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Abstract

The last few decades has seen tremendous technological development in the mar-
itime industry. Improvements in navigation systems such as Global Navigation
Satellite System (GNSS) have reduced measurement error and uncertainty for both
position and velocity data. In addition, improvements in computational power have
contributed to the development of more advanced ship control systems. Increased
focus on greenhouse gas emissions have further driven the maritime industry into
developing new and more efficient ship transport systems. More and higher levels of
autonomy at sea is one way to address this challenge and utilize the technological
improvements.

A crucial part of developing autonomous ships is ensuring their ability to oper-
ate safely. To address this, the overall objective of this thesis is to develop methods
and tools for assessing and controlling risk when operating autonomous ships. To
achieve this, risk related to autonomous ships needs to be analyzed and modeled.
Since autonomous ships are complex systems that include hardware components,
software, interact with humans, and operate in highly unstructured environments,
traditional risk analysis methods focusing on single component failures are not
considered sufficient. Instead, newer methods such as Systems Theoretic Process
Analysis (STPA) focusing on system interactions and Bayesian Belief Network
(BBN) for modeling the system, combined with additional methods for analyzing
specific parts of the ship are used to get sufficient information.

The data and output from analyzing and modeling risk are further used as input
to a high-level controller. The result is a risk-based control system with improved
decision-making capabilities compared to existing control systems. At the center
of this control system is a Supervisory Risk Controller (SRC) capable of high-level
control of an autonomous ship. It can make decisions about what motion controller
to use, how the machinery should be operated, and choose what routes to follow.
In addition, it is also designed to notify a human supervisor if it starts reaching its
operational limits to avoid loosing control of the ship.

Three versions of the controller addressing different challenges, such as switch-
ing between transit and docking, sailing on preplanned coastal routes while ac-
counting for changing environments and conditions, and switching between routes,
have been studied and tested in simulations. These show promising results where
the SRC is able to adjust both the speed, control mode, and machinery mode to
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Abstract

balance safety and efficiency based on the environment and conditions. In addi-
tion, the performance and decision-making capabilities shown in the simulations
are compared to operational measurements from and existing manned ship. This
comparison shows that the risk-based control system is capable of both safe and
efficient operation of ships. Overall, simulations shows that the autonomous ship
operates with a similar or higher level of safety, without compromising efficiency
and performance compared to existing manned ships.

The main result of the thesis is the SRC that can combine information from
a risk model with operational measurements from a ship control system to handle
a wider range of challenges compared to existing ship control systems. Existing
ship control systems are great at optimizing efficiency and costs. However, they
often lack the ability to assess safety. By introducing a risk model in the control
system, both safety and efficiency can be evaluated as part of the decision-making
process similar to the way human operators and crew do on traditional ships. This
is an important contribution towards operating autonomous ships by improving
the decision-making capabilities accounting for both safety and efficiency.

ii



Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). The work has been conducted at the Department of Marine Technology
(IMT). The work has been part of the Knowledge-Building Project for Industry
(KPN) project Online Risk Management and Risk Control for Autonomous Ships
(ORCAS) funded by the Research Council of Norway (RCN), Kongsberg Maritime,
and DNV (RCN project number 280655). In addition, the work has been associated
with the NTNU Centre of Excellence Autonomous Marine Operations and Systems
(NTNU AMOS) project (RCN project number 223254).

My main supervisor was Professor Ingrid B. Utne from IMT, and my co-
supervisors were Professor Asgeir J. Sørensen from IMT and Professor Tor Arne
Johansen from the Department of Engineering Cybernetics, NTNU. In addition,
two PhDs besides my own has been part of the ORCAS project. My colleague
Tobias Rye Torben focused on the design and verification of control systems for
autonomous ships, and my colleague Simon Blindheim focused on risk-based Model
Predictive Control (MPC). Associate Professor Børge Rokseth has also been in-
volved in the ORCAS project as a Postdoc.

iii



Preface

Acknowledgments

I would like to give special thanks to my main supervisor Ingrid for being a great
mentor. Her structured approach to supervising, detailed feedback, and reviews
have been important for both delivering the research results my development as a
person. I have learnt a lot during our meetings and discussions, which has developed
me as both a researcher and person.

I would also like to thank my two co-supervisors Asgeir and Tor Arne. You have
both contributed with valuable guidance and feedback on my research. In addition
to my supervisor, I would also like to thank my fellow PhD students, especially my
office mate Ruochen Yang has been a great support while working on this thesis.
Our discussion have been very valuable for both the research conducted as part
of this thesis, but also for broadening my perspectives on other topics. I would
further like to thank my fellow PhDs in the ORCAS project, Tobias and Simon.
Your input and contributions to the research conducted in this thesis has been of
great value.

Lastly, I would like to thank my parents Vibeke and Finn-Arne Johansen for
always encouraging me, supporting me in my choices, and showing interest in my
work.

Trondheim, May 14th 2024 Thomas Johansen

iv



Contents

Abstract i

Preface iii

Contents v

List of Acronyms vii

List of Figures ix

List of Tables xi

I Thesis Overview and Background 1

1 Introduction 3
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Objectives and Scope . . . . . . . . . . . . . . . . . . . . 7
1.3 Scope and Delimitations . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Organization and Overview . . . . . . . . . . . . . . . . . . 10

2 Theoretical Background 11
2.1 Automatic VS Autonomous . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Autonomous Ships . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Ship Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Risk Analysis and Modeling . . . . . . . . . . . . . . . . . . . . . . 16
2.5 System-Theoretic Accident Model and Process (STAMP) and System-

Theoretic Process Analysis (STPA) . . . . . . . . . . . . . . . . . . 17
2.6 Bayesian Belief Networks (BBN) . . . . . . . . . . . . . . . . . . . 19
2.7 Risk-based Decision-making and Control of Autonomous Ships . . 21

3 Research Approach 23
3.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Work Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



Contents

4 Main Results and Contributions 27
4.1 Contributions Towards Research Objective 1 . . . . . . . . . . . . 31
4.2 Contributions Towards Research Objective 2 . . . . . . . . . . . . 33
4.3 Contributions Towards Research Objective 3 . . . . . . . . . . . . 35
4.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions and Further Work 39
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 43

II Selected Publications 53

Article 1: Risk Analysis of Autonomous Ships 55

Article 2: Supervisory Risk Control of Autonomous Surface Ships 65

Article 3: Development and Testing of a Risk-based Control System
for Autonomous Ships 83

Article 4: Human-autonomy Collaboration in Supervisory Risk Con-
trol of Autonomous Ships 103

Previous PhD Theses Published at the Department of Marine
Technology 145

vi



List of Acronyms

AMMS Autonomous Machinery Management System

ANS Autonomous Navigation System

AUV Autonomous Underwater Vehicle

BBN Bayesian Belief Network

CPT Conditional Probability Table

DP Dynamic Positioning

ENC Electronic Navigational Chart

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects, and Criticality Analysis

GLONAS Globalnaja navigatsionnaja sputnikovaja sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

H-STPA Human Systems Theoretic Process Analysis

IMO International Maritime Organization

IMT Department of Marine Technology

KPN Knowledge-Building Project for Industry

LIDAR Light Detection And Ranging

LoA Level of Autonomy

MPC Model Predictive Control

MRC Minimum Risk Condition

NTNU Norwegian University of Science and Technology

vii



List of Acronyms

NTNU AMOS NTNU Centre of Excellence Autonomous Marine Operations and
Systems

ORCAS Online Risk Management and Risk Control for Autonomous Ships

PHA Preliminary Hazard Analysis

PhD Philosophiae Doctor

PID Proportional–integral–derivative

PMS Power Management System

R&D Research and development

RCN Research Council of Norway

RIF Risk Influencing Factor

ROV Remotely Operated Vehicle

SRC Supervisory Risk Controller

STAMP System-Theoretic Accident Model and Process

STPA Systems Theoretic Process Analysis

UAV Unmanned Aerial Vehicle

UCA Unsafe control action

USV Unmanned Surface Vehicle

viii



List of Figures

2.1 Typical control structure for advanced ships . . . . . . . . . . . . . . . 15

4.1 Overview of main objective, research objectives and papers. . . . . . . 27

ix





List of Tables

2.1 Levels of Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 System description for different levels of autonomy . . . . . . . . . . . 13

4 Summary of the contributions from the different papers together with
the main methods and results . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Requirements for risk analysis of autonomous ships . . . . . . . . . . . 31
4.3 Assessment questions/criteria for risk analysis of autonomous ships . . 32

xi





Part I

Thesis Overview and Background

1





Chapter 1

Introduction

1.1 Motivation and Background

The work in this thesis is part of the Online Risk Management and Risk Con-
trol for Autonomous Ships (ORCAS)-project (NTNU, 2018), a knowledge-building
project for industry funded by the Norwegian Research Council, Kongsberg Mar-
itime, and DNV. The project aims to develop solutions for online risk management
and risk-based control of autonomous ships by combining control theory and risk
management.

Ships are a crucial part of the global transport network for goods and people.
The International Maritime Organization (IMO) state that shipping accounts for
more than 80 % of global trade (IMO, 2022). This in turn accounts for around
2.8% of the global greenhouse gas emission (IMO, 2020). Improvements in sensors
technology, computation power, and more efficient machinery systems are expected
to enable more autonomous ships, along with other maritime systems. Increased
autonomy can be one way to address this by enabling new ways to operate ships
by reducing crew and opening up for unmanned operation. This can help improve
working conditions (Burmeister et al., 2014) and reduce the number of incidents
involving ships (de Vos et al., 2021; Porathe et al., 2018; Wróbel et al., 2017), fuel
consumption (Kretschmann et al., 2015), and crew and structural costs (Rødseth,
2018). Overall, this can help minimize cost and improve environmental perfor-
mance.

Autonomous ships can help to reduce the need for land transport by offering
smaller electric cargo ships as an alternative to trailers, such as Yara Birkeland
(Yara, 2018) and Asko’s autonomous electric barges (Kongsberg, 2020b). In addi-
tion, increased autonomy can also enable new ways of transportation where tra-
ditional ships are not used today. One such example concerns small autonomous
ferries suggested for transporting people in cities and over shorter distances. Nor-
wegian University of Science and Technology (NTNU) has built and developed a
small passenger ferry prototype, MilliAmpere for testing in Trondheim (Spring-
wise, 2018). Zeabus (2021) has moreover started operating an autonomous ferry
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1. Introduction

together with Torghatten in Stockholm (Zeabus, 2023). Similarly, Hyke have pre-
sented an autonomous ferry indented for operations in Fredrikstad during the fall
of 2023 (Teknisk Ukeblad, 2023). They have also signed a contract to deliver four
autonomous ferries that will operate in Paris during the 2024 Olympics (MASS
World, 2022).

The autonomous cargo ship Yara Birkeland is also an example of ships devel-
oped to operate at a higher Level of Autonomy (LoA) (Yara, 2018). Yara Birkeland
is now operated as a manned ship, but with plans to transition to more auton-
omy over the coming years. Reach Subsea, together with Kongsberg Maritime and
Masterly are working to develop a Unmanned Surface Vehicle (USV) intended for
working in the offshore industry capable of doing inspection, survey, and light
repair tasks (Offshore Energy, 2021, 2022). DeepOcean, together with Solstad Off-
shore and Østensjø have ordered a USV intended for work in the offshore industry
through their joint venture company USV AS (DeepOcean, 2023). Autonomous
cars are under development and being tested for both (BBC, 2020) and human
transport (Mashable, 2022). Autonomous Underwater Vehicles (AUVs) that can
be stationed at offshore installations are under development and being tested for
conducting maintenance and inspection. This is expected to reduce the need for
larger supply ships, which reduces cost and increases efficiency (The Maritime Ex-
ecutive, 2021).

As ships are designed to operate at a higher LoA, they need more complicated
machinery and control systems. An autonomous ship control system includes au-
tomatic systems for controlling and navigating the ship, power, and propulsion
systems. In addition, they need systems for improved situational awareness and
the capability to plan and make decisions in uncertain can unstructured environ-
ments (Brito, 2016; Zhang et al., 2023; Zheng et al., 2023). This means relying on
advances in optimization, artificial intelligence, computer vision, and sensor fusion.
In addition, the constant improvement in computational power available is an im-
portant perquisite for developing autonomous ships. As the systems become more
complicated, so do the interactions between them. This means that it is not suffi-
cient to assess individual parts of the ship to ensure that they are safe. Instead, it is
necessary to also consider the interaction between different parts to ensure that the
whole system is safe. Since humans are still expected to be involved in operating
autonomous ships, either directly or as a supervisor, it will also be important to
assess how this can affect overall system performance (Ramos et al., 2020a,b).

An important prerequisite for autonomous ships, and other autonomous sys-
tems, is ensuring that they are safe and reliable (DNVGL, 2018). The Norwegian
Maritime Authority states that risk assessments are a necessary step towards au-
tonomous operation (Norwegian Maritime Authority, 2020), and Utne et al. (2020)
state the importance for autonomous ships to assess and control risk while sailing.
Existing control systems, such as autopilots and Dynamic Positioning (DP) con-
trollers, are able to control ships in specific situations. Similarly, engine control
systems can manage individual engines and power production. However, these sys-
tems are designed to control specific parts of the ship, or control the ship in certain
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1.1. Motivation and Background

situations and operations. Human operators and supervisors are still responsible
for managing the ship as a whole and change between operation modes depending
on the situation. As mentioned above, including risk of collisions, grounding, and
allision in the decision-making process is one possible way to improve autonomous
control systems. Compared to existing ship control systems, this is expected to
improve the decision-making capabilities and lead to safer operations.

Risk-based decision-making has been addressed in previous works focusing on
different aspects of operating autonomous ships and similar systems. Utne et al.
(2020) propose a method for using information from a risk model as part of the
decision-making process by combining making a Bayesian Belief Network (BBN)-
based risk model based on the results from a Systems Theoretic Process Analysis
(STPA). The data from the risk model can then be used to assess different decisions
and control actions in the ship control system. Blindheim et al. (2023a) use a similar
approach where Model Predictive Control (MPC) is combined with risk assessment
to enable risk-based control for autonomous ships. Similar methods have also been
used for AUVs in Bremnes et al. (2019) and Bremnes et al. (2020). Xiang et al.
(2017) use a fault tree and a Mamdani fussy neural network model to evaluate
the risk and do critical decision-making in case of emergencies. Chen et al. (2021)
conduct a systematic review of risk analysis research in order to improve the safety
performance of AUVs. Moreover, Brito and Griffiths (2018) propose a hybrid fuzzy
system dynamics risk analysis to assess how the experience of the operators affect
the probability of loss of AUVs, whereas Loh et al. (2020) use a Bayesian approach
to assess and update the risk profile for AUV operations.

Tengesdal et al. (2020a,b) use a risk informed MPC to handle collision avoid-
ance for autonomous ships. Specific parts of an autonomous ship control system
such as collision avoidance (Gil, 2021; Li et al., 2021) and emergency management
(Blindheim et al., 2020) have also been presented in previous works linking these
to risk management. However, many of these use very loose definitions of risk such
as distance to land and time to grounding. They also have a limited focus on how
to identify and analyze risk related to operating the ship. Thieme et al. (2021) de-
scribe four areas where risk analysis could be implemented in ship control systems
aimed at improving decision-making and operational performance. Risk models can
be used directly to make decisions; the output from risk models can be used as in-
put to decision-making and optimization algorithms; the output from risk models
can be used as constraints for algorithms; and the output from risk models can be
represented in maps of the environment. Blindheim et al. (2023b) use a particle
swarm optimization to manage the machinery system aboard an autonomous ship,
also combining risk assessment with optimum control by using the output from a
risk model as input to a decision-making algorithm.

Previous work has also addressed how to analyze and model risk related to
autonomous ships. Thieme et al. (2018) assess different methods for modeling risk
related to autonomous ships and defined a set of criteria for modeling this. Risk
factors and indicators specifically related to autonomous ships have also been iden-
tified in Fan et al. (2020) and Guo and Utne (2022). STPA has moreover been
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1. Introduction

used in multiple works related to autonomous ships. Valdez Banda et al. (2019)
use it for hazard identification for an autonomous ferry, as well as suggesting safety
controls to mitigate the identified hazards when designing the ship. Ventikos et al.
(2020) use STPA to determine hazards as a function of the LoA. Further, Wróbel
et al. (2018) use STPA to assess the safety of autonomous ships and provide recom-
mendations for the design process while Daya and Lazakis (2023) combine Failure
Modes and Effects Analysis (FMEA), dynamic fault tree analysis, and Bayesian
Belief Networks (BBNs) to assess the reliability of power production systems for
ships. Tsoumpris and Theotokatos (2023) use BBN to assess the system reliability
for autonomous ships, focusing on how the machinery system should be configured
to optimize the balance between system reliability and energy consumption. In
general, previous works on risk analysis and modeling related to autonomous ships
have shown that STPA and BBNs are useful for analyzing such complex systems.

Much previous work has also focused on either parts of, or a more complete
control system for autonomous ships. Path planning and following have been ad-
dressed in multiple papers such as Zhang et al. (2023), Sawada et al. (2023), Peng
and Li (2023), Park et al. (2023), and Wu et al. (2023) addressing trajectory track-
ing and autonomous docking. Zhang et al. (2023) focus on collision avoidance while
considering uncertainty in the ship motions and accounting for this when planning
an alternative path. Wang et al. (2023) present a more general decision-making
system aimed at switching between different navigation tasks for the autonomous
ship. However, work focusing on controlling autonomous ships generally focus on
limited parts of the control system. Much of the low level controllers and systems
that can be used on an autonomous ship is also well developed and in use on many
ships already, such as DP-controllers (Sørensen, 2011), autopilots, and power man-
agement systems (Ådnanes, 2003).

Blindheim (2023) focuses on extracting data from electronic navigation charts,
risk-based MPC, and particle swarm optimization where risk is one term included in
the optimization to enable risk-based control of autonomous ships. Torben (2023)
focuses on approaches to design and verify safe control systems for autonomous
ships such as safety assurance and formal methods, whereas Rothmund (2023) has
developed new methods for giving robotic systems better risk awareness to enable
safer and more efficient autonomous systems. The work conducted as part of Yang
(2023) has also presented methods and tools for analyzing and controlling safety
focusing on autonomous marine systems.

To summarize, existing research that is considered relevant for autonomous
ships focusing on risk and control have mostly focused on either control or risk
analysis. A few works have started combining them, indicating potential advantages
by including risk in the decision-making process, for example, combined with some
version of optimum control theory (Blindheim et al., 2023b; Bremnes et al., 2019,
2020; Utne et al., 2020). However, it is still necessary to go more in depth into
how to combine risk analysis and modeling to show how the results can be used
for optimum control and reduce the need for human control of autonomous ships.
Combining this with existing ship control systems is a topic that needs to be
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1.2. Research Objectives and Scope

addresses in more detail before it can be used on actual ships. To address these gaps,
the work conducted in this thesis presents a more detailed approach to combine risk
analysis, modeling, and optimum control theory in a high-level controller. It also
presents how such a controller can be combined with existing ship control systems
to enhance the decision-making capabilities.

1.2 Research Objectives and Scope

Before highly autonomous ships can be used in normal operations, it is important
to ensure that they are safe. One step towards doing this is making control sys-
tems with improved decision-making capabilities, similar to how humans control
conventional ships where they can assess both risk and reward. To achieve this, an
autonomous system needs improved perception, situation awareness, and planning
capabilities (Utne et al., 2020).

Existing ship control systems are mainly designed to handle specific systems
such as Power Management Systems (PMSs), or control the ship in certain situa-
tions with autopilots and DP-controllers. High-level control and decision-making,
such as switching between different motion controllers and machinery modes, are
usually done by human operators. This thesis aims to enable autonomous control
systems to operate at a higher LoA by including risk of collision, grounding, and
allision in the decision-making and control process. This is expected to lead to safer
operations of autonomous ships compared to existing control systems.

Overall Research Objective:
The overall objective of this thesis is to develop methods and tools for

assessing and controlling risk when operating autonomous ships.

When comparing existing control systems and the decision-making by human
operators, one important difference is that a control system is designed to optimize
the reward or minimize the cost of operating. However, without sufficient informa-
tion about risk, it has no possibility of considering whether this is a safe way to
operate. A human on the other hand, can both assess the reward of finishing a task
and the related risk. Enabling autonomous ships to both assess and control risk is
therefore considered an important step towards safe operations.

To achieve this, the overall objective is divided into three research objectives.
An important step in managing risk when operating autonomous ships is identi-
fying how accidents occur. With the increased system complexity in autonomous
ships, this is more challenging compared to conventional manned ships. The inter-
action between physical components, software, human operators, the environment,
and other ships make it challenging to analyze with conventional risk assessment
methods. Finding suitable methods to identify the different factors, or Risk Influ-
encing Factors (RIFs) contributing to the overall risk picture, is an important part
in analyzing and controlling risk for autonomous ships.
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1. Introduction

Risk models can further be used to structure both qualitative and quantitative
data from different risk assessment methods. The risk model should provide infor-
mation for the control system about how RIFs are connected and contribute to
the overall risk picture. Based on this, the first research objective is formulated as
follows:

Research objective 1:
Identify methods for assessing risk influencing factors relevant for

autonomous ships and modeling these for use in an autonomous ship control
system.

The first research objective provides the foundation and an important first step
towards risk-based decision-making for autonomous ships.

The next step then builds a control system capable of utilizing the information
from the risk model and evaluating risk against other objectives. Such objectives
can be energy and fuel consumption, operation costs, and mission specific objectives
such as deadlines for reaching different ports and delivering goods. The resulting
control system should also be assessed in a systematic manner to ensure that it has
the necessary capabilities to control an autonomous ship. To achieve this, research
objective two is formulated as follows:

Research objective 2:
Develop a method for enabling risk-based decision-making in ship control

systems.

Research objectives one and two focus on identifying and modeling risk, and
developing a control system capable of risk-based decision-making. However, hu-
mans are still expected to be involved in operating autonomous ships. This could
be both active control for ships operating at a lower LoA, and more supervising of
the ship with more advanced control systems.

Compared to conventional ships, ships with a high LoA provide different chal-
lenges to humans when supervising and operating the ship. Traditional control
systems depend on humans having an updated view of the situation and regularly
adjusting how the ship is sailing. However, a higher LoA means that humans are
less involved in normal operations. On one hand, this might lead to less human er-
rors, but it could also make it more challenging when the control system is unable
to handle the situation and humans need to make decisions or take over control of
the ship since they do not have the same situational awareness. This research is
intended as a first step towards designing a risk-based autonomous control system,
where a human supervisor is still involved in the operation.

To address this, research objective three is formulated as follows:
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1.3. Scope and Delimitations

Research objective 3:
Investigate the inclusion of the human supervisor in the design of a

risk-based control system.

This is expected to increase the chance that a human supervisor will be able to
react in a safe manner when the control system is unable to handle the situation.

1.3 Scope and Delimitations

Autonomous ships consist of multiple complex sub-systems and operate in chal-
lenging environments and situations. In addition, humans are still expected to be
involved in the operation in different capacities, adding to the complexity of the
system. Accounting for all aspects of the physical, cyber-physical, and human ele-
ment when assessing risk and designing a control system is considered too much for
one thesis. The following work has therefore been limited to certain aspects of au-
tonomous ships, with focus on developing a methodology for building a risk-based
control system.

When describing and analyzing the physical ship, the machinery system, propul-
sion system, navigation system, and communication system are considered at a gen-
eral level. Each system is described with its main components, such as the main
engine, main propeller, and the GNSS system. However, going more in detail and
assessing specific parts of each main components is considered outside the scope of
this thesis. Similarly, the computer-based control system consists of the different
motion controllers, where each controller is considered as one component. The hu-
man aspects presented are limited to those useful for building the control system,
and topics such as human reliability, reaction time, and human-machine interfaces
are therefore only briefly addressed.

The testing conducted as part of this thesis is done using simulations of an
autonomous cargo ship. The cargo ship is based on an actual conventional manned
ship sailing along the Norwegian coast and modeled in a Python based simulator.
The simulator uses a simplified kinetic model without considering the wave forces
affecting the ship. This makes it easier and more efficient to test the controller,
but also affects the accuracy of the simulations, in turn making it more difficult
to control the ship movements, especially in tight turns since the ship is drifting
more. However, since the thesis focuses on the risk-based decision-making, it is
still considered sufficient to show that this works. The control system has not been
tested in real life, but the results have been compared to how the conventional
manned ship is operated in similar conditions. The ship considered in the case
studies conducted as part of this thesis is assumed to be operating LoA-3 - LoA-4
(from Table 2.2). However, it is also intended to switch between different levels,
in situations where the controller is unable to continue operating safely. A more
thorough description of LoA is given in Section 2.1 and the publications included
as part of this thesis.
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surface ships. Ocean Engineering, 251, 111045

• Johansen, T., Blindheim, S., Torben, T., Utne, I.B., Johansen, T.A., and
Sørensen, A.J. (2023). Development and testing of a risk-based control system
for autonomous ships. Reliability Engineering and System Safety, 234, 109195

• Johansen, T. and Utne, I.B. (2023). Human-autonomy collaboration in su-
pervisory risk control of autonomous ships. Submitted to Journal of Marine
Engineering & Technology

1.5 Thesis Organization and Overview

Part I

Part one of the thesis consists of the following. Chapter 1 is an introduction to
autonomous ships and risk-based control of these. It also presents the research
objectives, scope, and delimitations for the PhD project. Chapter 2 presents the
theoretical background for the PhD project, while Chapter 3 presents the research
approach and methodology used. Chapter 4 presents the main results from the
research, including they addresses the objectives in the PhD project, and how they
can help the development towards safe autonomous ships. Chapter 5 concludes
the thesis and makes recommendations for further research regarding risk-based
control of autonomous ships.

Part II

Part two of of the thesis contains the scientific papers.
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Chapter 2

Theoretical Background

This chapter presents relevant theoretical background relevant to address to the
research objectives in Section 1.2. This include a description of relevant terms,
definitions, and different systems that make up an autonomous ship. It also describe
terms related to risk analysis and modeling use full in risk-based control systems.

2.1 Automatic VS Autonomous

Automatic and autonomous are two important concepts to differentiate between
when evaluating the development of smarter and safer ships. An automatic, or
automated system, is able to operate independent of human input. Automatic
doors are a good example of this, where the doors open and close without the need
for human control or automatic lights can turn on for a limited time if they sense
motion. Similarly, many existing ships have automatic systems such as autopilots,
DP-controllers, and PMSs capable of controlling parts of, or the whole ship, in
specific situations. However, automatic systems are designed to do specific tasks or
operations.

Autonomy, on the other hand, describes a system’s ability to plan, make deci-
sions, and act to achieve different goals. A useful way to describe an autonomous
system and its capabilities is LoA. This describes an autonomous system in terms
of human dependency, communication structure, risk management capabilities, in-
telligence, and planning functions (National Institute of Standards and Technology
(NIST), 2008; On-Road Automated Driving (ORAD) Committee, 2021; Utne et al.,
2017). Multiple scales for describing the LoA have been proposed in previous works
(Huang, 2008; Sheridan, 1992; Sheridan and Verplank, 1978; Vagia et al., 2016).
Lloyds Register (2017) presents seven different LoAs from L 0-Manual steering, up
to L 6 - Fully autonomous. Similarly, both IMO (2018) and Rolls Royce (2016)
have their own scales describing the different LoAs.

The different scales start with low LoAs where human operators receive in-
formation, make decisions, and provide commands to the hardware. With higher
LoAs, computers and controllers take over more of the tasks and humans do more
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IMO levels Lloyds register levels Rolls Royce levels
L1 - Ship with L 0 – Manual L 1 – The computer

automated processes steering. provides no assistance,
and decision support. L 1 – On- human in charge of all.

L 2 – Remotely board L 2 - The computer
controlled ship with decision support. provides a complete
seafarers on board. L 2 – On and set of decision
L 3 – Remotely off-board alternatives.
controlled ship decision support. L 3 - Computer

without seafarers on L 3 - ”Active” human narrows alternatives
board. in the loop. down to a few.

L 4 – Fully L 4 - Human L 4- Computer
autonomous ship. in the loop. suggests single

L 5 - Autonomous. alternative.
L 6 - Fully L 5 - The computer

autonomous. executes the suggested
action if human approves.

L 6 – The computer
provides human beings
limited time to veto
before automatic

execution.
L 7 – The computer

operates automatically,
when necessary,

informing human.
L 8 – The computer

informs human only if
asked.

L 9 – The computer
informs humans only if

it decides to.
L 10 – The computer

does everything
autonomously ignoring

humans.

Table 2.1: Levels of Autonomy from IMO (2018), Lloyds Register (2017), and Rolls
Royce (2016)

supervising. At the highest LoAs, the human can also have a reduced ability to
take control of the system. The scales presented in Table 2.1 describe how LoA can
be related to both the ship control system and human interaction. To describe the
LoA in this thesis, the scale displayed in Table in Table 2.2 (based on Utne et al.
(2017)) is used. This includes aspects from all three scales considered most relevant
for the ship considered. Compared to the scales shown in Table 2.1, this provides
a sufficiently detailed description of each level in terms of both system functions
and human interaction and contains enough levels to clearly differentiate between
them, but still limits the number to keep it clear which level is used. It also covers
sufficient levels to describe the different phases that many projects are using, or
planning to use, when introducing more autonomy to ships.

As shown in Table 2.2, autonomy is a more general term describing the system
at a higher level, compared to automatic. It is also important to remember that
autonomous does not mean unmanned, even though an autonomous system may
need less human input (Ramos et al., 2020a,b).

Another important point to assess is how the LoA can vary depending on the
type of operation. An autonomous ship can, for example, sail in open water without
the need for human input. However, when it reaches harbor or more congested
waters, it can be necessary for a human supervisor to be more involved. Similarly,
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LoA Type of operation System description
1 Automatic operation/ The system operates automatically. The human operator controls all

Remote control high-level mission planning. The human operator has access to
system states, environmental conditions, and sensor data.

2 Management by The control system can make recommendations about specific parts
consent of the operation. The human operator still controls the system.

The system can perform many tasks independently, if
approved by the operator.

3 Management by The system automatically executes the mission plan, and has the
exception ability to make small changes when the available time is too short for

human intervention. A human supervisor can take control over the
system or change the plan. The human supervisor is notified by the

system when it is necessary to take over or update the plan.
4 Highly autonomous The system automatically plans and executes the operation.

operation The system can change and alter the plan during operation.
Humans can supervise the operation, but not take direct control of the

system.

Table 2.2: System description for different levels of autonomy (based on Utne et al.
(2017))

modern cars can control the speed and stay inside their lane while driving on the
highway. However, most cars are not able to drive autonomously in cities and more
challenging areas.

2.2 Autonomous Ships

Autonomous ships, as described in this thesis, are ships with reduced need for
human control and supervision. As previously described, existing ships have many
automatic systems capable of controlling the ship in different operations. These
often operate at LoA-1 where the ship has automatic systems and controllers, but
a human operator does the high-level planning and make decisions on how manage
the ship. Offshore ships are a good example of this. They often have autopilots
to control the ship when sailing, and DP-controllers for station-keeping when they
are servicing offshore installations (Sørensen, 2005). They also often have PMSs for
managing power production to ensure sufficient power to the whole ship (Ådnanes,
2003). However, these ship are still dependent on human operators to manage the
different systems and switch between different modes and objectives. Some existing
ships are operating, at least partially, at LoA-2 such as ferries with auto crossing
and auto docking systems (Kongsberg, 2020a). Human operators are still necessary
to monitor the ship, and decide when to switch between transit and docking.

However, more ships and concepts are now under development or testing to
operate at higher LoA, where humans can take a more supervisory role in operating
the ship, either LoA-3 or LoA-4. Multiple examples are mentioned in Section 1.1.
Most of these are today operated with crew aboard, but in many cases this is a
reduced crew intended as an extra safety and to satisfy rules and regulations that
still makes this necessary.

Control systems for ships can generally be divided into three main levels (Lud-
vigsen and Sørensen, 2016): planning, guidance and optimization, and execution.
At the planning level, the mission or voyage is planned together with objectives
or tasks for the ship. Guidance and optimization is more specific than the mis-
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sion planning. This level considers way-points for the ship to follow and optimizes
resources. The execution level consider the specific controllers that execute and
control the ship according to the objectives and plans from the higher control lev-
els, such as DP-controllers and autopilots (Sørensen, 2005). The execution level can
also include the individual actuators, such as thrusters and rudders. These often
also include some controllers that map a control command to a physical parameter
such as engine speed or rudder angle.

2.3 Ship Control Systems

Typical controllers for more advanced ships, such as supply ships, include DP-
controllers (Balchen et al., 1980; Sørensen, 2011), autopilots, thrust allocation
(Skjong and Pedersen, 2017; Sørdalen, 1997), and PMS. These are used to con-
trol the ship’s motions and power production. DP-controllers are used for station
keeping and fine maneuvering. These are typically used on offshore supply vessels
that need to maintain a stable position when doing intervention, maintenance, and
repair jobs both under and above water. In both cases, the DP-controllers are cru-
cial ensuring that the ship maintains its position. Today, DP is also used on other
ships such as cruise ships and research vessels.

Autopilots for ships have also improved significantly over the last decades (Fos-
sen et al., 2003). Simple autopilots were typically used to maintain a course set by
human operators, but with little ability to change it later. Today, autopilots can
follow longer routes between multiple way-points by automatically changing the
course at each way-point (Chen et al., 2020; Kinaci, 2023). Collision avoidance is
also starting to be included in autopilots, where the autopilot can change the course
of the ship to avoid collision before returning to the original route(Lyu and Yin,
2019; Woo and Kim, 2020). Thrust allocation and PMS (Ådnanes, 2003) have also
become more advanced to handle more advanced power and propulsion systems.

In addition to different controllers, advanced ships include multiple sensors for
monitoring both the ship and the environment. These include Global Navigation
Satellite Systems (GNSSs) for getting position and speed measurements, speed
sensors measuring the flow of water over the ship hull, radars, and sensors for mon-
itoring the weather. These have also improved significantly over the last decades.
Early GNSSs where limited to only using the American Global Positioning Sys-
tem (GPS). This offered limited accuracy which made it less reliable for accurate
navigation. Today, modern GNSS units can use both GPS, the Russian Globalnaja
navigatsionnaja sputnikovaja sistema (GLONAS), the European Galileo system,
and some even the Chinese BeiDou Navigation Satellite System (Shukla et al.,
2018). This has improved the accuracy significantly by increasing the number of
satellites available. With the introduction of more autonomy on ships, new sen-
sors such as Light Detection And Ranging (LIDAR) sensors are also used more on
ships to provide even more accurate information about the environment (Sawada
and Hirata, 2023; Yao et al., 2023).

A typical control structure for advanced ships, such as supply ships, is shown
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in Figure 2.1.

Guidance system

Position reference

systems

Motion controllers

Signal processing

Sensor package

State observer

Thrust allocation

Power 

Management

System

Physical ship

and machinery

Human/operator

input

Human/operator

input

Figure 2.1: Typical control structure for advanced ships (based on Rokseth (2018)
and Sørensen (2005))

As ship control systems become more advanced, the methods used in the control
systems also become more advanced, but the overall structure is not changing as
much. Many early DP-controllers are relatively simple Proportional–integral–derivative
(PID)-controllers (Balchen et al., 1980). PID-controllers are still in use on many
more advanced ships, although they have become more advanced in the way they
are set up and tuned. Since the basic control system used in this thesis has the
same overall structure and PID-based motion controllers as shown in Figure 2.1,
it is still important to have knowledge about how these work, what type of input
they need to function, and what data they can provide to a high-level controller.

In most conventional control systems, data are used in the specific controllers,
such as autopilots following a specific route or course (Chen et al., 2020; Kinaci,
2023), or PMSs (Ådnanes, 2003) to optimize the specific functions in terms of
energy consumption or time usage. Also, systems using more advanced control
methods focus on specific aspects of the operation. An example of this is MPC-
based control systems that use a simulation model of the system to simulate how
potential control inputs affect a cost function to find the optimum input (Rawlings
and Mayne, 2009). However, even control systems using this for specific tasks such
as DP (Hu et al., 2023; Luan et al., 2023) or collision avoidance (Park et al., 2023)
rely heavily on human control and decision-making to operate in a safe and efficient
manner.

For ships intended to operate at higher LoAs, it is therefore necessary to con-
sider additional types of data, and how to use these in new ways. Thieme et al.

15



2. Theoretical Background

(2021), Utne et al. (2017), and Utne et al. (2020) highlight the need for including
more risk-based information to ensure safe and efficient control of autonomous ships
to address this challenge. Compared to existing control systems, this is expected
to improve the decision-making capabilities of the control system and reduce the
need for human control. A PMS capable of considering fuel consumption, machinery
health, and the potential for increased risk of collision or grounding when selecting
how the machinery should be used is an example of this (Blindheim et al., 2023b;
Tsoumpris and Theotokatos, 2023). However, this is still a field under development
where more work is necessary to both find and use data in new ways.

2.4 Risk Analysis and Modeling

A commonly used definition of risk is the answer to the three questions (Kaplan and
Garrick, 1981); What can go wrong? What is the likelihood of it happening? And
if so, what are the consequences? IMO (2013) defines risk as a measure of the likeli-
hood of an undesired event event occurring together with a measure of the resulting
consequences within a specified time. In ISO (2018), risk assessment is defined as
the process of risk identification, analysis, and evaluation. Risk identification is the
process of finding and describing how risk can prevent an organization, or system,
from achieving its objectives. Risk analysis is defined as a detailed consideration
of uncertainties, sources leading to risk, consequences, likelihoods, events, and sce-
narios. A risk analysis can also consider ways to control risk and to what effect.
Next, risk evaluation is the process of comparing results from a risk analysis with
criteria for what is acceptable in order to make decisions. This thesis focuses on
the risk analysis part as well as risk modeling.

Hazard identification focuses on answering the first question from Kaplan and
Garrick (1981): What can go wrong? DEF-STAN 00-56 (2007) defines hazard iden-
tification as the process of identifying and describing all the significant hazards,
threats, and hazardous events associated with a system. Hazard identifications
methods can vary considerably in terms of both objective and methodology. How-
ever, the general objectives are as follows (Rausand and Haugen, 2020):

• Identify hazards and hazardous events.

• Describe the characteristics of each hazard.

• Describe when and where the hazard is present.

• Identify possible triggering events.

• Identify conditions where the hazard could lead to a hazardous event.

• Make system stakeholders aware of hazards and potential hazardous events.

Multiple methods for hazard identification exists with different details and pur-
poses. Preliminary Hazard Analysis (PHA) is a simple method commonly used for
identifying hazards in the design phase, such that it can be updated and analyzed
in more detail later. Failure Modes, Effects, and Criticality Analysis (FMECA) is a
method intended to identify all potential failure modes of the system components
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System-Theoretic Process Analysis (STPA)

and the cause of the failures, as well as assess the effects on the entire system.
The Hazard and Operability Study method was developed to identify deviations
and situations that can be dangerous in a process plant. STPA is another hazard
identification method focusing on how interactions in systems can lead to accidents
(Leveson, 2011; Leveson and Thomas, 2018).

