Section 10.7.

Figure 10.1: Block diagram of the proposed 3D face morphing generation technique

10.3 Proposed Method
Figure 11.1 shows the block diagram of the proposed 3D face morphing generation
framework based on the 3D point clouds. We are motivated to employ 3D point
clouds over traditional 3D triangle mesh for two main reasons. The first is that con-
nectivity information in a 3D triangle mesh leads to overhead storage, processing,
managing, and manipulating the triangular meshes. Thus, 3D triangle meshes will
significantly increase compute and memory, making them less suitable for low-
compute devices. The second reason is that the commodity scanning devices (for
example, the Artec Sensor) can reproduce detailed colored point clouds that cap-
ture appearance and geometry. Thus, allowing us to generate high-quality 3D
face-morphing attacks.

However, the 3D face morphing generation using point clouds introduces numer-
ous challenges (a) Establishing a dense 3D correspondence between two different
bona fide 3D point clouds that are to be morphed. Because 3D face point clouds
from two different subjects are affected by various factors such as differences in
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input point density, reliable detection of 3D facial key points, and estimation of
affine/perspective warping (b) Locally affine deformation present between two dif-
ferent 3D point clouds to be morphed is difficult to estimate [219, 220, 221]. (c)
The misalignment of dense 3D correspondence between the two different 3D point
clouds to be morphed increases with non-rigid deformation [222].

The crucial part of 3D morphing using point clouds is reliable alignment be-
fore performing the morphing operation. Given the 3D face point clouds on the
source and the target face, the point cloud registration can be defined as aligning
a source point cloud to a target point cloud. The point cloud registration can be
grouped into three broad categories [223] namely 1) Deformation Field, 2) Ex-
trinsic Methods and 3) Learning-based methods. Deformation Field-based tech-
niques could be defined as the computation of deformation between the two-point
clouds, which can be achieved either by assuming pointwise position [224] vari-
ables or by pointwise affine transformations [225]. Pointwise position variables
methods are simplistic as they don’t model deformations compared with point-
wise affine transformations, which model local rotations. However, since the local
transformations must be stored and computed at a per-point level, this results in
high computational and memory costs. This limitation was overcome by deforma-
tion field-based methods using deformation graph embedding over the initial point
set, which consists of fewer nodes than the underlying point set [226, 227]. Ex-
trinsic methods are based on optimizing an energy function to compute the point
set correspondence which usually includes an alignment term and a regulariza-
tion term [226]. However, the optimization-based methods compute determin-
istic modeling of the transformation. Probabilistic modeling of transformation
was done by Myronenko et al. [16] in their algorithm Coherent Point Drift (CPD)
which assumes the source points to be centroids of equally-weighted Gaussian
with isotropic covariance matrix in Gaussian Mixture Model (GMM). CPD con-
sists of alignment and regularization terms for the transformation computation and
performs non-rigid registration but has memory and compute costs. However, the
main limitation of optimization-based methods is that they produce good results
when the input surfaces are close. Further, they require good initialization of the
correspondences and the lack of these, leads to convergence to local minima. This
was overcome by learning-based data-driven methods, which are of two types (1)
Supervised methods and (2) Unsupervised methods. Supervised methods require
ground-truth data for training [228] but can work with varying point cloud density
and underlying geometry. Unsupervised methods don’t require ground-truth data
and can be trained using a deformation module based on CNN, followed by an
alignment module to compute the deformation [17].

However, the use of existing point cloud registration for this precise application
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of 3D face morphing point cloud generation will pose challenges such as: regis-
tration using the same individual: Point cloud registration has mainly focused
on the non-rigid registration of two-point clouds from the same individual [223].
This is primarily because high-quality registration aims to produce a globally con-
sistent 3D mesh. Thus, the registration methods have not been tested when two
different point clouds are registered compared to those from the same individual.
Vertex accurate correspondence: 3D Face Morphing requires perfect vertex cor-
respondence between the source and target point clouds, which is challenging and
has not been evaluated extensively. Low vertex count point clouds: Point cloud
registration, especially using learning-based methods, has network architectures
based on point clouds with a low number of vertices ( 1024). Thus, registering
point clouds with many vertices ( 75K) has not been evaluated extensively and
is therefore suitable for low-resolution face images. To effectively address these
challenges, the proposed method consists of four stages, including (1) point cloud
reconstruction and cleanup, (2) 3D morph generation, (3) hole-filling algorithm,
and (4) final cleanup. In the following subsections, these steps are discussed in
detail.

10.3.1 Point Cloud Reconstruction & Cleanup

We capture a sequence of raw 3D scans using Artec Eva sensor [229] from two data
subjects to be morphed (S1 and S2). In this work, we consider the case of morph-
ing two data subjects at a time because of its real-life applications, as demonstrated
in several 2D face morphing works [142, 69]. We process both S1 and S2 by per-
forming a series of pre-processing operations such as noise filtering, texturing, and
fusion of input depth maps to generate the corresponding point clouds P1 and P2.
These operations are carried out using Artec Eva Studio SDK filters together with
the Meshlab filter [230]. The cleaned and process point clouds are qualitatively
shown in Figure 11.1.

10.3.2 3D Morph Generation Pipeline

In the next step, we process the point clouds P1 and P2 to generate a 3D face
morphing point cloud by the following series of operations which are discussed
below:

Point-Cloud Centering & Scaling

We first compute the minimum enclosing spheres using the algorithm from Gärtner
et al. [231] to get the two bounding spheres with centers and radii (C1,r1), &
(C2,r2) corresponding to the point cloud P1, and P2 respectively. Note P1 =
(v11, . . . , v

n1
1 ) where vi1 is the ith 3D vertex, and n1 is the number of points in

the point cloud P1, and P2 = (v12, . . . , v
n2
2 ) where vi2 is the ith 3D vertex, and
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n2 is the number of points in the point cloud P2. We then subtract the sphere
center C1 from each 3D vertex of P1 and repeat the same operation on P2 with C2.
Finally, the centered point clouds are scaled to the common radius, normalizing
the 3D point clouds to the common scale. The resulting centered and scaled point
clouds corresponding to P1 and P2 are denoted as PC1 and PC2, respectively.
Figure 11.1 shows this operation’s qualitative result, which shows centered and
scaled 3D point clouds.

Canonical View Generation

This step performs the fine alignment by projecting the 3D face point clouds PC1

and PC2 to the canonical (fixed) view. This step aims to keep the view and projec-
tion matrix identical to the 3D face point clouds PC1 and PC2. We then project
PC1 and PC2 to generate 2D color images and depth maps using the canonical
view parameters. The generated 2D color images and depth maps are denoted as
(I1,D1) and (I2,D2) that corresponds to the point clouds PC1, and PC2 respect-
ively. We particularly choose the canonical view for the fine alignment because
the traditional scheme of alignment, such as Iterative Closest Point (ICP) [222]
doesn’t provide a good alignment result when used on point clouds[220]. This can
be attributed to the limitations of the ICP to function when a locally affine/non-
rigid deformation exists between the point clouds[232] The qualitative results of
the canonical view transformation are shown in Figure 11.1, which demonstrates
the aligned 2D color images and depth maps zoomed in the inset image.

(a) (b) (c) (d) (e) (f)

Figure 10.2: Qualitative results of the hole filling algorithms (a) Input Point Cloud with
holes, (b) Point Cloud with Normals which has noise, (c) Point Cloud with Screened Pois-
son Reconstruction [13] where artifacts are shown in the inset, (d) Point Cloud Recon-
structed with APSS [14], (e) Point Cloud Reconstructed with RIMLS [15], (f) Point Cloud
Hole Filled using Proposed Method

3D Morph Generation

Given the 2D face color images (I1,I2) and depth-maps (D1,D2) corresponding to
PC1, PC2. We perform the morphing operation as explained in the Algorithm 5.
The primary idea is to perform the morphing in 2D and back-project to 3D. The
primary motivation for using a 2D morph generation method is to address the
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Algorithm 5: 3D Face Morphing Algorithm
Input (I1, I2, D1, D2, CV )
Output (PM )

1: Detect Facial Keypoints on K1 on I1, and K2 on I2 using Dlib [42], and
generate key-points of the
morph using Equation 10.1.

