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Abstract
A hydrodynamic analysis of a free-floating bottom-less upright circular dock in
waves conceived for the installation of spar-type floating offshore wind turbines
(FOWT) is carried out in this work for incident wave frequencies near the first lateral
sloshing resonance. The motions of the circular dock as well as the sloshing-induced
motions of a FOWT’s spar floating inside the dock are studied through both
semi-analytical and experimental methods in the frequency domain.

The diffraction and radiation problems in heave surge and pitch are tackled by
a domain decomposition approach under linear potential flow assumptions. In
addition, known theories used to describe sloshing waves in closed containers and
based on a decomposition of the velocity potential into sloshing eigenmodes are here
adapted for the open-bottom structure. This semi-analytical model is extended to
include the effects of solid and perforated annular baffles installed on the internal
wall of the dock. A reduced natural sloshing frequency as well as a damping ratio
estimated from the energy dissipated by the flow separation at the sharp edge of
the baffles are introduced in the free-surface boundary conditions to model the
effects of the baffles on the sloshing eigenmodes. The equations of motions are
solved, and both a sensitivity and eigenvalue analyses are carried out to assess
the differences between the numerical and experimental models, emphasising in
particular uncertainties related to the numerical modelling of the inertial matrix.

Model tests were performed at the scale 1:100 on a 0.80m diameter model in
regular waves with wave periods near the highest sloshing natural period. The
internal free-surface elevation and model’s rigid body motions were measured,
both for the case without and with a FOWT’s spar. Perforated and solid annular
baffles of width-to-dock’s internal radius ratio 0.17 were installed inside the dock at
various submergences. Few model tests included polystyrene foam balls of various
sizes and quantities covering the entire internal water surface, which is shown to
be a relatively inefficient way to damp sloshing waves unless an excessively large
amount of them is placed in the dock. In addition, few tests in irregular waves were
performed, generated from JONSWAP spectra with peak periods near sloshing
resonance.

The amplitudes and phases of the bodies’ motions and of the free-surface elevation
inside the dock are compared with those obtained with the semi-analytical model.
The results present a good agreement for the highest ratio between the submergence
of the baffle 𝑑𝐵 and the internal radius of the dock 𝑎 that was considered (i.e.
𝑑𝐵/𝑎 = 0.27), while numerical results tend to under-predict the damping ratio
for lower baffle’s submergences, most likely due to free-surface interactions. The
resonant peak amplitudes of the spar’s surge and pitch motions are reduced by
almost half when a solid baffle is installed, with a strong dependency on the
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incident wave height due to viscous dissipation caused by the baffle. A significant
reduction of the motions’ amplitudes is also observed for perforated baffles with
resonant periods closer to the case without baffle.
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Nomenclature
The main symbols and abbreviations encountered in this work are given below.
This list is not exhaustive and few symbols represent different variables or constants.
Definitions are further clarified in the text wherever necessary.

Abreviations

BB Bilge boxes

BC Boundary condition

BEM Boundary Element Method

BVP Boundary value problem

DoF Degree of freedom

FOWT Floating offshore wind turbine

WP Wave probe

Greek symbols

𝜂 (𝑘 )𝑗 [m] or [rad] Motion’s complex amplitude

𝛽𝑝,𝑞 [m2] Modal coefficient

𝒏(𝑘 ) [-] Unit vector pointing outward the body (𝑘)
𝒓 [m] Position vector

𝜖 [-] Wave steepness

𝜖𝑝 [-] Neuman’s notation

𝜂 (𝑘 )𝑗 [m] or [rad] Generalized body motions

𝜄𝑝,𝑞 [-] Root of Bessel functions or of their first derivative

𝜆 [m] Wave length

𝜈 [m2/s] Water kinematic viscosity

Ω [m3] Fluid domain or [m2] Stokes-Joukowski potential

𝜔 [rad/s] Wave frequency

Φ [m2/s] Potential flow
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𝜌 [kg/m3] Water density

Σ0 [m2] Mean internal free surface

𝜎𝑝,𝑞 [rad/s] Sloshing eigenfrequencies

𝜎′
𝑝,𝑞 [rad/s] Shifted sloshing eigenfrequency

𝜏 [-] Perforation ratio of the baffles

𝜑𝑝,𝑞 [-] Sloshing eigenfunction

𝜉1 [-] Damping ratio

𝜁 [m] Instantaneous wave elevation

𝜁𝐴 [m] Incident waves’ amplitude

𝑘 𝑝,𝑞 [rad/s] Sloshing wave number eigenvalues

𝑣𝑟 [m/s] Relative flow velocity on the baffle

Latin symbols

𝑎 [m] Dock’s inner radius

𝑎0 [m] Spar’s radius

𝑎𝐵 [m] Baffle’s width

𝑎 (𝑘 )𝑖, 𝑗 , 𝑑
(𝑘 )
𝑖, 𝑗 [kg], [kg·m] or [kg·m2] Added mass coefficients

𝑏 [m] Dock’s outer radius

𝑏 (𝑘 )𝑖, 𝑗 , 𝑒
(𝑘 )
𝑖, 𝑗 [kg/s], [kg·m/s] or [kg·m2/s] Radiation damping coefficients

𝑐 − 𝑏 [m] Bilge box’s width

𝐶𝐷 [-] Drag coefficient

𝐶𝑀 [-] Mass coefficient

𝑐 (𝑘 )𝑖, 𝑗 , 𝑓
(𝑘 )
𝑖, 𝑗 [kg/s2] Restoring coefficients

𝑑 + 𝑠 [m] Dock’s draught

𝑑0 [m] Spar’s draught

𝑑𝐵 [m] Baffle’s submergence

𝐸𝑀 [J] Mechanical energy
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𝐹𝐷 [N] Heuristic drag load in surge

𝐹𝑆, (𝑘 ) [N] or [N·m] Exciting force or moment

𝐹𝑀5 [N·m] Pitch moment on the baffle

𝑔 [m/s2] Gravitational acceleration

ℎ [m] Water depth

𝐻𝑠 [m] Significant wave height

𝐼𝑝 [-] Modified Bessel function of the first kind

𝐼 (𝑘 )5,5 [kg·m2] Body’s moment of inertia in pitch

𝐽𝑝 [-] Bessel function of the first kind

𝑘 [rad/m] Wave number

𝐾𝑝 [-] Modified Bessel function of the second kind

𝑀 (𝑘 ) [kg] Body’s mass

𝑁𝐼 to 𝑁𝑉 Number of eigenfunctions kept in each subdomain I to V

𝑂, 𝑟, 𝜃, 𝑧 Cylindrical coordinates

𝑂, 𝑥, 𝑦, 𝑧 Cartesian coordinates

𝑄0 [m3] Internal fluid domain of closed body

𝑅𝑝,𝑞 [m2/s] Modal coefficient

𝑠 [m] Bilge boxes’ height

𝑆 (𝑘 )0 [m2] Body’s mean wetted surface

𝑆𝑥 [m2·s] or [rad2·s] Power spectral density
𝑇 [s] Wave period

𝑡 [s] Time

𝑇𝑝 [s] Peak period

𝑇𝑝,𝑞 [s] Lateral sloshing natural period

𝑇𝑝𝑖𝑠𝑡𝑜𝑛 [s] Piston mode’s natural period

𝑌𝑝 [-] Bessel function of the second kind

𝑧 (𝑘 )𝐺 [m] Body’s vertical location of the centre of gravity

KC [-] Keulegan Carpenter number
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1 | Introduction
1.1 Installation of floating offshore wind turbines

Renewable energies are playing a key role in the framework of the COP21 objective
to reduce global warming. The offshore wind turbine (OWT) industry is one of the
fastest growing and one of the most promising, with high technical potential that
could provide several times the national needs in electricity for a large number
of countries (Cozzi et al., 2019). The cumulative installed capacity of OWTs has
hence known a significant increase over the last 20 years, from 45MW of installed
power in 2000, 8750MW in 2014, to more than 23GW in 2019 (Breeze, 2016).
This growth is expected to continue in the years to come, with projected installed
power higher than 200GW for 2030 (Cozzi et al., 2019). About 80% of the current
world-wide installed power is located in Europe, mostly on fixed foundations for
low water depths (<45m). Among them, monopile foundations are the most
common (80%), even though jacket (10%) or gravitational (5%) foundations are
also encountered (Ramı́rez et al., 2021).
The capacity of OWT’s units has also increased, from less than 500kW for the
very first units installed in Denmark in the early 90s, to around 6.5MW in average
nowadays (Lee and Zhao, 2020). The power produced by a wind turbine is function
of the square of the blades’ length, such that it is advantageous for the industry to
increase the size of individual units. Floating offshore wind turbines (FOWT) of
12MW with blades measuring around 100m long each are for instance currently
under development. With FOWT technologies, it also becomes possible to install
the turbines further from the coast, where stronger and more regular winds are
available. Since the first full-scale pilot FOWT Hywind developed by Equinor
in 2009 in Norway, several technologies have emerged. Three types of floating
hulls can be distinguished: semi-submersibles, spar types, or tension-leg platforms.
The spar-type Hywind FOWTs and the semi-submersible WindFloat FOWTs are
currently the only two models that have been installed in large scale projects.

In 2017 the first farm of FOWTs was installed along the coast of Scotland at
water depths around 100m. Five Hywind spar-type FOWTs were assembled in
a protected area near Stavanger, Norway, and then towed to site at 25km from
the coast of Peterhead (Skaare, 2017). The installation and assembly of FOWTs
represent today around 5-6% of the total capital expenditures (Stehly and Duffy,
2021). While fixed foundations as the monopiles are typically installed from jack-up
based cranes, or directly from floating vessels, the installation on-site of FOWTs
is particularly costly due to the technical challenges that arise from the severe
weather conditions far from the coast. To overcome these challenges and reduce
the installation costs, the concept of a 80m-diameter cylindrical and bottom-less
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1.1 Installation of floating offshore wind turbines

floating dock (cf. Fig. 1.1) was proposed by Equinor in order to create a protected
water area inside, and facilitate the assembly on site of the tower, nacelle, rotor and
blades of the FOWT onto its floating spar foundation. This cylindrical platform,
referred to in this work as ”the dock”, is intended to be anchored the time of
the operation, then lifted up and towed to the next emplacement thanks to an
adequate ballast system. The top of the dock is a 20m width annular section
allowing the deployment of cranes and storage facilities. The spar being introduced
inside the cylinder through opening gates still to be defined. A parametric study
was achieved by Jiang et al. (2020) who provided first estimations of the dock’s
dimensions, based on a minimum weight optimisation. Their work points out
the importance of hydrodynamic resonance (sloshing) inside the cylindrical dock,
which might undermine its original purpose: create a calm water area. Their
conclusions are the starting point of the current thesis, which aims to carry out an
hydrodynamic study of the project at operational weather condition.

Figure 1.1: Artist view of the floating dock used for the assembly on-site of spar-type
Hywind floating wind turbines. Sketch from Jiang et al. (2020).

12



Chapter 1 Introduction

1.2 Scope of the present work

The response of the dock in regular and irregular waves are studied in the frequency
domain under linear potential flow assumptions. The dock is in operational
condition, i.e. ballasted and moored as if a FOWT was to be assembled inside.
Waves are assumed to be long crested with low steepnesses. A special focus is made
on incident wave periods near the highest natural period of the lateral sloshing
modes. For the dock designed by Jiang et al. (2020), this natural period is around
𝑇1,1 = 8s. It is most likely to be excited by the dock’s motions in waves, as typical
wave periods far from the coast range between 5s and 25s. We mostly limit our
study to wave periods below 15s. For higher periods, the vertical resonant mode
of the water column, called piston mode, would have to be considered, and is only
briefly mentioned here (cf. Secs. 6.1.3 and 6.1.4). The natural period of the piston
mode was integrated by Jiang et al. (2020) in their design optimisation study
in order to keep it higher than typical wave periods encountered at operational
conditions. For the main draught consider in this work (80m), this piston mode
natural period is near 𝑇𝑝𝑖𝑠𝑡𝑜𝑛 = 20s. Natural periods of the dock’s motions were
also found higher than 20s by Jiang et al. (2020). In consequence, the heave
motions are negligible at operational conditions, as they are not linearly coupled
with lateral sloshing modes. We will therefore mostly focus on the surge and pitch
motions.
We propose in this work to damp the sloshing waves thanks to annular baffles rigidly
fixed to the internal wall of the tank. The baffle are either solid or perforated, and
their effects investigated both through experiments and rational methods. The
non-linear viscous effects introduced by the baffles are treated locally in Sec. 3.5,
while the rest of the flow is assumed to remain linear and inviscid. The damping
effects of free-floating polystyrene foam balls are also tested through experiments
only. The case where a FOWT’s spar is moored inside the dock is then considered
to investigate its sloshing-induced motions.

1.3 Background

1.3.1 Cylindrical structures in waves

Analytical studies of the behaviour of cylindrical bodies of revolution in waves in
the frequency domain and under the classical linear potential flow assumptions
have been extensively treated in the literature. The loads caused by the scattering
of waves on a circular cylinder fixed to the sea bottom were derived by MacCamy
and Fuchs (1954) by decomposing the velocity potential of incident waves as a
series of solutions of the Laplace equation in cylindrical coordinates. A similar
method was used by Miles and Gilbert (1968), who first solved the diffraction
problem for an upright circular cylinder with a finite draught using a domain
decomposition (DD) approach based on matched eigenfunction expansions. Their
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1.3 Background

work contained an error in the expression of the dynamic pressure below the
structure, resulting in wrong vertical forces. This mistake was pointed out and
corrected by Garrett (1971). Garrett (1970) also derived semi-analytical solutions
for the scattering loads on a hollow circular cylinder without bottom, making a
special focus on sloshing resonance. Later, both Yeung (1980) and Sabuncu and
Calisal (1981) solved the radiation problems for a closed-bottom circular cylinder,
also using a domain decomposition method to determine the velocity potential
under forced motions in order to derive added mass and damping coefficients. The
special case of a bottomless cylinder with finite wall thickness, which geometry
is very close to the one of the floating dock considered in the present study, was
treated by Mavrakos (1985) for the diffraction problem. Ilkişik and K. Kafali
(1986) solved analytically the radiation problem in surge for the same geometry,
later completed by Mavrakos (1988) for the radiation problems in all the degrees
of freedom. The geometry of the dock only differs from their studies due to that it
includes bilge boxes at the bottom of the structure.
Attempts to generalise such domain decomposition methods for any body of
revolutions were made. Kokkinowracho et al. (1986) showed that the solutions of
the radiation and diffraction problems of any body of revolution could be obtained
using known solutions for circular cylindrical bodies by discretising the body’s
surface into small circular or annular elements. Exhaustive lists of eigenfunctions,
solutions of the Laplace equation in any type of circular cylindrical domains were
for instance provided by Chatjigeorgiou (2018).
When the velocity potential is singular along the geometry, typically at sharp
corners, the domain decomposition approach often fails to represent correctly the
flow around the singularity. The consequence is that the convergence of the results
is poor, requiring a high number of eigenmodes in each subdomain around the
corner. This is for instance treated by Faltinsen et al. (2007) who studied forced
heave motions of a two-dimensional rectangular moonpool. In order to establish a
better description of the flow at the entrance of the moonpool, they express the
velocity potential as series of solutions of the Laplace equation for a flow on a
90-degrees infinite corner in infinite fluid. These eigenfunctions do not intrinsically
satisfy the other boundary conditions in the fluid domain, and a Galerkin scheme
must therefore be applied to enforce these boundary conditions.

Similar DD approaches were extended to more complex problems in recent works.
Analytical studies of porous cylindrical structures in waves were for instance carried
out by Molin and Legras (1990); Mackay et al. (2021); Konispoliatis et al. (2021);
Park and Koo (2015), in which the viscous dissipation through the porous media
is modelled as either a linear or quadratic pressure drop. Mavrakos (2004) and
Mavrakos et al. (2023) solved the radiation problem of a cylinder body inside an
annular cylinder, i.e. a geometry similar to the case of a FOWT’s spar inside the
dock (without the bilge boxes). Han et al. (2022) considered the radiation problems
in surge and heave for the same geometry as Mavrakos (1988), with a fluid of

14



Chapter 1 Introduction

lighter density inside the moonpool. Nokob and Yeung (2014a,b, 2015) solved the
diffraction problem on cylindrical moonpools with a constant angular opening,
using Green functions to deal with the absence of thickness of the moopools’ wall.
In particular, their results suggest that the wave loads can be reduced for an
optimum orientation of the moonpool’s opening with respect to incident waves.

1.3.2 Moonpools

Moonpools in waves have received a special focus since the early 2000s. Molin
(2001) derived analytical formulas to express eigenfrequencies of resonant modes in
both two- dimensional and three-dimensional rectangular moonpools. The piston
mode in his work is represented as a single degree of freedom oscillating water
column generated by a source distribution at the entrance of the moonpool. The
radiated waves are modelled by two sinks at the external edges of the ship. His
model assumes in particular that the dimensions of the moonpool are small with
respect to the vessel’s width. The piston mode natural frequency in a circular
moonpool was also investigated by Molin et al. (2018) in similar ways, both for finite
and infinite water depths. The coupling between piston mode resonance and the
motions of the ship in regular waves were further studied by Ravinthrakumar et al.
(2018, 2019) for a moonpool with recess. The importance of the viscous dissipation
caused by the flow separation at the entrance of the moonpool is particularly
emphasised in their work. When the ship is free to move, large motions of the water
column do not necessarily occur at the piston mode natural frequency. Studying
the coupling between the motions of a free-floating two-dimensional moonpool in
waves, Fredriksen et al. (2015) thus showed that little water motions was observed
at the natural piston-mode frequency, but high motions would occur at the natural
frequency in heave. In their work, the water motion is determined thanks to a
hybrid code which combines a viscous CFD solver around the moonpool, and an
inviscid linear potential solver in the far field. This approach was already used by
the same authors (Fredriksen et al., 2014) to study a two-dimensional moonpool
at low forward speed subjected to forced heave motions, with good agreement
with experimental results. As the floating dock is also expected to be towed, it
can be interesting to note from their results that a slight reduction of the piston
mode amplitude is observed for increasing forward speeds. If high water motions
in moonpools are most generally undesired, Reiersen et al. (2021) showed that
it could also be used as a pitch reduction device, taking advantage of the high
increase of added mass at the piston mode natural frequency.

A floating platform (MONOBR) with similar dimensions of the dock and intended
for the exploitation of deep-water oil fields was described by Barreira et al. (2005)
and Isaias Quaresma Masetti et al. (2012). In their work, the width of the opening
at the bottom could vary, and model tests were performed with a relatively low
draught - near half the internal diameter - focusing on the heave and piston
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mode responses to high incident wave periods. Their numerical model includes an
empirical viscous damping based on their experiments. In their results, heave’s
amplitude at resonance is reduced by more than 50% for a 30% closed bottom
compared to a fully open bottom. Jiang et al. (2020) integrated the piston mode
resonance as a constraint in their optimization study, considering a dock with
a draught about twice higher than the model of Isaias Quaresma Masetti et al.
(2012) in order to shift the piston resonance to higher periods. They also showed
that the first lateral sloshing resonance however would occur at typical operational
sea-states, and would inducing high motions of Hywind FOWT’s spars.

1.3.3 Lateral sloshing

In addition to piston mode resonance, lateral sloshing modes are also linearly
excited in moonpools, and are similar to sloshing modes in closed containers. For
large marine structures, the lateral sloshing response is generally dominated by
the lowest natural frequency. This resonant mode could not be shifted away from
typical incident wave length at operational condition by Jiang et al. (2020) and is
of primary interest in our work.
Sloshing resonance in a circular public water pool was first studied by Ostrogradsky
(1832), who already solved the spectral problem for the velocity potential in
cylindrical coordinates by separating the variables. Nowadays, generalised methods
to study both linear and non-linear sloshing responses to arbitrary excitations
in a closed tank have been established, which are for instance summarised by
Faltinsen and Timokha (2009). The velocity potential is expressed in their
work as an expansion of sloshing natural eigenmodes, solutions of the spectral
problem. By inserting this modal representation of the flow into the free-surface
boundary conditions, the so-called modal equations are established. An equivalent
formulation was proposed by Molin et al. (2002), which slightly differ from Faltinsen
and Timokha (2009)’s approach as they introduce an infinite-frequency potential in
their formulation. Non-linear formulations are not considered in this thesis, but it
can be mentioned that similar methods exist to describe weakly non-linear sloshing
problems, which are also presented by Faltinsen and Timokha (2009). These are
referred to as multimodal analyses, derived thanks to a Lagrangian method based
on the minimisation of the work of pressure forces in the fluid domain.
For the specific cases of circular cylindrical tanks and annular tanks, analytical
linear solutions have been derived (Timokha, 2015; Faltinsen et al., 2016; Lukovsky
et al., 1984; Lukovsky, 2015; Takahara and Kimura, 2012; Yue et al., 2018). These
can be compared to the geometry of the dock without and with a FOWT’s spar.
In particular, the presence of the spar inside the dock affects the sloshing natural
eigenmodes and eigenfrequencies, which is discussed in more details in Chapter 3.
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1.3.4 Ring baffles

Sloshing resonance can cause severe structural damages, and numerous attempts
to damp sloshing waves have been made. Extensive experimental and analytical
works were for instance carried out by the NASA in the 60s in order to reduce fuel
motions in cylindrical rocket reservoirs. Different damping devices were tested,
including ring baffles of various shapes, or even floating lids. The conclusions of
these studies have been summarised by Abramson (1966), later by Dodge (2000),
who both point out the superior efficiency of baffles over other types of damping
devices. A semi-analytical method was developed by Miles (1958) to estimate the
damping ratio caused by horizontal annular baffles in a cylindrical tank, which
compares well with the NASA’s experimental results.
Mathematical models were developed in more recent publications to study specifically
flows in circular tanks with annular baffles. For examples Gnitko et al. (2016),
Wang and Zhou (2010), or Gavrilyuk et al. (2006) used domain decomposition
approaches, with inviscid and irrotational flow assumptions. Wang et al. (2012)
later generalised this method for multiple ring baffles, also extended to non-linear
flows by Wang et al. (2019) through a multimodal analysis. Choudhary and Bora
(2017) considered a rigid lid covering partially the free surface of the annular tank,
pointing out a sharp increase of the first natural sloshing frequency as a function
of increasing width of the lid. Their work, however, did not include in-and-out
water motions over the lid.
Other studies tried to include the viscous effects caused by the flow separation at
the edge of the baffle, essential to estimate the damping of sloshing waves. Violent
sloshing in two-dimensional tanks with baffle was for instance treated by Jin et al.
(2022) through CFD simulations. Isaacson and Premasiri (2001) established a
purely analytical method to estimate the damping ratio caused by a baffle in a 2D
rectangular tank, and used this coefficient through linear modal sloshing theory to
describe the damped internal waves. Their method is based on the calculation of
the dissipated energy over one wave period, using Morison equation (Morison et al.,
1950). The baffle is locally considered as a 2D flat plate mirrored through the
tank. Then, the estimation of the drag coefficient for such 2D plates can be found
in many studies (Keulegan and Carpenter, 1958; Graham, 1980; Mentzoni, 2020).
Maleki and Mansour (2008) presented a similar method for circular cylindrical
tanks with annular baffle.
Another important effect of ring baffles reported by Abramson (1966) or Gavrilyuk
et al. (2006) is the shift of the natural sloshing frequencies compared to the case
without baffle. Estimations of the shifted frequencies caused by small internal
bodies in closed-tanks were derived by Faltinsen and Timokha (2009) based on
variational formulations. They showed in particular that the shift of the natural
frequency can be expressed as a function of the baffle’s added mass.

In the current work, the viscous damping and shifted natural sloshing frequency

17



1.4 Structure of the thesis

caused by ring baffles are estimated based on results derived for two-dimensional
flat plates. The plates are mirrored through the wall, and the results summed in the
angular direction. Graham (1980) presented explicit expressions of the inertial and
drag coefficients for oscillatory flows around bodies with sharp corners, valid for
low Keulegan-Carpenter (KC) numbers, typically KC<2, and provided empirical
coefficients for simple geometries, including flat plates. Mentzoni et al. (2018);
Mentzoni and Kristiansen (2019, 2020) studied extensively solid and perforated
plates under forced oscillations in infinite fluid through both experiments and
CFD simulations. In particular, they proposed empirical added mass and damping
coefficients based on their numerical simulations for perforated baffles, assuming
a similar dependency on the KC number as developed by Graham (1980) for
non-perforated plates. When the plates oscillates near the free surface, the viscous
damping is generally higher than in infinite fluid, which was documented by Molin
et al. (2007) or Song and Faltinsen (2013). More in-depth and exhaustive reviews
of the literature on oscillating solid and perforated plates have been gathered by
Ezoji et al. (2022).

Results based on the model presented in this work for a free-floating open-bottom
dock with annular baffles were also published by Moreau et al. (2022), (2023a) and
(2023b).

1.4 Structure of the thesis

In Chapter 2 the diffraction and radiation problems are solved in surge, pitch
and heave through a domain decomposition method, both for the dock with and
without a FOWT’s spar. A linear system of equations is derived from matched
eigenfunction expansions in order to solve the velocity potential in the whole fluid
domain. Scattering loads, as well as added mass and damping coefficients are
obtained by pressure integration on the bodies’ surface, and the convergence of
the results as a function of the number of eigenmodes is verified with simulations
run with the software WAMIT.
A simplified representation of the dock with a closed bottom is considered in
Chapter 3 to describe sloshing resonance. In this chapter, the internal flow is
represented as an expansion of sloshing eigenmodes, and the effects of annular
solid and perforated baffles expressed through modal equations.
Model tests were performed at scale 1:100 in the towing tank at SINTEF Ocean,
which are described in Chapter 4.
The equations of motion are set in Chapter 5, defining our numerical model as
closely as possible to the experimental one. Solutions of the radiation velocity
potentials for the case of an open-bottom dock with baffle are proposed, inspired
by the theories developed in Chapters 2 and 3. Hydrodynamic loads that account
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for the effects of the baffles are derived, and included in the equations of motion
through the added mass and damping coefficients.
Results in regular waves are presented in Chapter 6, and in irregular waves in
Chapter 7. The main conclusions and thoughts for further works are drawn in
Chapter 8.
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2 | Diffraction and radiation
We present in this Chapter a semi-analytical model based on a linear potential
flow theory and using a domain-decomposition approach to solve the radiation
and diffraction problems for the floating dock, both without and with the spar of
a FOWT. The results in term of added mass and damping coefficients, as well as
exciting forces and moments caused by incident waves are compared to the ones
obtained for the same geometries with the commercial software WAMIT based
on boundary element methods (BEM). The semi-analytical model described in
this Chapter will in particular be completed in the later Chapter 5 to include the
effects of annular baffles.
The semi-analytical models are first presented in Sec. 2.1, and the radiation and
diffraction problems treated in the Secs. 2.3 and 2.2, respectively. Convergence
studies are carried out and the results are presented in Sec. 2.4.

2.1 Governing equations

2.1.1 Linear potential flow theory

Fluid motions in hydrodynamics are generally described by the incompressible
Navier-Stokes (NS) equations (2.1) and (2.2) for a Newtonian fluid, respectively
derived from Newton’s 2nd law, and the conservation of mass:

(
𝜕V

𝜕𝑡
+V · ∇V

)
= −∇

(
𝑝

𝜌
+ 𝑔𝑧

)
+ ∇ ·

[
𝜈

(
∇V + (∇V)𝑇

)]
, (2.1)

∇ · V = 0, (2.2)

where the three-dimensional fluid velocity V and fluid pressure 𝑝 are unknown.
𝑔 = 9.81 m/s2 is the gravitational acceleration, 𝑧 the Cartesian coordinate in
the vertical upward direction, 𝜌 the fluid density and 𝜈 the kinematic viscosity.
Typically, the sea water has the density 𝜌 = 1025 kg/m3. In this current work
however, we use the density of fresh water 𝜌 = 1000 kg/m3 to stay in agreement
with the model tests that were made in unsalted water.
We assume that the flow is irrotational, i.e. ∇ ×V = 0. The flow velocity can then
be expressed as the gradient of a scalar potential:

V = ∇Φ (2.3)

Furthermore, the fluid is assumed to be inviscid. Inserting Eq. (2.3) in (2.1) and
(2.2), the vector NS equation (2.1) becomes after integration the scalar equation
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2.1 Governing equations

(2.4), also called Bernoulli equation, and Eq. (2.2) becomes the Laplace equation
(2.5), both written as:

𝜕Φ
𝜕𝑡

+ 1

2
(∇Φ · ∇Φ) = − 1

𝜌
𝑝 − 𝑔𝑧 + C, (2.4)

∇2Φ = 0. (2.5)

For fluids with an interface with atmospheric air, the constant C is found by
imposing the atmospheric pressure at the free surface boundary.
In the present work, we consider operational weather conditions, which in particular
means that the steepness of incident waves are relatively low (see more details
in Sec. 4.3.1). Water motions are thus assumed to be linear, and the quadratic
term in the left-hand side of Eq. (2.4) is neglected. This linearity assumption
should generally be made with caution for the internal flow inside the dock due to
sloshing resonance. This last point is discussed in more details in Sec. 6.1.2.

2.1.2 Semi-analytical models

In this work, we model the floating dock as illustrated in Fig. 2.1. Its geometry is
similar to the circular cylinder with thick wall studied by Mavrakos (1985, 1988),
with the addition of bilge boxes at the bottom of the dock. The hydrodynamic
loads due to pitching and heaving are generally higher with the bilge boxes, such
that they can not be neglected in our analysis. We also consider the case where
the spar of a FOWT is floating inside the dock, as illustrated in Fig. 2.2, where
the spar has a circular cross-section with constant radius 𝑎0. All the geometrical
parameters are defined in these two figures. Variables related to the spar are
denoted with the upper index (1) , and the ones related to the dock with the upper
index (2) . A Cartesian coordinate system is defined with its origin at the mean free
surface. The bodies’ mean wetted surface is denoted 𝑆0. We generally use complex
notations to simplify the calculations, where the physical quantities correspond to
the real parts of the given variables.

Long-crested incident regular waves of amplitudes 𝜁𝐴 travel in the positive x-direction
at the frequency 𝜔. The instantaneous free-surface elevation of incident waves is
expressed with cylindrical coordinates by:

𝜁0 = 𝜁𝐴𝑒
𝑖 (𝑘𝑟 cos(𝜃 )−𝜔𝑡 ) , (2.6)

where 𝑘 = 2𝜋/𝜆 is the wave number, and 𝜆 the wave length. The velocity potential
of the undisturbed incident waves is then written (Faltinsen, 1990):

Φ0 =
𝜁𝐴𝑔 cosh(𝑘 (𝑧 + ℎ))

𝜔 cosh(𝑘ℎ) 𝑒𝑖 (𝑘𝑟 cos(𝜃 )−𝜔𝑡 ) , (2.7)
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Chapter 2 Diffraction and radiation

Figure 2.1: Sketch of the upright, circular, bottomless floating dock with bilge boxes.
Explanation of parameters and the division of the domain Ω into the four subdomains
denoted I–IV used for the present analysis. A Cartesian Earth-fixed coordinate system
𝑂𝑥𝑦𝑧 is adopted with the origin at the mean free-surface and the 𝑧-axis positive upwards.

Figure 2.2: Sketch of the spar of a floating wind turbine (body (1)) inside the upright
cylindrical dock with bilge boxes (body (2)). The domain Ω is divided into five subdomains
denoted I to V. The mean wetted surface of the bodies are denoted 𝑆0.
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2.1 Governing equations

where ℎ the water depth. Due to symmetry, only the bodies’ motions in surge,
heave and pitch are excited by incident waves. The motions of both bodies are
generally expressed by:

𝜂 (𝑘 )𝑗 = 𝜂 (𝑘 )𝑗 𝑒−𝑖𝜔𝑡 , 𝑗 ∈ {1, 3, 5}, 𝑘 ∈ {1, 2}, (2.8)

where 𝜂 (𝑘 )𝑗 is the complex amplitude of the 𝑗 𝑡ℎ degree of freedom (DoF) of the
body (𝑘).
As the incident waves, the total linear potential flow Φ must also be harmonic in
𝜔 due to linearity of the problem. Φ is defined in the domain Ω as the solution of
the standard boundary value problem (BVP):

∇2Φ = 0, inΩ, (2.9)

𝜕Φ
𝜕𝑧

=
𝜔2

𝑔
Φ on 𝑧 = 0, (2.10)

𝜕Φ
𝜕𝑧

= 0 on 𝑧 = −ℎ, (2.11)

𝜕Φ
𝜕𝑛

= −𝑖𝜔𝜼 (𝑘 ) · 𝒏(𝑘 ) on 𝑆 (𝑘 )0 , 𝑘 ∈ {1, 2}. (2.12)

𝜼 (𝑘 ) is the 6-dimensional generalised motion vector of the body (𝑘), 𝒏(𝑘 ) =
[𝑛(𝑘 )1 𝑛(𝑘 )2 𝑛(𝑘 )3 ]𝑇 is the unit vector pointing outwards from the body (𝑘), 𝒓 =

[𝑟 cos(𝜃) 𝑟 sin(𝜃) 𝑧]𝑇 is the position vector, and [𝑛(𝑘 )4 𝑛(𝑘 )5 𝑛(𝑘 )6 ]𝑇 = 𝒓 × 𝒏(𝑘 ) . Φ
is commonly linearly decomposed as a scattered potential Φ𝑆, which satisfies
(2.9)-(2.11) and the body-boundary conditions 𝜕Φ𝑆/𝜕𝑛 = 0 on 𝑆 (𝑘 )0 , and radiation

potentialsΦ(𝑘 )
𝑗 which satisfy the body-boundary conditions 𝜕Φ(𝑘 )

𝑗 /𝜕𝑛 = −𝑖𝜔𝜂 (𝑘 )𝑗 𝑛(𝑘 )𝑗

on 𝑆 (𝑘 )0 when there is no incident waves:

Φ(𝑟, 𝜃, 𝑧, 𝑡) = Φ𝑆 +
∑

𝑘∈{1,2}

∑
𝑗∈{1,3,5}

Φ(𝑘 )
𝑗 . (2.13)

The free surface elevation is obtained from the kinematic free surface boundary
condition:

𝜕𝜁

𝜕𝑡
=
𝜕Φ
𝜕𝑧

in 𝑧 = 0. (2.14)

The radiated potentials can more conveniently be written:

Φ(𝑘 )
𝑗 = −𝑖𝜔𝜙 (𝑘 )

𝑗 (𝑟, 𝑧)𝜂 (𝑘 )𝑗

{
1 for 𝑗 = 3
cos(𝜃) for 𝑗 = 1, 5

. (2.15)
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𝜙 (𝑘 )
𝑗 (𝑟, 𝑧) describes the velocity potential caused by a forced motion with unit

velocity of the body (𝑘 ) in the 𝑗 𝑡ℎ DoF when there is no incident waves. In addition
to the boundary conditions (2.10) to (2.12), both the diffracted potential (Φ𝑆 −Φ0)
and the radiated potentials Φ(𝑘 )

𝑗 are local flow perturbations which must vanish far
away from the bodies. Both these potentials must therefore also satisfy a radiation
condition, which can be expressed as (Sommerfeld, 1948):

lim
𝑟→∞

√
𝑘𝑟

(
𝜕 (𝜙)
𝜕𝑟

− 𝑖𝑘 (𝜙)
)
= 0. (2.16)

For most marine structures, it is generally not possible to obtain analytical solutions
of the Laplace equation due to the complexity of the bodies’ geometry. Hence,
both the radiation and diffraction problems are typically solved by software based
on boundary element methods. In such methods, the potential flow in the whole
domain is expressed through astute mathematical transformations as generated
by combined source and dipole distributions on the body’s surface along with
a free-surface Green function. Thanks to these formulations, it is not necessary
to spatially discretise the whole domain, but only the body’s mean surface 𝑆0.
A linear matrical equation of order 𝑁panels must be solved, where 𝑁panels is the
number of panels forming the body’s mesh. The computational time associated to

these methods is typically of the order 𝑂
(
𝑁3
panels

)
, even though this time can be

reduced by iterative schemes.
In the present work, both the geometries of the dock and the FOWT’s spar have a
symmetry of revolution, allowing us to establish semi-analytical solutions of the
radiated and scattered potentials using a domain decomposition approach. The
fluid domain Ω is divided in four subdomains of revolution I-IV, similar as in
Mavrakos’ papers with an additional domain above the bilge boxes (cf. Fig 2.1). A
fifth subdomain is defined below the spar when the one is introduced in the dock
(cf. Fig. 2.2). In each subdomain, the Laplace equation is solved into an infinite

number of eigenmodes. The potential Φ𝑆 and 𝜙 (𝑘 )
𝑗 are expressed as the summation

of these eigenmodes, weighted by unknown modal coefficients. The matching of
normal velocities and dynamic pressures are averaged by integrations over each
vertical boundary common to two adjacent subdomains or by integration over the
body boundaries, resulting in a linear system of equations whose solution gives
the desired modal coefficients.
The choice of eigenmodes and the derivation of the hydrodynamic loads resulting
from the radiation and diffraction problems are presented in the two next sections
for the dock with and without the spar. In addition, the radiation and diffraction
problems for a circular cylinder as shown in Fig. 2.3 with the radius and draught of
the dock have also been solved. This simplified representation of the dock is used
in Chapters 3 and 5 as an ingredient in handling the sloshing problem, along with
sloshing theories in closed containers. The solutions of the diffraction and radiation
problems of a circular cylinder are for instance treated in details by Garrett
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(1971) and Yeung (1980), respectively, both using a similar domain decomposition
approach. The derivation of semi-analytical solutions for this geometry is therefore
not repeated in this work.

Figure 2.3: Sketch of the middle cross section of an imagined dock without bilge boxes
and with a closed bottom. Radiation and diffraction problems are solved by decomposing
the domain Ω into two subdomains, similar to Garrett (1971) and Yeung (1980).

2.2 Diffraction problem

2.2.1 Polar harmonics

In this section, the scattered potential Φ𝑆 caused by the scattering of incident
waves on the motionless dock is solved through a domain decomposition method.
First, we express 𝜁0 and Φ0 in Eqs.(2.6) and (2.7) as Jacobi-Anger expansions
(Olver et al., 2010):

𝜁0 = 𝜁𝐴
∞∑
𝑝=0

𝜖𝑝𝑖
𝑝𝐽𝑝 (𝑘𝑟) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡 , (2.17)

Φ0 =
𝑔𝜁𝐴
𝜔

cosh(𝑘 (𝑧 + ℎ))
cosh(𝑘ℎ)

∞∑
𝑝=0

𝜖𝑝𝑖
𝑝𝐽𝑝 (𝑘𝑟) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡 , (2.18)
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where 𝜖0 = 1, 𝜖𝑝 = 2 for 𝑝 ∈ N∗, and 𝐽𝑝, 𝑝 ∈ N are the Bessel functions of the first
kind (see Appendix B.1). The total scattered free-surface elevation and velocity
potential can be expressed under the same form:

𝜁𝑆 (𝑟, 𝜃, 𝑡) = 𝜁𝐴
∞∑
𝑝=0

𝜖𝑝𝑖
𝑝𝜁𝑝 (𝑟) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡 , (2.19)

Φ𝑆 (𝑟, 𝜃, 𝑧, 𝑡) = −𝑖𝜔𝜁𝐴
∞∑
𝑝=0

𝜖𝑝𝑖
𝑝𝜙𝑝 (𝑟, 𝑧) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡 . (2.20)

The expansion (2.20) follows the convention first proposed by Miles and Gilbert
(1968) and mostly used in the literature (Garrett, 1970, 1971; Mavrakos, 1985),
which introduces the displacement potentials 𝜙𝑝 (corresponding to the potentials
−𝑖𝜔𝜙𝑝). Inserting Φ𝑆 into Eqs.(2.9)-(2.11) and the non-penetration condition on

𝑆 (2)0 , and using the orthogonal properties of the cosine function, the boundary
value problem for each displacement potential 𝜙𝑝 is expressed as:

𝜕2𝜙𝑝

𝜕𝑧2
+ 1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝜙𝑝

𝜕𝑟

)
− 𝑝2

𝑟2
𝜙𝑝 = 0 inΩ, (2.21)

𝜕𝜙𝑝

𝜕𝑧
=
𝜔2

𝑔
𝜙𝑝 on 𝑧 = 0, (2.22)

𝜕𝜙𝑝

𝜕𝑧
= 0 on 𝑧 = −ℎ, (2.23)

𝜕𝜙𝑝

𝜕𝑛
= 0 on 𝑆 (2)0 . (2.24)

The kinematic free-surface boundary condition
𝜕𝜁𝑆
𝜕𝑡

=
𝜕Φ𝑆

𝜕𝑧
in 𝑧 = 0 gives the

relationship between the functions 𝜁𝑝 and 𝜙𝑝:

𝜁𝑝 (𝑟) =
𝜕𝜙𝑝

𝜕𝑧
(𝑟, 0), 𝑝 ∈ N. (2.25)

2.2.2 Floating dock with bilge boxes

Solutions of Eq. (2.21) are established in each subdomain I-IV by separating the
variables. We insert the decomposition 𝜙𝑝 (𝑟, 𝑧) = 𝑊𝑝,𝑞 (𝑟)𝑍𝑝,𝑞 (𝑧) in Eq. (2.21),
where the index 𝑞 is introduced to distinguish the different solutions of the Laplace
equation. Dividing by 𝑊𝑝,𝑞𝑍𝑝,𝑞, we get:

27



2.2 Diffraction problem

𝑍 ′′
𝑝,𝑞

𝑍𝑝,𝑞︸︷︷︸
=−𝐶2

𝑝,𝑞

+ 1

𝑟𝑊𝑝,𝑞

𝑑

𝑑𝑟

(
𝑟
𝑑𝑊𝑝,𝑞

𝑑𝑟

)
− 𝑝2

𝑟2
= 0. (2.26)

Since 𝑊𝑝,𝑞 and 𝑍𝑝,𝑞 are independent, 𝑍 ′′
𝑝,𝑞/𝑍𝑝,𝑞 = −𝐶2

𝑝,𝑞 must be constant. The
solutions for 𝑍𝑝,𝑞 are therefore trigonometric functions, for which the constants of
integration are imposed by horizontal boundary conditions. In the subdomains
with a free surface, we write either 𝐶𝑝,𝑞 = 𝛼𝑞 in the subdomains I and IV or
𝐶𝑝,𝑞 = 𝛽𝑞 in the subdomain III above the bilge boxes. The free-surface boundary
condition (2.22) and either the condition (2.23) on the sea bottom in I and IV or
(2.24) on the top of the bilge boxes in III impose the following relationships:

𝜔2

𝑔
+ 𝛼𝑞 tan(𝛼𝑞ℎ) = 0, (2.27)

𝜔2

𝑔
+ 𝛽𝑞 tan(𝛽𝑞𝑑) = 0, (2.28)

where ℎ is the water depth and 𝑑 the distance from the bilge boxes to the mean
free surface. The Eqs. (2.27) and (2.28) admit only one imaginary solution
(Chatjigeorgiou, 2018), respectively 𝛼0 = −𝑖𝑘 and 𝛽0 = −𝑖𝑘, and an infinity of real
solutions, respectively 𝛼𝑞 and 𝛽𝑞, 𝑞 ∈ N∗, ordered by increasing values. The wave
numbers 𝑘 and 𝑘 are real and satisfy the dispersion relationships:

𝜔2

𝑔
= 𝑘 tanh(𝑘ℎ) (2.29)

𝜔2

𝑔
= 𝑘 tanh(𝑘𝑑). (2.30)

𝑍𝑝,𝑞 are then given by:

𝑍𝑞 (𝑧) = 𝑁− 1
2

𝑞 cos(𝛼𝑞 (𝑧 + ℎ)), 𝑞 ∈ N, in I and IV, (2.31)

𝑍𝑞 (𝑧) = 𝑁− 1
2

𝑞 cos(𝛽𝑞 (𝑧 + 𝑑)), 𝑞 ∈ N, in III. (2.32)

The normalised coefficients

𝑁𝑞 =
1

2

[
1 + sin(2𝛼𝑞ℎ)

2𝛼𝑞ℎ

]
, (2.33)
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𝑁𝑞 =
1

2

[
1 + sin(2𝛽𝑞𝑑)

2𝛽𝑞𝑑

]
, (2.34)

were introduced similar to Miles and Gilbert (1968), such that 𝑍𝑞 and 𝑍𝑞 satisfy
the orthonormal conditions:

1

ℎ

∫ 0

−ℎ
𝑍𝑖 (𝑧)𝑍 𝑗 (𝑧)𝑑𝑧 = 𝛿𝑖, 𝑗 , (𝑖, 𝑗) ∈ N

2, (2.35)

1

𝑑

∫ 0

−𝑑
𝑍𝑖 (𝑧)𝑍 𝑗 (𝑧)𝑑𝑧 = 𝛿𝑖, 𝑗 , (𝑖, 𝑗) ∈ N

2. (2.36)

𝛿 is the Kronecker delta symbol.

When the constant 𝐶2
𝑝,𝑞 is strictly negative, Eq. (2.26) for 𝑊𝑝,𝑞 is called the Bessel

equation. Solutions are Bessel functions of the first and second kinds, respectively
𝐽𝑝 and 𝑌𝑝. For strictly positive 𝐶2

𝑝,𝑞, Eq. (2.26) becomes the modified Bessel
equations whose solutions are the modified Bessel functions 𝐼𝑝 and 𝐾𝑝. More details
about the definitions and properties of Bessel functions are given in Appendix B.1.
The displacement potentials 𝜙𝑝 are then expressed as the summation of all the
solutions of the Laplace equations.