The next step of a risk analysis is assessing the causes and frequency of the
hazardous events. This is done to identify causal effects, establish relationships be-
tween causes and hazardous events, and determine how often the hazardous event
occurs based on the causes. This can also be considered as answering the second
question asked by Kaplan and Garrick (1981), namely what is the likelihood of a
hazardous event occurring. As with hazard identification, there are multiple meth-
ods for doing this, depending on the purpose. Cause and effect diagrams (Ishikawa,
1986) are an easy way to identify the cause of hazardous events, but will not pro-
vide any quantitative results. Fault tree analysis is a widely used method for causal
analysis used for both qualitative and quantitative purposes (Bobbio et al., 1999).
BBN is another method suitable for causal analysis (Fenton and Neil, 2019). It
can be used with the same purpose as fault trees but is much more flexible. Other
methods are Markov methods (Althoff and Mergel, 2011) and Petri nets (Taleb-
Berrouane et al., 2020), which can be used to analyze the information provided
by other tools, such as fault trees, but are not suitable for identifying the causes
themselves.

The final part of risk analysis is analyzing the consequences and thus answering
the third question asked by Kaplan and Garrick (1981). The purpose of this is to
describe accident scenarios that can occur after a hazardous event, identify barriers
that can stop or mitigate this, identify external events and conditions that can
influence the accident scenarios, describe end events, consequences, and specify the
probability and frequency of each accident scenario.

Event tree analysis is the most common method for developing and describing
accident scenarios. These can also be combined with fault trees to analyze barrier
failures. Event sequence diagrams (Swaminathan and Smidts, 1999) are very similar
to event trees, but with a different graphical layout. These can also be used for
more specialized purposes such as analyzing failures in human-system interactions
(Ramos et al., 2020a,b). Cause-consequence analysis (Nielsen, 1971) are also similar
to event trees, but with logic gates such that they can combine event sequences to
produce more compact diagrams.

2.5 System-Theoretic Accident Model and Process
(STAMP) and System-Theoretic Process Analysis
(STPA)

As systems become more complex, with multiple sub-systems, the interaction be-
tween different parts become increasingly important. Individual components might
function as intended, but the interaction between them can have a negative effect
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on safety. Processes executed in wrong order are a good example of this and can
lead to problems. Identifying these challenges can be difficult with more traditional
risk analysis methods. To address this, Leveson (2011) developed System-Theoretic
Accident Model and Process (STAMP) as a new tool for modeling causation and
STPA for hazard identification (Leveson and Thomas, 2018). STAMP treats safety
as a control problem to force safe behavior, rather than just focusing on preventing
failures.

STAMP consists of three main concepts: safety constraints, a hierarchical con-
trol structure, and process models. Safety constraints are used to describe how
unwanted events occur by violating the constraints. The hierarchical control struc-
ture models how the system is built up with multiple controllers. Each controller
gives control actions to lower-level controllers and feedback signals to those at a
higher level in the control hierarchy. Process models are used to describe the indi-
vidual controllers and actuators with the goal of satisfying the safety constraint,
control actions, feedback signals, and a model of the controlled process.

The aim of STPA is to identify how safety constraints can be violated. STPA is
based on two main steps: identify how inadequate control of the system can put it
in a hazardous state, and identify how this can occur. To do this, STPA starts by
identifying losses, system-level hazards, and system-level constraints. Leveson and
Thomas (2018) define a loss as loosing something of value to stakeholders. This
can include loss of human life, human injury, damage to property, environmental
damage, loss of mission, loss of reputation, loss of information, or other losses that
are unacceptable to the stakeholders. A hazard is defined as a state or condition
that, when combined with a set of particular worst-case conditions, will lead to a
loss, whereas a constraint is defined as a condition or behavior that needs to be
satisfied to prevent hazards.

The next step in an STPA is to define the hierarchical control structure with
the different controllers. The hierarchical structure shows how the system can be
divided into levels where each imposes constraints on the levels beneath it. By
organizing the controllers this way, the model shows which controllers can affect
each other. Each controller has a set of control actions, or commands, it can give
to the process it controls. STPA consider four types of inadequate control called
an Unsafe control action (UCA), which could lead to a hazardous state (Leveson
and Thomas, 2018):

1. A control action necessary to keep the system in a safe state is not provided
or not followed.

2. A control action putting the system in a hazardous state is provided.

3. A control action is provided too late, too early, or in the wrong order.

4. A control action is stopped too soon or applied too long (only relevant for
continuous or non-discrete signals).

Causal scenarios are used to describe how an UCA can occur. These are iden-
tified by analyzing the control loop for the considered control action to identify
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causal factors that can cause or contribute to a UCA. By identifying potential
causes, the system can be designed to mitigate these and control these, or they can
be specifically monitored to get an early warning. By treating safety as a control
problem, STAMP and STPA are designed to pick up unsafe interactions between
the different processes and controllers. In addition, it still accounts for failures in
components as these are also potential causal factors identified when analyzing
UCAs.

2.6 Bayesian Belief Networks (BBN)

BBNs is a tool that can be used to model risk in a graphical manner (Fenton
and Neil, 2019; Pearl, 1988). These are especially well suited for modeling more
complex systems since they provide a good representation of causal relationships,
their ability to combine empirical data with expert knowledge, and flexibility in
setting up and adjusting the model (Fenton and Neil, 2019; Utne et al., 2020).

These are based on Bayes’ theorem for computing conditional probabilities and
how different events are related. The basis of this theorem is that the probability of
an event A is dependent on K, which describes the context and previous knowledge.
Bayes’ theorem then says that the probability of K, given that we know that A has
happened, can be calculated with the following formula:

P (K|A) =
P (A|K)× P (K)

P (A)
(2.1)

When building BBNs, four idioms are used to speed up the process and give
better results (Fenton and Neil, 2019). The cause-consequence idiom is used to
model the uncertainty in causal processes with the observable consequences. The
second idiom is the measurement idiom, used to model the uncertainty in mea-
surements. The definition and synthesis idiom is used when combining multiple
nodes into one in order to simplify the BBN-structure. This is used when describ-
ing cases with a definitional relationship between nodes, such as velocity depending
on both time and distance with a well defined law. The second case involves hi-
erarchical definitions where multiple synthesis and definitional idioms are joined
in one structure. The final case using the synthesis and definitional idiom is com-
bining multiple nodes together in order to reduce the number of inputs to certain
nodes, also called divorcing, whereas the fourth idiom is the induction idiom, used
to model uncertainty related to inductive reasoning when observations about a
population are used to learn about population parameters. These are further used
to make predictions about the future.

A challenge with using BBNs is defining node probability tables, or Conditional
Probability Tables (CPTs). These describe how the probabilities in a node depend
on the input from its parent nodes. CPTs often need a large number of probability
values, despite trying to structure the network as good as possible. Fenton and
Neil (2019) list four different types of functions that can be used. Labeled nodes
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use labels at the states, where the CPT often need to be manually filled since they
labels do not have any underlying meaning regarding how the states compare. An
example of this could be a node describing the color of different cars with the
states green, yellow, red, and blue. There is, however, no information about how
the different colors compare. Another approach is a more iterative process where an
initial BBN is made and then sequentially updated as the available data improve
(Podofillini et al., 2023).

Boolean nodes are another typical node. Fenton and Neil (2019) define boolean
nodes as any node with exactly two states, true and false. The two simplest boolean
nodes are OR and AND nodes. An OR node will have a CPT such that state will
be true unless all parent nodes are false. AND nodes, on the other hand, are the
exact opposite where all parent nodes have to be true for the state to be true. M
from N nodes are true if M of the N different parent nodes are true. The two last
boolean nodes are noisy OR and noisy AND nodes. These are similar to the OR
and AND nodes, but with a leak factor. The leak factor describes the chance of
an OR nodes being true despite all parent nodes being false, and the chance of an
AND node being false despite all parents being true. The final boolean node is the
weighted average. This uses weights to describe how much each parent node should
affect the state of the child node.

Ranked nodes are similar to labeled nodes, but with an ordered set of states. An
example of this could be a node describing the amount of water in a glass with the
states nothing, half, and full. To fill out such nodes, it is possible to use different
functions and probability distributions to describe the different states and fill out
the CPTs.

In risk assessment, BBNs are useful when modeling the risk to have a graph-
ical representation. However, they can also be used to identify possible decisions
and check how they will affect the risk (Bremnes et al., 2019, 2020). When using
BBNs for decision analysis, there are three main components: decisions, chance
variables, and utilities. Decisions are what we want to assess to see how they affect
the system. This can be assessed in terms of cost, risk, energy consumption, etc.
Chance variables are the second main component, used to describe variables that
are outside our control. These can be either observable or not observable. An ob-
servable variable can be measured or reported on during the analysis. This can be
both a result of a decision, or a variable affecting what decision should be made.
It is also important to note that an observable variable might be inaccurate and
contain a certain degree of uncertainty. Utilities are used to describe the outcome
of the decisions and these can be both costs or benefits and can be measured in
either economic measures or more subjective utilities. A decision analysis model
can then be used to find the decisions that maximizes the rewards or minimizes
the cost.

After building a BBN, either to model and analyze risk or analyze decisions, the
model can be assessed using a sensitivity analysis (Hänninen and Kujala, 2012). A
sensitivity analysis can either be used to check the validity of a model by assessing
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which nodes have the greatest impact on a target node, or how sensitive the results
of a decision analysis are related to observable variables. This makes it very useful
after building a BBN and can give additional information and value to a decision
analysis.

As presented in Section 2.4, BBNs can also be used as alternative ways to rep-
resent other risk models, such as fault trees and event trees. A fault tree can easily
be modeled using Boolean nodes. Using BBNs instead has several benefits (Fenton
and Neil, 2019). A discrete BBN gives exact values for the probabilities, instead
of the approximations given in fault trees, reducing the inaccuracy in the model.
BBNs can also be extended much easier to include additional states, resulting in a
more realistic model. Traditional fault trees also assume that the primary events
are independent, which is often wrong. In a BBN, it is easy to model common cause
failures. BBNs can also easily be extended to dynamic BBNs to account for time
when analyzing risk.

Similar to fault trees, event trees can also be represented by BBNs. Traditional
event trees model assume that accidents are a sequence of conditional events. This
makes it intuitive to model, but such a scenario is seldom the case. Both the state of
the system and the environment will influence the causal sequence. Some accidents
can also depend on other factors that just the hazard, which makes the event tree
invalid. To address these limitations, Fenton and Neil (2019) argue that a BBN can
be used instead. BBNs are also easier to use in more dynamic applications due to
their flexible structure (Khakzad et al., 2013).

2.7 Risk-based Decision-making and Control of
Autonomous Ships

Thieme et al. (2021) present four potential areas to merge control of autonomous
systems and risk analysis in order to improve the decision-making capabilities: (i)
Risk models, such as fault trees or BBNs can be used directly to make decisions,
(ii) the output from risk models can be used as input to decision-making algo-
rithms, (iii) the output from risk models can be used to constrain decision-making
algorithms, or (iv) the output from risk models can be represented on maps and
be used in path planning.

Bremnes et al. (2019) present an example of how risk and control can be merged
in practice where a BBN is extended to a decision network and used directly in
the control to set the altitude set-point for an AUV when operating under ice.
By doing this, the AUV can find the optimum balance between mission reward in
terms of data quality and the risk of colliding with the ice. Bremnes et al. (2020)
present and alternative approach for a similar problem where the mission reward
is maximized and risk is only used as a constraint in the optimization.

One approach to combining risk and control is using MPC-based applications
such as Blindheim et al. (2020). Here, a metric describing the risk of grounding or
colliding with an obstacle is used as input in the optimization and for emergency
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management of an autonomous ship. Blindheim et al. (2023a) present an alternative
approach where a risk-based MPC is used for autonomous navigation in a way more
similar to the path planning approach proposed in Thieme et al. (2021). Blindheim
et al. (2023a) show an example of how the output from a risk model can be used in
a decision-making algorithm for machinery management and combining this with a
form of optimum control in particle swarm optimization. However, neither of these
uses a risk model for solving these problems. Instead, they take either a risk metric
based purely on the time to grounding, collision, or allision if the ship were to lose
power, or assess whether the ship violates the minimum separation distance to land
or an obstacle.

As indicated in Thieme et al. (2021) and shown in these works, risk informa-
tion can be used to improve the decision-making capabilities of autonomous ships
compared to conventional control systems. However, the data included in the risk
metrics and the inclusion of risk models is still something that should be addressed
in more detail as existing work is still limited in this area. This thesis therefore
focuses more on the risk analysis and risk modeling task following a similar ap-
proach as presented in Utne et al. (2020). For this purpose, MPC and similar
control approaches are deemed unnecessarily complicated. Instead, more conven-
tional PID-based controllers are used for autopilot and DP controllers. Hence, this
thesis aims to show how a ship control system as described in Figure 2.1 can be
combined with risk analysis methods such as STPA and models such as BBNs.
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Chapter 3

Research Approach

3.1 Research Methodology

Research and development (R&D) can generally be divided into three different
types: basic research, applied research, and experimental development (OECD,
2015). Basic research is the work done to acquire new knowledge without any spe-
cific application or use in mind. Applied research acquires new knowledge directed
towards a specific use or objective. Experimental development is systematic re-
search and testing aimed at developing new, or improving existing, products and
processes.

The research conducted in this thesis is mostly in the applied research cate-
gory with the objective of acquiring new knowledge and developing methods for
risk-based control of autonomous ships. This starts by evaluating existing meth-
ods and tools that can be used to improve decision-making in control systems for
autonomous ships and provides a good foundation for developing new tools and
methods suitable for operating autonomous ships.

Compared to traditional research in natural and social sciences, the research
performed here has not used experiments to validate the proposed methods. In-
stead, simulations have been used to measure the performance of the proposed
control systems. This is used because autonomous ships are still in development,
meaning there are limited physical systems available. In addition, risk and safety
are more conceptual and difficult to measure in real-world experiments. The mod-
els used in this research are one way to measure these, without offering an absolute
value. Instead, the same model can evaluate different solutions such that the val-
ues can be compared. The results have also been presented to industry partners
and academic peers to evaluate if the results are reasonable. Experience from sim-
ulations and feedback from experts have then been used to further improve the
methods.

The simulations used have been based on an 80 m long cargo ship transporting
fish goods along the Norwegian coast. The simulator is based on previous work con-
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3. Research Approach

ducted at the Department of Marine Technology (IMT) at NTNU, and extended
with additional components and controllers. This includes a guidance module for
following preplanned routes and a DP-controller for low speed maneuvering and
station keeping. For more details about the simulator, the reader is refereed to
Johansen and Utne (2022) and Johansen et al. (2023). The models used in the sim-
ulator are based on simplified kinetic models of the ship. This is deemed sufficient
to show how a risk-based control system works. However, it introduces some inac-
curacy in the ship motions. The lack of wave forces especially means that they can
behave differently than an actual ship, but it will only affect the motion controllers
and not the Supervisory Risk Controller (SRC).

The research conducted in this thesis is focused around three tasks: (i) reviewing
existing methods and tools suitable for risk-based control of autonomous ships; (ii)
developing new methods and tools for this purpose; and (iii) testing the developed
methods and tools.

Reviewing existing methods is necessary to identify the state of art. Scientific
literature databases, review articles, and books have been used to identify relevant
methods. This is used to find both tools and solutions that can be used further, as
well as identifying areas which need further work. Examples of such areas includes
finding ways to measure risk such that a computer-based control system can use
the information in the decision-making process. This must then be combined with
other performance parameters to find a balance between efficiency and safety when
operating the ship. Existing control systems usually focus on optimizing efficiency,
while satisfying specific rules related to safety. This can work, to a certain extent,
if the rules cover all potential situations. However, autonomous ships are complex
systems operating in a constantly changing environment such that it is impossible
to cover all potential combinations. Instead, this research considers it an optimiza-
tion problem where efficiency and safety are combined. In this way, the control
system can be adjusted to acquire the desired balance between risk and reward.

The second task combines methods identified in the first task and develops
new methods to improve decision-making capabilities in autonomous ship control
systems. To achieve this, the research conducted in this thesis combines methods
from risk and decision sciences, such as STPA and BBN, with control theory and
optimization. Another important part of this work is the use of experts to identify
data necessary to develop models, especially since autonomous ships are still in
development and there are close to no historical data available. This means that
the equations used in the SRC describing risk and operational costs have been
based on a mix of expert judgment and historical data from similar systems.

The last task consists of testing the proposed control system. Simulations are
an important tool for this since autonomous ships are still in development and
therefore difficult to test in real-world experiments. This includes both testing
the proposed control system itself, and comparing it against historical data from
conventional manned ships. Comparing it to existing solutions is important to show
that autonomous ships can operate in a safe and efficient manner.
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3.2. Work Process

The data necessary to build the models used in the simulations and compare
the results have been gathered through collaboration with specialists from both in-
dustry and academia, as well as literature on similar applications. The risk analysis
and risk models are based on the results from internal STPA workshops with with
12 experts conducted as part of the ORCAS-project. The participants have 5–30
years of experience from industry and academia working with marine technology
and maritime operation, ship control system design, risk assessment, testing, veri-
fication and validation. The workshops were conducted over multiple sessions and
provided valuable information for building the risk models. The results from the
simulations have also been assessed with experts on ship control systems and crew
working on conventional ships to assess the validity.

3.2 Work Process

The work and research conducted as part of this PhD project included the following
main steps: Firstly, writing a research plan, then writing the papers included in this
thesis, and finally writing this thesis. Other activities such as courses in relevant
topics have been important to get a good foundation for working on the papers
and thesis.

The research plan included developing the research objectives and identifying
the state of art relevant to the research objectives. This includes answering ques-
tions such as:

• What methods can be used to analyze risk related to operation of autonomous
ships?

• How is risk controlled and managed when operating conventional manned
ships?

• How can risk and safety be included when designing control systems for
autonomous ships?

When developing the research plan and research objectives, it was also neces-
sary to gather information about how existing ships are operated, and how this
could differ from autonomous ships. This included both talking with experts from
academia and industry, and visiting ships and talking with the crew. This provides
very useful data and input when describing and analyzing the autonomous ship
concepts assessed in this research.

The research objectives are developed based on the current state of art, and
gaps identified related to the control and management of risk related to autonomous
ships. The gaps identified mainly relate to analyzing risk in complex systems, build-
ing quantitative risk models describing autonomous ships, and how can this quan-
titative information be used when operating an autonomous ship.

The first paper identifies and evaluates state of the art risk analysis methods
for use in the further research work. The following papers papers describe different
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versions of a risk-based control system for autonomous ships addressing different
challenges and problems. Through this process, experience from testing the differ-
ent versions of the SRC and feedback from industry partners and academic peers
have provided possible improvements to address in the later versions. The same
process have also been used to improve the equations used in the control system to
make decisions. The risk cost is described using the same equations in all iterations,
but the risk model has been modified based on reviews and assessing the results.

The equations used to describe the operational costs have changed significantly
more. The first version of the SRC calculated the assumed cost of fuel used in cruise
or transit and docking and compared this to the risk cost. When assessing the
results from this, the ship behavior was good, but the costs were highly inaccurate,
which made it difficult to further improve the system. The second version of the
SRC therefore divided the operational costs in fuel, other operational costs, and
a term called potential future loss used to penalize the controller if it used longer
time than necessary. Using this process, the equations could be improved as more
data became available from talking to industry experts and testing the previous
versions.

The thesis aims to summarize the contributions, results, and conclusions for
the papers and describe and discuss how these address the research objectives
holistically. In addition, it describes the theoretical and practical implications of
the work and outlines further work that should be conducted in order to continue
developing autonomous ships.

3.3 Quality Assurance

The quality of the research conducted as part of this thesis has first and foremost
been tested through reviews from the supervisors, co-authors, colleagues, and in-
dustry partners. The research has been presented and evaluated at project meet-
ings with both the ORCAS- and related projects. There have also been multiple
meetings with industry partners to provide a status update on the work and get
feedback on both the conducted and planned work. Further, the quality has been
tested through peer review in scientific journals. Parts of the research have also
been presented at workshops and conferences where the content is also reviewed
by peers. Feedback from reviewers has been valuable to improve the quality of the
research.

The proposed control system has been tested extensively in simulations to eval-
uate its performance. In addition, the results from simulations have been compared
against operational measurements from actual ships to evaluate the validity and
realism of the results.
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Chapter 4

Main Results and Contributions

This chapter describes and assesses the main contributions from the research in this
thesis in terms of the research objectives. A synthesis of the work and contributions
from the research is also presented together with an assessment of the theoretical
and practical implications of the research. The last section addresses limitations
that have affected the research.

The connections between the overall research objective, individual research ob-
jectives and research papers are illustrated in Figure 4.1. Research objective 1 is
addressed in papers 1-2, objective 2 in Paper 3, and objective 3 in Paper 4.

Overall Research Objective:
The overall objective of this thesis is to develop methods and tools for 

assessing and controlling risk when operating autonomous ships.

Research objective 1:
Identify methods for 

assessing risk 
influencing factors 

relevant for 
autonomous ships and 
modeling these for use 
in an autonomous ship 

control system.

Research objective 3:
Investigate the 

inclusion of the human 
supervisor in the 

design of a risk-based 
control system.

Research objective 2
Develop a method for 
enabling risk-based 
decision making in 

ship control systems.

Article 1

Article 2

Article 2

Article 3

Article 4

Figure 4.1: Overview of main objective, research objectives and papers.
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4. Main Results and Contributions

A summary of the papers with their objectives, methods, results, and contri-
butions can be found in Table 4. This shows how the three research objectives are
addressed in the papers and what methods have been used. The table also shows
the main results and conclusions from each paper as well as a more general con-
clusion. Lastly, the table presents further work identified from each of the research
objectives.
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4.1. Contributions Towards Research Objective 1

4.1 Contributions Towards Research Objective 1

Johansen, T. and Utne, I.B. (2020). Risk analysis of autonomous ships. 30th Euro-
pean Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety
Assessment and Management Conference, PSAM 2020, 131–138 - Paper 1

Johansen, T. and Utne, I.B. (2022). Supervisory risk control of autonomous
surface ships. Ocean Engineering, 251, 111045 - Paper 2

Paper 1 assesses the feasibility of using STPA as a basis for risk analysis of
autonomous ships and quantitative risk modeling of autonomous ships. The paper
also identifies methods for addressing limitations in STPA with the aim of building
a quantitative risk model for autonomous ships. Paper 2 presents an online risk
model based on STPA and BBN, an approach based on Utne et al. (2020). This
was also one of the papers identified in Paper 1.

Due to the increased system complexity in autonomous ships, traditional risk as-
sessment methods focusing on single component failures are not sufficient. Instead,
there is a need for methods designed to analyze interactions between different sys-
tems, as well as the individual systems. To address risk analysis of autonomous
ships, Paper 1 defines seven requirements for risk analysis of autonomous ships:

Number Assessment questions
R1 Including software.
R2 Including humans in the loop.
R3 Including security aspects, especially cyber security.
R4 Including hardware.
R5 Including risk from unsafe interaction between different

parts of the system.
R6 Including the environment around the autonomous ship,

both nature forces and other vessels.
R7 Addressing emerging risks.

Table 4.2: Requirements for risk analysis of autonomous ships

STPA, as described in Leveson (2011), is chosen as the start point since it
addresses multiple requirements; the focus on unsafe interactions in the system
especially provides a good foundation. The other requirements are also addressed
to a lesser degree. However, since STPA is only a qualitative hazard identifica-
tion method, the results cannot be used directly in a ship control system to make
decisions. To do this, more quantitative data are necessary, especially about con-
sequences from hazardous events.

Methods that complement STPA by addressing the other requirements can
also provide useful information. Paper 1 therefore defines eight assessment ques-
tions/criteria and uses these to evaluate 35 additional methods identified by as-
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sessing relevant literature.

Number Assessment questions
Q1 Is the method already based on STPA?
Q2 Can the results from an STPA analysis

be used in the further analysis using this method?
Q3 Does the method complement the results

from an STPA analysis with additional
important information?

Q4 Can the results be used to build a quantitative risk model for
autonomous ships, including

software, hardware, and humanware?
Q5 Is it easy to find good literature that describes

the method?
Q6 Is the method designed to be easily updated with

new information?
Q7 Is the method applicable for analyzing risk for

autonomous ships?
Q8 Can the method be modified so it

can be used on autonomous ships?
(Only relevant when the answer is no on question seven)

Table 4.3: Assessment questions/criteria for risk analysis of autonomous ships

In addition to evaluating against the different questions, each method is classi-
fied based on the main topic addressed or tool used. Seven methods are assessed to
be more relevant based on the assessment. The first method presented in Wróbel
et al. (2018) addresses emerging risk and uncertainty related to these, which are
important for new technologies such as autonomous ships. The second method from
Omitola et al. (2019) is developed based on STPA with a special focus on security
risks. Thieme et al. (2020a,b) presents a method for analyzing software. The results
from an STPA can be used as input to this to identify what software should be
assessed further. Ramos et al. (2020b) and Martins and Maturana (2010) can be
used to analyze how human interaction and control of autonomous ships affect the
ship safety. Utne et al. (2020) and Thieme and Utne (2017) are both more general
methods for assessing and modeling risk related to autonomous ships.

The method proposed in Utne et al. (2020) is developed further in Paper 2 to
convert STPA results into a qualitative measurement by mapping it into a BBN.
The STPA identifies the hazardous events, system-level hazards, unsafe control
actions, and loss scenarios with different risk influencing factors. The results from
an STPA is assessed further to also identify potential consequences. The conse-
quences are then classified based on the expected cost. The results from the STPA,
together with the consequences, are modeled in a BBN to get an expected risk cost
based on the consequences and the assumed likelihood of each category. The BBN
is made into an online risk model by assigning input probabilities to the risk influ-
encing factors and defining conditional probability tables. The input probabilities
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4.2. Contributions Towards Research Objective 2

are then updated based on operational measurements from the ship control system
to acquire an updated risk cost based on the current conditions and situation.

Working towards the first research objective has provided a good foundation
for developing a risk-based control system. The first paper identified a set of useful
methods and tools relevant to use further. Paper 2 continued this work and com-
bined STPA and BBN, both identified in the first paper, to acquire a risk model
that can provide risk information for use in a cost function. The result is an im-
portant step towards risk-based control systems where both risk and operational
costs can be used to make decisions.

4.2 Contributions Towards Research Objective 2

Johansen, T. and Utne, I.B. (2022). Supervisory risk control of autonomous surface
ships. Ocean Engineering, 251, 111045 - Paper 2
Johansen, T., Blindheim, S., Torben, T., Utne, I.B., Johansen, T.A., and Sørensen,
A.J. (2023). Development and testing of a risk-based control system for autonomous
ships. Reliability Engineering and System Safety, 234, 109195 - Paper 3

Paper 2 presents a method for using risk information from a BBN-based online
risk model in as SRC. The controller combines the risk information with operational
measurements from the ship control system to enable risk-based decision-making.
Paper 3 develops the SRC further based on the experiences from Paper 2 and
incorporates this in a control system for an autonomous ship. The decision-making
capabilities of the resulting control system is compared to how existing manned
ships are operated.

To enable risk-based decision-making, the online risk model calculates a risk
cost using the output from the risk model. This is calculated by multiplying the
probability of different consequences with the corresponding cost as shown in Equa-
tion 4.1.

R(d) =Prsevere(d)Csevere + Prsignificant(d)Csignificant

+ Prminor(d)Cminor + Prnone(d)Cnone

(4.1)

R is the risk cost, d is the set of decisions, Pr is the probability of different
consequences, and C is the corresponding cost. By including potential decisions,
such as setting a reference speed for the ship to follow, the risk cost will change de-
pending on the decisions made by the SRC. In Paper 2, this is compared to a simple
estimation of the cost of operating the ship given the current state, conditions, and
decisions calculated with Equation 4.2.

C(d) = cfuel × (tcruise × P × ηcruise + tdock × P × ηdock) (4.2)
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C is the total operation cost, d is the set of decisions, cfuel is the price of fuel
per kWh, t is the time spent either cruising or docking, P is the max power from
the machinery, and η is the assumed load percentage in cruise and docking mode
respectively. This equation was a simple way to describe the fuel cost depending on
the power consumption and the sailing distance. The SRC can then assess potential
decisions to find the lowest total cost.

The SRC was developed in multiple stages based on experiences and results
from the previous papers. Paper 2 showed that an SRC could be used in a risk-
based control system. However, the results also showed that the cost functions were
inaccurate and could be improved significantly later. The operational cost especially
needed to be developed further in order to improve the control system. Paper 1
considered a case study where the ship was supposed to stop at the final way-point.
This was achieved by having an operational cost that decreased as the remaining
sailing distance became smaller. The risk cost therefore became higher, the closer
it drew to the final way-point, resulting in the ship slowing down. The SRC was
also improved with additional functionalities to address specific areas identified as
further work, such as notifying a human supervisor when the controller is unable
to operate safely.

The second version of the SRC uses the same approach to calculate the risk
cost, but divides the cost of operation into fuel, other operation costs, and potential
future loss due to scheduling challenges. The fuel cost is then calculated as the
fuel consumption per distance as a function of the wind, current, ship speed, and
machinery mode. This is found by simulating the ship for a wide range of conditions,
noting down the specific fuel consumption and making a look up table that can be
used to calculate the fuel consumption. The fuel cost is based on the prices found at
Ship & Bunker (2022). Other operation costs and potential future loss is calculated
using a constant cost per time multiplied with the sailing time. These costs are
based on operational costs from existing ships described in Stopford (2009). The
cost of potential future loss is a term used to penalize the ship if it uses too much
time. This term is estimated to balance the fuel, operational cost, and risk cost,
assuming that the ship need a sufficient income to be commercially viable.

F (d) = SFC(wind, speed, current,machinery) ∗ distance (4.3)

O(d) = Costoperating ∗ distance/speed (4.4)

L(d) = Costfutureloss ∗ distance/speed (4.5)

By describing both performance and risk in terms of cost, the SRC can use
both to find the best set of decisions. The proposed SRC is combined with an Au-
tonomous Navigation System (ANS) containing motion controllers such as DP con-
troller and autopilots, an Autonomous Machinery Management System (AMMS)
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that controls the machinery and manages power production, navigation sensors
and electronic chart modules to build a risk-based control system. To further ad-
dress the second research objective, Paper 3 also proposes a specific verification
step when designing the control system. This is used to verify that it is designed
according to the requirements such that it can operate both safely and efficiently.

Testing shows that the control system proposed in Paper 3 is capable of op-
erating an autonomous cargo ship in a manner similar to how humans operate
conventional ships. Data collected from a conventional manned ship, and conver-
sations with crew, shows how human operators adjust the speed of the ship and
start additional power sources when operating in more challenging areas such as
narrow straights or harbors. An example of this is starting a second generator set
when docking a ship to have more power available, and having a redundant system
in case one set stops. Similarly, the case studies in both Paper 1 and 2 show that
the SRC decides to start additional power sources when reaching more challenging
areas or the weather conditions worsen. The proposed control system also reduces
the speed to have more control of the ship when there is less space to maneuver.
The controller also chooses to reduce the available power in order to save fuel and
increase the speed to use less time when the weather conditions are good and the
ship has much space to maneuver in. In this way, it can both value safety when the
situation demands it, but without sacrificing efficiency when the risk is low. Over-
all, comparing to how existing manned ships are operated shows that the proposed
SRC operates similarly by making decisions to balance safety and efficiency.

The result from the work towards research objective 2 is a risk-based control
system capable of operating an autonomous ship in a wider range of conditions
compared to existing systems. Where most existing control systems focus on per-
formance and optimizing this, the proposed control system can assess the balance
between risk and reward resulting in smarter and safer ship operations. An exam-
ple of this is found in Paper 3, where the SRC balances the operational risk and
the reward from reaching the final way-point faster. Further, the control system
presented can easily be developed further by improving the individual parts and
using the same interface. Overall, the work done as part of this thesis is expected
to be a good step towards safe and efficient operations of autonomous ships.

4.3 Contributions Towards Research Objective 3

Johansen, T. and Utne, I.B. (2023). Human-autonomy collaboration in supervisory
risk control of autonomous ships. Submitted to Journal of Marine Engineering &
Technology - Paper 4

Paper 4 develops the SRC and control system proposed in Papers 2 and 3 further
by adding more functionalities such as a Minimum Risk Condition (MRC) mode
and enabling it to make simple route changes. The paper also starts investigating
how a risk-based control system can be designed around a human supervisor. To
do this, the SRC is designed to notify the human supervisor before it is unable to
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control the ship.

To address research objective 3, Paper 4 starts analyzing the control system
by assigning specific tasks to the autonomous control system and the human su-
pervisor. The autonomous system is analyzed, similar to the previous papers, us-
ing STPA. To analyze the responsibility of the human supervisor, Paper 4 uses a
method called Human Systems Theoretic Process Analysis (H-STPA) to analyze
how the human supervisor can fail to act in a safe manner. The purpose of this
is to find ways that the control system can be designed to reduce the chance of
unsafe reactions by the human supervisor.

The analysis shows that the control system can fail to provide notifications to
the human supervisor, significantly increasing the chance of an unsafe reaction.
The SRC is therefore designed with extra focus on when the human supervisor
should be notified, mainly when it is unable to continue operating the autonomous
ship with sufficient safety margins.

The autonomous control system proposed in Paper 4 needs the human super-
visor to intervene or take control of the ship if the weather exceeds the operational
limits of the autopilot and DP-controller, if the risk cost exceeds the limit where the
autonomous system enters MRC mode, if there is a loss of redundancy in critical
sub-systems, or if there is a failure resulting in loss of power production, propulsion,
or situational awareness.

By allowing for more shared control between an autonomous control system
and a human supervisor, the ship can operate safely and efficiently in a wide range
of conditions and situations including machinery failure, sudden changes in the
conditions, and winds ranging from calm to strong breezes. The work to address
research objective 3 in this thesis is considered as a first step towards designing a
risk-based control system that includes a human supervisor in the loop.

4.4 Synthesis

4.4.1 Theoretical Implications of the Research

Paper 1 starts by assessing the feasibility of using STPA to analyze risk related to
autonomous ships. This gives a good overview of the benefits with using STPA,
but it also provides valuable information about the limitations. STPA provides
information about how accidents can happen with autonomous ships, especially
information about how unsafe interactions and control actions are valuable when
designing the ship and the control system. The limitations identified are mainly the
lack of quantitative data since STPA is a qualitative hazard identification method.
The methods and tools identified in Paper 1 to address these limitations provide
valuable information to enable risk-based control of autonomous ships.

The main theoretical implication and contribution from the work is the method
for combining a BBN-based online risk model with ship control systems. Some
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previous works have suggested similar approaches, but the papers included in this
thesis are the first to show how this combination can be used for high-level decision-
making. This is then extended to gain a measurable output from the BBN that
can be used to control the ship. Paper 2 presents a simple cost function for the
controller to optimize, and papers 3 and 4 extend this further to acquire a more
detailed cost function describing the ship’s operation.

Both the online risk model and cost function can be developed further to im-
prove the control system. The risk model can be extended with more accurate
models for the ship and the conditions, such as reliability models of the machinery
and sensors, and weather models, to provide an even better representation of the
risk picture. This can further improve the decision-making capabilities in future
control systems. Similarly, the cost function can be improved with more detailed
models of the costs of operating the ship.

The method for designing a risk-based control system presented in papers 2 and
3 shows how such a control system can be designed and tested against the design
requirements. By using this, the control system can be checked both in terms of
safety and efficiency in the design phase. This can either help prove a minimum
performance before building the full system, or reveal the need for adjusting or
redesigning of the control system. In both cases, this improves the process of de-
signing autonomous control systems by increasing the confidence in the systems
ability to operate safely.

4.4.2 Practical Implications of the Research

The main practical implication of the research presented is the risk-based control
system proposed in papers 2, 3, and 4. The case studies show how this can be com-
bined with existing ship control systems to improve the decision-making capabili-
ties. The papers demonstrates this through simulations where the ship must handle
realistic conditions on routes along the Norwegian coast. To operate safely and ef-
ficiently, the proposed control system has to make decisions reacting to changing
conditions and environments. To achieve this, the SRC has to adjust the decisions
to reduce the risk level when the weather worsens or the space to maneuver is
reduced. When the weather conditions improve and the ship has more space to
maneuver, the SRC must take slightly greater risk in order to still operate effi-
ciently.

To further show the capability of the proposed control system, both the ship
model and routes assessed in the case studies in Paper 3 and 4 are based on a real
ship sailing the same route in comparable conditions. By doing this, the decisions
made by the control system can also be compared against how conventional ships
operate. This comparison also shows that the proposed control system can operate
with the same efficiency, while maintaining a lower risk level.

This type of control system allows for an autonomous ship to operate in a
wider range of conditions and situations without the need for a human operator or
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supervisor. In turn, this is an important step towards operating autonomous ships
since the SRC is already tested with control systems in use on existing ships. This
research shows it in simulations, but it can also be implemented on actual ships to
perform real world testing. Such testing can both use the proposed control system
to operate the ship with the crew as backup, or run it for decision support and see
how often the crew follows the recommendations.

A big difference between existing control systems and human operators is the
ability to assess and manage risk. Computer-based control systems are great at
optimizing efficiency and costs leading to very efficient systems. However, they
often lack the ability to assess whether it is safe to operate or if some efficiency
should be sacrificed. An example of this would be a system shutting down an
engine to reduce the energy consumption or avoid damage to the components, but
exposing the ship to much more risk by not having the same power available to
safely navigate in challenging conditions. By introducing a risk model in the control
system, it can evaluate both safety and efficiency in the decision-making process
to find good balance.

The control system would need some minor adjustments to integrate with an
actual ship but can otherwise be tested as is. In this way, the research included
here already now have practical implications for how ships can be operated. The
solutions proposed in this research focuses on operating autonomous ships, but
could also be applicable for other systems.
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Chapter 5

Conclusions and Further Work

This chapter concludes the thesis and provides suggestions for future work.

5.1 Conclusions

The overall research objective of this thesis was to develop methods and tools for
assessing and controlling risk when operating autonomous ships. The first objec-
tive focused on identifying methods for assessing risk related to autonomous ships
and how to model these such that an autonomous control system can utilize this
information. The second objective focused on how risk could be included in the
decision-making process in an autonomous ship control system. The last objective
investigated how a control system could be designed to include a human supervisor.

To address the research objectives, this thesis includes four research papers.
The key contributions from these are:

• A study of relevant risk assessment methods suitable for analyzing and mod-
eling risk related to autonomous ships.

• A method for building a BBN-based online risk model that can provide in-
formation to a control system for autonomous ships.

• A method for designing and verifying a risk-based control system for au-
tonomous ships to enhance its decision-making capabilities.

• A study of how notifications to a human supervisor could be included in a
risk-based control system for autonomous ships.