2: Perform Delaunay Triangulation on KM

which is obtained by blending K1

and K2 using Equation 10.1.
3: Estimate Affine Warping between corresponding triangles of K1 & KM

denoted as wM
1 , and for K2 & KM denoted as wM

2 .
4: Apply affine warping wM

1 on I1 to obtain I1M ,
and on D1 to obtain D1M .

5: Apply affine warping wM
2 on I2 to obtain I2M ,

and on D2 to obtain D2M .
6: Obtain morphed color image IM using the warped keypoints from the color

images I1, and I2 using Equation 10.1, and morphed depth map DM using
Equation 10.2.

7: Obtain the morphed point cloud by back-projecting
IM , and DM to obtain the colored 3D point cloud PM

with 3D coordinates ∀i∈{1, · · · , n3}(xi, yi, zi) = (xi, yi, DM (xi, yi)) and
color ∀i∈{1, · · · , n3}Color(xi, yi, zi) = CM (xi, yi)) where
n3 = min(n1, n2).

challenge of finding correspondence between PC1 and PC2. The underlining
idea is to perform the steps of morphing (facial landmark detection, Delaunay
triangulation, & warping) on 2D color images and re-use the same (facial landmark
locations, triangulation, and warping) on the depth maps. In this work, we have
used the blending (morphing) factor (α) as 0.5 as it is well demonstrated to be
highly vulnerable in the earlier works on 2D face morphing [207]. The morphing
is carried out as mentioned in the equation below:

IM = α×I1(K ′
1) + (1− α)×I2(K ′

2)

K ′
1 = wM

1 (K1)

K ′
2 = wM

2 (K2)

KM = α×K1 + (1− α) ∗K2

(10.1)

where α is the blending factor, K1 denotes 2D facial landmark locations corres-
ponding to I1, K2 denotes 2D facial landmark locations corresponding to I2, KM
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Bona fide 1                            Morphed                                Bona fide 2

Figure 10.3: Illustration of 2D color image and depth maps for bona fide and morphs
generated using the proposed method

is generated by blending K1, & K2, wM
1 denotes the warping function from K1 to

KM , wM
2 denotes the warping function from K2 to KM , and IM is the morphed

2D color image. Similarly, the same operations are carried out on the depth maps
as shown in the equation below:

DM = α×D1(K
′
1) + (1− α)×D2(K

′
2) (10.2)

where DM is the morphed depth map.

In the next step, we back-project IM , and DM to get the 3D face morphing point
cloud PM = (v1M , . . . , vn3M ) where n3 = min(n1, n2) is the number of vertices.
Note each 3D vertex is obtained using i = 1n3(xi, yi, zi) = (x, y,DM (x, y)) and
the qualitative results is shown in Figure 11.1. However, generating the 3D face
morphing will result in multiple holes due to a single canonical view. These holes
are visible from other views. Therefore, we present a novel hole-filling algorithm
to further improve the perceptual visual quality of the 3D face morphing.

10.3.3 Hole Filling Algorithm

In this step, we propose a new hole-filling algorithm tailored to this specific 3D
face morphing generation problem. Since the holes are visible from different
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Algorithm 6: Hole Filling Point Cloud
Input (n4-views)
Output (Chf,Dhf,Phf)

1: Generate n pairs of color-maps, and depth-maps
{(C1, D1), (C2, D2), . . . , (Cj , Dj), . . . , (Cn4, Dn4)}, translated from the
canonical view.

2: for j ← 1 to n4 do
3: Perform Image In-painting [233] on Cj , and Dj .
4: Perform Image Registration of Cj with the

canonical view-point color-map CCV using
the following steps:

5: Feature Computation using Oriented
FAST and Rotated BRIEF (ORB) Descriptor [234].

6: Brute-Force Matching of features using Hamming Distance.
7: Homography computation using inlier

features.
8: Perspectively warp the color and depth maps using computed

homography.
9: end for

10: Average all the registered color-maps (Chf) and the depth-maps (Dhf).
11: Back-Project the averaged color-map and

depth-map from 2D to 3D to generate
hole-filled point cloud (Phf) using the canonical view parameters.

views, filling the holes in these views is necessary to improve the perceptual visual
quality. Note that the holes are generated when the bona fide subject is looked
at from a view different from the canonical camera, especially in high curvature
regions such as the nose, as such areas are not completely visible from one canon-
ical view. Therefore, we transform the 3D face morphing point cloud PM multiple
times independently to generate P j

M where j = 1. . .n4 and n4 is the number of
transformations and each transformation is a 3D translation [235]. In this work,
we empirically choose the number of 3D translations to 7 to balance computa-
tional cost and the visual quality achieved after the hole filling. Using more 3D
translations will significantly increase the computational cost and fail to improve
the visual quality. We tried the conventional approach of hole filling using 3D
triangulation of 3D point cloud proposed in [13],[14],[15]. Figure 10.2 shows the
qualitative results of three different SOTA triangulation algorithms that indicate
non-satisfactory results. This is because 3D orientation (3D normal) estimation in-
dicates artifacts in the 3D triangulated mesh. Therefore, filling holes directly in the
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3D point cloud is challenging, as the underlying surface (manifold) is not known
in advance. The errors in 3D orientation estimation make it difficult to employ the
conventional 3D hole-filling approaches.

This has motivated us to devise a new approach to achieve effective hole-filling. To
this extent, we project each point cloud P j

M to the 2D face morphing color image
(Cj) and its corresponding depth map (Dj). We fill the holes in Cj & Dj using
steps 2 to 9 described in Algorithm 6. Finally, we obtain the hole-filled 3D face
morphing point cloud (Phf) as indicated in steps 10 and 11 in Algorithm 6. Figure
10.2 (e) shows the qualitative results of the proposed hole filling that indicated the
superior visual quality compared to the existing methods.

10.3.4 Final Cleanup Algorithm

The final cleanup uses a clipping region outside a portion of the bounding sphere.
The final result corresponding to the proposed 3D face morphing, a point cloud, is
shown in Figure 10.3 for an example data subjects 2. On the whole, the following
are the main advantages of the proposed method:

• The proposed method performs the alignment based on 2D facial key points,
which preserves the identity in the generated 3D face morphing attack sample.

• The proposed method results in low computation and memory compared
with existing 3D-3D techniques by overcoming the 3D registration.

• The proposed method results in a high vulnerability of FRS as the iden-
tity features are preserved for contributed data subjects used to generate the
morphing attack. Therefore, the proposed method can cause high-quality
3D face morphing attacks, resulting in the vulnerability of both 2D and 3D
face recognition systems.

• The proposed method can handle wide variation in the 3D pose.