In the external subdomain I, they are written as:

𝜙𝐼𝑝 (𝑟, 𝑧) =
[
𝐽𝑝 (𝑘𝑟) −

𝐽𝑝 (𝑘𝑐)
𝐻𝑝 (𝑘𝑐)

𝐻𝑝 (𝑘𝑟)
]
𝑍0(𝑧)
𝑍 ′
0(0)

+ 𝑏
∞∑
𝑞=0

𝐴𝐼𝑝,𝑞
𝐾𝑝 (𝛼𝑞𝑟)
𝐾𝑝 (𝛼𝑞𝑐)

𝑍𝑞 (𝑧). (2.37)

𝐻𝑝 is the Hankel function of the first kind, and we have the relationship 𝐾𝑝 (−𝑖𝑘𝑟) =
1
2𝜋𝑖

𝑝+1𝐻𝑝 (𝑘𝑟) and 𝐼𝑝 (𝛼0𝑟) = 𝐽𝑝 (𝑘𝑟). The first term inside the bracket in Eq.
(2.37) accounts for incident waves, and is written to be null in 𝑟 = 𝑐 in order
to simplify the matching conditions. Only the Bessel functions of the second
kind 𝐾𝑝 are solutions since 𝐼𝑝 diverge for large 𝑟, which contradicts the radiation
condition in the subdomain I. We note that the modes 𝑝 ≥ 1 are evanescent waves
exponentially decaying at large 𝑟 (Mavrakos, 1988). The eigenmodes in Eq. (2.37)
are multiplied by the dock’s external radius 𝑏 to keep the unknown 𝐴𝐼𝑝,𝑞 coefficients
non-dimensional.
The potentials in the subdomains II and III are next given by:

𝜙𝐼 𝐼𝑝 (𝑟, 𝑧) = 𝑏
∞∑
𝑞=0

𝜖𝑞 [𝐴𝐼 𝐼1, 𝑝,𝑞𝑃𝐼 𝐼𝑝,𝑞 (𝑟) + 𝐴𝐼 𝐼2, 𝑝,𝑞𝑄𝐼 𝐼
𝑝,𝑞 (𝑟)] cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
, (2.38)
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2.2 Diffraction problem

𝜙𝐼 𝐼 𝐼𝑝 (𝑟, 𝑧) = 𝑏
∞∑
𝑞=0

[𝐴𝐼 𝐼 𝐼1, 𝑝,𝑞𝑃
𝐼 𝐼 𝐼
𝑝,𝑞 (𝑟) + 𝐴𝐼 𝐼 𝐼2, 𝑝,𝑞𝑄

𝐼 𝐼 𝐼
𝑝,𝑞 (𝑟)]𝑍𝑞 (𝑧), (2.39)

where the functions 𝑃𝑝,𝑞 (𝑟) and 𝑄𝑝,𝑞 (𝑟) have been defined similar to Garrett (1970)
in order to simplify the matching conditions for the potential at the boundaries
with adjacent domains, and to lighten the notations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃𝐼 𝐼0,0(𝑟) =

ln( 𝑟𝑎 )
ln( 𝑐𝑎 )

𝑄𝐼 𝐼
0,0(𝑟) =

ln( 𝑐𝑟 )
ln( 𝑐𝑎 )

for 𝑞 = 0, 𝑝 = 0, (2.40)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃𝐼 𝐼𝑝,0(𝑟) =

( 𝑟𝑎 ) 𝑝 − ( 𝑎𝑟 ) 𝑝
( 𝑐𝑎 ) 𝑝 − ( 𝑎𝑐 ) 𝑝

𝑄𝐼 𝐼
𝑝,0(𝑟) =

( 𝑐𝑟 ) 𝑝 − ( 𝑟𝑐 ) 𝑝
( 𝑐𝑎 ) 𝑝 − ( 𝑎𝑐 ) 𝑝

for 𝑞 = 0, 𝑝 ∈ N
∗, (2.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑃𝐼 𝐼𝑝,𝑞 (𝑟) =

𝐾𝑝 ( 𝑞𝜋𝑎𝑙 )𝐼𝑝 ( 𝑞𝜋𝑟𝑙 ) − 𝐼𝑝 ( 𝑞𝜋𝑎𝑙 )𝐾𝑝 ( 𝑞𝜋𝑟𝑙 )
𝐾𝑝 ( 𝑞𝜋𝑎𝑙 )𝐼𝑝 ( 𝑞𝜋𝑐𝑙 ) − 𝐼𝑝 ( 𝑞𝜋𝑎𝑙 )𝐾𝑝 ( 𝑞𝜋𝑐𝑙 )

𝑄𝐼 𝐼
𝑝,𝑞 (𝑟) =

𝐾𝑝 ( 𝑞𝜋𝑟𝑙 )𝐼𝑝 ( 𝑞𝜋𝑐𝑙 ) − 𝐼𝑝 ( 𝑞𝜋𝑟𝑙 )𝐾𝑝 ( 𝑞𝜋𝑐𝑙 )
𝐾𝑝 ( 𝑞𝜋𝑎𝑙 )𝐼𝑝 ( 𝑞𝜋𝑐𝑙 ) − 𝐼𝑝 ( 𝑞𝜋𝑎𝑙 )𝐾𝑝 ( 𝑞𝜋𝑐𝑙 )

for 𝑞 ∈ N
∗, 𝑝 ∈ N

∗, (2.42)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃𝐼 𝐼 𝐼𝑝,𝑞 (𝑟) =

𝐾𝑝 (𝛽𝑞𝑏)𝐼𝑝 (𝛽𝑞𝑟) − 𝐼𝑝 (𝛽𝑞𝑏)𝐾𝑝 (𝛽𝑞𝑟)
𝐾𝑝 (𝛽𝑞𝑏)𝐼𝑝 (𝛽𝑞𝑐) − 𝐼𝑝 (𝛽𝑞𝑏)𝐾𝑝 (𝛽𝑞𝑐)

𝑄𝐼 𝐼 𝐼
𝑝,𝑞 (𝑟) =

𝐾𝑝 (𝛽𝑞𝑟)𝐼𝑝 (𝛽𝑞𝑐) − 𝐼𝑝 (𝛽𝑞𝑟)𝐾𝑝 (𝛽𝑞𝑐)
𝐾𝑝 (𝛽𝑞𝑏)𝐼𝑝 (𝛽𝑞𝑐) − 𝐼𝑝 (𝛽𝑞𝑏)𝐾𝑝 (𝛽𝑞𝑐)

for 𝑞 ∈ N, 𝑝 ∈ N, (2.43)

In subdomain IV, only the modified Bessel functions of the first kind 𝐼𝑝 are physical
since 𝐾𝑝 diverge for 𝑟 = 0. The potential in this subdomain is written:

𝜙𝐼𝑉𝑝 (𝑟, 𝑧) = 𝑏
∞∑
𝑞=0

𝐴𝐼𝑉𝑝,𝑞
𝐼𝑝 (𝛼𝑞𝑟)
𝐼𝑝 (𝛼𝑞𝑎)

𝑍𝑞 (𝑧). (2.44)

For each mode 𝑝 ∈ N, we have introduced an infinite number of unknown
coefficients 𝐴𝑝,𝑞 , 𝑞 ∈ N, which remain to be determined by establishing the
matching conditions on all the vertical boundaries. First, the averaged continuity
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Chapter 2 Diffraction and radiation

of the dynamic pressure between two consecutive subdomains is enforced over the
corresponding boundary, in the way of Miles and Gilbert (1968):

∫ −(𝑑+𝑠)

−ℎ
𝜙𝐼 𝐼𝑝 (𝑎, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ
𝜙𝐼𝑉𝑝 (𝑎, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧,

(2.45)∫ −(𝑑+𝑠)

−ℎ
𝜙𝐼 𝐼𝑝 (𝑐, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ
𝜙𝐼𝑝 (𝑐, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧, (2.46)

∫ 0

−𝑑
𝜙𝐼 𝐼 𝐼𝑝 (𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ 0

−𝑑
𝜙𝐼𝑝 (𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧. (2.47)

Then the averaged continuity of the normal velocity, as well as the non-penetration
condition on the vertical walls are assured by integration over the whole water
depth:

∫ 0

−𝑑

𝜕𝜙𝐼 𝐼 𝐼𝑝

𝜕𝑟
(𝑏, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 = 0, (2.48)

∫ 0

−ℎ

𝜕𝜙𝐼𝑝

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙𝐼 𝐼𝑝

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 +

∫ 0

−𝑑

𝜕𝜙𝐼 𝐼 𝐼𝑝

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧,

(2.49)∫ 0

−ℎ

𝜕𝜙𝐼𝑉𝑝

𝜕𝑟
(𝑎, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙𝐼 𝐼𝑝

𝜕𝑟
(𝑎, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧. (2.50)

Because of the orthogonality properties of the functions 𝑍𝑞, 𝑍𝑞, and cos, respectively,
these equations result in a linear system for the coefficients 𝐴𝑝,𝑞, 𝑞 ∈ N, independently
for each 𝑝 ∈ N. In practice, the sums from the potential expansions must be
truncated. We write 𝑁𝑆 the total number of polar harmonics in Eq. (2.20), and
𝑁𝐼 , 𝑁𝐼 𝐼 , 𝑁𝐼 𝐼 𝐼 and 𝑁𝐼𝑉 the numbers of modes kept in the subdomains I, II, III
and IV, i.e. in the expansions (2.37), (2.38), (2.39) and (2.44) for the potential 𝜙𝑝.
The same number of modes in the domains I to IV are chosen for each 𝑝 ∈ [

0, 𝑁𝑆
]

for the sake of simplicity. Eqs (2.45) to (2.48) give a relationship between each
unknown coefficients 𝐴𝐼 𝐼 and 𝐴𝐼 𝐼 𝐼 as a function of the coefficients 𝐴𝐼 and 𝐴𝐼𝑉 ,
which can be substituted in the right hand side of Eqs (2.49) and (2.50). The
order of the linear systems resulting from the matching conditions is then reduced
to 𝑁𝐼 + 𝑁𝐼𝑉 for all fixed 𝑝 ∈ [

0, 𝑁𝑆
]
. This system is condensed by the matricial

equation

𝔹𝑆𝑨𝑆 = 𝑪𝑆 (2.51)
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for the variable 𝑨𝑆 =
[
𝐴𝐼𝑝,1 · · · 𝐴𝐼𝑝,𝑁𝐼

𝐴𝐼𝑉𝑝,1 · · · 𝐴𝐼𝑉𝑝,𝑁𝐼𝑉

]𝑇
. The upper index 𝑆 stands

here for ”Scattering”. The coefficients of the matrices 𝔹𝑆, 𝑪𝑆 and the relation to
the remaining coefficients 𝐴𝑝,𝑞 are given in Appendix A.

The hydrodynamic exciting forces and moments are derived by integrating the
dynamic pressure on the walls of the structure:

𝐹𝑆𝑗 = 𝜌
∫ ∫

𝑆
(2)
0

𝜕Φ𝑆

𝜕𝑡
𝑛 𝑗𝑑𝑆 = −𝜔2𝜁𝐴𝜌

∞∑
𝑝=0

𝜖𝑝𝑖
𝑝

[∫ ∫
𝑆
(2)
0

𝜙𝑝 (𝑟, 𝑧) cos(𝑝𝜃) 𝑛(2)𝑗 𝑑𝑆

]
𝑒−𝑖𝜔𝑡 ,

(2.52)

for 𝑗 ∈ {1, 3, 5}. Because of the orthogonal properties of cosine, only the mode
𝑝 = 1 gives a non-zero term for the force in surge, and moment in pitch. In heave,
the only contribution comes from the symmetric mode 𝑝 = 0.

2.2.3 Floating dock with a FOWT’s spar

When the spar is introduced in the dock (cf. Fig. 2.2), displacement potentials
in the domain IV between the dock and the spar now include modified Bessel
functions of the first kind 𝐼𝑝 as the singularity in 𝑟 = 0 disappear. Similarly to
domain III, we write:

𝜙𝐼𝑉𝑝 (𝑟, 𝑧) = 𝑏
∞∑
𝑝=0

[𝐴𝐼𝑉1, 𝑝,𝑞𝑃𝐼𝑉𝑝,𝑞 (𝑟) + 𝐴𝐼𝑉2, 𝑝,𝑞𝑄𝐼𝑉
𝑝,𝑞 (𝑟)]𝑍𝑞 (𝑧), (2.53)

where we introduced the functions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃𝐼𝑉𝑝,𝑞 (𝑟) =

𝐾𝑝 (𝛼𝑞𝑎0)𝐼𝑝 (𝛼𝑞𝑟) − 𝐼𝑝 (𝛼𝑞𝑎0)𝐾𝑝 (𝛼𝑞𝑟)
𝐾𝑝 (𝛼𝑞𝑎0)𝐼𝑝 (𝛼𝑞𝑎) − 𝐼𝑝 (𝛼𝑞𝑎0)𝐾𝑝 (𝛼𝑞𝑎)

, (𝑝, 𝑞) ∈ N2,

𝑄𝐼𝑉
𝑝,𝑞 (𝑟) =

𝐾𝑝 (𝛼𝑞𝑟)𝐼𝑝 (𝛼𝑞𝑎) − 𝐼𝑝 (𝛼𝑞𝑟)𝐾𝑝 (𝛼𝑞𝑎)
𝐾𝑝 (𝛼𝑞𝑎0)𝐼𝑝 (𝛼𝑞𝑎) − 𝐼𝑝 (𝛼𝑞𝑎0)𝐾𝑝 (𝛼𝑞𝑎)

, (𝑝, 𝑞) ∈ N2.

(2.54)

The expansion of 𝜙𝑝 in the domain V below the spar is written similar to Garrett
(1971):

𝜙𝑉𝑝 (𝑟, 𝑧) = 𝑏𝐴𝑉𝑝,0(
𝑟

𝑎0
) 𝑝 + 2𝑏

∞∑
𝑞=1

𝐴𝑉𝑝,𝑞
𝐼𝑝 ( 𝑞𝜋

ℎ−𝑑0 𝑟)
𝐼𝑝 ( 𝑞𝜋

ℎ−𝑑0 𝑎0)
cos

(
𝑞𝜋(𝑧 + ℎ)
ℎ − 𝑑0

)
. (2.55)

We note that the first term is constant for 𝑝 = 0, which matters to estimate the
loads in heave. This term was pointed out by Garrett (1971) to be incorrectly
dismissed in the work of Miles and Gilbert (1968). The same constant appear
implicitly for the mode 𝑞 = 0 and 𝑝 = 0 in the subdomain II below the bilge boxes
(cf. Eqs. (2.38) and (2.40)), together with a logarithmic term. In the subdomain
V, there is no such term in ”log(𝑟)”, as it is nonphysical in 𝑟 = 0.
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Chapter 2 Diffraction and radiation

The potentials 𝜙𝑝 in the subdomains I, II and III have the same expressions as
for the dock without spar (cf. Eqs. (2.37), (2.38) and (2.39)). In addition to
the matching conditions (2.45)-(2.50), averaged continuous pressure and normal
velocity are imposed in 𝑟 = 𝑎0 by integration over the boundary:

∫ 𝑑0

−ℎ
𝜙𝐼𝑉𝑝 (𝑎0, 𝑧) cos( 𝑞𝜋(𝑧 + ℎ)

ℎ − 𝑑0
)𝑑𝑧 =

∫ 𝑑0

−ℎ
𝜙𝑉𝑝 (𝑎0, 𝑧) cos(

𝑞𝜋(𝑧 + ℎ)
ℎ − 𝑑0

)𝑑𝑧, (2.56)

∫ 0

−ℎ

𝜕𝜙𝐼𝑉𝑝

𝜕𝑟
(𝑎0, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ 0

−ℎ

𝜕𝜙𝑉𝑝

𝜕𝑟
(𝑎0, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧. (2.57)

Conserving the notations introduced for the dock without spar, we write 𝑁𝐼 -𝑁𝑉
the number of modes, indexed by 𝑞, kept in the subdomain I-V. For each polar
mode 𝑝 ∈ N, the matching conditions result in a linear system of equations for
the unknown coefficients 𝐴𝐼𝑝,𝑞 to 𝐴𝑉𝑝,𝑞. As in the previous section, the size of this
system is reduced to 𝑁𝐼 +𝑁𝐼𝑉 through astute substitutions. The matricial equation

(2.51) is then solved for the variable 𝑨𝑆 =
[
𝐴𝐼𝑝,1 · · · 𝐴𝐼𝑝,𝑁𝐼

𝐴𝐼𝑉2, 𝑝,1 · · · 𝐴𝐼𝑉2, 𝑝,𝑁𝐼𝑉

]𝑇
. The

coefficients of the matrices are given in Appendix A. Finally, the hydrodynamic
loads on each body caused the scattering problem are:

𝐹 (𝑘 ) , 𝑆
𝑗 = −𝜔2𝜁𝐴𝜌

∞∑
𝑝=0

𝜖𝑝𝑖
𝑝

[∫ ∫
𝑆
(𝑘)
0

𝜙𝑝 (𝑟, 𝑧) cos(𝑝𝜃) 𝑛(𝑘 )𝑗 𝑑𝑆

]
𝑒−𝑖𝜔𝑡 , 𝑗 ∈ {1, 3, 5}, 𝑘 ∈ {1, 2},

(2.58)

where the only difference from Eq. (2.52) is that the integration is made over each

body’s surface 𝑆 (𝑘 )0 , instead of 𝑆 (2)0 only.

2.2.4 MacCamy and Fuchs (1954)

Because the draught of the dock is high compared to wave lengths (𝜆/(𝑑 + 𝑠) < 2),
the exciting force in surge and moment in pitch on the dock can be verified thanks
to MacCamy and Fuchs (1954)’s formula, which is exact for an upright cylinder
extended to the sea bottom under the assumption of linear potential flow theory,
as in our work. In their work, the scattered potential is also expressed as an
expansion of polar harmonics, which have a much simpler form due to the absence
of evanescent waves (i.e. the modes 𝑞 ≥ 1). Only the first polar mode 𝑝 = 1
contributes to the loads in surge and pitch. From the dynamic pressure, the
horizontal force per unit length in 𝑧 is given by:

𝑓𝑥 (𝑧) = 4𝜌𝑔𝜁𝐴 cosh(𝑘 (ℎ + 𝑧))
𝑘 cosh(𝑘ℎ) 𝐴(𝑘𝑏)𝑒−𝑖𝜔𝑡+𝛼, (2.59)

where
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2.3 Radiation problem

𝐴(𝑘𝑏) = 1√
𝐽′21 (𝑘𝑏) + 𝑌 ′2

1 (𝑘𝑏)
, (2.60)

𝛼 = − tan−1 𝑌
′
1(𝑘𝑏)
𝐽′1(𝑘𝑏)

. (2.61)

The force in surge and moment in pitch are obtained by integration over the
draught of the dock:

𝐹1 =
∫ 0

−(𝑑+𝑠)
𝑓𝑥 (𝑧)𝑑𝑧, (2.62)

𝐹5 =
∫ 0

−(𝑑+𝑠)
𝑧 𝑓𝑥 (𝑧)𝑑𝑧, (2.63)

which gives:

𝐹𝑆1 = 4𝜌𝑔𝜁𝐴
sinh(𝑘ℎ) − sinh(𝑘 (ℎ − (𝑑 + 𝑠)))

𝑘2 cosh(𝑘ℎ) 𝐴(𝑘𝑏)𝑒−𝑖𝜔𝑡+𝛼, (2.64)

𝐹𝑆5 = 4𝑔𝜌𝜁𝐴𝐴(𝑘𝑏)
[ (𝑑 + 𝑠)𝑘 sinh(𝑘 (ℎ − (𝑑 + 𝑠))) + cosh(𝑘 (ℎ − (𝑑 + 𝑠))) − cosh(𝑘ℎ)

𝑘3 cosh(𝑘ℎ)

]
𝑒−𝑖𝜔𝑡+𝛼.

(2.65)

The derivation of Eq. (2.59) follows the one by MacCamy and Fuchs (1954) and
is not detailed here. We can however note that the definition of the phase 𝛼 in
Eq.(2.61) differs from their work, introducing a difference of phase of 𝜋 in the
loads. This is due to that MacCamy and Fuchs (1954) define the incident potential
Φ0 with a difference of phase of 𝜋 compared to one defined in this thesis (cf. Eq.
2.7).

2.3 Radiation problem

2.3.1 Floating dock with bilge boxes

The radiation potentials 𝜙 (2)
𝑗 defined in Eq. (2.15) for the three degrees of freedom

𝑗 = 1, 3 and 5 are solved in this section for the dock without spar (cf. Fig 2.1),
through a similar domain decomposition method as for the diffraction problem. 𝑝 =
0 corresponds here to the symmetric DoF, heave, and 𝑝 = 1 to the anti-symmetric
DoFs, surge and pitch. The potentials 𝜙 (2)

𝑗 satisfy the Laplace equation (2.21), the
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Chapter 2 Diffraction and radiation

free-surface and bottom-boundary conditions (2.22) and (2.23), the body-boundary
condition

𝜕𝜙 (2)
𝑗

𝜕𝑛
= 𝑛(2)𝑗 , (2.66)

as well as the radiation condition for outgoing radiated waves

lim
𝑟→∞

√
𝑘𝑟 (

𝜕𝜙 (2)
𝑗

𝜕𝑟
− 𝑖𝑘𝜙 (2)

𝑗 ) = 0. (2.67)

The potentials in the subdomains I and IV correspond to the symmetric and
anti-symmetric modes of the diffraction problem, with the difference that there
is no incident waves and all the radiated potentials have to vanish for large 𝑟 in
subdomain I. They are given by

𝜙 (2) ,𝐼
𝑗 (𝑟, 𝑧) = 𝜓

∞∑
𝑞=0

𝐴𝐼𝑞
𝐾𝑝 (𝛼𝑞𝑟)
𝐾𝑝 (𝛼𝑞𝑐)

𝑍𝑞 (𝑧), (2.68)

𝜙 (2) ,𝐼𝑉
𝑗 (𝑟, 𝑧) = 𝜓

∞∑
𝑞=0

𝐴𝐼𝑉𝑞
𝐼𝑝 (𝛼𝑞𝑟)
𝐼𝑝 (𝛼𝑞𝑎)

𝑍𝑞 (𝑧), (2.69)

where 𝜓 = 𝑏 for the problems in heave and surge, and 𝜓 = 𝑏2 for the problem in
pitch.

The expansions are chosen to satisfy exactly all the horizontal boundary conditions
in their corresponding subdomain. In the subdomains II and III, where a horizontal
body-boundary condition is present, and similar to Yeung (1980), the potential is
decomposed in:

� A particular solution 𝜙 (2)
𝑗 ,𝑚 that satisfies the Laplace equation, and all the

horizontal boundary conditions when the forced motion is applied, but
without any condition on the vertical boundaries (taken care of by 𝜙 (2)

𝑗 ,ℎ).

� A homogeneous solution 𝜙 (2)
𝑗 ,ℎ that satisfies the Laplace equation when the

structure is fixed, and which assures that the vertical matching with adjacent
subdomains or body-boundary conditions are satisfied.

The potentials in the domain II and III are thus expressed as 𝜙 (2) ,𝐼 𝐼
𝑗 = 𝜙 (2) ,𝐼 𝐼

𝑗,ℎ +𝜙 (2) ,𝐼 𝐼
𝑗,𝑚

and 𝜙 (2) ,𝐼 𝐼 𝐼
𝑗 = 𝜙 (2) ,𝐼 𝐼 𝐼

𝑗,ℎ + 𝜙 (2) ,𝐼 𝐼 𝐼
𝑗,𝑚 . The functions (2.70)-(2.73) are proposed for the

particular solutions, and the homogeneous parts are given by (2.74) and (2.75):
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2.3 Radiation problem

𝜙 (2) ,𝐼 𝐼
3,𝑚 (𝑟, 𝑧) =

(𝑧 + ℎ)2 − 𝑟
2

2
2(ℎ − (𝑑 + 𝑠)) , (2.70)

𝜙 (2) ,𝐼 𝐼
5,𝑚 (𝑟, 𝑧) = −

𝑟 (𝑧 + ℎ)2 − 𝑟
3

4
2(ℎ − (𝑑 + 𝑠)) , (2.71)

𝜙 (2) ,𝐼 𝐼 𝐼
3,𝑚 (𝑟, 𝑧) = 𝑧 + 𝑔

𝜔2
, (2.72)

𝜙 (2) ,𝐼 𝐼 𝐼
5,𝑚 (𝑟, 𝑧) = −

(
𝑧 + 𝑔

𝜔2

)
𝑟, (2.73)

𝜙 (2) ,𝐼 𝐼
𝑗,ℎ (𝑟, 𝑧) = 𝜓

∞∑
𝑞=0

𝜖𝑞

[
𝐴𝐼 𝐼1,𝑞𝑃

𝐼 𝐼
𝑚,𝑞 (𝑟) + 𝐴𝐼 𝐼2,𝑞𝑄𝐼 𝐼

𝑚,𝑞 (𝑟)
]
cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
, (2.74)

𝜙 (2) ,𝐼 𝐼 𝐼
𝑗,ℎ (𝑟, 𝑧) = 𝜓

∞∑
𝑞=0

[
𝐴𝐼 𝐼 𝐼1,𝑞𝑃

𝐼 𝐼 𝐼
𝑚,𝑞 (𝑟) + 𝐴𝐼 𝐼 𝐼2,𝑞𝑄

𝐼 𝐼 𝐼
𝑚,𝑞 (𝑟)

]
𝑍𝑞 (𝑧). (2.75)

We note that for the problem in surge, 𝜙 (2) ,𝐼 𝐼
1,𝑚 = 𝜙 (2) ,𝐼 𝐼 𝐼

1,𝑚 = 0.

As for the diffraction problem, the averaged continuity of the dynamic pressure
between two subdomains is assured by integration over the subdomains’ common
boundary:

∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
𝑗,ℎ (𝑎, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧

=
∫ −(𝑑+𝑠)

−ℎ

[
𝜙 (2) ,𝐼𝑉
𝑗 (𝑎, 𝑧) − 𝜙 (2) ,𝐼 𝐼

𝑗,𝑚 (𝑎, 𝑧)
]
cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧, (2.76)

∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
𝑗,ℎ (𝑐, 𝑧) cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧

=
∫ −(𝑑+𝑠)

−ℎ

[
𝜙 (2) ,𝐼
𝑗 (𝑐, 𝑧) − 𝜙 (2) ,𝐼 𝐼

𝑗,𝑚 (𝑐, 𝑧)
]
cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧, (2.77)

∫ 0

−𝑑
𝜙 (2) ,𝐼 𝐼 𝐼
𝑗,ℎ (𝑐, 𝑧)𝑍𝑞𝑑𝑧 =

∫ 0

−𝑑

[
𝜙 (2) ,𝐼
𝑗 (𝑐, 𝑧) − 𝜙 (2) ,𝐼 𝐼 𝐼

𝑗,𝑚 (𝑐, 𝑧)
]
cos

(
𝑞𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧,

(2.78)
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Chapter 2 Diffraction and radiation

while the conditions on the normal velocity for the problems in

surge
heave
pitch

, respectively,

are imposed over the whole water depth:

∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
𝑗,ℎ

𝜕𝑟
(𝑏, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ 0

−𝑑

⎡⎢⎢⎢⎢⎣
1
0
𝑧

−
𝜕𝜙 (2) ,𝐼 𝐼 𝐼

𝑗,𝑚

𝜕𝑟
(𝑏, 𝑧)

⎤⎥⎥⎥⎥⎦ 𝑍𝑞 (𝑧)𝑑𝑧, (2.79)

∫ 0

−ℎ

𝜕𝜙 (2) ,𝐼
𝑗

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
𝑗

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 +

∫ −𝑑

−(𝑑+𝑠)

1
0
𝑧
𝑍𝑞 (𝑧)𝑑𝑧

+
∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
𝑗

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧, (2.80)

∫ 0

−ℎ

𝜕𝜙 (2) ,𝐼𝑉
𝑗

𝜕𝑟
(𝑎, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
𝑗

𝜕𝑟
(𝑎, 𝑧)𝑍𝑞 (𝑧)𝑑𝑧 +

∫ 0

−(𝑑+𝑠)

1
0
𝑧
𝑍𝑞 (𝑧)𝑑𝑧.

(2.81)

The sums are once again truncated, and the modes kept in the four subdomains
for each DoF denoted 𝑁𝐼 , 𝑁𝐼 𝐼 , 𝑁𝐼 𝐼 𝐼 and 𝑁𝐼𝑉 . Similar to the diffraction problem,
the matching equations are expressed by the matrical equation

𝔹𝑅𝑨𝑅 = 𝑪𝑅 (2.82)

of order 𝑁𝐼 +𝑁𝐼𝑉 for each DoF, and for the unknown vector 𝑨𝑅 =
[
𝐴𝐼1 · · · 𝐴𝐼𝑞 𝐴𝐼𝑉1 · · ·

𝐴𝐼𝑉𝑞
]𝑇
. The upper index 𝑅 stands here for ”Radiation”. The analytical expressions

of the matrices 𝔹𝑅 and 𝑪𝑅, and the relation to the remaining coefficient 𝐴𝑞 are
given in Appendix A.2.3.

Once the potential is known in each domain, the hydrodynamic coefficients are
determined by Newman (1977):

𝑎𝑠, 𝑗 + 𝑖
𝑏𝑠, 𝑗

𝜔
= −𝜌

∫ ∫
𝑆
(2)
0

𝜙 (2)
𝑗 cos(𝑝𝜃)𝑛𝑠𝑑𝑆, (𝑠, 𝑗) ∈ {1, 3, 5}2. (2.83)

The added mass and damping matrices are symmetric, such that 𝑎1,5 = 𝑎5,1 and
𝑏1,5 = 𝑏5,1 since there is no current nor forward speed. Yeung (1980) advises for
instance to only calculate the coupled coefficients 𝑎1,5 and 𝑏1,5 from the solution
of the problem in pitch 𝜙5: the calculations are indeed simplified by that 𝑛1 is null
on the horizontal boundaries. The analytical expressions of the added mass and
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2.3 Radiation problem

damping coefficients in Eq. (2.83) are given in Appendix A.4.1.
We can note that Newman (1962) established very simple relationships for axi-symmetrical
bodies giving the amplitudes - but not the phases - of the loads 𝐹𝑆𝑗 caused by
scattered waves as functions of the damping coefficients 𝑏𝑠, 𝑗 (cf. Appendix A.4.1).
It is more generally possible to estimate the loads of scattered waves on marine
structures from the solution of the radiation problem using Haskind (1954)’s
formula. In our case, Haskind (1954)’s formula comes with heavy calculations and
has not been used to verify exciting forces and moments in Sec. 2.2. Furthermore,
with such method, the pressure field of the scattered flow remains unknown, as
well as the scattered free-surface elevation 𝜁𝑆.

2.3.2 Floating dock with a FOWT’s spar

Six radiation problems in surge, heave and pitch for both the dock and the spar
are considered in this section for the geometry presented in Fig. 2.2.

The homogeneous solutions (2.68), (2.74) and (2.75) of the potentials in the
subdomains I, II and III are identical as for the dock without spar, as well as
the matching conditions (2.76)-(2.81), replacing the upper index (2) by (1) for the
problems corresponding to the spar’s motions. The particular solutions 𝜙 (2) ,𝐼 𝐼

𝑗,𝑚

and 𝜙 (2) ,𝐼 𝐼 𝐼
𝑗,𝑚 for the dock in the subdomains II and III - respectively below and

above the bilge boxes - conserve the same expressions (2.70)-(2.73) as for the case
without spar. In these two subdomains, the particular solutions for the three
radiation problems of the spar are 𝜙 (1) ,𝐼 𝐼

𝑗,𝑚 = 𝜙 (1) ,𝐼 𝐼
𝑗,𝑚 = 0 since the dock is then fixed.

In the subdomain IV, similar to the diffraction problem for the dock with spar (cf.
Sec. 2.2.3), the potential is written:

𝜙 (𝑘 ) ,𝐼𝑉
𝑗 (𝑟, 𝑧) = 𝜓

∞∑
𝑞=0

[
𝐴𝐼𝑉1,𝑞𝑃

𝐼𝑉
𝑝,𝑞 (𝑟) + 𝐴𝐼𝑉2,𝑞𝑄𝐼𝑉

𝑝,𝑞 (𝑟)
]
𝑍𝑞 (𝑧), (2.84)

where 𝑝 = 0 in heave, and 𝑝 = 1 in surge and pitch for both bodies. In the
subdomain V below the spar, the potential is again decomposed into a homogeneous
and a particular solutions 𝜙 (𝑘 ) ,𝑉

𝑗 = 𝜙 (𝑘 ) ,𝑉
𝑗,ℎ + 𝜙 (𝑘 ) ,𝑉

𝑗,𝑚 , given by:

𝜙 (1) ,𝑉
1,𝑚 (𝑟, 𝑧) = 𝜙 (2) ,𝑉

𝑗,𝑚 (𝑟, 𝑧) = 0 (2.85)

𝜙 (1) ,𝑉
3,𝑚 (𝑟, 𝑧) =

(𝑧 + ℎ)2 − 𝑟
2

2
2(ℎ − 𝑑0)

, (2.86)

𝜙 (1) ,𝑉
5,𝑚 (𝑟, 𝑧) = −

𝑟 (𝑧 + ℎ)2 − 𝑟
3

4
2(ℎ − 𝑑0)

, (2.87)
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𝜙 (𝑘 ) ,𝑉
𝑗,ℎ (𝑟, 𝑧) = 𝜓𝐴𝑉0

(
𝑟

𝑎0

) 𝑝
+ 2𝜓

∞∑
𝑞=1

𝐴𝑉𝑞

𝐼𝑝

(
𝑞𝜋
ℎ−𝑑0 𝑟

)
𝐼𝑝

(
𝑞𝜋
ℎ−𝑑0 𝑎0

) cos

(
𝑞𝜋(𝑧 + ℎ)
ℎ − 𝑑0

)
, (2.88)

Finally, the matching conditions must be imposed in 𝑟 = 𝑎0 for the potentials

𝜙 (1)
1

𝜙 (1)
3 and 𝜙 (2)

𝑗

𝜙 (1)
5

respectively:

∫ −𝑑0

−ℎ
𝜙 (𝑘 ) ,𝑉
𝑗,ℎ (𝑎0, 𝑧) cos( 𝑝𝜋(𝑧 + ℎ)

ℎ − 𝑑0
)𝑑𝑧

=
∫ −𝑑0

−ℎ

[
𝜙 (𝑘 ) ,𝐼𝑉
𝑗 (𝑎0, 𝑧) − 𝜙 (𝑘 ) ,𝑉

𝑗,𝑚 (𝑎0, 𝑧)
]
cos( 𝑝𝜋(𝑧 + ℎ)

ℎ − 𝑑0
)𝑑𝑧 (2.89)

∫ 0

−ℎ

𝜕𝜙 (𝑘 ) ,𝐼𝑉
𝑗

𝜕𝑟
(𝑎0, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 =

∫ −𝑑0

−ℎ

𝜕𝜙 (𝑘 ) ,𝑉
𝑗

𝜕𝑟
(𝑎0, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 +

∫ 0

−𝑑0

1
0
z
𝑍𝑝 (𝑧)𝑑𝑧, 𝑝 ∈ N

(2.90)

The linear matricial equation of order 𝑁𝐼+𝑁𝐼𝑉 , similar to (2.82) but now established

for six radiation problems for the unknown vector 𝑨𝑆 =
[
𝐴𝐼1 · · · 𝐴𝐼𝑁𝐼

𝐴𝐼𝑉2,1 · · · 𝐴𝐼𝑉2,𝑁𝐼𝑉

]𝑇
is given in Appendix A.2.3. The added mass and damping coefficients on both
bodies are obtained from the radiation potentials by:

𝑎 (𝑘 )𝑠, 𝑗 + 𝑖
𝑏 (𝑘 )𝑠, 𝑗

𝜔
= −𝜌

∫ ∫
𝑆
(𝑘)
0

𝜙 (𝑘 )
𝑗 cos(𝑝𝜃)𝑛𝑠𝑑𝑆, (2.91)

𝑑 (𝑘 )𝑠, 𝑗 + 𝑖
𝑒 (𝑘 )𝑠, 𝑗

𝜔
= −𝜌

∫ ∫
𝑆
(𝑘)
0

𝜙 (𝑘′ )
𝑗 cos(𝑝𝜃)𝑛𝑠𝑑𝑆, (2.92)

for (𝑠, 𝑗) ∈ {1, 3, 5}2 and (𝑘, 𝑘 ′) ∈ {1, 2}2. In particular, these coefficients have the
symmetrical properties: 𝑎 (𝑘 )𝑠, 𝑗 = 𝑎 (𝑘 )𝑗 ,𝑠 , 𝑏

(𝑘 )
𝑠, 𝑗 = 𝑏 (𝑘 )𝑗 ,𝑠 , 𝑑

(𝑘 )
𝑠, 𝑗 = 𝑑 (𝑘

′ )
𝑗 ,𝑠 , 𝑒 (𝑘 )𝑠, 𝑗 = 𝑒 (𝑘

′ )
𝑗 ,𝑠 . Their

semi-analytical expressions are given in Appendix A.4.1.
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2.4 Convergence and results

2.4.1 Simulations in WAMIT

In parallel of the loads calculated by the domain decomposition method, simulations
were run with the commercial software WAMIT to verify the convergence of the
semi-analytically results. In WAMIT, the radiation and diffraction problems are
solved in the frequency domain assuming linear potential flow assumptions. The
solutions are obtained through a boundary element method, which require to
discretise the surface of the bodies. Because of the symmetry of revolution and
the linearity of the problems, it is sufficient to mesh only one quarter of the dock
and spar (Lee and Newman, 2006). Examples of home-made meshes are shown
in Fig 2.4. The distribution of panels (or cells) is evenly distributed over the
bodies, except for the dock which has a higher concentration of panels near the
bilge boxes. Convergence of the meshes is presented in Appendix A.5. The lowest
irregular frequencies for the dock were in the range of incident wave periods, and
were therefore removed using the corresponding option provided by the software
(see more details in Appendix B.2).

Figure 2.4: Example of meshes of the spar (left, 490 panels) and the dock (right, 907
panels) in model scale (1:100). Top: full meshes. Bottom: zoom on the lower body parts.
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Chapter 2 Diffraction and radiation

2.4.2 Results - Scattering forces

Figure 2.5: Non-dimensional amplitude of exciting forces and moments (left axis) and
their phases (right axis) computed by the present DD method (cf. Secs. 2.2.2 and 2.2.3)
and the BEM software WAMIT. In addition, scattering loads in surge and pitch from
MacCamy and Fuchs (1954)’s model (cf. Sec. 2.2.4), as well as the scattering loads on
a closed-bottom (CB) dock (cf. Garrett (1971)) are also indicated. Top: force in surge.
Middle: force in heave. Bottom: moment in pitch.
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The scattering loads in surge, have and pitch on the dock derived in this chapter
are compared from results from WAMIT in Fig. 2.5. The present DD method
was coded in python. The following dimensions were used to run the numerical
simulations: 𝑎/𝑏 = 0.75, 𝑐/𝑏 = 1.22, 𝑠/𝑏 = 0.13, (𝑑+𝑠)/𝑏 = 2, 𝑎0/𝑏 = 0.18, 𝑑0/𝑏 = 2,
and ℎ/𝑏 = 5. Scattering loads on a closed-bottom dock (cf. Garrett (1971)) are
also indicated on the figure, as well as the force in surge and moment in pitch
estimated from MacCamy and Fuchs (1954)’s model (cf. Sec. 2.2.4). Their model
provide good estimations of the loads on the dock as long 𝜔2𝑏/𝑔 � 1. Because the
dock’s draught is high in our model, scattering loads on the spar are negligible.
Loads on the dock for the case with and without spar are very similar for the same
reason. Convergence of the loads from the DD method was found to be achieved
for a number of modes in each subdomain as low as 𝑁𝐼 = 𝑁𝐼 𝐼 = 𝑁𝐼 𝐼 𝐼 = 𝑁𝐼𝑉 = 10,
at the exception of the phases of the loads in heave, which are not converged in
Fig. 2.5. These last are very numerically sensitive due to that the waves are short
compared to the dock’s draught, and the pressures are very small at the bottom
of the dock. Only the first two polar harmonics are needed to determine the
scattering loads in surge and pitch (mode 𝑝 = 1) and in heave (mode 𝑝 = 0). On
the other hand, 𝑁𝑆 = 12 was found to be sufficient for the dynamic pressure field
to converge, which was estimated at several locations in 𝑧 = 0m and 𝑧 = −(𝑑 + 𝑠).
More details about the convergence studies are given in Appendix A.5 for the case
without spar.
The loads in surge and pitch for the case without spar are also compared to
results from Mavrakos (1985) in Fig. 2.6 with good agreement, where very small
dimensions of the bilge boxes were defined in our model for these simulations.

2.4.3 Results - Added mass and damping coefficients

The added mass and damping coefficients derived in Secs. 2.3.1 and 2.3.2 are
presented in Fig 2.7 for the dock, in Fig. 2.8 for the spar, and in Fig. 2.9 for
the cross added mass coefficients 𝑑 between the dock and the spar. The case
of a spar alone in open water, and of the dock without spar and with a closed
bottom are also indicated. In both of these cases, the radiation problems are the
one of circular cylinder of finite draught, and solved similar to Yeung (1980). For
the case of the dock with closed bottom, the internal domain is filled with water
which also contributes to the added mass coefficients (see more details in the later
Sec. 3.3.2). The same dimensions of the bodies as in Sec. 2.4.2 were uses to run
the numerical simulations. The number of modes 𝑁𝐼 = 50, 𝑁𝐼 𝐼 = 33, 𝑁𝐼 𝐼 𝐼 = 15,
𝑁𝐼𝑉 = 50, and 𝑁𝑉 = 33 were found to give a good convergence between the DD
method and WAMIT. Convergence of the problems in heave in pitch generally
required higher number of eigenmodes due lower convergence of the flow near the
sharp corners at the bottom of the dock. The spar’s added mass in heave in Fig.
2.9 is for instance not fully converged for these number of modes and in the range
of frequencies presented on this figure. A convergence study for the case without
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Chapter 2 Diffraction and radiation

Figure 2.6: Non-dimensional amplitude of exciting force in surge and moments from
Mavrakos (1985), compared with the current DD model for the case without spar and for
small dimensions of the bilge boxes: (𝑐 − 𝑏)/𝑎 = 0.01 and 𝑠/𝑎 = 0.01.

spar is presented in more details in Appendix A.5.

The sloshing resonance occurs at 𝜔2𝑏/𝑔 = 2.45 for the dock alone, and is shifted to
𝜔2𝑏/𝑔 = 2.2 when the spar is inserted. This can be see from 𝑎 (2)1,1 or 𝑎 (2)5,5 for instance.
The same resonant frequency is observed from the added mass coefficients in surge
and pitch for the spar. The damping coefficients on the spar were negligible because
of the large draught of the dock. The ”excitation” of the spar hence entirely came
from the cross added-mass coefficients 𝑑 (1)𝑖, 𝑗 , (𝑖, 𝑗) ∈ {1, 5}2 caused by the dock’s
motions, or in other words by sloshing waves.
The peak at 𝜔2𝑏/𝑔 = 0.40 observed from the added mass coefficients in heave
corresponds to the piston-mode frequency described by Molin (2001), which was

also observed from the scattering load 𝐹 (2)
3 in Fig. 2.5. The piston mode natural

frequency does not seem affected by the presence of the spar.
Similar to the diffraction problem, added mass and damping coefficients for the
case without spar converge to the coefficients given by Mavrakos (1988) when the
dimensions of the bilge boxes go to 0 (see Appendix A.5), which provide additional
validation to our method.
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Figure 2.7: Non-dimensional added mass (left axis) and damping coefficients (right
axis) of the dock with and without spar computed by the present DD method and the BEM
software WAMIT. The case of a closed-bottom (CB) dock filled with water is also indicated.
In the legend, 𝑎 and 𝑏 stand for the added mass and damping coefficients, respectively.
𝑁𝐼 = 50, 𝑁𝐼 𝐼 = 33, 𝑁𝐼 𝐼 𝐼 = 15, 𝑁𝐼𝑉 = 50, and 𝑁𝑉 = 33.
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Figure 2.8: Non-dimensional added mass of the spar computed by the present DD method
and the BEM software WAMIT. The case of the spar in open water (OW) without the dock
is also indicated. In the legend, 𝑎 and 𝑏 stand for the added mass and damping coefficients,
respectively. 𝑁𝐼 = 50, 𝑁𝐼 𝐼 = 33, 𝑁𝐼 𝐼 𝐼 = 15, 𝑁𝐼𝑉 = 50, and 𝑁𝑉 = 33.
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2.4 Convergence and results

Figure 2.9: Non-dimensional added mass cross-coefficients of the two bodies system
dock+spar (see Eq. (2.92)). 𝑁𝐼 = 50, 𝑁𝐼 𝐼 = 33, 𝑁𝐼 𝐼 𝐼 = 15, 𝑁𝐼𝑉 = 50, and 𝑁𝑉 = 33.
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3 | Sloshing
The approach described by Faltinsen and Timokha (2009) has mainly been used
in this current work to model near-resonance sloshing flows. Analytical works
for closed vertical cylinder provide good estimations of the sloshing response to
given dock’s motions, since this last is designed with a high draught compared
to incident wave lengths (𝜆/(𝑑 + 𝑠) < 2) near the highest natural sloshing period.
In addition, natural periods in pitch and heave are distinctly higher than the
considered incident wave periods (see more details in Sec. 5.4). It results that
the fluid motion at the bottom of the dock is negligible at operational weather
conditions. For instance, the dynamic pressure calculated with the DD model
developed in the previous chapter for the free-floating dock in regular incident
waves with frequencies near sloshing resonance reaches less than 1% of its maximal
value at the free surface, and is mainly caused by pitch motions.
In this chapter only, we consider that the dock has a closed bottom, and we focus on
the internal flow, both with and without the spar as shown in Fig. 3.1, and under
linear potential flow assumptions. From Sec. 3.1 to Sec. 3.3, sloshing eigenmodes
are discussed, and the so-called ”modal equations” describing sloshing waves for
given surge and pitch motions of the dock are established. Known theories which
model the effects - and in particular the viscous effects - of horizontal baffles on
sloshing in closed tanks are then considered in Secs. 3.4 and Sec. 3.5, extended in
the present work to perforated baffles. The total draught of the dock is renamed
𝑑 instead of 𝑑 + 𝑠 in this chapter only in order to simplify the notations. The
coupling between internal and external flows for the open-bottom dock, especially
in the case where baffles are installed, will be discussed in the dedicated Chapter
5.

3.1 Spectral problems

3.1.1 Upright cylinder

The potential flow is assumed to be harmonic, and is expressed as: 𝜙(𝑥, 𝑦, 𝑧, 𝑡) =
𝜑(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜎𝑡 . The sloshing eigenfrequencies 𝜎𝑝,𝑞 and eigenmodes 𝜑𝑝,𝑞 are found
by solving the following linear boundary-value problem when the dock is fixed,
also called spectral problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇2𝜑 = 0 in 𝑄0,

𝜕𝜑

𝜕𝑛
= 0 on 𝑆0,

𝜕𝜑

𝜕𝑧
= 𝜅𝜑 on Σ0,

(3.1)

47



3.1 Spectral problems

Figure 3.1: Sketch of the floating dock’s internal domain centre-plane, represented in
this Chapter with a closed bottom, both without (left) and with (right) the spar. The baffle
draught 𝑑𝐵 and width 𝑎𝐵 are illustrated. The draft 𝑑 + 𝑠 is re-written 𝑑 in this chapter
only for lighter notations.

where 𝜅 = 𝜎2/𝑔. For the particular cases of upright circular and annular cylinder,
as here for the dock without and with the spar, analytical solutions of the BVP
(3.1) can be established. 𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧) = Θ(𝜃)𝑊 (𝑟)𝑍 (𝑧) are found by separating the
variables, similar to what we did in the previous chapter (cf. Sec. 2.2.2). However,
for this problem, the functions 𝑍 (𝑧) only admit real wave numbers. Indeed, the
radial solution 𝑊 corresponding to imaginary wave number are the modified Bessel
functions, which never satisfy the body-boundary condition since both 𝐼 ′𝑝 (𝑟) = 0
and 𝐾 ′

𝑝 (𝑟) = 0 do not have solutions (cf. Appendix B.1). Solutions for 𝑊 (𝑟) are
thus generally the Bessel functions 𝐽𝑝 and 𝑌𝑝.

In this section, we first consider the dock without spar. The internal domain is
an upright cylinder of radius 𝑎 and draught 𝑑 (see left part of Fig. 3.1). Without
the spar, only the Bessel functions of the first kind are physical since the Bessel
functions of the second kind diverge in 𝑟 = 0. Eigenfunctions can then be written
(Faltinsen and Timokha, 2009):

𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧) =
𝐽𝑝

(
𝜄𝑝,𝑞

𝑟
𝑎

)
𝐽𝑝 (𝜄𝑝,𝑞)

cosh
(
𝜄𝑝,𝑞 (𝑧+𝑑)

𝑎

)
cosh

(
𝜄𝑝,𝑞𝑑
𝑎

) ×
⎧⎪⎪⎨⎪⎪⎩

cos(𝑝𝜃)

sin(𝑝𝜃)
, (3.2)
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Chapter 3 Sloshing

where (𝑝, 𝑞) ∈ N × N∗ and 𝜄𝑝,𝑞 are the roots by increasing order of 𝐽′𝑝 (𝜄𝑝,𝑞) = 0.
The free surface’s shape for several eigenmodes are shown in Fig. 3.2. Eigenmodes
are orthogonal due to the orthogonal properties of the trigonometric and Bessel
functions (cf. Appendix B.1). They are defined up to a multiplying constant,
chosen arbitrarily here such that 𝜑𝑝,𝑞 (𝑎, 0, 0) = 1. 𝑘 𝑝,𝑞 = 𝜄𝑝,𝑞/𝑎 are the eigen wave
numbers, and the wave frequencies are determined from the dispersion relationship,

𝜎2
𝑝,𝑞 =

𝑔𝜄𝑝,𝑞

𝑎
tanh

(
𝜄𝑝,𝑞𝑑

𝑎

)
. (3.3)

Eigenperiods are defined as 𝑇𝑝,𝑞 = 2𝜋/𝜎𝑝,𝑞. Only the modes proportional to cos(𝜃)
are linearly excited by surge and pitch motions, while the modes proportional
to sin(𝜃) are excited by sway and roll. It can also be noted that heave does not
linearly excite any sloshing modes in closed tanks.
The five lowest natural frequencies for two different values of the draught, chosen
within the range considered by Jiang et al. (2020) for the dock in operational
conditions, are given in Table 3.1. Typical incident wave frequencies range from
𝜔2𝑏/𝑔 = 0.26 to 𝜔2𝑏/𝑔 = 6.44 (or 𝑇 = 5s to 𝑇 = 25s in full scale), such that
resonance of the lowest natural frequency 𝜎2

1,1𝑏/𝑔 = 2.45 (𝑇1,1 = 8s in full scale) is
most likely to occur. We note that it corresponds exactly to the value of sloshing
resonance found from the added masses in surge and added moment in inertia
in Sec. 2.4 for the open-bottom dock with 𝑑/𝑏 = 2, supporting our closed-tank
approach. Jiang et al. (2020) imposed constraint on the draught in order to keep
the spar inside the dock protected from incident waves. In particular, 𝑑/𝑏 = 1.25
is the minimum draught that he considered. We see in Table 3.1 that the natural
frequencies are almost identical for 𝑑/𝑏 = 1.25 and 𝑑/𝑏 = 2, such that it is not
possible to shift natural sloshing frequencies away from the range of excitations by
playing with the vertical dimensions of the dock, as it was done for the piston mode
(Jiang et al., 2020). Variations of the lowest natural frequency with the draught for
various radii are presented in Fig, 3.3 for the lowest natural frequency, showing that
for draught-to-radius ratios higher than 𝑑/𝑎 > 1.6, 𝜔2𝑏/𝑔 is practically constant.

3.1.2 Annular cylinder

A cylindrical spar of radius 𝑎0 and draught 𝑑 is now installed inside the dock (cf.
right part of Fig. 3.1). The spectral problem 3.1 is solved in the annular domain
between the spar and the dock. The solution of the Laplace equation in 𝑧 and 𝜃
are identical to those for the dock alone. However, the singularity in 𝑟 = 0 does not
appear anymore since 𝑟 is bounded: 𝑎 ≥ 𝑟 ≥ 𝑎0. Thus, both Bessel functions of
the first and second kind are solution for 𝑊 , which can be written under the form:

𝑊𝑝 (𝑟) = 𝐴𝑝𝐽𝑝 (𝑘 𝑝,𝑞𝑟) + 𝐵𝑝𝑌𝑝 (𝑘 𝑝,𝑞𝑟), (𝑝, 𝑞) ∈ N × N
∗, (3.4)

where 𝐴𝑝 and 𝐵𝑝 are unknown coefficients. The boundary condition on 𝑆0 impose
that 𝑊 ′

𝑝 (𝑟) = 0 in 𝑟 = 𝑎 and 𝑟 = 𝑎0, which leads to the system:
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Figure 3.2: Visualisation of sloshing eigenmodes in an upright vertical cylinder with a
radius to draught ratio 𝑎/𝑑 = 0.37. Each row represents the first three modes proportional
to cos(𝑝𝜃), for 𝑝 = 0 to 𝑝 = 4 (cf. Eq. (3.2)).
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Table 3.1: First five lowest natural sloshing frequencies for two different dock’s draughts.
Only the modes 𝑝 = 1 are excited by surge and pitch. 𝑏 corresponds to the external
diameter in the previous chapter, and is only used here for a non-dimensionalisation
purpose. 𝑎/𝑏 = 0.75.

Modes
𝜎2𝑏/𝑔

(𝑑/𝑏 = 1.25)
𝜎2𝑏/𝑔

(𝑑/𝑏 = 2)
𝑝 = 1, 𝑞 = 1 2.44 2.45

𝑝 = 2, 𝑞 = 1 4.07 4.07

𝑝 = 0, 𝑞 = 1 5.11 5.11

𝑝 = 3, 𝑞 = 1 5.60 5.60

𝑝 = 4, 𝑞 = 1 7.09 7.09

Figure 3.3: Lowest anti-symmetric natural sloshing frequency as a function of the
non-dimensional draught, and for several radius of the dock. For the dock: 𝑎/𝑏 = 0.75.

[
𝐽′𝑝 (𝑘 𝑝,𝑞𝑎) 𝑌 ′

𝑝 (𝑘 𝑝,𝑞𝑎)
𝐽′𝑝 (𝑘 𝑝,𝑞𝑎0) 𝑌 ′

𝑝 (𝑘 𝑝,𝑞𝑎0)
] [
𝐴𝑝
𝐵𝑝

]
=

[
0
0

]
. (3.5)

Non-zeros solutions are found only if the determinant of the matrix in Eq. (3.5) is
null. We define then 𝜄𝑝,𝑞 = 𝑎0𝑘 𝑝,𝑞 (𝑝, 𝑞) ∈ N × N∗ as the roots in increasing order
of:

𝐽′𝑝

(
𝜄𝑝,𝑞

𝑎

𝑎0

)
𝑌 ′
𝑝 (𝜄𝑝,𝑞) − 𝐽′𝑝 (𝜄𝑝,𝑞)𝑌 ′

𝑝

(
𝜄𝑝,𝑞

𝑎

𝑎0

)
= 0. (3.6)

𝜄𝑝,𝑞 are estimated in this current work by the algorithm proposed by Sorolla et al.
(2013) (see Fig. 3.4), which uses in an efficient manner the interlacing properties
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of the Bessel functions (see more details in Appendix B.1). Eigenfunctions in the
annular domain are finally given by:

Figure 3.4: Selected roots of the cross-products (3.6).

𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧) =
𝑏Ψ𝑝,𝑞 (𝑟)√
𝜐𝑝,𝑞

cosh
(
𝑘 𝑝,𝑞 (𝑧 + 𝑑)

)
cosh

(
𝑘 𝑝,𝑞𝑑

) ×
⎧⎪⎪⎨⎪⎪⎩

cos(𝑝𝜃)

sin(𝑝𝜃)
, (3.7)

where the functions Ψ𝑝,𝑞 and the normalising coefficient 𝜐𝑝,𝑞 are defined as:

Ψ𝑝,𝑞 (𝑟) = 𝑌 ′
𝑝 (𝑘 𝑝,𝑞𝑎)𝐽𝑝 (𝑘 𝑝,𝑞𝑟) − 𝐽′𝑝 (𝑘 𝑝,𝑞𝑎)𝑌𝑝 (𝑘 𝑝,𝑞𝑟), (3.8)

𝜐𝑝,𝑞 =

[
𝑟2

2
Ψ2
𝑝,𝑞 (𝑟)

]𝑎
𝑎0

. (3.9)

The coefficient 𝑏 in Eq. (3.7) is a fixed length used to make 𝜑𝑝,𝑞 non-dimensional,
and corresponding to the external radius of the dock in the previous chapter. These
eigenmodes are also orthogonal (cf. Appendix B.1), their shape for selected (𝑝, 𝑞)
are shown in Fig. 3.5. The eigenfrequencies are determined from the dispersion
relationship:

𝜎2
𝑝,𝑞 = 𝑔

𝜄𝑝,𝑞

𝑎0
tanh

(
𝜄𝑝,𝑞

𝑎0
𝑑

)
. (3.10)

As for the dock alone, only the modes 𝑝 = 1 interact with the surge and pitch
motions of the bodies. The frequencies of the first mode 𝜎1,𝑞 are presented in
Fig. 3.6 both as functions of the dock and spar’s radii, and compared to the
eigenfrequencies for the dock without spar. As one should expect, the frequencies
converge to the case without spar when 𝑎0/𝑎 goes to 0. It is observed that for
𝑎0/𝑎 ≥ 0.37, the eigenfrequencies for modes 𝑞 ≥ 2 are increased compared to the
case of the dock without spar, while it is reduced for the first mode 𝑞 = 1. This
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Figure 3.5: Visualisation of sloshing eigenmodes in the annular domain between the
dock and the spar. Each line represents the first three modes proportional to cos(𝑝𝜃), for
𝑝 = 0 to 𝑝 = 4 (cf. Eq. (3.7)). Dock’s radius-to-draught ratio used to generate the plots:
𝑎/𝑑 = 0.37. Spar’s radius: 𝑎0/𝑎 = 0.23.
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is due to that 𝜎1,𝑞 is an increasing function of 𝜄1,𝑞/(𝑎0/𝑎), and to that the ratio
𝜄1,𝑞/(𝑎0/𝑎) only decreases with 𝑎0/𝑎 for the first mode 𝑞 = 1, while it increases
for higher modes and for 𝑎0/𝑎 ≥ 0.37. For the actual radius of the dock (square
points on the figure), 𝜎2

1,1𝑏/𝑔 is around 10% lower with the spar than for the dock
alone, meaning that the natural period is about 5% higher with the spar installed
in the dock.

Figure 3.6: Comparison of the non-dimensional logarithmic natural sloshing frequencies
of the five first modes in 𝑝 = 1 for the dock alone and with spar. Top: as a function of the
dock’s internal radius 𝑎/𝑏. Bottom: as a function of the spar’s radius 𝑎0/𝑎 for the case
with spar, the dock radius being fixed to 𝑎/𝑏 = 0.75. 𝑑/𝑏 = 2, frequencies corresponding to
actual dimensions of the dock are indicated by square points.
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3.2 Stokes-Joukowski potentials

Linear Stokes-Joukowski potentials were introduced by Joukowski (1885) for
flows in closed cavities without free surface, and typically associated with forcing
angular motions. It is commonly used in sloshing problems in order to express
the free-surface boundary problems in a tank fixed referential. Analytical solution
of Stokes-Joukowski potentials for both circular (Faltinsen and Timokha, 2009;
Lukovsky et al., 1984) and co-axial (Timokha, 2015; Faltinsen et al., 2016) cylinders
are well-known.
In this section, we first treat in a detail the case of circular cylinder to present the
method, based on separation of variables and decomposition of the body-boundary
condition. We note that other methods based on Lagrange variational formulations
can also be found in the literature (Lukovsky, 2015). Then, we consider the system
composed by both the dock and the spar, which differs from co-axial cylinders found
in the literature due to that both bodies can rotate independently. We propose
in the present work to solve the problem by introducing two Stokes-Joukowski
potentials, each associated to either the pitch motions of the dock or the spar. This
simplified approach works because the linear solution is calculated from the mean
positions of the bodies. For higher orders, the problem would become nonphysical
at the bottom of the spar, and a better model would be required. We note that
for the case where the spar can move freely inside the dock, stokes-Joukowski
potentials associated to the surge motions of both bodies must also be determined,
which we only treat in later Sec. 3.3.3.

3.2.1 𝛀 for the dock

The Stokes-Joukowski potential Ω is defined by the BVP (Faltinsen and Timokha,
2009): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇2𝛀 = 0 in 𝑄0,

𝜕𝛀
𝜕𝑛

= 𝒓 × 𝒏 on 𝑆 (2)0 ∪ Σ0,
(3.11)

Ω𝑖 for 𝑖 ∈ [1, 2, 3] being the velocity potential of the fluid when the tank has a unit
angular motion in the (𝑖 + 3)th DoF. Because of the symmetry of revolution, 𝛀
can always be expressed as

𝛀 = 𝐹 (𝑟, 𝑧)
⎡⎢⎢⎢⎢⎣
− sin(𝜃)
cos(𝜃)

0

⎤⎥⎥⎥⎥⎦ . (3.12)

The problem is hence reduced in determining the function 𝐹 (𝑟, 𝑧). The BVP (3.11)
then becomes:
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𝜕2𝐹

𝜕𝑧2
+ 𝜕

2𝐹

𝜕𝑟2
+ 1

𝑟

𝜕𝐹

𝜕𝑟
− 1

𝑟2
𝐹 = 0 in 𝑄0, (3.13)

𝜕𝐹

𝜕𝑧

"""0≤𝑟≤𝑎
𝑧=0,−𝑑

= −𝑟, (3.14)

𝜕𝐹

𝜕𝑟

""" 𝑟=𝑎
−𝑑≤𝑧≤0

= 𝑧. (3.15)

We introduce the decomposition

𝐹 (𝑟, 𝑧) = 𝐹𝑝 (𝑟, 𝑧) + 𝐹1(𝑟, 𝑧) (3.16)

such that the particular solution 𝐹𝑝 = 𝑟𝑧 satisfies both the vertical boundary
conditions on the wall, and the Laplace equation (3.13) in the internal domain.
Then, by replacing 𝐹 into the system, 𝐹1 satisfies the same Laplace equation, as
well as the following BCs

𝜕𝐹1
𝜕𝑧

"""0≤𝑟≤𝑎
𝑧=0,−𝑑

= −2𝑟 (3.17)

𝜕𝐹1
𝜕𝑟

""" 𝑟=𝑎
−𝑑≤𝑧≤0

= 0 (3.18)

We can now use the separation of variable 𝐹1(𝑟, 𝑧) = 𝐴(𝑟)𝐵(𝑧), and replace this
expression in Eq. (3.13). The solutions in 𝑧 takes the form 𝐵(𝑧) = 𝐶1𝑒

𝑘1, 𝑗 𝑧+𝐶2𝑒
−𝑘1, 𝑗 𝑧

where the wave parameters 𝑘1, 𝑗 have already been defined in Section 3.1.1 and
follow the condition (3.18). Because 𝐹 is bounded in the cylinder, the solution for
A are the Bessel functions of the first kind, i.e. 𝐴 𝑗 (𝑟) = 𝐶3, 𝑗𝐽1(𝑘1, 𝑗𝑟). The BC
(3.17) becomes then:

𝐴 𝑗 (𝑟)
"""
0≤𝑟≤𝑎

· 𝜕𝐵 𝑗 (𝑧)
𝜕𝑧

"""
𝑧=0,𝑑

= −2𝑟 · 1, (3.19)

which implies 𝐵 𝑗 (𝑧) =
sinh

(
𝑘1, 𝑗 (𝑧 + 𝑑

2
)
)

𝑘1, 𝑗 cosh

(
𝑘1, 𝑗

𝑑

2

) . At this stage we have determined

𝐹1 =
∞∑
𝑗=1

𝐶3, 𝑗𝐽1
(
𝑘1, 𝑗 , 𝑟

)
𝐵 𝑗 (𝑧) and still have to find the coefficients 𝐶3, 𝑗 from the
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BC (3.19) for 𝐴(𝑟). This is achieved by multiplying 𝐹1 by 𝑟𝐽1(𝑘1, 𝑗𝑟) and averaging
this last condition over the radius of the cylinder:∫ 𝑎

0
𝐹1(𝑟, 𝑧)𝐽1

(
𝑘1, 𝑗𝑟

) × 𝑟𝑑𝑟 = ∫ 𝑎

0
(−2𝑟)𝐽1

(
𝑘1, 𝑗 , 𝑟

)
𝑟𝑑𝑟. (3.20)

By this operation we take advantage of the orthogonal properties of the Bessel
functions (cf. Appendix B.1), and the remaining coefficients can easily be calculated.

It results that 𝐶3, 𝑗 = − 4𝑎(
𝜄21, 𝑗 − 1

)
𝐽1

(
𝜄1, 𝑗

) . Finally, the solution for the dock without

spar is:

𝐹 (𝑟, 𝑧) = 𝑟𝑧 − 4𝑎2
∞∑
𝑗=1

𝐽1

(
𝜄1, 𝑗

𝑟

𝑎

)
𝐽1

(
𝜄1, 𝑗

)
𝜄1, 𝑗

(
𝜄21, 𝑗 − 1

) sinh(𝑘1, 𝑗 (𝑧 + 𝑑2 ))
cosh(𝑘1, 𝑗 𝑑

2
)

. (3.21)

3.2.2 𝛀 for the two-body system dock and spar

We define 𝛀(1) and 𝛀(2) the Stokes Joukowski potentials associated to the motions

of the spar and the dock, respectively. We also write 𝑆 (2)0 = 𝑆 (2)0

𝑉 + 𝑆 (2)0

𝐻
the

internal surface of the dock including the bottom, where the upper indices 𝑉 and
𝐻 stand for Vertical and Horizontal boundaries, and 𝑆 (1)0 the surface of the spar.
The BVPs for the two potentials are then:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2𝛀(1) = 0 in 𝑄0,

𝜕𝛀(1)

𝜕𝑛
= 0 on 𝑆 (2)0 ∪ Σ0,

𝜕𝛀(1)

𝜕𝑛
= 𝒓 × 𝒏 on 𝑆 (1)0 ,

(3.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2𝛀(2) = 0 in 𝑄0,

𝜕𝛀(2)

𝜕𝑛
= 𝒓 × 𝒏 on 𝑆 (2)0 ∪ Σ0,

𝜕𝛀(2)

𝜕𝑛
= 0 on 𝑆 (1)0 .

(3.23)

As Eq. (3.12) for the dock alone, we can introduce 𝐹 (1) and 𝐹 (2) which both
satisfy Eq. (3.13) where 𝑄0 is now the annular domain. The previous BCs can
thus be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐹 (1)

𝜕𝑟
= 𝑧 on 𝑆 (1)0 ,

𝜕𝐹 (1)

𝜕𝑧
= 0 on 𝑆 (2)0

𝐻 ∪ Σ0,

𝜕𝐹 (1)

𝜕𝑟
= 0 on 𝑆 (2)0

𝐻 ∪ Σ0,

(3.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐹 (2)

𝜕𝑟
= 𝑧 on 𝑆 (2)0

𝑉
,

𝜕𝐹 (2)

𝜕𝑧
= −𝑟 on 𝑆 (2)0

𝐻 ∪ Σ0,

𝜕𝐹 (2)

𝜕𝑟
= 0 on 𝑆 (1)0 .

(3.25)

57



3.2 Stokes-Joukowski potentials

Both functions 𝐹 are decomposed as in Eq. (3.16) such that the particular solution

𝐹 (1)
𝑝 and 𝐹 (2)

𝑝 satisfy the BCs on the vertical walls and the Laplace Equation. The
following functions are for instance candidates:

𝐹 (1)
𝑝 (𝑟, 𝑧) = − 𝑎20𝑧𝑟

𝑎2 − 𝑎20
− 𝑎20𝑎

2𝑧(
𝑎2 − 𝑎20

)
𝑟
,

(3.26)

𝐹 (2)
𝑝 (𝑟, 𝑧) = 𝑎2𝑟𝑧

𝑎2 − 𝑎20
+ 𝑎2𝑎20𝑧(
𝑎2 − 𝑎20

)
𝑟

(3.27)

The system is now set for 𝐹 (1)
1 and 𝐹 (2)

1 , which are also solutions of the Laplace
equation and satisfy the BCs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐹 (1)
1

𝜕𝑟
= 0 on 𝑆 (2)0

𝑉 ∪ 𝑆 (1)0 ,

𝜕𝐹 (1)
1

𝜕𝑧
= − 𝑎20𝑟

𝑎2 − 𝑎20
+ 𝑎2𝑎20(
𝑎2 − 𝑎20

)
𝑟

on 𝑆 (2)0

𝐻 ∪ Σ0,

(3.28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐹 (2)
1

𝜕𝑟
= 0 on 𝑆 (2)0

𝑉 ∪ 𝑆 (1)0 ,

𝜕𝐹 (2)
1

𝜕𝑧
= 𝑟 − 𝑎2𝑟

𝑎2 − 𝑎20
− 𝑎2𝑎20(

𝑎2 − 𝑎20
)
𝑟

on 𝑆 (2)0

𝐻 ∪ Σ0.

(3.29)

Using separation of variables, the functions in 𝑧 are exactly the same as the function
𝐵(𝑧) for the dock alone defined in the previous section. 𝐹 (1)

1 and 𝐹 (2)
1 are written as

expansions of the functions Ψ1,𝑞, 𝑞 ∈ N∗ defined from the spectral problem. Thus,
the zero normal velocity on all the vertical walls is satisfied. The second conditions
of Eqs. (3.28) and (3.29) are now multiplied by 𝑟Ψ1, 𝑗 and integrated over the
radius in the annular domain. Using the orthonormal properties of 𝑟Ψ1, 𝑗 , the
unknown coefficients for each term of the expansions can be calculated individually,
similar to the dock alone. It results:

𝐹 (𝑘 ) (𝑟, 𝑧) = 𝐹 (𝑘 )
𝑝 (𝑟, 𝑧) +

∞∑
𝑗=1

G (𝑘 )
𝑗 (𝑎, 𝑎0)

Ψ1, 𝑗 (𝑟)
𝜐1, 𝑗 𝑘1, 𝑗

sinh

(
𝑘1, 𝑗 (𝑧 + 𝑑

2
)
)

cosh

(
𝑘1, 𝑗

𝑑

2

) 𝑘 ∈ {1, 2},

(3.30)

where we have defined:
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G (1)
𝑗 (𝑎, 𝑎0) =

𝑎20𝑎
2

𝑎2 − 𝑎20
𝐼2, 𝑝 +

𝑎20
𝑎2 − 𝑎20

𝐼1, 𝑝, (3.31)

G (2)
𝑗 (𝑎, 𝑎0) = − 2𝑎2 − 𝑎20

𝑎2 − 𝑎20
𝐼1, 𝑝 −

𝑎2𝑎20
𝑎2 − 𝑎20

𝐼2, 𝑝 . (3.32)

The integral 𝐼1, 𝑝 and 𝐼2, 𝑝 are given in Appendix B.3.

3.3 Linear modal theory

3.3.1 Modal equations for the dock

We consider now the motions of the dock. The absolute potential of the internal
domain is expressed in a tank-fixed coordinate system (Faltinsen and Timokha,
2009):

Φ(𝑥, 𝑦, 𝑧, 𝑡) = �𝜼 (2) (𝑡) · 𝒓 + 𝝎 (2) (𝑡) ·𝛀 +
∞∑
𝑝=0

∞∑
𝑞=1

𝑅𝑝,𝑞 (𝑡)𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧), (3.33)

where 𝜼 (2) and 𝝎 (2) are three-dimensional vectors describing respectively the rigid
dock’s translational and rotational motions, and the 𝒓 position vector:

𝒓 =

⎡⎢⎢⎢⎢⎣
𝑟 cos(𝜃)
𝑟 sin(𝜃)

𝑧

⎤⎥⎥⎥⎥⎦ , 𝜼 (2) =

⎡⎢⎢⎢⎢⎢⎣
𝜂 (2)1

𝜂 (2)2

𝜂 (2)3

⎤⎥⎥⎥⎥⎥⎦ , 𝝎 (2) =

⎡⎢⎢⎢⎢⎢⎣
�𝜂 (2)4

�𝜂 (2)5

�𝜂 (2)6

⎤⎥⎥⎥⎥⎥⎦ . (3.34)

𝛀 is the Joukowski potential established for the dock alone in Eq. (3.21), and
𝜑𝑝,𝑞 the eigenfunctions (3.2) in the dock alone. The first two terms of Eq. (3.33)
correspond to the particular solutions of Φ satisfying the body-boundary conditions
when the dock is moving and the free surface is rigid, while the last term satisfies
the free-surface boundary condition in dock-fixed coordinate system. This last term
is written as a summation of eigenmodes, weighted by unknown time-dependent
modal coefficients 𝑅𝑝,𝑞 (𝑡), which remain to be determined from the Earth-fixed
kinematic and dynamic free-surface boundary conditions. The same eigenfunction
expansion is used to express the free-surface elevation in a dock-fixed coordinate
system:

𝜁 (𝑥, 𝑦, 𝑡) =
∞∑
𝑝=0

∞∑
𝑞=1

𝛽𝑝,𝑞 (𝑡)𝜑𝑝,𝑞 (𝑥, 𝑦, 0), (3.35)

where 𝛽𝑝,𝑞 (𝑡) are new unknown modal coefficients. The linear kinematic and
dynamic free-surface boundary conditions are then written:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕Φ
𝜕𝑧

=
𝜕𝜁

𝜕𝑡
− 𝑟 cos(𝜃) �𝜂 (2)5 on 𝑧 = 0,

𝜕Φ
𝜕𝑡

= 𝑥𝑔𝜂 (2)5 − 𝑔𝜁 on 𝑧 = 0.

(3.36)

Making use of the orthogonal properties of the Bessel functions 𝐽𝑝 for 𝑝 ∈ N,
we replace Φ and 𝜁 by their expressions in Eq. (3.33) and (3.35), respectively,
multiply these free surface conditions by 𝐽𝑝, and integrate over the free surface in
the dock. It results modal equations for the unknown coefficients 𝑅𝑝,𝑞 and 𝛽𝑝,𝑞,
independent for each pair (𝑝, 𝑞):⎧⎪⎪⎨⎪⎪⎩

�𝛽𝑝,𝑞 = 𝜅𝑝,𝑞𝑅𝑝,𝑞 ,


𝛽𝑝,𝑞 + 𝜎2
𝑝,𝑞𝛽𝑝,𝑞 = 𝐾𝑝,𝑞 (𝑡),

(3.37)

where 𝐾𝑝,𝑞 are the excitation introduced by the dock’s motions, and 𝜅𝑝,𝑞 = 𝜎2
𝑝,𝑞/𝑔.

In our model, the body is excited in surge and pitch only, and thus only the
eigenfunctions in cos(𝑝𝜃) are considered. The exciting coefficients are then written:

𝐾𝑝,𝑞 (𝑡) = −𝜆1, 𝑝,𝑞
𝜇𝑝,𝑞

(

𝜂 (2)1 (𝑡) − 𝑔𝜂 (2)5 (𝑡)

)
− 
𝜂5(𝑡)𝜆2, 𝑝,𝑞

𝜇𝑝,𝑞
, (3.38)

where we defined the following coefficients:

𝜇𝑝,𝑞 =
𝜌

𝜅𝑝,𝑞

∫
Σ0

𝜑𝑝,𝑞 (𝑟, 𝜃, 0)2𝑟𝑑𝜃𝑑𝑟 =
𝜌𝜋𝑎3

(
𝜄2𝑝,𝑞 − 𝑝2

)
2𝜄3𝑝,𝑞 tanh

(
𝜄𝑝,𝑞𝑑/𝑎

) , (3.39)

𝜆1, 𝑝,𝑞 = 𝜌
∫
Σ0

𝜑𝑝,𝑞 (𝑟, 𝜃, 0)𝑟2 cos(𝜃)𝑑𝜃𝑑𝑟 =
⎧⎪⎪⎨⎪⎪⎩
𝜌𝜋𝑎3/𝜄21,𝑞 if 𝑝 = 1

0 if 𝑝 ≠ 1

, (3.40)

𝜆2, 𝑝,𝑞 = 𝜌
∫
Σ0

𝜑𝑝,𝑞 (𝑟, 𝜃, 0)Ω2𝑟𝑑𝜃𝑑𝑟 =

⎧⎪⎪⎨⎪⎪⎩
−2𝜋𝜌𝑎4/𝜄31,𝑞 tanh

(
𝜄1,𝑞𝑑/(2𝑎)

)
if 𝑝 = 1

0 if 𝑝 ≠ 1

.

(3.41)

We note that only the anti-symmetric modes 𝑝 = 1 are non-zero for the closed-bottom
dock. As discussed in Sec. 3.1.1, this is because the anti-symmetric surge and
pitch motions are the only excitation. We can note that for an open-bottom
structure in waves, higher modes 𝑝 > 1 would also be excited by incident waves
for lower draughts. Finally the modal equations (3.37) can be re-written under
the simplified form:
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𝛽1,𝑞 + 𝜎2
1,𝑞𝛽1,𝑞 = −𝑃𝑞

[

𝜂 (2)1 (𝑡) − 𝑔𝜂5(𝑡) − 𝑆𝑞 
𝜂 (2)5 (𝑡)

]
for 𝑞 ∈ N, (3.42)

with: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃𝑞 =

2𝜄1,𝑞 tanh
(
𝜄1,𝑞𝑑/𝑎

)
𝜄21,𝑞 − 1

,

𝑆𝑞 =
2𝑎 tanh

(
𝜄1,𝑞𝑑/(2𝑎)

)
𝜄1,𝑞

. (3.43)

Eq. (3.42) can generally be solved in time domain for instance by a 4th order
Runge-Kutta numerical scheme for arbitrary motions of the dock. When the
motions of the dock are harmonic at the frequency 𝜔, as it is for example the case
in regular waves, the exciting term in the right hand side of Equation (3.42) can
be simplified under the form 𝐾1,𝑞 = 𝐶𝑞 cos(𝛼𝑞 − 𝜔𝑡) for 𝑞 ∈ N, where 𝐶𝑞 and 𝛼𝑞
are the real amplitude and phase of the excitation. An analytical solution of 𝛽1,𝑞
can thus easily be determined. If we assume the fluid initially at rest, i.e. 𝛽1,𝑞 = 0
and �𝛽1,𝑞 = 0, it comes:

𝛽1,𝑞 = 𝐶𝑞
cos(𝛼𝑞) cos(𝜎1,𝑞𝑡)𝜎1,𝑞 + sin(𝛼𝑞) sin(𝜎1,𝑞𝑡)𝜔 − 𝜎1,𝑞 cos(−𝜔𝑡 + 𝛼𝑞)

𝜎1,𝑞 (𝜔2 − 𝜎2
1,𝑞)

.

(3.44)
𝜁 can now be reconstructed by summing the modes 𝑞 in Eq. (3.35), Faltinsen
and Timokha (2009) recommend for example seven to twelve modes. The two
first terms of Eq. (3.44) oscillate at the natural sloshing frequency, while the
last term is harmonic in the forcing frequency 𝜔 imposed by the motions of the
dock. Within linear assumptions, and without any additional damping, we observe
that the wave elevation will diverge at the sloshing natural frequency. In practice,
viscous damping from the boundary layers and non-linear energy dissipation would
introduce additional damping. If in addition we define a time-line such that the
exciting phase 𝛼𝑞 = 0, the modal coefficients can be expressed as:

𝛽1,𝑞 =
𝐶𝑞

𝜔2 − 𝜎2
1,𝑞

[cos(𝜎1,𝑞𝑡) − cos(𝜔𝑡)] = 2𝐶𝑞

𝜔2 − 𝜎2
1,𝑞

[sin(𝜎1,𝑞 − 𝜔
2

𝑡) sin(𝜎1,𝑞 + 𝜔
2

𝑡)] .

(3.45)
The wave elevation is thus oscillating at the frequency (𝜎1,𝑞 + 𝜔)/2 inside an
envelope oscillating at the frequency (𝜎1,𝑞 − 𝜔)/2. This phenomenon is known as
beating, and is characterized by the beating frequency:

𝜔𝑏𝑒𝑎𝑡𝑖𝑛𝑔 = 𝜎1,𝑞 − 𝜔. (3.46)

In absence of heave motion, the wave elevation in an Earth-fixed referential can
simply be expressed as follow:
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𝜁Earth fixed = 𝜁body fixed − 𝑥𝜂5. (3.47)

3.3.2 Hydrodynamic loads in frequency domain

We assume now a steady-state problem, i.e. we neglect the transient part of Eq.
(3.44). Eq. (3.38) can be written

𝐾1,𝑞 = −𝜔2𝑃𝑞,1𝜂
(2)
1 𝑒−𝑖𝜔𝑡 − 𝜔2𝑃𝑞,5𝜂

(2)
5 𝑒−𝑖𝜔𝑡 , (3.48)

where 𝑃𝑞,1 and 𝑃𝑞,5 are the real coefficients⎧⎪⎪⎨⎪⎪⎩
𝑃𝑞,1 = −𝜆1,1,𝑞/𝜇1,𝑞,

𝑃𝑞,5 = −(𝑔𝜆1,1,𝑞𝜔−2 + 𝜆2,1,𝑞)/𝜇1,𝑞 .
(3.49)

These expressions make in evidence accelerating terms in surge and pitch. Each
mode of the potential flow is then also proportional to the motion’s accelerations.
The same conclusion can be made for the dynamic pressure, and exciting forces
on the internal walls of the dock. It results that the hydrodynamic loads caused
by the sloshing waves can be written in an Earth-fixed coordinate system as
−𝐴slosh

𝑖, 𝑗 
𝜂 (2)𝑗 , (𝑖, 𝑗) ∈ {1, 5}2, where 𝐴slosh
𝑖, 𝑗 represent added mass coefficients. We can

note that they could alternatively be considered as restoring forces, associated
to the restoring coefficients 𝐴slosh

𝑖, 𝑗 /𝜔2. In additions to these forces, the inertia of
the water mass itself when there is no flow motions, also named ”frozen water”
by Faltinsen and Timokha (2009), has to be taken into account in the equations
of motions of the dock. They are expressed here as added mass coefficients 𝐴𝐹𝑖, 𝑗 ,

where the upper-script F stands for ”frozen water”. Both 𝐴𝐹𝑖, 𝑗 and 𝐴
slosh
𝑖, 𝑗 coefficients

can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝐹1,1 = 𝐴
𝐹
3,3 = 𝑀𝑙,

𝐴𝐹5,5 = 𝜔
−2𝑀𝑙𝑔𝑧𝑙𝐶0 + 𝐼2,2,

𝐴𝐹1,5 = 𝐴
𝐹
5,1 = 𝑀𝑙𝑧𝑙𝐶0 ,

𝐴𝐹5,3 = −𝐴𝐹3,5 = 𝑀𝑙𝑥𝑙𝐶0 ,

(3.50)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴slosh
1,𝑘 =

∑∞
𝑚=1 𝜆1𝑚

𝑃𝑚,𝑘𝜔
2

𝜎2
𝑚−𝜔2 ,

𝐴slosh
5,1 =

∑∞
𝑚=1

(
𝑔𝜆1𝑚
𝜔2 + 𝜆02𝑚

)
𝑃𝑚,1𝜔

2

𝜎2
𝑚−𝜔2 ,

𝐴slosh
5,5 =

∑∞
𝑚=1

(
𝑔𝜆1𝑚
𝜔2 + 𝜆02𝑚

)
𝑃𝑚,5𝜔

2

𝜎2
𝑚−𝜔2 ,

𝐴slosh
5,3 = 𝐴slosh

3,5 = 0,

(3.51)

where (𝑥𝑙𝐶0 , 𝑦𝑙𝐶0 , 𝑧𝑙𝐶0) =
(
0, 0,− 𝑑

2

)
is the geometric centre of the water mass, 𝑀𝑙

is the mass of the water, and 𝐼2,2 is defined from the inertia matrix of the ”frozen
water” mass:
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I = 𝜌

⎡⎢⎢⎢⎢⎢⎣
∫
𝑄0

(
𝑦2 + 𝑧2) 𝑑𝑄 −

∫
𝑄0
𝑥𝑦𝑑𝑄 −

∫
𝑄0
𝑥𝑧𝑑𝑄

−
∫
𝑄0
𝑥𝑦𝑑𝑄

∫
𝑄0

(
𝑥2 + 𝑧2) 𝑑𝑄 −

∫
𝑄0
𝑦𝑧𝑑𝑄

−
∫
𝑄0
𝑥𝑧𝑑𝑄 −

∫
𝑄0
𝑧𝑦𝑑𝑄

∫
𝑄0

(
𝑦2 + 𝑥2) 𝑑𝑄

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝐼1,1 0 0
0 𝐼2,2 0
0 0 𝐼3,3

⎤⎥⎥⎥⎥⎦
(3.52)

where

𝐼1,1 = 𝐼2,2 =
1

12
𝑀𝑙

(
3𝑎2 + 𝑑2

)
+ 𝑀𝑙

(
𝑑

2

)2
. (3.53)

Furthermore, the internal flow will also have global rotational motions, corresponding
with the second term of Φ in Eq. (3.33). These will affect the moment of inertia
in pitch of the water volume, which is then defined by

𝐽2,2 = 𝜌
∫
𝑆0∪Σ0

Ω2
𝜕Ω2

𝜕𝑛
𝑑𝑆 = 𝜌𝜋𝑎2

(
1

3
𝑑3 − 3

4
𝑑𝑎2 + 16𝑎2

∞∑
𝑝=1

tanh( 𝜄1, 𝑝𝑑2𝑎 )
𝜄31, 𝑝 (𝜄21, 𝑝 − 1)

)
. (3.54)

Finally, the total hydrodynamic loads inside the dock can be included in the
equations of the motions in the frequency domain thanks to the following added
mass coefficients:

𝐴𝑖, 𝑗 = 𝐴
filled
𝑖, 𝑗 + 𝐴slosh

𝑖, 𝑗 , (3.55)

where

𝐴filled
𝑖, 𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝐴𝐹5,5 +

(
𝐽2,2 − 𝐼2,2

)
if 𝑖 = 𝑗 = 5,

𝐴𝐹𝑖, 𝑗 otherwise.
(3.56)

3.3.3 Modal equations for the dock with spar

We propose in the present work similar modal equations for the dock with the
spar. Sloshing eigenmodes are now excited by the surge and pitch motions of both
the dock and the spar. The absolute potential flow in the annular domain can be
written:

Φ(𝑥, 𝑦, 𝑧, 𝑡) = �𝜼 (1) (𝑡)·𝚪 (1)+ �𝜼 (2) (𝑡)·𝚪 (2)+𝝎 (1) (𝑡)·𝛀(1)+𝝎 (2) (𝑡)·𝛀(2)+
∞∑
𝑝=0

∞∑
𝑞=1

𝑅𝑝,𝑞 (𝑡)𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧)

(3.57)

where 𝜑𝑝,𝑞 are the eigenfunctions (3.7) in the annular domain, 𝛀(1) and 𝛀(2)

the Stokes-Joukowski potential defined in Sec. 3.2.2, and 𝜼 (1) and 𝝎 (1) are the
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three-dimensional vectors describing respectively the spar’s translational and
rotational motions:

𝜼 (1) =

⎡⎢⎢⎢⎢⎢⎣
𝜂 (1)1

𝜂 (1)2

𝜂 (1)3

⎤⎥⎥⎥⎥⎥⎦ , 𝝎 (1) =

⎡⎢⎢⎢⎢⎢⎣
�𝜂 (1)4

�𝜂 (1)5

�𝜂 (1)6

⎤⎥⎥⎥⎥⎥⎦ . (3.58)

Because the spar remains fixed when the dock is moving in surge and vice versa,
we now have to consider an internal potential flow associated to surge motions
when the free surface is rigid. It is the equivalent in surge to the Stokes-Joukowski
problems that we solved for the pitch motions. The potential 𝚪 (1) and 𝚪 (2) in Eq.
(3.57) are thus defined as the solutions of the boundary-value problems (3.59) and
(3.60) associated with the translational motions 𝜼 (1) and 𝜼 (2) , respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2𝚪 (1) = 0 in 𝑄0,

𝜕𝚪 (1)

𝜕𝑛
= 0 on 𝑆 (2)0 ∪ Σ0,

𝜕𝚪 (1)

𝜕𝑛
= 𝒏 on 𝑆 (1)0 ,

(3.59)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2𝚪 (2) = 0 in 𝑄0,

𝜕𝚪 (2)

𝜕𝑛
= 𝒏 on 𝑆 (2)0 ∪ Σ0,

𝜕𝚪 (2)

𝜕𝑛
= 0 on 𝑆 (1)0 .

(3.60)

These two systems are solved by separation of variables, noting that the potential
caused by surge motions must be anti-symmetrical, i.e. proportional to cos(𝜃),
and independent of 𝑧. The Laplace equation imposes solutions in 𝑟 of the form
[𝑟, 1/𝑟], fully determined thanks to the body-boundary conditions. The general
expressions of the vectors 𝚪 (1) and 𝚪 (2) are given below for the three translational
motions:

𝚪 (1) =

(
− 𝑎20
𝑎2 − 𝑎20

𝑟 − 𝑎2𝑎20(
𝑎2 − 𝑎20

)
𝑟

) ⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(𝜃)

− sin(𝜃)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.61)

𝚪 (2) =

(
𝑎2

𝑎2 − 𝑎20
𝑟 + 𝑎2𝑎20(

𝑎2 − 𝑎20
)
𝑟

) ⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(𝜃)

− sin(𝜃)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

0

𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.62)

As for the dock alone, surge and pitch motions only excite the first mode 𝑝 = 1.
We express the free-surface elevation in a dock-fixed coordinate system:

𝜁 (𝑥, 𝑦, 𝑡) =
∞∑
𝑞=1

𝛽1,𝑞 (𝑡)𝜑1,𝑞 (𝑥, 𝑦, 0). (3.63)

We now insert the expressions of Φ and 𝜁 in Eqs. (3.57) and (3.63) in the
free-surface boundary condition (3.36) for the two-body system. Both the kinematic
and dynamic boundary conditions are multiplied by the orthogonal eigenfunctions
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𝜑1,𝑞 and integrated over the free surface, resulting in the same modal equations as
for the dock alone:

⎧⎪⎪⎨⎪⎪⎩
�𝛽1,𝑞 = 𝜅1,𝑞𝑅1,𝑞,


𝛽1,𝑞 + 𝜎2
1,𝑞𝛽1,𝑞 = 𝐾1,𝑞 (𝑡).

(3.64)

but where 𝐾1,𝑞 (𝑡) is now defined as

𝐾1,𝑞 (𝑡) = − 1

𝜇1,𝑞

[
𝜆1,1,𝑞 
𝜂 (1)1 + 𝜆2,1,𝑞 
𝜂 (2)1 + 𝜆3,1,𝑞 
𝜂 (1)5 + 𝜆4,1,𝑞 
𝜂 (2)5 − 𝜆5,1,𝑞𝑔𝜂 (2)5

]
.

(3.65)

The hydrodynamic coefficients 𝜇 and 𝜆 in Eq. (3.65) are given in Appendix B.3.
It should be emphasised that the 𝜆 coefficients associated to the dock motions
differ from the case of the dock without spar. The solutions are expressed under
the same form as for the dock alone (cf. Eq (3.44)), replacing the natural sloshing
frequencies by those of the annular domain between the dock and the spar, and
with additional exciting terms caused by the spar’s surge and pitch motions.

3.4 Variational methods

We consider now that a thin annular baffle is installed inside the dock. The baffle
has a width 𝑎𝐵 and is submerged at the distance 𝑑𝐵 from the mean free surface,
mounted as shown in Fig. 3.1. Its thickness is assumed to be small compared to
𝑎𝐵. The spectral problem (3.1) can not be solved analytically for the case with a
baffle. Variational approaches, which are based on the conservation of mechanical
energy, present alternative methods to estimate eigenmodes and eigenfrequencies
for small variations of the volume 𝑄0.
The potential and kinetic energies of an arbitrary flow in the domain 𝑄0 can
generally be expressed as:

𝐸𝑝 = 𝜌𝑔
∫
Σ0

∫ 𝜁 (𝑟 , 𝜃 )

0
𝑧d𝑧d𝑆, (3.66)

𝐸𝑘 =
1

2
𝜌

∫
𝑄0

(∇Φ)2 d𝑄. (3.67)

For a free standing wave periodic in time Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑𝑝,𝑞 (𝑥, 𝑦, 𝑧) cos
(
𝜎𝑝,𝑞𝑡

)
associated to the mode (𝑝, 𝑞) ∈ N × N∗, Eqs. (3.66) and (3.67) becomes:
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𝐸𝑝 =
𝜌𝜎2

𝑝,𝑞

2𝑔
sin2

(
𝜎𝑝,𝑞𝑡

) ∫
Σ0

𝜑2𝑝,𝑞𝑑𝑆, (3.68)

𝐸𝑘 =
1

2
𝜌 cos2

(
𝜎𝑝,𝑞𝑡

) ∫
𝑄0

(∇𝜑𝑝,𝑞 )2
d𝑄. (3.69)

The kinematic free-surface boundary condition was used in (3.68) to express the
instantaneous free-surface elevation as a function of the eigenmode 𝜑𝑝,𝑞. The
conservation of energy 𝑑𝐸𝑀/𝑑𝑡 = 𝑑 (

𝐸𝑘 + 𝐸𝑝
) /𝑑𝑡 = 0 results in the relationship:

𝜅𝑝,𝑞 =
𝜎2
𝑝,𝑞

𝑔
=

∫
𝑄0

(∇𝜑𝑝,𝑞 )2
d𝑄∫

Σ0
𝜑2𝑝,𝑞d𝑆

, (3.70)

from which is defined the functional, also called Rayleigh quotient:

𝐾𝑄0,Σ0 (𝜑) =
∫
𝑄0

(∇𝜑)2d𝑄∫
Σ0
𝜑2d𝑆

. (3.71)

Its argument 𝜑 is a spatial function which does not necessarily satisfy the boundary
value problem (3.1). Local minima of the Rayleigh quotient are reached at the
eigenmodes 𝜑 = 𝜑𝑝,𝑞, and in particular, the functions for which these minima
are reached always satisfy all the equations of the spectral problem. This latest
assertion is demonstrated in detail by Faltinsen and Timokha (2009), and is only
true for Neumann’s type of BCs on the body surface: the spectral problem is then
called ”natural”.
It is interesting to note that for two volumes𝑄 (1)

0 and𝑄 (2)
0 that have an identical free

surface Σ0, and such that 𝑄 (2)
0 � 𝑄 (1)

0 , then the eigen frequencies verify 𝜎 (2)
𝑝 < 𝜎 (1)

𝑝 .
Thus, even if it is generally not possible to determine the eigenfunctions for most
problems, we can often estimate bounds of the natural frequencies by bounding
the domain𝑄0 with geometries for which the eigenmodes and frequencies are known.

Faltinsen and Timokha (2009) present asymptotic methods to estimate shifted
natural frequencies for small variations of the water volume, adapted to the case
when a thin annular baffle is installed inside the dock. We write respectively 𝜑𝑝,𝑞
and 𝜑′𝑝,𝑞 the sloshing eigenfunctions in the dock without and with the baffle. We
also denote by 𝑄′

0 the water volume with the baffle. Because of the singularity
at the sharp edge of the baffle, 𝜑′𝑝,𝑞 does not converge to 𝜑𝑝,𝑞 when the baffle’s
width 𝑎𝐵 converges to 0. It is therefore not possible to estimate the kinetic
energy in the reduced volume from the velocity caused by undisturbed eigenmodes:
𝐾𝑄′

0,Σ0 (𝜑′𝑝,𝑞) � 𝐾𝑄′
0,Σ

′
0
(𝜑𝑝,𝑞), as it is commonly the usage for chamfered tanks.

To overcome this difficulty, Faltinsen and Timokha (2009) propose an estimation
of the reduced sloshing eigenfrequencies based on Green’s second identity and
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assuming that the baffle’s width is small compared to both the eigenmode wave
length and the submergence 𝑑𝐵. The main steps of their derivations, including the
main assumptions made in the case of the dock with baffle are presented below.

We denote 𝐶 the surface of the baffle. Since both 𝜑𝑝,𝑞 and 𝜑′𝑝,𝑞 satisfies the
non-penetration boundary condition on 𝑆0, Green’s second identity for both
potential in the domain delimited by 𝑆0 + 𝐶 + Σ0 is given by:∫

Σ0

(
𝜑′𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
− 𝜑𝑝,𝑞

𝜕𝜑′𝑝,𝑞
𝜕𝑛

)
d𝑆 +

∫
𝐶
𝜑′𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆 = 0. (3.72)

Inserting the body-boundary condition 𝜕𝜑′𝑝,𝑞/𝜕𝑛 = 0 on 𝐶, and the free-surface
boundary conditions 𝜕𝜑𝑝,𝑞/𝜕𝑧 = 𝜅𝑝,𝑞𝜑𝑝,𝑞 on Σ0 and 𝜕𝜑′𝑝,𝑞/𝜕𝑧 = 𝜅𝑝,𝑞𝜑′𝑝,𝑞 on Σ0,
Eq. (3.72) is simplified to:

𝜅′𝑝,𝑞 = 𝜅𝑝,𝑞 +
∫
𝐶
𝜑′𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆∫

Σ0
𝜑𝑝,𝑞𝜑

′
𝑝,𝑞d𝑆

(3.73)

We introduce the perturbation 𝜑𝑑𝑝,𝑞 of the potential flow caused by the baffle:

𝜑𝑑𝑝,𝑞 = 𝜑′𝑝,𝑞 − 𝜑𝑝,𝑞 . (3.74)

The body-boundary condition on the baffle can be written 𝜕𝜑𝑑𝑝,𝑞/𝜕𝑧 = −𝜕𝜑𝑝,𝑞/𝜕𝑧
on 𝐶. We assume that the baffle’s width is small compared to the wave length of
the sloshing eigenmode, such that

𝜕𝜑𝑑𝑝,𝑞

𝜕𝑧
= −𝜕𝜑𝑝,𝑞

𝜕𝑧
� −𝜕𝜑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎) on𝐶 (3.75)

We define the potential 𝜑𝑑𝑝,𝑞, related to 𝜑𝑑𝑝,𝑞 by

𝜑𝑑𝑝,𝑞 � −𝜑𝑑𝑝,𝑞
𝜕𝜑𝑑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎) on𝐶, (3.76)

and where 𝜕𝜑𝑑𝑝,𝑞/𝜕𝑧 = 1 on 𝐶 in order to satisfy Eq. (3.75). From Eq. (3.76),

𝜑𝑑𝑝,𝑞 can be seen as the radiation potential created by the baffle when this one

oscillates along the wall of the dock at the velocity −𝜕𝜑𝑑𝑝,𝑞/𝜕𝑧. The added mass of
the baffle associated to this radiation problem is then given by:

𝐴baffle = −𝜌
∫
𝐶
𝜑𝑑𝑝,𝑞d𝑆. (3.77)

With the decomposition (3.74), the numerator of Eq. (3.73) becomes:∫
𝐶
𝜑′𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆 =

∫
𝐶
𝜑𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆 +

∫
𝐶
𝜑𝑑𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆. (3.78)
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As in Eqs. (3.75)-(3.76), we assume that the flow velocity of the undisturbed
potential varies slowly along the baffle, and can be expressed by its value at the
fixation point on the dock on C. We replace then 𝜑𝑑𝑝,𝑞 by its expression in Eq.
(3.76) in Eq. (3.78):

∫
𝐶
𝜑′𝑝,𝑞

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑆 =

[
𝜕𝜑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎)
] ∫

𝐶
𝜑𝑝,𝑞d𝑆

+
[
𝜕𝜑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎)
]
×

[
−𝜕𝜑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎)
] ∫

𝐶
𝜑𝑑𝑝,𝑞d𝑆

(3.79)

We see that the second integral in the left hand side of Eq. (3.79) can be expressed
as an added mass term as in Eq.(3.77). The first integral in the left hand side of
Eq. (3.79) can be approximated applying Gauss theorem:

∫
𝐶
𝜑𝑝,𝑞d𝑆 =

∫
𝛿𝑄0

𝜕𝜑𝑝,𝑞

𝜕𝑛
d𝑄 �

[
𝜕𝜑𝑝,𝑞

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+𝑂 (𝑎𝐵/𝑎)
]
×Vol(𝛿𝑄0) (3.80)

where 𝛿𝑄0 = 𝑄0 −𝑄′
0 and Vol(𝛿𝑄0) is the volume of the baffle, which is of higher

order with respect to 𝑎𝐵. The integral Eq. (3.80) is thus negligible in our approach.
The denominator of Eq. (3.73) is now simplified by making the assumption that
𝑑𝐵/𝑎𝐵 is high enough, such that 𝜑𝑑𝑝,𝑞 does not affect the free surface. Then we
can write: ∫

Σ0

𝜑𝑝,𝑞𝜑
′
𝑝,𝑞d𝑆 �

∫
Σ0

𝜑2𝑝,𝑞d𝑆 (3.81)

Including all the simplifications made from Eqs. (3.79) to (3.81), Eq. (3.73) can
be expressed as:

𝜅′𝑝,𝑞/𝜅𝑝,𝑞 =
𝜎′2
𝑝,𝑞

𝜎2
𝑝,𝑞

= 1 −

𝜕𝜑𝑝,𝑞

𝜕𝑧

2""" 𝑟=𝑎
𝑧=−𝑑𝐵

𝐴baffle

𝜌𝜅𝑝,𝑞
∫
Σ0
𝜑2𝑝,𝑞d𝑆

(3.82)

The added mass of the baffle 𝐴baffle is not known, but can be estimated from the

two-dimensional added mass 𝐴
plate
0 of a flat plate perpendicular to a wall, then

integrated along 𝜃. 𝐴
plate
0 is given analytically by Eq. (3.83) as half of the added

mass of a flat plate of length 2𝑎𝐵 in infinite fluidNewman (1977):

𝐴
plate
0 =

1

2
𝜋𝜌𝑎2𝐵. (3.83)

The reduced eigenfrequencies 𝜎′2
𝑝,𝑞 when the baffle is installed are hence given by:

68



Chapter 3 Sloshing

𝜎′2
𝑝,𝑞

𝜎2
𝑝,𝑞

= 1 −

∫ 2𝜋

0

𝜕𝜑𝑝,𝑞

𝜕𝑧

2""" 𝑟=𝑎
𝑧=−𝑑𝐵

𝐴
plate
0 𝑎d𝜃

𝜌𝜅𝑝,𝑞
∫
Σ0
𝜑2𝑝,𝑞d𝑆

. (3.84)

It is important to emphasise that the formula (3.84) is based on the assumption
that the flow is irrotational, and does not account for the viscous eddies created
by the flow separation at the edge of the baffle. A corrective term will be brought
to the added mass of the baffle in a later section to account for these viscous
effects. In our model, the width of the baffle 𝑎𝐵/𝑎 = 0.17 is low compared to the
the wave length associated to the lowest sloshing eigenfrequencies 𝜆1,1/𝑎 = 3.4. It
is therefore reasonable to assume that the flow velocity 𝜕𝜑𝑝,𝑞/𝜕𝑧 does not vary
much along 𝐶. However, 𝑎𝐵 and 𝑑𝐵 have similar dimensions in our work, and the
assumption (3.81) is more questionable.
This last point is for example discussed by Gavrilyuk et al. (2006). In their work,
they solve the spectral problem for a cylinder with an annular solid baffle thanks to
a domain decomposition approach. In particular, they consider several values of 𝑎𝐵
and 𝑑𝐵 in the same range as in the present work. Fig. 3.7 shows the radial profile
of the first sloshing eigenmode 𝜑1,1 at the free surface from their results, both for
𝑑𝐵/𝑎 = 0.1 and 𝑑𝐵/𝑎 = 0.3, and for several baffle’s widths. As expected, the larger
deviations from the case without baffle are obtained for the smallest submergence
𝑑𝐵/𝑎 = 0.1. Interestingly, larger deviations from the case without baffle are also
observed for the lowest 𝑎𝐵/𝑎 ratios. Gavrilyuk et al. (2006) emphasise that both
𝜑′1,1(𝑟, 0, 0) and 𝜎′

1,1 vary less than 1% as long as 𝑎𝐵/𝑎 � 0.05. It is however not
true when comparing with the case without baffle, i.e. 𝑎𝐵/𝑎 = 0. As discussed at
the beginning of the section, there is indeed no analytical continuation from 𝜑′1,1
to 𝜑1,1 when the baffle’s width goes to 0 due to the singularity at the sharp corner.
In our work, we consider 𝑎𝐵/𝑎 = 0.17 and the three submergences 𝑑𝐵/𝑎 = 0.10,
𝑑𝐵/𝑎 = 0.17 and 𝑑𝐵/𝑎 = 0.27. For the lowest submergence 𝑑𝐵/𝑎 = 0.10, significant
deviation is observed from Gavrilyuk et al. (2006)’s results between the eigenmodes
with and without baffles at the free surface and over the width of the baffle near
𝑟/𝑎 = 1. However, the natural frequency of the first sloshing mode for the dock
with baffle and estimated from Eq. (3.84) remains very close to the ones calculated
by Gavrilyuk et al. (2006) for all submergences 𝑑𝐵, as long as 𝑎𝐵/𝑎 � 0.25 (cf. Fig.
3.8).
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Figure 3.7: Radial profile of the first sloshing eigenmode 𝜑1,1 in 𝜃 = 0◦ and 𝑧 = 0m
from Gavrilyuk et al. (2006) for a cylinder with a solid annular baffle. In their work, the
radius-to-draught ratio is 𝑎/𝑑 = 1. For the case without baffle, i.e. 𝑎𝐵/𝑎 = 0, personal
computations made from Eq. (3.2) are indicated by red dots. Left: 𝑑𝐵/𝑎 = 0.1, right:
𝑑𝐵/𝑎 = 0.3. For comparison, the following dimensions are used in our experimental model
(not in the figure): 𝑎/𝑑 = 0.38, 𝑎𝐵/𝑎 = 0.17, and either 𝑑𝐵/𝑎 = 0.10, 𝑑𝐵/𝑎 = 0.17 or
𝑑𝐵/𝑎 = 0.27.