The impact of the thesis and related work is a proof of concept that a risk-based
control system can be used to enable safe and efficient control of autonomous ships.
The SRC is capable of combining operational measurements from the ship control
system with data from a risk model improving the decision-making capabilities
compared to existing conventional ships. Without this information, a control system
has little to no ability to evaluate whether a decision is safe or not. The proposed
controller can also be used as a decision support system for existing ships. A similar
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methodology could also be used for other systems such as Remotely Operated
Vehicles (ROVs), AUVs, and Unmanned Aerial Vehicles (UAVs).

The main result of the thesis and research papers is the risk-based control sys-
tem for high-level control of autonomous ships. Paper 2 presents an SRC and shows
how this can be used to enable risk-based control of autonomous ships. Paper 3
shows how an SRC can be included with a full control system for autonomous
ships and utilize information from this, such as data from an Electronic Naviga-
tional Chart (ENC)-module. Paper 4 shows how an SRC can select different routes,
and notify potential problems before it loses control of the ship to a human supervi-
sor. Extensive testing in simulations, and comparisons with operational data from
physical conventional ships, shows how an SRC can reduce the need for human
control significantly, without sacrificing safety or efficiency for autonomous ships.

In conclusion, the thesis and research papers have satisfied the objective of
developing methods and tools for assessing and controlling risk when operating
autonomous ships. The resulting control system demonstrates that autonomous
control systems can asses and manage risk, and also provides a starting point for
developing these systems further.
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5.2 Further Work

In addition to the risk-based control system, the research has also identified topics
and challenges that should be addressed further. The research shows how to include
information from an online risk model in a ship control system. However, both the
risk model and control system can be improved further. Paper 1 identified a set of
promising methods for analyzing and modeling risk related to autonomous ships.
Some of these have been used further in the research, such as the procedure for
mapping STPA results to a BBN. However, Paper 1 also identified methods that
could be used to specifically analyze software in the control system and risk related
to human factors. Investigating how to use more of these methods to improve the
online risk model and provide more information to the control system is therefore
one topic for further research.

The proposed controller and control system can also be developed further. The
current version has the ability to select what motion controller and machinery
mode to use, as well as choosing what route to follow from a set of preplanned
routes. A reasonable extension of this would be to enable the control system to
plan routes itself. Enabling autonomous ships to plan routes without the need for
human intervention, as well as risk-based decision-making, would be a big step
towards operating autonomous ships. Paper 3 also briefly addresses the topic of
online verification of the control system to check how potential decisions can affect
the future safety of the ship. Assessing this in more detail is also an interesting
topic for future work.

The current way of calculating the different cost elements and selecting the de-
cisions that give the lowest is and easy and efficient method. However, alternative
methods such as MPC can also be used for this type of control. Testing and com-
paring the current version with an MPC-based approach should be part of further
work. Another part is also optimizing based on predictions of the future. The cur-
rent version of the control system optimizes based on the current conditions and
states while assuming that these will stay constant. If the conditions change, the
SRC reacts to the changes. However, methods exist that predict the future such as
discrete event simulation (Robinson, 2005) and Monte Carlo methods (Fishman,
1996; Hammersley and Handscomb, 1964; Rubinstein, 1981), which can be useful
for this. By simulating and predicting the future, the decision-making process can
be more proactive compared to the current version of the SRC.

Human interaction with autonomous ships, as briefly addressed as part of re-
search objective three is also a topic that should be investigated in more detail.
Investigating what information a human supervisor needs and how much time is
necessary in order to handle situations where the SRC is unable to control the ship
are especially important topics for further research. The control system proposed
in this thesis starts addressing this briefly by focusing on how the control system
can maintain a minimum level of control while the supervisor acquires sufficient
situational awareness to make decisions. By focusing more on the human side of
this process, the full system should improve further. Considering different human
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machine interfaces is also considered relevant when developing autonomous ships,
although this is considered outside the scope of this thesis.

In addition to further developing the proposed control system, model and real
life testing should also be part of future work. Simulations are very useful for prov-
ing that the concept works. However, it is still beneficial to conduct physical tests
with both models and full size ships. These tests can help identify challenges and
situations where the controller needs more development. Ways to do this testing
can be using the proposed control system as a decision support system for con-
ventional manned ships and seeing how often the crew uses the input from the
SRC. Implementing the system on a scale model where the consequences of failure
are smaller, or on a full-scale ship with crew and operators on stand-by, are other
alternatives for testing a risk-based control system as part of future research.
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The main purpose of this paper is to address the feasibility of using the System Theoretic Process Analysis (STPA)
for risk analysis and quantitative risk modeling of autonomous ships. The paper defines a set of requirements and
questions, which are used to assess 35 potential risk analysis methods related to software, security, humans in the
loop, and emerging risks. The assessment identifies seven main methods that can be used to expand the STPA
analysis to enhance it for analyzing risk of autonomous ships, i.e., one method for software, security, and emerging
risks, two for human factors, and two more general methods based on Bayesian Belief Networks (BBNs). The results
show that almost all the applicable methods provide additional information compared to STPA only, but the results
vary much from method to method. It is also a challenge to find a way of combining the results in a quantitative risk
model that can be used to describe and evaluate the risk level for autonomous ships. The seven most relevant methods
can be used as a starting point for further development of a general framework for risk analysis for autonomous ships.
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1. Introduction
The objective in this paper is to assess the fea-
sibility for extending the System Theoretic Pro-
cess Analysis (STPA) for use in risk analysis
and quantitative risk modeling of autonomous
ships. Autonomy is a trend in the marine in-
dustry with projects on both autonomous pas-
senger ferries (Springwise (2018); Marine Link
(2019)) and cargo ships (Springwise (2017); Yara
(2018)) under development. Yara Birkeland is
planned to start with manned operations in 2020
and transition towards fully autonomous oper-
ations over the next years with remote oper-
ation (Yara (2018)). Other projects, such as
the Advanced Autonomous Waterborne Applica-
tions (AAWA) (Jokioinen et al. (2016)) initia-
tive and the Maritime Unmanned Ships through
Intelligence in Network (MUNIN) (Porathe et
al. (2013); Burmeister et al. (2014)) focus on
autonomous ships with a varying degree of auton-
omy where the ship could be manned, remotely
operated, or fully autonomous with only human
supervision. It is expected that the safe opera-
tion of autonomous systems requires quantifica-
tion of risk and risk models to an increasing extent
(IWASS (2019)).

The STPA analysis (Leveson (2011); Leveson
and Thomas (2018)) was developed as a tool for

analyzing hazards in complex, software-intensive,
sociotechnical systems. Risk analysis is con-
stituted by three questions (Kaplan and Garrick
(1981)): what can go wrong, how likely is it, and
what are the consequences. STPA focuses mainly
on the first question. Hence, to cover risk analysis
and development of quantitative risk models, it
is necessary to extend STPA to make it better
for analyzing risk of autonomous ships. STPA is
rooted in the accident model Systems-Theoretic
Accident Model and Processes (STAMP), which
treats safety as a control objective where accidents
are a result of inadequate control or enforcement
of constraints (Leveson (2011)). The main pur-
pose of STPA is to analyze the system to identify
unsafe situations, and to find safety constraints to
keep the system in a safe state.

Previous works on risk analysis of autonomous
ships that have focused on STPA analysis have
generally found it feasible for qualitative analy-
sis (Rokseth et al. (2017); Wróbel, Montewka,
et al. (2018b); Valdez-Banda, O.A. and Kannos,
S. and Goerlandt, F. and van Gelder, P.H.A.J.M.
and Bergström, M. and Kujala, P. (2019); Rokseth
et al. (2019); Wróbel, Montewka, et al. (2018a);
Gil et al. (2019); Wróbel et al. (2019); Wróbel,
Gil, et al. (2018); Montewka et al. (2018)). Utne
et al. (2020) have proposed using the results from
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an STPA analysis into development of quantita-
tive risk models with a Bayesian Belief Network
(BBN). Other specific risk elements related to
autonomous systems, such as software has been
addressed by Thieme et al. (2020a, 2020b), related
to cyber security by Tam and Jones (2018), Bolbot
et al. (2019) and Omitola et al. (2019) and human
failures by Ramos et al. (2018). A challenge
with existing methods is to enable analysis of the
different elements in a combined and systematic
way for risk analysis.

Reliability models, for example, is one way
to model different parts of the system, but relia-
bility does not necessarily mean safety (Leveson
(2011)). Reliability describes the ability of an
item, or system, to perform a required function
under given conditions for a given period of time
(ISO (1986)). Safety is however related to free-
dom from conditions that can cause death, injury,
or illness to humans, or damage or loss of equip-
ment or property (MIL-STD-882D (2000)). Based
on these definitions, a system will be reliable if it
functions as intended, but it can still cause harm to
humans and damage the environment, and there-
fore be unsafe. Especially in complex systems,
each component can have a high reliability and
operate without failure, but the system can be
unsafe due to unknown interactions between the
different components.

It is therefore necessary to develop methods that
can be used to build risk models of autonomous
ships that can give an accurate representation of
the risk level, combining hardware, software and
human factors. This paper is intended as a first
step towards this. The next section describes
the risk analysis methods, and evaluation criteria,
sections three and four present the results and
discusses these, and the last section states the
conclusions and further work.

2. Method
The paper focuses on risk analysis methods with
special focus on humans in the loop, software,
security, uncertainty related to emerging risks,
and methods intended for risk analysis and risk
modeling for autonomous ships based on event
trees, fault trees, and BBNs. Alternative methods
to STPA for hazard identification are not consid-
ered here, with the exception of direct extensions
to STPA analysis concerning software, security,
humans in the loop, or uncertainty and emerging
risks.

For finding potential methods, the Scopus
database, and previous review papers and books
(Thieme et al. (2018); HSE (2009); Kirwan
(1998); Rausand (2011)) as well as the list at
PSASS (2020) of previous work on STPA have
been used.

2.1. Developing assessment criteria
To define a set of suitable criteria for assessing
potential risk analysis methods and tools, the sys-
tems engineering approach (Blanchard and Blyler
(2016)) is used. The first step in this approach
is to identify the need, which in this case is
risk analysis of autonomous ships, as described
in the introduction. The next step is to define
the requirements for the system, or in this case,
a risk analysis method. For analyzing risk re-
lated to autonomous ships, Thieme et al. (2018)
present a list of nine evaluation criteria for risk
models based on the functional requirements to
maritime autonomous surface ship (MASS). In
addition to these requirements, a risk analysis for
autonomous ships should also consider emerging
risks (Wróbel, Montewka, et al. (2018b), Florin
and Mazri (2015)). Based on this, the following
requirements for a risk analysis method for au-
tonomous ships can be derived, as shown in Table
1.

Table 1. Requirements to risk analysis of autonomous
ships, adapted from Thieme et al. (2018)

R1 Including software
R2 Including humans in the loop
R3 Including security aspects, especially cyber security
R4 Including hardware
R5 Including risk from unsafe interaction between

different parts of the system
R6 Including the environment around the

autonomous ship, both nature forces and other vessels
R7 Addressing emerging risks

2.2. Evaluation criteria
From the list of requirements to risk analysis of
autonomous ships (Table 1) and the objective of
the paper, Table 2 is derived:

The first question is directly related to expand-
ing the STPA analysis for risk analysis of au-
tonomous ships. The second question is relevant
since STPA is focused on hazard identification.
Therefore, methods are preferred that can use
these results in the further analysis. The third
is related to assessing how the different methods
can be used to get more and important informa-
tion compared to the STPA analysis. The fourth
question is relevant since part of the background
for the paper is how to combine risk analysis
for both software, hardware, and humanware in
one method or framework and use the results for
building a risk model that combines the different
elements. Question five addresses how easy in-
formation about the method can be found and the
quality of this. Question six relates to dynamic
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Table 2. Assessment questions/criteria to risk analysis of au-
tonomous ships

Q1 Is the method already based on STPA?
Q2 Can the results from an STPA analysis

be used in the further analysis using this method?
Q3 Does the method complement the results

from an STPA analysis with additional
important information?

Q4 Can the results be used to build a quantitative risk model for
autonomous ships, including
software, hardware, and humanware?

Q5 Is it easy to find good literature that describes
the method?

Q6 Is the method designed to be easily updated with
new information?

Q7 Is the method applicable for analyzing risk for
autonomous ships?

Q8 Can the method be modified so it
can be used on autonomous ships?
(Only relevant when the answer is no on question seven)

risk analysis (Khan et al. (2016)) and emerging
risks (Florin and Mazri (2015)). Question seven
is used to assess if the method is developed for or
well suited for analyzing autonomous ships, and
the last question relates to if the method can be
modified to suite autonomous ships.

2.3. Assessment procedure
The identified potential methods are assessed by
the authors using the questions in Table 2. The
scale used is yes, no, or partially. Yes and no
means that the method clearly fulfils that for that
particular question or not, and a partial answer is
somewhere in between. Partially can also mean
that the method can be used, but it is necessary
with modifications to get good results. The as-
sessment of the different methods are based on
the literature describing the methods and review
papers.

3. Results
Table 3 shows the list of methods and the results
from the assessment. The 35 methods are assessed
against the set of questions in Table 2. Where it is
possible, the methods are also classified based on
the main topic and tool used.

Nine of the methods in Table 3 are focusing on
software, five on emerging risks and uncertainty,
seven on humans in the loop, and four on security.
The other methods are risk analysis methods fo-
cusing generally on autonomous systems. Five of
the methods are based on STPA and uses this as
a part of the method, but almost all the methods
can use the results from an STPA as a part of the

analysis. All the assessed methods offer additional
information, compared to the STPA analysis only,
but the type and amount of information varies.
Wood (1997), Kang, Lim, et al. (2009), Kang,
Eom, et al. (2009), Embrey (1986), Williams
(1986, 1988, 2015), Allal et al. (2018), and Holl-
nagel (1998) are based on reliability theory and
provide reliability data for software and humans
that can be combined with reliability data for
hardware components. BBN is another method
that can be used to model the system and combine
data for both hardware, software, and humanware
in one model. The methods based on BBNs are
also easier to update with new information than
the methods based on reliability theory. All, but
one method can be used to analyze autonomous
ships, but many of the methods are designed for
other systems, which means that adaptation is
necessary.

4. Discussion

4.1. General discussion of the results
The results show that it is possible to find methods
that contribute with risk data that is not covered
in an STPA analysis, since the STPA analysis is
mainly focusing on hazard identification part of
the risk analysis. In general, a challenge with a lot
of the methods is the type of results they produce.
Reliability data can be available for different parts
of the system, but i can be a challenge to combine
this in a meaningful way. Having high reliability
for the individual components, for example, does
not mean that the system will be safe.

A risk model for autonomous ships may be
developed in a BBN combining data for different
parts of the system. These can be updated with
new probability tables and nodes for changing
conditions to represent how the risk level is chang-
ing. The challenge using these is how to find the
probability tables and combine different types of
nodes. A node representing human failure can for
example be very different compared to hardware
or software in terms of the conditional probability
tables.

4.2. Discussion of the most promising
methods

Wróbel, Montewka, et al. (2018b) is the only
method addressing emerging risks without ”no”
(cf. Table 3) in any of the categories, with the
exception of dynamic risk analysis and updating
with new information. The method uses STPA to
build a model for analyzing safety for autonomous
ships and also addressing uncertainty in the anal-
ysis. Wróbel, Montewka, et al. (2018b) has the
advantage that it covers both software, hardware,
and humanware as a part of the analysis and con-
siders how these interact.
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Table 3. Assessment of potential risk analysis methods for autonomous ships

Source Main topic/tool Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Abdulkhaleq et al. (2015) So/STPA Y Y P N Y N N P
Wróbel, Montewka, et al. (2018b) ER/STPA Y Y Y P Y N Y N.R

Wood (1997) So/RT N P Y Y Y N N P
Kang, Lim, et al. (2009) So/RT N Y Y Y Y N N P
Kang, Eom, et al. (2009) So/RT N Y Y Y Y N N P

Thieme et al. (2020a, 2020b) So N Y Y Y Y P Y N.R
Ramos et al. (2018) H N P Y P Y P Y N.R
Ramos et al. (2020) H/ESD N Y P Y Y P Y N.R
Omitola et al. (2019) Sec/STPA Y Y Y P Y P P N.R

Embrey (1986) H/RT N P Y Y P N N P
Williams (1986, 1988, 2015) H/RT N P Y Y Y N N P

Hollnagel (1998) H/RT N Y Y Y Y N N Y
Bjerga et al. (2016) ER/STPA Y Y P N Y N N N

Baybutt (2004) Sec N P Y Y Y N N P
Kavallieratos et al. (2019) Sec N N Y Y Y N Y N.R

Dahll and Gran (2000) So/BBN N P Y Y Y N N Y
OWASP (2015) Sec N P Y Y Y N N Y

Zeng and Zio (2018) So N N Y Y Y Y N Y
Guarro et al. (2012) So N P Y Y Y N N P

Flage and Aven (2009) ER N P Y Y Y N N P
Aven (2008) ER N P Y P Y P N P
Gran (2002) So N P Y Y Y P N Y

Martins and Maturana (2010) H/BBN N Y Y Y Y P N Y
Trucco et al. (2008) BBN, FTA N Y P Y Y P P N.R
Wróbel et al. (2016) BBN N Y P Y N N Y N.R

He et al. (2018) ER/BBN, BT N Y P Y Y Y P N.R
Utne et al. (2020) BBN,STPA Y Y Y Y Y Y Y N.R

Thieme and Utne (2017) BBN N Y Y Y Y Y Y N.R
Allal et al. (2018) H/RT N P Y P Y N Y N.R

Codetta-Raiteri and Portinale (2015) BBN N P Y Y Y Y P N.R
Hurdle et al. (2009) FTA N P Y Y Y Y Y N.R
Biteus et al. (2007) FTA N P Y Y Y N N P

Portinale and Codetta-Raiteri (2011) BBN,FTA N P Y P P Y N P
Jensen (2015) ETA,FTA N Y Y Y N N Y N.R
Tvedt (2014) BBN,ETA,FTA N Y Y Y Y N Y N.R

Abbreviations:
Y = Yes, N = No, P = Partially, N.R = Not Relevant, So = Software, Sec = Security, ER = Emerging Risks, H = Humanware,
BBN = Bayesian Belief Networks, FTA = Fault Tree Analysis, ETA = Event Tree Analysis,
RT = Reliability Theory, ESD = Event Sequence Diagram, BT = Bow-tie

Omitola et al. (2019) is the only method ad-
dressing security that is based on the STPA anal-
ysis. The method is structured so it starts with
an STPA analysis for identifying system losses.
The method includes the security aspect in the
analysis by listing eleven possible system threats
and links these to the system losses, potential
unsafe control actions, and maleficent actions to
harm the system. As the method is developed
for use with maritime systems, it should also be
relevant for autonomous ships.

Based on the assessment, Thieme et al. (2020a,
2020b) is the most relevant method for analyz-
ing risk related to software. The method is not

based on STPA, and does not focus specifically on
autonomous ships, but the results from an STPA
analysis can be used as a basis for selecting what
software should be analyzed further. The chal-
lenge with this method is how to use the results
further in a risk model as the method does not ad-
dress quantification of failures more than outlining
potential ways to do this.

Both Ramos et al. (2020) and Martins and
Maturana (2010) are good alternatives for ana-
lyzing humans in relation to autonomous ships.
Ramos et al. (2020) combines Event Sequence
Diagrams (ESDs) and a novel method called Con-
current Task Analysis (CoTA) for analyzing risk
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in complex systems. Human and other types of
failure events are addressed at a system in this
method which means that it is easier to combine
the results. Martins and Maturana (2010) combine
BBNs with human reliability analysis to build a
model for estimating how human errors can lead
to failures in the system.

Utne et al. (2020) uses STPA analysis to de-
velop a risk model represented by a BBN from
STPA results, exemplifying for collision risk of
autonomous ships. The BBN can then be used to
monitor how the risk level changes over time in
an online risk model that can be used further for
decision support. The main challenge with this
method is determining the conditional probability
tables in the BBN.

Thieme and Utne (2017) uses a BBN to assess
the performance of human-autonomy collabora-
tion for autonomous underwater vehicles (AUV).
The BBN is used as a tool in the design phase, and
for decision support in operation of the AUV. The
method is developed for AUVs, but the method is
also applicable for autonomous ships.

5. Conclusion
This paper evaluates how STPA, which is a qual-
itative hazard identification method, can be ex-
panded for use in quantitative risk modeling of
autonomous ships. A set of 35 potential meth-
ods are assessed based on eight questions that
are defined for different relevant aspects of the
methods. The assessment questions are identified
based on a set of requirements deemed necessary
for a risk analysis of autonomous ships. The
assessment found that seven main methods are in
particular relevant for further use in risk analysis
quantitative risk modeling of autonomous ships.
Wróbel, Montewka, et al. (2018b) is the most
relevant for addressing emerging risks and uncer-
tainty, Omitola et al. (2019) for security, Thieme
et al. (2020a, 2020b) for software, and Ramos
et al. (2020) and Martins and Maturana (2010) for
humans in the loop. Utne et al. (2020) and Thieme
and Utne (2017) are more general methods for
analyzing and modeling risk for autonomous ships
that can be used to combine results from the other
methods.

Further work in this field is to adapt the above
mentioned methods as a basis for developing a
framework that can be used to analyze and model
hardware, software, humanware and security risks
related to autonomous ships in a systemic and
integrated manner. This means further reviewing
the identified methods more thoroughly and test
them in a case study to analyze risk of autonomous
ships. How the risk related to the autonomous ship
can be combined into one risk model is a major
challenge that must be addressed further.
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Ãslund. (2007). Safety analysis of autonomous
systems by extended fault tree analysis. Inter-
national journal of adaptive control and signal
processing 21, no. 2-3 (2007): 287–298.

Bjerga, T., T. Aven, and E. Zio. (2016). Uncertainty
treatment in risk analysis of complex systems: The
cases of STAMP and FRAM. Reliability Engi-
neering & System Safety 156 (2016): 203–209.

Blanchard, B.S., and J.E. Blyler. (2016). System Engi-
neering Management. 5th ed. New York, United
States: John Wiley & Sons, Incorporated, 2016.

Bolbot, V., G. Theotokatos, E. Boulougouris, and
D. Vassalos. (2019). Safety related cyber-attacks
identification and assessment for autonomous in-
land ships. In International Seminar on Safety and
Security of Autonomous Vessels (ISSAV). Septem-
ber 2019.

Burmeister, H.-C, W. Bruhn, Å.J. Rødseth, and T.
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Wróbel, K., P. Krata, J. Montewka, and T. Hinz. (2016).
Towards the Development of a Risk Model for
Unmanned Vessels Design and Operations. The
International Journal on Marine Navigation and
Safety of Sea Transportation 10, no. 2 (2016):
267–274.
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A B S T R A C T

The objective of this paper is to develop online risk models that can be updated as conditions change, using
risk as one metric to control an autonomous ship in operation. This paper extends and integrates the System
Theoretic Process Analysis (STPA) and Bayesian Belief Networks (BBN) with control systems for autonomous
ships to enable supervisory risk control. The risk metric is used in a Supervisory Risk Controller (SRC) that
considers both risk and operational costs when making decisions. This enables the control system to make
better and more informed decisions than existing ship control systems. The novel control system is tested in
a case study where the SRC can change: (i) which machinery system is active; (ii) which control mode to
run the ship in; and (iii) which speed reference to follow. The SRC is able to choose the optimum machinery,
control mode, and speed reference to maintain safe control of the ship over a route in changing conditions.

1. Introduction

This paper will demonstrate how risk models can be utilized by
ship control systems (i.e., supervisory risk control) to enable better
situational awareness and decision support for autonomous ships (Utne
et al., 2020b). The development of Maritime Autonomous Surface Ships
(MASS) is an important trend in the maritime industry (Kretschmann
et al., 2015; Wróbel et al., 2017), which requires the development
of more advanced control systems that can function with less hu-
man control. Although many ships in operation today already have
systems for autonomous control, none of them are designed for fully un-
manned operations. Even the most advanced systems, such as the bastø-
ferry crossing the Oslofjord (Kongsberg, 2020) and the Milliampere
small passenger ferry that is intended to cross a part of Nidelven in
Trondheim (Springwise, 2018), still have human operators who make
decisions and supervise the operation.

The control of ships can be divided into three main levels (Lud-
vigsen and Sørensen, 2016): mission planner level, guidance and op-
timization level, and control execution level. The mission objective
is defined and planned in the mission level. The guidance and op-
timization level handles way-points for the navigation system and
optimization of resources. Control execution controls the actuators
(e.g., engines and rudders) and plant, such as Dynamic Positioning (DP)
and auto-pilot (Sørensen, 2005). Supervisory risk control focuses on the
two highest levels of a control system.

Guidance and optimization have two main challenges: planning an
efficient and safe route to follow, and managing resources such that

∗ Correspondence to: Department of Marine Technology, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway.
E-mail address: tjoha@ntnu.no (T. Johansen).

the ship has sufficient power and control but at the same time not
use too much energy and lead to higher costs. Many existing ships
have systems for planning the route, but this is still a task where
human operators are involved by either supervising and controlling,
or planning the whole route. The same is the case with optimization,
where many ships have power management systems but where humans
still supervise and manage these systems. The challenge is similar for
mission planning, namely to plan the mission such that safety and
efficiency are sufficiently accounted for in the decision process. Risk
models can enable the control systems to make better decisions in these
cases by showing how decisions affect the risk level.

Control systems for autonomous ships need many of the same
functionalities as existing ships but they also require some additional
functions to handle higher level decisions. For the ship to maneuver
at both high and low speeds, the ship needs two controllers. This can
be a DP controller for low speed maneuvering and station-keeping,
and a heading and speed controller for higher speeds. Each of these
controllers also needs a thrust allocation system to convert the control
output to thrust set-points for the different thrusters. An example
control system is shown in Fig. 1.

The way-points for the controller to follow are planned by a guid-
ance module. This module must handle both permanent obstacles in the
route, and other ships and moving obstacles. For highly autonomous
ships, the guidance module also needs a way to prioritize, or handle,
multiple obstacles at the same time. For both the controller and guid-
ance module to function, autonomous ships need a system for handling
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Fig. 1. Ship control system.

sensor-input and sorting this information. Many ships with DP have an
observer where position measurements are filtered and processed such
that the ship has an accurate position and can handle faulty measure-
ments without losing the position (Sørensen, 2005). Fully autonomous
ships need at least this capability, as well as systems for handling
cameras and weather sensors. The last main part of the control system is
the power management system (PMS). This system must ensure that the
ship has enough power available for both propulsion and other loads.
Autonomous ships must also have systems for deciding what type of
motion controller to use (e.g., DP or auto-pilot). These systems must
consider both the type of operation (e.g., cargo or passenger transport)
and the specific conditions (e.g., wind, current, and waves) that affect
the ship.

Combining and utilizing risk analysis and modeling with existing
control systems is one possible way to enable better decisions for
autonomous ships and make control systems that can function without
human input. In their paper, Utne et al. (2020b) present a framework
where the System Theoretic Process Analysis (STPA) is used as a basis
for making a Bayesian Belief Network (BBN) risk model. The risk model
can then be used to provide information about the current risk level
while the ship is sailing by updating the model. The model can then
provide information about how different decision options may change
the overall risk. This can be especially useful in the two highest control
levels: mission planning, and guidance and optimization. The mission,
or voyage, can be planned to account for weather information, traffic,
maintenance status, and ship conditions such that the voyage can be
both safe and efficient. While the ship is sailing, the route can be re-
planned and optimized to account for changes in weather, traffic, and
the condition of the ship such that the risk can be kept at an acceptable
level during the whole voyage. The risk model can also be used to
optimize the machinery and control of the ship by including risk when
optimizing power production and selecting control modes.

Previous work related to risk analysis and control of autonomous
ships has focused on these topics separately, and limited emphasis has
been put on not how to use risk models as an integrated part of the
control system. An exception is the framework proposed in Utne et al.
(2020b), which outlines at an overall level how such integration may
occur. One of the challenges faced by the current STPA is that conse-
quences are not considered, which is important information for a risk
model. The current paper extends the STPA, advances the framework
of Utne et al. (2020b), and tests it in a case study.

Johansen and Utne (2020) discuss how STPA can be used for hazard
identification for autonomous ships, and focuses on methods for finding
additional data for building a risk model. Fan et al. (2020) present a
framework for identifying factors that influence navigational risk for
autonomous ships. Chaal et al. (2020) present a framework for how the
control structure of autonomous ships can be modeled for use in STPA.
Valdez Banda et al. (2019b) use STPA for a systemic hazard analysis
of two autonomous ferry concepts and suggest safety controllers to
manage these hazards. Valdez Banda and Goerlandt (2018) use a sim-
ilar approach to the design of a safety management system for Vessel
Traffic Services in Finland that may be relevant for autonomous ships.
Valdez Banda et al. (2019a) present an evaluation framework for a
Systems-Theoretic Accident Model and Processes (STAMP) based safety
management system. However, even though these studies are useful,
none of them use the results further in either risk models or control
systems.

Brito and Griffiths (2016) present a Bayesian approach for predict-
ing the risk of losing AUVs during missions. Brito (2016) proposes a
method for handling uncertainty in AUV missions. Loh et al. (2020)
present a hybrid fuzzy system dynamic risk analysis that can provide
recommendations for risk management in AUV operations. These show
different tools that can be useful for risk control and management, but
they are not combined with a thorough hazard analysis, such as STPA,
nor are they implemented in control systems. A few works have used a
BBN risk model for control of AUVs (Bremnes et al., 2019, 2020), where
the BBN is based on a checklist based Preliminary Hazard Analysis
(PHA), and not STPA. These also consider a different type control where
the objective is to follow and measure the ice surface above the AUV.

Rødseth and Tjora (2015) discuss how to include risk when design-
ing the control system, but without showing how it can be used in the
control system. Risk analysis of autonomous ships have been addressed
in Wróbel et al. (2016) and Shuai et al. (2020), and supervisory risk
control in Utne et al. (2020a), but not explicitly implemented in the
control system as in this paper. Other works have used BBNs for
assessing both autonomous ship operations (Chang et al., 2021) and
traditional manned ships (Yu et al., 2021; Ung, 2021; Vojkovic et al.,
2021) Risk is addressed as a part of collision avoidance for autonomous
ships (Hu et al., 2017; Naeem et al., 2016; Campbell et al., 2012;
Campbell and Naeem, 2012; Wang et al., 2019; Woo and Kim, 2020;
Lyu and Yin, 2019), but without a direct link to risk analysis and
modeling.
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The rest of this paper is structured as follows: Section 2 presents
the method used for supervisory risk control. Section 3 shows how the
method can be used in a case study. Section 4 presents and discusses
the results. Finally, Section 5 concludes the paper.

2. Method

The proposed method for implementing supervisory risk control is
based on three overall stages (Utne et al., 2020b):

(a) Conduct an extended STPA of the ship and its operation, also
including consequences;

(b) Build a BBN risk model based on the extended STPA;
(c) Implement the risk model in a Supervisory Risk Controller (SRC).

2.1. An extended system theoretic process analysis

The first stage is to perform a STPA of the MASS in the operational
context that it is designed for. The general STPA consists of four main
steps (Leveson, 2011):

(a) Define the system
(b) Identify system-level accidents, and system-level hazards
(c) Identify unsafe control actions (UCA)
(d) Develop loss scenarios

An accident can be defined as ‘‘a sudden, unwanted, and unplanned
event or event sequence that has led to harm to people, the en-
vironment, or other tangible assets’’ (Rausand and Haugen, 2020).
Even though the term ‘‘accident’’ is used in the general STPA, the
consequences of the system level hazards and accidents are usually
not explicitly considered or described with this method. For super-
visory risk, control consequences need to be included to support the
decision making of the autonomous control system because potential
consequences of hazardous events (and hence risk) may change during
operation, which may influence the decisions to be made. Therefore,
this paper uses the term ‘‘system level hazardous event’’, instead of
accident. This adds the analysis of consequence as a fifth step, meaning
that the hazardous event and the potential consequences together may
encompass an accident.

The first step of the STPA is to define and describe the system.
This includes modeling the control structure and describing control re-
sponsibilities, feed-back signals, and process variables for the different
controllers. The second step is to define the system-level hazardous
events and system-level hazards. Each system-level hazard has a safety
constraint. The third step is to identify the UCAs that violate the safety
constraints and can lead to hazardous events. The fourth step in the
STPA is to develop loss scenarios. These scenarios describe how the
hazardous events can occur and what can cause these events. The STPA
gives a basis for assessing risk in the supervisory risk controller. Step
five is to develop the risk model, it is also necessary to specify the worst-
case conditions that, in combination with system-level hazards, lead to
the accidents.

2.2. Online risk model

The next phase is to develop the online risk model to be used in the
control system. In this paper, this means providing an output that can
be used directly in a cost function for finding best set of decisions. The
BBN consists of five main type of nodes:

• Consequences
• Hazardous events
• System level hazards
• Unsafe control actions
• Risk influencing factors

The results of the STPA (phase 1) are used to define the nodes and
structure of the BBN. The STPA identifies how risk influencing factors
(RIF) can lead to unsafe control actions (UCA). These can further lead
to system level hazards, hazardous events, and consequences from these
events. The same structure is used to build the BBN. The consequences
are caused by the hazardous events, and a set of environmental condi-
tions or RIFs. Each hazardous event is caused by system level hazards
with certain RIFs, The system level hazards are caused by one or more
UCAs. The UCAs are similarly caused by one or more RIFs. For a more
detailed explanation of mapping STPA results into a BBN, the reader is
referred to Utne et al. (2020b).

The top level nodes and output from the risk model are the conse-
quences. Hazardous events are events that may result in losses (neg-
ative consequences). System level hazards are the system states, or
conditions, that result from UCAs and which can lead to accidents.
The unsafe control actions are control actions that lead to system level
hazards. The last type is RIFs, which are either high-level RIFs or input
RIFs. High-level RIFs are identified directly from the loss scenarios in
the STPA. Input RIFs are causal factors used to characterize high-level
RIFs and how hazards can lead to accidents. The risk model is used
to assess the risk of accidents at each time step, given the current
conditions for the ship in operation.

2.3. Supervisory risk controller

The SRC is the controller that makes the high level decisions based
on the risk level and operational costs. The controller has a set of
possible decisions that can be made about how the ship is configured,
and control objectives and parameters for lower level controllers. The
goal is to find the optimum combination of decisions, 𝑑, that minimizes
a cost function 𝑀 with both risk, 𝑅, and operational costs, 𝐶. The risk
cost is the cost expected from the accidents and consequences from the
BBN risk model. The operational cost is based on the expected fuel
consumption for the remaining sailing time. This gives an estimation
of the energy cost for the planned sailing route that can be compared
to the risk cost from the BBN(1).

𝑀(𝑑) = 𝑅(𝑑) + 𝐶(𝑑) (1)

The risk cost is taken directly from the BBN and will vary between
zero cost and the cost of the worst consequences considered in the BBN.
The operation cost is calculated based on the specific fuel consumption
for the ship and the remaining sailing time. A specific example of the
cost function is shown in Sections 3.2.1 and 3.3, but these can vary
depending on the ship and how it is operated. This make it possible
to adjust the cost function based on the specific ship, operation, and
available information as long as the cost can be represented as a
function of the decisions made by the ship.

The decisions, 𝑑, can include which control mode to operate in, the
machinery configuration in which the ship should operate, references
for lower level controllers, or other decisions that affect the ship.
The controller is implemented as a switch that configures the ship
based on the optimum set of decisions. The switch checks all possible
combinations of decisions to find the best combination. The switching
mechanism is implemented with a lower switching frequency to avoid
chattering in the controller and to increase the efficiency.

Chattering occurs when the controller switches back and forth
between different modes because the system is on the limit between
different modes. A switching frequency that is too low means that the
controller will not react to changes, such as increased traffic, because
the ship passes the traffic before the controller has checked. A switching
frequency that is too high will lead the controller to always change,
such as constantly switching between DP and auto-pilot, because the
conditions are right on the limit between these modes. The frequency
can therefore be changed to make sure that the controller reacts fast
enough without chattering.
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By including consequences and conditions affecting these, the SRC is
not only able to prevent hazardous events, but also reduce the severity
if such events occur. In a situation, for example, when the weather and
area around the ship become so challenging that the ship will most
likely collide/allide, the SRC will reduce the speed of the ship to limit
the consequences.

3. Case study: Autonomous cargo ship

The case study in this paper uses the presented methodology for
an autonomous cargo ship on a voyage between two locations along
the Norwegian coast. The purpose of the ship is to deliver fish food to
a fish farm. The ship follows a preplanned route, and dock next to a
floating fish-farm so that it can unload the cargo. The route consists
of both open and congested waters with islands, ship traffic, and
other obstacles (e.g., fish farms, oil and gas installations, containers,
navigation markers, etc.) that the ship must account for. The case study
assumes good weather conditions, i.e., little wind, current, and good
visibility, but the SRC is designed to also include different weather
conditions. The ship is unmanned with a supervisor on shore that can
monitor and, if necessary, take remote control of the ship. The ship is
80 m long and 16 m wide at its widest point.

The ship has a hybrid power system with a gas powered main
engine, a set of diesel generators, and a hybrid shaft generator (HSG).
The HSG can be used as a generator that is powered by the main
engine to produce electricity or as an engine powered by the diesel
generators for propulsion. The machinery system can be configured in
three different modes:

• Power Take Out (PTO)
• Power Take In (PTI)
• Mechanical (Mech)

In PTO, the main engine is on and the HSG is configured as a
generator such that the main engine provides both propulsion and
electrical power. In PTI, the diesel generators are used with the HSG
configured as an electric engine for propulsion. In Mech, the main
engine provides propulsion power and the diesel generators provide
electrical power. Of these modes, PTO is the most used mode because
the main engine is most economical in normal use. PTI is the least
used mode because the diesel generators provide much less power than
the main engine and the ship is not able to maintain speeds above
5 m∕s. Mech has the most power available because all of the main
engine capacity can be used for propulsion, but it is also the most costly
because it uses both the main engine and diesel generators.

The ship has two operating modes:

• Heading and Speed Auto Pilot (AP)
• Dynamic Positioning (DP)

Heading and speed auto pilot is used for higher speeds and longer
distances. The main propeller provides propulsion and the rudder is
used for steering. DP is used at lower speeds when necessary to better
control the ship. In DP, the main propeller and tunnel thrusters are used
for both propulsion and steering. The SRC is responsible for selecting
the best combination of MSO-mode, SO-mode, and reference speed
based on both internal and external factors. An example of this is
changing MSO-mode when components fail, or lowering the speed and
choosing DP when it is necessary with better motion control.

3.1. Phase 1: The extended STPA

The STPA was performed in a workshop with industry participants
and risk analysts to facilitate the analysis. The goal was to identify
unsafe control actions for an autonomous cargo ship. The main focus
was on the machinery system, and how the switching between different
modes (see above) can lead to grounding or impacts with ships or
obstacles. The workshop had 13 participants and went over three days

in the winter of 2019. The participants have thorough knowledge
and experience with ship control systems, risk analysis, and system
verification. The workshop was conducted as a discussion between the
participants where STPA was used to identify unsafe control actions.