10.3.5 Qualitative and Quantitative Comparison of Proposed Method
with SOTA

To illustrate the effectiveness of the proposed method, we selected a few SOTA
methods based on non-rigid point cloud registration and methods generating a
3D face model from a 2D face image. Our current evaluation of SOTA for non-
rigid point cloud registration (NRPCR) methods includes CPD by Myronenko et
al. [16] and Corrnet3D by Zeng et al. [17]. CPD is based on optimization and was

2Supporting Video is available at https://folk.ntnu.no/jagms/
SupportingVideo.mp4

https://folk.ntnu.no/jagms/SupportingVideo.mp4
https://folk.ntnu.no/jagms/SupportingVideo.mp4
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the SOTA method for NRPCR earlier, whereas Corrnet3D is a more recent unsu-
pervised deep learning-based method for NRPCR. Further, for evaluating methods
generating a 3D face model from a 2D face image, we selected 3DMM by Blanz et
al. [18] and a more recent deep-learning-based method FLAME by Li et al. [19].
3DMM introduced the concept of the morphable model, where the parameters
such as shape and texture can be controlled during 3D face synthesis. Further,
3DMM provided earlier SOTA results on 3D face generation from a 2D face im-
age. FLAME enhanced the quality of the generated 3D face model from a 2D face
image by using more controllable parameters such as pose, expression, shape and
texture during the 3D face synthesis process.

Qualitative Comparison and Analysis

The results of qualitative comparison with SOTA are shown in Figure 10.4 and
the quantitative vulnerability computed using MMPMR [83] and FMMPMR [49]
(refer Section 10.4.3 for the definition of these metrics) is indicated in the Table
10.1. It can be noticed from Figure 10.4 that SOTA methods don’t contain identity

(b)(a) (c)

Bona fide      Morph      Bona fide              Bona fide      Morph        Bona fide      Bona fide      Morph      Bona fide

(d) (e)

Figure 10.4: Illustration of the SOTA Comparison showing Bona fide and Morphs gen-
erated using (a) CPD [16], (b) Corrnet3D [17], (c) 3DMM [18] (d) FLAME [19], (e)
Proposed Method. Note that both 3DMM and FLAME need a single image as input, and
in the current evaluation, we pass a 2D rendering generated using the proposed method.
Note that the proposed method shows high-quality rendering and identity features of the
2D face morphing image.

features of the 3D face morphing model to a large extent. However, CPD does con-
tain the identity features of the 3D face morphing model but fails on the alignment
of the two input point clouds, which results in double features such as eyebrows.
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Orrnet3D produces lower-quality results, which can be attributed to the fact that
the authors have yet to focus on face registration exclusively. Further, 3DMM and
FLAME generate a 3D face model from a 2D face image. Thus, we passed the
rendering (2D face image) of the 3D face morphing model as an input. However,
these methods fail to preserve the identity features during the 3D face model gen-
eration, as seen from Figure 10.4. The generated 3D model has a low resemblance
to the identity features of the face morphing image.

Table 10.1: Vulnerability of SOTA on Comparison Dataset

Feature 3DMM [18] FLAME [19] CPD [16] Proposed
PointNet++ [21] 0 0 0 100%

LED3D [20] 66.67% 0 0 100%
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Figure 10.5: Illustration showing scatter plot of Comparison scores using Bona fide and
Morphs generated using Proposed Method (a) LED3D [20] and (b) Pointnet++ [21] based
where SOTA algorithms are 3DMM [18], FLAME [19], CPD [16]

Quantitative Comparison and Analysis

The results of the quantitative comparison are shown in Figure 10.5, where we
have evaluated two 3D point feature extraction methods, namely LED3D [20] and
Pointnet++ [21]. However, it can be seen that 3D comparison results in low values
for SOTA compared to the proposed method. This can be attributed to the low-
resolution of the identity-specific depth generation by the SOTA, which is also
shown in Figure 10.6.

10.4 Experiments and Results
In this section, we present the discussion on extensive experiments carried out
on the newly acquired 3D face dataset. We discuss the quantitative results of the
various experiments, including vulnerability study on automatic FRS and human
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Figure 10.6: Illustration showing depth maps using SOTA and proposed method (a)
3DMM [18], (b) CPD [16], (c) FLAME [19] and (d) Proposed Method.

(a)                                                                                                     (b)

Figure 10.7: Screenshots from the GUI of human observer web page (a) Full Page Screen-
shot, and (b) Screenshot of 3D model page.
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Figure 10.8: Illustration of average accuracy of human observer study, note that 2D ac-
curacy is always higher than 3D.

observer study, quantitative quality estimation based on color and geometry of the
generated 3D face morphing models and automatic detection of 3D MAD attacks.

10.4.1 3D Face Data Collection

In this work, we have constructed a new 3D face dataset using the Artec Eva 3D
scanner [229]. The data collection is carried out in an indoor lighting environment.
The data subjects are asked to sit on the chair by closing their eyes to avoid the
light’s strong reflection from the 3D scanner. The 3D scanner is moved in the
vertical direction to capture the 3D sequence.

We have used the Artec Studio Professional 14 for the 3D data collection and pro-
cessing. We have collected the 3D face data from 41 subjects, including 28 males
and 13 females. We have captured nine to ten samples for each data subject in
three different sessions in three days. The statistics of the whole 3D face data-
set are summarized in Table 10.2. We name our newly collected dataset as 3D
Morphing Dataset (3DMD).

We may have used the existing 3D face datasets such as FRGC [236] and BU-
3DFE [237]. However, the FRGC dataset provides a single depth map and a color
image. Thus, a high-quality point cloud cannot be generated. Further, the dataset
has a few misaligned color images and depth maps [238] that will result in a low-
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Table 10.2: Statistics of newly collected 3D Morphing Dataset (3DMD)

3D face Bona fide
Total Data Subjects Males Females

41 28 13
Total 3D samples Males Females

330 224 106
3D face Morphs

Total 3D Morphs Males Females
345 278 67
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Figure 10.9: Vulnerability Plots using 2D & 3D FRS on 3D Morphing dataset (3FMD)
(a) 2D face FRS using Arcface [22], (b) 2D face FRS using COTS, and (c) 3D face FRS
using Led3D [20], and (d) 3D face FRS using Pointnet++ [21]

quality 3D morphing generation. The BU-3DFE [237] dataset does provide 3D
models, but these are perfectly registered, and the capture conditions are identical
for all the subjects. This does not model the real-world scenario of capturing 3D
point clouds with changes in capture conditions that could happen during data
collection. The quality of our 3D face dataset has a much higher number of 3D
vertices between 35950 & 121088 for the inner face compared to previous meth-
ods [218]. These factors motivated us to generate a new 3D face dataset to enable
a high-quality 3D face morphing generation suitable for the ID control scenario.

10.4.2 Human Observer Analysis

We perform the human observer analysis to evaluate the human detection perform-
ance of the generated 3D morphs. The survey is set up online3 and is created using
PHP, & HTML-CSS tools. GDPR norms are followed during the survey creation,
and participants’ email (used only for registration to avoid duplication), gender, &

3https://folk.ntnu.no/jagms

https://folk.ntnu.no/jagms
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Figure 10.10: Vulnerability Plots using 2D & 3D FRS on Facescape Dataset (a) 2D
face FRS using Arcface [22], (b) 2D face FRS using COTS, and (c) 3D face FRS us-
ing Led3D [20], and (d) 3D face FRS using Pointnet++ [21]

Table 10.3: Vulnerability analysis of 2D and 3D FRS on 3D morphing dataset

Combined Male Female
Algorithm MMPMR% FMMPR% MMPMR% FMMPR% MMPMR% FMMPR%

2D Vulnerability Analysis
COTS 97.45% 89.78% 97.98% 90.65% 94.03% 86.36%

Arcface 63.81% 28.66% 64.92% 27.13% 59.70% 33.33%
3D Vulnerability Analysis

LED3D [20] 81.69% 54.00% 82.67% 51.84% 77.61% 63.64%
PointNet++ [21] 95.65% 80.52% 95.32% 79.42% 95.52% 84.85%

Table 10.4: Vulnerability analysis of 2D and 3D FRS on FaceScape Dataset

Combined Male Female
Algorithm MMPMR% FMMPR% MMPMR% FMMPR% MMPMR% FMMPR%

2D Vulnerability Analysis
COTS 100% 99.9% 100% 99.9% 100% 100%

Arcface 100% 100% 100% 100% 100% 100%
3D Vulnerability Analysis

LED3D [20] 88.8% 88.8% 90.5% 90.5% 84.9% 84.9%
PointNet++ [21] 95.4% 95.4% 94.1% 94.1% 97.5% 97.5%

experience with the morphing problem are only recorded. All measures are imple-
mented with full consideration of the anonymity of participants. We have designed
the GUI for the human observer study to benchmark the single image morphing
detection in this work.