Figure 3.8: Dots: first eigenfrequencies calculated from either Eq. (3.84) when a baffle is
installed or Eq. (3.3) when there is no baffle. Solid and dashed lines: 𝜎′

1,1 from Gavrilyuk
et al. (2006) for a cylinder with a solid annular baffle. Radius-to-draught ratio: 𝑎/𝑑 = 1.
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3.5 Viscous effects of annular baffles

The viscous eddies formed by the flow separation at the sharp edge of the baffles,
and through the perforated holes for perforated baffles, dissipate the energy of the
sloshing waves. Similar to Faltinsen and Timokha (2009), we model these viscous
effects through the modal equations (3.37) by introducing a linear equivalent
damping ratio 𝜉1:

⎧⎪⎪⎨⎪⎪⎩
�𝛽1,1 = 𝜅1,1𝑅1,1,


𝛽1,1 + 2𝜉1𝜎
′
1,1

�𝛽1,1 + 𝜎′2
1,1𝛽1,1 = 𝐾1,1(𝑡).

(3.85)

In this approach, we consider that viscous effects only affect the first sloshing mode,
as this is the one that is excited mainly, and it will therefore dominate the internal
flow entirely. It is assumed that the shape of the sloshing eigenmodes is unchanged
compared to the case without baffle. This last assumption is best for high baffle’s
submergences 𝑑𝐵/𝑎, as discussed in the previous section, and represents an error
source in our model. 𝜎1,1 was replaced by 𝜎′

1,1 in Eq. (3.85) to include the effects
of the baffle on the first eigenfrequency. The viscous effects will also affect the
added mass of the baffle, and so the reduced natural frequency (cf. Eq (3.84)).
Isaacson and Premasiri (2001) gave estimations of the damping ratio caused by
a horizontal solid baffle in a two-dimensional rectangular tank, relating the work
produced by a non-linear Morison-type force on the baffle to the average rate of
energy dissipated during one period of oscillation. In this section, we adapt their
approach for a three-dimensional circular cylinder with either solid or perforated
annular baffle.

We will mostly use complex notations. 𝐾1,1(𝑡) = 𝐶1𝑒
−𝑖𝜔𝑡 is assumed to be harmonic

at the frequency 𝜔, where 𝐶1 is here a complex amplitude containing information
on the phase of the excitation. The modal equations (3.85) represent a damped
harmonic oscillator. The solutions 𝛽1,1(𝑡) and 𝑅1,1(𝑡) are composed of both a
transient part and a steady-state part. The steady-state part is the response to the
forcing frequency 𝜔, while the transient part is dominated by the sloshing response,

oscillating at the reduced frequency
√
1 − 𝜉21𝜎′

1,1, and vanishing exponentially for

high 𝑡 because of viscous damping. Typical damping ratios in our work range
between 1% to 3.5% (see more details in Sec. 6.2.1), such that typical relaxation
times 𝜏𝑟 = 1/(𝜎′

1,1𝜉1) range between 3.6s to 12.7s, which are high compared to the
sloshing period 𝑇1,1 = 0.80s. We will assume that 𝑡 >> 𝜏𝑟 , and only consider the
steady-state part of the modal coefficients, given by;
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𝛽1,1(𝑡) = −𝐶1𝑒
−𝑖𝜔𝑡

2𝑖𝜔𝜎1,1𝜉1 + 𝜔2 − 𝜎2
1,1

(3.86)

𝑅1,1(𝑡) = 𝑔

𝜎′2
1,1

𝑖𝜔𝐶1𝑒
−𝑖𝜔𝑡

2𝑖𝜔𝜎′
1,1𝜉1 + 𝜔2 − 𝜎′2

1,1

= 𝑓1(𝜔)𝐶1𝑒
−𝑖𝜔𝑡 (3.87)

3.5.1 Average time rate of energy dissipation

The mechanical energy in the dock when there is no baffle is estimated by the
energy of the first sloshing mode, corresponding to a standing wave of amplitude
|𝛽1,1 | and frequency 𝜎1,1. From Eqs. (3.66) and (3.67), the potential and kinetic
energies become:

𝐸𝑝 =
1

2
𝜌𝑔

∫ 2𝜋

0

∫ 𝑎

𝑟=0

(
𝛽1,1𝜑1,1(𝑟, 𝜃, 0)

)2
𝑟d𝑟d𝜃, (3.88)

𝐸𝑘 =
1

2
𝜌

∫ 2𝜋

0

∫ 0

𝑧=−𝑑

∫ 𝑎

𝑟=0
𝑅2
1,1

[ (𝜕𝜑1,1
𝜕𝑟

)2 + (𝜕𝜑1,1
𝜕𝑧′

)2 + (1
𝑟

𝜕𝜑1,1
𝜕𝜃

)2]
𝑟d𝑟d𝑧d𝜃. (3.89)

The total mechanical energy is then defined by:

𝐸𝑀 = 𝐸𝑝 (𝑡) + 𝐸𝑘 (𝑡), (3.90)

which remains constant in the absence of the baffle since there is no dissipative
forces. Time series of 𝐸𝑘, 𝐸𝑝 and 𝐸𝑀 are illustrated in Fig. 3.9 for the dock
without spar. As expected, 𝐸𝑝 and 𝐸𝑘 are harmonic at the frequency 2𝜎1,1 due
their dependency in 𝛽21,1(𝑡) and 𝑅2

1,1(𝑡), respectively. In this figure, it is shown that
𝐸𝑀 is bounded by the mechanical energies of standing waves in three-dimensional
rectangular tanks either contained in the dock (lower bound), or containing the
dock (higher bound), as defined in Fig. 3.10. It can be noted that in rectangular
tanks, the local energy is the same over the whole length of the tank in the direction
perpendicular to the eigenmode, while for a circular tank, the local energy decreases
with cos2 𝜃 in the angular direction.

Both 𝐸𝑝 and 𝐸𝑘 in Eqs. (3.88) and (3.89) have analytical solutions. However,
because the kinetic energy is maximum when the potential energy is null, and vice
versa, it is sufficient to calculate 𝐸𝑀 either from 𝐸𝑘 or 𝐸𝑝. The latter leads to
much simpler calculation and has been used in the present work. Their amplitudes
are given for the cases with and without spar:
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Figure 3.9: Potential, kinetic, and mechanical energies of a standing wave 𝛽1,1 (𝑡) =
|𝛽1,1 | sin(𝜎1,1𝑡) in the dock without spar nor baffle, compared with the mechanical energies
of standing waves with the same amplitude in the rectangular tanks RT1 and RT2 (cf. Fig.
3.10). The mechanical energy of a standing wave of amplitude |𝛽1,1 | in a rectangular tank
with a square section is given by (Newman, 1977): 1

4 𝜌𝑔𝑠
2 |𝛽1,1 |2. The analytical expression

of 𝐸𝑘 used in this figure is given in Appendix B.4.

Figure 3.10: Sketch of the two rectangular tanks compared with the dock (circular),
bird’s-eye view. Left: rectangular tank RT1 of side’s length 𝑠 = 2𝑎. Right: rectangular tank
RT2 of side’s length 𝑠 =

√
2𝑎.

𝐸dock𝑝,max = 𝜌𝑔𝜋𝑎2
𝜄21,1 − 1

4𝜄21,1
|𝛽1,1 |2, (3.91)

𝐸
dock+spar
𝑝,max =

1

2
𝜌𝑔𝑏2𝜋 |𝛽1,1 |2. (3.92)

When dissipative forces play a role, the mechanical energy is no longer conserved.
Studying the energy of a standing wave in a rectangular tank dissipated by
boundary layer viscous effects, Keulegan (1959) introduced a formalism that is
now most commonly used to relate the damping ratio to the average time rate
of energy dissipation. We denote 𝜖𝐷 (𝑡) the energy dissipated by viscous forces.
The dissipation occurs at a time scale that is assumed to be long compared to
𝑇1,1, such that the ratio 𝜖𝐷/𝐸𝑀 = 2𝛼 can be considered constant over a period of
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oscillation. For a fraction of oscillation 𝛿𝑡/𝑇1,1, the increase 𝛿𝐸𝑀 of mechanical
energy is given by:

𝛿𝐸𝑀
𝐸𝑀

= − 𝜖𝐷
𝐸𝑀

𝛿𝑡

𝑇1,1
, (3.93)

which integrated from 0 to 𝑡 gives 𝐸𝑀 (𝑡) = 𝐸𝑀 (𝑡 = 0) exp (−2𝛼𝑡/𝑇1,1). Because
the energy is proportional to the square of the standing wave’s amplitude, we
also have 𝛽1,1 = 𝛽1,1(𝑡 = 0) exp (−𝛼𝑡/𝑇1,1). Furthermore, the decay of a damped
harmonic oscillator as in Eq. (3.85) when there is no excitation is proportional to
exp(−𝜉1𝜎1,1𝑡). By identification, 𝜉1 = 𝛼/(2𝜋).
𝜖𝐷/𝐸𝑀 is in reality dependent on the wave amplitude 𝛽1,1(𝑡), which decays with
𝑡. However, for low 𝜉1, it is reasonable to the assume that 𝜖𝐷/𝐸𝑀 does not vary
much over one period of oscillation. In practice, the damping ratio can hence be
estimated from the average rate of energy dissipated over one period of oscillation,
given by 𝐷 = 𝜖𝐷/𝑇1,1 where 𝜖𝐷 is the work over one period of the dissipative
forces, and from the mechanical energy of undamped standing waves 𝐸𝑀 (cf. Eq
(3.91)-(3.92)):

𝜉1 =
𝐷

2𝜎1,1𝐸𝑀
. (3.94)

3.5.2 Damping caused by solid and perforated annular baffles

The energy dissipated 𝐷𝐵 in the dock due to the annular baffle can be estimated
as the work produced by dissipative forces on the baffle. We assume strip theory
to hold, and integrate the two-dimensional loads on each angular section of the
baffle, which are estimated by Morison’s formula for a flat plate:

𝐹𝐷 (𝜃, 𝑡) = 1

2
𝜌 𝑎𝐵 𝐶𝐷 (𝜃) 𝑣𝑟 (𝜃, 𝑡) |𝑣𝑟 (𝜃, 𝑡) | + 1

4
𝜌𝜋𝑎2𝐵𝐶𝑀 �𝑣𝑟 (𝜃, 𝑡) (3.95)

where 𝑣𝑟 (𝜃, 𝑡) is the relative vertical flow velocity on the baffle, calculated at the
wall in 𝑟 = 𝑎 in a tank-fixed coordinate system:

𝑣𝑟 (𝜃, 𝑡) = 𝑅1,1(𝑡)
𝜕𝜑1,1
𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+ �𝜂 (2)5 (𝑡)
[
𝜕Ω(2)

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+ 𝑎 cos(𝜃)
]
+ 𝜕Ω

(1)

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

�𝜂 (1)5 (𝑡).
(3.96)

In case there is no spar, the last term of Eq. (3.96) is null, and Ω(2) is replaced
by Ω for the dock alone as given in Sec. 3.2.1. With Eq. (3.95), we in particular
disregard the three-dimensional viscous effects.
Keulegan and Carpenter (1958) conducted large series of experiments of periodic
flow on cylinders and plates in infinite fluid, and first emphasized the dependency
of the added mass coefficient 𝐶𝑀 and drag coefficient 𝐶𝐷 in Eq. (3.95) on the
parameter:
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𝐾𝐶 = 𝑈𝑚𝑇/(2𝑎𝐵), (3.97)

also known as the Keulegan-Carpenter (KC) number. 𝑈𝑚 is the amplitude of
the relative ambient flow velocity on the baffle 𝑣𝑟 , 𝑇 its period, and 2𝑎𝐵 the
characteristic length of the body, here set as the length of the baffle mirrored
through the wall of the dock. Their experiments included a large range of KC
numbers with 𝐾𝐶 > 2. In our simulations, typical KC numbers on the angular
section 𝜃 = 0◦ at sloshing resonance range between 0.55 to 0.75 (see more details
in Sec. 6.2). Low KC numbers (KC<2) were studied by Graham (1980), who
analysed the forces caused by the shedding of vortices from sharp edges. For
flat plates, he established the following expressions for the added mass and drag
coefficients:

𝐶𝑀 =
𝐴plate

𝐴plate
0

= 𝛼0 + 𝛼1KC
2
3 , (3.98)

𝐶𝐷 = 𝛼2𝐾𝐶
− 1

3 , (3.99)

where 𝐴plate is here half the added mass of a flat plate of length 2𝑎𝐵, which
accounts for viscous effects due to flow separation. For a solid plate, 𝛼0 = 1.
Graham (1980) provided analytical values and experimental values based on curve
fitting for the two coefficients 𝛼1 and 𝛼2, with a significant difference between
both methods. Hence, his theoretical values of 𝛼1 and 𝛼2 are 0.25 and 11.8,
respectively, while its experimental values are 0.2 and 8.0, respectively. In the
present work, we use the coefficients 𝛼1 = 0.21 and 𝛼2 = 10.1 obtained empirically
by Mentzoni and Kristiansen (2019) through CFD simulations on two-dimensional
plates in infinite fluid (see also Mentzoni et al. (2018); Mentzoni and Kristiansen
(2020); Mentzoni (2020)). In their work, Mentzoni and Kristiansen (2019) extended
Graham’s formulas to perforated baffles, running numerous CFD simulations for
KC numbers between 0.24 and 2.2. This approach has the advantage of being
easy to implement, and gives good estimations of the loads on the baffle, as long
as 𝜏 < 0.35 and 𝐾𝐶 > 0.24. For higher perforations ratio, or lower KC-numbers,
Mentzoni and Kristiansen (2019) observe a sharp increase of the discrepancy
between the results from his CFD simulations and from Graham’s formulas, due
to that these last were established for a solid plate, and only account for the flow
separation at the edge of the baffle and not for the flow separation through the
holes of perforated plates. Their coefficients are given in Table 3.2 for solid plates
(𝜏 = 0) and the two perforation ratios that we have used 𝜏 = 0.15 and 𝜏 = 0.3. For
these perforation ratios, the viscous loads caused by the flow separation at the
sharp edge still dominate compared to the loads caused by the flow separation
through the perforation holes (Mentzoni, 2020), such that Graham’s functional
forms (3.98) and (3.99) remain relevant. One should note that the scaling effects
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3.6 Other sources of damping

on the hydrodynamic loads caused by the flow separation on the sharp edge are
not expected to matter (Mentzoni, 2020), such that the coefficients from Table 3.2
can be used as given.
The added mass of the baffle 𝐴plate

0 is replaced by 𝐴plate in Eq. (3.84) to estimate
the shifted sloshing frequency 𝜎′

1,1, which becomes KC dependent. Analytical
expressions of 𝜎′

1,1 are given for the dock with and without spar in Appendix B.5.

Table 3.2: Empirical coefficients from Graham’s formulas provided by Mentzoni and
Kristiansen (2019) for flat plates of perforation ratio 𝜏 in infinite fluid. 𝜏 = 0 corresponds
to a solid plate.

𝜏 𝛼0 𝛼1 𝛼2

0 1.000 0.216 10.1
0.15 0.281 0.271 8.72
0.30 0.017 0.181 5.48

Only the first term of Eq. (3.95) is dissipative. The average time rate of energy
dissipated over the whole baffle during one period, denoted 𝐷𝐵, is given by:

𝐷𝐵 =
1

𝑇

∫ 𝑇

0

∫ 2𝜋

0

1

2
𝜌 𝑎𝐵𝐶𝐷𝑣

2
𝑟 |𝑣𝑟 |𝑎d𝜃d𝑡, (3.100)

where 𝑣𝑟 is the relative velocity along the tank wall in Eq. (3.96), computed by
the mode shapes obtained when the baffle is not there. Finally, the damping ratio
caused by solid annular baffle is determined by:

𝜉1 =
𝐷𝐵

2𝜎′
1,1𝐸𝑀

, (3.101)

3.6 Other sources of damping

There are several sources of damping associated with sloshing waves. Some are
expected to be negligible in our study, as the turbulent flow dissipation which
matters for violent sloshing resonances, or the damping caused by the surface
tensions, which would only matter for tanks much smaller than the dock. The
importance of the dissipation occurring from the viscous boundary layers on the
walls in our model tests is less clear, and briefly discussed in this section. Analytical
methods have been established to estimate the local energy dissipated from laminar
viscous boundary layers (Schlichting, 1979). We give an example below how such
model can be used in the case of the dock without spar nor baffle. In reality, the
boundary layers are always turbulent, and the associated damping is sometimes
estimated by empirical formulas based on experiments, which we also discuss below.
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Chapter 3 Sloshing

The walls of the dock are assumed to be smooth. For laminar boundary layers, the
average time rate of energy dissipation per unit area can be expressed as (Faltinsen
and Timokha, 2009):

𝐷BL(𝑧, 𝜃) = 1

2
𝜌𝜈

√
𝜎1,1
2𝜈

𝑈2(𝑧, 𝜃). (3.102)

for a flow oscillating at the frequency 𝜎1,1 on a vertical wall, where 𝜈 = 10−6m2s−1

is the kinematic viscosity of water, and 𝑈 (𝜃, 𝑧) is the amplitude of the local vertical
velocity on the wall. Considering as standing wave of amplitude |𝛽1,1 | and frequency
𝜎1,1 in the dock without spar nor baffle, the vertical flow velocity is determined
by the first sloshing mode, and the total rate of energy dissipation obtained by
integrating 𝐷BL over the internal walls of the dock:

𝐷BL =
∫ 2𝜋

0

∫ 0

−𝑑
𝐷BL(𝜃, 𝑧) 𝑎 d𝑧d𝜃 (3.103)

or 𝐷BL =
1

2
𝜌𝜈

√
𝜎1,1
2𝜈

|𝛽1,1 |2𝜎2
1,1𝑎𝜋

sinh2
(
𝜄1,1𝑑
𝑎

) [
𝑎

4𝜄1,1
sinh

(
2𝜄1,1𝑑

𝑎

)
− 1

2
𝑑

]
. (3.104)

We have here neglected both the contribution of the bottom’s surface or the
Stokes-Joukovski potential. These viscous effects can be modelled in the modal
equations through the damping ratio

𝜉BL =
𝐷BL

2𝜎1,1𝐸𝑀
. (3.105)

We note that both 𝐸𝑀 and 𝐷BL are proportional to |𝛽1,1 |2, such that 𝜉BL does
not depend on the sloshing wave amplitude, which was not the case for the
damping ratio caused by the baffle. In reality, full-scale boundary layer flows are
always turbulent, for which the energy dissipated can only be estimated through
semi-empirical formulas based on experimental works. In Fig. 3.11, 𝜉BL is presented
as a function of the dock draft-to-radius ratio as in Eq. (3.105), and compared
to the formulas proposed by Mikishev and Dorozhkin (1961) and Stephens et al.
(1962) for turbulent boundary layers (see Appendix B.6). 𝜉BL remains almost
constant for 𝑑/𝑎 > 2.5, which was expected since most of the energy is dissipated
near the free surface where the flow velocity is maximum. In overall, these damping
ratios are very low, all below 0.12%. The ratios 𝜉BL estimated by the empirical
formulas are almost twice the ones estimated from Eq. (3.105), even though these
former results should be considered with caution as such empirical formulas often
depend on the set-up of the experiments they are based on.
For forced motions, even low damping generally matter to study the sloshing
response. In this work however, the dock is subjected to incident waves, and the
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3.6 Other sources of damping

sloshing response is coupled with the motions of the dock, which dissipate energy
through radiation. The viscous boundary layers will hence be shown to have very
little effects on the sloshing response (see later Sec. 5.1.3).

Figure 3.11: Damping ratio caused by viscous boundary layer (BL) flows on smooth
walls, either for laminar or turbulent flows, as a function of the dock draft-to-radius ratio.
In this work, we mostly consider 𝑑/𝑎 = 2.7.
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4 | Model tests
Dedicated model tests were performed in the extension of the large towing tank
at SINTEF Ocean. The length of the tank is 85m, its width 10.5m and its depth
10m. Two series of tests were made in November 2018 and November 2019 with
the same model for different configurations. 2019 tests included the spar of a wind
turbine inside the dock. Detailed descriptions of the model’s components, incident
waves, and of the methodology used to post-proceed the data are presented in this
section.

4.1 Experimental set-up

4.1.1 The model

The model included several components that were tested in different configurations
at an imagined model scale 1:100. First, we considered the dock alone. The model
of the dock was made of 3mm thick aluminium plates, including eight stiffening
vertical aluminium plates in the empty space between the internal and external
radii. A plexiglass cover was added on the top to prevent water to come inside.
Ballasts were inserted inside the model in order to obtain either 0.50m or 0.80m
draughts (cf. Fig. 4.1), while keeping the centre of gravity at 𝑥𝐺 = 𝑦𝐺 = 0m,
and 0.25m above the bottom of the model for both draughts. At the bottom,
the upper-part of the bilge-boxes was made of Divinycell foam, screwed on the
aluminium structure (see Fig. 4.2). Two sizes of bilge boxes were tested: the
largest dimensions 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m were used for most of the
tests, but smaller bilge boxes 𝐻𝑠𝑘𝑚 = 0.04m and 𝐵𝑠𝑘𝑚 = 0.05m were also tested for
the dock alone. The model was moored at mid-distance between the wave maker
and the parabolic beach by four nearly-horizontal mooring lines and springs (see
Sec. 4.1.4 for more details about mooring).

The spar of a FOWT was also modeled at the same scale 1:100, inspired from the
Hywind wind turbines, with a radius 𝑎0 = 0.07m and draught 𝑑0 = 0.80m (cf. Fig.
4.3). The spar was floating in the dock, moored to the dock by eight springs (cf.
Sec. 4.1.4)). Tests with the spar were made for the dock’s draught 𝑑 + 𝑠 = 0.80m,
and the biggest bilge boxes’ size. Both the dock and spar had a 0.25m height above
water to prevent any water to come above the structures. The main dimensions of
the models are summarised in Table 4.1.

The masses of the different components of the bodies (main structures, ballasts,
instrumentation, etc.) were measured by a weight scale, both individually and

assembled. However, the moments of inertia in pitch 𝐼 (1)5,5 and 𝐼 (2)5,5 of the spar and
the dock, respectively, could not be measured directly from the model, and had to
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4.1 Experimental set-up

(a) 𝑑 + 𝑠 = 0.50m. (b) 𝑑 + 𝑠 = 0.80m.

Figure 4.1: Photos of the model during tests in regular waves for both draughts. November
2018.

Table 4.1: Dimensions of the dock and spar used for most of the model tests. Notations
referring to the geometry are defined in Fig. 2.1, while 𝐻𝑠𝑘𝑚 and 𝐵𝑠𝑘𝑚 are defined in
Fig. 4.2. Some tests for the dock without spar and without damping devices were made
for a lower draught 𝑑 + 𝑠 = 0.50m, as well as with smaller bilge boxes 𝐻𝑠𝑘𝑚 = 0.04m and
𝐵𝑠𝑘𝑚 = 0.05m.

Parameter Unit Value Description

𝑎 [m] 0.30 Dock’s inner radius

𝑏 [m] 0.40 Dock’s outer radius

𝑑 + 𝑠 [m] 0.80 Dock’s draught

𝐻𝑠𝑘𝑚 = 𝑠 [m] 0.05 Bilge box’s height

𝐵𝑠𝑘𝑚 = 𝑐 − 𝑏 [m] 0.09 Bilge box’s width

𝑎0 [m] 0.07 Spar’s radius

𝑑0 [m] 0.80 Spar’s draught

be estimated afterward using the parallel axis theorem. Since most components of
the models were annular circular cylinders with a homogeneous mass 𝑀𝑖, internal
radius 𝑟 𝐼𝑛𝑖 , external radius 𝑟𝑂𝑢𝑡𝑖 , height ℎ𝑖, and geometric centre at 𝑧𝐵𝑖 from the
free surface, the following general formula was used to calculate the total moment
of inertia of each body at the mean free surface:

𝐼5,5 =
∑
𝑖

𝑀𝑖

12

[
3(𝑟 𝐼𝑛𝑖

2 + 𝑟𝑂𝑢𝑡𝑖
2) + ℎ2𝑖

] + 𝑀𝑖𝑧
2
𝐵𝑖
. (4.1)

The masses, moments of inertia and centres of gravity of both bodies are summarised
in Table 4.2.
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H
skm

= 0.04m
B

skm
= 0.05m

Bilge boxes

Stiffening plates

(a) Smallest bilge boxes.

H
skm

= 0.05m

B
skm 

= 0.09m

1.05m

0.80m

(b) Biggest bilge boxes.

Foam
Aluminium

H
skm

= 0.04m

B
skm 

= 0.05m

ring (mooring)

(c) Photo of the model (smallest bilge boxes).

Figure 4.2: Three-dimensional modelling of the dock with both sizes of bilge boxes, made
on the software Rhinoceros 3D by Trond Innset, and a photo of the bottom of the dock’s
model, showing the Divinycell foam screwed on the lower-aluminium part of the bilge boxes.
November 2018.

Table 4.2: Mass properties of the spar and the dock for both draughts with 𝐻𝑠𝑘𝑚 = 0.05m
and 𝐵𝑠𝑘𝑚 = 0.09m. 𝑀 is the mass of each body, 𝐼5,5 the moment of inertia with respect to
𝑧 = 0, and 𝑧𝐺 the vertical location of the centre of gravity from the mean free surface.

Body 𝑀 [kg] 𝐼5,5 [kg.m2] 𝑧𝐺 [m]

Dock (𝑑 + 𝑠 = 0.50m) 122.5 25.2 -0.25

Dock (𝑑 + 𝑠 = 0.80m) 188.3 76.2 -0.55

Spar (𝑑 + 𝑠 = 0.80m) 12.3 4.3 -0.50
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Ring (mooring)

Spar

Ballasts Cover

Reflectors

Figure 4.3: Photo of the spar’s model, including the main aluminium structure, the
ballasts, which were placed in the bottom of the body, and the spherical reflectors fixed on
the plexiglass cover used for the video positioning system. November 2019.

4.1.2 Damping devices

Two types of damping devices, namely annular baffles and polystyrene foam balls,
were introduced in the model during the 2019 experimental campaign to damp
sloshing waves and reduce the body motions. These tests were all made with the
highest draught 𝑑 + 𝑠 = 0.80m and the largest bilge boxes. First, three types of
annular baffles with perforation ratio 𝜏 = 0 (solid baffle), 𝜏 = 0.15 and 𝜏 = 0.30
were each rigidly fixed against the internal wall of the dock. The baffles were made
of 0.005m thick PVC plastic with a width 𝑎𝐵 = 0.05m. Both perforation ratios
𝜏 = 0.15 and 𝜏 = 0.30 were obtained by piercing evenly circular holes of 0.015m
diameter. In addition, four rectangular holes were made around the four wave
probes also fixed on the internal wall (see Fig. 4.4). The baffles were successively
installed at 𝑑𝐵 = 0.03m, 𝑑𝐵 = 0.05m and 𝑑𝐵 = 0.08m below the free surface. Then,
free floating polystyrene (PS) foam balls with a mean diameter of 0.001m, and
then 0.003m were successively inserted inside the dock in various quantities: 1.2
litres (L), 2.4L and 3.6L. Each of these volumes would form a layer of free-floating
balls inside the dock, the heights of which are summarised in Table 4.3. Fig. 4.4
shows selected photos of the damping devices installed inside the dock with and
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Chapter 4 Model tests

without the spar, either with baffles or PS foam balls.

Table 4.3: Height of the PS foam balls’ layers in full and model scales.

Volume of balls [L]
Layer’s height [m]

Model scale
-

Layer’s height [m]
Full scale

1.2 0.004 0.40

2.4 0.008 0.84

3.6 0.012 1.20

4.1.3 Instrumentation

The six degrees of freedom motions of both the dock and the spar were measured
with the video positioning system OQUS, using three spherical reflectors fixed on
the top of each body and a set of four cameras. In addition, three accelerometers
were fixed at the top of the model, two vertically and one horizontally, as shown in
Fig. 4.5, to capture the surge, heave and pitch accelerations of the dock (see Sec.
4.4.2 for more details). One vertical and one horizontal accelerometer were also
placed on the top of the spar, but eventually not used. The wave elevation was
measured at different positions by eight wave probes (denoted WP1-8), calibrated
before the tests. Four wave probes (WP1-4) were inside the dock to measure
sloshing waves, rigidly fixed at 0.01m from the aluminium, for the metal not to
disturb the probes’ measures. Two were aligned with incident waves (WP1 and
3), and two placed on the transversal sides (WP2 and 4) as shown in Fig. 4.5.
Four wave probes (WP5-8) were fixed to the tank: two in front of the structure
measuring the incident waves, and two on each side aligned with the dock, installed
at 0.6m from the side walls. Four strain gauges were measuring the forces (F1-4)
in the mooring lines connecting the dock to the tank. They were in particular
used to control the pretension of the mooring lines, maintained around 70N for
all tests. Linear calibrations were made for all the sensors once before the tests.
Data acquisition was made with the software CATMAN, and the offset of the
signals was automatically removed, ensuring their synchronisation. The motions
from the video recording system OQUS were captured at the sampling frequency
50Hz, while the accelerometers, wave probes and strain gauges at 200Hz. The
instrumentation used for the 2018 and 2019 experimental campaigns were almost
identical. Although, 2018 tests included two additional wave probes: WP9, fixed
on the external wall of the dock and facing incident waves, and WP10 and WP11
instead of WP8. If not precised, the notation 𝜁𝑊𝑃8 will be used to present the
free-surface elevation either at WP8 for 2019 tests or at WP10 for 2018 tests. Fig.
4.6 show photos of the instrumentation during the tests. Videos of several tests
were also made thanks to two cameras: one on the side and one above the model.
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(a) Solid baffle - 𝜏 = 0. (b) Perforated baffle - 𝜏 = 0.15

(c) Perforated baffle - 𝜏 = 0.30 (d) 0.003m PS foam balls (1.2L).

(e) Dock with spar (0.003m balls, 1.2L). (f) Dock with spar (𝜏 = 0.30).

Figure 4.4: Photos of the different types of damping devices installed inside the dock,
with and without the spar. November 2019.

4.1.4 Mooring

The four mooring lines maintaining the dock were stretched as symmetrically as
possible outside the dock with a pretension force 𝐹pre-tension � 70N. The lines were
attached to the dock at 0.25m from the model’s bottom, i.e. at 𝑧 = 𝑧𝐺, and the
other extremities attached to the tank around 0.40m above water to keep the
springs and strain gauges dry. The lines thus had a slight inclination relative to
the horizontal plane of 𝛼M � 11◦ for the draught 𝑑 + 𝑠 = 0.80𝑚, and 𝛼M � 5.2◦ for
𝑑 + 𝑠 = 0.50𝑚. The springs at the end of each line had a stiffness of 𝑘𝑀 = 120𝑁/𝑚,
chosen so that the natural period in surge was higher (more than ten times) than
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Figure 4.5: Side and bird’s-eye views of the experimental set-up when both the spar and
the dock are installed. The four wave probes WP1 to 4 are fixed to the dock, and WP5
to WP8 are fixed to the tank. Three accelerometers are fixed on the dock, giving positive
values for accelerations along the normal pointing inward the body. The sketch is not to
scale.

the first natural sloshing period. The restoring coefficients due to the mooring
lines in surge and heave, and restoring moment in pitch acting on the dock were
estimated as follow:

𝑐 (2) ,𝑀1,1 = 4𝑘𝑀 cos2(𝛼M) cos2( 𝜋
4
), (4.2)

𝑐 (2) ,𝑀3,3 = 4𝑘𝑀 sin2(𝛼M) + 4𝐹pre-tension

𝐵𝑡𝑎𝑛𝑘
√
2 − 𝑏

, (4.3)

𝑐 (2) ,𝑀5,5 = 𝑐 (2) ,𝑀1,1 |𝑧 (2)𝐺 |2 + 2𝑏𝐹pre-tension cos
2(𝛼M) cos( 𝜋

4
), (4.4)

𝑐 (2) ,𝑀1,5 = 𝑐 (2) ,𝑀5,1 = 𝑐 (2) ,𝑀1,1 𝑧 (2)𝐺 , (4.5)

where 𝐵𝑡𝑎𝑛𝑘 = 10.5m is the width of the tank. We note that the pretension of the
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Springs

Strain 
gauge

Figure 4.6: Photos from the 2019 model tests. Top left: side view of the installation,
two distinct video positioning systems measure the motions of the dock and the spar. Top
right: bird’s-eye view, four wave probes WP1-4 measure the free-surface elevation inside
the dock. Bottom: Extremity of the mooring line 2 connecting the dock to the tank, and
showing the strain gauge measuring F2. November 2019.

lines also adds a linear restoring force in heave and a linear restoring moment in
pitch, which does not come from the change of the lines’ elongation. In heave,
it is caused by the change of orientation of the force 𝐹pre-tension in each of the
four lines. A similar term exists in surge that has been neglected as the lines are
nearly horizontal. In pitch, this moment is caused by the vertical arm between
the two frontward and the two backward lines. This restoring moment caused by
the pretension forces is not negligible, as it represents near 30% of 𝑐 (2) ,𝑀5,5 for the
higher draught 𝑑 + 𝑠 = 0.8m.

The spar was maintained at the centre inside the dock by eight springs, four
at the top of the spar above water at 𝑧𝑢𝑝 = 0.20m, and four under water at
𝑧𝑑𝑜𝑤𝑛 = −0.65m (see Fig. 4.5). Each spring had a stiffness of 𝑘𝑠 = 28N/m and a
length 𝐿𝑠 = 0.20m. It was difficult to find springs of this size with a higher stiffness,
as a result the natural periods of the spar’s motions were close the first natural
sloshing period (cf. Sec. 4.2). These springs induced new coupled restoring forces
and moments for the dock and the spar. The corresponding restoring coefficients
can be expressed as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐 (𝑘 ) ,𝑀1,1 = 2𝑘𝑀 ,

𝑓 (𝑘 ) ,𝑀1,1 = −2𝑘𝑀 ,

𝑐 (𝑘 ) ,𝑀1,5 = (𝑧𝑢𝑝 + 𝑧𝑑𝑜𝑤𝑛)𝑘𝑀 ,

𝑓 (𝑘 ) ,𝑀1,5 = −(𝑧𝑢𝑝 + 𝑧𝑑𝑜𝑤𝑛)𝑘𝑀 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐 (𝑘 ) ,𝑀5,5 = (𝑧2𝑢𝑝 + 𝑧2𝑑𝑜𝑤𝑛)𝑘𝑀 ,

𝑓 (𝑘 ) ,𝑀5,5 = −(𝑧2𝑢𝑝 + 𝑧2𝑑𝑜𝑤𝑛)𝑘𝑀 ,

𝑐 (𝑘 ) ,𝑀5,1 = (𝑧𝑢𝑝 + 𝑧𝑑𝑜𝑤𝑛)𝑘𝑀 ,

𝑓 (𝑘 ) ,𝑀5,1 = −(𝑧𝑢𝑝 + 𝑧𝑑𝑜𝑤𝑛)𝑘𝑀 ,

(4.6)

for 𝑘 ∈ {1, 2}, where 𝑘𝑀 = 4𝑘𝑠 cos
2( 𝜋4 ). Each restoring coefficient 𝑓 (𝑘 )𝑖, 𝑗 in Eq. (4.6)

corresponds to the restoring force applied to the 𝑖-th degree of freedom of the body
𝑘 due to motions in the 𝑗-th degree of freedom of the body 𝑘 ′, (𝑘, 𝑘 ′) ∈ {1, 2}2,
𝑘 ≠ 𝑘 ′. These eight springs were also pretensioned with a force 𝐹𝑝 � 1.2N, adding
the following restoring coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐 (𝑘 ) ,𝑀3,3 = − 𝑓 (𝑘 ) ,𝑀3,3 =
8𝐹𝑝

𝐿𝑠

𝑐 (1) ,𝑀5,5 = − 𝑓 (1) ,𝑀5,5 = 8𝑎0𝐹𝑝 cos
(
𝜋
4

)
𝑐 (2) ,𝑀5,5 = − 𝑓 (2) ,𝑀5,5 = 8𝑎𝐹𝑝 cos

(
𝜋
4

) (4.7)

4.2 Decay tests

Decay tests were carried out, giving indications on the natural periods of the
system. These tests were made for each degree of freedom individually, even
though coupling between the motions was often observed from the time series.
Several configurations for the dock without and with the spar or damping devices
were tested, as detailed below. Fig. 4.7 shows examples of time series obtained
from decay tests in surge, heave and pitch for the dock with spar and without
damping devices. It is was not always possible to extract natural periods from
the time series, either because the coupling with other degrees of freedom was too
strong, or because the system was near critically damped and the oscillations either
too quickly damped out or lacking any clear frequency peak. This was especially
true for the spar’s surge motion 𝜂 (1)1 , for which decay tests could not be exploited.
A Fourier transform of these time series were made over a whole number of
oscillations to estimate natural periods (cf. Appendix C.1).

4.2.1 Natural periods

First results are presented in Table 4.4 for the dock alone, with the two size of bilge
boxes and two draughts. The resonant periods in surge are more than 10 times
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4.2 Decay tests

Figure 4.7: Example of time series from decay tests achieved in surge, heave an pitch
for both the dock and the spar when no damping devices are installed. 𝑑 + 𝑠 = 0.5m,
𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m.
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higher than the sloshing natural period 𝑇1,1, which was an objective when choosing
the stiffness of the mooring lines. The natural periods in heave and pitch are also
higher than 𝑇1,1, but both are in the same range as the piston mode natural period,
estimated from the radiation problem in Sec. 2.4 at 𝑇𝑝𝑖𝑠𝑡𝑜𝑛 = 2.0s for 𝑑 + 𝑠 = 0.8m.
As expected, natural periods for the larger bilge boxes are slightly higher due to
higher added masses. They are in average increased by 7.8% in heave, and 4.9% in
pitch. The draught also have a clear influence on the natural periods, in average
12.5 % higher in heave and 15.9 % lower in pitch for 𝑑 + 𝑠 = 0.8m compared to
𝑑 + 𝑠 = 0.5m. This last observation can be explained by a lower center of gravity,
such that the restoring moment in pitch which depends on |𝑧 (2)𝐺 |2 is higher for
the higher draught, resulting in lower natural periods, despite a higher moment
of inertia and added mass. One should note that if the definition of a realistic
mooring system is out of the scope of the present study, the natural periods of
dock’s rigid body motions are however expected to remain much higher than the
wave periods in operation that are considered in this work. For instance, in their
design optimization study, Jiang et al. (2020) consider a slightly more realistic
mooring system consisting of 12 mooring lines attached from 4 anchor points
on the dock, with a natural period in surge around 400s, and in pitch around
26s-27s, both far above sloshing resonance (around 8s in full scale). Two decay
tests were also made without the mooring lines for both draughts. Results in heave
are unchanged compared to the moored situation, confirming that the additional
restoring term due to mooring in heave is very small. Natural periods in sway,
roll and yaw are also provided in Appendix C.1. Because of the symmetry of
the installation, results in surge and sway were almost identical, as for roll and pitch.

Table 4.4: Natural periods in seconds estimated from the decay tests for the dock without
spar and without damping devices. BB1 corresponds to the smaller bilge boxes: 𝐻𝑠𝑘𝑚 =
0.04m and 𝐵𝑠𝑘𝑚 = 0.05m, and BB2 to the bigger bilge boxes: 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 =
0.09m.

𝑑 + 𝑠 = 0.5m

BB1

𝑑 + 𝑠 = 0.5m

BB2

𝑑 + 𝑠 = 0.8m

BB1

𝑑 + 𝑠 = 0.8m

BB2

𝑑 + 𝑠 = 0.8m

BB2

unmoored

𝑑 + 𝑠 = 0.8m

BB2

unmoored

𝜂 (2)1 7.94 8.26 10.64 10.67 / /

𝜂 (2)3 1.88 2.05 2.14 2.28 2.05 2.3

𝜂 (2)5 2.41 2.54 2.09 2.18 3.01 2.35

Decay tests were also performed for the dock with the highest draught, and largest
bilge boxes, when either damping devices or the spar were installed inside. See
Table 4.5. There were no significant difference on the natural periods.
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Table 4.5: Natural periods in seconds estimated from the decay tests for the dock with
damping devices or with the spar. Bilge boxes have the larger dimensions: 𝐻𝑠𝑘𝑚 = 0.05m
and 𝐵𝑠𝑘𝑚 = 0.09m (BB2). The baffles are mounted at 𝑑𝐵 = 0.05𝑚 from the mean free
surface. Both the diameter and volume of the polystyrene foam balls are indicated. Dock’s
draught: 𝑑 + 𝑠 = 0.80m.

Baffle
𝜏 = 0

Baffle
𝜏 = 0.3

Foam balls
0.001m, 1.2L

Foam balls
0.003m, 1.2L

Foam balls
0.003m, 2.4L

With spar

𝜂 (2)1 10.86 10.88 11.24 10.95 10.72 11.39

𝜂 (2)3 2.26 2.28 2.28 2.32 2.33 2.34

𝜂 (2)5 2.23 2.22 2.22 2.24 2.21 2.17

Results for the spar moored inside the dock are given in Table 4.6. Oscillations
from decay tests in surge were too irregular to extract a single estimate of its
natural period (see Fig. 4.7), most likely due to coupling with pitch. Resonant
periods in both heave and pitch for the spar were not far way from 𝑇1,1, due to that
we could not find springs of this size between the spar and the dock with a lower
stiffness. The presence of foam balls had little effects on the natural periods of 𝜂 (1)3

and 𝜂 (1)5 . Decay tests in heave and pitch were also performed for the unmoored
spar, both inside the dock and in open water, with no significant difference between
the two situations (see the two rightmost columns in Table 4.6). This implies that
hydrodynamic interaction between the two bodies in both pitch and heave are
secondary at heave and pitch resonance. It also confirms that the eight mooring
lines had a non-negligible effects: the heave natural period decreased from about
1.81s to 1.54s, and the pitch from about 2.56s to 1.40s. It can be noted that
tests for spar in yaw showed natural periods around 1s (not presented here), even
though no twisting motions were observed, neither from the time series nor the
videos.

Table 4.6: Natural periods in seconds estimated from the decay tests for the spar. Unless
specified, the spar is moored inside the dock by eight mooring lines, either with or without
the presence of damping devices. For the last column, the spar is free floating in open
water without any mooring.

No damping device
Foam balls
0.003m, 1.2L

Unmoored Open water

𝜂 (1)3 1.54 1.55 1.81 1.84

𝜂 (1)5 1.40 1.39 2.56 2.58
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4.2.2 Linear and quadratic damping

We disregard once again the coupling between surge and pitch, and consider the
dock’s surge motion as a one degree of freedom system. Assuming linear and
quadratic damping, the equation in surge during a decay test can be written

𝑀𝑇
1,1 
𝜂 (2)1 + 𝐵1,1 �𝜂 (2)1 + 𝐵𝑄1,1 �𝜂

(2)
1 | �𝜂 (2)1 | + 𝐶1,1𝜂

(2)
1 = 0, (4.8)

where 𝑀𝑇
1,1 is the total mass which includes the added mass in surge, 𝐵 and 𝐵𝑄 are

the linear and quadratic damping coefficients, respectively, and 𝐶1,1 is the restoring
coefficient due to mooring, which is known from the previous section. While linear
damping can be related to radiation damping, the quadratic component might be
caused by flow separation on the sides of the cylinder. Eq. (4.8) can be reduced
to an equivalent linear damped oscillator by requiring that the equivalent linear
damping dissipates the same amount of energy over one period of oscillation. We
can write

𝑀𝑇
1,1 
𝜂 (2)1 + 𝐵𝐸1,1 �𝜂 (2)1 + 𝐶1,1𝜂

(2)
1 = 0, (4.9)

where 𝐵𝐸1,1 = 𝐵1,1 + 8

3𝜋
𝜔𝑁𝜂

(2)
1,𝑖 𝐵

𝑄
1,1 is the equivalent linear damping, 𝜂 (2)1,𝑖 the

amplitude of the oscillation, and 𝜔𝑁 the natural frequency. For each oscillation,

the damping coefficient 𝜉 =
𝐵𝐸1,1

2𝜔𝑁𝑀
𝑇
1,1

can be estimated from the logarithmic

decrement as follow:

Δ = ln

(
𝜂 (2)1,𝑖

𝜂 (2)1,𝑖+1

)
= 2𝜋

𝜉√
1 − 𝜉2

� 2𝜋𝜉. (4.10)

By plotting 𝐵𝐸1,1 as a function of 𝜂 (2)1,𝑖 , the linear and quadratic damping can thus
be determined through a linear regression, respectively as the intercept and the
slope of the curve. An example is given in Fig. 4.8. Results are given in Table
4.7, showing little influence of the draught on damping coefficients. These results
were obtained over only few oscillations, such that relatively high uncertainties
are expected. Since the data points fall in general quite well onto the regression
line, a quadratic damping model seems reasonable. The linear damping is very
low, 𝐵1,1/𝜌𝜔𝑏4 < 0.6, which was expected since there is almost no wave-radiation
damping at these high periods.

4.3 Description of the tests in waves

A brief description of the incident wave conditions that were tested experimentally
both during the 2018 and 2019 campaigns are given in this section. Both regular
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Figure 4.8: 𝐵𝐸1,1 as function of 𝜂 (2)1,𝑖 , plotted from decay tests’ time series for the dock
without spar and without damping devices. Linear and quadratic damping are estimated
thanks to a linear regression. Draught: 𝑑 + 𝑠 = 0.8m. Top: large bilge boxes: 𝐻𝑠𝑘𝑚 = 0.05m
and 𝐵𝑠𝑘𝑚 = 0.09m. Bottom: small bilge boxes: 𝐻𝑠𝑘𝑚 = 0.04m and 𝐵𝑠𝑘𝑚 = 0.05m.

Table 4.7: Linear and quadratic damping coefficients extracted from decay tests in surge
for the dock. BB1 and BB2 are defined as in Table 4.4. Similar results for the dock’s pitch
motions are given in Appendix C.1.

𝑑 + 𝑠 = 0.5m
BB1

𝑑 + 𝑠 = 0.5m
BB2

𝑑 + 𝑠 = 0.8m
BB1

𝑑 + 𝑠 = 0.8m
BB2

𝐵1,1 [kg/s] 6.46 7.51 8.64 6.98

𝐵𝑄1,1 [kg/m] 196.60 202.90 203.98 189.52

and irregular waves were tested with different configurations combining the dock,
the spar, the bilge boxes, and the damping devices.

4.3.1 Regular waves

Most incident regular waves were generated in the range 𝑇 = 0.5s to 𝑇 = 1.0s
(model scale). Only few tests included higher wave periods, up to 𝑇 = 3s. The
wave steepness was 𝜖 = 2𝜁𝐴/𝜆 = 1/60 for most of the test, even though 𝜖 = 1/45
and 𝜖 = 1/30 were also considered. The tests were generated automatically with
an interval of three minutes between two consecutive tests. If this interval was
sufficient for the water to come back at rest for tests with 𝑇 < 1.0s, it was more
questionable for the higher wave periods, for which disturbances visible from the
videos would remain during the next test.
Both the measured incident wave periods and amplitudes were deduced from the

92



Chapter 4 Model tests

wave probes in front of the model. They are shown in Fig. 4.9, compared to the
specified values indicated to the wave maker. The wave periods were generally
very close to the one specified. It turned out that the few wave periods below
𝑇 = 0.55s were below the bandwidth of the wave maker, which explains why these
tests all have the same wave period. Precise wave steepnesses were more difficult to
generate because of the small scale and the physical constraints of the wave maker.
In general, the obtained wave steepnesses were slightly higher than specified, up to
20% higher. For WP5 and WP8, a time window before reflections from the beach
was used.

Experimental results for tests in regular waves are presented in Chapter 6, mostly
in term of responses amplitude operators (RAO) as function of the non-dimensional
frequency 𝜔2𝑏/𝑔. Table 4.8 gives the correspondence between dimensional and
non-dimensional wave frequencies for periods of interest.

Table 4.8: Correspondence between dimensional incident wave periods in model scale and
non-dimensional incident wave frequencies.

Lowest
tested period

Resonant
peak

𝑇1,1
Piston
mode

Highest
tested period

𝑇 [s] 0.50 0.75 0.81 2.00 3.00

𝜔 [rad/s] 12.57 7.76 8.49 3.14 2.09

𝜔2𝑏/𝑔 6.44 2.45 2.94 0.40 0.18
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4.3 Description of the tests in waves

𝜖 = 1/60

𝜖 = 1/45

𝜖 = 1/30

Figure 4.9: Example of specified and measured incident wave period and amplitudes for
𝜖 = 1/60, 1/45 and 1/30. The free-surface elevation is measured by the two wave probes
WP5 and 8 in front of the model, and WP6 and 7 near the walls on both sides of the model.
Measurements from WP6 and 7 include reflections from the model, while WP5 and 8 do
not. Tests including higher incident wave periods are given in Appendix C.2.
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4.3.2 Irregular waves

Tests with irregular waves were performed for which the incident waves were
defined by the standard JONSWAP spectrum (DNV RP-C205, 2019):

𝑆𝐽 (𝜔) = 𝐴𝛾𝑆𝑃𝑀 (𝜔)𝛾
exp

⎡⎢⎢⎢⎢⎣−0.5
(𝜔 − 𝜔𝑝

𝜎𝐽𝜔𝑝

)2⎤⎥⎥⎥⎥⎦ , (4.11)

where 𝐴𝛾 = 1 − 0.287 ln(𝛾), the spectral width parameter 𝜎𝐽 is given by 𝜎𝐽 ={
0.07, 𝜔 ≤ 𝜔𝑝

0.09, 𝜔 > 𝜔𝑝
, the peak enhancement coefficient fixed to 𝛾 = 3, and 𝑆𝑃𝑀 is the

Pierson-Moskowitz spectrum:

𝑆𝑃𝑀 (𝜔) = 5

16
𝐻2
𝑆𝜔

4
𝑝𝜔

−5 exp

[
−5
4

(
𝜔

𝜔𝑝

)−4]
. (4.12)

The spectrum was discretised with random phases in [0, 2𝜋] to generate time series
over 600s, sent as command to the wave maker. Due to mechanical limitations of
the wave maker, frequencies above 𝜔 = 11.3 rad/s could not be generated. The
energy of the waves above this frequency were removed, and re-injected uniformly
over the rest of the spectrum in order to conserve the specified wave height

𝐻𝑠 = 4
√∫ ∞

0
𝑆𝐽 (𝜔) d𝜔. This truncation was also reproduced for the semi-analytical

model.
Several sea-states commonly measured in the North Sea (Faltinsen, 1990) and
characterised by their peak period 𝑇𝑝 and significant wave height 𝐻𝑠 were tested
in model scale for the dock with and without spar or damping devices. The peak
period was specifically chosen near sloshing resonance, but higher periods were
also considered. The description of all the tests in irregular waves are summarised
in Table 4.9.