3.1.1. Define the system
The system described in Section 3, is first modeled as a hierarchical

control structure; as shown in Fig. 2. The system consists of three
main control levels; supervisory control, guidance and optimization,
and control execution. The case study focuses mainly on the SRC and
its responsibilities:

(a) Set ship operating (SO) mode for the Autonomous Navigation
System (ANS)

(b) Set reference parameters, such as max speed for the ANS to follow
(c) Set machinery system operating (MSO) mode for the Autonomous

Machinery Management System (AMMS)

The SRC has a set of process variables that are used to make
decisions:

• PV-1: Active MSO-mode
• PV-2: Available power and thrust
• PV-3: Machinery system status
• PV-4: Active SO-mode
• PV-5: Ship navigational states
• PV-6: Weather conditions
• PV-7: Traffic conditions
• PV-8: Route information

3.1.2. Identify hazardous events and system level hazards
The case study focuses on two system-level hazardous events:

• HE1: The ship collides with a ship
• HE2: The ship allides with another object

The corresponding system-level hazard is

• H1: The ship violates the minimum distance of separation to an
obstacle

The relationship between the hazard and hazardous event depend
on factors such as the type and size of obstacle/ship, what control the
obstacle/ship has, and impact speed (DNVGL, 2003).

To structure the analysis more clearly, the hazardous event ‘‘col-
lision’’ is subdivided into two: the first is that the ship collides with
another ship, and the second is allision with other objects. This makes
it easier to define the consequences. For this case study, the main focus
is on the first hazardous event (A1) and first system-level hazard (H1).

3.1.3. Identify unsafe control actions
The STPA workshop identified a total of 60 unsafe control actions

(UCA) for the whole control system. Five of these are chosen for further
use in the case study as shown in Table 1. The number of UCAs used in
the BBN are limited to avoid an unnecessary complex model. The STPA
seek to identify all UCAs that can affect the ship, but many of these
are caused by the same RIFs, such as sensor failures in the navigation
system. A BBN with more nodes will also have a negative effect on the
computation time when updating the model as the ship is sailing, and
affect the time necessary to define the BBN. When choosing how many
and what UCAs to include, the challenge is to have a sufficient number
to get a good enough situational awareness, but limit the time necessary
for both building and using the BBN in the controller.

The first step to limit the number of UCAs is to only consider UCAs
where the SRC is giving a command, since the purpose of the BBN is
to enable the SRC to make decisions. Of the 60 UCAs identified in the
workshop, 15 are commands where the SRC give a command leading
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Fig. 2. Hierarchical control structure.

Table 1
Unsafe control actions.

UCA Description

UCA-1 A command is given to change MSO-mode to PTO when a
fault inhibits the machinery from producing the necessary thrust

UCA-2 A command is given to change MSO-mode to Mech when
the main engine does not function

UCA-3 A command is given to change MSO-mode to PTI,
resulting in insufficient power for the main propulsion

UCA-4 A command is given to change SO-mode to transit when
uncontrolled motion may cause violation
of the minimum safe distance to shore or objects

UCA-5 A command is given to change SO-mode to maneuvering
when the speed is higher than the maximum
maneuvering speed which may result in loss of motion control

the system-level hazard. Of these 15, four changes MSO-mode to PTO,
five to Mech, and two to PTI. All these are caused by a failure in
the machinery system or inaccurate estimation of the power necessary.
Since the same factors affect all the UCAs, it is sufficient for the SRC
to have one UCA for each MSO-mode and still have a good situational
awareness. Two of the UCAs change SO-mode to transit and two change
to DP. Both UCAs that changes to transit are scenarios where the ship
need more accurate motion control. Either of these can therefore be
used in the BBN as they both have the same causes. For changing to
DP, the scenario is either caused by switching with to much speed, or
not enough power available. Since power is already included in the
BBN, wrong speed is more important to include in the BBN.

3.1.4. Develop scenarios
The next step in the STPA is to develop scenarios that can lead to

unsafe control actions. A total of 11 scenarios are developed in this
case study, where all UCAs have two scenarios and UCA-2 has three
potential scenarios. The scenarios are shown and described in Table 2.

3.1.5. Analyze consequences
For the risk model to be useful, it is necessary to find out more about

the consequences related to the accidents. Consequences are identified
and categorized based on information in DNVGL (2003) and Kristiansen
(2005). These also give information about what conditions affect how

serious the different consequences are. The damage to the ship and the
object/ship the ship collides with will (for example) depend on factors
such as impact speed, type of object, and size of object (DNVGL, 2003).

In this case study, the consequences are:

• Harm to humans
• Damage on other ships/objects
• Damage on own ship

The consequences are analyzed and divided into three categories
(IMO, 2018). Severe consequences are fatalities or serious injuries to
humans, damage to the ship where it is necessary with assistance to
get back to shore and receive extensive repairs, or extensive dam-
age to other ships/objects where extensive repairs are also necessary.
Significant consequences are less serious/minor injuries to humans,
and damage to the ship or other ships/objects that need extra repairs
outside of planned maintenance, but it is not necessary with extra
assistance to get back to shore. Minor consequences are insignificant/no
injuries to humans, and damage to the ship or other ships/objects
that can be fixed during the next planned maintenance. The IMO
(2018) manual also include catastrophic consequences, but these are
considered unacceptable, and therefore not relevant for the SRC.

3.2. Phase 2: Online risk model

3.2.1. Define end-nodes and UCA nodes
The goal, or top node, in the BBN is the expected risk calculated

from Eq. (2).
The BBN includes consequences that are divided into severe, signif-

icant, minor, and no consequences. Each of these have a corresponding
cost, and the overall cost (i.e., the quantitative risk) is calculated as
shown in Eq. (2).

The cost of severe consequences is set to 45 000 000𝑁𝑂𝐾, significant
to 4 500 000𝑁𝑂𝐾, minor to 450 000𝑁𝑂𝐾 and no consequences give
zero cost. These are estimated costs for each category of consequences
based on EfficienSea (2012), The Norwegian Agency for Public and
Financial Management (2018), and IMO (2018). The highest cost is lim-
ited to 45 000 000𝑁𝑂𝐾 because costs above this level are unacceptable.
In situations with potential consequences in the highest category, the
SRC should choose the configuration with the lowest possible expected
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Table 2
Scenarios.
Scenario Description UCA

SC-1 MSO changed to PTO because PTI delivers insufficient amount of power, UCA-1
but a failure in the ME or propeller shaft results in loss of propulsion.

SC-2 MSO changed to PTO because this is more efficient given the current UCA-1
operational conditions, but a failure in the ME or propeller shaft results
in loss of power.

SC-3 MSO changed to Mech because PTI is not producing sufficient power, UCA-2
but a failure with the main engine leads to loss of propulsion.

SC-4 MSO-mode is changed to Mech to have higher margin on power in, UCA-2
a more challenging navigational situation, but a failure in the
main engine results in loss of propulsion power

SC-5 MSO changed to Mech because this is more efficient given the UCA-2
current operational conditions, but a failure in the main
engine results in loss of propulsion power.

SC-6 MSO-mode is changed to PTI because inaccurate/incorrect UCA-3
measurements leads to underestimated power-need for propulsion.

SC-7 MSO-mode is changed to PTI because the main engine is UCA-3
shut down by another system, resulting in insufficient power for propulsion.

SC-8 SO-mode is changed to transit to early after leaving harbor UCA-4
due to inaccurate/incorrect measurements of the ship states

SC-9 SO-mode is changed to transit when inaccurate/incorrect information UCA-4
about the navigational area leads to underestimation of the
navigational complexity.

SC-10 SO-mode is changed to maneuvering when the navigational situation UCA-5
makes it necessary to have better control of the vessel, but the speed
is not sufficiently low enough when making the switch.

SC-11 SO-mode is changed to maneuvering as the ship approaches harbor UCA-5
and an inaccurate/incorrect speed measurement results in to
early switching

Table 3
Risk influencing factors.
RIF Description Scenario(s)

RIF-1 Estimation of necessary thrust SC-1, SC-3
RIF-2 Power optimization SC-2, SC-5
RIF-3 Navigational complexity/situation SC-4
RIF-4 Measurement/estimation of ship’s navigational states SC-6, SC-8, SC-11
RIF-5 Engine control system SC-7
RIF-6 Route description/information SC-9
RIF-7 Machinery system status SC-1, SC-2, SC-3, SC-4, SC-5

risk cost, or minimum risk condition. In this case study, this means a
speed of 1 m∕s, PTO as MSO-mode, and DP as SO-mode.

𝑐 = 𝑃𝑟(𝑠𝑒𝑣𝑒𝑟𝑒)𝐶𝑠𝑒𝑣𝑒𝑟𝑒 + 𝑃𝑟(𝑠𝑖𝑔𝑛𝑖𝑓 𝑖𝑐𝑎𝑛𝑡)𝐶𝑠𝑖𝑔𝑛𝑖𝑓 𝑖𝑐𝑎𝑛𝑡

+ 𝑃𝑟(𝑚𝑖𝑛𝑜𝑟)𝐶𝑚𝑖𝑛𝑜𝑟 + 𝑃𝑟(𝑛𝑜)𝐶𝑛𝑜
(2)

The BBN has one node for collision with other ships, and one
for allision with other objects. The system-level hazard is hazard H1
in Section 3.1.2 where the ship violates the minimum distance of
separation to a ship/obstacle.

3.2.2. Identify high-level RIFs
The high-level RIFs are identified based on the scenarios developed

in Section 3.1.4. A total of seven high-level RIFs are identified as in
Table 3.

3.2.3. Identify input RIFs
With the high-level RIFs identified, the next step is to identify the

input and intermediate nodes. These are causal factors that describe
the high-level RIFs, how the hazard lead to unwanted consequences, or
decisions nodes for the different decisions available in the SRC.

The causal factors are identified by going through the high-level
RIFs and assessing what may affect these, or how the system-level
hazard can lead to different consequences. For example, the machinery
system status is dependent on the propulsion system and the power
system. The propulsion system in turn depends on the different propul-
sion components. The consequences will (for example) depend on the
impact speed, whether the impact is with another ship or another

object, and the amount of humans on the other ship/objects that might
be harmed in the impact.

By organizing the BBN in this way, the amount of parent nodes can
be limited. This also makes it easier to define states and conditional
probability tables (CPT) because these depend on the number of parent
nodes and states in the parent nodes.

The system has three decision nodes: MSO-mode switch choosing
which MSO-mode to run the machinery in, SO-mode switch to select
the active controller, and speed reference to set the reference used
in the controller. The input nodes in the BBN can be divided into
three categories; Machinery system (M), Environment (E), and Control
system/planning (C). The category of each node is shown in Table 4.
Weather affects the model in two different ways; ship motions and
visual conditions. Ship motions are affected by wind and currents.
Wind can be everything from zero wind to hurricane. Current can also
vary between zero current and very strong currents where the ship is
unable to maintain control. The visual conditions is affected by wind,
rain, fog, and snow. High wind combined with snow or rain, or fog
give poor visibility that can affect sensors aboard the ship. The area
around the ship is described by the node navigational area complexity.
This node is affected by ship density, obstacle density, and what type
of area the ship is sailing in. Another node that should be explained
further is the reliability of own ship’s navigational states. This node
represents the quality and accuracy of sensor measurements for the
ship, which can be affected by faulty sensors, incorrect setup or tuning,
or disturbances. A full list of nodes are shown in Table 4. A similar list
with the connections for each node are given in Tables 6–8. The full
BBN is shown in Fig. 3.
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Table 4
BBN Nodes.
Node description Type States

Cost Output Cost
Consequences Top-level consequences Severe/Significant/Minor/None
Damage to others property Sub-level consequences Severe/Significant/Minor/None
Damage to own ship Sub-level consequences Severe/Significant/Minor/None
Harm to humans Sub-level consequences Severe/Significant/Minor/None
HE1-The ship collides with a ship System-level hazardous event Yes/No
HE2-The ship allides with another object System-level hazardous event Yes/No
H1-The ship violates the minimum distance of separation to an
obstacle

System-level hazard Yes/No

UCA1-A command is given to change MSO-mode to PTO when a
fault inhibits the machinery from producing the necessary thrust

UCA Yes/No

UCA2-A command is given to change MSO-mode to Mech when the
main engine does not function

UCA Yes/No

UCA3-A command is given to change MSO mode to PTI, resulting
in insufficient power for the main propulsion

UCA Yes/No

UCA4-A command is given to change SO-mode to transit when
uncontrolled motion may cause violation of the minimum safe
distance to shore or objects

UCA Yes/No

UCA5-A command is given to change SO-mode to maneuvering
when the speed is higher than the maximum maneuvering speed
which may result in loss of motion control

UCA Yes/No

RIF1-Estimation of necessary thrust RIF Incorrect/Imprecise/Correct
RIF2-Power optimization RIF Poor/Sufficient/Good
RIF3-Navigational complexity/situation RIF High/Medium/Low
RIF4-Measurement/estimation of ship’s navigational states RIF Incorrect/Imprecise/Correct
RIF5-Engine control system RIF Poor/Sufficient/Good
RIF6-Route description/information RIF Poor/Sufficient/Good
RIF7-Machinery system status RIF Failed/Ok
Propulsion system state Intermediate Failed/Ok
Power system state Intermediate Failed/Ok
Weather conditions Intermediate Poor/Sufficient/Good
Visual conditions Intermediate Poor/Sufficient/Good
DP propulsion Intermediate Failed/Ok
Auto-pilot propulsion Intermediate Failed/Ok
PTO Intermediate Failed/Ok
Mech Intermediate Failed/Ok
PTI Intermediate Failed/Ok
Control of ship Intermediate Poor/Sufficient/Good
Controller performance Intermediate Poor/Sufficient/Good
Ship speed Intermediate High/Medium/Low
Navigation area complexity Intermediate High/Medium/Low
Controllable speed Intermediate No/Yes
Impact speed Intermediate High/Medium/Low
Category of obstacle Intermediate Ship/Other
MSO-mode switch Decision PTO/Mech/PTI
SO-mode switch Decision Auto-pilot/DP
Speed reference Decision 1–8 m/s
Power management system function Input(C) Poor/Sufficient/Good
Obstacle density Input(E) Low/medium/High
Traffic density Input(E) Low/medium/High
Ship safety system function Input(C) Poor/Sufficient/Good
Reliability of own ship’s navigational states Input(C) Poor/Sufficient/Good
Route information Input(C) Poor/Sufficient/Good
Bow thruster state Input(M) Failed/Ok
Aft thruster state Input(M) Failed/Ok
Main propeller state Input(M) Failed/Ok
Steering system state Input(M) Failed/Ok
ME state Input(M) Failed/Ok
Genset 1 state Input(M) Failed/Ok
Genset 2 state Input(M) Failed/Ok
HSG state Input(M) Failed/Ok
Current velocity Input(E) High/Medium/Low
Auto-pilot performance Input(C) Poor/Sufficient/Good
DP-controller performance Input(C) Poor/Sufficient/Good
Wind speed Input(E) High/Medium/Low
Fog Input(E) High/Medium/Low
Rainfall Input(E) High/Medium/Low
Snowfall Input(E) High/Medium/Low
Area type Input(E) Harbor/Coastal/Open
Speed of ship/obstacle Input(E) High/Medium/Low
Control of ship/obstacle Input(E) Low/Medium/High
Type of ship/obstacle Input(E) Ship/Fish farm/

Oil installation/Wind-farm/
Markers/Containers/Other

Crew and passengers Input(E) Many/Normal/Limited/No
Size of ship/obstacle Input(E) Big/Medium/Small
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Fig. 3. Online risk model.

3.2.4. Identify states and build CPTs
The next part of building the BBN is defining states and building

the CPTs for each node. States are defined such that each node provide
sufficient information to the BBN, while keeping the number of states
reasonably low. Limiting the number of states in each node makes
it easier to define the CPTs because they depend on the number
of parent nodes and number of states for each of these. CPTs are
constructed based on available information about the ship and the

environment (DNVGL, 2003; SINTEF, NTNU, 2015; Marine Traffic,
2021; Norwegian Meteorological Institute, 2021; Norwegian Mapping
Authority, 2021).

The data from SINTEF, NTNU (2015) is used directly to describe
the likelihood of component failures in the machinery system. The
information in DNVGL (2003) is used differently based on what node
it is used for. To describe the machinery components, it is used to
check that the data from SINTEF, NTNU (2015) can also be used for
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Table 5
Input probabilities for simulations.
Node Situation States Probabilities Source

ME state All systems Failed/ok 9e−07/ DNVGL (2003), SINTEF, NTNU (2015)
functioning 0.9999991

ME state Main engine Failed/ok 1.0/0.0 DNVGL (2003), SINTEF, NTNU (2015)
fails after 200 sec

ME state HSG failed Failed/ok 9e−07/ DNVGL (2003), SINTEF, NTNU (2015)
fails after 200 s 0.9999991

HSG state All systems Failed/ok 9e−07/ DNVGL (2003), SINTEF, NTNU (2015)
functioning 0.9999991

HSG state Main engine Failed/ok 9e−07/ DNVGL (2003), SINTEF, NTNU (2015)
fails after 200 s 0.9999991

HSG state HSG Failed/ok 1.0/0.0 DNVGL (2003), SINTEF, NTNU (2015)
fails after 200 s

Area type Before way- Harbor/ 0.0/0.5/0.5 DNVGL (2003)
point four Coastal/Open Norwegian Mapping Authority (2021)

Area type After way- Harbor/ 1.0/0.0/0.0 DNVGL (2003)
point four Coastal/Open Norwegian Mapping Authority (2021)

Obstacle density Before way-point High/Medium/ 0.1/0.5/0.4 DNVGL (2003)
two and after Low Norwegian Mapping Authority (2021)
way-point three Marine Traffic (2021)

Obstacle density Way-points High/Medium/ 1.0/0.0/0.0 DNVGL (2003)
two - three Low Norwegian Mapping Authority (2021)

Marine Traffic (2021)
Traffic density Before way-point High/Medium/ 0.1/0.5/0.4 DNVGL (2003)

two and after Low Norwegian Mapping Authority (2021)
way-point three Marine Traffic (2021)

Traffic density Way-points High/Medium/ 1.0/0.0/0.0 DNVGL (2003)
two - three Low Norwegian Mapping Authority (2021)

Marine Traffic (2021)
Speed of obstacle Before way-point High/Medium/ 0.2/0.7/0.1 DNVGL (2003)

two and after Low Norwegian Mapping Authority (2021)
way-point three Marine Traffic (2021)

Speed of obstacle Way-points High/Medium/ 1.0/0.0/0.0 DNVGL (2003)
two - three Low Norwegian Mapping Authority (2021)

Marine Traffic (2021)
Crew and Before way-point Many/Normal/ 0.0/0.1/0.3/0.6 DNVGL (2003)
passengers two and after Limited/None Norwegian Mapping Authority (2021)

way-point three Marine Traffic (2021)
Crew and Way-points Many/Normal/ 1.0/0.0/0.0/0.0 DNVGL (2003)
passengers two - three Limited/None Norwegian Mapping Authority (2021)

Marine Traffic (2021)

components that are not directly listed. For the node describing the
control system and sensors, the data is processed such that they have
three states instead of two. Some of the data has also been used as a
basis for deciding how CPTs differ between a manned and autonomous
ship, such as the control system and sensors. Since the human operator
is not present on the ship, the CPTs describing controllers and sensors
are changed slightly compared to ships with full crew. Marine Traffic
(2021) and Norwegian Mapping Authority (2021) are used to find out
how much traffic and obstacles are typical for coastal sailing along the
Norwegian coast, both open waters, more coastal areas with islands
and more traffic, and highly congested waters with very limited space
and much traffic. Marine Traffic (2021) is also used to find how many
ships sailing along the coast have passengers and estimate the size of
these ships. Norwegian Meteorological Institute (2021) is used to find
historical data about weather conditions along the Norwegian coast.

In addition to literature and available data, expert judgment is also
used to both build the BBN, assign states, and build CPTs. The experts
are deck and technical officers on board ships, and engineers designing
ship control systems. The discussions with deck and technical officers
have focused on how ships are operated today and how this can change
with increased autonomy, such as what SO and MSO-modes should be
used in different situations. The control engineers have given input on
design and setup of the control system, and how to change this from a
manned to more autonomous ship.

3.2.5. Converting the BBN into an online risk model
The BBN is converted to an online risk model for use in the SRC,

including both probabilities for the nodes’ states and the potential
consequences. Developing the online risk model includes identifying

what nodes that should be updated with data from the ship as it is
sailing such that the BBN represent the actual situation.

The risk model in this paper has been tested in simulations to check
that the SRC functions and is able to control the ship. The simulated
scenario is that the ship is sailing and has five way-points left on a pre-
planned route. At first, the conditions around the ship describe a normal
situation for ships sailing along the Norwegian coast, based on data
from DNVGL (2003), SINTEF, NTNU (2015), Marine Traffic (2021),
Norwegian Meteorological Institute (2021) and Norwegian Mapping
Authority (2021). Between way-points two and three, the traffic and
obstacle density is increased to see if the control can handle situations
with more ships and more obstacles around the ship, more similar to
high traffic areas such as the English channel. More ships and objects
around also increases the amount of people, both crew and passengers,
that might be harmed in accidents. After way-point three, the ship is
again back in normal conditions, before it reaches the area where it
should dock next to the fish farm.

Other input probabilities and CPTs are based on the same sources
(DNVGL, 2003; SINTEF, NTNU, 2015; Marine Traffic, 2021; Norwegian
Meteorological Institute, 2021; Norwegian Mapping Authority, 2021),
combined with expert judgment, such that the BBN represent the actual
type of ship and conditions this sail in.

3.3. Phase 3: The supervisory risk controller

The SRC optimizes the decisions, 𝑑, based on the risk cost from the
risk model, 𝑅(𝑑), and the expected cost of running the machinery in
the current configuration, 𝐶(𝑑), for the remaining distance to the last
way-point. The risk cost is taken directly from the risk model based on
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Fig. 4. All systems functioning.

Eq. (2). The machinery cost is calculated based on the expected cost of
running the machinery in each configuration for the remaining sailing
time (Eq. (3)). This cost will therefore decrease as the ship gets closer
to the final way-point because it is a function of the remaining sailing
time.

The cost of fuel consumption is calculated using the price per
kWh for LNG and marine gas oil (DNV, 2021). The load is taken as
the expected mean load percentage times the available power for the
remaining sailing time. This gives a good estimation of the fuel cost that
can be compared to the risk cost from the BBN with the information
available.

𝐶(𝑑) = 𝑐𝑓𝑢𝑒𝑙 × (𝑡𝑐𝑟𝑢𝑖𝑠𝑒 × 𝑃 × 𝜂𝑐𝑟𝑢𝑖𝑠𝑒 + 𝑡𝑑𝑜𝑐𝑘 × 𝑃 × 𝜂𝑑𝑜𝑐𝑘) (3)

𝑀(𝑑) = 𝑅(𝑑) + 𝐶(𝑑) (4)

The SRC is implemented such that the optimum set of decisions is
checked every 10 s to limit the number of times that the risk model has
to be checked. It also avoids chattering, where the SRC is just switching
back and forth.

4. Results and discussion

4.1. Results

The SRC is tested in three different simulations to test how the
risk model affects the control of an autonomous ship. The case study
shows the last part of a route, approximately 27 km over five way-
points. Around 2 km, between way-points two and three, there are more
traffic and islands. This makes it necessary to lower the speed of the
vessel to maintain sufficient control. The input values that change in
the simulations are shown in Table 5.

All of the simulations show that the SRC reacts when it becomes
more difficult to navigate safely with an increased amount of ships
and obstacles around. The speed is then lowered to maintain sufficient
control of the ship (Figs. 4(d), 5(d), and 6(d)). The simulations also
show that the ship, with the current setup, is more risk averse than
similar manned ships because the speed in the normal conditions is
lower than a typical cruising speed of 8 m/s. This also mean that the
ship uses more time before it reaches the goal.
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Fig. 5. Main engine failed.

Fig. 4 show the simulation with all machinery systems functioning.
The ship then operates in PTO because this is the most efficient mode
for the ship. The ship uses 105 min from the start point before it has
stopped at the final way-point. The ship lowers the speed to 5 m∕s
after around 10 min, and lowers it further down to 4 m∕s after around
40 min. The speed is reduced when the distance to the final way-point is
low enough that the reduction in risk cost is lower than the increase in
fuel cost. When it reaches the area with more traffic and obstacles, the
speed is not immediately reduced because the speed is already at 4 m∕s.
As the ship gets closer to the final way-point, the speed is reduced
further to 2 m∕s, and then increased to 4 m∕s again when the traffic and
obstacle density is reduced. When the speed is reduced to 2 m∕s, the
SO-mode is changed to DP (Fig. 4(b)) because the speed is then so low
that it is difficult to control the ship with only the main propeller and
rudder. When it increases back to 4 m∕s, it switches back to auto-pilot
because the tunnel thrusters have less effect at higher speeds.

Fig. 5 shows a simulation where the main engine fails after 200 s
The ship then goes over in PTI because this is the only available

MSO-mode (Fig. 5(a)). This also reduces the maximum speed to 5 m∕s
because PTI is unable to produce sufficient propulsion power for higher
speeds. This increases the total sailing time slightly to 107 min. The
rest of the simulation is similar to the simulation with PTO. The speed
is lowered when the traffic and obstacle density increases. When the
speed is lowered to 2 m∕s, it switches to DP.

Fig. 6 show a simulation where the HSG fails after 200 s, which
means that the ship must switch MSO-mode to Mech to have power
(Fig. 6(a)). The rest of the simulation is the same as when the ship
operates in PTO (Fig. 4).

4.2. Discussion

4.2.1. STPA and the online risk model
One of the most important parts for an SRC is information about

how the control decisions affect the risk level for the ship. To find this
information, STPA is useful to identify hazards and system losses, with
a focus on how control actions can lead to these and what causal factors
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Fig. 6. HSG failed.

affect this. But STPA only gives qualitative information, which is very
difficult to use directly in a controller. Furthermore, consequences are
not explicitly identified and analyzed in the general STPA. Hence, this
was a necessary extension and additional step of the STPA method,
and the controller implemented in this paper addresses this problem
by including consequences from the losses and an expected cost from
these (see Section 3.2.1). Consequences are divided into four categories;
high, medium, low, and no consequences. Deciding what cost to give
to each category of consequences is one of the biggest challenges and
it has a considerable affect on the overall performance. These numbers
are therefore based on both literature, previous work, expert judgment,
and trial and testing with the BBN to get the desired behavior.

The STPA results are further used as the basis for the development
of the BBN risk model. As shown in this paper, this give an online
risk model that can be used in the control system where the risk
cost can be combined with operation costs. STPA provides qualitative
information about causal factors that lead to UCAs and hazards, but no
quantitative information. The STPA also provides limited information

about the consequences and their cost. In the case study, both CPTs
and information about costs are based on a limited amount of reports
and the external sources describing them. This makes it difficult to find
sufficient information to build the BBN with sufficient detail. A more
structured way to find this could make this process easier and give a
more accurate risk model.

The BBN risk model is useful to get a good overview over the
situation and the risk level for the ship. With good available software
tools, BBNs can also be combined with other computer-based control
systems. This makes it easy to update the BBN as a new input become
available. It also makes it easy to use the output directly in an SRC. The
main challenge with using BBNs for this application is constructing the
BBN, especially deciding states for each node and building up CPTs. The
STPA provides information about how different nodes are connected,
but provides very little information for defining states and CPTs. Based
on the case study in this paper, both states and CPTs must weigh
accuracy against the purpose of the risk model. The amount of states
will also directly influence the size of the CPTs, and can also affect the
time necessary to evaluate the BBN.
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Fig. 7. Sensitivity analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Some states can be found directly from the use an type of node,
such as decisions, sensor measurements, or limitations for both the
control system and the ship. For other nodes, it might be information
available. However, some states will most likely be changed as the
system is tested because they influence the risk slightly different than
initially expected. It can also be necessary to change states later because
they make other nodes too complex to define. CPTs should be defined
such that top level node gives an accurate picture of the risk, and
changes when conditions or decisions change. To do this, both expert
judgment, previous analysis, and specifications for the control system
can be used. In the case study, the initial values are set based on a mix
of literature and expert judgment, and are then tuned slightly to get the
desired output and behavior. Because there is no complete literature
on how to make the BBN and define different nodes, it is necessary to
make some changes in CPTs based on the testing. By doing this in an
iterative process, the ship behaves as expected and as intended but it
also increases the overall uncertainty in the model.

4.3. Sensitivity and uncertainty

The BBN is assessed by performing a sensitivity analysis (Fig. 7).
Given that the BBN is based on both literature, expert judgment, and
testing, this provides useful information about the effect that each node
has on the cost. The base cost is operating the ship in PTO with auto
pilot and a reference speed of 8 m∕s. This gives a base cost of 178 712
NOK with the same initial values for all nodes as in the simulations.
The BBN is then checked to find out how much the cost depend on
each node. The three first bars (Green bars) in Fig. 7 show how the
cost depend on the machinery and propulsion state, whether the speed
is controllable, and the controller’s performance. These show how the
cost changes if the decisions, MSO-mode, SO-mode, and reference speed
are wrong. A wrong decision would mean a failed MSO-mode, or
a combination of speed and SO-mode where the ship is difficult to

control. The machinery status is the most sensitive of these, followed
by the speed and the SO-mode. The next bars (Blue bars) show the
sensitivity of the input nodes that affect the high-level RIFs. The three
most sensitive of these are the reliability of the navigational states, the
power management system, and the type of area the ship is sailing
in. The four last bars (Red bars) show how the input nodes to the
consequences affect the final cost.

The sensitivity analysis show that the sensitivity differs significantly
between the different nodes. Some nodes have very little effect on
the overall cost, such as rain or current velocity, and others, such as
the navigational states and power management system affect the cost
much more. The most sensitive nodes are important when assessing
the uncertainty in the model as they have higher effect on the end
result. Most of the nodes with high sensitivity relate to the reliability
of hardware components or the control system. The data used to define
these is based on multiple literature sources, which limits the uncer-
tainty from these nodes. But, these should still be addressed further to
reduce the overall uncertainty in the model. The base cost is taken in
good conditions with good control of the ship. Changing the state of
the nodes to the most positive value will therefore have little effect
on reducing the cost, except for lower speed and the fewer obstacles
around the ship.

4.3.1. The supervisory risk controller in the case study
The purpose of implementing an SRC is to make safer and more

efficient control of autonomous systems. By including an online risk
model in the control system, the control system should be able to make
more informed decisions compared to existing control systems. In the
case study, the SRC is tested with three different decisions: selecting
SO-mode, MSO-mode, and setting the reference speed for the ship. The
case study shows how the SRC enables the control system to select
the best combination of these three, considering both operational costs
and risk. Other than the SRC, the control system tested is the same
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type as many ships use today. A DP controller for station-keeping and
low speed maneuvering, and a heading and speed auto pilot for use at
higher speeds. However, the operators decide MSO-modes, SO-modes,
and speed references on existing ships.

This extra functionality comes with both advantages and some
challenges compared to existing systems. One of the main advantages
is the higher flexibility and functionality in the control system. To get
the same type of behavior from existing ships, without human input
when sailing, the same decisions must planned ahead of time. Some
might be possible to plan ahead, such as switching from auto pilot to DP
when the ship is a certain distance from the dock, but this is much less
flexible and efficient. If the conditions change before the ship reaches
this point, then it might be possible to have a higher speed for longer
or it might be necessary to lower the speed and change to DP earlier to
ensure sufficient control. Failing to do this would either mean a higher
cost in the operation of the ship or increased risk for both the ship
owners, environment, the public, and others who might be affected if
the ship has an accident. An alternative could be to define rules for
how the decisions should be made that also account for changes in the
environment. A rule could (for example) say that wind speeds lower
than a certain limit make it safe to keep a higher speed longer. But with
ships, this would be very complex. In the case study, the BBN contains
27 input nodes that describe either the ship or the environment and
situation around the ship. Some rules could be very simple binary rules,
such as not leaving dock if the wind is at hurricane force, but most rules
would depend on multiple conditions. Even if a rule might not depend
on all 27, this would be almost impossible to do based on the number
of possible combinations. Uncertainty will also be a problem where it
is very difficult to say how rules should depend on different conditions.
The SRC still has a certain degree of uncertainty, but the cost is now
less dependent on one specific condition but rather a combination of
multiple nodes in the BBN. This makes it less likely for the SRC to make
critical mistakes compared to specific rules for each condition.

The case study indicates how the SRC behaves when the information
is updated as conditions changes. For the SRC to be tested with con-
stantly updated input, it is necessary with more detailed datasets and
extend the control system. A potential approach for doing this could be
logging data on existing ships on specific routes. By logging detailed
weather data, machinery data, position, speed, and what decisions
the crew make, the SRC could be tested through simulation and field
trials with autonomous platforms in the same conditions. Comparing
decisions made by the SRC and crew can then be used to assess how the
SRC performs. Another approach is to test if the SRC is able to satisfy a
set of constraints for safe and efficient operation in on the same routes
and conditions, such as minimum distance to land and max time from
start to finish. Assessing the SRC against both human operators and
more formal constraints can be used to verify the model and controller.
For the BBN model itself, it can also be compared to other models in
the literature and be discussed further with experts to verify that it give
an good representation of the actual system.

5. Conclusion

The main purpose of this paper is to demonstrate how online
risk models and ship control systems can be integrated for improved
intelligence and decision support for autonomous ships. This is shown
by implementing a supervisory risk controller (SRC), and combining
this with existing ship control systems. The SRC is based on an online
risk model, combined with operational costs. This enables us to make
decisions that consider both risk and operational costs.

The online risk model is based on qualitative information from an
extended STPA, including an additional step consisting of identifying
and analyzing consequences. This is necessary to enable the SRC to
make decisions. The online risk model is represented by a BBN, which
is developed based on the results of the extended STPA.

Table 6
BBN nodes.

Node description Parent node(s)

Cost Consequences
Consequences Harm to humans,

Damage on other ships/objects,
Damage on own ship

Damage on other ships/objects HE1, HE2,
Impact speed,
Type of ship/obstacle,
Size of ship/obstacle

Damage on own ship HE1, HE2,
Impact speed,
Type of ship/obstacle,
Size of ship/obstacle

Harm to humans HE1, HE2,
Crew and passengers

HE1 H1
HE2 H1
H1 UCA-1,UCA-2,UCA-3,UCA-4,

UCA-5
UCA-1 RIF-1,RIF-2,RIF-7
UCA-2 RIF-1,RIF-2,RIF-3,RIF-7
UCA-3 RIF-4,RIF-5
UCA-4 RIF-3,RIF-4,RIF-6
UCA-5 RIF-3,RIF-4
RIF-1 Power management system,

Controller performance,
Weather conditions

RIF-2 Power management system,
Controller performance,
Weather conditions

RIF-3 Navigation area complexity,
Weather conditions,
Control of ship

RIF-4 Reliability of own ship s navigational states,
Visual conditions

RIF-5 Power management system,
Ship safety system

RIF-6 Route information
RIF-7 Propulsion system state,

Power system state

The SRC is tested in a case study of an autonomous cargo ship,
where the purpose is to select the best MSO-mode, SO-mode, and
reference speed based on both risk and operational costs. The ship
follows a planned route, where the traffic conditions and area around
the ship changes along the route. The case study shows that the SRC
adjusts the speed with more traffic and obstacles around the ship,
even though this reduces the efficiency. When the situation changes
again and the risk is reduced, the speed is increased again. As the ship
approaches the final way-point where it should dock, the SRC changes
SO-mode to DP such that the ship has better control with lower speed.

The case study also shows that the SRC is able to handle failures
in the machinery system and then select the most efficient MSO-mode
without using a failed component. The SRC is able to make these
decisions while the ship is sailing, without the need for adjusting the
controller or human input to the system. This increases the function-
ality of the control system and reduces the need for human control.
For autonomous ships to operate, this capability of assessing risk versus
cost and comparing these in a good way is necessary for both safe and
efficient operation.

Further work on this type of controller should consider how it
can be integrated with different types of controllers. For SRC to be a
useful tool for different types of ship, and other autonomous systems,
it is important to know that it works with different types of control
systems. The risk model itself should also be investigated further, to
check how detailed this must be for the system to still function to
see if this can make it both more efficient and easier to implement.
The risk model may also be expanded with more real-time data such
that more nodes change (e.g., machinery components and controller
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Table 7
cont.BBN nodes.
Node description Parent node(s)

Propulsion system state SO-mode switch,
DP propulsion,
Auto pilot propulsion,
MSO-mode

Power system state SO-mode switch, MSO-mode,
PTO, Mech, PTI

Weather conditions Current velocity, Wind speed
Visual conditions Wind speed, Fog,

Snowfall, Rainfall
DP propulsion state Main propeller, Aft thruster, Bow thruster
Auto-pilot propulsion state Main propeller, Steering system
PTO ME, HSG
Mech ME, Genset1, Genset2
PTI HSG, Genset1, Genset2
Control of own ship Controllable speed,

Controller performance, RIF7
Controller performance SO-mode switch,

Auto pilot performance,
DP controller performance

Ship speed Speed reference,
Controller performance

Navigation area complexity Traffic density,
Obstacle density, Area type

Controllable speed SO-mode switch, Ship speed,
Area type

Impact speed Ship speed, Speed of obstacle
Category of obstacle Type of obstacle
MSO-mode switch Decision
SO-mode switch Decision
Speed reference Decision
Power management system function None
Obstacle density None
Traffic density None
Ship safety system function None
Reliability of own ship’s navigational states None
Route information None
Bow thruster state None
Aft thruster state None
Main propeller state None
Steering system state None
ME state None
Genset 1 state None
Genset 2 state None
HSG state None
Current velocity None
Auto-pilot performance None
DP-controller performance None
Wind speed None
Fog None
Rainfall None
Snowfall None
Area type None

performance). Further work should also address the uncertainty by
testing for a wider variation of input parameters to assess how the
behavior changes in a wider range of situations.

CRediT authorship contribution statement

Thomas Johansen: Conceptualization, Methodology, Software, In-
vestigation, Data curation, Writing – original draft, Visualization. In-
grid Bouwer Utne: Conceptualization, Writing – review & editing,
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Table 8
cont.BBN nodes.
Node description Parent node(s)

Speed of ship/obstacle None
Control of ship/obstacle None
Type of ship/obstacle None
Crew and passengers None
Size of ship/obstacle None
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Appendix. BBN connections

Tables with an overview of child/parent nodes for the BBN. (See
Tables 6–8).

References

Bremnes, J.E., Norgren, P., Sørensen, A.J., Thieme, C.A., Utne, I.B., 2019. Intelligent
risk-based under-ice altitude control for autonomous underwater vehicles. In:
OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019.

Bremnes, J.E., Thieme, C.A., Sørensen, A.J., Utne, I.B., Norgren, P., 2020. A Bayesian
approach to supervisory risk control of auvs applied to under-ice operations. Mar.
Technol. Soc. J. 54, 16–39.

Brito, M., 2016. Uncertainty management during hybrid autonomous underwater
vehicle missions. In: Autonomous Underwater Vehicles 2016, AUV 2016, pp.
278–285.