Figure 10.7 shows the screenshot of the web portal used for the human observer’s
study. The GUI is designed to display two face images simultaneously, such that
one corresponds to the 2D face and another to the 3D face. Then, the human
observer is prompted to independently decide these face images as either morph or
bona fide. The human observers are provided with an option to rotate the 3D face in
different directions to make their decision effectively. Further, the opportunities to
zoom in and out of the 3D face model are also provided. We have mainly selected
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to present both 2D/3D face images for human evaluation simultaneously to check
whether the 3D information might help detect the morphing attacks. Due to the
time factor, we have used 19 bona fide and 19 morph samples independently from
2D and 3D for the human observer study. Thus, each human observer spent around
20 minutes on average to complete this study. The detailed step-wise instructions
on using the web portal are available for every participant beforehand.

The human observer study uses 36 observers with and without face morphing ex-
perience. The quantitative results of the human observer study are shown in Figure
10.8. We summarize the human observer’s results from the survey as follows:

• The average detection accuracy of human observers for 2D face bona fide
samples is 55.83% and 42.5% in a 3D face, respectively. The average detec-
tion accuracy of human observers for morphs in 2D is 58.33% and 51.85%
in a 3D face. Thus, detection accuracy is similar for bona fide and morph
in 2D. However, the detection accuracy in 3D is lower for bona fide when
compared with morph.

• The average detection accuracy is similar for observers without morphing
experience and basic morphing experience. Human observers with advanced
morphing experience have the highest average detection accuracy. The ob-
servers without morphing experience perform similarly to observers with
basic morphing experience, which can be attributed to the innate human ca-
pacity to distinguish between bona fide v/s morphed.

• The survey further validates that generated 3D morphs are challenging to
detect from human observations. The average detection accuracy of human
observers does not exceed 63.15%, which shows that 2D and 3D morphs
developed in this work are high quality and difficult to detect.

The average detection accuracy in a 2D face is higher than that in a 3D face, which
can be attributed to the following reasons:

• The fact that 2D morph is more prevalent, and thus observers generally look
for specific artifacts in different regions of the face, makes the task relatively
easy with a 2D face.

• The aspect of what artifacts to look at in 3D is unclear to the human observ-
ers, as they are not trained for this task.

• The quality of generated 3D morphs is high, so human observers find it
difficult to distinguish the 3D morphs from the 3D bona fide.
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Bona fide Image       Bona fide Depth              Morph  Image           Morph Depth              Bona fide Depth           Bona fide Image

Figure 10.11: Illustration of the Color Images and Depth Maps of Bona fide Samples and
Face Morphs generated using the proposed method on Facescape Dataset [23]

10.4.3 Vulnerability Study

In this work, we benchmark the performance of the automatic FRS on both 2D
and 3D face models. The 2D face vulnerability is computed using the color image
and the 3D face vulnerability is calculated based on depth-map/point cloud. We
have used two different metrics to benchmark the vulnerability assessment that, in-
cludes Mated Morphed Presentation Match Rate (MMPMR) [83] and Fully Mated
Morphed Presentation Match Rate (FMMPMR) [49]. MMPMR can be defined
as the percentage of morph samples which can be verified with all the contributing
data subjects [49]. However, MMPMR does not consider the number of attempts
made during score computation. This is rectified in FMMPMR [49], where the
morphing image sample should be verified across all the attempts. The higher
value of MMPMR and FMMPMR indicates the higher vulnerability of the FRS.
The vulnerability analysis is performed by enrolling the morphing image (2D/3D)
and then obtaining the comparison score by probing both contributory data sub-
jects’ face images (2D/3D). To compute the vulnerability of 2D face morphing im-
ages, we have used two different FRS such as Arcface [22] and a Commercial-off-
the-Shelf (COTS) FRS 4. The 3D face vulnerability analysis uses Deep Learning-
based FRS such as Led3D [20] and PointNet++ [21]. The thresholds for all FRS
used in this work are set at FAR=0.1% following the guidelines of Frontex for
border control [239].

4The name of the COTS is not indicated to respect confidentiality



10.4. Experiments and Results 159

Quantitative vulnerability results on 3D morphing dataset

The results are summarized in Table 10.3, and the vulnerability plots are shown in
Figure 10.9. Based on the obtained results, it can be noted that (1) Both 2D and
3D FRS are vulnerable to the generated face morphing attacks (2) Among the 2D
FRS, the COTS indicates the highest vulnerability compared to the Arcface FRS.
(3) Among the 3D FRS the PointNet++ [21] indicates the highest vulnerability.
Thus, the quantitative results of the vulnerability analysis indicate the effectiveness
of the generated 3D face morphing attacks.

Quantitative vulnerability results on Facescape dataset

We have employed 100 unique databases with 56 male and 44 female data sub-
jects. For each data subject, we have selected two 3D face scans. One is used to
generate the 3D face morphing, and another is used as the probe image to obtain
the comparison score to compute the vulnerability metrics. We then used the pro-
posed method to get the 3D morphing models, resulting in 2486 morphing models.
Figure 10.11 shows the example of the proposed 3D morphing generation samples
together with the bona fide 3D scans from Facescape Dataset [23]. The quant-
itative vulnerability results on the Facescape dataset are indicated in Table 10.4,
and the vulnerability plots are shown in Figure 10.10. Here also, it can be noticed
that the proposed 3D face morphing generation samples exhibit a high vulnerabil-
ity with both 2D and 3D FRS. Among 2D FRS, both COTS and Arcface indicate
a similar vulnerability with MMPMR = 100%. However, among 3D FRS, Point-
Net++ [21] shows the highest vulnerability.

Thus, based on the vulnerability analysis reported on 3DMD and Facescape data-
sets with 2D and 3D FRS, the proposed 3D face morphing technique indicates a
consistently high vulnerability. The vulnerability is noted high with the Facescape
dataset compared to the 3D morphing dataset. The variation in the vulnerability
performance across different FRS can be attributed to the type of feature extraction
and classification techniques employed in individual FRS. For example, 2D face
recognition systems are based on identity features, whereas 3D-based systems are
based on high-resolution depth and shape.

10.4.4 Automatic 3D Face Point Cloud Quality Estimation

In this work, we estimate the visual quality based on the effectiveness of different
types of features, including both color and geometry, as proposed in [240]. This
study aims to quantitatively estimate the quality of the generated 3D face morphing
point clouds and the bona fide 3D face point clouds to quantify the quality of the
proposed morphing generation. To this extent, five different point cloud features
based on geometry, namely curvature, anisotropy, linearity, planarity, sphericity,
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and three color information features, namely L color component, A color com-
ponent, B color component, are computed to benchmark the quality based on the
geometry of the generated 3D morphing models.
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Figure 10.12: Box plots showing the eight different 3D model quality estimation from 3D
bona fide and 3D morph based on color and geometry

Table 10.5: Quantitative values of quality features for 3D face point clouds corresponding
to 3D bona fide and morph based on color and geometry

3D Face Quality Features (mean ± std. deviation) Data type
Bona fide Morphed

L Color 6.5614±0.2191 6.6076±0.2340
A Color 5.9368±0.3547 5.8546±0.3260
B Color 5.7998±0.5074 5.5326±0.4198

Linearity 2.4708±0.2196 2.4911±0.1776
Sphericity 0.3318±0.0807 0.2936±0.0592
Anisotropy 0.3318±0.0807 0.2936±0.0592
Curvature 0.3330±0.0821 0.2965±0.0606
Planarity 2.4430±0.2176 2.4711±0.1733

Figure 10.12 shows the box plot of the eight different quality metrics for both 3D
bona fide and 3D morphing point clouds. The quantitative values (mean and stand-
ard deviation) of different quality features are also shown in Table 10.5. As noted
from Figure 10.9, the quality estimations, mainly based on geometry, indicate the
near-complete overlapping for 3D bona fide and 3D morph. Thus, the proposed
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3D face morphing generation did not degrade the depth quality. Instead, it has
achieved comparable quality based on geometry from bona fide 3D models used
for the morphing operation. A similar observation can also be noted with the color
image quality estimation.