4.4 Data Analysis

Numerical methods used to post-process the experimental raw signals are described
in this section. First, few general procedures common to all tests are presented,
then for regular and irregular waves

4.4.1 General procedures

The surge, pitch and heave motions of the dock were calculated from the time
series delivered by the three uni-directional accelerometers 𝐴𝑐𝑐1, 𝐴𝑐𝑐2 and 𝐴𝑐𝑐3
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Table 4.9: Peak periods 𝑇𝑝 with their corresponding non-dimensional peak frequencies
𝜔2
𝑝𝑏/𝑔, and non-dimensional significant wave heights 𝐻𝑠/𝑏 (𝑏 = 0.4) of the JONSWAP

spectra tested for different configurations of the model. Damping devices include here either
a solid baffle (𝑎𝐵/𝑎 = 𝑑𝐵/𝑎 = 0.17) or 3mm polystyrene foam balls (1.2L). BB1 corresponds
to the smaller bilge boxes, and BB2 to the bigger bilge boxes.

Model 𝑇𝑝 [s] 𝜔2
𝑝𝑏/𝑔 𝐻𝑠/𝑏 Experimental

campaign

Dock (𝑑 + 𝑠)/𝑏 = 2, BB2 0.8 2.52 1.5/40 2018

1.5 0.72 2.5/40 2018

0.8 2.52 1/40 2019

0.8 2.52 3/40 2019

1.2 1.12 8/40 2019

Dock (𝑑 + 𝑠)/𝑏 = 2, BB1 0.8 2.52 1.5/40 2018

1.5 0.72 2.5/40 2018

Dock (𝑑 + 𝑠)/𝑏 = 1.25, BB2 0.8 2.52 1.5/40 2018

1.5 0.72 2.5/40 2018

Dock, (𝑑 + 𝑠)/𝑏 = 2, BB2
+ Damping devices

0.8 2.52 3/40 2019

0.8 2.52 3/40 2019

1.2 1.12 8/40 2019

Dock, (𝑑 + 𝑠)/𝑏 = 2, BB2
+ spar

0.8 2.52 3/40 2019

0.8 2.52 3/40 2019

1.2 1.12 8/40 2019

(see Fig. 4.5). First the motions’ accelerations were calculated as follow:


𝜂 (2)3 =
𝐴𝑐𝑐3 + 𝐴𝑐𝑐2

2
, (4.13)


𝜂 (2)5 =
𝐴𝑐𝑐3 − 𝐴𝑐𝑐2

𝐿𝑧
, (4.14)


𝜂 (2)1 = 𝐴𝑐𝑐1 + 𝑔𝜂 (2)5 − 𝑓𝑧 
𝜂 (2)5 , (4.15)

where 𝐿𝑧 = 0.70m is the horizontal distance between 𝐴𝑐𝑐1 and 𝐴𝑐𝑐2, and 𝑓𝑧 = 0.25m
the vertical distance of the accelerometers from the mean free surface. The motions
were then deduced by two successive integrations with respect to time. For low
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incident wave periods, the motions of the dock were particularly low, reaching
the limit of the accuracy range that could be measured by the video positioning
system. Hence, accelerometers were preferably used to obtain the dock’s motions.
Fig. 4.10 shows a comparison between both measurement systems for the RAO of
the dock’s surge motions in regular incident waves.

Figure 4.10: Comparison between measurements from accelerometers and the video

positioning system OQUS. RAO of 𝜂 (2)1 for the dock without spar and without baffle.
Regular incident waves, 𝜖 = 1/60 (2019 test).

The time series of WP1-4 were measured in a body-fixed coordinate system
The wave elevation in an Earth-fixed coordinate system was then obtained as
𝜁𝐸𝑎𝑟𝑡ℎ 𝑓 𝑖𝑥𝑒𝑑 = 𝜁𝐵𝑜𝑑𝑦 𝑓 𝑖𝑥𝑒𝑑 + 𝜂 (2)3 − 𝑥𝜂 (2)5 for WP1 and WP3 positioned along the

x-axis and 𝜁𝐸𝑎𝑟𝑡ℎ 𝑓 𝑖𝑥𝑒𝑑 = 𝜁𝐵𝑜𝑑𝑦 𝑓 𝑖𝑥𝑒𝑑 + 𝜂 (2)3 + 𝑦𝜂 (2)4 for WP2 and WP4. Signals from
WP1 to WP4 were then linearly interpolated to the same sampling frequency as
the body motions when the video positioning measurement were used. On the
contrary, the spar’s motions were measured in an Earth-fixed coordinate system.
A change of coordinate system was still necessary to study the relative motions of
the spar and the dock, and is detailed in Appendix C.4.
The phases of the signals were defined as for the semi-analytical model, i.e. with
respect to incident waves at the origin of the coordinate system (centre of the
dock). Incident waves were measured from WP8. It was generally difficult to
obtain accurate phases, as any small drift or displacement of a sensor would shift
the phase of the measured signal, especially for the highest wave frequencies. A
mean drift force on the dock was estimated from WAMIT (cf. Fig. 4.11) which
could lead to drifts in surge as high as 0.10m near sloshing resonance, which needed
to be taken into account when post-proceeding phases.

Figure 4.11: Mean drift force in surge from WAMIT. Dock’s draught: (𝑑 + 𝑠)/𝑏 = 2.
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4.4.2 Post-processing in regular waves

The signals were band-pass filtered and post-processed before reflections from
the beach at end of the tank reached back to the model, assuming deep water to

calculate the group velocity of the waves: 𝐶𝑔 =
𝑔

2𝜔
. The same formula was applied

to only use the part of the signal measured by WP8 before the wave reflected
from the model reached the wave probe. Signals were analysed once they reached
their steady states, even though it was not always possible to know precisely when
that state was reached, especially for the tests without damping devices, for which
the transient phases were particularly long. Fig. 4.12 presents an example of
time series for 𝜁𝑊𝑃1 and for three different incident wave periods around sloshing
resonance. As shown on the figure, beating with the natural sloshing period was
often observed for 𝑇 < 𝑇𝑠𝑙𝑜𝑠ℎ = 0.81𝑠. For 𝑇 = 0.74s, the transient phase before the
sloshing to be fully established is about 60-70% shorter with the presence of the
baffle, thanks to the additional viscous damping (same comments can be made for
the foam balls, see Appendix C.3).
A special care was brought to calculate the mean amplitude of the motions over
a whole number of beating periods 𝑇𝑏𝑒𝑎𝑡𝑖𝑛𝑔 = 1/|1/𝑇 − 1/𝑇1,1 |, as well as over a
whole number of incident wave periods 𝑇 .
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(a) 𝑇 = 0.60𝑠

(b) 𝑇 = 0.74𝑠

(c) 𝑇 = 1𝑠

Figure 4.12: Examples of experimental time series of the wave elevation inside the dock
in an Earth-fixed reference frame for three incident wave periods. The full time series
(left side) are shown together with a focus between t=40s and 42s (right). Results for the
dock without spar. Baffles’ submergence: 𝑑𝐵/𝑎 = 0.17. Wave steepness 𝜖 = 1/60. Top:
𝑇 = 0.60𝑠 , the vertical bars delimit two beating periods . Middle: 𝑇 = 0.74𝑠. Bottom:
𝑇 = 1𝑠.
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4.4.3 Post-processing in irregular waves

The signals were band-pass filtered for a range of periods containing 98% of the
energy from the theoretical wave spectra, over a time window from 2.5min to
8.5min selected from the 10min tests. An example of time series of 𝜂 (1)1 , 𝜂 (2)1 and
𝜁𝑊𝑃1 in irregular waves is shown Fig. 4.13. Their power spectral density 𝑆(𝜔)
were then calculated from a fast Fourier transform. A Gaussian filter was applied
to smooth the spectra. The RAOs 𝐻 (𝜔) of the motions were then obtained in the
usual manner:

|𝐻 (𝜔) |2 = 𝑆(𝜔)
𝑆𝑊𝑃8(𝜔)

. (4.16)

Figure 4.13: Time series of 𝜂 (1)1 , 𝜂 (2)1 and 𝜁𝑊𝑃1 from the same test in irregular waves.
𝜔2
𝑝𝑏/𝑔 = 2.52 and 𝐻𝑠/𝑏 = 1/40.

There are uncertainties related to that the duration of the tests are not infinite,
and the choice of the selected time window had an influence on the results. This is
illustrated in Fig. 4.14 where the RAOs of the dock’s motion in surge are presented
for four different time window selections, with a mean standard deviation of 10%
over the range of frequency presented on the figure.
The Gaussian filtering, characterised by its standard deviation 𝜎𝐺, also had a
significant impact on the visual representation of the results (see Fig. 4.15), and
the values of 𝜎𝐺 are hence indicated for each result in Chapter 7.
The spectra of incident waves measured at WP8 have been compared to the
theoretical ones for verification, as shown in Fig. 4.16 for the 2019’s model tests
with the spar. The spectra for all tests are given in Appendix C.6. Discrepancies
with the theoretical values might be partly due to the wave reflection from the
beach and the model. For the sea-states defined by 𝑇𝑝 = 1.2s and 𝐻𝑠/𝑏 = 8/40,
and only for these sea-sates, few cases of wave breaking were sporadically observed
from the videos. These wave breaking occurred either on the dock itself, or either
before or after it (see left part of Fig. 4.17). For the same sea-sates and for tests
with a solid baffle, strongly non-linear flow was observed inside the dock, including
splashing, and which was not observed for other tests either with or without the
baffle.
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Figure 4.14: Influence of the selection of a time window from the time series, case for
the dock without spar nor damping device, 𝑇𝑝 = 0.8s, 𝐻𝑠 = 0.01m (or 𝐻𝑠/𝑏 = 1/40). Top:
time history of the dock’s surge motions. Middle: spectra of incident waves for different
time window selections. Bottom: RAOs of the dock’s surge motions for the same time
window selections.
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Figure 4.15: Example of filtering for the surge motion of the dock without spar nor
damping devices, 𝑇𝑝 = 0.8s, 𝐻𝑆 = 0.01m (or 𝐻𝑠/𝑏 = 1/40). Top: Gaussian distributions
for several standard deviations used to smooth signals in irregular waves. Middle: Spectra
of the dock’s surge motions for the different Gaussian filtering. Bottom: RAOs of the
dock’s surge motions for the same Gaussian filtering.
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Figure 4.16: JONSWAP spectra of incident waves, as instructed to the command of the
wave maker (theoretical), and measured in front of the dock with spar at the wave probe
WP8 with the model in place (experimental). 𝜎𝐺 = 0.006 the upper subfigures, 𝜎𝐺 = 0.0208
for the bottom one. Tests from 2019.

Figure 4.17: Photos from the 2019 model tests in irregular waves with 𝑇𝑝 = 1.2s and
𝐻𝑠/𝑏 = 8/40. Left: a wave breaks on the model. Right: strongly non-linear flow is observed
inside the dock for the case with baffle.
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4.5 Errors and uncertainties

4.5 Errors and uncertainties

4.5.1 Repetition tests

Selected regular wave conditions were repeated once to investigate the importance
of random error for three configurations: the dock alone, the dock with a solid
baffle, and the dock with the spar. Mean values and standard deviations of the
RAOs resulting from these repetition tests are presented in Figs. 4.18 and 4.19, all
from the 2019 model test campaign. The average standard deviation was in the
range of 1.5%–3% for the motions of the dock, and 5%–10% for the motions of the
spar, with the largest error near the coupled resonant peak. The standard deviation
for the free-surface elevation was higher, in the range of 5%–10% for the cases with
the baffle or with the spar, and up to 20% for the dock alone. Variations of the
incident wave frequencies generated by the wave maker were generally low (below
1%), which is similar to the variations with the frequencies specified in command
that were discussed in Sec 4.3.1. It is worth to note that there is considerable
uncertainty related to the standard deviation when only two samples are available.
We would expect these to be lower given more repetitions. Still, the presented
data gives an impression of which responses, at which frequencies, are most prone
to random errors in our tests.

Figure 4.18: Mean values and standard deviations of the RAOs of the spar’s surge and

pitch motions for the same tests as in Fig. 4.19. Results for 𝜂 (1)3 are given in Appendix
C.5.

In addition, for the dock alone, tests were also made during the 2018 model test
campaign in the same range of incident wave frequencies. The set-up in that case
was remade identically for the tests of 2019, providing indications about the bias
error. The tests are compared in Fig. 4.20 for the free-surface elevation 𝜁𝑊𝑃1 (the
dock’s motions are also given in Appendix C.5), with slightly higher discrepancies
than the ones observed for the 2019 tests only in Fig. 4.19, especially at the
resonant peak, and for frequencies lower than 𝜔2𝑏/𝑔 = 2. This could be explained
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Figure 4.19: Mean values and standard deviations of the RAOs of the dock’s surge and
pitch motions and the free surface elevation at WP1 from repetition tests. Each series
of tests for the dock alone, dock with a solid baffle (𝑑𝐵/𝑎 = 0.17), and dock with the spar
were repeated twice during the 2019 model test campaign. 𝜖 = 1/60, draught of the dock:
𝑑 + 𝑠 = 0.8m, larger bilge boxes’ size (BB2).

by the inaccuracies made when reproducing the same set-up, from the installation
of the ballasts inside the model, and the fixations of the mooring lines. Despite
the documented bias error, we believe that the reconstruction of the set-up in 2019
was quite acceptable.
Repeated tests are denoted ”Set 1” and ”Set 2” in the rest of the thesis.
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4.5 Errors and uncertainties

Figure 4.20: Comparisons of 𝜁𝑊𝑃1’s RAOs for several tests made with the dock alone
from the 2018 and 2019 tests. The set-up was attempted to be remade identical for 2019
tests as for 2018. 𝜖 = 1/60, draught of the dock: 𝑑 + 𝑠 = 0.8m, larger bilge boxes’ size
(BB2).

4.5.2 Other sources of error

The dock’s motions during the experiments were very small, and reaching the limit
of the accuracy range that could be measured by the video positioning system.
In addition, light reflections in the water were suspected to cause spurious data.
Measurements from accelerometers were preferred to obtain the motions of the
dock from the 2019’s tests, but only OQUS’s system was used for 2018’s tests.
Measurements of the spar’s motions however were generally much higher and
measurements from OQUS are expected to be reliable. Besides, the wave probes
were sensitive to the variations of temperature. Their calibration were done only
once a week due to time constraints.

Longitudinal standing waves (seiching) were sometimes observed in the time series
for the longest waves. However, their period 𝑇𝑠𝑒𝑖𝑐ℎ𝑖𝑛𝑔 = 2𝐿/

√
𝑔ℎ = 17.16s was

filtered efficiently. Reflection from the lateral walls was also an issue. The waves’
amplitude measured by WP6 and WP7 at the walls could differ up to 30% compared
to WP8 in front of the model, especially for short waves. Yet, few simulations
were made with WAMIT in a channel, with almost no difference from the case in
open water.

Fianlly, the model was not perfectly symmetric, due to several factors: the
compartmentalising of the ballasts in eight slots, a variation of few millimetres in
the internal and external radii from the fabrication, non-identical pre-tension in
each mooring line. This may explain partially the observation of very small roll
and sway motions during the tests. The eight springs fixing the spar inside the
dock varied in lengths of few millimeters. As a result, the spar was not perfectly
at the center of the dock, with a deviation less than 0.01m.
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5 | Equations of motion
The equations of motion of the dock with and without baffles and spar are presented
in this section. The mathematical models developed in Chapters 2 and 3 are used
to describe the hydrodynamic loads on the bodies. A special care is brought to
describe how the local viscous loads caused by the baffles can be combined with
the external linear potential flow solution for an open-bottom dock. The geometry,
mass matrix and restoring coefficients of the numerical model are taken as closely
as possible from the physical model presented in Chapter 4.

First the hydrodynamic loads in the closed-bottom dock with baffle are derived in
Sec. 5.1.1 for the dock without spar to present the method. When considering the
open-bottom dock, a hybrid semi-analytical model is proposed in Sec. 5.1.2 that
combines the modal equations, used to describe the local effects of the baffle, and
a domain decomposition method to describe the flow through the open bottom.
The equations of motions are then established in Sec. 5.1 for the dock without the
spar. Similar hybrid model and equations of motions are then derived in Sec. 5.2
for the open-bottom dock with spar, and an eigenvalue analysis is carried out in
Sec. 5.4.

5.1 Equations for the dock without spar

5.1.1 Closed-bottom dock with annular baffle

The linear potential flow solution inside the closed-bottom dock with either solid
or perforated baffles was determined in Sec. 3.5, modelling the effects of the baffle
through the modal equations obtained from the free-surface boundary conditions.
The hydrodynamic loads inside the dock can then be calculated by linear pressure
integration on the internal walls of the dock. We first disregard the loads on
the baffle itself, which will be considered afterwards. From the expression of the
potential flow in Eq. (3.33) for the dock without spar, the force in surge and
moment in pitch due to the internal flow can be expressed:

𝐹1 =

−𝐴filled
1,1︷�����������︸︸�����������︷

−𝜌𝑎2𝜋(𝑑 + 𝑠) 
𝜂1 +

−𝐴filled
1,5︷�����������︸︸�����������︷

𝜌
𝑎2(𝑑 + 𝑠)2𝜋

2

𝜂5 +

∞∑
𝑞=1

𝑔𝑞,1︷����������������������������︸︸����������������������������︷
−𝜌 [𝜋𝑎2

𝜄1,𝑞
tanh(𝜄1,𝑞 𝑑 + 𝑠

𝑎
)] �𝑅1,𝑞 (𝑡),

(5.1)
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𝐹5 =

−𝐴filled
5,1︷�����������︸︸�����������︷

𝜌𝑎2𝜋
(𝑑 + 𝑠)2

2

𝜂1

+

−𝐴filled
5,5︷�����������������������������������������������������������������������������������������������������������������︸︸�����������������������������������������������������������������������������������������������������������������︷

𝜌

[
− 𝑎2(𝑑 + 𝑠)3𝜋

3
+

∞∑
𝑗=1

4𝑎3𝜋

𝜄1, 𝑗 (𝜄21, 𝑗 − 1)𝑘21, 𝑗
𝑘1, 𝑗 (𝑑 + 𝑠) cosh(𝑘1, 𝑗 𝑑+𝑠2 ) − 2 sinh(𝑘1, 𝑗 𝑑+𝑠2 )

cosh(𝑘1, 𝑗 𝑑+𝑠2 )

]

𝜂5

+
∞∑
𝑞=1

𝜌
[𝑎3𝜋(cosh(𝜄1,𝑞 𝑑+𝑠𝑎 ) − 1)

cosh(𝜄1,𝑞 𝑑+𝑠𝑎 )𝜄21,𝑞
]

︸�������������������������������︷︷�������������������������������︸
𝑔𝑞,5

�𝑅1,𝑞 .(𝑡) (5.2)

The first two terms in Eqs. (5.1) and (5.2) are due to the motion of the water
volume (or ”filled volume”) if we assume a rigid free surface that moves with the
dock. These are written as pure added masses for harmonic motions, and are
identical to the ones presented in Sec. 3.3.2 for the case without baffle. We note that
we have in particular neglected the effects of the baffles on the Stokes-Joukowski
potential. We should also remark that we now consider the full draught of the
dock 𝑑 + 𝑠 that includes the bilge boxes’ height, instead of simply 𝑑 as in Chapter
3. Unlike in Sec. 3.3.2 however, the forces induced by the sloshing waves, i.e. the
last terms of Eqs. (5.1) and (5.2), can not be interpreted as pure additional added
masses because of the phase shift introduced by the damping ratio. The loads due
to sloshing waves when a baffle is installed are now expressed as both added mass
and damping coefficients inside the closed-bottom dock, given by:

𝐴slosh
1,1 + 𝑖

𝜔
𝐵slosh
1,1 = 𝑖𝜔

∞∑
𝑞=1

𝑔𝑞,1 𝑓𝑞 (𝜔)𝑃𝑞,1(𝜔), (5.3)

𝐴slosh
1,5 + 𝑖

𝜔
𝐵slosh
1,5 = 𝑖𝜔

∞∑
𝑞=1

𝑔𝑞,1 𝑓𝑞 (𝜔)𝑃𝑞,5(𝜔), (5.4)

𝐴slosh
5,5 + 𝑖

𝜔
𝐵slosh
5,5 = 𝑖𝜔

∞∑
𝑞=1

𝑔𝑞,5 𝑓𝑞 (𝜔)𝑃𝑞,1(𝜔), (5.5)

𝐴slosh
5,1 + 𝑖

𝜔
𝐵slosh
5,1 = 𝑖𝜔

∞∑
𝑞=1

𝑔𝑞,5 𝑓𝑞 (𝜔)𝑃𝑞,5(𝜔), (5.6)

where the coefficients 𝑓𝑞 (𝜔) and 𝑃𝑞,𝑖 were given in Eqs. (3.48) and (3.87), and the
𝑔𝑞,𝑖 coefficients are defined in Eqs. (5.1) and (5.2).
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In addition, the moment in pitch caused by the loads acting on the baffle itself is
expressed from Morison’s 2D equation as follows:

𝐹𝑀5 = −
∫ 2𝜋

0
𝑎

[
1

2
𝜌 𝑎𝐵 𝐶𝐷 (𝐾𝐶, 𝜃) 𝑣𝑟 (𝜃, 𝑡) |𝑣𝑟 (𝜃, 𝑡) | + 1

4
𝜌𝜋𝑎2𝐵𝐶𝑀

𝜕𝑣𝑟 (𝜃, 𝑡)
𝜕𝑡

]
cos(𝜃)𝑑𝜃.

(5.7)

All the loads inside the dock with baffle have now been determined. The radiation
and diffraction problems were also solved in Chapter 2 for the external flow around
the closed-bottom dock, such that it would be possible to combine both approaches
to estimate the motions of the closed-bottom dock with baffles in waves. In our
work, the dock has an open bottom, and few modifications need to be made to
account for this change of geometry.

5.1.2 Open-bottom dock with annular baffle

The added mass coefficients 𝐴filled
𝑖, 𝑗 do not account for the flow through the open

bottom. We propose in this section to solve the radiation problems for the dock
with a baffle through a domain decomposition approach, similar to the ones solved
in Sec. 2.3.1. The domain Ω is decomposed in the same four subdomains I-IV.
Only the potential expansions in the subdomain IV are modified compared to the
case without baffle. The total radiation potential in IV is now written:

Φ𝐼𝑉 (𝑟, 𝜃, 𝑧, 𝑡) =
∑

𝑗∈{1,5}
Φ(2) ,RFS
𝑗 (𝑟, 𝜃, 𝑧, 𝑡) +

∞∑
𝑞=1

𝑅1,𝑞 (𝑡)𝜑1,𝑞 (𝑟, 𝜃, 𝑧), (5.8)

where the radiation potentials in surge and pitch Φ(2) ,RFS
𝑗 = 𝜙𝐼𝑉,RFS

𝑗 (𝑟, 𝑧) cos(𝜃) �𝜂 (2)𝑗
satisfy the rigid free-surface condition 𝜕Φ(2) ,RFS

𝑗 /𝜕𝑧 = 𝜂 (2)𝑗 𝑛(2)5 on 𝑧 = 0 inside
the dock. Matching conditions with the external subdomains below the dock
are imposed on Φ(2) ,RFS

𝑗 only, while the eigenmodes 𝜑1,𝑞 satisfy the free-surface
boundary conditions in a dock-fixed coordinate system. We can reasonably assume
that both the shape of the sloshing eigenmodes and the local effects of the baffles
near the free surface are not affected by the flow through the bottom of the dock,
due to its high draught, and due to that the heave motions are negligible in
this range of frequencies. We also assume as previously that the perturbation
caused at the bottom of the dock by sloshing waves in a dock-fixed coordinate
are negligible. Then, the potentials Φ(𝑘 ) ,RFS

𝑗 are solved through the same domain
decomposition method as in Sec. 2.3.1. The derivations of the matching conditions
are very similar to the ones in Sec. 2.3.1, and are therefore not detailed here.
The only difference comes from the potential flow expansion in the subdomain
IV that must now satisfy the rigid free-surface boundary condition. Expressing
𝜙𝐼𝑉,RFS
𝑗 = 𝜙𝐼𝑉,RFS

𝑗 ,ℎ + 𝜙𝐼𝑉,RFS
𝑗 ,𝑚 as the combination of a homogeneous and particular

solution, respectively, it is given by:
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𝜙𝐼𝑉,RFS
𝑗 ,ℎ (𝑟, 𝑧) = 𝜓𝜖0𝐴𝐼𝑉0

𝑟

𝑎
+ 𝜓

∞∑
𝑝=1

𝜖𝑝𝐴
𝐼𝑉
𝑝

𝐼1
( 𝑝𝜋
ℎ 𝑟

)
𝐼1

(( 𝑝𝜋ℎ 𝑎) cos ( 𝑝𝜋
ℎ
𝜋(𝑧 + ℎ)

)
, (5.9)

𝜙𝐼𝑉,RFS
1,𝑚 (𝑟, 𝑧) = 0, (5.10)

𝜙𝐼𝑉,RFS
5,𝑚 (𝑟, 𝑧) = −𝑟 (𝑧 + ℎ)

2 − 𝑟3

4

2ℎ
. (5.11)

Inside the dock, the free-surface elevation is entirely described by the eigenmodes
(cf. Eq. (3.35)). Inserting the expression of the total potential Φ𝐼𝑉 from Eq. (5.8)
and 𝜁 in the kinematic and dynamic free surface boundary conditions results in
similar modal equations as obtained for the closed-bottom dock with baffle (cf. Eq.
(3.85)). Only the exciting coefficients 𝐾1,𝑞 (𝑡) in the right hand side of Eq. (3.85)
are changed:

𝐾1,𝑞 (𝑡) = − 1

𝜇1𝑞

[
𝜆1,𝑞,1 
𝜂1 (2) +

(
𝜆1,𝑞,5 + 𝜆1,𝑞,2

) 
𝜂5 (2) − 𝜆1,𝑞,3𝑔𝜂 (2)5

]
, (5.12)

where 𝜇1,𝑞 were given by Eq. (3.39) and the 𝜆 coefficients now depend on the

radiation potential 𝜙𝐼𝑉,RFS
𝑗 :

𝜆1,𝑞, 𝑗 = 𝜌
∫
Σ0

𝜙𝐼𝑉,RFS
𝑗 ,ℎ (𝑟, 0) cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟, (5.13)

𝜆1,𝑞,2 = 𝜌
∫
Σ0

𝜙𝐼𝑉,RFS
5,𝑚 (𝑟, 0) cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟, (5.14)

𝜆1,𝑞,3 = 𝜌
∫
Σ0

𝑟 cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟. (5.15)

One of the major difference with fully closed domains as in Faltinsen and Timokha
(2009), is that the 𝜆 coefficients depend now on the forcing frequency 𝜔 of the
incident waves, and not only on the geometry of the domain. It would for example
become more complicated to solve the modal equations in time domain. We can
write 𝐾1,𝑞 = −𝜔2𝑃𝑞, 𝑗𝜂

(2)
𝑗 𝑒−𝑖𝜔𝑡 , where 𝑃𝑞,1 and 𝑃𝑞,5 are the real coefficients:⎧⎪⎪⎨⎪⎪⎩

𝑃𝑞,1 = −𝜆1,𝑞,1/𝜇1,𝑞,

𝑃𝑞,5 = − (
𝑔𝜆1,𝑞,3𝜔

−2 + 𝜆1,𝑞,5 + 𝜆1,𝑞,2
) /𝜇1,𝑞 . (5.16)

The hydrodynamic loads caused by the total radiation potentials are calculated by
pressure integration over the dock’s immersed surface 𝑆 (2)0 with the open bottom
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(cf. Fig. 2.1), and expressed in terms of added mass and damping coefficients in
surge and pitch. The contribution of the loads caused by the second term of (5.8),
i.e. by sloshing waves in a dock-fixed coordinate system on the internal surface
of the dock, are expressed as 𝐴slosh

𝑝, 𝑗 and 𝐵slosh
𝑝, 𝑗 . They are given by Eqs. (5.3) to

(5.6) with the expressions of 𝑃𝑞, 𝑗 and 𝑃𝑞,5 in Eq. (5.16) for the open-bottom dock.
The loads caused on the entire dock’s surface for the problem with an internal
rigid free surface, which only account for the first term of (5.8) in the internal
subdomain IV are written 𝑎RFS

𝑝, 𝑗 and 𝑏RFS
𝑝, 𝑗 , and calculated as in Eq. (2.83). The

total added mass and damping coefficients from the radiations problems in surge
and pitch are them given by 𝑎𝑝, 𝑗 = 𝑎RFS

𝑝, 𝑗 + 𝐴slosh
𝑝, 𝑗 and 𝑏𝑝, 𝑗 = 𝑏RFS

𝑝, 𝑗 + 𝐵slosh
𝑝, 𝑗 .

The damping ratio and the shifted natural frequency in the modal equations are
estimated as in Sec. 3.5.2 for the closed-bottom dock. In practice, we only use the
first mode near sloshing resonance. The relative flow velocity on the baffle 𝑣𝑟 used
to estimated the energy dissipation is now expressed as:

𝑣𝑟 (𝜃, 𝑡) =𝑅1,1(𝑡)
𝜕𝜑1,1
𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+ �𝜂 (2)5 (𝑡)
[
𝜕𝜙𝐼𝑉,RFS

5

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+ 𝑎 cos(𝜃)
]

+ �𝜂 (2)1 (𝑡) 𝜕𝜙
𝐼𝑉,RFS
1

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

cos(𝜃) (5.17)

Added mass coefficients resulting from the integration of the pressure on 𝑆 (2)0
in the internal subdomain IV only are presented in Fig. 5.1. The coefficients
calculated in Chapter 2 for the dock without baffle (blue curve) are compared
to the one obtained with the one calculated in this section, and which follow the
decomposition of the potential as in Eq. (5.8). When 𝜎′ → 𝜎 and 𝜉1 → 0 in the
modal equations, i.e. when the effects of the baffle becomes negligible, it is shown
on the figure that the added mass coefficients (magenta curve) converge to the
one obtained in Chapter 2. 𝐴slosh

𝑝, 𝑗 is calculated solely from the first sloshing mode.

This approximation seems reliable as the total added mass 𝑎RFS
𝑝, 𝑗 + 𝐴slosh

𝑝, 𝑗 converges
to the exact solution calculated in Chapter 2 over the wide range of frequencies
around resonance.
The difference of loads on the internal surfaces of the closed- and open-bottom
docks is mostly characterized by the difference observed between the 𝐴filled (dash
red curves) and 𝑎𝐼𝑉,RFS (solid red curves), respectively. These last are almost
twice the former for the radiation problem in pitch.
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5.1 Equations for the dock without spar

Figure 5.1: Added mass coefficients 𝑎1,1 (top), 𝑎1,5 (middle) and 𝑎5,5 (bottom) for the
dock without spar, calculated by integrating the pressure on the part of the dock’s surface in
the subdomain IV. 𝑎𝐼𝑉 is calculated with a DD method for the case without baffle (cf. Sec.
2.3.1), 𝑎𝐼𝑉,𝑅𝐹𝑆 and 𝐴slosh are the added mass coefficients calculated for the open-bottom
dock with baffle. In that case, the equations of motion presented in the next section have
been solved to estimate 𝜉1 and 𝜎′

1,1, with incident waves’ steepness 𝜖 = 1/60 (black curves).
When the effects of the baffles are set to 0 (𝜎′ → 𝜎 and 𝜉1 → 0), we verify that this model
converges to 𝑎𝐼𝑉 . Similar to 𝑎1,5, 𝑎5,1 is given in Appendix B.7.
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5.1.3 Equations of motion of the dock

The coupled equations of motion in surge and pitch in the frequency domain for
the dock without spar are given by:∑

𝑗∈{1,5}

[−𝜔2 (
𝑀𝑝, 𝑗 + 𝑎𝑝, 𝑗

) − 𝑖𝜔𝑏𝑝, 𝑗 + 𝑐𝑝, 𝑗 ] 𝜂 (2)𝑗 = 𝐹𝑝, 𝑝 ∈ {1, 5}, (5.18)

where 𝑀1,1 = 𝑀 is the mass of the dock, 𝑀1,5 = 𝑀5,1 = 𝑀𝑧𝐺 and 𝑀5,5 = 𝐼5,5. The
coefficients 𝑐𝑝, 𝑗 include both the restoring coefficients due to the mooring line,
given in Sec. 4.1.4, and the hydrostatic coefficient in pitch (Faltinsen, 1990):

𝑐𝐻5,5 = 𝜌𝑔𝑉 (𝑧𝐵 − 𝑧𝐺) + 𝜌𝑔
∬

𝐴𝑊𝑃

𝑥2d𝑠, (5.19)

where 𝐴𝑊𝑃 is the water plane area, 𝑉 the immersed volume, and 𝑧𝐵 the centre of
buoyancy.
𝐹𝑝 in Eq. (5.18) are the wave exciting loads 𝐹𝑆𝑝 from the diffraction problem (cf.
Sec. (2.2)), plus the moment in pitch 𝐹𝑀5 on the baffle when there is a baffle. We
note that 𝐹𝑆𝑝 are unchanged when there is a baffle since incident waves do not
perturb the free surface inside the dock in our model, which would not be the case
if the dock had a shallow draught.

The use of potential flow theory in Chapter 2 was justified by that there is no
flow separation around the dock due to its dimensions compared to incident
wave’s heights. Even for the steepest waves considered during model test, 𝐾𝐶 =
2𝜋𝜁𝐴/(2𝑏) ≤ 0.2, while flow separation around circular cylinders occurs at much
higher 𝐾𝐶 (Sarpkaya, 1986), typically at 𝐾𝐶 ≥ 1.5 − 2. However, flow separation
is most likely to occur on the sharp edges of the bilge boxes, which where initially
conceived to introduce damping in the equations of motions. Extensions of potential
flow methods that incorporate the viscous effects of flow separation can be found
in the literature for ship roll motions (Belibassakis, 2010), or even rectangular
moonpools (Kristiansen and Faltinsen, 2008). It is however not explored thoroughly
in the present thesis. To account for viscous dissipation, a simple quadratic drag
force is introduced in the right hand side of the equation of motion in surge (Molin
and Legras, 1990):

𝐹𝐷1 = −1
2
𝜌𝐶𝐷2𝑏(𝑑 + 𝑠) �𝜂 (2)1 | �𝜂 (2)1 |. (5.20)

The force is linearised, such that the energy dissipated over one period of oscillation
is identical:

𝐹𝐷1 � 𝑖𝜔2 8

3𝜋
𝐶𝐷𝑏(𝑑 + 𝑠)𝜂 (2)1 |𝜂 (2)1 |𝑒−𝑖𝜔𝑡 . (5.21)

Because of the complexity of the flow around the bilge boxes (cf. Appendix D.1),
the estimation of such damping coefficients by existing formulas for more simple
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geometries does not appear relevant. A heuristic damping coefficient of 𝐶𝐷 = 3
provides calculated results closed to the experimental ones, and is discussed further
in the later section 6.1.2. This value is higher that the ones obtained from the
decay tests in Sec. 4.2.2. For instance for (𝑑 + 𝑠)/𝑏 = 2 (BB2), the quadratic
damping coefficient was 𝐵𝑄1,1 = 189.52kg/m, corresponding to 𝐶𝐷 = 0.6.

The equations of motion of the semi-analytical model are now complete for the
dock without spar, both with and without baffle. They include in particular several
non-linear loads with respect to the motions’ amplitude, either it is through the
damping ratio 𝜉1 due to baffles, the drag force 𝐹𝐷1 (bilge boxes), or the moment
𝐹𝑀5 . An iterative scheme is thus implemented. An initial iteration is run without
any non-linear loads. The complete equations are then solved until convergence of
the RAOs |𝜂 (2)1 /𝜁𝐴|, |𝜂 (2)5 /(𝑘𝜁𝐴) |, and |𝜁𝑊𝑃1/𝜁𝐴|, with a convergence criterion of
10−3.
The influence of the damping caused by the boundary layers inside the dock
without baffle and estimated as in Sec. 3.6 was briefly investigated. Simulations
with 𝜉𝐵𝐿 and then 𝜉𝐵𝐿 = 0 were run for incident waves’ steepness of 𝜖 = 1/60,
resulting in an average standard deviation between the motions’ RAOs below 1%
for incident wave frequencies near resonance.

In heave, the equation of motion is given by:[−𝜔2 (
𝑀 + 𝑎3,3

) − 𝑖𝜔𝑏3,3 + 𝑐3,3] 𝜂 (2)3 = 𝐹𝑆3 , (5.22)

where, 𝑐3,3 include both the restoring coefficients from the mooring lines, and the
hydrostatic coefficient:

𝑐𝐻3,3 = 𝜌𝑔𝐴𝑊𝑃 . (5.23)

5.2 Equations for the dock with spar

5.2.1 Dock with both a spar and an annular baffle

As in Sec. 5.1.2, the effects of annular baffles for the dock with a spar are included
through the radiation problems, tackled by a domain decomposition approach.
The radiation potential from Sec.2.3.2 is modified to include the effects of the
baffle in the subdomain IV between the dock and the spar. In this subdomain, the
potential is written:

Φ𝐼𝑉 (𝑟, 𝜃, 𝑧, 𝑡) =
∑

𝑗∈{1,5}
𝑘∈{1,2}

Φ(𝑘 ) ,RFS
𝑗 (𝑟, 𝜃, 𝑧, 𝑡) +

∞∑
𝑞=1

𝑅1,𝑞 (𝑡)𝜑1,𝑞 (𝑟, 𝜃, 𝑧), (5.24)
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where the radiation potentials in surge and pitch Φ(𝑘 ) ,RFS
𝑗 = 𝜙 (𝑘 ) ,𝐼𝑉,RFS

𝑗 cos(𝜃) �𝜂 (𝑘 )𝑗

for both bodies satisfy the rigid free-surface bondary condition 𝜕Φ(𝑘 ) ,RFS
𝑗 /𝜕𝑧 =

𝜂 (𝑘 )𝑗 𝑛(2)5 on 𝑧 = 0. The same radiation problems as in Sec.2.3.2 are solved, but

with now the potential 𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 in the subdomain IV which satisfies the rigid

free-surface condition. The expansions used for 𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 are presented in

Appendix B.3, and are similar to the ones in the subdomain II below the bilge
boxes. As for the dock without spar in Sec. 5.1.2, we assume that the sloshing
waves described in a tank-fixed coordinate system by the second term of Φ𝐼𝑉 in
Eq. (5.24) do not communicate with other subdomains below the dock.
The damped modal equations (3.85) are established by imposing the free-surface
kinematic and dynamic boundary conditions for the total potential Φ𝐼𝑉 in the
subdomain IV. The excitations 𝐾1,𝑞 in the modal equations differ from the case
with a closed-bottom:

𝐾1,𝑞 (𝑡) = − 1

𝜇1,𝑞

[
𝜆 (1)1,1,𝑞 
𝜂1 (1) + 𝜆 (2)1,1,𝑞 
𝜂1 (2) + 𝜆 (1)5,1,𝑞 
𝜂5 (1) +

(
𝜆 (2)5,1,𝑞 + 𝜆2,1,𝑞

)

𝜂5 (2) − 𝜆3,1,𝑞𝑔𝜂 (2)5

]
,

(5.25)

which can also be written as 𝐾1,𝑞 (𝑡) = −𝜔2𝑃 (𝑘 )
𝑞, 𝑗𝜂

(𝑘 )
𝑗 𝑒−𝑖𝜔𝑡 . The coefficients 𝜇, 𝜆 and

𝑃 (𝑘 )
𝑞, 𝑗 are given in Appendix B.3.

Added mass and damping coefficients of the two-body system are calculated by
pressure integration over the bodies’ surface. The contribution to the loads of
sloshing waves in the subdomain IV, i.e. by the second term of Eq. (5.24), are
written under first mode approximation:

𝐴(𝑘 ) ,slosh
𝑠, 𝑗 + 𝑖

𝜔
𝐵 (𝑘 ) ,slosh
𝑠, 𝑗 = 𝑖𝜔𝑔 (𝑘 )𝑠 𝑓1(𝜔)𝑃 (𝑘 )

𝑗 (𝜔), (5.26)

𝐷 (𝑘 ) ,slosh
𝑠, 𝑗 + 𝑖

𝜔
𝐸 (𝑘 ) ,slosh
𝑠, 𝑗 = 𝑖𝜔𝑔 (𝑘 )𝑠 𝑓1(𝜔)𝑃 (𝑘′ )

𝑗 (𝜔), (5.27)

where (𝑠, 𝑘) ∈ {1, 5}2, (𝑘, 𝑘 ′) ∈ {1, 2}2, 𝑘 ≠ 𝑘 ′, 𝑔 (𝑘 )𝑠 = 𝜌
∫ ∫

𝑆
(𝑘) ,𝐼𝑉
0

𝜑1,1𝑛
(𝑘 )
𝑠 d𝑆 and

𝑆 (𝑘 ) ,𝐼𝑉0 is the part of the bodies’ surface restricted to the subdomain IV. The
radiation potentials in the entire domain Ω for the problems with a rigid free
surface inside the dock provide the remaining added mass and damping coefficients
on both bodies. They are denoted with the superscript RFS. The total added mass
and damping coefficients are then:

𝑎 (𝑘 )𝑠, 𝑗 = 𝑎
(𝑘 ) ,RFS
𝑠, 𝑗 + 𝐴slosh

𝑠, 𝑗 , and 𝑏 (𝑘 )𝑠, 𝑗 = 𝑏
(𝑘 ) ,RFS
𝑠, 𝑗 + 𝐵slosh

𝑠, 𝑗 , (5.28)

𝑑 (𝑘 )𝑠, 𝑗 = 𝑑
(𝑘 ) ,RFS
𝑠, 𝑗 + 𝐷slosh

𝑠, 𝑗 , and 𝑒 (𝑘 )𝑠, 𝑗 = 𝑒
(𝑘 ) ,RFS
𝑠, 𝑗 + 𝐸slosh

𝑠, 𝑗 . (5.29)
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Each of the radiation potential Φ(𝑘 )
𝑗 produces a vertical velocity component on the

baffle, even in surge, which differ from the closed-bottom case studied in Chapter
3. The relative velocity on the baffle 𝑣𝑟 which include all the radiation velocities
for the open-bottom dock with baffle is given in Appendix B.3.
The added mass coefficients in pitch obtained by integration of the pressure on the
bodies’ surface in the internal subdomain IV only are presented in Fig. 5.2. The
remaining added mass coefficients are also given in Appendix B.7. The added mass
coefficients calculated in this section for the case with baffle and under first mode
approximation are compared to the one obtained in Chapter 2 for the dock with
a spar without baffle. We here verify that the results calculated in this section
converge to the ones obtained in Chapter 2 when the effects of the baffle goes to 0.

It should be emphasised that the potential of the dock without spar solved in Sec.
5.1.2 should not directly be used to calculate hydrodynamic loads on the spar,
e.g. by using Morison-type loads, or even by direct pressure integration. Since
𝜆1,1/(2𝑎0) = 7.3 is high, Morison’s formula could indeed appear as an appealing way
to estimate the loads on the spar without having to derive the tedious calculations
of a domain decomposition method such as the one derived in this section. However,
the first sloshing eigenmode is changed with the presence of the spar (see Fig.
5.3), and more important, the first sloshing eigenfrequency is significantly reduced
compared to the one for the dock alone. To illustrate the issue, we consider the
loads on the spar caused by the radiation potential Φ(2)

1 , itself caused by the
surge motion of the dock. The spar is assumed fixed, and the radiation potential
calculated as in Sec. 5.1.2 for the case without spar. The linear Morison’s force on
a section of the spar in 𝑥 = 𝑦 = 0 is expressed as:

𝑑𝐹Morison = 𝜋𝑎20𝜌𝐶𝑀
𝜕2Φ(2)

1

𝜕𝑥𝜕𝑡
𝑑𝑧, (5.30)

with 𝐶𝑀 = 2. In 𝑥 = 𝑦 = 0 and near resonance, 𝐾𝐶 = 2𝜋 |𝜁𝑚𝑎𝑥 |/(2𝑎0) ≤ 1, such
that viscous loads were neglected in Eq. (5.30) (Sarpkaya, 1986). The radiation

potential in surge Φ(2)
1 is proportional to the surge velocity of the dock. Thus, the

total load integrated over the height of the spar can be written under the form:

𝐹Morison
1 = −𝑒Morison

1,1 
𝜂 (2)1 , (5.31)

where 𝑒Morison
1,1 is the added mass coefficient of the spar in surge caused by the

surge motions of the dock. These coefficients are compared in Fig. 5.4 to the
one derived in Eq. (5.27) by the domain decomposition approach, with significant
differences near resonance as the simplified Morison approach does not model the
change of the first sloshing eigenmode and eigenfrequency.
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Figure 5.2: Added mass coefficients 𝑎 (2)5,5 (top), 𝑎 (1)5,5 (middle) and 𝑒 (1)5,5 (bottom) for
the dock with spar, calculated by integrating the pressure on the bodies’ surface in the
subdomain IV. 𝑎𝐼𝑉 is calculated with a DD method for the case without baffle (cf. Sec.
2.3.2), 𝑎 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆 (or 𝑒 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆) and 𝐴slosh are the added mass coefficients calculated
for the open-bottom dock with baffle. In that case, the equations of motion presented in
the next section have been solved to estimate 𝜉1 and 𝜎′

1,1, with incident waves’ steepness
𝜖 = 1/60 (black curves).
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Figure 5.3: Profile for the normalised eigenmode 𝜑1,1 in (𝑦, 𝑧) = (0, 0) for the dock
without and with the spar.

Figure 5.4: Added mass coefficients 𝑒 (1)1,1 estimated both by a DD method or a simplified
approach based on a Morison-type force on the spar. For the case with baffle, the equations
of motion presented in Sec. 5.2.2 have been solved to estimate 𝜉1 and 𝜎′

1,1, with incident
waves’ steepness 𝜖 = 1/60.

5.2.2 Equations of motion of the dock with spar

The coupled equations in surge of the pitch for the dock and the spar are written:

∑
𝑗=1,5

[
−𝜔2

(
𝑀 (𝑘 )
𝑝, 𝑗 + 𝑎 (𝑘 )𝑝, 𝑗

)
− 𝑖𝜔𝑏 (𝑘 )𝑝, 𝑗 + 𝑐 (𝑘 )𝑝, 𝑗

]
𝜂 (𝑘 )𝑗 +

[
−𝜔2𝑑 (𝑘 )𝑝, 𝑗 − 𝑖𝜔𝑒 (𝑘 )𝑝, 𝑗 + 𝑓 (𝑘 ) ,𝑀𝑝, 𝑗

]
𝜂 (𝑘

′ )
𝑗 = 𝐹 (𝑘 )

𝑝 ,

(5.32)

𝑝 ∈ {1, 5}2 (𝑘, 𝑘 ′) ∈ {1, 2}2, 𝑘 ≠ 𝑘 ′. For each body 𝑘, 𝑀 (𝑘 )
1,1 is the mass of the body,

𝑀 (𝑘 )
5,5 = 𝐼 (𝑘 )5,5 the moment of inertia in pitch, 𝑀 (𝑘 )

1,5 = 𝑀 (𝑘 )
5,1 = 𝑀 (𝑘 )

1,1 × 𝑧 (𝑘 )𝐺 where 𝑧 (𝑘 )𝐺 is

the centre of gravity. The restoring coefficients 𝑐 (𝑘 )𝑝, 𝑗 include both the static terms
caused by the mooring lines given in Sec. 4.1.4 and the hydrostatic coefficient in
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pitch (5.19) for each body. The forces 𝐹𝑝 are the exciting forces and moments
calculated in Chapter 2 from the diffraction problem, plus a heuristic quadratic
damping load in surge (cf. Eq. (5.21)) for both bodies, with a drag coefficient
𝐶𝐷 = 3 for the dock and 𝐶𝐷 = 1 for the spar.
When a baffle is installed inside the dock, the added mass and damping coefficients
are calculated as in Sec. 5.2.1, otherwise as in Chapter 2. The moment in pitch
on the baffle 𝐹𝑀5 is included in the right hand side of the equation in pitch of the
dock in Eq. (5.32).

The equations in heave for the two bodies are also coupled, written:

[
−𝜔2

(
𝑀 (𝑘 ) + 𝑎 (𝑘 )3,3

)
− 𝑖𝜔𝑏 (𝑘 )3,3 + 𝑐 (𝑘 )3,3

]
𝜂 (𝑘 )3 +

[
−𝜔2𝑒 (𝑘 )3,3 − 𝑖𝜔𝑑 (𝑘 )3,3 + 𝑓 (𝑘 ) ,𝑀3,3

]
𝜂 (𝑘

′ )
3 = 𝐹 (𝑘 ) ,𝑆

3 ,

(5.33)

where the restoring coefficients 𝑐 (𝑘 )3,3 are caused both by mooring lines and hydrostatic
forces (cf. Eq. (5.23)). As indicated by the decay tests in Sec. 4.2.1, the
hydrodynamic coupling in heave is quite small.

5.3 Sensitivity analysis

The responses of the semi-analytical model are sensitive to the parameters related
to the geometry, mass distribution of the bodies and to the mooring installation.
Comparisons with experimental results hence suffer from uncertainties caused by
an inaccurate modelling of the experimental set-up. In an attempt to identify the
most sensitive parameters and quantify these uncertainties, a sensitivity analysis is
carried out for the dock with the spar without any damping device. First, a brief
description is given of the systematic method applied to quantify the variations
of the semi-analytical responses’ amplitude and frequency at resonance, then the
results are presented for various input parameters.