Brito, M., Griffiths, G., 2016. A Bayesian approach for predicting risk of autonomous
underwater vehicle loss during their missions. Reliab. Eng. Syst. Saf. 146, 55–67.

Campbell, S., Naeem, W., 2012. A rule-based heuristic method for COLREGS-compliant
collision avoidance for an unmanned surface vehicle. IFAC Proc. Vol. 45, 386–391.

Campbell, S., Naeem, W., Irwin, G.W., 2012. A review on improving the autonomy
of unmanned surface vehicles through intelligent collision avoidance manoeuvres.
Annu. Rev. Control 36, 267–283.

Chaal, M., Banda, O.A.V., Glomsrud, J.A., Basnet, S., Hirdaris, S., Kujala, P., 2020.
A framework to model the STPA hierarchical control structure of an autonomous
ship. Saf. Sci. 132.

Chang, C.H., Kontovas, C., Yu, Q., Yang, Z., 2021. Risk assessment of the operations
of maritime autonomous surface ships. Reliab. Eng. Syst. Saf. 207.

DNV, 2021. Current price development oil and gas. URL: https://www.dnv.com/
maritime/insights/topics/lng-as-marine-fuel/current-price-development-oil-and-
gas.html.

DNVGL, 2003. DNV Report No 2003-0277 Annex II FSA 2003. Technical Report, DNVGL
group technology & research, URL: http://research.dnv.com/skj/FSALPS/ANNEXII.
pdf.

EfficienSea, 2012. Methods to Quantify Maritime Accidents for Risk-Based De-
cision Making. Technical Report, EfficienSea, URL: http://efficiensea.org/files/
mainoutputs/wp6/d_wp6_4_1.pdf.

Fan, C., Wróbel, K., Montewka, J., Gil, M., Wan, C., Zhang, D., 2020. A framework
to identify factors influencing navigational risk for maritime autonomous surface
ships. Ocean Eng. 202.

Hu, L., Naeem, W., Rajabally, E., Watson, G., Mills, T., Bhuiyan, Z., Salter, I., 2017.
COlregs-compliant path planning for autonomous surface vehicles: A multiobjective
optimization approach. IFAC-PapersOnLine 50, 13662–13667.

IMO, 2018. Revised Guidelines for Formal Safety Assessment (FSA) for
Use in the IMO Rule-Making Process. Technical Report, IMO, URL:
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/MSC-
MEPC%202-Circ%2012-Rev%202.pdf.

Johansen, T., Utne, I.B., 2020. Risk analysis of autonomous ships. In: E-Proceedings of
the 30th European Safety and Reliability Conference and 15th Probabilistic Safety
Assessment and Management Conference, ESREL2020 PSAM15, pp. 131–138.

Kongsberg, 2020. Automatic ferry enters regular service following world-first crossing
with passengers onboard. URL: https://www.kongsberg.com/maritime/about-us/
news-and-media/news-archive/2020/first-adaptive-transit-on-bastofosen-vi/.

Kretschmann, L., Rødseth, Ø., Fuller, B.S., Noble, H., Horahan, J., McDowell, H., 2015.
MUNIN Deliverable 9.3: Quantitative Assessment. Technical Report, MUNIN project.

Kristiansen, S., 2005. Maritime Transportation: Safety Management and Risk Analysis.
Elsevier/Butterworth-Heinemann.

Leveson, N.G., 2011. Engineering a Safer World: Systems Thinking Applied to Safety.
In: Engineering Systems, MIT Press.

Loh, T.Y., Brito, M., Bose, N., Xu, J., Tenekedjiev, K., 2020. Fuzzy system dynamics risk
analysis (FuSDRA) of autonomous underwater vehicle operations in the Antarctic.
Risk Anal. 40, 818–841.

Ludvigsen, M., Sørensen, A.J., 2016. Towards integrated autonomous underwater
operations for ocean mapping and monitoring. Annu. Rev. Control 42, 145–157.

Lyu, H., Yin, Y., 2019. COLREGS-constrained real-time path planning for autonomous
ships using modified artificial potential fields. J. Navig. 72, 588–608.

Marine Traffic, 2021. Marine traffic. URL: https://www.marinetraffic.com/.
Naeem, W., Henrique, S.C., Hu, L., 2016. A reactive COLREGs-compliant navigation

strategy for autonomous maritime navigation. IFAC-PapersOnLine 49, 207–213.
Norwegian Mapping Authority, 2021. Norgeskart. URL: https://norgeskart.no.
Norwegian Meteorological Institute, 2021. Met. URL: https://www.met.no/en/weather-

and-climate.
Rausand, M., Haugen, S., 2020. Risk Assessment: Theory, Methods, and Applications.

John Wiley and Sons Ltd.
Rødseth, Ø.J., Tjora, A., 2015. A risk based approach to the design of unmanned ship

control systems. In: Maritime-Port Technology and Development - Proceedings of
the International Conference on Maritime and Port Technology and Development,
MTEC 2014, pp. 153–161.

Shuai, Y., Li, G., Xu, J., Zhang, H., 2020. An effective ship control strategy for
collision-free maneuver toward a dock. IEEE Access 8, 110140–110152.

SINTEF, NTNU, 2015. OREDA: Offshore Reliability Data Handbook: Vol. 1: Topside
Equipment. SINTEF, NTNU.

Sørensen, A.J., 2005. Structural issues in the design and operation of marine control
systems. Annu. Rev. Control 29, 125–149.

Springwise, 2018. Autonomous electric ferry can be called like an elevator. URL: https:
//www.springwise.com/autonomous-electric-ferry-can-be-called-like-an-elevator/.

The Norwegian Agency for Public and Financial Management, 2018. Guide
in socio-economic analysis. URL: https://dfo.no/fagomrader/utredning/
samfunnsokonomiske-analyser/verdien-av-et-statistisk-liv-vsl.

Ung, S.T., 2021. Navigation risk estimation using a modified Bayesian network
modeling-a case study in Taiwan. Reliab. Eng. Syst. Saf. 213.

Utne, I.B., Rokseth, B., Sørensen, A.J., Vinnem, J.E., 2020a. Online risk modelling for
supervisory risk control of autonomous marine systems. In: Proceedings of the 29th
European Safety and Reliability Conference, ESREL 2019, pp. 3654–3659.

Utne, I.B., Rokseth, B., Sørensen, A.J., Vinnem, J.E., 2020b. Towards supervisory risk
control of autonomous ships. Reliab. Eng. Syst. Saf. 196, 106757.

Valdez Banda, O.A., Goerlandt, F., 2018. A STAMP-based approach for designing
maritime safety management systems. Saf. Sci. 109, 109–129.

Valdez Banda, O.A., Goerlandt, F., Salokannel, J., van Gelder, P.H.A.J.M., 2019a.
An initial evaluation framework for the design and operational use of maritime
STAMP-based safety management systems. WMU J. Marit. Aff. 18, 451–476.

Valdez Banda, O.A., Kannos, S., Goerlandt, F., van Gelder, P.H.A.J.M., Bergström, M.,
Kujala, P., 2019b. A systemic hazard analysis and management process for the
concept design phase of an autonomous vessel. Reliab. Eng. Syst. Saf. 191, 106584.

Vojkovic, L., Skelin, A.K., Mohovic, D., Zec, D., 2021. The development of a Bayesian
network framework with model validation for maritime accident risk factor
assessment. Appl. Sci. 11.

Wang, H., Guo, F., Yao, H., He, S., Xu, X., 2019. Collision avoidance planning method
of USV based on improved ant colony optimization algorithm. IEEE Access 7,
52964–52975.

Woo, J., Kim, N., 2020. Collision avoidance for an unmanned surface vehicle using
deep reinforcement learning. Ocean Eng. 199.

Wróbel, K., Krata, P., Montewka, J., Hinz, T., 2016. Towards the development of a risk
model for unmanned vessels design and operations. Int. J. Mar. Navig. Saf. Sea
Transp. 10, 267–274.

Wróbel, K., Montewka, J., Kujala, P., 2017. Towards the assessment of potential impact
of unmanned vessels on maritime transportation safety. Reliab. Eng. Syst. Saf. 165,
155–169.

Yu, Q., Teixeira, A., Liu, K., Rong, H., Guedes Soares, C., 2021. An integrated dynamic
ship risk model based on Bayesian networks and evidential reasoning. Reliab. Eng.
Syst. Saf. 216.



Article 3:

Development and Testing of a Risk-based Control
System for Autonomous Ships

Thomas Johansen, Simon Blindheim, Tobias Torben, Ingrid Bouwer
Utne, Tor Arne Johansen, and Asgeir J. Sørensen

Reliability Engineering and System Safety, 234, 109195

83





Reliability Engineering and System Safety 234 (2023) 109195

Available online 24 February 2023
0951-8320/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Development and testing of a risk-based control system for autonomous ships
Thomas Johansen a,b,∗, Simon Blindheim a,c, Tobias Rye Torben a,b, Ingrid Bouwer Utne a,b,
Tor Arne Johansen a,c, Asgeir J. Sørensen a,b

a Centre for Autonomous Marine Operations and Systems (NTNU AMOS), NTNU, Norway
b Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
c Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway

A R T I C L E I N F O

Keywords:
Autonomous systems
Risk modeling
Ship control systems
Systems theoretic process analysis (STPA)
Bayesian belief networks
Verification

A B S T R A C T

This paper presents a method for designing and verifying a control system with risk-based decision-making
capabilities to improve its intelligence and enhance the safe operation of autonomous systems. The decision-
making capabilities are improved, compared to existing control systems, using a Bayesian Belief Network (BBN)
that is derived from the systems theoretic process analysis (STPA) as a foundation for an online risk model,
which represents the operational risk for an autonomous ship. Combined with an electronic navigational chart
(ENC) module to get accurate information about the environment, this enables the ship to operate in a safe and
efficient manner. In addition, the control system is verified against safety and performance requirements using
a formal verification method, based on temporal logic and Gaussian processes. The proposed methodology
is tested in a case study where the system’s behavior is compared with an existing conventional (manned)
ship on experimental data from two routes along the coast. The case study shows that the performance of the
Supervisory Risk Controller (SRC) with respect to the autonomous ship speed and maneuvering is similar to
how the existing ship is operated. This means that the proposed methodology shows promising results with
respect to developing autonomous ships with control systems and leads to intelligent and safe behavior.

1. Introduction

Although conventional ships have control systems for navigation,
maneuvering, and power management, they are designed to rely on
human input and supervision onboard. For example, Dynamic Position-
ing (DP) systems are used to maintain a ship’s position or to maneuver
the ship at low speeds with good accuracy. Nevertheless, a human
operator must specify the mission and be ready to take over control
if the automatic system fails. Power management systems (PMS) also
have a high degree of automation to control electric power generation,
power distribution, and prevent blackouts on ships.

There is currently no automation system that monitors or controls
the complete ship’s operation, replacing the crew onboard. For exam-
ple, engine control systems may monitor the engine and shut it down
if there is a failure, even if this compromises the safety and integrity
of the ship. An example is the Viking Sky incident, where the diesel
generators were automatically shutdown due to low lubrication oil
levels in a severe sea state, which led to a complete blackout and nearly
caused the cruise ship with almost 1400 people onboard to ground
in storm conditions [1]. In general, for a ship to operate safely and
autonomously, its control systems must be able to assess risk (currently
the task of the crew onboard conventional ships). Hence, Utne et al.

∗ Corresponding author at: Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
E-mail address: tjoha@ntnu.no (T. Johansen).

[2] propose a control system framework that can assess and manage
risk, replacing some of the cognitive judgements that the crew would
normally make while sailing to improve the autonomous ship’s decision
making. Thieme et al. [3] describe how risk analysis methods can be
integrated with control systems and identify four areas for implement-
ing this. Another approach is further demonstrated in Johansen and
Utne [4]. A risk model represented by a Bayesian Belief Network (BBN),
which is based on a systems theoretic process analysis (STPA), assesses
navigational risks for an autonomous cargo ship while sailing as part
of a supervisory risk controller (SRC) for high-level control of the
ship. This risk model provides information that can be used as a basis
for selecting the control mode, machinery mode, and setting control
objectives while sailing. Bremnes et al. [5,6] presented a similar con-
trol system for autonomous underwater vehicles (AUVs) for under ice
operations. In this case, the SRC was used to set the altitude set-point,
velocity set-point, and control strategy such that the AUV could avoid
collision while performing under-ice mapping with sufficient accuracy.

Relevant risk factors have also been discussed in Fan et al. [7]. A
framework to identify navigational risk factors for autonomous ships
is presented, but without any further application. Chang et al. [8]

https://doi.org/10.1016/j.ress.2023.109195
Received 13 July 2022; Received in revised form 1 February 2023; Accepted 21 February 2023



Reliability Engineering and System Safety 234 (2023) 109195

2

T. Johansen et al.

Nomenclature

AIS Automatic Identification System
AMMS Autonomous Machinery Management System
ANS Autonomous Navigation System
AP Autopilot
API Application Programming Interface
AUV Autonomous Underwater Vehicle
BBN Bayesian Belief Network
CONOPS Concept of Operations
CPT Conditional Probability Table
DP Dynamic Positioning
ENC Electronic Navigational Chart
FMEA Failure Mode and Effects Analysis
GNSS Global Navigational Satellite System
GP Gaussian Process
H-RIF High-level Risk Influencing Factor
HiL Hardware-in-the-Loop
HSG Hybrid Shaft Generator
I-RIF Input Risk Influencing Factor

LNG Liquefied Natural Gas
Mech Mechanical
MPC Model Predictive Control
MSO Machinery System Operating
PMS Power Management System
PTI Power Take In
PTO Power Take Out
RIF Risk Influencing Factor
ROC Remote Operation Center
SLAM Simultaneous Localization and Mapping
SO Ship Operating
SRC Supervisory Risk Controller
STL Signal Temporal Logic
STPA System Theoretic Process Analysis
UCA Unsafe Control Action
USD United States Dollar
VHF Very High Frequency

combine Failure Mode and Effects Analysis (FMEA) with evidental
reasoning and Bayesian Networks to quantify the risk level of major
hazards related to autonomous ships. Johansen and Utne [9] propose
to use STPA to identify potential hazards for autonomous ships and
discuss some methods for finding additional quantitative data to use in
a risk model, but without building and using the model. STPA is also
used in Valdez Banda et al. [10] for hazard analysis on autonomous
passenger ferries. This paper suggests safety controls to mitigate the
identified hazards when designing the ship. Wróbel et al. [11] use STPA
to develop a model to analyze safety and make design recommenda-
tions for autonomous vessels. Chaal et al. [12] propose a framework to
model the ship control structure, based on STPA that can be useful to
describe the functionality of the system.

Risk models have also been used to predict the loss of AUVs during
missions [13–15] and to manage uncertainty in these missions [16].
However, none of these models are connected or implemented as part of
the control system. Other papers have discussed risk as part of collision
avoidance but use risk in a very general term and lack a direct link to
risk analysis and risk modeling [17–22]. Combining some selected risk
aspects with Model Predictive Control (MPC) has also been proposed
for collision avoidance systems [23,24] and emergency management
but the risk metrics that are used in these studies are not based on
risk assessment and are simplified so that they can be used in an MPC
application [25].

A quantitative risk model can provide good and useful information
got an autonomous control system if it includes reliable information
about the ship’s position and its surroundings. One option is to use
tools such as Simultaneous Localization and Mapping (SLAM) that can
be used for AUVs [26–28] operating in areas where localization and
mapping are challenging. Mapping the environment is unnecessary
for autonomous ships because position data are available from global
navigational satellite systems (GNSSs), such as position and speed
measurements, and electronic navigational charts (ENC) are available.
GNSS measurements are already used in control systems, such as in
DP controllers to provide position and speed measurements. ENC data
have been used in decision making systems, such as path planners,
for ship navigation [29]. The data can then be used directly in the
planner, with limitations on extracting and presenting the data. To
address these limitations, Blindheim and Johansen [30] developed an
open-source application programming interface (API) to process and
display the data with high accuracy and in short computation time.
Their paper shows how the API can be used for certain tasks, such

as path planning based on a dynamic risk optimization. A simple risk
metric based on wind speed and direction, and the distance to land is
used when planning the route.

Developing better control systems is an important step towards
realizing autonomous ships, which in turn is expected to improve safety
at sea [31,32]. However, it is important to demonstrate that these
ships are safe in operation to achieve approval from the authorities and
public acceptance. This means that autonomous ships need to be tested
in various scenarios and environmental conditions. Today, verification,
validation, and certification in the maritime industry depend on type
of ship and operation. On advanced offshore installations and ships,
the ship and control system are thoroughly tested through simulations,
scale testing, sea-trials, and Hardware-in-the-Loop (HiL) testing. Ex-
tensive and thorough tests are necessary to get the systems approved
by class societies and coastal states [33]. Suppliers usually test indi-
vidual components on less advanced ships during commissioning and
sea-trials.

The shift towards autonomous ships presents several challenges
with respect to verification and testing. Both the complexity and criti-
cality of the software systems increase. In addition, the control system
interacts with a highly dynamic and unstructured operative environ-
ment, which causes the span of possible scenarios to become enormous.
Autonomous systems typically use machine-learning software to some
extent, which introduces its own set of challenges (see Torben et al.
[34]). Therefore, there is a need for new methodology to formalize and
scale the verification and testing efforts to new levels.

Several recent works have aimed to address these challenges. For
example, Pedersen et al. [35] propose a test system for autonomous
navigation systems (ANSs) and show how it can be used to verify
the performance of a collision avoidance system. Torben et al. [36]
present an Autonomous Simulation-based testing framework and show
how it can be used to verify a collision avoidance system. Xiao et al.
[37] propose a quantitative evaluation method to evaluate obstacle
avoidance methods for unmanned ships. These studies indicate that
although the test systems work, they only work through testing a very
limited part of the control system. They also lack a description of how
the testing should be integrated into the design process for autonomous
ship control systems.

To summarize the gaps identified in the current literature, it is
necessary integrate risk with control systems intended for autonomous
ships to improve its high level decision making. In addition, these
control systems need access to data from ENCs, and they need to be
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verified in a formal and systematic manner to ensure the necessary
safety and performance. Hence, the overall objective of this paper is to
present a novel and interdisciplinary methodology to develop an SRC
for high level control of autonomous ships that bridges risk modeling,
optimization, ENC, and formalized verification to achieve safer and
more intelligent performance of autonomous ships.

The proposed methodology is tested and compared to an existing
conventional-manned ship for different coastal routes to assess how
the SRC handles failures in the ship’s machinery and propulsion sys-
tem. The main scientific contribution is the demonstration of how
the intelligence of an autonomous control system can be improved by
combining thorough risk analysis and modeling, detailed data from
navigational charts, and novel verification methodology. Compared to
existing control systems, this new approach makes it possible to handle
a wider range of operations and situations, which reduces the need for
human intervention and supervision. Even though the application in
this paper is focused on autonomous surface ships, it is expected that
the methodology will have relevance for other autonomous applica-
tions. A similar methodology might also be used to assist operators by
providing additional decision support by assessing how the risk level
changes leading to safer ship operations.

The rest of this paper is organized as follows. Section 2 presents
the methodology for building and setting up the controller. Section 3
describes the case study. Section 4.1 and Section 4.2 present the results
from the case study. Sections 4.3–4.7 discuss how risk can be included
in control systems, how to use ENC data, how to test the system, and
it also describes some uncertainties in the controller and risk model.
Section 5 concludes this paper and outlines further work towards highly
autonomous ships.

2. Method

The SRC controller is developed through a five-step process, as
shown in Fig. 1. The SRC enables the controller to make risk informed
decisions that emphasize both safety and efficiency when operating the
ship. These decisions can (for example) determine the ship’s operating
machinery mode, control mode, or the speed reference for the proposed
control system.

The ship and the operation are first described in detail and analyzed
using an extended STPA to identify hazardous events that need to be
included in the risk model. Thus, the STPA results are used as the basis
for building the online risk model in step 2, which is represented here
in terms of a BBN. The justification for using STPA combined with BBN
is presented in Utne et al. [2]. For situation awareness, the risk model
uses data from the ship’s sensors and the control system to assess the
current conditions. The ENC module is used to extract data from nav-
igational charts with information about the area surrounding the ship.
The ENC model is set up in step 3 based on the design requirements
to provide the necessary data to the risk model and SRC. The SRC
is then developed in step 4 based on the requirements identified in
the system analysis and the STPA (step 1), and using data from both
the risk model and ENC. Finally, the controller is verified against the
performance requirements using the automatic simulation-based testing
methodology.

2.1. Step 1: System description and STPA

To setup and build the control system, the ship and operation have
to be described and analyzed, such as in terms of a CONOPS (concept
of operations). This starts by clearly describing the ship, how it is
controlled, its technical condition, and characterization of the operation
that it is used for. In terms of control, it is important to know what
type of controllers the ship has or will have, how they are connected,
and their different responsibilities. Human operators or supervisors
(e.g., onshore in a control center) must also be described with infor-
mation about how they can control or affect the ship. Describing the

ship’s operation requires a clear statement of why and where the ship is
sailing, as well as its operating modes. For example, a coastal cargo ship
sailing along the Norwegian coast may be very different to a passenger
ferry sailing between islands in the Mediterranean Sea.

The decisions or control actions relevant for the SRC must also be
specified. These are important to consider because they are the only
options for the SRC to affect the control of the ship. After describing
the ship, STPA can be used to identify potential hazards, causal factors,
and safety constraints. The STPA follows the steps defined in Leveson
[38] but is expanded to also explicitly consider the consequences of the
hazardous events and system-level hazards as follows:

(a) Define the system
(b) Identify hazardous events and system-level hazards
(c) Identify unsafe control actions (UCAs)
(d) Develop loss scenarios
(e) Analyze consequences

The description of the ship can be used as a basis for the first
step of STPA, and is a basis for defining the control structure and
assigning responsibilities to the different controllers in the system.
The next step is to identify hazardous events and to identify UCAs.
These are subsequently described in loss scenarios that may lead to
UCAs. Scenarios also include how decisions, such as selecting the wrong
control mode or using machinery systems with failures, can lead to
UCAs. The decisions are included in the same way as risk influencing
factors (RIFs). The final part is to describe and classify the potential
consequences of the hazardous events (e.g., through cost estimations).

2.2. Step 2: Online risk model

The online risk model is built based on the STPA results and follows
the emerging top-down structure, like the results of the analysis, as
shown in Fig. 2. The BBN has six main types of nodes:

• Consequences
• Hazardous events
• System-level hazards
• UCAs
• RIFs
• Decisions

The end node in the BBN is the consequences. These are caused by
the hazardous events, under given conditions. The hazardous events are
caused by one or more system-level hazards identified in the STPA. The
next is the UCAs that lead to system-level hazards. UCAs get an input
from RIFs that describe the loss scenarios and the conditions where
hazardous events have negative consequences. RIFs can be both high-
level RIFs (H-RIFs) and input RIFs (I-RIFs), as shown in Fig. 2. For a
more detailed description of mapping STPA results to a BBN, the reader
is referred to Utne et al. [2] or Johansen and Utne [4]. For a detailed
description of BBNs in general, the reader is referred to Fenton and Neil
[39].

The BBN is converted to an online risk model by deciding how
to update the BBN as the ship sails with online information. This
links specific nodes to sensors and systems onboard the ship, and then
decides which data are necessary, including the ENC module. Decisions
made in the SRC are also included in the BBN to model how they affect
the risk picture and consequences. The BBN can also have intermediate
nodes to group I-RIFs and decisions to reduce the number of nodes that
are connected to each H-RIF. This is more important for larger and more
complicated BBNs.

2.3. Step 3: ENC module

The ENC module extracts and manipulate data from electronic
navigational charts. These data are necessary in the risk model to
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Fig. 1. Methodology flowchart.

Fig. 2. Example BBN structure, showing how the STPA is linked to the BBN and how different nodes are related .
Source: Adopted from Utne et al. [2].

describe the surroundings and conditions around the ship. The ENC
module is based on the open-source Python package SeaCharts [30].
This package use FGDB 10.0 data sets with 2D data of the relevant
areas. These are then processed as the application starts, so that they
can be stored as shapefiles, where only the relevant depth layers and
land areas are stored. This allows for much faster processing because
it reduces the time necessary for computation and/or querying. The
data is stored as polygons for various water depths and land areas.
The stored shapefiles can then be queried to find the distance to points
where the ship can collide or ground, and assess how much space the
ship needs to maneuver.

The ENC module is set up by first loading the necessary maps for
the relevant area. The next step is to define and load relevant layers for
the ENC module, depending on the ship and data needed in the control
system. This is achieved by defining the minimum water depth that the
ship must maintain for safe sailing. To avoid unnecessary quantities of
information in the risk model, a planning horizon is set in the ENC to
decide how far the ENC should look ahead of the ship. This limits the
data size that the ENC must query and reduces the computation time.
Connecting the ENC module with the risk model is done by connecting

the relevant nodes and updating them with data from the ENC, such as
distance to land and shallow areas, combined with position and speed
measurements from the GNSS system.

The current ENC module does not account for navigation markers,
as this is not currently implemented in the SeaCharts package. This is
discussed more in Section 4.5. For a detailed description of the package
and all functions, the reader is referred to Blindheim and Johansen
[30].

2.4. Step 4: Supervisory risk controller

The controller is set up as an SRC to make high-level decisions
or set control objectives. One option is to use costs as a means for
implementing the inputs from the risk model into the decision making.
For other potential options, see Thieme et al. [3].

For an autonomous ship controller, decisions can be made based
on four costs: the risk cost from the online risk model, fuel cost based
on the expected fuel consumption, operation costs (other than fuel),
and the cost of not starting new missions. The total cost is calculated
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using Eq. (1) as a function of the decisions, 𝑑, such as setting the speed
reference and deciding how the machinery should be operated:

𝐶(𝑑) = 𝑅(𝑑) + 𝐹 (𝑑) + 𝑂(𝑑) + 𝐿(𝑑) (1)

The risk cost, 𝑅(𝑑), gives the expected cost from the consequences
described in the risk model and account for factors such as weather
conditions, ship speed, traffic conditions, etc. Fuel cost, 𝐹 (𝑑), describes
the expected cost of fuel of operating the ship under the current
conditions. Operation cost, 𝑂(𝑑), describes the costs of operating the
ship, outside of fuel cost, such as maintenance, insurance, and manning
costs. 𝐿(𝑑) describes the potential loss of future income caused by the
time used. The cost function is set up such that fuel cost, operation cost,
and potential loss of future income increase if the ship takes a longer
time to reach the final way-point.

The controller checks each possible set of decisions to find the set
with the lowest cost. The decisions can vary depending on the ship and
can include selecting what machinery mode to use, how the ship should
be controlled, and which speed reference to follow. The SRC configures
the control of the ship according to the set with the lowest cost.

2.5. Step 5: Automatic simulation-based testing methodology

Step five verifies the controller against a set of design requirements
related to safety and efficiency. The verification process is performed
using the automatic simulation-based testing methodology from Torben
et al. [36]. This methodology automatically runs simulations where
the vessel is sailing along its planned route, while varying scenario
parameters. The methodology formulates requirements using the Signal
Temporal Logic (STL) formal specification language, which enables
automatic evaluation of the simulations against the requirements [40].
The result of evaluating a simulation against an STL requirement is an
STL robustness score that describes how robustly the requirement is
satisfied. If the STL score is greater than zero, then the requirement is
satisfied. If it is less than zero, then the requirement is violated.

The methodology selects the simulations to run from a test space
that is defined by a set of scenario parameters with corresponding
parameter spaces. The test space can, for example, be based on sce-
narios that are identified in the STPA [41–43] to test the controller
in specific situations. A Gaussian Process (GP) model [44] is used to
predict the STL robustness score as an unknown function of the test
case parameters. The GP model estimates the expected value and the
uncertainty of STL robustness over the entire parameter space of a
test case. The GP model is iteratively updated by running simulations
and observing the resulting STL robustness score. The estimates of the
GP model are then used to adaptively guide the test case selection
towards cases with low STL robustness or high uncertainty. This results
in efficient coverage of the parameter space or alternatively efficient
falsification if the controller does not satisfy the requirements.

The testing terminates in a verified state if the lower confidence
interval of the GP is greater than zero for the entire parameter space.
For example, using 99% confidence intervals, a verification would
indicate that there is at least a 99% probability that the system satisfies
the requirement for the entire test space of the test case. Alternatively,
if a test case that does not satisfy the requirements is identified, then the
verification terminates in a falsified state, returning the corresponding
counter-example. For a more detailed explanation of the automatic
simulation-based testing methodology, the reader is referred to Torben
et al. [36].

3. Case study: Supervisory risk control of an autonomous cargo
ship

The method for building the SRC is tested in a case study that
simulates an autonomous ship operating along the Norwegian coast
to assess how the SRC manages and controls the ship in comparison
to an existing conventionally-manned ship. The first part of the case

study will analyze how the SRC adjusts the speed and configures the
ship to maintain control. This is then compared performance-wise to a
conventional ship in similar conditions, using position and speed data
from the ship navigation system. The second part will study how the
SRC handles failures in the machinery and propulsion system.

In the case study, it is assumed that the chart and GNSS measure-
ments are sufficiently accurate to be used in the control system. It is
also assumed that the time necessary to start up machinery can be
neglected. There are still some delays and thruster dynamics included,
such that engines and generators cannot change the load immediately.
This is deemed sufficient to show how the SRC functions. Some of the
potential ways to include these aspects in the SRC will be discussed in
Section 4.3.

The ship simulation uses a simplified kinetic model without wave
forces. This makes it easier to simulate and test the system, while it also
changes the ship’s movement such that the ship drifts more. This makes
it more difficult to control the ship, especially in tight turns, without
reducing the speed much more than conventional ships. Although the
focus in this paper is the design and testing of the SRC, it still provides
sufficient results to show that the proposed methodology works.

3.1. Step 1: Describing the ship and operation

The autonomous ship that is considered in the case study is an 80 m
long and 16 m wide cargo ship that is sailing along the Norwegian
coast. Although the ship is operated unmanned, it has a human super-
visor onshore that can monitor and take control remotely if necessary.
The ship has an autonomous control system, as shown in Fig. 3, with an
SRC as the high-level controller, an ANS to control the navigation, and
an autonomous machinery management system (AMMS) to manage the
machinery. The ANS has two ship operating (SO) modes: (i) DP and (ii)
autopilot (AP), with a corresponding controller for each mode. The DP
controller is used during low-speed maneuvering and station keeping,
while the AP controller is used for transit at higher speeds. When the
ship is operated in DP-mode, it utilizes the main propeller, bow tunnel
thruster, and aft tunnel thruster to control the ship’s speed, position,
and heading. The AP controller uses the main propeller and rudder to
control the ship.

The ship is equipped with a Liquefied Natural Gas (LNG) fueled
main engine, a hybrid shaft generator (HSG), and two diesel generators.
The HSG can be used as a generator to produce electricity when the
main engine is used or an electric engine when diesel generators can
be used to produce electricity.

The AMMS is used to control the machinery system depending on
the machinery system operating (MSO) mode. The ship has three MSO-
modes: power take out (PTO) mode, where the main engine provide
propulsion and the HSG is used as a generator to provide electricity;
power take in (PTI) mode, where the diesel generators produce elec-
tricity, and the HSG is used as an electrical engine to propel the ship;
and the mechanical (Mech) mode is where the main engine provides
propulsion and the diesel generators produce electricity.

The SRC is responsible for selecting SO-modes and MSO-modes. It
also sets the reference speed for the ANS to follow.

The STPA in the case study is based on a workshop with 12 relevant
system experts who identified UCAs for the autonomous cargo ship. The
participants have 5–30 years of experience from academia and indus-
try working with risk assessment, testing, verification and validation,
marine technology and maritime operation, and ship control system
design. The workshop where conducted over three sessions. The first
two where used to identify UCAs that were discussed and processed
by the participants in the third. The result from the workshop was a
report sent out to the participants. The main purpose of the workshop
was to not only identify how switching between different machinery
modes can lead to insufficient power capacity and power losses but
also to identify when the wrong SO-mode used by the ANS could lead
to accidents.
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Fig. 3. Hierarchical control structure.
Source: Adopted from Johansen and
Utne [4].

The STPA in the workshop considered a slightly different control
structure with a remote operation center (ROC) that is responsible for
planning, monitoring, and supervising the ship. The ANS and AMMS
determine the SO- and MSO-mode, respectively, according to the sailing
plan. An SRC in the control system was not included. The results from
the workshop have therefore been developed further to account for the
different ship control structure considered in this case study.

This case study assumes that the human supervisor plans the mission
and the SRC then executes this plan. The human supervisor is also
responsible for taking remote control of the ship if notified by the
SRC. Selecting SO- and MSO-mode is now done by the SRC, and not
the ANS and AMMS. The ANS controls the ship in either AP- or DP-
mode depending on the SO-mode. The AMMS manages the machinery
system according to the MSO-mode decided by the SRC. The AMMS also
contains thrust allocation that computes individual thrust commands,
based on the commanded forces from the ANS.

Since the workshop did not include an SRC, the control structure is
modified to include this with the associated control actions. However,
because setting SO-mode, MSO-mode, and the ship speed were consid-
ered when identifying UCAs in the workshop, the results can still be
used with some modifications to account for the differences.

The SRC has a set of process variables that are used to make
decisions, as follows:

• PV-1: Active MSO-mode
• PV-2: Available power and thrust
• PV-3: Machinery system status
• PV-4: Active SO-mode
• PV-5: Ship’s navigational states
• PV-6: Weather conditions
• PV-7: Traffic conditions
• PV-8: Route information

The case study focuses on the following hazardous event (HE) and
system-level hazards (H), as follows:

• HE1: The ship grounds or has contact with the seafloor
• H1: The ship violates the minimum separation distance to the

shore
• H2: The ship sails in water that is too shallow

Table 1
Unsafe control actions.

UCA Description

UCA-1 A command is given to change MSO-mode to PTO when the health
state of the ME is reduced

UCA-2 A command is given to change MSO-mode to Mech when the diesel
generators do not function,
or are unable to provide the rated power to the DC bus

UCA-3 A command is given to change MSO-mode to PTI, resulting in
insufficient power for the main propulsion

UCA-4 A command is given to change SO-mode to transit/AP when the
ship is in harbor/tight areas

UCA-5 A command is given to change SO-mode to maneuvering/DP when
the speed is higher than the maximum
maneuvering speed

The workshop identified a total of 60 UCAs. However, including
all these would make the risk model more complicated to build and
evaluate. Therefore, the case study focuses on five different UCAs, as
shown in Table 1, to reduce the size and complexity of the risk model.
These are chosen to have a good basis for specifying scenarios where
the decision making in the SRC, such as setting SO-mode or speed
reference, can lead to hazardous events and identify RIFs that affect
this.

Nine scenarios are defined to describe the situations that can cause
UCAs and hazards, as presented in Table 2.

The extended STPA in this paper also considers the consequences
from the hazardous event and the expected resulting costs. The con-
sequences are divided into damage to own ship, damage to others’
property, and harm to humans. Consequences are classified as either
severe, significant, minor, or no consequences [45]. Fatalities or se-
rious injuries to humans or extensive damage to the ship or other
ships/objects where assistance is necessary are considered severe con-
sequences. Less serious/minor injuries to humans and damage that
needs repairs outside of planned maintenance are considered significant
consequences. Insignificant or no injuries to humans and damage that
can be fixed in the next planned maintenance are considered minor
consequences. Severe consequences cost 4 550 640 USD, significant
455 064 USD, minor 45 506.4 USD, and no consequences lead to zero
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Table 2
Scenarios.

Scenario Description UCA

SC-1 MSO changed to PTO because PTI delivers insufficient
amount of power but the health

UCA-1

state of the ME is reduced, leading to insufficient power
production

SC-2 MSO changed to PTO because the extra power in Mech is not UCA-1
necessary but the health state of the ME is reduced, leading
to insufficient power production

SC-3 MSO changed to Mech because PTO is not producing
sufficient power for propulsion but the diesel

UCA-2

generators fail or provide less power than expected, leading
to insufficient power on the DC bus

SC-4 MSO-mode is changed to from PTO to PTI due to an
underestimate of the power necessary,

UCA-3

leading to insufficient power to the ship

SC-5 MSO-mode is changed to from Mech to PTI due to an
underestimate of the power necessary,

UCA-3

leading to insufficient power to the ship

SC-6 SO-mode is changed to transit while still in harbor due to
inaccurate/incorrect measurements

UCA-4

of the ship states

SC-7 SO-mode is changed to transit while still in harbor due to
wrong understanding of the area around

UCA-4

the ship

SC-8 SO-mode is changed to maneuvering with too high speed
due to faulty speed estimates/measurements

UCA-5

SC-9 SO-mode is changed to maneuvering with too high speed
due to a wrong limit set in the controller

UCA-5

Table 3
Risk influencing factors.

High-level RIF Description Scenario(s)

H-RIF-1 Machinery health state SC-1,SC-2,SC-3

H-RIF-2 Estimation of necessary power SC-1,SC-2,SC-3,SC-4,SC-5

H-RIF-3 Navigational complexity/situation SC-1,SC-2,SC-3,SC-4,SC-5

H-RIF-4 Measurement/estimation of the
ship’s navigational states

SC-6, SC-8, SC-9

H-RIF-5 Situation awareness SC-7, SC-8

H-RIF-6 Reliability of the ship’s control
system

SC-9

cost. The costs are estimated based on EfficienSea [46], The Norwegian
Agency for Public and Financial Management [47], and IMO [45].

3.2. Step 2: Building the online risk model

The STPA is used as the basis to build the online risk model based
on the methodology in Utne et al. [2], as shown in Fig. 4. The output
from the risk model is the expected cost from the consequence. The BBN
has four nodes describing the consequences: one general consequence
node and one for damage to own ship, damage to others property,
and harm to humans; one node describes the hazardous event, and one
node describes each of the system-level hazards. The two system-level
hazards depend on the five UCAs considered in the STPA. Each of these
correspond to one node in the BBN.

The nine scenarios described in the STPA are used as the basis
to define the six H-RIFs in the BBN. The list of H-RIFs, with the
corresponding scenarios are show in Table 3. Each of the high-level
RIFs are analyzed further to find I-RIFs, as shown in Table 4.

In addition to the I-RIFs and decisions in Table 4, the type of seabed
and shore affect the consequences directly. Intermediate nodes are used
between I-RIFs/decisions and H-RIF nodes to reduce the number of
inputs to each node. This reduces the size of conditional probability
tables (CPTs) and makes it easier to define these. CPTs and states

Table 4
Input to H-RIFs.