10.4.5 3D Face Morphing Attack Detection

In this section, we present our proposed method for a single 3D model-based
MAD. Because the 3D face morphing is extensively presented in this paper for the
first time, there exists no state-of-the-art to detect these attacks. Therefore, we are
motivated to develop 3D MAD techniques to detect these attacks reliably. The pro-
posed 3D MAD techniques are based on the pre-trained 3D point-based networks
used to extract the features, as shown in Figure 10.13. Thus, given the 3D face
point clouds, we first compute the features from the pre-trained network and in the
next step, we feed the same to the linear support vector machine to make the final
decision on either bona fide or morph. In this work, we have used three different
pre-trained point could networks such as Pointnet [21, 241], Pointnet++ [21, 241]
and SimpleView [241] independently to benchmark the 3D MAD performance.
All three pre-trained CNNs are trained on ModelNet40 dataset [242].

The Pointnet [21, 241] is one of the earliest point-based classifications of deep
learning networks invariant to the permutation of 3D vertices. Given the 3D face
point clouds, we extract the feature from the classification task layer correspond-
ing to the feature dimension of 4096. The Pointnet++ [21, 241] is the improved
version of Pointnet [21, 241] achieved by introducing a hierarchical neural net-
work that was applied recursively. In this work, given the 3D face point clouds,
we extract the features from the classification task layer of Pointnet++ to obtain
a 40-dimensional feature vector. The SimpleView [241] network is based on pro-
jecting the point clouds to multiple view depth maps. In this work, given the 3D
face point clouds, we extract the features from the classification task layer of the
SimpleView network to obtain a 40-dimensional feature vector.

To effectively benchmark the performance of the proposed 3D MAD, we divide the
newly collected dataset into two independent sets, namely training and testing. The
training set consists of 3D bona fide and morphing samples from 21 unique data
subjects and the testing set consists of 3D samples from 20 unique data subjects.
Thus, the training set consists of 168 bona fide and 194 morphed features and the
testing set consists of 160 bona fide and 151 morphed features summarized in Table
10.6. Table 10.7 shows the quantitative performance of the proposed 3D MAD
techniques. Figure 10.14 shows the performance of individual algorithms in DET.
The performance is benchmarked using ISO/IEC metrics [99] defined as Attack
Presentation Classification Error Rate (APCER), which is the mis-classification
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Figure 10.13: Illustration of the proposed 3D face MAD

rate of attack presentations and Bona fide Presentation Classification Error Rate
(BPCER) is the mis-classification of bona fide presentation as attacks. Based on
the results, the best performance is obtained with the SimpleView [241] network
with a D-EER of 1.59%.

Table 10.6: Morphing Attack Detection (S-MAD) Method Protocol

Train Dataset (21 Subjects)
Bona fide Samples Morphing Samples

168 194
Test Dataset (20 Subjects)

Bona fide Samples Morphing Samples
160 151

Table 10.7: Quantitative performance of the proposed 3D MAD techniques

Algorithm D-EER (%) BPCER @ APCER =
Proposed Method 5% 10%

Pointnet [21] 2.57 3.12 2.5
Pointnet++ [21] 37.33 81.87 68.12

SimpleView [241] 1.59 2.5 0
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Figure 10.14: DET Curve for the Proposed 3D Morphing Detection methods.

10.5 Discussion
Based on the extensive experiments and obtained results made above, the research
questions formulated in Section 10.2 are answered below.

• RQ#1. Does the proposed 3D face morphing generation technique yield a
high-quality 3D morphed model?

– Yes, the proposed method of generating the 3D face morphing has res-
ulted in a high-quality morphed model almost similar to that of the ori-
ginal 3D bona fide. The quality analysis reported in Figure 10.12 and
Table 10.5 also justifies the quality of the generated 3D morphs quant-
itatively as the quality values from 3D morphing show larger overlap-
ping with the 3D bona fide. In addition, the human observer analysis
reported in Section 10.4.2 also justifies the quality of the proposed 3D
face morphing generation method as it is found reasonably difficult to
detect based on the artefacts.

• RQ#2. Does the generated 3D face morphing model indicate the vulnerab-
ility for both automatic 3D FRS and human observers?

– Yes, based on the analysis reported in Section 10.4.3, the generated 3D
face morphing model indicates a high degree of vulnerability for both
automatic 3D FRS and human observers.
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• RQ#3. Are the generated 3D face morphing models more vulnerable when
compared to 2D face images for both automatic 3D FRS and human observ-
ers?

– Equally vulnerable, the 3D face morphing models are more vulnerable
than their 2D counterparts, as shown in Figure 10.9 when using auto-
matic FRS.

– However, the vulnerability is almost comparable when evaluated by
a human observer study (see Section 10.4.2), where one of the main
reasons could be more prevalence of 2D morphs, which makes human
observers sensitive about which artifacts to look for.

• RQ#4.Can the 3D point cloud information be used to detect the 3D face
morphing attacks reliably?

– Yes, on using the proposed 3D face morphing attack Detection ap-
proaches (see Section 10.4.5) the point cloud information can be used
for reliable 3D morphing detection.

10.6 Limitations of Current Work and Potential Future Works
Although the work presents a new dimension for face morphing attack generation
and detection, especially in 3D, this work has a few limitations. In the current
scope of work, the 3D morph generation and detection are carried out on the high-
quality 3D scans collected using the Artec Eva sensor. We have employed high-
quality 3D face scans to achieve good enrolment quality scans that may reflect
the real-life ID enrolment scenario. Thus, future works could investigate the pro-
posed 3D morphing generation and detection techniques using low-quality (depth)
3D scans. Further, extending the study towards in-the-wild capture can also be
considered in future work. As a second aspect, the analysis is carried out using
41 data subjects due to the present pandemic outbreak. However, we have also
presented the results on the publicly available 3D face dataset, Facescape, with
100 unique IDs. Future work can benchmark the proposed method on large-scale
datasets with different 3D resolutions. As a third aspect, cleaning noise from 3D
scans is tedious and sometimes requires manual intervention. Thus, future work
can develop a fully automated noise removal in 3D point clouds to easily the 3D
morph generation.

10.7 Conclusion
This work presented a new dimension for face morphing attack generation and de-
tection, especially in 3D. We have introduced a novel algorithm to generate high-
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quality 3D face morphing models using point clouds. To validate the attack po-
tential of the newly generated 3D face morphing attacks, the vulnerability analysis
uses 2D and 3D FRS. Further, the human observer analysis is also presented to
investigate the usefulness of 3D information in morph detection. Obtained results
justify the high vulnerability of the proposed 3D face morphing models. We also
presented an automatic quality analysis of the generated 3D morphing models that
indicate a similar quality as the bona fide 3D scans. Finally, we have proposed
three different 3D MAD algorithms to detect the 3D morphing attacks using pre-
trained point-based CNN models. Extensive experiments indicate the efficacy of
the proposed 3D MAD algorithms in detecting 3D face morphing attacks.
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Chapter 11

Article 7: 3D Face Morphing
Attack Generation using
Non-Rigid Registration (RQ4)

Jag Mohan Singh and Raghavendra Ramachandra. 3D Face Morphing Attack
Generation using Non-Rigid Registration. 18th IEEE International Conference
on Automatic Face and Gesture Recognition, 2024.