The semi-analytical RAO’s amplitude at resonance, denoted 𝐴∗
𝑟 , and the corresponding

non-dimensional frequency 𝜔∗
𝑟 are calculated successively for parametric variations

of each of the geometrical, inertial and stiffness constants characterizing the
two-bodies system, all the other parameters being constant beside, and equal to
their values given in Sec. 4.1 for the experimental model, that we call nominal
values in this section. The star symbol ∗ indicates non-dimensional variables, for
which physical values are divided by their nominal values. Fig. 5.5 shows an
example of such parametric simulations, presenting |𝜂 (1)1 /𝜁𝐴| for several values

of the moment of inertia in pitch 𝐼 (2)∗5,5 around its nominal value 𝐼 (2)∗5,5 = 1. The

variations of 𝜔∗
𝑟 and 𝐴𝑟∗ as functions of 𝐼 (2)∗5,5 are then given in Fig. 5.6 for all
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the bodies’ motions. Polynomial regressions are made for each curve in order to
estimate the variation rates 𝛿𝐴∗

𝑟 = 𝜕𝐴
∗
𝑟/𝜕𝐼 (2)∗5,5 in 𝐼 (2)∗5,5 = 1, and 𝛿𝜔∗

𝑟 = 𝜕𝜔
∗
𝑟/𝜕𝐼 (2)∗5,5

in 𝐼 (2)∗5,5 = 1. This method is then repeated for other parameters.

Figure 5.5: Example of RAOs of the spar’s surge motion for different values of the

non-dimentional moment of inertia in pitch of the dock 𝐼 (2)∗5,5 around a nominal value

𝐼 (2)∗5,5 = 1. Solid lines are semi-analytical results. The non-dimensional frequency 𝜔∗
𝑟 and

amplitude 𝐴𝑟∗ measured at the peak resonance are here indicated for the highest value of

𝐼 (2)∗5,5 . 88 simulations were run for each of the parametric studies, only 11 simulations are
presented on this plot for the sake of clarity. Experimental results from 2019 tests.

Fig. 5.7 presents the results of the sensitivity analysis. It can be noted that the
variations of 𝜔∗

𝑟 are similar for all motions, and in general relatively low. The
coupled resonance occurs indeed at about the same frequency for all motions,
and the differences between 𝜔∗

𝑟 for two different motions, all parameters identical
otherwise, are always below 0.25%. It is also without surprise that the internal
radius of the dock, 𝑎, affects 𝜔∗

𝑟 the most, since it also drives the value of the
sloshing natural frequency 𝜎1,1.
The variations of the peak amplitude 𝐴∗

𝑟 are on the other hand more significant, with
large disparities between the motions. The spar’s surge motion is generally much
more sensitive than pitch, and very dependent on the spar’s mass distributions, but
also on the dock’s mass distribution which has a strong influence on the sloshing
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Figure 5.6: Example of parametric study made for 𝐼 (2)∗5,5 . The variations of 𝜔∗
𝑟 and 𝐴∗

𝑟 are

presented near the nominal value 𝐼 (2)∗5,5 = 1 for all the RAOs of the bodies’ motions in surge
and pitch, as well as |𝜁𝑊𝑃1/𝜁𝐴 |. The discrete results are simulated with the semi-analytical
model, which are then approximated by a polynomial regression (Pol. Reg.) of order 11.

wave amplitude.

Let us for instance focus on a 1% increase of 𝑧 (2)𝐺 ∗. The frequency 𝜔𝑟∗ of |𝜂 (2)1 /𝜁𝐴|,
which is a main excitation for the sloshing wave, is increased by about 1.1%, and
thus moved away from the sloshing natural period 𝜎1,1. In the same time, the peak

amplitude of |𝜂 (2)1 /𝜁𝐴| is identical. As a result, the peak of |𝜁𝑊𝑃1/𝜁𝐴| is decreased
by 9.8%. Inversely, a 1% increase of 𝐼 (2)5,5 ∗ reduces 𝜔𝑟∗ for |𝜂

(2)
1 /𝜁𝐴| by 0.6%, moving

it closer to the natural sloshing frequency, still without influencing the amplitude
of the excitation. As a consequence, the peak amplitude of |𝜁𝑊𝑃1/𝜁𝐴| is increased
by 5.0%.
We can also note that increasing the external radius of the dock could help to
reduce critical motions of the spar. Similar simulations were made relatively to the
connection points’ location and stiffness of the mooring lines, showing a smaller
influence on the results.
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Figure 5.7: Sensitivity of the RAOs’ peak amplitudes and frequencies at resonance. 𝛿𝐴𝑟∗
and 𝛿𝜔∗

𝑟 are given for all the motions’ RAOs, as well as for |𝜁𝑊𝑃1/𝜁𝐴 |. For example

𝛿𝜔∗
𝑟 = −0.5 for 𝐼 (2)∗5,5 means that 𝜔∗

𝑟 decreases by 0.5% when 𝐼 (2)∗5,5 increases by 1%.
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5.4 Eigenvalue analysis

An eigenvalue analysis of the system is performed from the equations of motion of
the semi-analytical models without exciting forces to estimate the natural periods
of the dock and spar’s motion. The eigenvalue problem can be written as:[−𝜔2 (𝑨 + 𝑴) + 𝑪

] · 𝑿 = 0, (5.34)

where 𝑴 is the mass matrix, 𝑨 the added mass matrix and 𝑪 the stiffness matrix.
These matrices are filled with the coefficients defined in the equations of motions
in the previous sections, either for the dock with or without the spar. 𝑿 is an
eigenvector of the rigid body motions, either surge and pitch or heave. Eq. (5.34) is
solved for 𝜔 by setting the determinant of the matrix inside the brackets equal to 0.
Because the system is non-linear due the frequency dependency of the added mass
matrix, an iterative scheme is implemented until convergence of the eigenvalue
and with a convergence criterion of 10−4. The results are presented in Table 5.1
and 5.2 for the dock alone, and Table 5.3 for the dock with spar. These values can
for instance be compared to the ones obtained from the decay tests in Sec. 4.2.1,
i.e. with the values from Table 4.5 for the dock without spar and Table 4.6 for the
dock with spar and without damping devices. The normalised eigenvector gives
the correct shape of the resonant modes, for which several rigid body motions can
be coupled. For example in Table 5.1, we see for the eigenmode corresponding to
the period 2.313s, a 0.927rad pitch motion of the dock is associated to a 0.375m
surge motion. These information were missing in the decay tests, were the motions
were incorrectly considered as if they were decoupled. For the case with the spar
in Table 5.3, we observe a eigenperiod of 3.251s mostly associated with the surge
and pitch motions of the spar. This period could not be measured during decay
tests, even though it does seem to be observed from the time series of 𝜂 (1)1 in Fig.
4.7, looking at the successive maximum amplitudes.
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5.4 Eigenvalue analysis

Table 5.1: Normalised eigenvectors and eigenperiods, solutions of the eigenvalue problem
(5.34) for the dock without spar. Both the case with and without mooring lines are presented.
The stiffness matrix of the moored dock include the restoring coefficients from Sec.4.1.4
due to mooring, while it does not for the unmoored dock. Draught of the dock: 𝑑 + 𝑠 = 0.8m,
BB2.

Moored Unmoored

𝜂 (2)1 [m] 0.375 0.998 × 0.381 ×
𝜂 (2)3 [m] × × 1.000 × 1.000

𝜂 (2)5 [rad] 0.927 0.069 × 0.925 ×
Eigenperiod T [s] 2.313 10.755 2.273 2.419 2.281

Eigenfrequency 𝜔2𝑏/𝑔 [-] 0.301 0.014 0.312 0.275 0.309

Table 5.2: Normalised eigenvectors and eigenperiods for the moored dock without spar.
Results are given for both draughts (𝑑 + 𝑠)/𝑏 = 1.25 and both bilge boxes’ sizes BB1 and
BB2. The case for (𝑑 + 𝑠)/𝑏 = 2 with BB2 is given in Table 5.3.

(d+s)/b=1.25, BB1 (d+s)/b=1.25, BB2 (d+s)/b=2, BB1

𝜂 (2)1 [m] 0.999 0.229 × 0.999 0.248 × 0.997 0.364 ×
𝜂 (2)3 [m] × × 1.000 × × 1.000 × × 1.000

𝜂 (2)5 [rad] 0.015 0.973 × -0.016 0.969 × 0.072 0.932 ×
T [s] 8.091 2.428 1.818 8.253 2.81 1.988 10.625 2.144 2.127

𝜔2𝑏/𝑔 [-] 0.025 0.273 0.487 0.024 0.204 0.407 0.014 0.350 0.356

Table 5.3: Normalised eigenvectors and eigenperiods, solutions of the eigenvalue problem
(5.34) for the dock with spar. Draught of the dock: 𝑑 + 𝑠 = 0.8m, BB2.

𝜂 (2)1 [m] 0.000 0.706 -0.011 -0.299 × ×
𝜂 (2)3 [m] × × × × -0.805 0.034

𝜂 (2)5 [rad] -0.008 0.040 -0.007 -0.730 × ×
𝜂 (1)1 [m] 0.441 0.707 0.650 -0.291 × ×
𝜂 (1)3 [m] × × × × -0.593 -0.999

𝜂 (1)5 [m] 0.897 0.005 -0.760 -0.541 × ×
Eigenperiod T [s] 1.399 10.872 3.251 2.328 2.255 1.565

Eigenfrequency 𝜔2𝑏/𝑔 [-] 0.822 0.014 0.152 0.297 0.317 0.657
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6 | Results in regular waves
Numerical and experimental results for regular incident waves are presented in
this chapter, focusing on the first-harmonic RAOs of the bodies’ and free-surface
elevation’s motions near sloshing resonance in an Earth-fixed coordinate system.
All results are discussed in model scale, based on the experimental set-up described
in Sec. 4.
The semi-analytical models presented in Sec. 5 for the dock with and without spar
and damping devices, partially based on a domain decomposition approach, are
denoted as ”DD models” in this section. First, results are discussed for the dock
without spar nor damping devices in Sec. 6.1, in particular for different draughts
and bilge boxes’ sizes. Then, results for the dock with damping devices - both
the foam balls and the baffles - and without the spar are discussed in Sec. 6.2 .
Finally, RAOs for the dock with the spar are presented in Sec. 6.3.

6.1 Dock without spar nor damping devices

6.1.1 Motions of the dock

Semi-analytical and experimental results are presented in Fig. 6.1 for the dock’s
surge and pitch motions and for the free-surface elevation inside the dock at WP1.
The fully-linear semi-analytical results are in fair agreement with results from
the model tests. The experimental RAOs seem slightly skewer at resonance. The
motions of the dock are almost null at the sloshing natural frequency 𝜎2

1,1𝑏/𝑔 = 2.45,
caused by the almost-infinite added mass in surge and pitch at that frequency.
A sharp shift of 𝜋 in the motions’ phases is also observed at the same frequency:
below 𝜎2

1,1𝑏/𝑔 both surge and pitch are in opposition of phases with 𝜁𝑊𝑃1, while

the three motions are in phase above 𝜎2
1,1𝑏/𝑔. This could be predicted by Eq.

(3.87) when 𝜉1 = 0: the free-surface elevation inside the dock becomes in opposition
of phase with the excitation term 𝐶𝑞, i.e. with surge and pitch accelerations, due
to the change of sign at 𝜎2

1,1𝑏/𝑔, and so it becomes in phase with surge and pitch
motions.
The maximum amplitudes of the dock’s motions at the resonant peak, near
𝜔2𝑏/𝑔 = 3, are relatively low, with (𝜂 (2)1 /𝜁𝐴)𝑚𝑎𝑥 = 0.57 and (𝜂 (2)5 /(𝑘𝜁𝐴))𝑚𝑎𝑥 = 0.11
as predicted by the semi-analytical model, but still causing relatively high sloshing
waves, with (𝜁𝑊𝑃1/𝜁𝐴)𝑚𝑎𝑥 = 3.62. The velocity profile of a cross-section of the
dock near the resonant peak and over a period of oscillation is presented in Fig.
6.2. Vertical velocities of sloshing waves reach up to 0.14m/s along the wall of the
dock (i.e. 1.4m/s in full scale), and exponentially decay along the negative 𝑧 axis.
These flow velocities are not negligible, and not beneficial for operating inside the
dock at typical weather conditions.
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6.1 Dock without spar nor damping devices

Figure 6.1: RAOs of the dock’s surge and pitch motions when there is no spar, and of
the free-surface elevation inside the dock at WP1. Amplitudes and phases, comparison
between the semi-analytical model (denoted DD) and experimental results (2019, Set 1).
The wave maker could not generate wave periods lower than 𝑇 = 0.55s (cf. Sec. 4.4.2)
and, in consequence, few results are packed around 𝜔2𝑏/𝑔 = 5.25. (𝑑 + 𝑠)/𝑏 = 2, large
bilge-boxes. Wave steepness: 𝜖 = 1/60.

The linear heave motions were totally negligible in this range of incident wave
periods compared to the other motions, as shown in Fig. 6.3. The experimental
results presented on this figure were measured with accelerometers, all exceeding
the lower limit of accuracy of the instrumentation.
Because of the high draught of the structure, the diffraction potential calculated
by the DD method was negligible inside the dock. Sloshing modes were therefore
not excited by the diffraction potential. In particular, it means that there was
no axisymmetric sloshing modes. Fig. 6.3 shows the RAOs of the free-surface
elevation at the two wave probes WP1 and WP3, which were aligned with respect
to the wave propagation, but at opposite sides inside the dock. They both have
the same amplitudes while being in opposition of phases, which would not be the
case if axisymmetric modes were playing a role. These observations are coherent
with the assumptions made in the previous Chapters 3 and 5, for which sloshing
waves were described as in a closed-bottom cylinder.
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Chapter 6 Results in regular waves

(a) 𝑡 = 0s. (b) 𝑡 = 𝑇/4.

(c) 𝑡 = 2𝑇/4. (d) 𝑡 = 3𝑇/4.
Figure 6.2: Velocity profile in 𝑦 = 0m in the Earth-fixed coordinate system at the incident
wave frequency: 𝜔2𝑏/𝑔 = 2.94 (i.e. 𝑇 = 0.74s), calculated from the DD model. The motions
of the dock in surge, pitch and heave, as well as the free-surface elevation are reproduced to
scale. At 𝑡 = 0s, undisturbed incident waves are maximal in 𝑥 = 0m, as defined in previous
sections. Wave steepness: 𝜖 = 1/60.

6.1.2 Influence of the wave steepness

Experimental results of the dock alone and for three wave steepnesses, 𝜖 = 1/60,
1/45 and 1/30 are presented in Fig 6.4 and compared to semi-analytical results
(solid curves). The variations due to the different wave steepnesses are in overall
quite small. Despite some scattering near resonance, all the experimental results
remain within the range of random errors discussed in Sec. 4.5.1.
An heuristic damping was included to the equation of motions in surge (cf. Sec.
5.1.3) for the whole dock, considering the drag coefficient 𝐶𝐷 = 3 (cf. Eq. (5.21)),
resulting in a reduction of the resonant peak’s amplitude between 8.8% for 𝜖 = 1/60
and 15.8% for 𝜖 = 1/30. Similar rates are observed for 𝜁𝑊𝑃1, suggesting that viscous
forces on the dock could also be used as a mean to damp sloshing waves. Flow
separation at the sharp corners of the bilge boxes are also expected to introduce a
quadratic damping in pitch and heave, which are expected to play a significant
role for lower incident wave frequencies due to higher pitch and heave motions
than near sloshing resonance. Such viscous damping coefficients are not included
in our model, and would require further investigations as the complexity of the
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6.1 Dock without spar nor damping devices

Figure 6.3: Top: RAOs of the dock’s heave motion, negligible for this range of incident
wave periods. The experimental values (2019, Set 1) were measured with accelerometers
all exceeding the lower limit of accuracy of the instrumentation. Bottom left: RAOs of
the free-surface elevation inside the dock at WP1 and WP3, aligned with the direction of
the wave propagation and at opposite side inside the dock. Bottom right: phases of the
free-surface elevation at WP1 and WP3. (𝑑 + 𝑠)/𝑏 = 2, large bilge-boxes, wave steepness:
𝜖 = 1/60.

flow’s velocity profile around the bilge boxes makes it difficult to obtain simple
estimations of these damping coefficients (see more details in Appendix D.1).

6.1.3 Several draughts

The conception of the floating dock includes towing phases of the whole dock from
one site to the other, without any spar inside the dock (Jiang et al., 2020). During
these phases, ballasts are removed from the dock, and the structure towed by
tug boats. In his study, Jiang et al. (2020) consider two draughts for the dock in
operation and transit conditions, respectively 65m and 20m in full scale. Their
design optimisation study includes a constraint on the piston mode natural period
in order to keep it above 17s in operation. For the 65m draught, this natural
period is indeed around 18s. However, they do not impose such constraint for the
transit condition.
In this section, we briefly discuss the influence of the dock’s draught on the natural

128



Chapter 6 Results in regular waves

Figure 6.4: RAO of the dock’s surge (top) and pitch (middle), and RAO of the wave
elevation inside the dock at WP1 (bottom), calculated from the DD approach and compared
to experimental results (2019, Set 1) for three different wave steepnesses, for the case
without baffles. The dash curves show the motions calculated analytically without any
viscous damping, while a drag force (cf. Eq. (5.20)) is added in the equation of surge for
the solid curves.

periods and the body’s motions when it is free-floating in waves. In addition to
both draughts tested experimentally for the dock in operation conditions, numerical
simulations with the semi-analytical model were carried out for two additional
lower draughts, for which the dock’s characteristics are presented in Table 6.1.
For these two additional draughts, masses are calculated from the displacements,
and both the center of gravity and moment of inertia in pitch are calculated from
the model’s mass properties and as the result of removing the required weight of
ballasts to reach the desired draughts.

Comparison between experimental and numerical results for (𝑑 + 𝑠)/𝑏 = 1.25
and (𝑑 + 𝑠)/𝑏 = 2 are presented in Fig. 6.5, as well as the two lower draughts
simulated from the DD model. The maximum value of 𝜁𝑊𝑃1/𝜁𝐴 at the resonant
peak increases by 17.5% when (𝑑 + 𝑠)/𝑏 decreases from 2 to 1.25, but then quickly
decreases for lower draughts. As expected, the responses for the shallowest draught
are significantly lower, due to lower hydrodynamic forces caused by internal
sloshing waves. It should be emphasised that for shallow draughts (𝑑 + 𝑠)/𝑏 <
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6.1 Dock without spar nor damping devices

Table 6.1: Additional draughts investigated with the semi-analytical method using the
mass properties of the dock’s model given in Table 4.2. 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m
(BB2). 𝐼5,5 and 𝑧𝐺 are given relatively to the mean free surface. Virtually removing all
the ballasts was not enough to reach the lowest draught, such that the dry height of the
dock also needed to be virtually shorten by 0.28m.

Non-dimensional
draught (𝑑 + 𝑠)/𝑏 [-]

Dimensional
draught (𝑑 + 𝑠) [m]

𝑀 [kg] 𝐼5,5 [kg.m2] 𝑧𝐺 [m]

0.38 0.15 45.57 9.70 0.20

0.75 0.30 78.56 15.92 0.10

1.25, the sloshing eigenfrequencies of the first lateral mode determined for a
closed-bottom dock in Chapter 3 do not accurately predict the eigenfrequencies
for the open-bottom dock (see Fig. 6.6).
For lower draughts piston modes are shifted to higher frequencies, the piston mode
resonance for (𝑑 + 𝑠)/𝑏 = 0.38 is for example observed at 𝜔2𝑏/𝑔 = 1.34, with a
60% lower amplitude than for (𝑑 + 𝑠)/𝑏 = 0.75. Similar to sloshing resonance, the
motions’ RAOs’ maxima caused by piston mode resonance do not necessarily occur
at the piston natural frequency because of the radiation dissipation. The piston
natural frequency is estimated from the added mass in heave (cf. Sec. 2.4) in the
DD model. These natural frequencies are given in Fig. 6.7 for several draughts
(red curve), which are generally lower than the resonant piston frequencies (black
squares) corresponding to maximal motions’ RAOs. In this figure, the piston
natural frequencies are compared to simple formulas derived by Molin (2001) and
Molin et al. (2018) for rectangular and circular moonpools, respectively. These
formulas are derived under single mode approximation with the assumption that
the external radius 𝑏 is large with respect to the internal radius 𝑎. Even though
in our case, the ratio 𝑏/𝑎 = 1.33 is low, these models provides good estimations of
the piston natural frequencies for (𝑑 + 𝑠)/𝑏 ≥ 1.25, except for the two-dimensional
rectangular moonpool (solid blue curve) which is paradoxically the one used by
Jiang et al. (2020). Surprisingly, the formula used for the three-dimensional square
moonpool of side’s length

√
2𝑎 (RT2) provides even better estimations than the

one for a circular moonpool, and could be used if further parametric studies were
to be done.
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Chapter 6 Results in regular waves

Figure 6.5: RAOs of the dock’s motions and 𝜁𝑊𝑃1 for several draughts. Experimental
results from 2018 and 2019 are compared to the semi-analytical (DD) results in regular
waves. The two lower draughts are obtained with the same semi-analytical model derived
in Sec. 5.1. Experimental results for (𝑑 + 𝑠)/𝑏 = 2 include repetitive tests between 2018
(Set 1) and 2019 (Set 1).

Figure 6.6: Natural frequency of the first lateral sloshing mode. Estimations from
the closed-bottom model are compared to the values obtained for the open-bottom model
(cf. Chapter 3 and Appendix D.2). Natural frequencies for the open-bottom model are
determined from the added mass in surge (cf. Chapter 2). Resonant frequencies for
which the motions’ RAOs are maximal are indicated by square points for the four draughts
considered in this section.
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6.1 Dock without spar nor damping devices

Figure 6.7: Piston natural frequency as a function of the dock’s draught and estimated
through different methods. From the DD model, it is estimated from the added mass
in heave (cf. Chapter 2). These values are compared to simple estimations derived by
Molin (2001) and Molin et al. (2018) for a two-dimensional rectangular moonpool, a three
dimensional rectangular moonpool, and three-dimensional circular moonpools with finite
water depth (FWT). In this last case, asymptotic values for infinite water depth (IWD)
and infinite wall’s thickness 𝑏/𝑎 Molin et al. (2018) are also given. Resonant frequencies
for which the motions’ RAOs are maximum are indicated by square points for the four
draughts studied in Fig. 6.5.

6.1.4 Influence of the bilge-boxes’ size

Semi-analytical simulations were run for the to sizes of bilge boxes BB1 and BB2
tested experimentally (Cf. Sec. 4.1) for the two draughts (𝑑 + 𝑠)/𝑏 = 2 and
(𝑑 + 𝑠)/𝑏 = 1.25. Both numerical and experimental RAOs of the dock’s motions
in surge and pitch are presented in Fig. 6.8 for (𝑑 + 𝑠)/𝑏 = 2, and Fig. 6.9 for
(𝑑 + 𝑠)/𝑏 = 1.25. Even though it is not the main focus of this work, model tests
were made for wave frequencies much lower than the sloshing natural frequency and
near natural resonances in pitch, heave and of the piston mode, where the influence
of the bilge-boxes’ size is expected to matter the most. Numerical simulation were
also run for these lower frequencies without any damping, as the heuristic damping
in surge introduced in Sec 5.1 is not adapted to model the viscous damping caused
by high pitch motions, nor does it account for any damping in heave. Piston
mode natural frequencies were estimated at 𝜎2

𝑝𝑖𝑠𝑡𝑜𝑛𝑏/𝑔 = 0.4 for (𝑑 + 𝑠)/𝑏 = 2 and

𝜎2
𝑝𝑖𝑠𝑡𝑜𝑛𝑏/𝑔 = 0.58 for (𝑑 + 𝑠)/𝑏 = 1.25 from the DD model (see Sec. 2.4).

For frequencies higher than 𝜎2
1,1𝑏/𝑔 = 2.45, near the sloshing resonant peak, the

effects of the bilge boxes’ sizes on the motions are not visible for either draught,
as the RAOs for BB1 and BB2 are very close and in the range of uncertainties
determined from repetition tests. For lower frequencies, natural periods in pitch
and heave are shifted to lower frequencies for BB2 compared to BB1 due to the
increase of added mass (see Sec. 5.4), which also explains entirely the shift of
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Chapter 6 Results in regular waves

RAOs for the semi-analytical results as there is no viscous damping in the model.
Experimental RAOs’ amplitudes are much lower than the semi-analytical ones for
these frequencies, most likely due to non-linear damping caused by flow separations
at the inlet of the dock and at the edges of the bilge boxes. The RAOs’ resonant
peaks’ amplitude are generally lower for BB2 from the experimental results, which
confirms that the bilge boxes play a role in damping the motions. We can also
note that for both draughts, 𝜁𝑊𝑃1’s RAO’s amplitude is lower near piston mode
than near the sloshing first lateral mode resonance, despite much higher dock’s
motions in surge and pitch.

For (𝑑 + 𝑠)/𝑏 = 2 two peaks are observed in surge and pitch from the experimental
results at low frequencies. Resonance was expected in pitch and surge near the
natural frequencies in pitch 𝜔2𝑏/𝑔 = 0.35 (BB1) and 𝜔2𝑏/𝑔 = 0.3 (BB2) (again cf.
Sec. 5.4). A non-linear coupling with the piston mode is suspected to cause the
second resonant peak around 𝜔2𝑏/𝑔 = 0.45, which is close to the piston natural
frequency determined in the previous section. The piston mode is also linearly
coupled with the heave motions, the RAOs of which are presented in Fig. 6.10.
Natural periods in heave were determined close to the ones in pitch, between
𝜔2𝑏/𝑔 = 0.3 and 0.5 depending the draught and the BB’s size. As for pitch
and surge, experimental results in heave are significantly damped compared to
the semi-analytical ones, which is typical for moonpools (Fredriksen et al., 2015;
Ravinthrakumar et al., 2019; Reiersen et al., 2021). Even though, heaving from
model tests was considerable for these low wave frequencies (𝑇 > 18s in full scale),
with maximal vertical motions above the mean sea level measured higher than
15m in full scale for both draughts. These extreme motions were not observed
at operational weather condition near sloshing resonance, and it is unlikely that
FOWTs’ assembly will be operated at these extreme weather conditions. Yet, they
might cause structural damages and be a threat for any storage or construction
installations present on the top of the dock.
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6.1 Dock without spar nor damping devices

Figure 6.8: Experimental and semi-analytical RAOs of 𝜂 (2)1 , 𝜂 (2)5 and 𝜁𝑊𝑃1 for the dock
without spar not baffles. Two BB’ sizes BB1 (smaller) and BB2 (bigger) are considered,
as defined in Sec. 4.1. Left: lower wave frequencies. Right: zoom on the responses for
higher wave frequencies. Draught: (𝑑 + 𝑠)/𝑏 = 2, wave steepness: 𝜖 = 1/60.
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Chapter 6 Results in regular waves

Figure 6.9: Experimental and semi-analytical RAOs of 𝜂 (2)1 , 𝜂 (2)5 and 𝜁𝑊𝑃1 for (𝑑+𝑠)/𝑏 =
1.25 with two BB’ sizes. Wave steepness: 𝜖 = 1/60.
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6.1 Dock without spar nor damping devices

Figure 6.10: . Experimental and semi-analytical RAOs of 𝜂 (2)3 for (𝑑 + 𝑠)/𝑏 = 1.25 (top)
and (𝑑 + 𝑠)/𝑏 = 1.25 (bottom) and for low incident wave frequencies. Wave steepness:
𝜖 = 1/60.
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6.2 Dock with damping devices

6.2.1 Solid and perforated baffles

The RAOs of the internal free-surface elevation at WP1 when solid or perforated
baffles are installed inside the dock at three different submergences 𝑑𝐵/𝑎 are
presented in Fig. 6.11. RAOs of the dock’s surge and pitch motions are shown in
Fig. 6.12 for the same cases. It can first be observed that the three baffles cause a
significant reduction of the motions’ amplitudes for the three submergences 𝑑𝐵/𝑎.
Better efficiencies are generally obtained when the baffle is the nearest to the free
surface for the three cases. This was expected, since the damping is function of
the relative vertical flow velocity on the baffle caused by sloshing waves, which
decay exponentially with the depth.
The amplitude of the relative flow velocity 𝑣𝑟 on the solid baffle at 𝑟 = 𝑎 and
𝑧 = −𝑑𝐵 is given in Fig. 6.13. The linear decomposition of the potential flow as
described in Sec. 5.1.2 allows us to compare analytically the velocity’s amplitudes
due to the sloshing waves in a dock-fixed coordinate system, and due to the dock’s
pitching with a rigid internal free surface. Pitch’s contribution increases for lower
𝑑𝐵/𝑎, mostly due to that higher submergences imply less damping, resulting in
higher pitch motions (cf. Fig 6.12). The ratio of 𝑣𝑟 ’s amplitude due to pitching by
the one due to sloshing increases for lower 𝑑𝐵/𝑎, from around 15% for 𝑑𝐵/𝑎 = 10
to 40% for 𝑑𝐵/𝑎 = 27. These observations were also made for the perforated baffles
(see Appendix D.3).

The solid baffle at the lowest submergence reduces the sloshing wave’s amplitude the
most efficiently, with a maximum sloshing amplitude as low as (𝜁𝑊𝑃1/𝜁𝐴)𝑚𝑎𝑥 = 1.58,
as predicted by our numerical method for the lowest baffle submergence 𝑑𝐵/𝑎 = 0.10.
This represents a 60% reduction compared to the case without any baffle. Similar
amplitude reductions at resonance of 30% and 40% are respectively observed for
the surge and pitch motions in Fig. 6.12.
Generally, for forced motions, the viscous damping 𝜉1 decreases with higher
perforation ratio. Here however, the dock is free-floating, and the amplitude of
the flow’s velocity on the baffle depends on the coupling between sloshing and
the body’s motions. At the same incident wave frequencies, the dock’s motions
vary significantly for different perforation ratios due different shift of the natural
sloshing frequency 𝜎′

1,1. Thus, the semi-analytical method predicts almost the
same reduction of the RAOs’ peak amplitudes in Fig. 6.11 for 𝜏 = 0.15 as for the
solid baffle. For the same submergence 𝑑𝐵/𝑎, the damping ratio at the resonant
peak is indeed only decreased by around 5% from 𝜏 = 0 to 𝜏 = 0.15, but by around
30-40% from 𝜏 = 0 to 𝜏 = 0.30, as shown in Fig. 6.14. Perforated baffles with low
perforations could hence be a good alternative to solid baffle.

Damping is mainly caused by the flow separation occurring near 𝜃 = 0◦ (or 𝜃 = 𝜋),
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6.2 Dock with damping devices

Figure 6.11: RAOs of 𝜁𝑊𝑃1 for three different submergences 𝑑𝐵/𝑎 of the baffle. Top:
solid baffle. The dashed lines (DD 2) are obtained for lower, respectively higher, added
mass and damping coefficients of the baffle, in order to account for free-surface interaction.
Bottom left: 𝜏 = 0.15. Bottom right: 𝜏 = 0.30. Wave steepness: 𝜖 = 1/60.

where the sloshing wave’s amplitude is maximum. In Fig. 6.15, we verify that KC
numbers estimated from the semi-analytical model at resonance in 𝜃 = 0◦ range
between 0.57 and 0.75 for the three baffles, which is coherent with the assumptions
made in Sec. 3.5.2 when using Graham’s formulas with the coefficients provided by
Mentzoni and Kristiansen (2019) for solid and perforated baffles. For 𝐾𝐶 > 0.25,
the flow separation at the sharp edges dominates (Downie et al., 2000) which
legitimates the use of these formulas for perforated baffles.
We note that for higher incident wave frequencies, KC numbers sharply decrease
in Fig. 6.15. For KC numbers below 0.25, the energy dissipation due to the flow
separation through the holes of perforated plates is expected to be non-negligible
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Chapter 6 Results in regular waves

Figure 6.12: Earth-fixed RAOs of the dock’s surge (left) and pitch (right) motions
for three different submergences 𝑑𝐵/𝑎 of the baffles. Top: solid baffle. Middle: 𝜏 = 0.15.
Bottom: 𝜏 = 0.30. Same legend as Fig 6.11 . Wave steepness: 𝜖 = 1/60.

(Song and Faltinsen, 2013). Then, the shape and sharpness of the perforated holes
would most likely influence both the damping ratio and the resonant frequency
(Abramson, 1966). For instance, Mentzoni and Kristiansen (2020) ran numerical
simulations on two-dimensional perforated plates with 𝜏 = 0.186 and various holes’
sizes. He showed that if the damping coefficients were not significantly affected by
the size of the holes, added mass coefficients were much increased for the highest
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6.2 Dock with damping devices

Figure 6.13: Amplitude of the vertical flow velocity on the baffle in 𝜃 = 0◦ in a dock-fixed
coordinate system. The contributions from the dock’s pitching (dash lines) and the sloshing
waves (solid lines) to 𝑣𝑟 estimated from the DD model for the dock with a solid baffle are

here presented separately.
𝑑𝐵
𝑎

= 0.17. Wave steepness: 𝜖 = 1/60. Results for perforated

baffles are given in Appendix D.3.

holes’ size, and varied more in general for all the holes’ sizes for 𝐾𝐶 < 0.25. The
dependency of the shifted natural sloshing frequency on both 𝜏 or the perforated
holes’s size at low KC numbers was also reported by Abramson (1966) from
experiments with perforated baffles at various submergences 𝑑𝐵 in a cylindrical
tank. The semi-analytical model developed in Chapter 3 for perforated baffles
should therefore be used with caution for 𝜔2𝑏/𝑔 > 3.2, as we reach the limits of
the model’s assumptions.

Abramson (1966) pointed out a minimum value of 𝜎′
1,1 for 𝑑𝐵/𝑎 = 0.10, both for

perforated and solid baffles. In addition in his results, when 𝑑𝐵/𝑎 > 0.10, 𝜎′
1,1 is

higher for higher perforation ratios. On the other hand when 𝑑𝐵/𝑎 < 0.10, 𝜎′
1,1

is lower for higher perforation ratios due to free-surface interactions. From our
semi-analytical simulations, the shifted natural frequencies shown in Fig. 6.17 were
generally higher for higher perforation ratios, which is coherent with Abramson’s
results for 𝑑𝐵/𝑎 ≥ 0.10. It could also be predicted by Eq. (3.84) in Sec. 3.4 as
𝜎′
1,1 should convergence to 𝜎1,1 from below when 𝜏 goes to 1, as the added mass

of the perforated baffle then converges to 0. From Fig. 6.17, we observe that 𝜎′
1,1

varies up to 10% from 𝜎1,1 for the solid baffle.
For lower 𝜎′

1,1, the resonant peak for which the motions are maximal also occurred
at lower frequencies. We verify in Fig. 6.17 that 𝜎′

1,1 is closer to 𝜎1,1 for higher
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Chapter 6 Results in regular waves

Figure 6.14: Linear equivalent damping ratio due to the solid and perforated baffles as
a function of the frequency of the incident wave as computed by the DD method involving
Morison drag model with KC-dependent drag coefficient and strip theory and integration
along the azimuthal direction (cf. Eq. (3.101)). Wave steepness: 𝜖 = 1/60.

Figure 6.15: KC numbers on the baffle at 𝜃 = 0◦ for solid and perforated baffles at
different incident wave frequencies. Wave steepness: 𝜖 = 1/60. Same legend as in Fig.
6.14.
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6.2 Dock with damping devices

𝑑𝐵/𝑎, as the influence of the baffle on the first sloshing eigenmode decreases. While
the dock’s motions are nearly zeros at 𝜎1,1 for the case without baffle, the motions
observed at 𝜎′

1,1 in Fig. 6.12 for the cases with a baffle reach a local minimum,
which is not zero anymore. Indeed, because of viscous damping, the added mass is
significantly reduced at 𝜎′

1,1 when there is a baffle (cf. Fig 5.1 in Sec. 5.1.2).
This damping also has consequences on the phases of the dock’s motions presented
in 6.16, which become gradually in phases with 𝜁𝑊𝑃1 around 𝜎′

1,1 while a sudden
shift is observed for the case without baffle. Some of the measured signals in Fig.
6.16 show unexpected phases, which could not be explained by physical phenomena
that would have been visible from the videos. However, in general the main trends
remain clearly distinguishable, and tend to be consistent with the semi-analytical
approach.
The viscous effects used in the semi-analytical model (cf. Sec. 3.5.2) have significant
effects on the motions’ amplitude, but generally small effects on the natural
sloshing frequencies. It is for instance observed in Fig. 6.18, where experimental
and semi-analytical RAOs of 𝜁𝑊𝑃1 and 𝜂 (2)1 for the case with solid baffle are
compared with results from WAMIT simulations, for which the baffle had been
meshed. Simulations in WAMIT do no account for any viscous effects. The shifted
natural sloshing frequency 𝜎′

1,1 in WAMIT ranges from 0 to 5% lower than the
one estimated with the DD model. This results show in particular that 𝜎′

1,1 has a
low dependency on the KC number in our model (see more details in Appendix D.4).

The semi-analytical results in Figs. 6.11 and 6.12 are in overall in good agreement
with the experimental results for the highest submergence 𝑑𝐵/𝑎 = 0.27. However,
the damping at lower submergence is under-predicated for the solid baffle, resulting
in higher predicted responses than found in the model tests. This means in
particular that our model is conservative. Local non-linear behaviour of the
free-surface flow was observed from videos of the experiments for 𝑑𝐵/𝑎 = 0.10,
which could also explain somewhat more scatter in the experimental RAOs for
the two lower submergences, and especially the wide span of results obtained for
the two repetition tests with a solid baffle (cf. Fig 6.19). The increase of the
damping coefficient for flat plates at low submergence is a known phenomenon
that has been pointed out in several studies. For instance, Song and Faltinsen
(2013) performed experiments on solid and perforated rectangular plates under
forced heave motions, and built an analytical model similar to Molin et al. (2007)
that includes a pressure drop coefficient through the plate, as a function of both
the square velocity and a discharged damping coefficient which depends on the
perforation ratio. In their work, they consider 𝜏 = 0.079 and 𝜏 = 0.159 for plates at
the mean submergences 0.10m and 0.70m below the free surface. They emphasise
the importance of non-linear free-surface effects when the ratio of the heaving
amplitude to the mean submergence becomes close to one. As Molin et al. (2007),
they point out that the coefficient 𝛼2 from Graham’s formula depends on the
heaving amplitude and frequency as the plate is near to the free-surface, which we
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Chapter 6 Results in regular waves

Figure 6.16: Phases of WP1 (top), surge (middle) and pitch (bottom) relative to the
incident wave at the origin of the Earth-fixed coordinate system for the dock with a solid
baffle and for three different submergences 𝑑𝐵/𝑎 of the baffles. Same legend as Fig 6.11,
with the addition of experimental results for the dock alone (2019, Set 1). Wave steepness:
𝜖 = 1/60.

do not include in our model.
Nevertheless, in order to account for the free-surface interaction near sloshing
resonance in our semi-analytical model, the 𝛼𝑖 coefficients in Eqs. (3.98) and (3.99)
in Sec. 3.5.2 are tuned to match the experimental results. Examples are provided
in Figs. 6.11 and 6.12 for the solid baffle, represented by the dashed curves denoted
DD2 in the legend. The coefficients from Table 3.2 are here replaced (dash lines)
by 𝛼1 = 0.21 and 𝛼2 = 18.18 for 𝑑𝐵/𝑎 = 0.10, and 𝛼1 = 0.19 and 𝛼2 = 19.70 for
𝑑𝐵/𝑎 = 0.17. This means that the drag coefficient is almost doubled. The results
indicate that improvements can be made to our model.

The shifted natural frequency 𝜎′
1,1 corresponds in Fig. 6.12 to the minima of the

motions near 𝜔2𝑏/𝑔 = 2, similar to that 𝜎1,1 corresponds to the cancellation period
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6.2 Dock with damping devices

Figure 6.17: Effect of baffles on the lowest natural sloshing frequency 𝜎′
1,1, for solid

(𝜏 = 0) and perforated baffles (𝜏 = 0.15 and 𝜏 = 0.30) at different submergences 𝑑𝐵/𝑎. The
equations of motions are solved for incident waves of period 𝜔 = 𝜎1,1 and wave steepness
𝜖 = 1/60. The three submergences tested experimentally are indicated by square points.
Baffles’ width: 𝑎𝐵/𝑎 = 0.17.

Figure 6.18: Comparison between results from WAMIT, the semi-analytical model, and

experiments for the dock with a solid baffle. Left: 𝜁𝑊𝑃1, right: 𝜂
(2)
1 . Wave steepness:

𝜖 = 1/60.

𝜔2𝑏/𝑔 = 2.45 when there is no baffle. In this figure, we see that the discrepancy
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Chapter 6 Results in regular waves

between the experimental and semi-analytical natural frequency 𝜎′
1,1 increases for

lower 𝑑𝐵/𝑎, especially for the solid baffle. This was expected from the potential
flow analysis made in Sec. 3.4, only valid for 𝑑𝐵/𝑎𝐵 ≥ 1. The case 𝑑𝐵/𝑎 = 0.17
corresponds to the limiting case 𝑑𝐵/𝑎𝐵 = 1 for which the formula (3.84) presented
in that section should be used. This point is also discussed by Faltinsen and
Timokha (2009) who compare the frequencies obtained from the same formula
(3.84) to experimental natural frequencies obtained by Mikishev and Churilov
(1977) for a solid annular baffle in a closed-bottom cylindrical tank for various
values of 𝑑𝐵/𝑎. In one of their comparison, the cylinder height-to-radius ratio is
𝑑/𝑎 = 1.7 and the baffle width-to radius ratio either 𝑎𝐵/𝑎 = 0.2, close to our values
(𝑎𝐵/𝑎 = 0.17), and with a good agreement between analytical and experimental
frequencies as long as 𝑑𝐵/𝑎 < 0.2, which is coherent with our results.
It must be emphasised that the baffles always remained submerged in this range of
incident wave frequencies during the experiments, even for 𝑑𝐵/𝑎 = 0.10. According
to the amplitude of the dock’s heaving and piston mode resonance discussed in
Sec. 6.1.4 near 𝜔2𝑏/𝑔 = 0.4, in-and-out water motions on the baffles are likely to
occur for lower incident wave frequencies and for the three submergences 𝑑𝐵/𝑎
that were tested, which might cause extreme loads on the baffles.

Because of the non-linear viscous effects, our semi-analytical model with a baffle is
strongly dependent on the wave steepness. A comparison between experimental
and semi-analytical RAOs are presented in Fig. 6.19 for the solid baffle and
two wave steepnesses 𝜖 = 1/60 and 𝜖 = 1/45. These results include a repetition
test for 𝜖 = 1/60, and numerical RAOs for two additional steepnesses 𝜖 = 1/30
and 𝜖 = 1/100. As expected, 𝜁𝑊𝑃1’s RAOs estimated from the DD model are
lower for higher wave steepnesses, as the damping generally increases for higher
flow velocities. Experimental results for the two wave steepnesses are difficult to
distinguish, which might be due to that the random error is high for the solid
baffle at 𝑑𝐵/𝑎 = 0.17 (cf. Sec. 4.5.1).

The iterative scheme set up in Sec. 5.1 to deal with the non-linear effects of the
baffles converged relatively quickly, with a number of iterations always inferior to
20 (cf. Appendix D.4). The loads on the annular baffle estimated by Morison’s
formula (5.7) were not negligible. Near resonance, the total moment in pitch 𝐹𝑀5
on the baffle was for instance about 10% of the scattered moment 𝐹𝑆5 on the entire
dock (cf. Sec. 2.4). More details are given in Appendix D.4. For the solid baffles,
these loads were generally viscous dominated for 𝜔2𝑏/𝑔 < 2, and inertia dominated
for 𝜔2𝑏/𝑔 > 3 in our simulations. As expected, 𝐹𝑀5 was lower for the perforated
baffles, and the relative contribution of the inertial forces compared to damping
forces generally decreased with higher perforation ratios.
The baffles that we consider in this work are thin, cantilevered from the dock with
a 5m width in full scale. Further structural analysis might therefore be needed to
predict the effects of these high hydrodynamic loads on the baffles.
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6.2 Dock with damping devices

Figure 6.19: Experimental and semi-analytical RAOs for the dock alone (2019, Set 1)
or with a solid baffle fixed at 𝑑𝐵/𝑎 = 0.17, for three different incident wave steepnesses.

6.2.2 Polystyrene foam balls

Experimental results with foam balls were in general found to be very close to
the case without damping devices (cf. Fig. 6.20). Only the highest volume of
foam balls (3.6L) shows a clear damping of the resonant peak, comparable to the
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Chapter 6 Results in regular waves

performance of perforated baffles. This would represent a 1.20m high layer of
balls with a diameter of 0.10m each, which is most likely unrealistic to set up in
practice. During the tests, the foam balls were very sticky. Scale effects caused by
the friction between balls and with the free surface are expected to matter, which
is not investigated here.

Figure 6.20: Experimental RAOs of 𝜂 (2)1 , 𝜂 (2)5 and 𝜁𝑊𝑃1 for various sizes and quantities
of polystyrene foam balls. Tests from 2019. Wave steepness: 𝜖 = 1/60.

6.3 Dock with spar

RAOs in regular waves for the dock with a FOWT’s spar are presented in Fig.
6.21 for the dock’s motions and 𝜁𝑊𝑃1 and in Fig. 6.22 for the spar’s motions.
For the case without baffle (blue curves and markers), semi-analytical results are
fairly consistent with the experimental ones. As expected, the motions of the dock
have similar amplitudes as for the case without spar. The cancellation frequency,
for which 𝜁 (2)1 and 𝜁 (2)5 are almost null and their phases shift to 180◦ (cf. Fig.
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6.23), occurs near to the sloshing natural frequency of the dock without spar
𝜎2
1,1𝑏/𝑔 = 2.45, and not the sloshing natural frequency of the dock+spar system

𝜎2
1,1𝑏/𝑔 = 2.2. This is an indication that the spar ”follows” the sloshing wave. The

highest discrepancies are observed for the surge and pitch motions of the dock, and
might be caused by inaccuracies when modeling the inertial and stiffness matrices
of the dock for the semi-analytical model.
Furthermore, a resonant peak is observed for 𝜂 (1)3 in Fig. 6.22, even though 𝜂 (1)3 is
not linearly coupled with the first sloshing mode. That is if the spar is exactly in
the center of the dock, but few asymmetries in the experimental placement, and in
the mooring system between the spar and the dock might explains this resonance
in heave. Still, 𝜂 (1)3 /𝜁𝐴 remains very low, around 15 times lower than 𝜂 (1)1 /𝜁𝐴 for

the same frequencies. In particular, the heave motion’s amplitude |𝜂 (1)3 | always
remains below 0.1m in full scale, which is a typical strict requirement imposed for
the installation of the FOWT’s blades on the rotor.

Figs. 6.21 and 6.22 include results with damping devices for the dock+spar system.
Both numerical and experimental results are presented for either a solid (𝜏 = 0) or a
perforated (𝜏 = 0.3) baffles. Numerical results for a perforated baffle with 𝜏 = 0.15,
and experimental results for the lowest quantity of 3mm foam balls are also given.
The baffles, both solid and perforated, have a major influence on the responses.
The reduction of the peak amplitude when comparing with the case without baffle
is particularly important for the spar motions and free-surface elevation. With a
solid baffle this reduction is around 54% for 𝜂 (1)1 /𝜁𝐴, 45% for 𝜂 (5)1 /𝜁𝐴 and 68% for
𝜁𝑊𝑃1/𝜁𝐴 (from experimental RAOs). The frequency for which the maximum peak
amplitudes are reached is different for the dock, and spar’s motions, around 10%
lower for the latter. The analytical results succeed to catch the shift of the natural
sloshing frequency due to the baffles, and compare relatively well with the spar’s
experimental motions. However, the motions of the dock are under-predicted and
the resonant peak frequency is about 6% higher than the experimental one. These
discrepancies were not as high for the dock without spar in Sec. 6.2.1. As discussed
in Sec. 3.4, the shape of the first sloshing mode 𝜑1,1 in the internal domain does
not account for the baffle in our model. This internal domain is narrower for the
case with spar than without the spar, even thought the width of the baffle remain
the same. Thus, the error brought by this assumptions when calculating the loads
on the dock (cf. Chapter 5) is expected to be higher for the case with the spar
than without the spar. In addition, non-linear free-surface interaction associated
with the baffle are also expected.
Baffle with a perforation ratio 𝜏 = 0.3 are not as efficient in damping the sloshing
waves, with 51% reduction of 𝜁𝑊𝑃1/𝜁𝐴’s peak amplitude. However, they show
similar performances to the solid baffle when it comes to reduce the spar’s motions’
peak amplitude: 50% for 𝜂 (1)1 /𝜁𝐴, 46% for 𝜂 (1)5 /𝜁𝐴. RAOs with foam balls are
similar to the case without spar: the resonant and cancellation frequencies are
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Figure 6.21: RAOs of 𝜂 (2)1 , 𝜂 (2)5 and 𝜁𝑊𝑃1 for the dock+spar system. Experimental and
analytical results are compared for cases without baffle (sets 1 and 2 from 2019), with a
solid annular baffle (𝜏 = 0) and perforated baffle (𝜏 = 0.30). The baffle width 𝑎𝑏/𝑎 = 0.17
and their submergence 𝑑𝐵/𝑎 = 0.17. Numerical results for the perforated baffle with 𝜏 = 0.15
and experimental results with polystyrene foam balls (3mm, 1.2L) are also indicated. More
details about the numerical simulations with solid baffle are presented in Appendix D.4.
Wave steepness: 𝜖 = 1/60.

identical to the case without damping devices, and low amplitude reductions are
observed in comparison to the baffles.