High-level RIF Description Input RIF/Decision

H-RIF-1 Machinery health
state

ME state, HSG state, DG1
state, DG2 state, BT state,
AT state, MP state, ST state,
MSO-mode (Decision node),
SO-mode (Decision node)

H-RIF-2 Estimation of
necessary power

PMS, AP
performance/accuracy, DP
performance/accuracy,
SO-mode (Decision node)

H-RIF-3 Navigational
complexity/situation

Traffic, Obstacles, Current,
Distance to grounding hazard,
Wind speed, Wind direction,
SO-mode (Decision node)
Speed reference (Decision
node)

H-RIF-4 Measure-
ment/estimation
of

GNSS system, Radar, AIS,
SO-mode (Decision node)

ship’s navigational
states

AP performance/accuracy DP
performance/accuracy

H-RIF-5 Situation awareness GNSS, Radar, AIS, Visual
conditions

H-RIF-6 Reliability of the
ship’s control system

SO-mode (Decision node), AP
performance/accuracy
DP performance/accuracy,
Ship design process

are defined based on the work in Johansen and Utne [4], DNVGL
[48], Hassel et al. [49], discussions with crew working on different
ships, and control engineers from Kongsberg Maritime. A full list of all
nodes, with parent nodes, is shown in Table 5.

The BBN is converted to an online risk model by linking I-RIFs to the
control system so they can be updated as the ship sails. Nodes describ-
ing the state of machinery parts are updated with information from the
AMMS. If the machinery is well functioning and well maintained, then
the probability of failure is very low, 9 ⋅ 10−7. In future works, this is
intended to be updated as the ship sails since machinery components
are more likely to fail as components age, but this is not modeled in
the current case study.

Nodes describing the control system and sensors are given a static
value based on Johansen and Utne [4], DNVGL [48], Hassel et al. [49].
Weather nodes are linked to sensors where these exist, such as wind
and current, or weather forecast and historical data [50]. These nodes
are designed to be updated in real-time depending on the available
data. Traffic use data is drawn from the automatic identification system
(AIS), which is used to transmit the identity, position, course, and speed
to nearby vessels using the very high frequency (VHF) band. Obstacle
density and distance to grounding hazards are taken from the ENC. The
seabed and shore are described with data from Norwegian Mapping
Authority [51] over the relevant area. The values used in input nodes
describe the probability over the planned mission.

3.3. Step 3: Setting up the ENC module

The ENC module is setup to extract data from electronic naviga-
tional charts for use in the online risk model and the rest of the control
system. The ENC module here includes charts covering the areas around
Brønnøysund and Rørvik in Norway, which are relevant for the type
of ship in the case study. The module is set up to consider everything
shallower than 5 m as shallow areas or land where the ship cannot
navigate safely. The rest of the chart is divided into layers of 10 m,
20 m, 50 m, 200 m, 350 m, and 500 m. This distribution is considered a
reasonable combination of chart resolution and efficiency in the control
system.
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Fig. 4. BBN risk model showing an example of the risk cost. For more detailed information about the BBN, please contact the corresponding author.
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The obstacle density is based on the distance to the closest shallow
point (i.e., areas with less than 5 m water depth) and the percentage
of obstructed water around the ship. The water depth of 5 m is the
same as the max draft of the ship. Using this water depth is considered
sufficient for assessing the portion of obstructed water in this work.
Shallow areas are consequently areas with too little water depth for
the ship to sail, which should be avoided with sufficient safety margins.
The percentage of obstructed water is calculated by considering a disk
with radius 1400 m and finding the portion of the disk with land and
shallow water. The radius is set through testing to ensure that the disk
gives a good picture of the sea area surrounding the ship, without being
unnecessarily large.

The ENC module checks the area around the ship every 15 s
and updates the input to the online risk model. Updating every 15 s
ensure that the control system has updated data, while limiting the
computation time necessary to check the ENC module.

3.4. Step 4: Building the supervisory risk controller

The SRC is the high-level controller that manages and controls the
ship. The SRC uses data from the risk model and ENC, combined with
operational measurements from the ANS and AMMS, such as position,
speed, and machinery status to make decisions. The SRC has four main
objectives: selecting the SO-mode, selecting the MSO-mode, setting
the reference speed for the ship to follow, and notifying the human
supervisor when the situation becomes too severe to continue.

The SRC is implemented as a switch that checks the cost function,
as shown in Eq. (1), for each set of decisions. The risk cost is calculated
using Eq. (2). This takes the probability of the different consequences,
𝑃𝑟(), estimated in the online risk model described, multiplied with the
expected cost for each consequence, 𝐶(), as described in Section 3.1:

𝑅(𝑑) = 𝑃𝑟(𝑠𝑒𝑣𝑒𝑟𝑒)𝐶𝑠𝑒𝑣𝑒𝑟𝑒 + 𝑃𝑟(𝑠𝑖𝑔𝑛𝑖𝑓 𝑖𝑐𝑎𝑛𝑡)𝐶𝑠𝑖𝑔𝑛𝑖𝑓 𝑖𝑐𝑎𝑛𝑡

+ 𝑃𝑟(𝑚𝑖𝑛𝑜𝑟)𝐶𝑚𝑖𝑛𝑜𝑟 + 𝑃𝑟(𝑛𝑜𝑛𝑒)𝐶𝑛𝑜𝑛𝑒 (2)

The fuel cost is calculated as the specific fuel cost (SFC) multiplied
by the expected sailing time. The SFC is taken from a look-up table,
depending on wind speed, ship speed, current speed, and MSO-mode.
The look-up table is made by simulating the machinery under different
conditions to estimate how much fuel is used to sail a set distance.
The fuel prices are taken from Ship & Bunker [52] at 1 343.5 USD/ton
for LNG and 684.5 USD/ton for diesel. This table provides a cost per
distance that is multiplied with the planned sailing distance, as shown
in Eq. (3):

𝐹 (𝑑) = 𝑆𝐹𝐶(𝑤𝑖𝑛𝑑, 𝑠𝑝𝑒𝑒𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (3)

Operation costs are calculated using Eq. (4). This includes manning
in the ROC, maintenance from wear and tear on the machinery, insur-
ance of the ship, lubrication oil, spare-parts, and logistics. These are
estimated based on conventional ships of the similar size and type, and
using data from Stopford [53] to be 341.3 USD/h for the current ship.
This is similar to the fuel cost in normal transit with a speed of 5–7 m∕s
(9.7–13.6 knots):

𝑂(𝑑) = 𝐶𝑜𝑠𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∕𝑠𝑝𝑒𝑒𝑑 (4)

The cost of potential future loss is calculated with Eq. (5). This cost
is the loss of income if the ship is unable to take on any new missions
before finishing the current route, which is set to 910.1 USD/h:

𝐿(𝑑) = 𝐶𝑜𝑠𝑡𝑓𝑢𝑡𝑢𝑟𝑒𝑙𝑜𝑠𝑠 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∕𝑠𝑝𝑒𝑒𝑑 (5)

The cost function, including the ratio between the different terms,
is discussed in Section 4.7. The controller estimates the cost of sailing
a distance equal to the initial route distance. This is constant for the
whole route which keeps the weight between the different cost terms
constant.

The alarm is implemented so that a human supervisor can take
over control remotely of the ship if necessary, but unnecessary alarms
also need to be avoided. To achieve an acceptable balance, the alarm
trips if either the risk cost exceeds 9 267.70 USD, or the probability
of the hazardous event exceeds 0.5. The cost limit is set between
minor and significant consequences because it is better to have the
human supervisor check the ship having an emergency later on. The
SRC is implemented to lower the speed to limit the risk cost because
impact speed directly affects the consequences. However, this can cause
situations where the probability of a hazardous event is too high to
continue due to environmental conditions, even though the risk cost is
low because the speed is reduced to the minimum. Thus, a probability
limit of 0.5 is used to notify the human supervisor in these situations.

If the SRC changes the ship’s control configuration, then it is
paused for 30 s before checking again. Implementing a time delay
in the switching logic ensures that the controller reacts to changes
but avoids situations where it gets stuck switching between different
modes (e.g., DP and AP) without stabilizing, which is also called
chattering [54].

3.5. Step 5: Verifying the control system

After setting up the SRC, verification is done by first determining
how to test the system and which requirements to verify against. The
autonomous ship should follow the route through Brønnøysund that is
shown in Fig. 5. The route follows the same path as a conventional
ship and those described in Norwegian Hydrographic Service [55].
This is used to check the ship in situations where the controller is
expected to adjust the speed reference, without using much longer time
than conventional ships. The ship has to lower the speed reference
early enough to slow down when entering narrow and tight areas, and
increase it when it opens up again.

To test safety, the ship should maintain a minimum distance of 5 m
to shallow areas or provide an alarm to the human supervisor at least
5 min before the minimum distance is violated. Having a minimum
distance of 5 m is not realistic for a real ship. However, to account for
extra drift caused by simplifications in the simulator this is used to get
results reasonable results that can be compared to conventional ships.
These assumptions are discussed further in Section 4.8. The following
verification focus on wind and how this affect the ship. However, the
process is the same for other disturbances, such as current.

To verify that the controller is efficient, the ship should at maximum
use 140 min on the whole route segment under consideration in the
case study or provide an alarm to the human supervisor. This time limit
is set based on the time existing manned ships used on the same route.
Both the safety and efficiency requirements are tested in wind speeds
ranging from no wind to 20 m∕s and from all directions. Other factors
(e.g., current, waves, and machinery failures) are not considered in
the verification. This simplifies the verification but still gives sufficient
results for further testing of the control system. The route is chosen to
get a good variation between open water and more narrow straights
with tight turns.

The verification is performed using the automatic simulation-based
testing methodology that was introduced in Section 2.5. This methodol-
ogy selects and simulates interesting combinations of wind speed and
wind direction to verify or falsify the system. The system is verified
to satisfy the safety requirement (minimum distance to shallow) in
161 simulations, and the efficiency requirement (maximum allowed
sailing time) in 97 simulations. The STL robustness surfaces for safety
and efficiency are shown in Figs. 6(a) and 6(b), respectively. The STL
robustness score is normalized to the interval [−1, 1]. Fig. 6(a) shows
that the robustness score in the case study is always above 0. Similarly,
Fig. 6(b) shows that the robustness is always above 0 and is close to 1
when it reaches the final way-point early or trips an alarm because the
risk cost or grounding probability becomes too high.
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Fig. 5. Route used in the verification process.

The verification shows that the control system makes the
autonomous ship follow the route and it also reaches the end of the
route in reasonable time in wind speeds of up to 8 m∕s. Above this, the
planned route forces the ship very close to land in certain spots, which
means that it notifies the human supervisor. When the wind speed ex-
ceeds 10 m∕s, the route leaves too little space for the ship to maneuver.
This can cause problems with certain wind conditions. However, the
control system provides an alarm to the human supervisor with enough
time to pass the safety requirement. Overall, the verification shows
that the proposed control system works in the planned route but it is
limited by not being able to change the route in accordance with the
environmental conditions.

4. Results and discussion

4.1. Comparing the controller with the maneuvering of a conventional ship

After building and setting up the controller, the autonomous ship is
simulated along two different routes to compare it against an existing
conventional ship. The first route is through Rørvik and the second is
through Brønnøysund. The route through Brønnøysund is similar to the
one used in the verification (Fig. 5) but with different start and end
points. The start and end points are changed because the GNSS data
from the conventional ship is only available for part of the route. The
purpose is to see how the SRC sets the speed reference, MSO-mode,
and SO-mode, and compare this to how conventional ships operate
along the same routes in similar weather conditions. The existing
ship is equipped with a similar machinery and control system as the
autonomous ship but with a crew who decides MOS-mode, SO-mode,
and speed reference.

The conventional ship sailed through Rørvik and Brønnøysund in
the fall of 2021 with a wind speed between 5–7 m∕s. The routes fol-
lowed by the conventional ship are plotted with GNSS data taken from
the control system aboard the conventional ship. The route through
Rørvik is planned by placing way-points along the route that the
autonomous ship can follow. The GNSS data for Brønnøysund contain
some measurements that place the route over land. The cause of these
are not certain but it only affects the data between point 0.5 and 0.7.
Therefore, the route was re-planned by placing way-points along the
same route into Brønnøysund but following the route recommended
in Norwegian Hydrographic Service [55] through and after Brønnøy-
sund. The routes are shown in Fig. 7 for route one and Fig. 10 for
route two with the conventional ship in red and the autonomous ship
in yellow.

To compare the two ships, the risk model and SRC need position,
speed, MSO-mode, and SO-mode from the conventional ship. Position
and speed are recorded in the ship’s control system. Ship speed is
fed directly to the SRC to find the expected fuel cost and is used as
input to the risk model. Position data is used in the ENC module to
get the distance to the closest grounding hazard and obstacle density.
MSO-mode is set to PTO and SO-mode to AP after discussing how the
conventional ship is operated with the crew. This provides a cost that
can be compared to the autonomous ship. The SRC uses a constant
distance when calculating costs, as explained in Section 3.4. The plots
therefore show the costs of sailing a distance equal to the distance of
the whole route, 𝑑0, estimated at each point.

4.1.1. Comparison on route one through rørvik
On route one, the conventional ship starts with a speed of 5.25 m∕s,

before increasing to 6.5 m∕s. The speed is then maintained at 6.5–6.75
m∕s the rest of the distance. The autonomous ship starts with a speed of
5 m∕s. This is later increased to 7 m∕s as the ship sails into more open
water. Along the rest of the route, the speed varies between 5 m∕s and
7 m∕s as it passes through more narrow parts of the route and in more
open areas. Overall, the autonomous ship varies the speed more as the
environmental conditions change, compared to the conventional ship.

The cost is shown in Fig. 8 for the conventional ship and in Fig. 9
for the autonomous ship. The plots show the expected costs of sailing
the full route, 𝑑0. The conventional ship has a higher risk cost (blue
line) because it maintains a higher minimum speed. Fuel (yellow line),
operation (green line), and potential future loss (red line) costs are
almost the same but they vary more for the autonomous ship because
the expected time varies more corresponding to more changes in the
speed. For the conventional ship, both fuel and operation costs are
almost constant because the speed is kept more or less constant along
the whole route. In contrast, the speed of the autonomous ship is
changed more, which leads to more changes in fuel and operation
costs. The conventional ship uses 96 min on the whole route and the
autonomous ship uses 103 min.

4.1.2. Comparison on route two through brønnøysund
The routes differ slightly more through Brønnøysund, due to the

errors in the position data from the conventional ship. This means that
the autonomous ship sails around 1 km longer. The conventional ship
maintains a speed of around 6.75 m∕s before it reaches the narrow parts
of the route between 0.5 and 0.6 on the route shown in Fig. 10. In the
narrowest part, the speed is reduced to 3 m∕s, it is then increased to
6.75–7 m∕s as the area opens up. The autonomous ship has a speed
of 7 m∕s in open water. This is reduced to 5 m∕s when it reaches the
first narrow straits between points 0.4 and 0.5. It then returns to 7 m∕s
for a short time in the more open area, before it is reduced to 4 m∕s
through the narrow harbor area. Overall, the autonomous ship makes
more changes to the speed, but maintains a higher minimum speed.

The cost is shown in Fig. 11 for the conventional ship and Fig. 12
for the autonomous ship. Fuel (Yellow line), operation (Green line),
and potential future loss (red line) costs are virtually the same along
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Fig. 6. Robustness surfaces resulting from the two verification runs.

Fig. 7. Map of route one through Rørvik. The conventional ship’s route is shown in
red and the autonomous ship’s route is shown in yellow.

Fig. 8. Conventional ship’s costs on route one.

the whole route. The risk cost is similar along the first part where both
ships follow the same route, but is much higher for the conventional
ship in the middle part of the route. This is caused by the inaccuracies
in the GNSS data collected on the conventional ship showing the ship
sailing very close and over land, and the conventional ship not reducing
the speed between points 0.4 and 0.5. This combination results in a

Fig. 9. Autonomous ship’s costs on route one.

significantly higher risk cost compared to the autonomous ship. Fuel
cost is similar for both ships with a reduced fuel consumption when the
speed is reduced in the most challenging part of the route. Operation
cost is also similar, but with a higher top for the conventional ship since
because reduces the speed more.

4.2. Controlling the ship with machinery and propulsion failures

The second part of the case study tests how the control system
manages the autonomous ship when the health of the main engine
and steering system is worsened. This is modeled by increasing the
probability of failure for these elements in the risk model. The SRC then
chooses the best way to operate the ship based on this information. The
routes are the same as shown in Fig. 7 for route one and Fig. 10 for
route two. The weather is also the same, which ensures that the results
can be compared to how the ship is managed when all systems function.

4.2.1. Machinery and propulsion failures on route one through rørvik
In both cases, the failure happens when the ship has sailed approxi-

mately 8% of the route, close to point 0.1 on the figures. When the main
engine fails, the SRC changes MSO-mode to PTI, which only uses the
HSG and diesel generators for power production. The speed reference is
also reduced to 4 m/s because the diesel generators produce less power
than the main engine. This ensures that the ship still has sufficient
power to maneuver. The SO-mode is AP along the whole route in this
case.

When the steering machinery fails, the speed is lowered significantly
such that the tunnel thrusters can provide steering for the ship and SO-
mode is changed to DP. The MSO-mode is Mech for the whole route.
The speed reference switches between 2 m/s and 3 m/s, depending on
the number of islands and obstacles around the ship.
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Fig. 10. Map of route two through Brønnøysund. The conventional ship’s route is
shown in red and the autonomous ship’s route is shown in yellow.

Fig. 11. Conventional ship’s costs on route two. The risk cost is here significantly
higher since the position data used to estimate the costs include some incorrect
measurements placing the ship both very close and on land as shown in Fig. 10, as
well as having a .

Figs. 13 and 14 show the costs calculated by the SRC. Overall, the
cost is maintained at a similar level as when everything is working
by adjusting how the speed is operated. The risk cost is controlled by
reducing the speed, compared to how the ship is operated when all
systems function as intended, and by switching to MSO-modes and SO-
modes with functioning components. Operation and potential future
loss is increased because the ship uses a longer time with lower speed.

Fig. 12. Autonomous ship’s costs on route two.

Fig. 13. Costs with failure on main engine on route one.

Fig. 14. Costs with failure on steering machinery on route one.

4.2.2. Machinery and propulsion failures on route two through brønnøy-
sund

The main engine fails between point 0.3 and 0.4, and the steering
machinery fails between point 0.2 and 0.3. When the main engine fails,
the speed is reduced significantly to account for the reduced power
production. MSO-mode is also changed to PTI, which do not use the
main engine. The SO-mode is AP along the whole route.

When the steering machinery fails, the speed is reduced to 2 m∕s
and SO-mode is changed to DP, to get more effect from the tunnel
thrusters and maintain control of the ship. When the ship has passed
the narrowest parts of the route, the speed is increased to 3 m∕s.

Similar to route one, the costs that are shown in Fig. 15 for the
main engine and Fig. 16 are similar as when everything is functioning
by reducing the speed and changing MSO-mode and SO-mode. The
biggest difference compared to the cost when all systems function is
the time used to finish the route. The time and the time dependent
costs, operation costs and potential future loss increase when the ship
sails at a lower speed. This is most visible after the ship has finished
with the most challenging parts of the route, around 0.4–0.5. However,
because the speed was reduced in the narrow and tight parts with all
systems functioning as well, the max cost is still at the same level.

Data from conventional ships operating with failures but switching
to modes that function without the failed components are limited,
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Fig. 15. Costs with failure on main engine on route two.

Fig. 16. Costs with failure on steering machinery on route two.

although this is a logical way to mitigate failures. In a conventional
ship, the failed components can be fixed by the crew or the ship can
be maneuvered to the closest harbor for repairs. On an autonomous
ship without a crew, the only option is to maneuver to harbor and
get it fixed there or in case of severe failures transport a repair crew
to the ship offshore. Because this route change is not included in
the SRC and the redundancy of the machinery systems onboard the
autonomous ship was not compromised entirely, the ship continues to
sail towards the final way-point. With the current control system, this is
a reasonable solution. Deviating from the planned route to get to shore
and repair damaged equipment, which would be viable solutions in case
of critical machinery failures and total loss of propulsion, and notifying
the human supervisor are topics for further research that could improve
the control system further.

4.3. Risk modeling and implementation in the control system

The proposed control system uses a BBN-based risk model to assess
the risk. The model is based on an extended STPA of the ship. STPA
provides a systematic way to analyze the ship and identify causal
factors that can lead to hazardous events. The results of the STPA also
provide a logical way to build and structure the BBN. However, the
results depend on the data used and the quality of the analysis.

Another potential challenge using STPA is to decide the refinement
level. The refinement level generally depends on the purpose of the
STPA. More details mean more data, but it can also make the risk model
and the corresponding calculations too time consuming. In this current
work, the analysis considers one hazardous event only, two system
level hazards, and five UCAs. The scenarios include causal factors,
such as wind, obstacles, and the main parts of the machinery system.
The scenarios could have been more detailed and could have included
information about how machinery parts fail. However, because the
purpose of the analysis in this paper is to build an SRC, the level of
detail is considered to be sufficient because the controller does not
provide detailed control actions to the different parts of the machinery
systems. An example of this could be saying that the main engine can

only produce limited power because the cooling system is only partially
functioning, although in this situation limited power is necessary to
maintain control of the ship. Enabling the controller to make such
decisions would be an interesting topic for further research to continue
to develop the control system.

When building the BBN risk model, the overall structure is de-
termined by the STPA. However, because the STPA is qualitative, it
provides very little data for setting up states defining CPTs. Hence,
they are generally based on other sources, such as literature, previous
works, and expert judgement. The CPTs can also be adjusted later to
put more weight on specific risk factors. Given that the CPTs are based
on different sources, they contain a certain degree of uncertainty, as
discussed in Section 4.7.

To convert the risk model into an online risk model, the risk model
is connected to the rest of the control system. This means that all of the
nodes in the BBN that can be measured by the control system or sensors
should be updated when the ship is sailing. The risk model should
be updated often to describe the current sailing conditions. However,
updating it too often increases the computation time in the control
system. There is also a limit to how quickly the controller can update
the decisions. In the case study, the risk model and SRC is paused for
30 s if the SO-mode, MSO-mode, or speed reference is changed. This
delay allows the controller to evaluate if the decisions influence the
ship and to avoid chattering, where the controller is stuck switching
back and forth between different decisions, such as DP and AP.

The control system can be expanded further by including more
dynamics in the ship model. The case study assumes that machinery
parts can be started immediately, which is not the case. Although the
specific time necessarily varies for different engines, it will have to
be included when making decisions. This type of dynamics could be
included in the control system as limits to how often decisions can be
changed. The risk model can also be modified to include starters for the
different machinery parts. For example, for the main engine to function,
both the starter and engine would be necessary.

Similar dynamics can be included for changing load on the ma-
chinery and the speed of the ship. In particular, reducing the speed
of the ship takes time, depending on the size of the ship. The ship
simulator includes a time delay on load changes and uses some time
to change the speed of the ship. However, the SRC does not account
for this specifically when it makes decisions. Therefore, including more
dynamics in the control system and risk model is an interesting topic
for further research.

4.4. Challenges with measuring risk in cost function

The proposed control system uses a cost function to make decisions
about MSO-mode, SO-mode, and speed reference. This cost function
estimates the cost of operating and sailing the ship, and the potential
cost of hazardous events. The cost of sailing and operating the ship
is straightforward to calculate and use in a cost function because it
is already measured as cost. However, to combine this with risk cost
is a bigger challenge. The STPA analysis can identify potential haz-
ardous events but is only a qualitative analysis that does not consider
likelihood of these events or the following cost.

This work addresses this problem by extending the analysis to
consider consequences and classifying these in terms of cost. The STPA
results and consequences are modeled in a BBN to give a likelihood of
the consequences. The likelihood is multiplied with the consequence
cost to give a risk cost to use in the cost function. Decisions are then
made based on the current time, without considering how this can
change in the future. Risk could be alternatively assessed by simulating
how changing conditions and decisions affect the cost over a longer
time. This would make the SRC more like an MPC, which could find
the optimum set of decisions to minimize the cost over a longer time
period. However, this would mean running a lot of simulations to check
all potential combinations. Investigating this further could be subject
for further research.
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4.5. Risk modeling and integration with the ENC module

In the proposed control system, information about grounding ob-
stacles is important for the risk model because it allows the model to
assess the area around the ship. This information, and other data about
the relevant area, is available in ENCs. The ENC module is an efficient
tool for extracting and filtering this information to enable it to be used
to describe the navigation area in the risk model. The control system
uses the distance to the closest area where the ship can ground and the
density of such areas as inputs to the risk model. Together with weather
and traffic data, this determines how challenging it is to maneuver the
ship.

The ENC module used in this work do not account for navigational
markers, as this is not currently implemented in SeaCharts. For an
autonomous ship, knowing where different navigational markers and
their meaning is an important part of operating safely. The proposed
control system itself can utilize this information in the risk model to get
a better understanding of the environment when this become available
with the SeaCharts package. However, the current ENC module is still
considered sufficient to demonstrate that the proposed control system
works.

The ENC module also provides an efficient way to plot the ship
during testing, and is used when testing the control system to see how
well the ship follows the route and identifies problems in specific areas.
Compared to just using the position data, without grounding obstacles
and land, this approach makes it much easier to understand and/or
verify how the ship maneuvers.

Data from the ENC module can also be used to add more functions
to the control system, such as route planning. In addition, a planning
algorithm can use the ENC module to check if the route maintains the
necessary distance to land and grounding obstacles. When combined
with AIS data, this can enable the planner to account for other ships and
use this information to avoid collisions. This is an interesting extension
of the control system that would reduce the need for human supervision
and control even further. This point is left open as a relevant topic for
further research.

4.6. The efficiency of testing and verification of control systems in operation

In this work, the proposed control system is verified against the de-
sign requirements using the automatic simulation-based testing frame-
work that was introduced in Section 2.5. Using this approach sig-
nificantly increases the efficiency of building sufficient verification
evidence for the control system. [36] show that this reduces the number
of simulations necessary to verify the scenario compared to a regular
grid search, which is a large time saver when doing several design
iterations and verifying the scenario after each iteration.

The robustness surface resulting from a verification run with the
automatic testing framework enables us to quickly get an overview of
the performance of the SRC system at different regions of the scenario
space. This overview is actively used in the design process to iteratively
adjust the control system. Compared to the alternative of running
simulations manually and evaluating the resulting time series, this
offers a significant reduction in the workload. Furthermore, using STL
to evaluate the system also gives a robustness score to show not only
that it is verified but also how well the system performs.

It is also worth noting that the verification process considers a spe-
cific route and area. These can be planned such that the route includes
different environments, such as open water, coastal waters with many
islands, or tight harbor areas. The results from the verification should
then be valid for other routes with similar characteristics, as shown
in the case study. However, if the system is only tested in a distinct
environment, such as open water without obstacles, then it cannot say
anything about how the controller handles other environments.

An interesting extension of the automatic testing framework is to
also use it in an online setting and integrate it more closely with

the SRC system. This online verification system could repeatably start
verification runs at fixed time intervals. A verification run would
attempt to verify safe operation for a finite time-horizon ahead and for
a set of uncertain scenario parameters, such as environmental condi-
tions, traffic, or internal components failures. It would achieve this by
running simulations with the current situation as an initial condition
and then intelligently selecting the scenarios to simulate using the
Gaussian process model. The simulator should have an exact (software-
in-the-loop) replica of the SRC system, thereby also evaluating how
future choices of the SRC system will affect the performance in the
different scenarios. The result from a verification run would be used
as a robustness map for future scenarios. This robustness map, when
combined with data on the probability of the different scenarios, could
then be used by the SRC system to make risk-based decisions. The
concept of an online verification system operating in closed loop with
the SRC system appears to be very interesting because it enables the
SRC system to consider multiple future scenarios and at the same time
evaluate how its decisions would affect future behavior.

Another interesting extension is to use the STPA directly to define
safety requirements and simulation scenarios; see, for example, Rokseth
and Utne [41],Rokseth et al. [42]. In the current work, the scenarios
are set up to test the ship in a wide range of wind conditions and in
very different areas. However, testing similar scenarios to those that
the STPA identified when controlling the ship is challenging. Therefore,
testing in more specific scenarios based on the STPA is left for further
research.

4.7. Uncertainties and sensitivity in the data and models in the case study

The proposed control system combines existing control systems,
such as DP and autopilots, with an online risk model in an SRC. The
DP and autopilot are well described in the literature and are used on
conventional ships. However, the use of an online risk model in an
autonomous ship system and the concept of a cargo ship sailing without
humans onboard is a novel concept. This means that data describing
this is very limited, and mostly based on concepts and plans for these
types of ships.

To get sufficient data in the case study, a combination of data from
traditional manned ships, concepts for autonomous ships, geographic,
and weather data is used. The quality of geographical and weather data
is good with little uncertainty. However, the case study considers a
simplified environment and not all conditions that a real ship would
experience. For example, the wind measurements are taken over a long
period but only at a general location. The wind is therefore assumed
to be the same along the whole route, even though it will likely vary
significantly between different locations. Similarly, the charts that are
used are the same as ships use for navigation today but are simplified
to only consider shallow areas and land, and not other ships or navi-
gational marks. Although these simplifications make it possible to test
the system, they also lead to uncertainties in the results (e.g., how the
system can handle more obstacles such as other ship traffic and more
local variations in wind conditions).

The STPA used in the paper is based on a workshop with academic
industry experts. This helps to identify relevant information for the case
study, but the quantitative risk models and corresponding calculations
could still have limitations affecting the risk costs.

The input uncertainty will have a different effect on the overall
uncertainty, depending on the sensitivity of each input node. If a node
has high sensitivity, then changing it will change the risk cost more
compared to nodes with lower sensitivity. Nodes with high sensitivity
have the same effect on the uncertainty in the risk cost. Fig. 17 shows
the effect that each node has on the risk cost when setting the node
in the best and worst state. This shows that the weather conditions
have the biggest potential effect on the risk cost. Other input nodes
with a noticeable effect on the risk cost are GNSS accuracy, machinery
status, controller performance, and obstacles. However, it is important
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Fig. 17. Sensitivity analysis, showing the effect on the risk cost of setting nodes in the best and worst states.

to note that other factors than weather still give a high risk cost,
especially combinations of multiple factors. Fig. 11 shows that the risk
cost increases a lot when the GNSS data puts the ship very close to land
without reducing the speed. The machinery and control system data
are based on multiple sources that describe the system’s reliability, and
thus have less uncertainty. For weather and obstacles, the main source
of uncertainty is the previously mentioned simplifications.

Another source of uncertainty in the risk model is the sensitivity of
each input, or how much each input affect the risk cost. It is difficult to
say how much weight should be on each input but it is possible to make
some general remarks about it based on Fig. 17. For an autonomous
ship to function properly, it needs well-functioning machinery, power,
and control system. It also makes sense that sensors providing situation
awareness influence the ship, and that weather and obstacles affect the
decision-making process. The sensitivity analysis and case study show
that all these have a significant effect on the risk cost.

The fuel cost, operation cost, and loss of future income also affect
the uncertainty in the case study. Because the SRC makes decisions
based on the total cost, the balance between different cost elements
affect the decisions and the results. The fuel cost is calculated using a
lookup table of how much fuel the ship uses in different environmental
conditions and speeds. The table is made by simulating the ship to
derive the fuel consumption. These simulations use simplified models
of the machinery system, but they still give numbers similar to those
for existing ships and engines. Both operation costs and loss of future
income are estimated based on the type of ship and operation.

Based on the tests, the balance between safety and efficiency is
good. The balance between the different costs is also reasonable. Fuel
and operation costs are at the same level. The potential loss of future
income is slightly higher than the sum of fuel and operation costs
because the ship should have a higher income than just covering the
expenses. The results can be improved further by advancing the models,
and by getting more and better data, but this is left for future work.

4.8. Simplifications in the ship simulator and testing

The proposed methodology and control system is tested using a
simplified ship simulator. The simulator is based on the models given
in Fossen [56]. This provides a good tool to test the ship’s control
systems. However, the models include simplifications that affect the
ship’s behavior and control. Not including wave forces is one such
simplification. The most commonly used approach to include waves

takes a 3D model of the ship and tests it in a hydrodynamic program.
However, the data to make this 3D model is missing for the ship in
the case study, and therefore the ship is simulated without waves.
Similarly, the simulations consider a simplified propulsion system and
use approximations in the kinematic and kinetic equations.

In testing, the simulator works sufficiently to test the proposed
methodology and SRC. However, the ship is difficult to control when
turning, especially using the autopilot. Therefore, the minimum dis-
tance used in the safety verification, Section 3.5, is only 5 m. In real life,
the ship should stay further away from land. This would also add more
safety margins to the ship draft and more clearance under the keel.
Although the system has been tested with a larger minimum distance,
it then fails the safety verification at much lower wind speeds. The
ship can be operated in DP-mode, which offers much better control at
lower speeds using the tunnel thrusters to both control heading and
sideways position. However, this would mean sailing at unreasonable
low speeds when compared to the conventional ship. To get comparable
data, the autonomous ship is allowed to operate with smaller margins
in the simulations. Given that the focus of the paper is the method
for developing the SRC and how this make high level decisions, this
is deemed sufficient. Testing with more accurate ship models is left for
further work.

Accuracy in the position data is another challenge when testing
the proposed methodology. The case study assumes that the GNSS
data is accurate for use in the ship control system. However, GNSS
accuracy can be a challenge for autonomous ships, especially when
sailing between tall mountains where the signal quality can be affected
by bad satellite coverage and signals reflecting off the mountains.
How accurate the data is will vary depending on the location, but
is something that should be addressed when setting the limits in the
system verification and the control system. However, it is still sufficient
for testing the SRC and the methodology for building this. Combining
GNSS measurements with other sensors, such as radar, LIDAR, sonar,
and cameras is an option for improving the accuracy by measuring
the distance to land and other objects, instead of just using the GNSS
position. However, this is considered to be outside the scope of this
paper and is left for further work.

5. Conclusions

This paper presents a control system with risk-based decision-
making capabilities to enable the smarter and safer operation of au-
tonomous systems. The proposed control system uses an online risk
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model, which is represented by a BBN, to evaluate the operational risk,
through an SRC. An ENC module is used to provide accurate data of the
environment to both the risk model and the rest of the control system.
The online risk model provides decision support in the SRC, which can
make high level decisions. The control system has been verified against
design requirements for safety (minimum distance) and efficiency
(maximum time) using a novel formalized verification method. The
combination of the SRC with ENC and formalized verification leads to
a risk-based control system that can control autonomous ships in a safe
and efficient manner, which currently does not exist.

The proposed control system is first compared to experimental data
from an existing conventional ship in a case study along two coastal
routes. This shows that the novel controller makes similar decisions to
adjust the speed and maintain safe operation as the conventional ship,
without using significantly more time to reach the end destination. It
also shows that the controller took less risk than the conventional ship,
mainly by adjusting the speed earlier when maneuvering in narrow ar-
eas, while maintaining a higher minimum speed than the conventional
ship. This will make a bigger difference for routes that changes a lot,
such as the route through Rørvik. However, it will still have an effect
on routes with less variation between open water and narrow straits.
The second part of the case study tests how the SRC handles failures in
the machinery and propulsion system. This shows that the SRC changes
MSO-mode and SO-mode to continue safely to the final way-point.

Further work includes adding more functions to the control system
to increase autonomy, such as safe and reliable auto-docking. This
will enable the ship to leave harbor, sail to a second location/harbor,
deliver goods, and then return and dock in harbor again. This would
be a typical cargo ship or passenger operation and would thus be
an important step towards achieving highly autonomous ships. Route
planning to enable the control system to change route depending on the
risk level and environmental conditions, and looking at how a similar
system can be used for decision support to human operators are also
parts of the future work.
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Table 5
BBN Nodes, Input-RIFs are only listed as parent nodes.

Node description Parent node(s)

Cost Consequences

Consequences Harm to humans, Damage on own ship, Damage
on other ships/objects

Damage on other
ships/objects

HE, Impact speed, Type of seabed, Type of shore

Damage on own ship HE, Impact speed, Type of seabed, Type of shore

Harm to humans HE, Impact speed, Type of shore

HE H1, H2

H1 UCA-1, UCA-2, UCA-3, UCA-4, UCA-5

H2 UCA-1, UCA-2, UCA-3, UCA-4, UCA-5

UCA-1 H-RIF-1, H-RIF-2, H-RIF-3

UCA-2 H-RIF-1, H-RIF-2, H-RIF-3

UCA-3 H-RIF-2, H-RIF-3

UCA-4 H-RIF-4, H-RIF-5

UCA-5 H-RIF-4, H-RIF-5, H-RIF-6

H-RIF-1 Power, Propulsion

H-RIF-2 Power management system reliability, Controller
performance/accuracy

H-RIF-3 Weather conditions, Control of ship, Congested
waters

H-RIF-4 Controller performance/accuracy, Navigational
instruments

H-RIF-5 Navigational instruments, Visual conditions

H-RIF-6 Controller performance/accuracy Ship design
process

Power PTO, PTI, Mech, MSO-mode

Propulsion AP, DP

Weather conditions Current, Wind direction, Wind speed

Control of ship Weather conditions, SO-mode, Ship speed,
Propulsion

Congested waters Obstacle density, Distance to closest grounding
hazard, Traffic density

Controller
performance/accuracy

AP performance/accuracy, DP
performance/accuracy,
SO-mode, Weather conditions

Ship speed Controller performance/accuracy, Speed reference

Navigational
instruments

AIS, Radar, GNSS system

Visual conditions Wind speed, Fog, Rain, Snow

PTO ME state, HSG state

PTI HSG state, DG1 state, DG2 state

Mech ME state, DG1 state, DG2 state

AP MSO-mode, MP state, ST state

DP MSO-mode, MP state, BT state, AT state

Impact speed Ship speed

Appendix. BBN connections

Tables with an overview of child/parent nodes in the BBN shown in
Fig. 4.
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ABSTRACT
This paper presents a method for developing and testing a risk-based control system,
as a first step towards including the human supervisor explicitly in the design of the
system. The result is a control system with improved decision-making capabilities
compared to existing control systems. The methodology presented in the paper
uses the Systems Theoretic Process Analysis (STPA) to analyze the risks of an
autonomous ship within its concept of operations (CONOPS), and a Human-STPA
(H-STPA) is used to analyze human responsibilities and involvement. The STPA
results are then used to construct a Bayesian belief network (BBN)-based risk model
to assess the operational risk of the ship. This is represented as a risk cost, describing
the expected cost of consequences caused by potential hazardous events. This cost
is combined with fuel costs, operations costs, and the potential loss of income if
new missions are not undertaken using a supervisory risk controller (SRC). The
SRC is capable of making decisions about how the ship should be safely operated
and notifies the human supervisor in due time when it is necessary for them to
take control. The last part of the methodology presented in this paper is testing
the control system using a set of verification objectives based on results from the
STPA and H-STPA. A case study involving an autonomous cargo ship with a human
supervisor located in a remote operation center (ROC) is included; it shows that
the proposed control system can operate the ship safely in different conditions and
situations. By designing the SRC to notify the human supervisor before it reaches
its operational limit, the ship is able to operate in a wider range of conditions
compared to when just the autonomous control system is in charge. Hence, the
proposed methodology shows promising results and provides useful insights related
to shared control for autonomous ships.