11.1 Abstract
Face Recognition Systems (FRS) are widely used in commercial environments,
such as e-commerce and e-banking, owing to their high accuracy in real-world
conditions. However, these systems are vulnerable to facial morphing attacks,
which are generated by blending face color images of different subjects. This
paper presents a new method for generating 3D face morphs from two bona fide
point clouds. The proposed method first selects bona fide point clouds with neutral
expressions. The two input point clouds were then registered using a Bayesian
Coherent Point Drift (BCPD) without optimization, and the geometry and color of
the registered point clouds were averaged to generate a face morphing point cloud.
The proposed method generates 388 face-morphing point clouds from 200 bona
fide subjects. The effectiveness of the method was demonstrated through extensive
vulnerability experiments, achieving a Generalized Morphing Attack Potential (G-
MAP) of 97.93%, which is superior to the existing state-of-the-art (SOTA) with a
G-MAP of 81.61%.
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11.2 Introduction & Related Work
Face Recognition Systems (FRS) have achieved high levels of accuracy in uncon-
trolled, real-world environments, largely owing to advances in deep learning al-
gorithms, as documented in the literature [27, 22]. This high level of accuracy has
led to the adoption of FRS in various commercial settings including e-commerce
and e-banking. In particular, facial biometrics are utilized as primary identifiers
in passport scenarios to facilitate secure border control and other identification
verification applications. Facial biometrics can be captured live or through a pass-
port photo submitted during the application process for identity-document issuance
protocols. These biometrics are then stored in an identity document, such as an e-
passport, which can be used for verification purposes as needed. Moreover, the
implementation of e-passports will facilitate effortless Automatic Border Control
(ABC) by eliminating the need for manual intervention through a comparison of
the live image captured at the ABC gate with that of the electronic passport.

The accelerating adoption of the FRS technology is accompanied by an increase in
vulnerability to various direct and indirect attacks. Among the several types of at-
tacks on FRS, morphing attacks have gained prominence owing to their relevance
in high-security applications, such as border control. Morphing involves seamless
transformation of multiple face images into a single composite face image that ex-
hibits the geometric and textural features of the original images. Morphing facial
images have the ability to deceive both human observers (including experienced
border guards) [115] and automatic FRS [69] posing a threat to ID verification and
ABC scenarios. In the application process for a passport, an attacker may employ
a face morphing image to obtain a legitimate passport, which can subsequently be
utilized to enter the country through ABC gates. These factors have motivated re-
searchers to investigate both the generation and detection of face-morphing attacks
[69].

The generation of face morphing for 2D images has been extensively explored
using both handcrafted (landmarks) and deep learning techniques, such as Gen-
erative Adversarial Networks (GANs) and Diffusion Models. However, there has
been less research on 3D face morphing due to the challenges of 3D facial key
point registration between point clouds. Early work [24] in this area addressed
the problem by converting 3D face point cloud into 2D RGB images and depth
maps and using landmark-based morphing to generate morphing 2D RGB image
and depth map which are back projected for generating morphing face point cloud.
The process of generating a 3D face morphing point cloud using point clouds can
be described as follows: Given two facial point clouds from two distinct individu-
als, the objective is to create a facial morphing point cloud that has an average
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3D coordinate and color for the corresponding points. To the best of our know-
ledge, there is no existing work on directly generating 3D face morphing using 3D
point clouds. Therefore, this work aims to address this gap by exploring 3D face
morphing generation using 3D point clouds.

In the realm of 3D face generation, the critical component is the reliable registra-
tion of point clouds, which enables the generation of high-quality 3D morphing
that can effectively deceive 3D FRS and achieve maximum attack potential. Al-
though 3D point cloud registration has been extensively studied in the literature
on object detection and classification, the challenge of registering non-rigid ob-
jects, such as human faces, remains. This is due to the lack of known 3D cor-
respondences between the two human face point clouds and the need to estimate
affine transformations for each sub-region of the face. Various point set regis-
tration techniques have been proposed, including Reducing Kernel Hilbert Space
(RKHS), spline functions, Thin Plate Spline (TPS [243]), correlation-based [244],
Gaussian Mixture Models (GMM [245]), Coherent Point Drift (CPD [16]), and
Bayesian Coherent Point Drift (BCPD [89]). In this work, we employed BCPD
because of its ability to register non-rigid objects such as human faces accurately,
robustness against target rotation, and the use of non-Gaussian kernels, which res-
ults in greater efficiency than other existing methods, and the algorithm guarantees
convergence. The following are the main contributions of this work:

• First work on generating 3D face morphing utilizing point clouds, lever-
aging the Bayesian Coherent Point Drift (BCPD) method for alignment and
averaging the 3D coordinates and color from the given point clouds.

• Extensive analysis on the publicly available 3D face dataset Facescape [23]
with 200 unique identities. The attack potential of the proposed 3D morph-
ing generation is evaluated using five different 3D FRS and two different 2D
FRS.

• The quantitative values of the attack potential is evaluated is Generalised
Morphing Attack Potential (G-MAP) metric and compared with the existing
3D morphing generation techniques.

• The dataset and source code is available for research purpose. Link will be
added in the final version.

In the rest of the paper, we present the proposed method in Section 11.3 followed
by Dataset details in Section 11.4, experiments and results in Section 11.5 and
Section 11.6 discuss the conclusion.



170 Article 7: 3D Face Morphing Attack Generation using Non-Rigid Registration (RQ4)

Bona fide #1

Source

Bona fide #2

Target

BCPD Based 3D-3D Alignment

Aligned  Source Bona fide #1

Aligned  Source Bona fide 
With color

                      
                
                     
Morph Generation with Color

3D Morphing Process

Figure 11.1: Illustration showing block diagram of the proposed approach

11.3 Proposed Method
Figure 11.1 shows the block diagram of the proposed method for 3D face morph-
ing generation that can be structured in three different steps: (a) 3D point clouds
alignment using Bayesian Coherent Point Drift (BCPD [89]) (b) Colorization of
the aligned point clouds (c) 3D morphing point clouds generation. Given two bona
fide point clouds that are to be morphed, the proposed method will generate the 3D
morphing cloud points as discussed below.

11.3.1 BCPD-based 3D-3D Alignment

We adapted the BPCD algorithm [89] to perform 3D point cloud registration cor-
responding to two bona fide subjects. We first present the notations that are used
to present the adapted BPCD algorithm, and then present the different steps of the
3D point cloud registration.

Notation

• Let Ps1, Ps2 denote the two input point clouds where (Ps1) is considered
as source point cloud and (Ps2) is considered as the target point cloud.

• Let D denote the dimensionality of data, which in our case is 3 because of
3D point clouds.

• Let the source point cloud be denoted as Ps1=(yT1 , y
T
2 , · · · , yTM ) ∈ R3

• Let the target point cloud be denoted as Ps2=(xT1 , x
T
2 , · · · , xTN ) ∈ R3

• Let Cs1 be the colors of source point cloud and Cs2 be the colors of target
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3D Bona fide #1                             Proposed Method SOTA 3D Face Morphing                  3D Bona fide #2

Figure 11.2: Illustration showing Bona fide Input and Morphing Face Samples generated
using proposed method and SOTA [24] where SOTA shows blending artifacts in facial
boundaries.

point cloud.