Because the tower, nacelle and blades will be installed from the top of the dock,
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Figure 6.22: RAOs of the spar’s motions 𝜂 (1)1 , 𝜂 (1)5 and 𝜂 (1)3 for the same cases as in
Fig. 6.21. The spar’s motions are given in an Earth-fixed coordinate system.

the relative motions between the dock and the spar matter. If the dock’s heave
motions are negligible, it is not true for its surge and pitch motions. Both 𝜂 (2)1 and

𝜂 (2)5 are in phase with the spar’s motions for 𝜔2𝑏/𝑔 ≤ 2.5, and in opposition of
phases with the spar’s motions for 𝜔2𝑏/𝑔 > 2.5 (cf. Fig. 6.23). In particular, this
means that the spar’s pitching in a dock-fixed coordinate system (DCS) is higher
than in the Earth-fixed coordinate system (ECS) at the sloshing resonant peak (see
more details in Appendix D.4), and up to 1.7◦ as estimated from the DD model
for the case without damping devices. With the solid baffle, the spar’s maximum
pitching in the DCS is reduced to 0.75◦. This high reduction is promising, even
though these results only stand for the FOWT’s spar without the tower. The
study of the different stages of the FOWT’s assembly are let for further works.
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Chapter 6 Results in regular waves

Figure 6.23: Phases of the dock’s and spar’s motions in surge an pitch, as well as of
𝜁𝑊𝑃1 estimated from the semi-analytical model for the cases with solid and perforated
baffles. Wave steepness: 𝜖 = 1/60.
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7 | Results in irregular waves
Experimental motions of the bodies in an Earth-fixed coordinate system are
presented in this chapter for incident irregular waves described by the JONSWAP
spectra defined in Sec. 4.3.2. First, for the case without spar in Sec. 7.1, and then
with spar in Sec. 7.2. The power spectral density and RAOs of the motions are
discussed and compared with semi-analytical results, which are identical to the
ones in regular waves for the cases without baffle.

7.1 Dock without spar

Non-dimensional experimental power spectra of the dock’s motions and of 𝜁𝑊𝑃1 are
presented in Fig. 7.1 for incident wave spectra with a peak frequency 𝜔2

𝑝𝑏/𝑔 = 2.52,
i.e. near the first sloshing natural frequency. Most of the energy of the dock’s
motions is gathered near the frequency 𝜔2𝑏/𝑔 = 3, corresponding to the resonant
peak observed in regular waves. As expected, the spectra of the motions when
there is a solid baffle installed inside the dock (red curves) are shifted to lower
frequencies. For the lowest significant wave height 𝐻𝑠/𝑏 = 1/40, the spectra for the
case with baffle contain more energy than for the cases without damping devices
(blue curves). This is due to that the resonant frequency of the motions with the
baffle becomes closer to the peak frequency 𝜔2

𝑝𝑏/𝑔, where there is more energy
from incident waves. The free-surface elevation inside the dock from time series
were indeed generally higher for the case with baffle for this specific sea-state (cf.
Fig. 7.2). It is not the case for the tests with foam balls, for which the resonant
frequency is much closer to the one of the tests without damping devices. For the
higher significant wave height 𝐻𝑠/𝑏 = 3/40, the energies for the case with baffle is
significantly reduced due to viscous dissipation. We note that the peak observed
around 𝜔2𝑏/𝑔 = 0.3 is close to the natural frequency in pitch estimated in Sec. 5.4.
Similar power spectra are presented in Fig. 7.3 for the lower peak frequency
𝜔2
𝑝𝑏/𝑔 = 1.12, further from sloshing resonance. We then do not observe shift of

the power spectras betwen the case with and without baffle at the peak frequency.
The energy of sloshing waves is mostly dissipated near 𝜎1,1. We note that for the
cases without baffle, the highest peak of 𝜁𝑊𝑃1’s energy is still observed at the
resonant sloshing frequency 𝜔2𝑏/𝑔 = 3, even though the energy from the dock’s
motions is more than ten times lower than at the peak frequency 𝜔2

𝑝𝑏/𝑔.

When considering annular baffles in the semi-analytical model, the viscous effects
introduce non-linearities in the equations of motion. For regular waves, the
equations of motion have been solved in the frequency domain for each incident wave
frequency, associated to a given wave amplitude. The equations were linearised with
respect to time by equalising the energy dissipated over one period of oscillation.
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7.1 Dock without spar

Figure 7.1: Normalised spectra of the dock’s responses in surge (upper left), pitch (upper
right), as well as of 𝜁𝑊𝑃1 (bottom) from the 2019 model tests without the spar with a peak
frequency of incident waves: 𝜔2

𝑝𝑏/𝑔 = 2.52. 𝜎𝐺 = 0.0208. The foam balls are here 3mm
large (1.2L). More spectra for the case without spar are given in Appendix C.6.

Figure 7.2: Time history of the free-surface elevation 𝜁𝑊𝑃1 inside the dock without spar
in irregular waves for three cases, without damping devices, with foam balls (3mm, 1.2L),
and with solid baffle. 𝐻𝑠/𝑏=1/40, 𝜔2

𝑝𝑏/𝑔 = 2.52.

However, the equations remain non-linear with respect to the wave amplitude 𝜁𝐴
of incident waves. A special care should be taken when solving these non-linear
equations in frequency domain for irregular waves, as it is unknown which incident
wave amplitude should be considered in that case.
First, the viscous part of the moment 𝐹𝑀5 on the baffle is statistically linearised
(Borgman, 1967; Roberts and Spanos, 1990; Da Silva et al., 2020) applying the
method of least square to statistical expected values. Through this approach, the
instantaneous free-surface elevation are represented by a Gaussian distribution
with zero mean. Assuming that the system is linear, both the relative velocity
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𝑣𝑟 on the baffle and the dock’s motions also have a Gaussian probability density
function with zero mean, entirely defined by their standard deviations. An iterative
scheme is then implemented over the whole range of frequencies of the waves’
spectrum to determine these standard deviations.
On the other hand, the damping ratio 𝜉1 and the shifted natural sloshing frequency
𝜎′
1,1, both estimated only for wave frequencies close to the sloshing resonance, have

been evaluated from the highest individual wave amplitude measured from the
experimental time series of the free-surface elevation and are considered constant
over the whole range of frequencies that have been simulated. This assumption
is quite approximate for 𝜉1, which is strongly dependent on the incident wave
amplitude, but is expected to provide a relatively safe estimation of 𝜎′

1,1, which
was shown to vary less than 1% over the spectra in regular waves. The highest
amplitude (crest to crest) of measured individual waves were typically about twice
the significant wave height.
An alternative way to deal with irregular wave is to solve the equations of motion in
time domain. This approach is much more time consuming, but has the advantage
of including the transient part of the signals, and not only the permanent part
as in frequency domain. A time domain solver was developed for a simplified
representation of the dock and focusing on surge motions. RAOs from the time
domain solver were found to be lower than the ones from the frequency domain
solver, most likely because of the long transient state that characterizes responses
with no or very low damping. The lower the damping, the higher is the difference
between the time domain and frequency domain responses. A complete description
of the time domain model and results are given in Appendix D.5.

Experimental and numerical RAOs of 𝜂 (2)1 , 𝜂 (2)5 and 𝜁𝑊𝑃1 in irregular waves
are presented in Fig. 7.4 for 𝜔2

𝑝𝑏/𝑔 = 2.52 and two values of 𝐻𝑠/𝑏. Without
damping devices, the semi-analytical curves are identical as in regular waves. The
experimental RAOs are lower than the semi-analytical ones at the resonant peak,
most likely because of the transient state of the responses, not caught by the
frequency domain solver. Slightly lower RAOs in surge and for 𝐻𝑠/𝑏 = 1/40
compared to 𝐻𝑠/𝑏 = 3/40 for the case without baffle might thus be explained by
that lower waves introduce less viscous quadratic damping in surge, resulting in a
longer transient state.
Semi-analytical results with baffles in Fig. 7.4 catch the shift of the resonant
period but tend to under-damp the responses. These observations are coherent
with results in regular waves, where similar conclusions were drawn when the baffle
was close to the free surface, suggesting possible non-linear interactions with the
free surface. It should be emphasised that the reduction in responses with baffles
depends both on the damping, which is higher for higher 𝐻𝑠/𝑏, but also on the
different amount of energy available at the sloshing resonance from the waves due
to the shift of the natural frequency. In the present case, the baffle shifts the
sloshing resonance closer to the peak frequency of the incident waves’ spectrum at
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7.1 Dock without spar

Figure 7.3: Normalised spectra of the dock’s responses in surge (upper left), pitch (upper
right), as well as of 𝜁𝑊𝑃1 (bottom) from the 2019 model tests without the spar with a peak
frequency and significant wave height of incident waves: 𝜔2

𝑝𝑏/𝑔 = 1.12 and 𝐻𝑠/𝑏 = 8/40.
𝜎𝐺 = 0.0208. The foam balls are here 3mm large (1.2L).

𝜔2𝑏/𝑔 = 2.52, as also noted earlier.

RAOs corresponding to incident wave spectra with a higher peak frequency
𝜔2
𝑝𝑏/𝑔 = 1.12 and significant wave height 𝐻𝑠/𝑏 = 8/40 are shown in Fig. 7.5.

For the case with a solid baffle, the free surface was observed to be strongly
non-linear from the videos of the test. Yet, the semi-analytical results agree
surprisingly well with the experimental ones. This is promising that the RAO for
the free surface is as low as below unity in this irregular sea-state when a solid
baffle is installed, meaning that the dock does not serve as a wave magnifier with
given such a relatively simple damping device. Numerical results with baffle are
not shown for lower wave frequencies as the semi-analytical model is only valid near
sloshing resonance. From the RAO of 𝜁𝑊𝑃1, a second resonant peak is observed
around 𝜔2𝑏/𝑔 = 4 (or 𝜔2𝑏/𝑔 = 4.9 with the baffle), corresponding most likely to
the excitation of the second sloshing mode. This has not been investigated in
details, although of practical interest, and is left for future work.
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Chapter 7 Results in irregular waves

Figure 7.4: RAOs of the dock’s surge (top) and pitch (middle) motions, as well as
𝜁𝑊𝑃1 (bottom) in irregular waves, both from experiments and from the semi-analytical
model. Results are presented for the dock alone, with solid baffle (𝑎𝐵/𝑎 = 𝑑𝐵/𝑎 = 0.17),
and with polystyrene foam balls (3mm, 1.2L) for 𝜔2

𝑝𝑏/𝑔 = 2.52 and both 𝐻𝑠/𝑏 = 1/40 and
𝐻𝑠/𝑏 = 3/40. 𝜎𝐺 = 0.0208. More results that include the lower draught (𝑑 + 𝑠)/𝑏 = 1.25
and variations of the BB’s sizes are given in Appendix C.6.
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7.1 Dock without spar

Figure 7.5: RAOs of the dock’s surge (top) and pitch (middle) motions, and of 𝜁𝑊𝑃1

(bottom) in irregular waves, for the same cases as in Fig. 7.4, but for the higher sea-state
𝜔2
𝑝𝑏/𝑔 = 1.12 and 𝐻𝑠/𝑏 = 8/40. 𝜎𝐺 = 0.0208.

158



Chapter 7 Results in irregular waves

7.2 Dock with spar

Power spectra of the motions of both bodies are presented in Fig. 7.6 for the dock
and spar without baffle for irregular waves with 𝜔2

𝑝𝑏/𝑔 = 2.52. As in Sec. 7.1,
energy of the bodies’ motions is concentrated around the peak resonance observed
in regular waves around 𝜔2

1𝑏/𝑔 = 3. The spectra of the spar’s motions generally
contain more energy than the ones of the dock’s motions, and are more spread
towards the peak frequency of incident waves 𝜔2

𝑝𝑏/𝑔 = 2.52. The energy of the
heave motions for frequencies higher than 𝜔2𝑏/𝑔 = 1 is less than 0.5% of that
in surge for both bodies, confirming that non-linear excitation of these motions
were negligible in that range. Resonance of the spar’s heaving is observed near
𝜔2𝑏/𝑔 = 0.75, which was also measured from decay tests and is consistent with
our computed heave natural period. The same observation is made for the higher
sea state with 𝜔2

𝑝𝑏/𝑔 = 1.12 (cf. Fig. 7.7), for which mostly the spar’s natural
period in heave is excited. It can be noted that the eigenfrequency of the spar’s
pitch motions was estimated to be 𝜔2𝑏/𝑔 = 0.82 (cf. Sec. 5.4), which is also close
to the peak frequency of incident waves. For this lower peak frequency, 𝜁𝑊𝑃1 still
displays most energy at sloshing resonance.

Figure 7.6: Normalised spectra of the dock’s and spar’s responses in surge (upper left),
pitch (upper right), and heave (lower left) motions as well as of 𝜁𝑊𝑃1 (lower right) from
model tests, for two different sea-states in an Earth-fixed coordinate system. Peak frequency
of the JONSWAP spectrum: 𝜔2

𝑝𝑏/𝑔 = 2.52. 𝜎𝐺 = 0.003.

Fig. 7.8 shows experimental and numerical RAOs in irregular waves with a
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7.2 Dock with spar

Figure 7.7: Normalised spectra of the dock’s and spar’s responses in surge (upper left),
pitch (upper right), and heave (lower left) motions as well as of 𝜁𝑊𝑃1 (lower right) from
model tests, for 𝜔2

𝑝𝑏/𝑔 = 1.12 and 𝐻𝑠/𝑏 = 8/40 in an Earth-fixed coordinate system.
𝜎𝐺 = 0.003.

peak frequency 𝜔2
𝑝𝑏/𝑔 = 2.52 for the dock with a spar. As for the case without

spar, experimental results are lower than semi-analytical ones for all the motions,
most likely due to the importance of transient responses in time domain. The
experimental RAOs for 𝐻𝑠/𝑏 = 1/40 and 𝐻𝑠/𝑏 = 3/40 are very similar, and within
the range of random uncertainty. These are consistent with the regular wave RAOs,
shown on the same figure for several wave steepnesses, including repetition tests
for 𝜖 = 1/60. The maximum responses of the spar are between three and four
times higher than the maximum responses of the dock, and dominate the relative
motions between both bodies.

Experimental RAOs obtained from the second sea-state with the peak frequency
𝜔2
𝑝𝑏/𝑔 = 1.12 are shown in Fig. 7.9. Results are similar to the first sea-sate

near 𝜎1,1. For lower wave frequencies (left subfigures), both the natural modes
of the spar’s and the dock’s rigid body motions are excited. Resonant peaks are
thus observed around the spar’s natural period in pitch (𝜔2𝑏/𝑔 = 0.82) and in
heave (𝜔2𝑏/𝑔 = 0.66) estimated from the eigenvalue analysis (cf. Sec. 5.4). These
resonances are caused by the mooring lines used during model tests to maintain
the spar in the center of the dock, which are not a realistic representation of the
spar’s mooring. Resonance of the dock’s rigid body natural modes (𝜔2𝑏/𝑔 = 0.32
in heave and 𝜔2𝑏/𝑔 = 0.30 in pitch cf. Sec. 5.4) are observed for lower frequencies,
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Chapter 7 Results in irregular waves

with similar amplitudes as the ones discussed in the previous section for the case
without spar. Due to the strong coupling between the surge and pitch motions
of both bodies, the spar’s motions are very high at the dock’s rigid body natural
frequencies, more than twice as high as at the spar’s natural frequencies. This
coupling should easily be reduced in practice by carefully constructing the lines
between the dock and the spar.

Figure 7.8: Analytical and experimental RAOs of the motions in irregular waves for the
dock+spar system. Experimental results from 2019 for several incident wave steepnesses
are also shown. JONSWAP spectrum: 𝜔2

𝑝𝑏/𝑔 = 2.52. 𝜎𝐺 = 0.003.
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7.2 Dock with spar

Figure 7.9: Analytical and experimental RAOs of the dock’s and spar’s motions in
irregular waves. Peak frequency and significant wave height of the JONSWAP spectrum:
𝜔2
𝑝𝑏/𝑔 = 1.12 and 𝐻𝑠/𝑏 = 8/40. Left: lower frequencies which include the natural modes

of the bodies’ motions. Right: zoom on the motions around the sloshing natural frequency.
𝜎𝐺 = 0.0208
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8 | Conclusion and further work
8.1 Overall conclusions

The seakeeping capabilities of a floating dock were investigated. The dock forms
a large, circular moonpool. The focus was on the response of the first lateral
sloshing mode and the rigid body motions with and without a FOWT’s spar. A
semi-analytical model based on linear potential flow theory combined with the
Morison equation drag term with KC-dependency drag coefficient, applied with
strip theory assumption was developed which allows both extensive parameter
studies of the geometry without the burden of producing new meshes, and the
addition of the inertia and viscous effects of damping ring baffles. The method
takes advantage of the symmetry of revolution of the dock, which also restricts its
possible applications to structures with similar symmetries. Further, the damping
model is restricted to draught-to-diameter ratios that are in the order of unity or
more. The method was coded in Python, with room left for optimisation. The
CPU time was of few seconds per wave frequency on an Intel i7 desktop, and few
minutes for one run with 80 frequencies. Parametric simulations run with the
semi-analytical model showed in particular a high sensitivity of the sloshing waves
and spar’s motions on the dock’s inertia matrix.
The numerical results in regular and irregular waves were compared to model tests
performed at scale 1:100. The experiments included regular and irregular waves,
tests with and without baffles, where baffles were both solid and perforated, and
tests with and without the spar. Without baffles, linear potential flow theory
predicts well the rigid body motions and sloshing in regular waves, but tends to
over predict the motions in irregular waves as the time-dependent transient phases
of the motions are not negligible. A good agreement was observed for the tests
with baffle as long their submergence-to-width ratio remains above unity, while the
viscous damping at lower submergence was under-predicted by the semi-analytical
model, most likely due to free-surface interaction. The sloshing- induced motions
of the FOWT’s spar were significantly reduced (>50%) at low wave steepnesses
by the presence of both the solid and perforated (𝜏 = 0.15) baffles. In regular
waves, the relative pitching of the dock and the spar was exemplified in a relevant
sea-state, reduced from 1.7◦ without the baffle to 0.75◦ with the baffle in our
numerical simulations, which is promising as the installation of the blades on the
nacelle imposes very strict limitations on the maximum relative pitching, typically
around 1◦. The spar heave motion was very low near sloshing resonance in all
our tests in regular waves (below 0.1m in full scale), as heave and piston mode
resonances occur for higher wave periods (> 15s in full scale). Similar RAOs
were found in irregular waves for peak periods 𝑇𝑝 = 8𝑠 (full scale) as in regular
waves. Sea-states measured in the North Sea with peak periods lower or equal to
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8.2 Further work

8s represent at themselves 30% of all the sea-states (Faltinsen, 1990), suggesting
relatively high time windows of operation for the installation of FOWTs in the
floating dock.

8.2 Further work

The concept of the floating dock is still at its early stage. Many questions that were
raised during our investigations or that previously existed remain open. In addition
to operational phases where FOWTs are assembled inside the dock, towing of the
dock between two installation sites, or sea-keeping in extreme weather conditions
are also left for more in-depth further studies. The following points may for
instance be of particular interest:

� The relative motions of the dock and the FOWT at different stages of the
FOWT’s assembly, including the tower, nacelle and blades.

� The dock’s motions in extreme sea-states, as piston modes and natural periods
in heave and pitch are non-negligible at low incident wave frequencies. These
investigations could in particular include a more realistic mooring system.

� The opening gates, as the dock needs to be towed to another emplacement
once the FOWT is installed. This opening is still to be defined. Constant
angular opening or mechanical gates are for instance two possible options.
The constant angular opening might lead to high structural stresses.

� The towing phases of the dock. During these phases, forward speed needs
to be considered. The ballasts are most likely to be removed to lower the
draught and reduce water resistance.

� The effects of several baffles could be modelled by extending the semi-analytical
method used in this thesis.

� The development of higher-order models for the study of second-order effects,
extending the applicability of the method to steeper waves.

� Include the effects of currents which occasionally co-exist with waves both in
open sea and near the coast.
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A | Domain decomposition:
semi-analytical results

A.1 Integral from matching conditions

A.1.1 Dock without spar

The integrals established from the matching conditions of both the radiation and
diffraction problems for the dock without spar detailed in Chapter 2 are given
below for (𝑝, 𝑞) ∈ N2:

𝑇 𝐼 𝐼𝑞, 𝑝 =
∫ −(𝑑+𝑠)

−ℎ
𝑍𝑞 (𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

(−1) 𝑝𝑙2𝛼𝑞 sin(𝛼𝑞𝑙)
(−𝑝2𝜋2 + 𝛼2𝑞𝑙2)𝑁

1
2
𝑝

, (A.1)

𝑇 𝐼 𝐼 𝐼𝑞, 𝑝 =
∫ 0

−𝑑
𝑍𝑝 (𝑧)𝑍𝑞 (𝑧)𝑑𝑧 =

[
(𝛽𝑝 − 𝛼𝑞) sin(𝛽𝑝𝑑 + 𝛼𝑞ℎ) + 2𝛼𝑞 sin(𝛼𝑞 (ℎ − 𝑑))

+ (𝛽𝑞 + 𝛼𝑞) sin(𝛽𝑝𝑑 − 𝛼𝑞ℎ)
]
/
(
2(𝛽2𝑝 − 𝛼2𝑞)𝑁

1
2
𝑝 𝑁

1
2
𝑝

)
,

(A.2)

𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑝 =

∫ 0

−𝑑
𝑍𝑝 (𝑧)𝑑𝑧 =

sin(𝛽𝑝𝑑)
𝛽𝑝𝑁

1
2
𝑝

, (A.3)

𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1 =
∫ 0

−𝑑
𝑧𝑍𝑝 (𝑧)𝑑𝑧 =

cos(𝛽𝑝𝑑) − 1

𝛽2𝑝𝑁
1
2
𝑝

, (A.4)

𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,2 =
∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
5,𝑚

𝜕𝑟
(𝑏, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 =

−𝑔 sin(𝛽𝑝𝑑)𝛽𝑝 − cos(𝛽𝑝𝑑)𝜔2 + 𝜔2

𝜔2𝛽2𝑝𝑁
1
2
𝑝

,

(A.5)

𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1 =
∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
3,𝑚

𝜕𝑟
(𝑏, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 = 0, (A.6)
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A.1 Integral from matching conditions

𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1 =
∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
5,𝑚 (𝑎, 𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1
6
𝑎𝑙2 + 1

8
𝑎3 if 𝑝 = 0

(−1) 𝑝+1𝑙2𝑎
𝑝2𝜋2

if 𝑝 ≥ 1

,

(A.7)

𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1 =
∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
5,𝑚 (𝑐, 𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1
6
𝑐𝑙2 + 1

8
𝑐3 if 𝑝 = 0

(−1) 𝑝+1𝑙2𝑐
𝑝2𝜋2

if 𝑝 ≥ 1

,

(A.8)

𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1 =
∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
3,𝑚 (𝑎, 𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

6
𝑙2 − 1

4
𝑎2 if 𝑝 = 0

(−1) 𝑝𝑙2
𝑝2𝜋2

if 𝑝 ≥ 1

,

(A.9)

𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1 =
∫ −(𝑑+𝑠)

−ℎ
𝜙 (2) ,𝐼 𝐼
3,𝑚 (𝑐, 𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)

𝑙

)
𝑑𝑧 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

6
𝑙2 − 1

4
𝑐2 if 𝑝 = 0

(−1) 𝑝𝑙2
𝑝2𝜋2

if 𝑝 ≥ 1

,

(A.10)

𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,3 =
∫ 0

−𝑑
𝜙 (2) ,𝐼 𝐼 𝐼
5,𝑚 (𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 = −𝑐 𝑔 sin(𝛽𝑝𝑑)𝛽𝑝 + 𝜔

2(cos(𝛽𝑝𝑑) − 1)
𝛽2𝑝𝜔2𝑁

1
2
𝑝

,

(A.11)

𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,2 =
∫ 0

−𝑑
𝜙 (2) ,𝐼 𝐼 𝐼
3,𝑚 (𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 =

𝑔 sin(𝛽𝑝𝑑)𝛽𝑝 + 𝜔2(cos(𝛽𝑝𝑑) − 1)
𝛽2𝑝𝜔2𝑁

1
2
𝑝

, (A.12)

𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,4 =
∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
5,𝑚

𝜕𝑟
(𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧

=
𝛼𝑝 (𝑑𝜔2 − 𝑔) sin(𝛼𝑝 (𝑑 − ℎ)) − 𝑔 sin(𝛼𝑝ℎ)𝛼𝑝 − cos(𝛼𝑝ℎ)𝜔2 + cos(𝛼𝑝 (𝑑 − ℎ))𝜔2

𝛼2𝑝𝜔2𝑁
1
2
𝑝

,

(A.13)
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𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,3 =
∫ 0

−𝑑

𝜕𝜙 (2) ,𝐼 𝐼 𝐼
3,𝑚

𝜕𝑟
(𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 = 0, (A.14)

𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,3 =
∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
3,𝑚

𝜕𝑟
(𝑎, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 = −𝑎 sin(𝛼𝑝𝑙)

2𝑙𝛼𝑝𝑁
1
2
𝑝

, (A.15)

𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,3 =
∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
5,𝑚

𝜕𝑟
(𝑎, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧

=
−4𝛼2𝑝 sin(𝛼𝑝𝑙)𝑙2 + 3𝑎2 sin(𝛼𝑝𝑙)𝛼2𝑝 − 8𝛼𝑝𝑙 cos(𝛼𝑝𝑙) + 8 sin(𝛼𝑝𝑙)

8𝑙𝛼3𝑁
1
2
𝑝

,

(A.16)

𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,2 =
∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
5,𝑚

𝜕𝑟
(𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧

=
−4𝛼2𝑝 sin(𝛼𝑝𝑙)𝑙2 + 3𝑐2 sin(𝛼𝑝𝑙)𝛼2𝑝 − 8𝛼𝑝𝑙 cos(𝛼𝑝𝑙) + 8 sin(𝛼𝑝𝑙)

8𝑙𝛼3𝑁
1
2
𝑝

,

(A.17)

𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,2 =
∫ −(𝑑+𝑠)

−ℎ

𝜕𝜙 (2) ,𝐼 𝐼
3,𝑚

𝜕𝑟
(𝑐, 𝑧)𝑍𝑝 (𝑧)𝑑𝑧 = −𝑐 sin(𝛼𝑝𝑙)

2𝑙𝛼𝑝𝑁
1
2
𝑝

, (A.18)

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,1

𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,1

=
∫ −𝑑

−(𝑑+𝑠)

1
0
𝑧
𝑍𝑝 (𝑧)𝑑𝑧

III



A.1 Integral from matching conditions

=

sin(𝛼𝑝 (ℎ − 𝑑)) − sin(𝛼𝑝𝑙)
𝛼𝑝𝑁

1
2
𝑝

0

cos(𝛼𝑝 (𝑑 − ℎ)) + sin(𝛼𝑝 (𝑑 − ℎ))𝛼𝑝𝑑 + 𝛼𝑝 (ℎ − 𝑙) sin(𝛼𝑝𝑙) − cos(𝛼𝑝𝑙)
𝛼2𝑝𝑁

1
2
𝑝

,

(A.19)

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,2

𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑝,2

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,2

=
∫ 0

−(𝑑+𝑠)

1
0
𝑧
𝑍𝑝 (𝑧)𝑑𝑧 =

sin(𝛼𝑝ℎ) − sin(𝛼𝑝𝑙)
𝛼𝑝𝑁

1
2
𝑝

0

𝛼𝑝 (𝑑 + 𝑠) sin(𝛼𝑝𝑙) + cos(𝛼𝑝ℎ) − cos(𝛼𝑝𝑙)
𝛼2𝑝𝑁

1
2
𝑝

,

(A.20)

A.1.2 Dock with spar

The matching conditions between the domains I, II and III are identical either
the spar is inside the dock or not. New integrals are defined from the matching
conditions with either the domain IV or V:

𝑇𝑉𝑞,𝑝 =
∫ −𝑑0

−ℎ
𝑍𝑞 (𝑧) cos

(
𝑝𝜋(𝑧 + ℎ)
ℎ − 𝑑0

)
d𝑧

=
(−1) 𝑝𝛼𝑞 (ℎ − 𝑑0)2

(
cos

(
𝛼𝑞𝑑0

)
sin

(
ℎ𝛼𝑞

) − sin
(
𝛼𝑞𝑑0

)
cos

(
ℎ𝛼𝑞

) )
𝑁

1
2
𝑞

(
(ℎ − 𝑑0)2 𝛼2𝑞 − 𝜋2𝑝2

) ,

(A.21)

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,3

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,3

=
∫ 0

−𝑑0

1

𝑧
𝑍𝑝 (𝑧)𝑑𝑧 =

sin(𝛼𝑝 (𝑑0 − ℎ)) + sin(𝛼𝑝ℎ)
𝑁

1
2
𝑝𝛼𝑝

𝛼𝑝𝑑0 sin(𝛼𝑝 (ℎ − 𝑑0)) + cos(𝛼𝑝ℎ) − cos(𝛼𝑝 (ℎ − 𝑑0))
𝛼2𝑝𝑁

1
2
𝑝

,

(A.22)
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𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,1

=
∫ −𝑑0

−ℎ
𝜙𝑉5,𝑚 (𝑎0, 𝑧) cos

(
𝑝𝜋 (𝑧 + ℎ)
ℎ − 𝑑0

)
𝑑𝑧, 𝑞 ∈ N, (A.23)

𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,2

𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,2

=
∫ −𝑑0

−ℎ

𝜕𝜙𝑉𝑗,𝑚

𝜕𝑟
(𝑎0, 𝑧) 𝑍𝑝 (𝑧) 𝑑𝑧. (A.24)

The expressions of the integrals (A.23) and (A.24) are:

𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(ℎ − 𝑑0)2

6
− 1

4
𝑎20 if 𝑝 = 0

(−1) 𝑝 (ℎ − 𝑑0)2
𝑝2𝜋2

if 𝑝 ≥ 1

(A.25)

𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−𝑎0
6

(
(ℎ − 𝑑0)2 −

3𝑎20
4

)
if 𝑝 = 0

(−1) 𝑝+1 𝑎0 (ℎ − 𝑑0)2
𝑝2𝜋2

if 𝑝 ≥ 1

(A.26)

𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,2 = 𝑎0
sin

(
𝛼𝑝𝑑0

)
cos

(
𝛼𝑝ℎ

) − cos
(
𝛼𝑝𝑑0

)
sin

(
𝛼𝑝ℎ

)
2 (ℎ − 𝑑0) 𝑁

1
2
𝑝𝛼𝑝

(A.27)

𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,2 =(
−2𝛼𝑝 (ℎ − 𝑑0) cos

(
ℎ𝛼𝑝

) − (
−2 + (

ℎ2 − 2𝑑0ℎ − 3/4 (
𝑎20

) + 𝑑02) 𝛼2𝑝)
sin

(
ℎ𝛼𝑝

) )
cos

(
𝛼𝑝𝑑0

)
2𝑁

1
2
𝑝 (ℎ − 𝑑0) 𝛼3𝑝

+
sin

(
𝛼𝑝𝑑0

) ((
−2 + (

ℎ2 − 2𝑑0ℎ − 3/4 (
𝑎20

) + 𝑑02) 𝛼2𝑝)
cos

(
ℎ𝛼𝑝

) − 2𝛼𝑝 sin
(
ℎ𝛼𝑝

) (ℎ − 𝑑0))
2𝑁

1
2
𝑝 (ℎ − 𝑑0) 𝛼3𝑝

.

(A.28)
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A.2 Matrix equations

A.2 Matrix equations

A.2.1 Diffraction problem, dock without spar

The coefficients of the matrices 𝔹𝑆 and 𝑪𝑆 from the diffraction problem of the
dock without spar are given by:

𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (3)
𝑗 ,𝑛𝐻

(6)
𝑝,𝑞,𝑛 +

𝑁𝐼𝐼𝐼∑
𝑛=0

[
𝐻 (4)
𝑗 ,𝑛𝐻

(8)
𝑝,𝑞,𝑛 + 𝐻 (1)

𝑝,𝑛𝐻
(4)
𝑗 ,𝑛𝐻

(9)
𝑝,𝑞,𝑛

]
− 𝛿𝑞, 𝑗 ,

𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)],
(A.29)

𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (2)
𝑗 ,𝑛𝐻

(7)
𝑝,𝑞,𝑛, 𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.30)

𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (3)
𝑗 ,𝑛𝐻

(10)
𝑝,𝑞,𝑛, 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)], (A.31)

𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (2)
𝑗 ,𝑛𝐻

(11)
𝑝,𝑞,𝑛 − 𝛿𝑞, 𝑗 , 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.32)

𝑪𝑆𝑞 =

{
−𝐻 (5)

𝑝,𝑞, 𝑞 ∈ [0, (𝑁𝐼 − 1)]
0 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)] , (A.33)

for each 𝑝 ∈ [0, 𝑁𝑆]. The coefficients 𝐻 are given for (𝑝, 𝑞, 𝑛) ∈ N3 by:

𝐻 (1)
𝑝,𝑞 = −

𝑃𝐼 𝐼 𝐼𝑝,𝑞,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑝,𝑞,𝑟 (𝑏)

, (A.34)

𝐻 (2)
𝑛,𝑞 =

1

𝑙
𝑇 𝐼 𝐼𝑛,𝑞, (A.35)

𝐻 (3)
𝑛,𝑞 =

1

𝑙
𝑇 𝐼 𝐼𝑛,𝑞, (A.36)

𝐻 (4)
𝑛,𝑞 =

1

𝑑
𝑇 𝐼 𝐼 𝐼𝑛,𝑞 , (A.37)

𝐻 (6)
𝑝,𝑞,𝑛 =

𝐾𝑝 (𝛼𝑞𝑐)
ℎ𝛼𝑞𝐾 ′

𝑝 (𝛼𝑞𝑐)
𝜖𝑛𝑇

𝐼 𝐼
𝑞,𝑛𝑃

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑐), (A.38)
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𝐻 (7)
𝑝,𝑞,𝑛 =

𝐾𝑝 (𝛼𝑞𝑐)
ℎ𝛼𝑞𝐾 ′

𝑝 (𝛼𝑞𝑐)
𝜖𝑛𝑇

𝐼 𝐼
𝑞,𝑛𝑄

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑐), (A.39)

𝐻 (8)
𝑝,𝑞,𝑛 =

𝐾𝑝 (𝛼𝑞𝑐)
ℎ𝛼𝑞𝐾 ′

𝑝 (𝛼𝑞𝑐)
𝑇 𝐼 𝐼 𝐼𝑞,𝑛𝑃

𝐼 𝐼 𝐼
𝑝,𝑛,𝑟 (𝑐), (A.40)

𝐻 (9)
𝑝,𝑞,𝑛 =

𝐾𝑝 (𝛼𝑞𝑐)
ℎ𝛼𝑞𝐾 ′

𝑝 (𝛼𝑞𝑐)
𝑇 𝐼 𝐼 𝐼𝑞,𝑛𝑄

𝐼 𝐼 𝐼
𝑝,𝑛,𝑟 (𝑐), (A.41)

𝐻 (10)
𝑝,𝑞,𝑛 =

𝐼𝑝 (𝛼𝑞𝑎)
ℎ𝛼𝑞 𝐼 ′𝑝 (𝛼𝑞𝑎)

𝜖𝑛𝑇
𝐼 𝐼
𝑞,𝑛𝑃

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑎), (A.42)

𝐻 (11)
𝑝,𝑞,𝑛 =

𝐼𝑝 (𝛼𝑞𝑎)
ℎ𝛼𝑞 𝐼 ′𝑝 (𝛼𝑞𝑎)

𝜖𝑛𝑇
𝐼 𝐼
𝑞,𝑛𝑄

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑎), (A.43)

𝐻 (5)
𝑝,𝑞 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐾𝑝 (𝛼0𝑐)

𝑏𝛼0𝐾 ′
𝑝 (𝛼0𝑐)𝑍 ′

0(ℎ)

[
𝑘
𝐽𝑝 (𝑘𝑐)
𝐻𝑝 (𝑘𝑐)

𝐻′
𝑝 (𝑘𝑐) − 𝑘𝐽′ 𝑝 (𝑘𝑐)

]
if 𝑞 = 0

0 if 𝑞 > 0

. (A.44)

The matrix system 𝔹𝑆𝑨𝑆 = 𝑪𝑆 is solved in python for the coefficients 𝐴𝐼 and 𝐴𝐼𝑉 .
The remaining 𝐴 coefficients given by:

𝐴𝐼 𝐼1, 𝑝,𝑞 =
𝑁𝐼∑
𝑛=0

𝐻 (3)
𝑛,𝑞𝐴

𝐼
𝑝,𝑛, (A.45)

𝐴𝐼 𝐼2, 𝑝,𝑞 =
𝑁𝐼𝑉∑
𝑛=0

𝐻 (2)
𝑛,𝑞𝐴

𝐼𝑉
𝑝,𝑛, (A.46)

𝐴𝐼 𝐼 𝐼1, 𝑝,𝑞 =
𝑁𝐼∑
𝑛=0

𝐻 (4)
𝑛,𝑞𝐴

𝐼
𝑝,𝑛, (A.47)

𝐴𝐼 𝐼 𝐼2, 𝑝,𝑞 = 𝐻 (1)
𝑝,𝑞𝐴

𝐼 𝐼 𝐼
1, 𝑝,𝑞 . (A.48)

A.2.2 Diffraction problem, dock with spar

𝑪𝑆𝑞 is unchanged from the case of the dock without spar (cf. Eq. (A.33)). For each

𝑝 ∈ [0, 𝑁𝑆], the coefficients of 𝔹𝑆 for the dock with the spar are:
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𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

(
𝐻 (3)
𝑗 ,𝑛𝐻

(6)
𝑝,𝑞,𝑛 + 𝐻 (4)

𝑗 ,𝑛𝐻
(8)
𝑝,𝑞,𝑛

)
+
𝑁𝐼𝐼𝐼∑
𝑛=0

𝐻 (1)
𝑝,𝑛𝐻

(4)
𝑗 ,𝑛𝐻

(9)
𝑝,𝑞,𝑛,

𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)],
(A.49)

𝔹𝑆
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (2)
𝑗 ,𝑛𝐻

(7)
𝑝,𝑞,𝑛, 𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.50)

𝔹𝑆
𝑞, 𝑗 =

1

𝑄𝐼𝑉
𝑝,𝑞,𝑟 (𝑎)

𝑁𝐼𝐼∑
𝑛=0

𝐻 (3)
𝑗 ,𝑛𝐻

(10)
𝑝,𝑞,𝑛, 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)],

(A.51)

𝔹𝑆
𝑞, 𝑗 =

1

𝑄𝐼𝑉
𝑝,𝑞,𝑟 (𝑎)

𝑁𝐼𝐼∑
𝑛=0

𝑁𝐼𝑉∑
𝑚=0

[
𝐻 (2)
𝑚,𝑛𝐻

(11)
𝑝,𝑞,𝑛 − 𝛿𝑚,𝑞𝑃𝐼𝑉𝑝,𝑞,𝑟 (𝑎)

]
𝐻 (14)
𝑝,𝑚, 𝑗 ,

𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)],
(A.52)

where 𝐻 (1) to 𝐻 (9) where defined in Eqs. (A.34) to (A.41) and are unchanged
from the case of the dock without spar. 𝐻 (10) to 𝐻 (14) are given by:

𝐻 (10)
𝑝,𝑞,𝑛 =

1

ℎ
𝜖𝑛𝑇

𝐼 𝐼
𝑞,𝑛𝑃

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑎), (A.53)

𝐻 (11)
𝑝,𝑞,𝑛 =

1

ℎ
𝜖𝑛𝑇

𝐼 𝐼
𝑞,𝑛𝑄

𝐼 𝐼
𝑝,𝑛,𝑟 (𝑎), (A.54)

𝐻 (12)
𝑝,𝑞,𝑛 =

1

ℎ − 𝑑0
𝑇𝑉𝑛,𝑞, (A.55)

𝐻 (13)
𝑝,𝑞,𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑇𝑉𝑞,0

ℎ𝑎0
if 𝑛 = 0

2𝑛𝜋𝐼 ′𝑝

(
𝑛𝜋𝑎0
ℎ − 𝑑0

)
ℎ(ℎ − 𝑑0)𝐼𝑝

(
𝑛𝜋𝑎0
ℎ − 𝑑0

)𝑇𝑉𝑞,𝑛 if 𝑛 > 0

, (A.56)
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𝐻 (14)
𝑝,𝑞,𝑛 =

1

𝑃𝐼𝑉𝑝,𝑞,𝑟 (𝑎0)

[
𝑁𝐼𝑉∑
𝑗=0

(
𝐻 (13)
𝑝,𝑞, 𝑗𝐻

(12)
𝑛, 𝑗 − 𝛿𝑞,𝑛𝑄𝐼𝑉

𝑝,𝑞,𝑟 (𝑎0)
)]
. (A.57)

The remaining 𝐴 coefficients are then expressed as:

𝐴𝐼 𝐼1, 𝑝,𝑞 =
𝑁𝐼∑
𝑛=0

𝐻 (3)
𝑛,𝑞𝐴

𝐼
𝑝,𝑛, (A.58)

𝐴𝐼 𝐼2, 𝑝,𝑞 =
𝑁𝐼𝑉∑
𝑛=0

𝐻 (2)
𝑛,𝑞𝐴

𝐼𝑉
1, 𝑝,𝑛, (A.59)

𝐴𝐼 𝐼 𝐼1, 𝑝,𝑞 =
𝑁𝐼∑
𝑛=0

𝐻 (4)
𝑛,𝑞𝐴

𝐼
𝑝,𝑛, (A.60)

𝐴𝐼 𝐼 𝐼2, 𝑝,𝑞 = 𝐻 (1)
𝑝,𝑞𝐴

𝐼 𝐼 𝐼
1, 𝑝,𝑞, (A.61)

𝐴𝐼𝑉1, 𝑝,𝑞 =
𝑁𝐼𝑉∑
𝑗=0

𝐻 (14)
𝑝,𝑞, 𝑗𝐴

𝐼𝑉
2, 𝑝, 𝑗 , (A.62)

𝐴𝑉𝑝,𝑞 =
𝑁𝐼𝑉∑
𝑛=0

𝐻 (5)
𝑛,𝑞𝐴

𝐼𝑉
2, 𝑝,𝑛. (A.63)

A.2.3 Radiation problem, dock without spar

The coefficients of the matrices 𝔹𝑅 and 𝑪𝑅 for the radiation problem of the dock
without spar are expressed as:

𝔹𝑅
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (4)
𝑛,𝑞𝐻

(2)
𝑗 ,𝑛 +

𝑁𝐼𝐼𝐼∑
𝑛=0

𝐻 (6)
𝑛,𝑞𝐻

(3)
𝑗 ,𝑛 − 𝛿𝑞, 𝑗 , 𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)],

(A.64)

𝔹𝑅
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (5)
𝑛,𝑞𝐻

(1)
𝑗 ,𝑛 , 𝑞 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.65)

𝔹𝑅
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (7)
𝑛,𝑞𝐻

(2)
𝑗 ,𝑛 , 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)], (A.66)
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𝔹𝑅
𝑞, 𝑗 =

𝑁𝐼𝐼∑
𝑛=0

𝐻 (8)
𝑛,𝑞𝐻

(1)
𝑗 ,𝑛 − 𝛿𝑞, 𝑗 , 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.67)

𝑪𝑅
𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−𝐻𝑑,𝑞 −

𝑁𝐼𝐼∑
𝑛=0

(𝐻 (4)
𝑛,𝑞𝐻𝑏,𝑛 + 𝐻 (5)

𝑛,𝑞𝐻𝑎,𝑛) −
𝑁𝐼𝐼𝐼∑
𝑛=0

𝐻 (6)
𝑛,𝑞𝐻𝑐,𝑛, 𝑞 ∈ [0, (𝑁𝐼 − 1)]

−𝐻𝑒,𝑞 −
𝑁𝐼𝐼∑
𝑛=0

(𝐻 (7)
𝑛,𝑞𝐻𝑏,𝑛 + 𝐻 (8)

𝑛,𝑞𝐻𝑎,𝑛) 𝑞 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)]
.

(A.68)

The coefficients 𝐻 are given below for the radiation problems in surge, heave or
pitch. In the coefficients below 𝑚 = 0 in heave, and 𝑚 = 1 in surge and pitch.

In surge, pitch and heave:

𝐻𝑔,𝑞 = −
𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.69)

𝐻 (1)
𝑗 ,𝑞 = 𝐻 (2)

𝑗 ,𝑞 =
1

𝑙
𝑇 𝐼 𝐼𝑗,𝑞, (A.70)

𝐻 (3)
𝑗 ,𝑞 =

1

𝑑
𝑇 𝐼 𝐼 𝐼𝑗,𝑞 , (A.71)

In surge and pitch:

𝐻 (4)
𝑗 ,𝑞 =

𝐾1(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
1(𝛼𝑞𝑐)ℎ

𝜖 𝑗𝑃
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.72)

𝐻 (5)
𝑗 ,𝑞 =

𝐾1(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
1(𝛼𝑞𝑐)ℎ

𝜖 𝑗𝑄
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.73)

𝐻 (6)
𝑗 ,𝑞 =

𝐾1(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
1(𝛼𝑞𝑐)ℎ

(
𝑃𝐼 𝐼 𝐼𝑚, 𝑗,𝑟 (𝑐) −

𝑃𝐼 𝐼 𝐼𝑚, 𝑗,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑏)

𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)

)
𝑇 𝐼 𝐼 𝐼𝑞, 𝑗 , (A.74)

𝐻 (7)
𝑗 ,𝑞 =

𝐼1(𝛼𝑞𝑎)
𝛼𝑞 𝐼

′
1(𝛼𝑞𝑎)ℎ

𝜖 𝑗𝑃
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑎)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.75)

𝐻 (8)
𝑗 ,𝑞 =

𝐼1(𝛼𝑞𝑎)
𝛼𝑞 𝐼

′
1(𝛼𝑞𝑎)ℎ

𝜖 𝑗𝑄
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑎)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.76)
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In surge:

𝐻𝑎,𝑞 = 𝐻𝑏,𝑞 = 𝐻𝑐,𝑞 = 0, (A.77)

𝐻𝑑,𝑞 =
𝐾1(𝛼𝑞𝑐)

𝛼𝑞𝐾
′
1(𝛼𝑞𝑐)ℎ𝑏

(
𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 + 1

𝑑

∞∑
𝑛=0

𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑛 𝑄𝐼 𝐼 𝐼

𝑚,𝑛,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑞,𝑛

𝑄𝐼 𝐼 𝐼
𝑚,𝑛,𝑟 (𝑏)

)
, (A.78)

𝐻𝑒,𝑞 =
𝐼1(𝛼𝑞𝑎)

𝛼𝑞 𝐼
′
1(𝛼𝑞𝑎)ℎ𝑏

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 , (A.79)

𝐻 𝑓 ,𝑞 =
𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞

𝑑𝑏𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.80)

In heave:

𝐻𝑎,𝑞 = −
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,1

𝑏𝑙
, (A.81)

𝐻𝑏,𝑞 = −
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,1

𝑏𝑙
, (A.82)

𝐻𝑐,𝑞 = −
𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,2

𝑑𝑏
, (A.83)

𝐻𝑒,𝑞 =
𝐼1(𝛼𝑞𝑎)

𝛼𝑞 𝐼
′
1(𝛼𝑞𝑎)ℎ𝑏

(𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑞,2 + 𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,3 ), (A.84)

𝐻 𝑓 ,𝑞 = −
𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,1

𝑑𝑏𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.85)

𝐻 (4)
𝑗 , 𝑝 =

𝐾0(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
0(𝛼𝑞𝑐)ℎ

𝜖 𝑗𝑃
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.86)

𝐻 (5)
𝑗 ,𝑞 =

𝐾0(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
0(𝛼𝑞𝑐)ℎ

𝜖 𝑗𝑄
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼𝑚,𝑞, (A.87)

𝐻 (6)
𝑗 ,𝑞 =

𝐾0(𝛼𝑞𝑐)
𝛼𝑞𝐾

′
0(𝛼𝑞𝑐)ℎ

(
𝑃𝐼 𝐼 𝐼𝑚, 𝑗,𝑟 (𝑐) −

𝑃𝐼 𝐼 𝐼𝑚, 𝑗,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑏)

𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)

)
𝑇 𝐼 𝐼 𝐼𝑞, 𝑗 , (A.88)
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𝐻 (7)
𝑗 ,𝑞 =

𝐼0(𝛼𝑞𝑎)
𝛼𝑞 𝐼

′
0(𝛼𝑞𝑎)ℎ

𝜖 𝑗𝑃
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑎)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.89)

𝐻 (8)
𝑗 ,𝑞 =

𝐼0(𝛼𝑞𝑎)
𝛼𝑞 𝐼

′
0(𝛼𝑞𝑎)ℎ

𝜖 𝑗𝑄
𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑎)𝑇 𝐼 𝐼𝑞, 𝑗 , (A.90)

𝐻𝑑,𝑞 =
𝐾1(𝛼𝑞𝑐)

𝛼𝑞𝐾
′
1(𝛼𝑞𝑐)ℎ𝑏

(
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,2 + 𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑞,1 + 𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑞,3 − 1

𝑑

∞∑
𝑛=0

𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑛,1 𝑄𝐼 𝐼 𝐼
𝑚,𝑛,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑛, 𝑗

𝑄𝐼 𝐼 𝐼
𝑚,𝑛,𝑟 (𝑏)

)
,

(A.91)

In pitch:

𝐻𝑎,𝑞 = −
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,1

𝑏2𝑙
, (A.92)

𝐻𝑏,𝑞 = −
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,1

𝑏2𝑙
, (A.93)

𝐻𝑑,𝑞 =
𝐾1(𝛼𝑞𝑐)

𝛼𝑞𝐾
′
1(𝛼𝑞𝑐)ℎ𝑏2

(
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,2 + 𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,1 + 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,4

+ 1

𝑑

∞∑
𝑛=0

(𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑛,1 − 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑛,2 )𝑄𝐼 𝐼 𝐼
𝑚,𝑛,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑞,𝑛

𝑄𝐼 𝐼 𝐼
𝑚,𝑛,𝑟 (𝑏)

)
, (A.94)

𝐻𝑐,𝑞 = −
𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,3

𝑑𝑏2
, (A.95)

𝐻𝑒,𝑞 =
𝐼1(𝛼𝑞𝑎)

𝛼𝑞 𝐼
′
1(𝛼𝑞𝑎)ℎ𝑏2

(𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,2 + 𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,3 ), (A.96)

𝐻 𝑓 ,𝑞 =
(𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,1 − 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,2 )

𝑑𝑏2𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

𝑘. (A.97)

Once the matrix system of equation 𝔹𝑅𝑨𝑅 = 𝑪𝑅 is solved for the 𝐴𝐼 and 𝐴𝐼𝑉

coefficients, the remaining 𝐴 coefficients are given by:

𝐴𝐼 𝐼1, 𝑝 = 𝐻𝑏,𝑝 +
𝑁𝐼∑
𝑞=0

𝐻 (2)
𝑞,𝑝𝐴

𝐼
𝑞, (A.98)
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𝐴𝐼 𝐼2, 𝑝 = 𝐻𝑎,𝑝 +
𝑁𝐼𝑉∑
𝑞=0

𝐻 (1)
𝑞,𝑝𝐴

𝐼𝑉
𝑞 , (A.99)

𝐴𝐼 𝐼 𝐼1, 𝑝 = 𝐻𝑐,𝑝 +
𝑁𝐼∑
𝑞=0

𝐻 (3)
𝑞,𝑝𝐴

𝐼
𝑞, (A.100)

𝐴𝐼 𝐼 𝐼2, 𝑝 = 𝐻 𝑓 , 𝑝 + 𝐻𝑔,𝑝𝐴𝐼 𝐼 𝐼1, 𝑝 . (A.101)

A.2.4 Radiation problem, dock with spar

The coefficients of the matrices 𝔹𝑅 and 𝑪𝑅 are now given for the six radiation
problems in surge, heave and pitch for both the dock and the spar:

𝔹𝑅
𝑝, 𝑗 =

𝑁𝐼𝐼∑
𝑞=0

𝐻 (5)
𝑞,𝑝𝐻

(2)
𝑗 ,𝑞 +

𝑁𝐼𝐼𝐼∑
𝑞=0

𝐻 (7)
𝑞,𝑝𝐻

(3)
𝑗 ,𝑞 , 𝑝 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)], (A.102)

𝔹𝑅
𝑝, 𝑗 =

𝑁𝐼𝐼∑
𝑞=0

𝐻 (6)
𝑞,𝑝𝐻

(1)
𝑗 ,𝑞𝐻

(11)
𝑗 ,𝑞 , 𝑝 ∈ [0, (𝑁𝐼 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], (A.103)

𝔹𝑅
𝑝, 𝑗 =

1

𝑄𝐼𝑉
𝑚,𝑝,𝑟 (𝑎)

𝑁𝐼𝐼∑
𝑞=0

𝐻 (8)
𝑞,𝑝𝐻

(2)
𝑗 ,𝑞 , 𝑝 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [0, (𝑁𝐼 − 1)], (A.104)

𝔹𝑅
𝑝, 𝑗 =

1

𝑄𝐼𝑉
𝑚,𝑝,𝑟 (𝑎)

𝑁𝐼𝐼∑
𝑞=0

𝐻 (11)
𝑝, 𝑗

(
𝐻 (9)
𝑞,𝑝𝐻

(1)
𝑗 ,𝑞 − 𝑃𝐼𝑉𝑚,𝑝,𝑟 (𝑎)𝛿𝑝, 𝑗

)
,

𝑝 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)], 𝑗 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)],
(A.105)
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𝑪𝑅
𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝐻𝑔,𝑝 −
∞∑
𝑞=0

(
𝐻 (5)
𝑞,𝑝𝐻𝑏,𝑞 + 𝐻 (6)

𝑞,𝑝𝐻𝑎,𝑞 + 𝐻 (7)
𝑞,𝑝𝐻𝑐,𝑞 +

∞∑
𝑗=0

∞∑
𝑞=0

𝐻 (6)
𝑞,𝑝𝐻

(1)
𝑗 ,𝑞𝐻 𝑗 , 𝑗

)
,

𝑝 ∈ [0, (𝑁𝐼 − 1)]

− 1

𝑄𝐼𝑉
𝑚,𝑝,𝑟 (𝑎)

(
𝐻ℎ,𝑝 +

∞∑
𝑞=0

(
𝐻 (8)
𝑞,𝑝𝐻𝑏,𝑞 + 𝐻 (9)

𝑞,𝑝𝐻𝑎,𝑞

)
+

∞∑
𝑗=0

∞∑
𝑞=0

𝐻 𝑗 , 𝑗

(
𝐻 (9)
𝑞,𝑝𝐻

(1)
𝑗 ,𝑞 − 𝑃𝐼𝑉𝑚,𝑝,𝑟 (𝑎)𝛿𝑝, 𝑗

) )
,

𝑝 ∈ [𝑁𝐼 , (𝑁𝐼𝑉 − 1)]

.