KEYWORDS
Autonomous Systems; Risk Modeling; Ship Control Systems; Human-Autonomy
Collaboration; Systems Theoretic Process Analysis; Bayesian Belief Networks

1. Introduction

Ship control systems have advanced from early autopilots to dynamic positioning
(DP) systems, and currently they are moving towards control of autonomous ships.
Autonomous ships are expected to improve general safety at sea (Wróbel et al. 2017;
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de Vos et al. 2021) by reducing the number of humans at risk. In general, much work
has been done on identifying different risk factors and performing risk assessments of
autonomous ships. Fan et al. (2020) present a framework for identifying navigational
risk factors for autonomous ships. Johansen and Utne (2020) suggest using the Systems
Theoretic Process Analysis (STPA) as the basis for building risk models describing
autonomous ships and discuss additional methods for finding more data. Chaal et al.
(2020) propose using the STPA to model the ship control structure in order to describe
the system functionalities. Valdez Banda et al. (2019) use the STPA for the hazard
analysis of autonomous passenger ferries. The STPA is also used in Wróbel et al.
(2018) to develop a model for analyzing safety and providing recommendations for
designing autonomous vessels. However, none of these papers use the results of the risk
analyses to control autonomous ships. Other works have proposed using risk models to
predict the loss of AUVs (Brito and Griffiths 2016; Loh et al. 2020a,b) or to manage
uncertainty in AUV missions (Brito 2016). Risk is also included in multiple papers
discussing collision avoidance (Hu et al. 2017; Wang et al. 2019; Woo and Kim 2020;
Lyu and Yin 2019; Li et al. 2021; Gil 2021), but at a more general level.

Even with the continuous development and improvement of ship control systems,
it is expected that humans will remain important in the safe and efficient operation
of autonomous systems (Ramos et al. 2020b,a). Therefore, an important issue when
developing autonomous ships is designing control systems that support the safe tran-
sition between autonomous and human control.
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Ramos et al. (2020b) present a method for analyzing cooperation between humans
and autonomous ships called the Human-System Interaction (H-SIA) method. The
method is used in a case study to analyze a collision scenario. Ramos et al. (2020a)
present a generic approach for analyzing failures in the interaction between the sys-
tem and humans and demonstrate this approach by analyzing an autonomous ship.
Hogenboom et al. (2021) discuss how the available time affects risk when humans must
take over control in DP operations. Parhizkar et al. (2020) propose a risk management
framework for DP operations to provide decision support to human supervisors and
test the framework in a case study on DP drilling operations. Wu et al. (2022) sum-
marize and review techniques for analyzing human and organizational factors related
to maritime accidents, and they provide ideas for further development, with a focus on
humans. All these papers discuss important aspects of human-system cooperation for
ships, but they do not discuss how to include humans as a part of the control system
or specify the responsibilities of a human supervisor in shared control scenarios.

Huang et al. (2020) present a collision avoidance system that is focused on human-
machine interaction. The collision avoidance system is designed such that the decision-
making process is easy to follow and interactive for human supervisors. However, the
control system is limited to only considering collision avoidance and is not a more high-
level control system. Liu et al. (2022) discuss multiple issues and challenges related
to human-machine cooperation with autonomous ships. They also discuss unsolved
problems that should be tackled as part of further development and therefore provide
ideas for further work. Rødseth et al. (2021) propose an operational envelope that
includes sharing control responsibilities between humans and the control system. They
show how this can be done in a general way to account for most geographical areas
and operations, but they do not demonstrate how this information can explicitly be
used to design the control system.

Porathe (2021) discusses how to design the autonomous control system to provide
better decision support for human supervisors of autonomous ships. The paper suggests
having a copy of the control system running in a remote operation center (ROC) such
that data are readily available to human supervisors. However, the paper lacks a
description of the actual control system and how the human supervisor should be
included. Dittmann et al. (2021) describe how to design a control system complying
with international regulations on watch-keeping with a remote control center as part
of the control system. They discuss how to design the system to share information
with human supervisors and how to transfer control between the system and human
supervisors. A control structure is suggested but how the different parts function is
not specified.

Utne et al. (2020) propose using risk models in the control system, i.e., a supervisory
risk controller (SRC), to improve the decision-making capabilities and intelligence of
the system. Thieme et al. (2021) describe how to use risk analysis methods to design
control systems and propose four areas where this can be implemented. Johansen and
Utne (2022) propose a control system using Bayesian belief network (BBN)-based
risk models and show how this implementation can contribute to high-level decisions,
such as selecting the optimal machinery and control mode to ensure the safe and
efficient operation of an autonomous ship. Similar control systems have been proposed
for autonomous underwater vehicles (AUVs) performing under-ice mapping (Bremnes
et al. 2019, 2020). Yang and Utne (2022) present a set of criteria for an online risk
model for autonomous marine systems and discuss potential methods for building
the model. All these works show how risk modeling can be used to improve control
systems, but they lack the perspective of shared control and the inclusion of the human
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supervisor and his/her responsibilities in the system and operations for different levels
of autonomy.

In general, previous works on control systems for autonomous ships focus either on
the control system or human control. A limited number of papers discuss collaboration
but without discussing how to design the control system to support and interact with
the human supervisor. Safe and efficient collaboration between the human supervisor
and the autonomous system is decisive for safe operation. Hence, the objective of
this paper is to present a methodology for designing and testing a risk-based control
system, focusing on both the autonomous control system and the human supervisor.
The control system is designed to notify the human supervisor to provide them with
time to react and make alternative plans when necessary. The proposed control system
is tested in a case study involving an autonomous coastal cargo ship. This paper is the
first attempt to include both the autonomous control system and the human supervisor
in the SRC to ensure safe ship operation.

Table 1. Summary of key aspects of the proposed control system compared to existing control systems

Proposed control system Existing control systems

Main features/tasks High-level risk-based Control of specific
decision making. functions and subsystems.
Optimum control of Optimizing energy
autonomous ships. consumption.

Integration with Controller designed to Human supervisor/operator
humans notify human supervisor assumed to constantly

in case of emergencies. monitor control system
in case of emergencies.

Possible application Control of autonomous ships. Control of autonomous ships.
areas Decision support system for Decision support system for

human operators and human operators and
supervisors. supervisors.

Limitations and challenges Including risk and safety Automation of ship control systems.
addressed in optimum control of ships. Optimum control of ship subsystems.

Inclusion of human supervisors.

2. Background

2.1. Level of autonomy

The level of autonomy (LoA) is used to describe the functionality of autonomous
systems and how they are related to the human operator/supervisor. In this paper,
four LoAs are used; they are based on Utne et al. (2017) and shown in Table 2.

Level one describes an automated system in which the human operator has full
control of the system. The system is dependent on human supervisors who monitor
and control the system. The human operator and the system can be located in different
places. In level two, the system has more automation, but it still needs a human
operator to make decisions about how it should operate. At level three, the system can
follow a plan. If the operation deviates from the plan, the system can suggest changes
to the plan, but the human supervisor must accept these changes. If the operation goes
according to plan, the human supervisor is ”out of the loop.” At level four, the system
operates without human control. Humans can be informed about the progress of the
system, but the system is operating independently. The human supervisor has limited
or no ability to take control of the ship, but they may provide input to the system. It
is important to note that a system may switch between different LoAs in operation,
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Table 2. Levels of autonomy, adopted from Utne et al. (2017)

LoA Type Description

1 Automatic operation / The system operates automatically with a remote human operator.
Remote control The human operator has full control of the system.

The system can have pre-programmed functions implemented.
2 Management by The control system can make recommendations about specific parts

consent of the operation. The human operator still controls the operation.
The system can perform many tasks independently, if
they are approved by the human operator.

3 Management by The system automatically executes the mission plan and has the
exception ability to make small changes when the available time is too short for

human intervention. The human supervisor can take control of the
system or change the plan. The human supervisor is notified by the
system when it is necessary to take over or update the plan.

4 Highly autonomous The system automatically plans and executes the operation.
operation The system can change and alter the plan during operation.

Humans can be informed about the operation, but the system operates
independently.

i.e., high and low LoAs, and the system may also include sub-systems operating at
different LoAs at the same time.

This paper focuses on an autonomous ship operating at LoA 3. The ship can follow
preplanned routes, choose which preplanned route to follow, and change the speed,
machinery mode, and control mode. To make bigger changes to the plan, such as
deviating from the preplanned routes due to weather conditions, the human supervisor
must assess the situation and agree to the new route proposed by the control system.
To support the decision-making abilities of the human supervisor, the control system
should be designed to provide enough time and information for human intervention.
If the human supervisor need to react, the controller should still maintain the ship in
a safe condition by for example maintaining its current position using DP. Collision
avoidance is considered outside the scope of this work due to the complexity of building
a control module for handling this. It is also assumed that collision avoidance would
function otuside the control system proposed in this paper due to the criticality of
such decisions and the time available to avoid collisions with other ships.

2.2. Human-autonomy collaboration

The ship considered in this paper is an unmanned cargo ship operating along the
Norwegian coast. The ship has no crew aboard but is connected to a remote operation
center (ROC). In the ROC, a human supervisor has access to the same information
and data as the control system on the ship, but he/she also has the ability to remotely
take control of the ship. The human supervisor, however, is not monitoring the ship
during normal operation. Only after a notification will the human supervisor take
control of the ship, and therefore they need some amount of time to obtain a sufficient
awareness of the situation and react appropriately.

There are three main types of notifications sent from the control system to the
human supervisor. First, the control system sends a notification when it is unable
to maintain the safe operation of the ship or when it determines that it is likely to
lose control in the near future. The control system is designed to go into a ”minimal
risk condition” mode if it determines that it is unsafe to continue and it also notifies
the supervisor. To exit this mode, the human supervisor has to take remote control
of the ship or indicate that the control system can continue to operate. Second, the
control system will notify the human supervisor of potential problems that he or she
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can contribute to avoiding or mitigating. The final type of notification is sent when
the control system loses control, and it is impossible to avoid an accident. In these
cases, the human supervisor’s role is to start coordinating rescue operations to limit
negative consequences and salvage the ship.

Control systems for autonomous ships are designed to reduce the need for human
control while still operating in a safe and efficient manner. However, humans are still
expected to be involved in operating the ship, especially when the situation exceeds the
autonomous capabilities of the ship. Humans will then function more as supervisors
who monitor the ship and assist when necessary rather than as operators or crews
onboard responsible for the daily operation of the ship.

Since the autonomous ship in this paper is operating at either LoA 3 or LoA 1, the
human supervisor receives these three types of notifications only. These notifications
are mainly caused by failures or conditions that exceed the operational limits or safety
constraints of the control system. In any case, the amount of time (Hogenboom et al.
2021) and information available to the human supervisor are important for a success-
ful intervention. If the amount of time is too short or information is missing, there
is less of a chance for the human supervisor to successfully take control and handle
the situation. Providing a detailed analysis of human reaction times, human reliabil-
ity, risk-based decision support for the supervisor, and human-machine interaction is,
however, outside the scope of this paper and should be the subject of future work.

To reduce the likelihood of hazardous events, the control system has the option to
enter a minimal risk condition (MRC) mode when the risk becomes too high. ISO
(2020) defines the MRC as ”a condition to which a user or an automated driving
system may bring a vehicle after performing the minimal risk manoeuvre in order to
reduce the risk of a crash when a given trip/voyage cannot be completed.” For the
autonomous ship in this paper, it is very difficult to eliminate all risk, but the risk
can still be reduced to a level that is as low as reasonably practicable (ALARP). For
further information on the definition of ALARP, please see HSE (2001).

3. Methodology

The proposed methodology extends and further develops the work in Utne et al. (2020),
Johansen and Utne (2022), and ”Johansen et al. (2023) by adding more advanced
functionalities to the controller, such as the ability to select different routes to follow,
and adding a specific MRC mode that the ship can enter when the risk becomes
too high. Furthermore, interaction with the human supervisor is considered; it is not
included in the above-mentioned studies. Specifically, the SRC in this paper is a high-
level controller that can manage the ship control system. The SRC makes decisions,
such as selecting the control mode for the navigation system and selecting how the
machinery system should be operated. The methodology proposed for developing the
SRC in this paper is a five-step process:

• Perform an STPA of the ship and a fault tree analysis (FTA) of critical sub-
systems.

• Extend the STPA with a Human-STPA (H-STPA).
• Develop an online risk model and assign inputs for the different nodes, such as
sensor measurements and data from electronic navigational charts (ENCs).

• Set up the SRC and integrate it with the rest of the control system, including
the motion and machinery controllers.
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• Verify the control system in scenarios based on the STPA and H-STPA.

The STPA is used to get a good overview of unsafe control actions related to the
ship and control system within its concept of operations (CONOPS). This forms the
basis for building the risk model, deciding what data need to be extracted from ENCs
to use in the control system, and setting up the SRC. To ensure a safe interaction
between the human supervisor and the autonomous system, an H-STPA is performed.
The results from this analysis are also used when setting up the control system to
enable the human supervisor to interact with the control system in a safe and efficient
manner. Then, the system is tested in different scenarios, which are formulated based
on the STPA and H-STPA results, to verify that it functions as intended. The testing
should include both easy and challenging scenarios.

3.1. Extended STPA and fault tree analysis

The STPA is based on Leveson (2011), and the extended STPA proposed in Johansen
and Utne (2022) includes consequences as part of the analysis. In the traditional STPA,
losses are defined as a starting point, which to some extent indicates the consequences.
When developing control systems, however, it is necessary to include consequences
in more detail. Hence, ”losses” are here called hazardous events, and consequences
are explicitly described. This is also in line with the bow-tie model (Rausand and
Haugen 2020). The STPA starts by describing the ship and the CONOPS, including the
machinery, propulsion, and control system. The CONOPS should provide information
about the intended routes and/or area of operation, potential cargo aboard the ship,
schedule, and limitations concerning when and where the ship can sail.

The STPA then defines hazardous events that, under certain conditions, can cause
negative consequences for the ship. The rest of the analysis follows the normal STPA
process by identifying system-level hazards, unsafe control actions (UCAs), loss sce-
narios, and causes.

Critical systems related to power, propulsion, and navigation sensors that emerge
from the STPA are then analyzed using a qualitative FTA. The reason for this is that
such systems are monitored, and the FTA provides information about whether the
ship still has the necessary redundancy to continue or if it should notify the human
supervisor about the situation to obtain assistance and enter the MRC.

3.2. Human-STPA

A Human-STPA is used to identify causal factors that affect the human supervisor’s
ability to intervene. This is done using an STPA by modeling the human supervisor
as a human controller, as proposed by France (2017). Each possible action from the
human supervisor is a control action that can be analyzed. The focus in this step is on
how the control system should be designed to make it as safe and efficient as possible
for a human supervisor to take control of the ship and to make decisions.

The analysis uses the same control structure as the regular STPA but it focuses on
the human supervisor instead of the SRC. The rest of the analysis follows the same
approach and considers the same hazardous events and system-level hazards. As with
the SRC, the human supervisor has a set of available control actions that is analyzed
to identify UCAs and specify scenarios in which these UCAs may occur.
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3.3. Building the online risk model

The STPA results are used as the basis for building the BBN risk model. A detailed
description of this process can be found in Utne et al. (2020). The BBN is made into an
online risk model by connecting input risk influencing factors (RIFs), i.e., by connect-
ing parent nodes to the control system, and deciding when to update nodes with new
information. This includes describing the data required from electronic navigational
charts (ENCs), which are required for the path planning and safe navigation of the
ship.

An important source of data for the online risk model is ENCs. These contain nav-
igational information about the area, such as the water depth, land, and navigational
marks. However, the charts contain so much data that these data need to be processed
to be useful in both the online risk model and the rest of the control system. The ENC
module used in this paper is based on the work of Blindheim and Johansen (2022).
The ENCs provide necessary information about the area around the ship so that the
SRC can include this information in its decision-making process. The module is based
on SeaCharts, an open-source Python package for displaying and manipulating charts.
The module uses FGDB 10.0 charts with 2D data concerning the relevant areas. These
data are processed and filtered to avoid giving irrelevant data to the control system.
The relevant data are stored in shapefiles for different water depths and land. This
makes it easier to find the water depth and the distance to points where the ship can
ground.

The ENC module is set up based on the required data from the online risk model
and the SRC. The data are then used to describe how much open water is around
the ship, how much room the ship has to maneuver, and other relevant information
to improve the decision-making process of the SRC.

3.4. Setting up the supervisory risk controller (SRC)

The SRC combines the risk cost, fuel cost, operation cost, and a penalty cost for the
potential future loss of income and delays:

Cost(d) = R(d) + F (d) +O(d) + L(d). (1)

The expected risk cost, R(d), is taken directly from the risk model. The expected
fuel cost, F (d), is derived for the remaining route. The operation cost, O(d), describes
the additional operation costs (not fuel). The potential future loss, L(d), represents the
extra time used because the ship is not sailing full speed all the time and potentially
misses deadlines because it is not able to follow the planned schedule. Notifications to
the human supervisor are included based on the results from the H-STPA. The SRC is
also implemented with a route checker to see if the ship is able to follow the route. If
not, the SRC can either switch to an alternative route or notify the human supervisor.
Changing the route is possible if an alternative route is provided and the ship has not
passed the point where the alternative route starts.

3.5. Verification of the control system

The fifth step is to verify that the control system works as intended, focusing on its
functional behavior, performance (Pedersen et al. 2022), and safety to ensure that
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it is ready for further use. This is done by simulating the ship in different scenarios
within the CONOPS using verification objectives identified from the STPA and H-
STPA. Verification objectives are formulated using a modified version of the method
proposed in Rokseth et al. (2018).

In Rokseth et al. (2018), causal scenarios are used to specify safety constraints that,
if violated, can lead to UCAs. Safety constraints are also used to derive verification
objectives. Objectives are then processed to verify that the proposed control system
can operate as intended without violating the safety constraints.

The verification objectives are processed in this study by simulating the ship in
various scenarios to see if the objectives are satisfied. This is done by setting up a set
of simulations and checking that all objectives are satisfied. An alternative method
involves using an automated testing framework, as proposed in Torben et al. (2022).

4. Case study: Autonomous coastal cargo ship

The purpose of the case study is to test the methodology and assess if the SRC will
make reasonable decisions compared to a conventional ship. The role of the human
supervisor is to make the overall plan for the SRC to follow. Furthermore, notifications
from the SRC are received in the ROC, where the human supervisor is located; they
have a communication link to the ship and the ability to assess the situation and
intervene if necessary. This is the first step towards the design and implementation of
human-in-the-loop control systems for autonomous ships.

4.1. Step 1: Extended STPA with FTA

The ship in the case study is 80 m long and 15 m wide. It is equipped with a liquid
natural gas (LNG)-powered main engine (ME), two diesel generators (DGs), and a hy-
brid shaft generator (HSG) for power production. The HSG can be used as a generator
to obtain electrical power from the ME or as an electric engine powered by the DGs.
The propulsion and steering system consists of a main propeller, two electric tunnel
thrusters, and steering machinery controlling the rudder. The control system consists
of an autonomous navigation system (ANS), an autonomous machinery management
system (AMMS), and the SRC. The ANS handles the navigation and motion control,
the AMMS controls the power production and propulsion, and the SRC makes high-
level decisions for the rest of the control system to carry out. The full STPA control
structure of the autonomous ship is shown in Figure 1. Collision avoidance is consid-
ered outside the scope of this work and therefore not included in the STPA control
structure.

The ANS has a DP controller, an autopilot (AP) controller, and an observer for
data processing. The DP controller is used for low-speed maneuvering and for station-
keeping, while the AP controller is used to control the ship at higher speeds. The DP
controller provides the required surge, sway, and yaw forces to control the position,
heading, and speed of the ship. The AP controller is a line-of-sight (LoS) guidance
controller that provides a heading reference based on the route and current ship po-
sition. The observer is used to process and check the data coming from navigation
sensors, such as the GNSS. The data coming from these sensors must be filtered to
remove noise and checked to confirm that these data are valid and do not contain
measurement errors.

The AMMS consists of a power management system (PMS), thrust allocation (TA),
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Figure 1. Control structure (adapted from Johansen and Utne (2022) and ”Johansen et al. (2023))

a speed controller, and a rudder controller. The PMS is responsible for power produc-
tion. Thrust allocation is used to convert the force commands from the DP controller
into individual thrust commands for the propulsion system. The speed controller is
used to control the load on the main propeller according to the speed reference, and
the rudder controller converts the heading angle to a rudder angle for the steering
machinery.

The SRC consists of the BBN risk model, ENC module, fuel consumption estimator,
and controller. The SRC can select two different ship operation modes (SO-modes):
DP-mode and AP-mode. When the ship is operated in AP-mode, the ANS uses the LoS
controller to send a heading reference to the rudder controller in the AMMS. The speed
reference is sent directly to the speed controller in the AMMS. The speed controller
outputs a load percentage for the main propeller to maintain the desired speed, and
the rudder controller provides a rudder angle to maintain the necessary heading angle.
In AP-mode, the main propeller provides forward thrust, and the rudder controls the
heading.

When operating in DP-mode, the DP controller calculates the force necessary to
follow the desired route or maintain a certain position when it is used for station-
keeping. The general force demand is mapped to individual thruster commands in the
TA. In DP-mode, the main propeller provides thrust (surge), and the two tunnel
thrusters control the sway and yaw. Since each degree of freedom (DOF) can be
controlled directly, the DP-mode provides more accurate control of the ship than the
AP-mode, but only at low speeds at which the tunnel thrusters are still efficient.

There are three different machinery system operation modes (MSO-modes), namely
power take out (PTO), power take in (PTI), and mechanical (Mech). In PTO, the ME
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drives the main propeller. The HSG is used as a generator to produce electricity. In
PTI, the two DGs produce electricity, and the HSG is used as an electric engine to
power the main propeller. Mech uses the ME to power the main propeller and DGs to
produce electricity.

The SRC is designed to manage the ANS and AMMS by setting the MSO-mode,
SO-mode, and speed reference. It also has the option to enter an MRC, notify the
human supervisor when necessary, and switch to an alternative route. The selection of
modes and the speed reference is done using an optimization algorithm that calculates
the cost of operating the ship and selects the set with the lowest total cost. The MRC
is entered when the risk cost becomes too high for the ship to continue sailing or when
the ship loses redundancy in critical systems. When this happens, the ship will begin
station-keeping and use the DP-controller to maintain its current position. The MRC
is not included explicitly in the risk model since model updates are paused when this
condition is triggered and remain paused until the situation is assessed by the human
supervisor. Route changes are not directly linked to the risk model; instead, they are
based on how much the ship drifts and deviates from its course in different weather
conditions.

The STPA in this paper is based on a workshop with 12 participants that focused
on risk analysis, ship control systems, and the verification of control systems. The
experts have 5–30 years of experience in both academia and industry. The workshop
was conducted in three sessions. The first two sessions were used to identify different
UCAs, which were discussed and analyzed in the third session. The sessions focused on
the ship’s machinery system and grounding and collision, but they also considered how
selecting the wrong SO-mode could lead to hazardous events. The control structure,
shown in Figure 1, includes the SRC and control responsibilities, as described above,
in addition to the AMMS and the ANS. As the SRC is a novel functionality, the
results from the workshops have been used as a basis for the analysis in this paper,
but with some modifications to account for the changed control structure and control
responsibilities due to the SRC. The STPA considers two hazardous events:

• HE1: The ship collides/allides with a ship/obstacle.
• HE2: The ship grounds or has contact with the seafloor.

Three system-level hazards can lead to these hazardous events:

• H1: The ship violates the minimum distance of separation to a ship/obstacle.
• H2: The ship violates the minimum distance of separation to shore.
• H3: The ship sails in too-shallow water.

The next step in the STPA is identifying UCAs. In this case study, UCAs are used
to identify scenarios that should be checked during the verification process. Three
types of UCAs are used in the case study: not providing a control action, providing an
unsafe control action, or providing a control action at the wrong time (too late/early).
The STPA also includes a fourth type of UCA, i.e., a signal lasts too long or stops too
soon. However, since all signals considered in this case study are discrete, this is not
relevant here. To build the BBN risk model, the relevant control actions are setting
the MSO-mode, SO-mode, and speed reference, since these are decisions made by the
SRC. In this work, changing the route is considered relevant for verification purposes
but not for building the risk model since this decision is not made based on the risk
cost. Instead, this decision is based on how much space the ship needs to maneuver
with different wind and current conditions. Entering the MRC is also a different type of
control action since this action is triggered when the ship is unable to continue sailing
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Table 3. UCAs identified in the STPA

Control action Type Context

MSO-mode Providing a control action Selecting an MSO-mode using
failed machinery

MSO-mode Providing a control action Selecting an MSO-mode that produces
a max. power that is too low

MSO-mode Not providing a control action Not selecting a different MSO-mode
when machinery parts fail

MSO-mode Not providing a control action Not selecting a different MSO-mode when the current
MSO-mode produces too little power

SO-mode Providing a control action Selecting an SO-mode using failed
propulsion parts

SO-mode Providing a control action Selecting an SO-mode unable to control
the ship with the current speed reference

SO-mode Not providing a control action Not selecting a different SO-mode when
propulsion parts fail

SO-mode Not providing a control action Not selecting a different SO-mode when the speed
reference is too high or low for the current mode

Speed Providing a control action Setting the speed reference too high when the ship has
reference limited space to maneuver
Route Not providing a control action Not changing to an alternative route when the ship is
selection unable to follow the initial route
Route Providing a control action Changing to an alternative route after passing
selection too late the point where it was possible to change the route
MRC Providing a control action Entering the MRC when the ship is unable to maintain

the current position due to propulsion failures
MRC Providing a control action Not entering the MRC when the traffic or conditions

too late become too difficult for the ship to continue

and continues until the human supervisor has assessed the situation. However, these
actions are still important to consider when verifying the resulting control system.

Table 3 shows 13 different UCAs: four for selecting the MSO-mode, four for selecting
the SO-mode, one for setting the speed reference, two for changing which route to
follow, and two for entering the MRC. These UCAs are grouped together into six
more general UCAs, as shown in Table 4. This makes the analysis easier to follow
since it limits the number of UCAs describing the same type of situation.

Table 4. UCAs for the case study

UCA Description Hazard(s)

UCA-1 The SRC changes to an MSO-mode that depends on failed H1, H2, H3
parts of the machinery system.

UCA-2 The SRC changes to an MSO-mode that is unable to H1, H2, H3
produce the necessary power.

UCA-3 The SRC changes to an SO-mode that depends on failed H1, H2, H3
parts of the machinery system.

UCA-4 The SRC changes to an SO-mode that is unable to maintain H1, H2, H3
sufficient control of the ship.

UCA-5 The SRC fails to change to an alternative route when the H1, H2, H3
ship is unable to follow the original route.

UCA-6 The SRC fails to enter the MRC when the situation makes H1, H2, H3
it necessary.

Setting the speed reference is not explicitly included in the list of UCAs since it will
impact the other UCAs as an RIF. UCA-1 and UCA-3 focus on failures that cause
the machinery and propulsion system to be unable to function as intended. UCA-2 is
related to the maximum power available in each mode, depending on the machinery
parts used, and the ability to predict how much power the ship needs in different
situations. UCA-4 is related to the ability to control the ship with respect to the
SO-mode, speed reference, and conditions around the ship. Based on the six different
UCAs shown in Table 4, the scenarios shown in Table 5 are specified.
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Table 5. Scenarios that could lead to UCAs

Scenario Description UCA

Sc-1 The SRC selects PTO as the MSO-mode when a fault in the UCA-1
ME results in a loss of power.

Sc-2 The SRC selects PTO as the MSO-mode when a fault in the UCA-1
HSG results in a loss of electric power.

Sc-3 The SRC selects Mech as the MSO-mode when a fault in the UCA-1
ME results in a loss of propulsion power.

Sc-4 The SRC selects Mech as the MSO-mode when a fault with t UCA-1
he DGs results in a loss of electric power.

Sc-5 The SRC selects PTI as the MSO-mode when a fault in the UCA-1
HSG results in a loss of propulsion power.

Sc-6 The SRC selects PTI as the MSO-mode when a fault with the UCA-1
DGs results in a loss of power.

Sc-7 The SRC selects PTO as the MSO-mode when the load on the UCA-1
main propulsion system is higher than the power the ME can
produce when it is also powering the HSG.

Sc-8 The SRC selects PTI as the MSO-mode when the total load UCA-2
on the machinery is higher than the power the DGs can produce.

Sc-9 The SRC selects AP as the SO-mode when a fault in the UCA-3
steering machinery results in a loss of steering for the ship.

Sc-10 The SRC selects AP as the SO-mode when a fault with the main UCA-3
propeller results in a loss of propulsion for the ship.

Sc-11 The SRC selects DP as the SO-mode when a fault with the main UCA-3
propeller results in a loss of propulsion for the ship.

Sc-12 The SRC selects DP as the SO-mode when a fault with the tunnel UCA-3
thrusters results in a loss of steering for the ship.

Sc-13 The SRC selects AP as the SO-mode when the speed is too low UCA-4
for the rudder to control the ship.

Sc-14 The SRC selects AP as the SO-mode when the ship is maneuvering UCA-4
in very tight areas where the AP-controller is unable to provide sufficient control.

Sc-15 The SRC selects DP as the SO-mode when the speed is too high UCA-4
for the tunnel thrusters to produce the necessary thrust to maneuver the ship.

Sc-16 The SRC fails to change the route, because the control system UCA-5
underestimates the current conditions.

Sc-17 The SRC fails to enter the MRC while it can still do so safely UCA-6
because the current conditions are underestimated.

Sc-18 The SRC enters the MRC when it is unable to maintain its position UCA-6
due to a failure with the tunnel thrusters.

The final part of the extended STPA is analyzing the consequences of the hazardous
events. This is necessary in order to be able to quantify the input data used for the
optimization of the control system. The consequences are first divided into either
damage to the ship, damage to other ships/objects/structures, and harm to humans.
Based on IMO (2018), these consequences are either severe, significant, minor, or
nonexistent. Severe damage to the autonomous ship means that the ship is unable to
continue without assistance and that it needs extensive repairs.

Significant damage means that the ship can get back to shore without assistance
but will need extensive repairs before it can sail again. Minor damage must be repaired
during the next planned maintenance period, but the ship can still sail with the damage
that has been sustained. Severe damage to other objects/structures means that it needs
immediate extensive repairs. Significant damage requires bigger repairs but is not as
time critical. Minor damage should be repaired during the next planned maintenance
period. Fatalities or serious injuries to humans are considered severe consequences.
Less serious injuries are considered significant consequences, and insignificant injuries
such as scratches and bruises are minor consequences.

The qualitative fault tree analysis focuses on three critical sub-systems identified in
the STPA as being especially important for operating the ship:

• The machinery system;
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• The propulsion system;
• The navigation sensors and communication system.

These sub-systems are analyzed in more detail to identify when the ship is unable
to continue sailing because one of these systems fails or because redundancy is lost so
that the control system can notify the human supervisor and make alternative plans.
A fault tree analysis, even though it is a qualitative analysis, provides information
about what components are necessary to operate the ship in the different SO- and
MSO-modes. The same fault trees are used to identify situations in which the ship
loses redundancy in the same systems.

Loss of power

ME
failure

HSG
failure

DG1
failure

DG2
failure

ME
failure

DG1
failure

DG2
failure

HSG

ME

DG1 DG2

ME DG1 DG2

Figure 2. Fault tree showing a loss of power production for the autonomous ship

The information from the fault trees is used to construct the BBN so that specific
components can be monitored in more detail. Each sub-system fault tree is represented
by a node in the BBN to monitor the status of each sub-system. These components
receive input from nodes in the BBN that describe the individual components.

Figure 2 shows that the machinery system can fail in two ways. If the ME, DG1,
and DG2 fail, the ship loses power. It will also lose power if the HSG fails and either
the ME or both DGs fail. If the HSG, ME, or both DGs fail, the ship loses redundancy
in the power production system. It will, however, still have the necessary power for
propulsion and navigation.

The propulsion system is analyzed in Figure 3. The propulsion system is considered
to have failed if the MP or either of the two tunnel thrusters fails. The MP is critical
since it provides forward thrust in both DP-mode and AP-mode. The tunnel thrusters
are considered critical since they are necessary to control the ship if it enters the MRC.
If the steering machinery fails, the ship can only operate in DP-mode and therefore
loses redundancy.

Figure 4 shows the fault tree for the navigation and communication system. This
system consists of the GNSS, which provides position and speed data, communication
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Figure 4. Fault tree showing a loss of navigation and communication systems onboard the autonomous ship

systems to send and receive information from the ROC, an AIS that obtains informa-
tion about other vessels around the ship, and radar for sensing ships and other objects.
The system is considered to have failed if the GNSS, communication systems, or both
radar and AIS fail. GNSS is considered to be critical for obtaining the position and
speed data that allow the ship to navigate. Communication is critical to maintaining
the connection between the ship and the ROC. In this work, either AIS or radar is
considered necessary to obtain information about other vessels around the ship. For an
actual ship, this system should also include cameras and additional sensors to ensure
sufficient situational awareness, as especially using only AIS can limit this. However,
the fault tree and sensor package shown here is considered sufficient to show how such
a system can work.
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4.2. Step 2: Human STPA

The next step is focusing more specifically on the human supervisor, who is already
included in the control structure (Figure 1) as a separate controller. In normal oper-
ation, the human supervisor is responsible for providing the plan(s) for the SRC to
follow. When the autonomous ship is sailing, the human supervisor is in the ROC with
a communication link to the ship. The human supervisor is responsible for following
multiple ships at the same time and performing other tasks in the ROC. This means
that the SRC must provide a notification in due time to allow the human supervisor
to act. In this case study, the control system is not implemented with the ability to
make new plans. The ship will therefore be operated at either LoA 3 or LoA 1.

The human supervisor can perform the following actions from the ROC:

• Notify other ships;
• Initiate and coordinate emergency actions, including contacting towing and res-
cue vessels;

• Take remote control of the ship;
• Hand over control to the autonomous system.

Table 6. HUCAs used to identify scenarios that can lead to hazardous events

HUCA Description Hazard(s)

HUCA-1 The human supervisor does not provide a notification to other ships. H1
HUCA-2 The human supervisor is too late in notifying other ships. H1
HUCA-3 The human supervisor does not initiate and organize emergency actions, H1, H2, H3

including towing and rescue.
HUCA-4 The human supervisor does not take remote control of the ship. H1, H2, H3
HUCA-5 The human supervisor is too late in taking remote control of the ship. H1, H2, H3
HUCA-6 The human supervisor takes remote control of the ship without H1, H2, H3

the necessary understanding or time to safely control the ship.
HUCA-7 The human supervisor hands over control to the autonomous H1, H2, H3

ship when the autonomous system is unable to safely control the ship.
HUCA-8 The human supervisor hands over control to the autonomous ship too early. H1, H2, H3
HUCA-9 The human supervisor is too late in handing over control to the autonomous ship. H1, H2, H3
HUCA-10 The human supervisor does not hand over control to the autonomous ship. H1, H2, H3

Based on these actions, the ten unsafe human control actions (HUCAs) shown in
Table 6 were identified. HUCAs are used to differentiate between unsafe control actions
related to the computer-based control system and unsafe control actions related to the
human supervisor. From the HUCAs, a total of 24 scenarios in which these actions
can occur are identified; they are shown in Tables 7-8 .

This table includes both scenarios in which the control system fails to notify the
human supervisor and scenarios in which the notifications are missed by the human
supervisor. The rest of the paper focuses on the former scenarios since the aim is to
design a control system that accounts for this possibility. Going into more detail on
human factors, such as fatigue and boredom, is considered outside the scope of this
work.

A challenge with integrating the human supervisor in the loop is providing enough
time for intervention, i.e., to determine when it is necessary for the control system
to notify the human supervisor. If the SRC is too late or does not provide a notifi-
cation, the human supervisor will not be able to take the necessary action. However,
if the SRC provides too many unnecessary notifications, the human supervisor may
start neglecting these notifications. Over time, this can become a serious problem;
the human supervisor may stop reacting to the notifications. The information given
in the notifications can also affect the human supervisor’s ability to react. Since the
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Table 7. Scenarios in which a control action from the human supervisor can lead to a hazardous event

Scenario Description HUCA

Sc-1 The human supervisor is not notified when the ship loses power and therefore HUCA-1
does not notify other ships that the ship has lost power and is drifting without
control.

Sc-2 The human supervisor misses a notification due to exhaustion or tiredness HUCA-1
when the ship loses power and therefore does not notify other ships that
the ship has lost power and is drifting without control.

Sc-3 The human supervisor is not notified when the ship loses propulsion and HUCA-1
therefore does not notify otherships that the ship has lost propulsion and
is drifting without control.

Sc-4 The human supervisor misses a notification due to exhaustion or tiredness HUCA-1
when the ship loses propulsion and therefore does not notify other ships that the
ship has lost propulsion and is drifting without control.

Sc-5 The human supervisor is notified too late when the ship loses power and therefore HUCA-2
notifies other ships too late that the ship has lost power and is drifting without
control.

Sc-6 The human supervisor is too late to recognize a notification due to exhaustion HUCA-2
or tiredness when the ship loses power and therefore notifies other ships
too late that the ship has lost power and is drifting without control.

Sc-7 The human supervisor is notified too late when the ship loses propulsion HUCA-2
and therefore notifies other ships too late that the ship has lost power and
is drifting without control.

Sc-8 The human supervisor is too late to recognize a notification due to HUCA-2
exhaustion or tiredness when theship loses propulsion and therefore notifies other
ships too late that the ship has lost propulsion and is drifting without control.

Sc-9 The human supervisor is not notified when the ship loses power and HUCA-3
therefore does not initiate or organize towing and rescue.

autonomous ship is not monitored continuously, the human supervisor will most likely
not have a full overview of the situation when they receive a notification. The SRC
should therefore provide the human supervisor with the information they need to react
in addition to the notification. The results from the H-STPA are used to set up up
the SRC.

4.3. Step 3: Building the online risk model

The UCAs and scenarios shown in Tables 4 and 5, respectively, form the basis of the
risk model. The risk model uses the first four UCAs. Changing the route is considered
separately based on how much space the ship needs to maneuver depending on the
wind and current. The MRC is entered when the risk cost becomes too high. When
this happens, however, updating the risk model is paused until the ship exits the MRC.
The two last UCAs are therefore not specifically added to the risk model. This also
means that only the 15 scenarios based on UCA1–UCA4 are used to identify high-level
RIFs (H-RIFs).

To reduce the complexity of the risk model, the scenarios are grouped together into
the six H-RIFs shown in Table 9. The H-RIFs are divided further into input nodes for
the risk model, as shown in Table 10.

The risk model also has input nodes connected to the hazardous events and the
consequences resulting from these events. The probability of collision/allision with an-
other ship/obstacle depends on both the probability of violating the minimum separa-
tion distance and the ability of the other ship/obstacle to avoid the collision/allision.
The consequences depend on different nodes and the hazardous event. If the ship col-
lides/allides with another ship/obstacle, the damage to the ship depends on the size
of the other ship/obstacle and the impact speed. If the ship grounds or has contact
with the seabed, the consequences depend on the impact speed, the type of shore,
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Table 8. Scenarios in which a control action from the human supervisor can lead to a hazardous event

Sc-10 The human supervisor misses a notification due to exhaustion or tiredness HUCA-3
when the ship loses power and therefore does not initiate or organize
towing and rescue.