• Let the displacement vectors obtained during the non-rigid transformation
be denoted as V=(vT1 , v

T
2 , · · · , vTM ) ∈ R3

• Let the similarity transform be denoted as ρ = (s,R, T )

• Let the multivariate normal distribution of z with mean µ and co-variance
matrix S be denoted as ϕ(z;µ, S)

• Let the non-rigid transformation be denoted as T (yM ) = sR(yM + vM )+ t

• Let G = gmm′ ∈ RM×M be the Gram-Matrix with gmm′ = κ(yM , yM ′)
where κ(., .) is a positive-definite kernel.

• Let P = (pmn) ∈ [0, 1]M×N be the probability matrix where pmn represents
the posterior probability that xn corresponds to ym.

• Let ν = (ν1, ν2, · · · , νm) denote the estimated number of target points
matched with each source points i.e. (νm =

∑N
n=1 pmn)

• Let Pst1 denote the transformed source point cloud.

Initialization

The process of optimizing typically begins with the initialization of various vari-
ables. In our case, we followed the BCPD algorithm [89] to initialize the main
variables, which include the Rotation Matrix (R), the Translation Vector (t), and
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σ2. The Rotation Matrix was initialized to the identity matrix, the Translation Vec-
tor was initialized to zeros, and σ2 was initialized based on the pairwise Euclidean
distance between the source and target point clouds. The specific steps involved in
this initialization process are outlined below.

• ŷ = y, v̂ = 0, Σ = IM , s = 1, R = ID, t = 0, ⟨αM ⟩ = 1
M σ2 =

γ
NMD

∑N
n=1

∑M
m=1||xn − ym||2, G = ⟨gmm′⟩ with ⟨gmm′⟩ = κ(ym, ym′)

Optimization

Repeat the following steps until convergence.

• Firstly, the probability matrix P and its related variables are updated. The
update is done based on existing variables. The variables updated in this
step include ⟨ϕmn⟩, pmn, ν, ν′ and x̂.

• Next update the following terms, the displacement variable (v̂), covariance
matrix (

∑
) and related variables (ν̃, ũ and |αm| for all m) are updated in this

step.

• Finally, update the parameters of transformation scaling (s), rotation matrix
(R), translation vector (t) and the related variables (σ2,ŷ).

Note the details about the updating of variables mentioned in previous step are
available in [89] (specifically in Figure 2 of the paper). Once convergence is
reached, the vertex-coordinates coordinates in the source point cloud can be trans-
formed by the following equation:

Pst1 = sR(Ps1 + V ) + T (11.1)

11.3.2 Colorization of the aligned point clouds

The BCPD method does not transform per-vertex colors. Therefore, the trans-
formation of Rotation, Displacement, and Translation is applied only to the point
coordinates of the colored source point cloud generated by BCPD. The target point
cloud is kept fixed, and the colors from the aligned point clouds are averaged to
generate a face-morphing point cloud. To generate an aligned source point cloud,
the coordinates of the source point cloud Ps1 are transformed using Equation 11.1,
resulting in a color-preserved aligned source point cloud Pst1.
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11.3.3 3D Morphing Process

The steps of generating the 3D face morphing point cloud (Pm) given the aligned
source point cloud (Pst1) and the target point cloud (Ps2) is done by generat-
ing the face morphing point cloud (Pm) vertices and colors by Equation 11.2 and
Equation 11.3, respectively.

Pm = α×Pst1 + (1− α)×Ps2 (11.2)

Cm = α×Cs1 + (1− α)×Cs2 (11.3)

Figure 11.2 shows the qualitative results of the 3D face morphing generation using
proposed and the state-of-the-art [24]. SOTA method generates facial morphing
samples in which blending is noticeable at the boundaries whereas the proposed
method blending is not visible. The blending is noticeable in depth-maps generated
using SOTA apart from color images. The quality of the morphs generated by both
methods appears to be similar in interior regions.

11.4 Dataset Details
In this work, we employed the publicly available 3D face dataset, Facescape [23].
Facescape dataset comprised 18,760 textured 3D faces from 938 data subjects cap-
tured with 20 different expressions. In this work, we selected 200 data subjects
(112 males and 88 females) with neutral and smiling expressions to perform the
morphing operation using both the proposed and existing 3D face morphing gen-
eration techniques. Morphing between the data subjects was performed by follow-
ing the guidelines from [239], which include gender- and ethnicity-specific subject
selection for morphing. The 3D face point clouds corresponding to neutral expres-
sions were used to generate the morphing generation, and the smiling expression
was used to compute the attack potential of the proposed morphing technique. The
number of face morphing samples generated were 388 in total which includes 218
male morphs and 170 female morphs.

11.5 Experiments & Results
In this section, we present a quantitative analysis of the attack potential of both the
proposed and existing methods for 3D face morphing generation. This analysis
was conducted using two different FRS: one based on depth maps using five pre-
trained deep CNNs: Resnet-34, Inceptionv3, VGG16, Mobilenetv2 proposed in
[246] and the the second FRS based on the depth maps, as proposed in [?]. Addi-
tionally, we utilized 2D FRS consisting of ArcFace and MagFace, which evaluates
the attack potential of morphing attacks using color-morphed images without depth
maps.
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In this work, Generalized Morphing Attack Potential (G-MAP) [247] which is a
quantitative measure is used to evaluate the attack potential of morphing images.
G-MAP metric was designed to address the limitations of other evaluation met-
rics, as discussed in [247].1 To compute the G-MAP values, the morphing sample
was enrolled in the FRS, and comparison scores were computed by probing the
samples of the contributing subjects. If the computed scores exceed the False
Acceptance Rate (FAR) threshold, the enrolled sample is considered a successful
attack. Therefore, higher values of G-MAP correspond to a higher attack potential
for morphing techniques. The G-MAP metric is defined as follows [247]:

G-MAP =
1

|D|

|D|∑
d

1

|P|
1

|Md|
min
Fl

|P|,|Md|∑
i,j

{[
(S1ji > τl) ∧ · · · (Skji > τl)

]
× [(1− FTAR(i, l))]

}
(11.4)

where, P is set of probe images, F is the set of FRS, D is the set of Morphing
Attack Generation Type, Md is the face morphing image set for the Morphing
Attack Generation Type d, τl indicate the similarity score threshold for FRS (l),
FTAR(i, l) is the failure to acquire probe image in attempt i using FRS (l), and ||
is the number of elements in a set.

In this work, we present the quantitative results for G-MAP with multiple probe
attempts (G-MAP-MA) calculated from Equation 11.4 by setting D = 1, F = 1, and
FTAR = 0. We also present the G-MAP with multiple attempts and multiple FRS
(G-MAP-MAMF) by taking the minimum across the FRS with D = 1 in Equation
11.4.

Table 11.1 shows the Generalized Morphing Attack Potential (G-MAP) of mul-
tiple attempts using different face recognition systems (FRS) based on the depth
maps. Based on the obtained results, it can be noted that (a) the proposed 3D
face morphing generation techniques indicate higher values of GMAP, and thus
indicate a higher attack potential compared to the existing method [24]. Improved
performance of the proposed method was observed with both 3D and 2D FRS. The
improved performance can be attributed to the high-quality color and depth maps,
which can result in the vulnerability of the FRS. (b) With 3D FRS, the proposed
method exhibited the best performance of GMAP = 97.93% with deep CNNs and

1A more detailed discussion about the advantages of G-MAP compared to other metrics is
provided in [247]
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Table 11.1: Quantitative results of Vulnerability of FRS: GMAP-MA@FAR = 0.1%

Algorithm/Features 3D Face Morphing [24] Proposed Method
3D FRS

Resnet34 [246] 86.79 97.93
Inceptionv3 [246] 81.61 97.93
VGG16 [246] 96.37 97.93
Mobilenetv2 [246] 97.67 97.93
Led3D [20] 100 100

2D FRS
Arcface [22] 95.85 100
Magface [248] 87.82 100

100% with Led3D FRS. With 2D FRS, the proposed method exhibits the best per-
formance with GMAP = 100% on both FRS. (c) Overall, there is a slight difference
between SOTA and the proposed method, where SOTA shows blending artifacts
in facial boundaries compared with the proposed method, which can also be seen
in Figure 11.2. This resulted in a lower G-MAP score with SOTA than with the
proposed method. SOTA is based on a 3D-2D-3D approach, where blending is
performed in 2D and can result in artifacts. We also compute the GMAP-MAMF,
which can quantify the attack potential of the generated morphing samples across
multiple attempts and the FRS. For 3D FRS, the proposed morphing generation
technique indicated a GMAP of 97.93%, whereas the SOTA was 81.61%. For
the 2D FRS, the proposed method indicates GMAP = 100%, whereas SOTA is
87.82%. These results justify the higher attack potential of the proposed method
compared to the existing method.

11.6 Conclusions & Future-Work
In this paper, we introduced a method for directly registering 3D point clouds
to generate a face-morphing point cloud based on BCPD. We evaluated the pro-
posed 3D face morphing attack generation method on a publicly available dataset
(Facescape Database) containing 200 unique data subjects. The attack potential
of the proposed method was compared to that of the existing method using the
G-MAP metric, and the results demonstrated the highest attack potential, as indic-
ated by the quantitative analysis. In the present work, the poses of the subjects
were predominantly near-frontal, which simplifies the registration process. Mov-
ing forward, we plan to develop a method that can handle arbitrary facial positions
and lighting conditions. This approach would be more representative of real-world
scenarios because it would enable data capture under a variety of lighting condi-
tions.
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Chapter 12

Future Works

The thesis answered the formulated research questions and we concluded. Further,
the thesis reached closer to its primary goal of robust MAD and, additionally,
the generation of high-quality face morphing images. However, several research
directions can be explored in the future, which we are listing below:

12.0.1 Attack Presentation Classification Error Rate (APCER) at low Bona
fide Presentation Classification Error Rate (BPCER)

It needs to be pointed out that in the currently published articles we have calculated
APCER@BPCER=0.1%. However, one could evaluate APCER@BPCER=0.01%,
which minimizes false alarms with low BPCER, and calculate the attack presenta-
tions misclassification rate at this threshold which is mentioned in National Insti-
tute of Standards Technology (NIST) technical report [87].

12.0.2 GAN generated postprocessing

One future direction is to use the Spectral GAN approach by Dong et al. [249],
where the authors have mitigated the spectral artifacts in GAN-generated images.
The authors proposed two methods for this where the first is based on CyclicGAN
with losses of LGAN (forward and reverse direction), Lcyc (cyclic GAN loss),
Lidentity (identity loss) incorporated in Cyclic GAN and the losses proposed by
the authors which are Lpower (power loss which regularizes the range of spec-
tral power distribution) and Lmax (max loss which ensures that maximum value
of spectra remains unchanged during domain transfer). The authors subtract the
mean difference between GAN-generated and real-world images in the second
method based on the training dataset from the input spectrum. The authors fol-
low both these methods by power distribution correction (PDC), which corrects
the power spectrum of an input distribution based on a power distribution. Note
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that authors evaluate the following methods, Method1, Method1+PDC, Method2,
Method2+PDC, and PDC, and used both SVM-Classifier and shallow CNN-based
spectrum detector on the datasets of BigGAN, CRN, CycleGAN, IMLE, ProGAN,
StarGAN, StyleGAN and StyleGAN2 where mitigation results in a reduction of
accuracy % implying reduction of spectral artifacts. Thus, it can be used for auto-
matic postprocessing face morphing images and be a potential future work.

12.0.3 Different Score Fusion Methods

Kumar et al. [250] further present linear and non-linear fusion, where non-linear
fusion achieves better accuracy than the weighted sum rule for most experiments
they evaluated. Kumar et al. [251] performed weighted minimum, weighted sum,
and weighted product fusions where in one dataset, weighted sum achieves the
best performance and in another, weighted product achieves the best performance.
Kumar et al. [252] perform multibiometric fusion using linear and non-linear com-
binations of scores where the fusion parameters are found using Particle Swarm
Optimization (PSO). The authors mention that the computational cost of PSO is
manageable as the search space is low. Thus, checking different score fusion meth-
ods, significantly non-linear fusion is a potential future work.

12.0.4 High-Quality Deep-Learning-Based Morph Generation

In this thesis, we focussed on generating morphs through landmarks and CFIA
using deep learning. However, increasing morph generation quality using deep-
learning-based techniques is an active area of research. It should be noted that
this area started with GANs and currently uses diffusion models. Increasing the
morph generation quality close to or better than landmark-based morphs could be
a fruitful research direction to explore further in subsequent articles.

12.0.5 Improving Generalization Accuracy of MAD

MAD methods perform well on a dataset with similar environments during training
and testing. However, their accuracy drops when training and testing environments
differ, e.g., training on a digital medium and testing on a print-scan medium. This
thesis has worked in this direction and improved the generalization accuracy of
MAD methods, but more work is required. The generalization accuracy is vital
from a real-world applicability perspective when the test medium/dataset is un-
seen/unknown. Thus, this could be an exciting research direction.

12.0.6 Composite Attack Detection (CAD) methods

In chapter 9, we introduced CFIA. The CFIA showed vulnerability towards FRS
and was challenging for human observers to detect. Further, existing MAD meth-
ods have shown low accuracy in detecting them. Thus, developing CAD methods
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to detect CFIA could be an exciting research direction.

12.0.7 Explainability of MAD methods

In the current literature, MAD methods perform well, given that training and test-
ing are similar. However, little attention has been paid to explaining the decisions
of MAD methods, which showcase the facial parts responsible for the decision at
a basic level and provide a more detailed explanation at an advanced level. It must
be pointed out that only a few works exist in this area [253]. This is important for
the real-world applicability of MAD and could be an exciting research direction.

12.0.8 Arbitrary Expression 3D Face Morphing

The 3D face morphing was evaluated for neutral face expression. However, it must
be assessed for arbitrary expression for real-world applicability. It must be pointed
out that such a use case becomes active when a 3D camera is mounted in an ABC
or OTF scenario, unlike the current 2D imaging cameras.

12.0.9 Synthetic Morph Generation

The CFIA method works on synthetic data and generates composites from them.
Synthetic data has recently been gaining importance in the Face Recognition com-
munity. Synthetic data would allow for large-scale training and improve gener-
alization. Further, high-quality synthetic depth data would be helpful in the gen-
eration of 3D face morphing. This is important as acquiring ground-truth bona
fide depth maps is time-consuming, and depth sensors are required. Since deep-
learning-based methods provide depth data for faces with low accuracy, there is a
need to improve the depth quality of deep-learning-based methods as this would
result in large-scale applicability of MAD. Further, there is a need to model the
effect of print-scan on depth. The achievement of these two goals would result in
a much larger-scale application of MAD methods compared to the current scale
and enhance their real-world adoption. Finally, generating a synthetic face morph
image and having a deep-learning-based transfer to real-world images could be an
exciting new research direction.

12.0.10 Anonymity of the Morphing Dataset

The dataset collection for face image morphing is done under GDPR norms. How-
ever, the current morphing dataset can be reverse-engineered with some effort,
leading to users’ identities being revealed. Differential Privacy can guarantee the
anonymity of datasets and thus could be helpful in this research direction.
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