Sc-11 The human supervisor is not notified when the ship loses propulsion HUCA-3
and therefore does not organize towing and rescue.

Sc-12 The human supervisor misses a notification due to exhaustion or tiredness HUCA-3
when the ship loses propulsion and therefore does not organize towing and rescue.

Sc-13 The human supervisor is not notified that it is necessary to take remote HUCA-4
control of the ship when the autonomous system is unable to control the ship.

Sc-14 The human supervisor misses a notification due to exhaustion or HUCA-4
tiredness that it is necessary to take remote control when the
autonomous system is unable to control the ship.

Sc-15 The human supervisor is notified too late that it is necessary to HUCA-5
take remote control when the autonomous control system is unable to
control the ship.

Sc-16 The human supervisor is too late to recognize a notification due to HUCA-5
exhaustion or tiredness that it is necessary to take remote control when the
autonomous control system is unable to control the ship.

Sc-17 The human supervisor takes remote control of the ship without the HUCA-6
necessary situational awareness to safely control the ship.

Sc-18 The human supervisor takes remote control of the ship while performing HUCA-6
many other tasks in the ROC at the same time, which results in the
unsafe control of the ship.

Sc-19 The human supervisor receives incorrect information about the situation HUCA-7
and therefore hands over control to the autonomous control system before
it is safe to do so.

Sc-20 The human supervisor has incorrect information about the system’s HUCA-7
autonomous capabilities and therefore hands over control to the control
system before it is safe to do so.

Sc-21 The human supervisor receives incorrect information about the situation HUCA-8
and therefore hands over control to the autonomous control system
when it is unsafe to do so.

Sc-22 The human supervisor has incorrect information about the system’s HUCA-8
autonomous capabilities and therefore hands over control to the control system
when it is unsafe to do so.

Sc-23 The human supervisor must perform other tasks in the ROC before control HUCA-9
is handed back to the autonomous system, which results in the unsafe
control of the ship.

SC-24 The human supervisor does not hand over control to the autonomous system HUCA-10
while performing many other tasks in the ROC at the same time, which results
in the unsafe control of the ship.

and the seabed. Harm to humans depends on the number of people aboard the other
ship/obstacle or the type of shore. Damage to other ships/obstacles depends on the
impact speed and size of the other ship/obstacle. If the ship grounds or has contact
with the seabed, the impact speed and type of shore affect the consequences. The
conditional probability tables (CPTs) are built up based on data from Johansen and
Utne (2022), DNVGL (2003), and Hassel et al. (2021) to obtain the likelihoods of the
hazardous events shown in Figure 5.

The BBN is also used to monitor the machinery, propulsion, and navigation and
communication systems based on the fault tree analysis with the nodes power status,
propulsion status, and navigation status. This provides the SRC with the information
it needs to assess whether the ship still has the necessary redundancy to continue
sailing in a given situation. The power and propulsion systems have three states, ok,
minimum, and failed, according to the fault tree analysis. Losing redundancy means
that the node is set to minimum. The ship still has power and propulsion but will
lose power and propulsion if another component fails. Each component, such as the
ME and HSG, is modeled as either failed or working. The different navigation and
communication systems are described using three states: poor, sufficient, and good.
These systems are therefore only considered as failed or ok based on the fault tree
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Table 9. High-level RIFs used in the case study with the relevant UCAs

H-RIF Description UCA(s)

H-RIF-1 Machinery health status UCA-1
H-RIF-2 Estimation of necessary power UCA-2
H-RIF-3 Propulsion system health status UCA-3
H-RIF-4 Navigational situation UCA-4
H-RIF-5 Situational awareness of the control system UCA-2, UCA-4
H-RIF-6 Control system reliability UCA-2, UCA-4

Table 10. Input nodes derived from the H-RIFs used to build the risk model

High-level RIF Description Input nodes

H-RIF-1 Machinery health status ME state
HSG state
DG1 state
DG2 state

H-RIF-2 Estimation of necessary power PMS
DP controller performance/accuracy
AP controller performance/accuracy

H-RIF-3 Propulsion system health status BT state
AT state
MP state
ST state

H-RIF-4 Navigational situation Traffic
Obstacles
Distance to closest grounding hazard
Wind speed
Wind direction
Current
Ship speed

H-RIF-5 Situational awareness of the control system Wind speed
Fog
Rain
Snow
Cameras
AIS
Radar
GNSS
Communication system

H-RIF-6 Control system reliability DP controller performance/accuracy
AP controller performance/accuracy
AIS
Radar
GNSS
Communication system

analysis. In operation, the nodes describing power and propulsion are considered failed
if the probability of losing power exceeds 0.3, and they are considered minimum if the
probability of losing redundancy exceeds 0.3. The limit is set based on testing to find
a balance between keeping the ship from stopping too often and also avoiding the
situation in which the ship continues to sail when systems are not functioning.

The ENC module is used to find the presence and density of obstacles around the
ship and the distance to the closest point the ship cannot safely navigate to. The
module is set up such that anything shallower than 5 m is considered a shallow area
that the ship must avoid in order to navigate safely. The obstacle density is based on
the distance to the closest shallow point (i.e., areas with a water depth of less than 5
m) and on how much of the water around the ship is obstructed. The water depth of 5
m is the same as the maximum draft of the ship. Using this water depth is considered
sufficient for assessing the proportion of obstructed water in this work. The ship must
then avoid shallow areas with sufficient safety margins.
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Figure 5. Online risk model BBN (adapted from Johansen and Utne (2022) and ”Johansen et al. (2023) and
extended) showing an example of the risk cost

The percentage of obstructed water is calculated by considering a disk with a radius
of 1400 m and finding the portion of the disk with land and shallow water. The radius
is set through testing to ensure that the disk gives a good picture of the sea area
surrounding the ship, considering that the ship is 80 m long. The ENC module is
checked every 30 seconds to provide updated measurements to the risk model. Testing
shows that this provides a good balance between the computation time and updated
data. This information is provided to the risk model through the nodes ”Obstacles”
and ”Distance to closest grounding hazard.”
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4.4. Step 5: Building the SRC

The SRC is set up using two sub-steps: the first involves setting up the actual controller
and testing it to identify operational limitations. The second part involves implement-
ing notifications to the human supervisor based on the results from the H-STPA.

The SRC calculates the expected cost using Equation 1 for each set of decisions
(MSO-mode, SO-mode, and speed reference). The cost is the sum of the fuel cost
F (d), risk cost R(d), operation cost O(d), and potential future loss L(d), depending
on the decisions d.

The fuel cost is calculated using a look-up table with the specific fuel consumption
(SFC) for different MSO-modes, speeds, wind conditions, and current conditions. This
is multiplied by the planned sailing distance and the fuel price, as shown in Equation 2.
This provides a good approximation for the fuel consumption, despite not accounting
for all variations due to changing angles for wind and current in different places along
the route. Calculating for each specific part of the route would also take much longer
time due to the increased complexity and need for more online simulations to estimate
the fuel consumption. The following prices of LNG and diesel are taken from Ship &
Bunker (2022): 1,326.50 USD/ton for LNG and 679.50 USD/ton for diesel. The price
is therefore dependent on the MSO-mode, since this determines the type of fuel used:

F (d) = SFC(speed, wind, current,MSO) ∗ distance ∗ Price(MSO). (2)

The risk cost is calculated from the risk model using Equation 3, which takes the
probability of each consequence category from the STPA and multiplies it by the cost
of the corresponding category. Severe consequences are given a cost of 4,550,640 USD,
significant consequences have a cost of 455,064 USD, and minor consequences have a
cost of 45,506.40 USD. These costs are estimated based on EfficienSea (2012), The
Norwegian Agency for Public and Financial Management (2018), and IMO (2018):

R(d) =Pr(severe)Csevere + Pr(significant)Csignificant + Pr(minor)Cminor

+ Pr(none)Cnone.
(3)

The operation cost is calculated by taking the cost per hour, multiplying it by the
planned sailing distance, and dividing the resulting value by the speed reference, as
shown in Equation 4. This cost includes personnel costs in the ROC and maintenance,
insurance, lubrication, spare-parts, and logistics costs. These costs are estimated to be
341.30 USD/ht, based on costs from similar ships and data from Stopford (2009):

O(d) = Costoperating ∗ distance/speed. (4)

The potential future loss is calculated similarly using Equation 5, with the expected
loss of income per hour set to 910.10 USD/h. This cost represents the potential income
if the ship was free and could start the next trip or mission earlier and calculated
similarly as the operation cost. This can also be considered as a penalty cost to balance
the risk, fuel, and operation costs.
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L(d) = Costfuture loss ∗ distance/speed. (5)

The SRC considers a constant planning horizon equal to the remaining sailing dis-
tance at the start of the mission, d0, used to calculate both fuel cost, operation cost,
and the potential future loss. The costs considered in the SRC are then the costs of
sailing another distance d0. For the case study, this is equal to around 57 km or 30
nautical miles. By using a constant distance to calculate the cost, the weights of the
risk, fuel, operation, and potential future loss are kept constant. Without a constant
distance, the SRC would put more relative weight on the risk when the distance is
small. This would cause the ship to go slower and use more energy, the closer it gets
to the final way-point.

To check a route, the SRC goes through all the way-points to determine if the ANS
can follow it with sufficient margins. Between each way-point, a set of intermediate
points is used to check that the margin is sufficient along the whole route. In this work,
the margin is set based on how accurately the ANS can control the ship in different
wind conditions.

As identified in the H-STPA, finding the right balance between providing and not
providing notifications to the human supervisor has a significant effect on the overall
performance. To achieve this, the human supervisor should only be notified when the
SRC expects that it will be unable to control the ship in the future. However, these
notifications should be made before the SRC loses control so that the human supervisor
has time to react. The human supervisor should also be notified when components,
or sub-systems, fail without warning. Based on this, the human supervisor is notified
when it become necessary to perform any of the control actions described in subsection
4.2.

The SRC receives information from the risk model about the status of the machinery,
propulsion, and navigation and communication systems, as described in subsection 4.3.
If any of these sub-systems fail, the human supervisor is notified that the ship is unable
to continue. There is little the human supervisor can do in these situations, except
for notifying nearby ships and the relevant authorities. The risk model is also used to
assess redundancy in the machinery and propulsion system. If the autonomous ship
loses redundancy in these systems, the human supervisor is notified, and the ship will
enter the MRC. The ship will also enter the MRC if the risk cost becomes too high,
e.g., due to changes in the environment or weather. In this case study, the cost limit
for the SRC to enter the MRC is set at 5,119.47 USD, which is very low compared to
the costs associated with the different consequences. However, testing shows that the
risk cost very rarely exceeds this value, and this only occurs when the ship is unable
to continue to sail safely. This is discussed further in subsection 5.2.1.

When the ship enters the MRC, it will try to maintain its current position until
the human supervisor has checked the situation and decided how to proceed. In the
MRC, the autonomous ship uses the DP-controller to maintain its position. The MSO-
mode is chosen by checking the risk model to find out which mode has the lowest risk
cost. If the ship is unable to change the active route, the human supervisor is sent
a notification that explains why the route should be changed and why the SRC was
unable to change the actively selected route.
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4.5. Step 7: Testing and verification of the control system

The SRC should be tested to check that it can control the ship in a safe and efficient
manner before implementation and/or during updates/modifications. Setting up test
scenarios starts with the different UCAs and HUCAs identified in the STPA and H-
STPA. These are used as the basis for formulating high-level safety constraints and
scenarios in which these constraints can be violated.

The STPA scenarios are mainly related to selecting an MSO-mode that is unable to
produce the necessary power, a mismatch between the speed reference and SO-mode,
using propulsion parts that have failed, or the speed being higher than it should be in
confined or narrow areas. The scenarios describing insufficient power production are
either caused by failures or due to the total load on the machinery system. Problems
with setting the speed reference can involve setting it too low to use the rudder to
steer the ship or setting it too high to use the tunnel thrusters. Scenarios identified in
the H-STPA focus mostly on when the human supervisor is or should be notified. The
H-STPA also identified scenarios in which the human supervisor has an insufficient
understanding of the situation (mainly scenarios 17–24). Verification objectives are
formulated based on the STPA and H-STPA scenarios; they are shown in Table 11.

Table 11. Verification objectives based on the STPA and H-STPA

Verification
objective Description

VO-1 Verify that the SRC handles machinery failures by either changing the MSO-mode
or entering the MRC-mode.

VO-2 Verify that the SRC selects a safe combination of the SO-mode and speed reference.
VO-3 Verify that the SRC enters the MRC with sufficient time and functionality for the

ship to maintain its current position.
VO-4 Verify that the human supervisor is notified in the intended situations and avoid

unnecessary notifications.
VO-5 Verify that the SRC provides notifications with the necessary information to allow

the human supervisor to react to the situation.
VO-6 Verify that the SRC checks the route and, when necessary, either changes it or

notifies the human supervisor that it is unable to change the route.

The proposed control system is tested against the six verification objectives by
simulating the ship and allowing random changes in the system and environment. The
SRC must handle these changes, regardless of the timing and location of these changes.
The simulator is based on the equations from Fossen (2011) with simplified dynamics
and machinery models. The DP and autopilot controllers are PID controllers included
as part of the simulator.

5. Results and discussion

5.1. Results

To demonstrate the proposed methodology, the SRC is tested using the verification
objectives on a route close to Brønnøysund in a number of simulations with varying
wind and current conditions, as well as random failures in the machinery and propul-
sion system. The wind speed is from 0–21 m/s from north, east, south, and west. The
initial wind speed is increased by 0.5 m/s after each simulation, resulting in a total of
176 simulations to check. The wind is given an initial speed, with a 1 × 10−4 proba-
bility of changing at each time step during the simulation. The current is between 0
and 0.1 m/s. The current is given a random initial speed and direction that is then
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kept constant for the remaining time. Both the wind and current conditions are based
on historical data from Norwegian Meteorological Institute (2021) and Barentswatch
(2022) for the area considered, but they are assumed to be the same over the whole
area.

The ship is simulated with random failures occurring in the machinery and propul-
sion system that the SRC must handle correctly. The ship has an original route passing
through Brønnøysund (the yellow route in Figure 6) and an alternative route going
around Brønnøysund (the white route in Figure 6). The alternative route provides
more space for the ship to maneuver but is slightly longer.
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Figure 6. Map of the two routes sailed by the ship. The main route followed in simulation 1 is shown in
yellow, and the alternative route followed in simulation 2 is shown in white.

The simulator is based on a simplified ship model without waves but with the wind
and current affecting the ship. Failures are introduced using a random function in
Python; there is a 1×10−5 probability of losing either power or propulsion, and losing
redundancy, at each time step in the simulation. This is an artificially high probability
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to ensure that failures occur in order to test the controller. The wind is given an initial
speed, which may both increase and decrease. The wind has a 1× 10−4 probability of
changing at each time step. The current is given a random initial speed and direction
that is then kept constant for the remaining simulation time. The six verification
objectives must be satisfied in each simulation for the SRC to pass the test.

Out of the 176 simulations, the SRC enters the MRC in 28 simulations, and the
ship has a critical failure in three of these 28 simulations. The route is changed in 95
cases because of the current, wind, or a combination of both. The SRC manages to
control the ship in a safe and efficient manner from start to finish by selecting the
best MSO-mode, SO-mode, speed reference, and route according to the conditions. If
any systems fail or the conditions exceed the operational limits of the autonomous
ship, the SRC enters the MRC with sufficient time to stop and maintain its position.
The human supervisor is then able to check the situation and decide how to proceed.
Overall, the results show that the control system satisfies the verification objectives,
but it is slightly conservative for the current setup. The following subsections show
how the SRC works in some of the simulations.

5.1.1. Simulation 1: Calm wind and current without any machinery problems

The first simulation has a wind speed between 0 and 2 m/s and a current speed of
0.07 m/s. The ship has no problems with the machinery and there is thus no need
to change the route while the ship is underway. The ship starts with a speed of 7
m/s, as shown in Figure 8. This speed is reduced to 3 m/s after around 85 minutes
because the route passes through a narrow strait. The route then passes through a
more open area for a short while, and thus the speed is increased back to 7 m/s. As
the autonomous ship enters the harbor area of Brønnøysund after around 95 minutes,
the speed is reduced to around 3 m/s to account for speed limitations when sailing
close to land. The ship keeps this speed through the harbor and increases the speed
back to 7 m/s when it exits the harbor after around 115 minutes. The costs estimated

Normal
autonomous 

operation

TimeStart

SRC checks 
route --> continues 

on main route 

Ship passes 
WP2

Route finished

Figure 7. Timeline of the first simulation showing when the route is checked and the SRC decides how to
proceed

by the SRC are shown in Figure 9. As long as the decisions d (MSO-mode, SO-mode,
speed reference) and conditions stay the same, the fuel cost, operation costs, and
potential future loss stay constant since they are calculated as the assumed cost of
continuing to sail for a distance equal to d0, as described in subsection 4.4. When the
ship enters the narrower parts of the route after 85 minutes, the risk cost starts to
increase since the obstacle density increases and the distance to the closest grounding
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Figure 9. Cost in simulation 1 (d0 = distance of the full route)

hazard decreases. After a short period of around five minutes, the risk cost is high
enough for the SRC to lower the speed reference from 7 m/s down to 3 m/s. The ship
will then use significantly more time to sail another distance d0, which increases the
operation costs and potential future losses. The fuel cost is reduced slightly since the
ship uses less fuel and switches to PTI, which is cheaper with respect to fuel costs.

The SRC changes the MSO-mode from Mech to PTI when it sails at a lower speed
since the ship then needs less power. Operating in PTI also reduces the fuel cost
slightly. The ship uses the autopilot for the whole simulation. The ship takes 150
minutes to sail the whole route and sails 57.7 km.

5.1.2. Simulation 2: Strong breeze without machinery problems

In the second simulation, the ship is sailing in wind with a speed between 10 and
11 m/s. The route is first checked at WP2, where the SRC decides to follow the
longer route (white route in Figure 6), where there are fewer obstacles to maneuver
around and more space. The two routes split at WP3, where the ship then follows the
white route. On the alternative route, the distance to the closest grounding hazard
and the obstacle density do not change enough to affect the risk cost. Combined with
the constant planning horizon, this means that the costs stay constant throughout
the whole simulation, as shown in Figure 11. Since the risk cost stays constant, the
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Figure 10. Timeline of the second simulation showing when the route is checked and when the ship starts
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Figure 11. Cost in simulation 2 (d0 = distance of the full route)

5.1.3. Simulation 3: Wind increases after the ship passes the alternative route

The third simulation shows the autonomous ship in winds with a speed of 6.5 m/s.
The ship starts with a speed of 7 m/s, similar to the first simulation. The SRC first
checks the route after passing WP2 in Figure 12. At that point, the SRC determines
that it should follow the original route because the conditions are not too bad. As the
ship continues, the wind starts to increase from the original speed of 6.5 m/s up to 8.5
m/s. At that point, the SRC reevaluates the route and determines that it would be
best to be on the alternative route since it might encounter problems if it continues.
However, the ship has passed the point where the two routes split, WP3, and turning
around is not a possible decision for the current implementation of the SRC. Instead,
the SRC enters the MRC-mode, starts slowing the ship down, and notifies the human
supervisor about the situation. At this point, the SRC stops updating the cost since
it stays in the MRC-mode until the human supervisor has decided how to proceed.
In this case, the ship stops and the simulation is stopped without showing what the
human supervisor decides to do, as shown in Figure 13. Since the SRC enters the
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MRC-mode because of the potential future situation, the costs shown in Figure 14 are
constant.
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Figure 14. Cost in simulation 3 (d0 = distance of the full route)

5.1.4. Simulation 4: Ship loses redundancy in power production
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Figure 15. Map of simulation 4

The fourth simulation shows how the SRC handles losing redundancy in the ma-
chinery system. The ship is sailing in calm weather with a wind speed of 2 m/s and a
current speed of 0.07 m/s. The ship starts with a speed of 7 m/s, similar to the pre-
vious simulations. The ship passes WP3, where the SRC checks the route and decides
to continue as planned. As the ship reaches WP9, the risk cost increases, as shown in
Figure 17, at around 85 minutes. The SRC then starts reducing the speed reference
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to maintain sufficient control. At the same time, as the ship is slowing down, the SRC
recognizes that the main engine has problems. It then decides to switch the MSO-mode
to PTI to avoid using the main engine. At the same time, the SRC decides to enter
the MRC-mode and notifies the human supervisor since the fault tree showed that
this main engine problem results in a loss of redundancy. While the human supervisor
is notified, the ship stops and maintains its position. The simulation is stopped after
the ship has stopped, without showing the decision made by the human supervisor.

Normal
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operation

Atuonomous system in MRC,
Human supervisor notified

Human supervisor 
decides how 
to proceed

Time

Ship 
stopped

Start

SRC checks 
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speed as the 
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Figure 16. Timeline of the fourth simulation showing when the autonomous system controls the ship and
when the human supervisor is notified
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Figure 17. Cost in simulation 4 (d0 = distance of the full route)

5.2. Discussion

5.2.1. Risk-based control of autonomous ships

The control system proposed in this paper uses a BBN online risk model to assess the
situation as the ship is sailing. The output from the risk model is a risk cost. This
describes the expected cost related to potential hazardous events, given the current
conditions and ship state. The risk model considers a constant time horizon equal to
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the initial estimated time needed to finish the route. The same time horizon is used
to estimate fuel and operation costs. These estimates also assume constant conditions
and a constant ship state. This approach provides a cost function that the SRC can use
to assess the risk and reward of operating the ship, even if the reward is represented
by the cost of operating the ship, i.e., fuel and operation costs. The proposed control
system can therefore find a trade-off between reducing risk and minimizing operation
costs, since there will always be some risk related to autonomous ship operation. As
shown in the case study, this enables the SRC to control the ship, similarly to how
humans control conventional ships.

The current SRC uses the risk model to obtain a ”picture” of the current risk level
and make decisions based on this picture. As shown in the case study, this results in a
good performance, and the ship is controlled in an efficient and safe manner. However,
computer-based controllers can also use simulations to predict the future state of the
ship. This enables the controller to predict how decisions affect the ship before actually
making them. This concept is already used in model predictive control (MPC): the
controller can simulate the system and compute the optimum control inputs to drive
the system towards the intended state. A similar approach could enable an SRC to plan
multiple steps ahead, instead of just making decisions based on the current situation,
which is done in the current paper.

The proposed control system enters the MRC if the risk cost becomes too high, if the
power, propulsion, or navigation and communication systems fail or lose redundancy,
or if the conditions worsen and cause the ship to be unable to follow the planned route
with sufficient margins. As described in subsection 4.4, the cost limit is set to the low
value of 5,119.47 USD; this value is especially low compared to the costs estimated
for the different consequences. However, the current cost limit ensured that the SRC
entered the MRC when the ship was unable to continue safely while also limiting
the number of times it could have continued sailing. The current limit is therefore
considered suitable for the current controller, but it should be assessed further in
future work. Assessing the MRC in more detail is also considered outside the scope of
this paper. For the purpose of showing how the proposed control system works, it is
deemed sufficient that the ship stops and maintains position. However, there might be
cases where this is not the best way due to traffic and other conditions. Considering
other ways to reduce the risk should therefore be considered in further work.

Deciding whether the power, propulsion, or navigation and communication systems
have failed or do not have sufficient redundancy is done based on the fault tree analysis
and the modeling of these systems in the online risk model. The nodes representing
the power and propulsion systems calculate the probabilities that the systems have
failed or do not have sufficient redundancy. The node representing the navigation and
communication system only calculates the probability that the system has failed since
these sub-systems are not modeled as binary systems. The threshold for when the
systems are considered to have failed or to be without sufficient redundancy is set
to 0.3 based on testing, similar to the cost limits. The controller works well with the
current models and thresholds; it operates with sufficient safety margins. However, the
fault tree analysis, models, and thresholds should be assessed in more detail in future
work.

5.2.2. Human supervisors in the operation of autonomous ships

The human element is often overlooked or briefly mentioned as part of the technical
development of the control of autonomous ships. However, since the operation of most
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ships under development and testing today still involves humans, this should still be
accounted for when new control systems are designed. Situations in which responsi-
bilities shift from the autonomous system to the human supervisor (shared control)
are especially important to consider. This paper focuses on UCAs in which the human
supervisor fails to react sufficiently that are caused by the poor design of the control
system. Other important risk factors, such as the experience level of the human su-
pervisor, human reliability, reaction time, and human-machine interactions, are not
considered here to limit the scope of the paper, but they should be studied in future
work.

In this paper, the ship can enter the MRC-mode when the SRC recognizes that
the ship performance may imply risks that are too high. This happens if the risk cost
is too high, if any of the systems analyzed with the fault tree analysis fails or loses
redundancy, or if the ship is unable to follow the planned route. When it is in the
MRC-mode, the ship stops and uses the DP-controller to maintain its position while
the human supervisor is notified. In this way, the ship is in a safe and stable situation
while the human supervisor has time to assess and make a good decision about how
to continue. The work in this paper is therefore the first step towards developing a
control system that actively supports the human supervisor. The control system should
be further improved by assessing which pieces of information should be provided to
the human supervisor in different situations. By offering better and more relevant
risk-based information through efficient human-machine interfaces (HMIs), the safety
of the systems and operations should improve. This is left as an important topic for
future research.

Another challenge with existing control systems is that humans are sometimes no-
tified so often that over time, it can become routine to cancel alarms without reacting
further. Discussing this in detail is considered outside the scope of this paper, but
the SRC is designed to avoid unnecessary notifications by allowing the autonomous
control system to make more decisions without human input, such as changing routes,
SO-modes, and MSO-modes; the system only notifies the human supervisor when it is
unable to control the ship with the proper safety and efficiency margins. Setting these
limits is still a potential challenge and a topic that should be addressed in more detail
in future work, but the proposed SRC is a step in the right direction.

5.2.3. Testing and simulation setup

The proposed methodology is tested by simulating an autonomous cargo ship con-
trolled by the SRC. The simulator is based on the models from Fossen (2011), but
with some important simplifications. These simplifications make it easier to set up
and run simulations, but they can also affect the accuracy. Not including wave forces
is one such simplification. Wave forces are usually estimated using hydrodynamic pro-
grams in which 3D models of the ship are tested. However, the data necessary to make
such models are not available for the considered ship. This affects both disturbances
from waves and also waves made by the ship, which add damping.

Another simplification is related to the machinery and propulsion system. The ma-
chinery models provide the fuel consumption and power output but include no dy-
namics. The time necessary to change loads or start/stop parts of the machinery is
therefore neglected. For the propulsion system, some simple dynamics are included by
adding a slight time delay to the thrusters. The reduction in thrust from the tunnel
thrusters at high speeds and the lack of force from the rudder at low speeds are, how-
ever, not included. As with wave forces, it is difficult to make an accurate model of
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these effects for the simulator. Therefore, the risk model is adjusted such that using
the tunnel thrusters at high speeds and the rudder at low speeds increases the risk
cost.

Including wind and current in the simulation also means some simplifications. Both
wind and current will depend on the terrain around the ship when sailing close to
shore and will change both speed and direction. However, the simulations done as
part of this work assumes that wind and current are unaffected of the topography
both over and under water. For the purpose of testing the proposed control system,
this is deemed good enough. The testing include a limited number of simulations, 176
to be specific. This is done by selecting a combination of wind directions and wind
speeds such that the ship is tested with wind from 4 different directions for each 0.5
m/s speed. The current is given a random direction and speed for each simulation.
This mean that not all combinations of wind and current are tested. To ensure that all
potential combination were tested, both wind and current would have to be varied in
a systematic manner resulting in many more simulations. However, since the proposed
control system is tested in a reasonable number of different combinations, it is deemed
sufficient to show how it works and that it can handle a wide range of conditions.

Accuracy in the control system, especially for the motion controllers, affects the
results. The motion controllers, i.e., the DP and autopilot controllers, are included in
the simulator. The DP controller is a proportional integral derivative (PID) controller.
The autopilot uses a PID controller for the heading and a PI for the speed. These have
a base tuning that offers sufficient control of the ship to test the methodology and the
SRC. However, since the SRC is a separate controller, both the DP and autopilot can
be changed to more advanced and improved controllers later. Testing the SRC with
more advanced motion controllers is left as an interesting topic for future research.
Failures in the DP system and autopilot controllers, such as losing the position while
in MRC mode, are also considered to be outside the main scope of this paper, and
therefore they are left for future work.

The GNSS accuracy will affect the ship and its ability to navigate safely. The accu-
racy of GNSS has improved significantly over the last few years, but it is still assumed
to be +/- 5 m. This can be improved using differential GNSS, but it can also be reduced
by the environment around the ship. Sailing in narrow fjords with high mountains,
where the satellite signal can be blocked and reflected by the mountains, can reduce
the position accuracy. This uncertainty in the position data is something that future
control systems for autonomous ships should account for. However, for the purpose
of testing the methodology and the SRC, the accuracy is assumed to be sufficient for
navigation in the case study. Investigating how to best account for this variation in
the position accuracy is left for future research.

The proposed control system is tested using a set of verification objectives. These
objectives are used to check that it can control the ship in a safe and efficient manner.
However, the current verification objectives only consider high-level functionalities.
This is deemed sufficient in this paper to verify the control system and show that the
methodology works. However, further work should include more detailed verification
objectives.

5.2.4. Uncertainty and sensitivity in the online risk model and SRC

The online risk model is used to assess the current situation and state of the ship to
improve the decision-making capabilities of the control system. The SRC combines the
risk cost, estimated using the online risk model, with fuel and operation costs to find
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the best way to sail the ship. Using a BBN is a good way to model different RIFs,
especially when the exact relationship between all risk factors is not known. However,
this also means that the model contains uncertainty. The structure of the BBN, states
in the different nodes, and CPTs all contribute to uncertainty in the BBN.

The structure of the BBN is based on the STPA results, which describe the dif-
ferent RIFs. The STPA offers a good foundation for the BBN structure based on the
different UCAs, scenarios, and hazardous events. Even though this reduces the model
uncertainty, the STPA is a qualitative method for identifying hazards, and it provides
less data for assigning states and building CPTs. These are therefore mostly based on
the literature and expert judgement. The STPA provides some information that can
be used to assign states for the different nodes and to determine what information is
necessary in the risk model. In the case study, the nodes with the most uncertainty
are the RIFs and UCAs; the main challenge is deciding how much each should affect
the risk cost. The effect of the different RIFs is assessed by conducting a sensitivity
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Figure 18. Sensitivity analysis showing the risk cost from the BBN with the nodes in the best and worst
conditions

analysis on the BBN risk model to see how the risk cost is affected by the different
nodes in the best and worst conditions. The results, shown in Figure 18, illustrate that
the sensitivity varies significantly. The two RIFs that have the largest effect are the
current and wind, followed by the power system, propulsion system, and PMS. Other
important nodes impacting the risk cost are the obstacle density, traffic density, and
navigation and communication systems. All these nodes can obtain good information
from sources such as Norwegian Meteorological Institute (2021), Barentswatch (2022),
Norwegian Mapping Authority (2021), and Marine Traffic (2021). The effect of failed
machinery and propulsion systems is also thoroughly discussed in the STPA. How-
ever, the sensitivity analysis indicates that the system may be tuned more towards
handling these nodes or factors, and it may potentially be neglecting other factors,
such as visibility. Testing this idea is left as an interesting and important topic for
future research.

The balance between the different terms in the cost function is also a source of
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uncertainty that affects decision-making. To reduce the uncertainty, the fuel cost and
operation costs are based on simulation testing and historical data for similar ships,
respectively. This helps reduce the uncertainty but may still affect the overall results.
Basing the risk cost on the risk model, with the associated uncertainty, together with
the potential future loss estimated based on the cost of hiring similar ships, will also
add uncertainty to the total cost. Based on the performance over a wide range of
conditions, however, the balance is assumed to be sufficient to test the proposed control
system and show how the proposed control system functions. Reducing the uncertainty
as improved data become available should be the subject of future work. This could
be accomplished through model testing or running the proposed control system as a
support system on an actual ship to see how its decisions compare to the decisions
made by the crew.

6. Conclusion

The objective of this paper was to develop a methodology for building a risk-based
control system for autonomous ships, designed with the ability to involve a human
supervisor when potential operational challenges arise. The methodology uses an STPA
as the basis for building an online risk model and for setting up the SRC, including the
human supervisor. The BBN-based risk model is used to assess the current state of the
autonomous ship and environment to obtain an estimation of the current risk. This is
represented as a risk cost, describing the expected cost from potential consequences,
given the current situation. The risk cost is combined with the cost of fuel, other
operating costs, and potential future losses caused by the ship taking a longer amount
of time to complete the current voyage. The SRC is then able to configure the ship
according to the lowest total cost.

Since humans are still expected to be involved in the operation of autonomous
ships, the proposed control system is designed with this factor in mind. The result
is an autonomous control system capable of operating the ship in a safe and efficient
manner, with the ability to assess its performance and determine whether it has the
necessary control of the ship to continue safely on its voyage. If not, it will notify the
human operator while transitioning to a minimum risk condition (MRC) to reduce the
risk level and thereby reduce the probability of a hazardous event. By analyzing the
human responsibilities with an H-STPA, the SRC can be designed to make it safer
and easier for the human supervisor to decide how the ship should continue. While the
human supervisor uses time to react and decide how to proceed, the SRC is designed
to keep the ship in an MRC to reduce the occurrence of hazardous events and serious
accidents. In this way, both the autonomous control system and the human supervisor
contribute to operating the ship safely and efficiently.

The proposed methodology and control system is tested in a case study involving an
autonomous cargo ship sailing along the Norwegian coast. The human supervisor is in
an ROC with a remote connection to the ship. The resulting control system is tested
using a set of verification objectives based on the STPA and H-STPA. The shared
control between the autonomous control system and the human supervisor enables
the ship to pass the test for a wide range of conditions and situations, including calm
winds, a strong breeze, machinery failures, and changing conditions that force the SRC
to reevaluate decisions.

This study is the first step towards designing risk-based control systems that in-
clude the human supervisor in the loop. Future work includes improving the control
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system and the human-machine interface, as well as putting more of an emphasis on
human reliability aspects and contingency situations. The current risk controller is
designed to make decisions to gradually reduce the risk cost. However, if the risk cost
is above a certain limit, the controller will go straight into the MRC-mode. Future
work should determine if the controller can reduce the risk further before entering
the MRC-mode, without compromising safety. This could enable the ship to continue
sailing in more situations. A path planner capable of planning new routes while the
ship is sailing would also improve the control system and make it capable of operating
more autonomously.
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148 
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UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles 
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Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 
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(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 
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Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
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MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
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MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 
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IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
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IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 
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IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 
Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 
Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 
IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 
and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 
fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-
based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 
Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 
Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 
layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 
Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 
maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 
propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 
and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 
behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 
plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 
stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 
Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 
collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 
Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 
Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 
current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 
Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-
Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 
Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 
operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 
Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 
in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 
Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 
Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 
axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 
monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 
presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 
 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 
Marine Structures 
 

IMT-23-
2018 

Jan-Tore Horn 
 

Statistical and Modelling Uncertainties in the 
Design of Offshore Wind Turbines 
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IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 
 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 
 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-
Roll Tank 
 

IMT-3-
2019 

Håkon Strandenes 
 

Turbulent Flow Simulations at Higher Reynolds 
Numbers 
 

IMT-4-
2019 

Siri Mariane Holen 
 

Safety in Norwegian Fish Farming – Concepts and 
Methods for Improvement 
 

IMT-5-
2019 

Ping Fu 
 

Reliability Analysis of Wake-Induced Riser 
Collision 
 

IMT-6-
2019 

Vladimir Krivopolianskii 
 

Experimental Investigation of Injection and 
Combustion Processes in Marine Gas Engines using 
Constant Volume Rig 
 

IMT-7-
2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 
to Ventilation and out of Water Condition. 

IMT-8-
2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 
Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 
Sea Ice 

IMT-9-
2019| 
 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 
Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 

IMT-12-
2019 

Jørgen Bremnes Nielsen Modeling and Simulation for Design Evaluation 

IMT-13-
2019 

Yuna Zhao Numerical modelling and dyncamic analysis of 
offshore wind turbine blade installation 

IMT-14-
2019 

Daniela Myland Experimental and Theoretical Investigations on the 
Ship Resistance in Level Ice 

IMT-15-
2019 

Zhengru Ren Advanced control algorithms to support automated 
offshore wind turbine installation 

IMT-16-
2019 

Drazen Polic Ice-propeller impact analysis using an inverse 
propulsion machinery simulation approach 

IMT-17-
2019 

Endre Sandvik Sea passage scenario simulation for ship system 
performance evaluation 



167 
 

IMT-18-
2019 

Loup Suja-Thauvin Response of Monopile Wind Turbines to Higher 
Order Wave Loads 

IMT-19-
2019 

Emil Smilden Structural control of offshore wind turbines – 
Increasing the role of control design in offshore 
wind farm development 

IMT-20-
2019 

Aleksandar-Sasa Milakovic On equivalent ice thickness and machine learning 
in ship ice transit simulations 

IMT-1-
2020 

Amrit Shankar Verma Modelling, Analysis and Response-based 
Operability Assessment of Offshore Wind Turbine 
Blade Installation with Emphasis on Impact 
Damages 

IMT-2-
2020 

Bent Oddvar Arnesen 
Haugaløkken 

Autonomous Technology for Inspection, 
Maintenance and Repair Operations in the 
Norwegian Aquaculture 

IMT-3-
2020 

Seongpil Cho Model-based fault detection and diagnosis of a 
blade pitch system in floating wind turbines 

IMT-4-
2020 

Jose Jorge Garcia Agis Effectiveness in Decision-Making in Ship Design 
under Uncertainty 

IMT-5-
2020 

Thomas H. Viuff Uncertainty Assessment of Wave-and Current-
induced Global Response of Floating Bridges 

IMT-6-
2020 

Fredrik Mentzoni Hydrodynamic Loads on Complex Structures in the 
Wave Zone 

IMT-7- 
2020 

Senthuran Ravinthrakumar Numerical and Experimental Studies of Resonant 
Flow in Moonpools in Operational Conditions 

IMT-8-
2020 

Stian Skaalvik Sandøy 
 

Acoustic-based Probabilistic Localization and 
Mapping using Unmanned Underwater Vehicles for 
Aquaculture Operations 
 

IMT-9-
2020 

Kun Xu Design and Analysis of Mooring System for Semi-
submersible Floating Wind Turbine in Shallow 
Water 

IMT-10-
2020 

Jianxun Zhu Cavity Flows and Wake Behind an Elliptic 
Cylinder Translating Above the Wall 

IMT-11-
2020 

Sandra Hogenboom Decision-making within Dynamic Positioning 
Operations in the Offshore Industry – A Human 
Factors based Approach 

IMT-12-
2020 

Woongshik Nam Structural Resistance of Ship and Offshore 
Structures Exposed to the Risk of Brittle Failure 

IMT-13-
2020 
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