(A.106)

Then the coefficients 𝐻, where 𝑚 = 0 in heave and 𝑚 = 1 in pitch, (𝑝, 𝑞) ∈ N2:

For all DoFs:

𝐻 (4)
𝑞,𝑝 =

2

ℎ − 𝑑0
𝑇𝑉𝑞,𝑝, (A.107)

𝐻 (8)
𝑞,𝑝 =

1

ℎ
𝜖𝑞𝑃

𝐼 𝐼
𝑚,𝑞,𝑟 (𝑎)𝑇 𝐼 𝐼𝑝,𝑞, (A.108)

𝐻 (9)
𝑞,𝑝 =

1

ℎ
𝜖𝑞𝑄

𝐼 𝐼
𝑚,𝑞,𝑟 (𝑎)𝑇 𝐼 𝐼𝑝,𝑞, (A.109)

𝐻 𝑓 , 𝑝 = −
𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.110)

𝐻 (1)
𝑞,𝑝 = 𝐻 (2)

𝑞,𝑝 =
1

𝑙
𝑇 𝐼 𝐼𝑞, 𝑝, (A.111)

𝐻 (3)
𝑞,𝑝 =

1

𝑑
𝑇 𝐼 𝐼 𝐼𝑞, 𝑝 (A.112)

𝐻 (11)
𝑝,𝑞 =

1

𝑃𝐼𝑉𝑚,𝑝,𝑟 (𝑎0)
𝑁𝑉∑
𝑗=0

𝐻 (10)
𝑗 , 𝑝 𝐻

(4)
𝑞, 𝑗

(
1 −𝑄𝐼𝑉

𝑚,𝑝,𝑟 (𝑎0)𝛿𝑞,𝑝
)
, (A.113)

𝐻 𝑗 , 𝑝 =
1

𝑃𝐼𝑉𝑚,𝑝,𝑟 (𝑎0)

[
𝐻𝑖, 𝑝 +

𝑁𝑉∑
𝑞=0

𝐻 (10)
𝑞,𝑝 𝐻𝑑,𝑞

]
, (A.114)

In surge (2): and DoFs (1):
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𝐻𝑎,𝑝 = 𝐻𝑏,𝑝 = 𝐻𝑐,𝑝 = 0, (A.115)

In surge (2)

𝐻𝑒,𝑝 =
𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑝

𝑑𝑏𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.116)

𝐻𝑔,𝑝 =
𝐾1(𝛼𝑝𝑐)

𝛼𝑝𝐾
′
1(𝛼𝑝𝑐)ℎ𝑏

(
𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,1 + 1

𝑑

∞∑
𝑗=0

𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑗 𝑄𝐼 𝐼 𝐼

𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑝, 𝑗

𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑏)

)
, (A.117)

𝐻ℎ,𝑝 =
𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,2

ℎ𝑏
, (A.118)

In both surge and pitch (1), (2):

𝐻 (5)
𝑞,𝑝 =

𝐾1(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
1(𝛼𝑝𝑐)ℎ

𝜖𝑞𝑃
𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)𝑇 𝐼 𝐼𝑝,𝑞, (A.119)

𝐻 (6)
𝑞,𝑝 =

𝐾1(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
1(𝛼𝑝𝑐)ℎ

𝜖𝑞𝑄
𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)𝑇 𝐼 𝐼𝑝,𝑞, (A.120)

𝐻 (7)
𝑞,𝑝 =

𝐾1(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
1(𝛼𝑝𝑐)ℎ

(
𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑐) −

𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)

)
𝑇 𝐼 𝐼 𝐼𝑝,𝑞, (A.121)

𝐻 (10)
𝑞,𝑝 =

2

ℎ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑇𝑉𝑝,0

2𝑎0
if 𝑞 = 0

𝑞𝜋

ℎ − 𝑑0
𝐼 ′1( 𝑞𝜋𝑎0ℎ−𝑑0 )
𝐼1( 𝑞𝜋𝑎0ℎ−𝑑0 )

𝑇𝑉𝑝,𝑞 if 𝑞 ≥ 1

, (A.122)

In surge (1) and DoFs (2):

𝐻𝑑,𝑝 = 0, (A.123)

In all DoFs (1):

𝐻𝑒,𝑝 = 𝐻𝑔,𝑝 = 𝐻ℎ,𝑝 = 0, (A.124)

In all DoFs (2):
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𝐻𝑖, 𝑝 = 0, (A.125)

In heave (1), (2):

𝐻 (5)
𝑞,𝑝 =

𝐾0(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
0(𝛼𝑝𝑐)ℎ

𝜖𝑞𝑃
𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)𝑇 𝐼 𝐼𝑝,𝑞, (A.126)

𝐻 (6)
𝑞,𝑝 =

𝐾0(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
0(𝛼𝑝𝑐)ℎ

𝜖𝑞𝑄
𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)𝑇 𝐼 𝐼𝑝,𝑞, (A.127)

𝐻 (7)
𝑞,𝑝 =

𝐾0(𝛼𝑝𝑐)
𝛼𝑝𝐾

′
0(𝛼𝑝𝑐)ℎ

(
𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑐) −

𝑃𝐼 𝐼 𝐼𝑚,𝑞,𝑟 (𝑏)
𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑐)

)
𝑇 𝐼 𝐼 𝐼𝑝,𝑞, (A.128)

𝐻 (10)
𝑞,𝑝 =

2

ℎ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑞 = 0

𝑞𝜋

ℎ − 𝑑0
𝐼 ′0( 𝑞𝜋𝑎0ℎ−𝑑0 )
𝐼0( 𝑞𝜋𝑎0ℎ−𝑑0 )

𝑇𝑉𝑝,𝑞 if 𝑞 ≥ 1
, (A.129)

In heave (2):

𝐻𝑎,𝑝 = −
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑏𝑙
, (A.130)

𝐻𝑏,𝑝 = −
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑏𝑙
, (A.131)

𝐻𝑐,𝑝 = −
𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,2

𝑑𝑏
, (A.132)

𝐻𝑒,𝑝 = −
𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑑𝑏𝑄𝐼 𝐼 𝐼
𝑚,𝑞,𝑟 (𝑏)

, (A.133)

𝐻𝑔,𝑝 =
𝐾1(𝛼𝑝𝑐)

𝛼𝑝𝐾
′
1(𝛼𝑝𝑐)ℎ𝑏

(
𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,2 + 𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑝,1 + 𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,3 − 1

𝑑

∞∑
𝑗=0

𝑇 𝐼 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑗,1 𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑝, 𝑗

𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑏)

)
,

(A.134)

𝐻ℎ,𝑝 =
𝑇𝐵,ℎ𝑒𝑎𝑣𝑒𝑝,2 + 𝑇 𝐼 𝐼,ℎ𝑒𝑎𝑣𝑒𝑝,3

ℎ𝑏
, (A.135)
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In pitch (2):

𝐻𝑎,𝑝 = −
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1

𝑏2𝑙
, (A.136)

𝐻𝑏,𝑝 = −
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1

𝑏2𝑙
, (A.137)

𝐻𝑐,𝑝 = −
𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,3

𝑑𝑏2
, (A.138)

𝐻𝑒,𝑝 =

(
𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,1 − 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,2

)
𝑑𝑏2𝑄𝐼 𝐼 𝐼

𝑚,𝑞,𝑟 (𝑏)
𝑘 (A.139)

𝐻𝑔,𝑝 =
𝐾1(𝛼𝑝𝑐)

𝛼𝑝𝐾
′
1(𝛼𝑝𝑐)ℎ𝑏2

(
𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,2 + 𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,1 + 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,4

+ 1

𝑑

∞∑
𝑗=0

(
𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑗,1 − 𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑗,2

)
𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑐)𝑇 𝐼 𝐼 𝐼𝑝, 𝑗

𝑄𝐼 𝐼 𝐼
𝑚, 𝑗,𝑟 (𝑏)

)
, (A.140)

𝐻ℎ,𝑝 =
𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,2 + 𝑇 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑝,3

ℎ𝑏2
, (A.141)

In surge (1):

𝐻𝑖, 𝑝 =
𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑝,3

𝑏ℎ
, (A.142)

In heave (1):

𝐻𝑑,𝑝 = −
2𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,1

𝑏(ℎ − 𝑑0)
, (A.143)

𝐻𝑖, 𝑝 =
𝑇𝑉,ℎ𝑒𝑎𝑣𝑒𝑝,2

𝑏ℎ
, (A.144)

In pitch (1):
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A.3 Exciting forces and moments

𝐻𝑑,𝑝 = −
2𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,1

𝑏2(ℎ − 𝑑0)
𝑘, (A.145)

𝐻𝑖, 𝑝 =
𝑇𝑉,𝑝𝑖𝑡𝑐ℎ𝑝,2 + 𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑝,3

𝑏2ℎ
. (A.146)

Finally, the remaining 𝐴 coefficients are given by:

𝐴𝐼 𝐼2, 𝑝 = 𝐻𝑎,𝑝 +
𝑁𝐼𝑉∑
𝑞=0

𝐻 (1)
𝑞,𝑝𝐴

𝐼𝑉
1,𝑞, (A.147)

𝐴𝐼 𝐼1, 𝑝 = 𝐻𝑏,𝑝 +
𝑁𝐼∑
𝑞=0

𝐻 (2)
𝑞,𝑝𝐴

𝐼
𝑞, (A.148)

𝐴𝐼 𝐼 𝐼1, 𝑝 = 𝐻𝑐,𝑝 +
𝑁𝐼∑
𝑞=0

𝐻 (3)
𝑞,𝑝𝐴

𝐼
𝑞, (A.149)

𝐴𝑉𝑝 = 𝐻𝑑,𝑝 +
𝑁𝐼𝑉∑
𝑞=0

𝐻 (4)
𝑞,𝑝𝐴

𝐼𝑉
2,𝑞, (A.150)

𝐴𝐼 𝐼 𝐼2, 𝑝 = 𝐻𝑒,𝑝 + 𝐻 𝑓 , 𝑝𝐴
𝐼 𝐼 𝐼
1, 𝑝, (A.151)

𝐴𝐼𝑉1, 𝑝 = 𝐻 𝑗 , 𝑝 +
𝑁𝐼𝑉∑
𝑞=0

𝐻 (11)
𝑞,𝑝 𝐴

𝐼𝑉
2,𝑞 (A.152)

A.3 Exciting forces and moments

A.3.1 Dock without spar

The semi-analytical expressions of the forces in surge and heave and moment in
pitch from the scattering of incident waves on the dock without spar, as derived in
Sec. 2.2.2, are given by:

𝐹𝑆1 =2𝑖𝜔2𝑏𝜋𝜁𝐴𝜌

[
𝑎

∞∑
𝑞=0

𝐴𝐼𝑉1,𝑞𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 − 𝑏

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,1,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞 − 𝑐

∞∑
𝑞=0

𝐴𝐼1,𝑞𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1

]
𝑒−𝑖𝜔𝑡 ,

(A.153)
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𝐹𝑆3 =2𝜋𝑏𝜔2𝜁𝐴𝜌

[ ∞∑
𝑞=0

𝜖𝑞 (−1)𝑞
(
𝐴𝐼 𝐼1,0,𝑞

∫ 𝑐

𝑎
𝑃𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟 + 𝐴𝐼 𝐼2,0,𝑞

∫ 𝑐

𝑎
𝑄𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟
)

−
∞∑
𝑞=0

(
𝐴𝐼 𝐼 𝐼1,0,𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟 + 𝐴𝐼 𝐼 𝐼2,0,𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟
)
𝑁

− 1
2

𝑞

]
𝑒−𝑖𝜔𝑡 , (A.154)

𝐹𝑆5 =2𝑖𝜔2𝜁𝐴𝜌

[
𝑏𝑎𝜋

∞∑
𝑞=0

𝐴𝐼𝑉1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,2

− 𝜋𝑏
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
(
𝐴𝐼 𝐼1,1,𝑞

∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟 + 𝐴𝐼 𝐼2,1,𝑞

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)

+ 𝜋𝑏
∞∑
𝑞=0

(
𝐴𝐼 𝐼 𝐼1,1,𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟 + 𝐴𝐼 𝐼 𝐼2,1,𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)
𝑁

− 1
2

𝑞

− 𝜋𝑏2
∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,1,𝑞𝑇
𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ
𝑞,1 − 𝑏𝑐𝜋

∞∑
𝑞=0

𝐴𝐼1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,1

]
𝑒−𝑖𝜔𝑡 . (A.155)

A.3.2 Dock with spar

The loads on the dock and spar derived in Sec. 2.2.3, are given by:

𝐹 (2) , 𝑆
1 = − 2𝑖𝜔2𝑏𝜋𝜁𝐴𝜌

[
𝑐

∞∑
𝑞=0

𝐴𝐼1,𝑞𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 + 𝑏

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,1,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞 − 𝑎

∞∑
𝑞=0

𝐴𝐼𝑉1,1,𝑞𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2

]
𝑒−𝑖𝜔𝑡 ,

(A.156)

𝐹 (1) , 𝑆
1 = − 2𝑖𝜔2𝑏𝜋𝜁𝐴𝜌

[
𝑎0

∞∑
𝑞=0

𝐴𝐼𝑉2,1,𝑞𝑇
𝑆𝑢𝑟𝑔𝑒
𝑞,4

]
𝑒−𝑖𝜔𝑡 , (A.157)

𝐹 (2) , 𝑆
3 =𝜔2𝜁𝐴𝜌

[
2𝜋𝑏

∞∑
𝑞=0

𝜖𝑞 (−1)𝑞
(
𝐴𝐼 𝐼1,0,𝑞

∫ 𝑐

𝑎
𝑃𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟 + 𝐴𝐼 𝐼2,0,𝑞

∫ 𝑐

𝑎
𝑄𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟
)

− 2𝜋𝑏
∞∑
𝑞=0

(
𝐴𝐼 𝐼 𝐼1,0,𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟 + 𝐴𝐼 𝐼 𝐼2,0,𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟
)
𝑁

− 1
2

𝑞

]
𝑒−𝑖𝜔𝑡 ,

(A.158)
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A.4 Added mass and damping coefficients

𝐹 (1) , 𝑆
3 =2𝜔2𝜁𝐴𝜌𝜋𝑏

[
1

2
𝑎20𝐴

𝑉
0,0 + 2

∞∑
𝑞=1

(−1)𝑞 𝑎0(ℎ − 𝑑0)
𝑞𝜋

𝐼1( 𝑞𝜋𝑎0
(ℎ−𝑑0 ) )

𝐼0( 𝑞𝜋𝑎0
(ℎ−𝑑0 ) )

𝐴𝑉0,𝑞

]
𝑒−𝑖𝜔𝑡 ,

(A.159)

𝐹 (2) , 𝑆
5 =2𝑖𝜔2𝜁𝐴𝜌

[
𝑏𝑎𝜋

∞∑
𝑞=0

𝐴𝐼𝑉1,1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,1

− 𝜋𝑏
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
(
𝐴𝐼 𝐼1,1,𝑞

∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟 + 𝐴𝐼 𝐼2,1,𝑞

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)

+ 𝜋𝑏
∞∑
𝑞=0

(
𝐴𝐼 𝐼 𝐼1,1,𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟 + 𝐴𝐼 𝐼 𝐼2,1,𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)
𝑁

− 1
2

𝑞

− 𝜋𝑏2
∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,1,𝑞𝑇
𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ
𝑞,1 − 𝑏𝑐𝜋

∞∑
𝑞=0

𝐴𝐼1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,2

]
𝑒−𝑖𝜔𝑡 , (A.160)

𝐹 (1) , 𝑆
5 = − 2𝑖𝜔2𝜁𝐴𝜌𝑏𝜋

[
𝑎0

∞∑
𝑞=0

𝐴𝐼𝑉2,1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,3 + 𝑎

3
0

4
𝐴𝑉1,0 + 2

∞∑
𝑞=1

(−1)𝑞
∫ 𝑎0
0

𝐼1( 𝑞𝜋𝑟
(ℎ−𝑑0 ) )𝑟2𝑑𝑟

𝐼1( 𝑞𝜋𝑎0
(ℎ−𝑑0 ) )

𝐴𝑉1,𝑞

]
𝑒−𝑖𝜔𝑡

(A.161)

A.4 Added mass and damping coefficients

A.4.1 Dock without spar

The semi-analytical expressions of the added mass and damping coefficients derived
in Sec. 2.3.1 for the dock without spar are:

𝑎1,1 + 𝑖
𝑏1,1
𝜔

= − 𝜌𝜋𝑏𝑐
∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 𝐴𝐼𝑞

+ 𝜌𝜋𝑏𝑎
∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 𝐴𝐼𝑉𝑞 − 𝜌𝜋𝑏2

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞 , (A.162)

𝑎3,3 + 𝑖
𝑏3,3
𝜔

= − 𝜌𝜋

8𝑙

[
𝑐4 − 𝑎4 − 4𝑙2(𝑐2 − 𝑎2)]

+ 𝜌𝜋
(
𝑑 − 𝑔

𝜔2

)
(𝑐2 − 𝑏2)

+ 2𝜌𝜋𝑏
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
[∫ 𝑐

𝑎
𝑃𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼2,𝑞
]
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− 2𝜌𝜋𝑏
∞∑
𝑞=0

𝑁
− 1

2
𝑞

[∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼 𝐼2,𝑞

]
, (A.163)

𝑎5,5 + 𝑖
𝑏5,5
𝜔

= − 𝜌𝜋

48𝑙
(𝑐6 − 𝑎6 − 6𝑙2(𝑐4 − 𝑎4))

+ 𝜌𝜋𝑏
2𝑑2

3𝜔2

(
𝑑𝜔2 − 3𝑔

2

)
+ 𝜌𝜋

4𝜔2
(𝑐4 − 𝑏4) (𝑑𝜔2 − 𝑔)

− 𝜌𝜋𝑏2𝑐
∞∑
𝑞=0

𝐴𝐼𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,1 + 𝜌𝜋𝑏2𝑎

∞∑
𝑞=0

𝐴𝐼𝑉𝑞 𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,2

− 𝜌𝜋𝑏2
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
[∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼2,𝑞
]

− 𝜌𝜋𝑏2
∞∑
𝑞=0

[
− 𝑁− 1

2
𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞

+
(
𝑏𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,1 − 𝑁− 1

2
𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)
𝐴𝐼 𝐼 𝐼2,𝑞

]
, (A.164)

𝑎1,5 + 𝑖
𝑏1,5
𝜔

=𝜌𝜋𝑏2𝑑

(
𝑔

𝜔2
− 𝑑

2

)
− 𝜌𝜋𝑏3

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞

+ 𝜌𝜋𝑎𝑏2
∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 𝐴𝐼𝑉𝑞 − 𝜌𝜋𝑐𝑏2

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 𝐴𝐼𝑞, (A.165)

𝑎5,1 + 𝑖
𝑏5,1
𝜔

=𝜌𝜋𝑎𝑏
∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,2 𝐴𝐼𝑉𝑞 − 𝜌𝜋𝑐𝑏
∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,1 𝐴𝐼𝑞

− 𝜌𝜋𝑏
∞∑
𝑞=0

𝜖𝑞 (−1)𝑞
[∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼2,𝑞
]

𝜌𝜋𝑏
∞∑
𝑞=0

𝑁
− 1

2
𝑞

[∫ 𝑐

𝑎
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼2,𝑞

]
− 𝜌𝜋𝑏2

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ
𝑞,1 . (A.166)

Newman (1962) established relationships between the radiation damping and the
amplitude (but not the phase) of the exciting forces and moments for axi-symmetrical
bodies, given by:

|𝐹𝑆1 | = 𝜁𝐴(
4𝜌3𝑔

𝜔3
𝑏1,1(𝜔))

1
2 (A.167)
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A.4 Added mass and damping coefficients

|𝐹𝑆3 | = 𝜁𝐴(
2𝜌3𝑔

𝜔3
𝑏3,3(𝜔))

1
2 (A.168)

|𝐹𝑆5 | = 𝜁𝐴(
4𝜌3𝑔

𝜔3
𝑏5,5(𝜔))

1
2 (A.169)

A.4.2 Dock with spar

Added mass and damping coefficients for the dock with spar derived in Sec. 2.3.2
are:

𝑎 (1)1,1 + 𝑖
𝑏 (1)1,1

𝜔
= − 𝜌𝜋𝑎0𝑏

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,3 𝐴𝐼𝑉2,𝑞, (A.170)

𝑎 (1)3,3 + 𝑖
𝑏 (1)3,3

𝜔
=𝜋𝜌

4(ℎ − 𝑑0)2𝑎20 − 𝑎40
8(ℎ − 𝑑0)

+ 𝜋𝜌𝑏𝑎20𝐴𝑉0 + 4𝜋𝜌𝑏
∞∑
𝑞=1

(−1)𝑞𝑎0(ℎ − 𝑑0)𝐼1
(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
𝑞𝜋𝐼0

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) 𝐴𝑉𝑞 ,

(A.171)

𝑎 (1)5,5 + 𝑖
𝑏 (1)5,5

𝜔
= − 𝜌𝜋𝑎0𝑏2

∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,3 𝐴𝐼𝑉2,𝑞 − 𝜌𝜋
𝑎40
8

𝑎20/6 − (ℎ − 𝑑0)2
ℎ − 𝑑0 − 𝜌𝑏2 𝑎

3
0

4
𝐴𝑉0

− 2𝜌𝜋𝑏2
∞∑
𝑞=1

(−1)𝑞𝑎0(ℎ − 𝑑0)2

𝑞2𝜋2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) [
𝑞𝜋

ℎ − 𝑑0𝑎0𝐼0
(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
− 2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

)]
𝐴𝑉𝑞 ,

(A.172)

𝑎 (1)1,5 + 𝑖
𝑏 (1)1,5

𝜔
= − 𝜌𝜋𝑎0𝑏2

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,3 𝐴𝐼𝑉2,𝑞, (A.173)

𝑎 (1)5,1 + 𝑖
𝑏 (1)5,1

𝜔
= − 𝜌𝜋𝑎20𝑏

∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,3 𝐴𝐼𝑉2,𝑞

− 𝜌𝜋𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐴𝑉0

𝑎30
4

+ 2
∞∑
𝑞=0

𝐴𝑉𝑞 (−1)𝑞
𝑎0(ℎ − 𝑑0)2

𝑞2𝜋2

*++++,
𝑞𝜋𝑎0𝐼0

(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
(ℎ − 𝑑0)𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) − 2

-..../
⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.174)
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Chapter A Domain decomposition: semi-analytical results

𝑎 (2)1,1 + 𝑖
𝑏 (2)1,1

𝜔
= − 𝜌𝜋𝑏𝑐

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 𝐴𝐼𝑞 + 𝜌𝜋𝑏𝑎

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 𝐴𝐼𝑉1,𝑞 − 𝜌𝜋𝑏2

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞 ,

(A.175)

𝑎 (2)3,3 + 𝑖
𝑏 (2)3,3

𝜔
= − 𝜌𝜋

8𝑙

[
𝑐4 − 𝑎4 − 4𝑙2(𝑐2 − 𝑎2)] + 𝜌𝜋 (

(𝑑 − 𝑔

𝜔2

)
(𝑐2 − 𝑏2)

+ 2𝜌𝜋𝑏
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
(
[
∫ 𝑐

𝑎
𝑃𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼2,𝑞
]

− 2𝜌𝜋𝑏
∞∑
𝑞=0

𝑁
− 1

2
𝑞

(
[
∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

0,𝑞 (𝑟)𝑟𝑑𝑟𝐴𝐼 𝐼 𝐼2,𝑞

]
,

(A.176)

𝑎 (2)5,5 + 𝑖
𝑏 (2)5,5

𝜔
= − 𝜌𝜋

48𝑙

(
(𝑐6 − 𝑎6 − 6𝑙2(𝑐4 − 𝑎4)

)
+ 𝜌𝜋𝑏

2𝑑2

3𝜔2

(
(𝑑𝜔2 − 3𝑔

2

)
+ 𝜌𝜋

4𝜔2
(𝑐4 − 𝑏4) (𝑑𝜔2 − 𝑔)

− 𝜌𝜋𝑏2𝑐
∞∑
𝑞=0

𝐴𝐼𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,1 + 𝜌𝜋𝑏2𝑎

∞∑
𝑞=0

𝐴𝐼𝑉1,𝑞𝑇
𝐵,𝑝𝑖𝑡𝑐ℎ
𝑞,2

− 𝜌𝜋𝑏2
∞∑
𝑞=0

(−1)𝑞𝜖𝑞
[∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼2,𝑞
]

− 𝜌𝜋𝑏2
∞∑
𝑞=0

[
−𝑁− 1

2
𝑞

∫ 𝑐

𝑏
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞

+
(
𝑏𝑇 𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ𝑞,1 − 𝑁− 1

2
𝑞

∫ 𝑐

𝑏
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟
)
𝐴𝐼 𝐼 𝐼2,𝑞

]
, (A.177)

𝑎 (2)1,5 + 𝑖
𝑏 (2)1,5

𝜔
=𝜌𝜋𝑏2𝑑

(
𝑔

𝜔2
− 𝑑

2

)
− 𝜌𝜋𝑏3

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼,𝑠𝑢𝑟𝑔𝑒
𝑞

+ 𝜌𝜋𝑎𝑏2
∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,2 𝐴𝐼𝑉1,𝑞 − 𝜌𝜋𝑐𝑏2

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,1 𝐴𝐼𝑞, (A.178)

𝑎 (2)5,1 + 𝑖
𝑏 (2)5,1

𝜔
=𝜌𝜋𝑎𝑏

∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,2 𝐴𝐼𝑉1,𝑞 − 𝜌𝜋𝑐𝑏
∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,1 𝐴𝐼𝑞

− 𝜌𝜋𝑏
∞∑
𝑞=0

𝜖𝑞 (−1)𝑞
[∫ 𝑐

𝑎
𝑃𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼2,𝑞
]
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A.4 Added mass and damping coefficients

𝜌𝜋𝑏
∞∑
𝑞=0

𝑁
− 1

2
𝑞

[∫ 𝑐

𝑎
𝑃𝐼 𝐼 𝐼1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼1,𝑞 +

∫ 𝑐

𝑎
𝑄𝐼 𝐼 𝐼

1,𝑞 (𝑟)𝑟2𝑑𝑟𝐴𝐼 𝐼 𝐼2,𝑞

]
− 𝜌𝜋𝑏2

∞∑
𝑞=0

𝐴𝐼 𝐼 𝐼2,𝑞𝑇
𝐼 𝐼 𝐼, 𝑝𝑖𝑡𝑐ℎ
𝑞,1 . (A.179)

𝑑 (1)1,1 + 𝑖
𝑒 (1)1,1

𝜔
= − 𝜌𝜋𝑎0𝑏

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,3 𝐴𝐼𝑉2,𝑞, (A.180)

𝑑 (1)3,3 + 𝑖
𝑒 (1)3,3

𝜔
=2𝜋𝜌𝑏

𝑎20
2
𝐴𝑉0 + 2𝑏

∞∑
𝑞=1

(−1)𝑞𝑎0(ℎ − 𝑑0)𝐼1
(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
𝑞𝜋𝐼0

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) 𝐴𝑉𝑞 , (A.181)

𝑑 (1)5,5 + 𝑖
𝑒 (1)5,5

𝜔
= − 𝜌𝜋𝑎0𝑏2

∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,3 𝐴𝐼𝑉2,𝑞 − 𝜌𝑏2
𝑎30
4
𝐴𝑉0

− 2𝜌𝜋𝑏2
∞∑
𝑞=1

(−1)𝑞𝑎0(ℎ − 𝑑0)2

𝑞2𝜋2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) [
𝑞𝜋

ℎ − 𝑑0𝑎0𝐼0
(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
− 2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

)]
𝐴𝑉𝑞 ,

(A.182)

𝑑 (1)1,5 + 𝑖
𝑒 (1)1,5

𝜔
= − 𝜌𝜋𝑎0𝑏2

∞∑
𝑞=0

𝑇
𝐵,𝑠𝑢𝑟𝑔𝑒
𝑞,3 𝐴𝐼𝑉2,𝑞, (A.183)

𝑑 (1)5,1 + 𝑖
𝑒 (1)5,1

𝜔
= − 𝜌𝜋𝑎0𝑏

∞∑
𝑞=0

𝑇𝐵,𝑝𝑖𝑡𝑐ℎ𝑞,3 𝐴𝐼𝑉2,𝑞 − 𝜌𝑏
𝑎30
4
𝐴𝑉0

− 2𝜌𝜋𝑏
∞∑
𝑞=1

(−1)𝑞𝑎0(ℎ − 𝑑0)2

𝑞2𝜋2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

) [
𝑞𝜋

ℎ − 𝑑0𝑎0𝐼0
(
𝑞𝜋𝑎0
ℎ − 𝑑0

)
− 2𝐼1

(
𝑞𝜋𝑎0
ℎ − 𝑑0

)]
𝐴𝑉𝑞 .

(A.184)
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A.5 Convergence study

Results of a convergence study carried out for the dock without spar in WAMIT
are presented in Fig. A.1 for the scattering loads and in Fig. A.2 for the added
mass and damping coefficients. It includes both a mesh convergence study for the
simulations in WAMIT, and a convergence study on the number of modes for the
DD method. Simulations in WAMIT shows a peak in the phases of the loads or
on the damping coefficients at the natural sloshing natural frequency, even for the
finest mesh, and most likely due to numerical errors. On the other hand, added
mass coefficients converged even for the coarsest mesh considered (see Fig. 2.4 in
Sec. 2.4.1). The semi-analytical scattering loads converge for very few eigenmodes
in each subdomain. For the radiation problem in heave and pitch however, a higher
number of modes are required. This was expected as the choice of eigenmodes
chosen in the subdomains at the bottom of the dock are not adapted for corner
flows. Better eigenfunction expansions for the radiation problem in heave are for
example presented by Faltinsen et al. (2007).
When the dimensions of the bilge-boxes goes to 0, the added mass and damping
coefficients with the present semi-analytical method converge to the results from
Mavrakos (1988) for the circular cylinder with thick walls. Comparisons between
both results are shown in Figs. A.3 and A.4 for (𝑐 − 𝑏)/𝑎 = 0.01 and 𝑠/𝑎 = 0.01.
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A.5 Convergence study

Figure A.1: Non-dimensional amplitude of exciting forces and moments (left axis) and
their phases (right axis) computed by the present DD method and the panel software
WAMIT. Simulations for the dock without spar. Top: force in surge. Middle: force in
heave. Bottom: moment in pitch.
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Chapter A Domain decomposition: semi-analytical results

Figure A.2: Non-dimensional added mass (left axis) and damping coefficients (right
axis) computed by the present DD method and the panel software WAMIT. Simulations
for the dock without spar. In the legend, 𝑎 and 𝑏 stand for the added mass and damping
coefficients, respectively, and the number of modes associated to the domain decomposition
(DD) method are given in the order from 𝑁𝐼 to 𝑁𝐼𝑉 . From top to bottom: coefficients in
surge, heave, pitch, and coupled coefficients in surge and pitch.
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A.5 Convergence study

Figure A.3: Non-dimensional added mass coefficients from Mavrakos (1985), compared
with the current DD model for the case without spar and for small dimensions of the bilge
boxes: (𝑐 − 𝑏)/𝑎 = 0.01 and 𝑠/𝑎 = 0.01. DD simulations were run with 𝑁𝐼 = 100, 𝑁𝐼 𝐼 = 20,
𝑁𝐼 𝐼 𝐼 = 20 and 𝑁𝐼𝑉 = 100.
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Figure A.4: Non-dimensional damping coefficients from Mavrakos (1985), compared
with the current DD model for the case without spar and for small dimensions of the bilge
boxes: (𝑐 − 𝑏)/𝑎 = 0.01 and 𝑠/𝑎 = 0.01. DD simulations were run with 𝑁𝐼 = 100, 𝑁𝐼 𝐼 = 20,
𝑁𝐼 𝐼 𝐼 = 20 and 𝑁𝐼𝑉 = 100.
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B | Semi-analytical model -
Complements

B.1 Few properties of Bessel functions

Bessel functions are the general solutions of the equation (Olver et al., 2010):

𝑧2
𝑑2𝑤

𝑑𝑧2
+ 𝑧 𝑑𝑤

𝑑𝑧
+

(
𝑧2 − 𝜈2

)
𝑤 = 0, (B.1)

which in particular appears when expressing the Laplace equation in cylindrical
coordinates (Faltinsen and Timokha, 2009). For real numbers 𝑧, the Bessel functions
of the first and second king are the general solutions of (B.1):

𝐽𝜈 (𝑧) =
(
1

2
𝑧

)𝜈 ∞∑
𝑘=0

(−1)𝑘
(
1
4 𝑧

2
) 𝑘

𝑘!Γ(𝜈 + 𝑘 + 1) , (B.2)

𝑌𝜈 (𝑧) = 𝐽𝜈 (𝑧) cos(𝜈𝜋) − 𝐽−𝜈 (𝑧)
sin(𝜈𝜋) , (B.3)

where the Gamma function is defined for all strictly positive real number as:

Γ(𝑧) =
∫ ∞

0
𝑒−𝑡 𝑡𝑧−1𝑑𝑡. (B.4)

If 𝑧 = 𝑛 is an integer, then Gamma verifies Γ(1) = 1, Γ(𝑛 + 1) = 𝑛!. For complex
numbers 𝑧, Eq. (B.1) more generally also admit the Hankel functions of first and

second kind, respectively 𝐻 (1)
𝜈 and 𝐻 (2)

𝜈 , as solutions. These are related to the
Bessel functions of first and second kind by:

𝐻 (1)
𝜈 (𝑧) = 𝐽𝜈 (𝑧) + 𝑖𝑌𝜈 (𝑧), (B.5)

𝐻 (2)
𝜈 (𝑧) = 𝐽𝜈 (𝑧) − 𝑖𝑌𝜈 (𝑧). (B.6)

When the order 𝜈 is a strictly positive integer, the following properties are verified:

𝐽−𝑛 (𝑧) = (−1)𝑛𝐽𝑛 (𝑧), (B.7)

𝑌−𝑛 (𝑧) = (−1)𝑛𝑌𝑛 (𝑧). (B.8)

The Bessel equation Eq. (B.1) becomes the modified Bessel equation when replacing
𝑧 by ±𝑖𝑧, and has for solutions the modified Bessel functions of the first and second
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kinds 𝐼𝜈 and 𝐾𝜈. Many relationships exist between the Bessel and modified Bessel
functions, the following ones have in particular been used in this thesis:

𝐼𝜈 (𝑧) = 𝑒∓𝜈𝜋𝑖/2𝐽𝜈
(
𝑧𝑒±𝜋𝑖/2

)
, −𝜋 ≤ ±ph 𝑧 ≤ 1

2
𝜋, (B.9)

𝐾𝜈 (𝑧) = 1

2
𝜋𝑖𝑒𝜈𝜋𝑖/2𝐻 (1)

𝜈

(
𝑧𝑒𝜋𝑖/2

)
, −𝜋 ≤ ph 𝑧 ≤ 1

2
𝜋. (B.10)

Bessel and modified bessel functions are shown in Fig. B.1.

Figure B.1: Bessel (left) and modified Bessel (right) functions of the first and second
kinds for real arguments 𝑥, from the ”NIST Handbook of Mathematical Functions” by Olver
et al. (2010).

Sorolla et al. (2013) use the recurrence properties of the zeros of cross products of
Bessel functions for increasing orders to construct efficient numerical algorithms to
estimate them. This solution has been adopted in our work to calculate the wave
numbers associated to eigenmodes in the annular domain between the dock and
the spar in Sec.3.1. They were coded in Python, and are given here from Listings
B.1 to B.4. Analytical asymptotic formulas could alternatively be found in the
literature to estimate these roots (Olver et al., 2010; Ziener et al., 2015; Yue et al.,
2018).

from math import pi
from numpy import zeros , nan
from s c ipy . s p e c i a l import jv , yv , jvp , yvp

de f Algo1 ( a0 , a , smax) :
Eps=10 ( 3) # Accuracy c r i t e r i um . Eps=10 ( 3) i s recomended
# by So r o l l a e t a l . (2013) .
imax=500 # Maximum i t e r a t i o n s

q=a/a0
C0=ze ro s ( smax)

f o r s i n range ( 1 , ( smax+1) ) :
i=0
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Chapter B Semi-analytical model - Complements

e r r=1
Xi=s � pi /(q�1)
whi l e ( err>Eps ) & ( i<=imax ) :

## inte rmed ia t e c a l c u l a t i o n s
f 0=jv (0 , q�Xi ) �yv (0 , Xi )�jv (0 , Xi ) �yv (0 , q�Xi )

f0p=q� jvp (0 , q�Xi , 1 ) �yv (0 , Xi )+jv (0 , q�Xi ) �yvp (0 , Xi , 1 ) \
�jvp (0 , Xi , 1 ) �yv (0 , q�Xi )�q� jv (0 , Xi ) �yvp (0 , q�Xi , 1 )

f0pp=q��2� jvp (0 , q�Xi , 2 ) �yv (0 , Xi ) \
+2�q� jvp (0 , q�Xi , 1 ) �yvp (0 , Xi , 1 )+jv (0 , q�Xi ) �yvp (0 , Xi , 2 ) \
�jvp (0 , Xi , 2 ) �yv (0 , q�Xi )�2�q� jvp (0 , Xi , 1 ) �yvp (0 , q�Xi , 1 ) \
�q��2� jv (0 , Xi ) �yvp (0 , q�Xi , 2 )

F0=f0 / f0p

F0p=(f0p��2� f 0 � f0pp ) /( f0p ��2)

## I t e r a t i v e s o l u t i o n
Xit=Xi�F0/F0p
e r r=abs ( ( Xit�Xi ) /Xit )
i=i+1
Xi=Xit

C0 [ s�1]=Xi

C0=C0 . r e a l

return C0

Listing B.1: Algorithm 1 from Sorolla et al. (2013), calculating the roots of 𝑓0 (𝑥) =
𝐽0 (𝑞𝑥)𝑌0 (𝑥) − 𝐽0 (𝑥)𝑌0 (𝑞𝑥), 𝑞 = 𝑎/𝑎0.

de f Algo2 (C0 , a0 , a , vmax , smax) :
Eps=10��(�5) # Accuracy c r i t e r i um . Eps=10��(�3) i s recomended
# by So r o l l a e t a l . (2013) , but 10��(�5) i s needed to obta in
# the va lue s presented in the a r t i c l e ’ s t ab l e .
imax=500 # Maximum i t e r a t i o n s .
nsub=10 # Number o f subdomains .

q=a/a0

C1=ze ro s ( ( vmax+1,smax) )
C1 [ 0 , : ]=C0

f o r v i n range (1 ,vmax) :
f o r s i n range ( 1 , ( smax�v ) ) :

i=0
e r r=1
count=0
E=max(Eps�(C1 [ v�1, s ]�C1 [ v�1,s�1]) ,Eps )
de l t a=(C1 [ v�1, s ]�C1 [ v�1,s�1]) /nsub
whi l e ( err>Eps ) & ( count<nsub ) :
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Xi=C1 [ v�1,s�1]+E+count� de l t a
count=count+1
whi l e (Xi>=C1 [ v�1,s�1]) & (Xi<C1 [ v�1, s ] ) & ( i<=imax ) :

fv=jv (v , q�Xi ) �yv (v , Xi )�jv (v , Xi ) �yv (v , q�Xi )
fvp=q� jvp (v , q�Xi , 1 ) �yv (v , Xi )+jv (v , q�Xi ) �yvp (v , Xi , 1 ) \
�jvp (v , Xi , 1 ) �yv (v , q�Xi )�q� jv (v , Xi ) �yvp (v , q�Xi , 1 )

Xit=Xi�fv / fvp
e r r=abs ( ( Xit�Xi ) /Xit )
i=i+1
Xi=Xit

C1 [ v , s�1]=Xi

return C1

Listing B.2: Algorithm 2 from Sorolla et al. (2013), calculating the roots of 𝑓𝑣 (𝑥) =
𝐽𝑣 (𝑞𝑥)𝑌𝑣 (𝑥) − 𝐽𝑣 (𝑥)𝑌𝑣 (𝑞𝑥), 𝑞 = 𝑎/𝑎0.

de f Algo3 (C1 , a0 , a , vmax , smax) :
Eps=10��(�5)
imax=500
nsub=10
de l t =10��(�4)

q=a/a0

C1t i ld=C1 [ 1 , 0 : ( smax�1) ]

C=ze ro s ( ( vmax+1,smax) )
C[ : , : ] = nan
C[ 0 , 1 : ]= C1t i ld
C[0 ,0 ]= de l t

f o r v i n range (1 ,vmax) :
f o r s i n range ( 1 , ( smax�v ) ) :

i=0
e r r=1
count=0
E=max(Eps�(C[ v�1, s ]�C[ v�1,s�1]) ,Eps )
de l t a=(C[ v�1, s ]�C[ v�1,s�1]) /nsub
whi l e ( err>Eps ) & ( count<nsub ) :

Xi=C[ v�1,s�1]+E+count� de l t a
count=count+1
whi l e ( i<=imax ) & (Xi<C[ v�1, s ] ) & (Xi>=C[ v�1,s�1]) :

f t v=jvp (v , q�Xi , 1 ) �yvp (v , Xi , 1 ) \
�jvp (v , Xi , 1 ) �yvp (v , q�Xi , 1 )

f tvp=q� jvp (v , q�Xi , 2 ) �yvp (v , Xi , 1 ) \
+jvp (v , q�Xi , 1 ) �yvp (v , Xi , 2 ) \
�jvp (v , Xi , 2 ) �yvp (v , q�Xi , 1 ) \
�q� jvp (v , Xi , 1 ) �yvp (v , q�Xi , 2 )

XXXIV



Chapter B Semi-analytical model - Complements

Xit=Xi�f t v / f tvp
e r r=abs ( ( Xit�Xi ) /Xit )
i=i+1
Xi=Xit

C[ v , s�1]=Xi

C[0 ,0 ]= C1t i ld [ 0 ]

return C

Listing B.3: Algorithm 3 from Sorolla et al. (2013), calculating the roots of 𝑓𝑣 (𝑥) =
𝐽′𝑣 (𝑞𝑥)𝑌 ′

𝑣 (𝑥) − 𝐽′𝑣 (𝑥)𝑌 ′
𝑣 (𝑞𝑥), 𝑞 = 𝑎/𝑎0.

de f RootCrossProductBesse l ( a0 , a ,Mm,Mr) :
smax=Mr+Mm # Note that smax must be s t r i c t l y h igher than vmax

C0=Algo1 ( a0 , a , smax+1)
C1=Algo2 (C0 , a0 , a ,Mm, smax+1)
C=Algo3 (C1 , a0 , a ,Mm, smax)

Roots=(C [ : , 0 :Mr ] ) . r e a l

return Roots

Listing B.4: Algorithms from Sorolla et al. (2013) coded in Python. a0 and a are
respectively the radius of the spar and the internal radius of the dock, Mm is the desired
number of modes, and Mr the desired number of roots per mode.

Both the Bessel functions 𝐽𝑝 and the cross product of Bessel functions Ψ𝑝,𝑞 defined
in Sec. 3.1 verify the following orthogonal properties (Olver et al., 2010):

∫ 𝑎

0
𝐽𝑝

(
𝑘 𝑝,𝑖𝑟

)
𝐽𝑝

(
𝑘 𝑝, 𝑗𝑟

)
𝑟𝑑𝑟 = 𝛿𝑖, 𝑗𝑎

2 [𝜄2𝑝,𝑖 − 𝑝2]
𝐽2𝑝 (𝜄𝑝,𝑖)
2𝜄2𝑝,𝑖

, (B.11)

∫ 𝑎

𝑎0

𝑟Ψ𝑝,𝑖 (𝑟)Ψ𝑝, 𝑗 (𝑟)𝑑𝑟 = 𝛿𝑖, 𝑗
[
𝑟2

2
Ψ2
𝑝,𝑖 (𝑟)

]𝑎
𝑎0

= 𝛿𝑖, 𝑗𝜐𝑝,𝑖, (B.12)

where 𝛿𝑖, 𝑗 is the Kronecker symbol.

B.2 Irregular frequencies

B.2.1 Circular cylinder

The irregular frequencies are found from the Spectral problem 3.1, replacing the
Neumann boundary condition by the Dirichlet boundary condition 𝜑 = 0 on 𝑆0.
The solutions of the Laplace equation are once again found by separating the
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variables, and the new eigen functions are determined after imposing the new body
boundary conditions. After few calculations, it comes:

𝜑𝑝,𝑞 (𝑟, 𝜃, 𝑧) =
𝐽𝑝

(
𝜄̃𝑝,𝑞

𝑟
𝑎

)
𝐽𝑝 ( 𝜄̃𝑝,𝑞)

sinh
(
𝜄̃𝑝,𝑞 (𝑧+𝑑)

𝑎

)
sinh

(
𝜄̃𝑝,𝑞𝑑
𝑎

) ×
⎧⎪⎪⎨⎪⎪⎩

cos(𝑝𝜃)

sin(𝑝𝜃)
(B.13)

associated with the irregular frequencies:

𝜎𝑖𝑟𝑟𝑝,𝑞
2
=
𝑔𝜄̃𝑝,𝑞

𝑎
tanh−1

(
𝜄̃𝑝,𝑞𝑑

𝑎

)
(B.14)

for (𝑝, 𝑞) ∈ N2 and where 𝜄̃𝑝,𝑞 are now the roots by increasing order of 𝐽𝑝 ( 𝜄̃𝑝,𝑞) = 0.
The corresponding irregular periods are in Table B.1 for the closed-bottom dock
with the dimensions of the experimental model. We observe that the irregular are
in the range of the incoming waves tested in the tank.
Thus, a special treatment has been applied in the BEM code WAMIT to avoid
any singular behaviour at these periods. This option is included in the commercial
code, and consist in modelling the body by a dipole distribution on its surface,
instead of the commonly used source distribution (Lee and Newman, 2006). Using
the same formula with the dimensions of the spar gives much higher irregular
frequencies 𝜎𝑖𝑟𝑟𝑝,𝑞

2
𝑏/𝑔 ≥ 33.24.

Table B.1: First five lowest non-dimensional irregular frequencies 𝜎𝑖𝑟𝑟𝑝,𝑞
2
𝑏/𝑔 for a circular

cylinder of radius 𝑎/𝑏 = 0.75 and draught 𝑑/𝑏 = 2.

Modes 𝜎2𝑏/𝑔
𝑝 = 0, 𝑞 = 1 4.54

𝑝 = 1, 𝑞 = 1 7.53

𝑝 = 2, 𝑞 = 1 10.26

𝑝 = 0, 𝑞 = 2 11.10

𝑝 = 3, 𝑞 = 1 12.86

B.2.2 Annular cylinder

For the open-bottom dock, the internal domain inside the mesh is annular. We
neglect the the bilge boxes at the bottom of the dockin this analysis. The boundary
value problem to be solved to find the irregular frequencies met in WAMIT is
now similar to the spectral problem of the annular domain between the dock and
the spar considered in Sec. 3.1.2, with the main difference that we impose now a
Dirichlet body boundary condition on the body surface, which is written:
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𝐽𝑝 (𝑘 𝑝𝑞𝑎)𝑌𝑝 (𝑘 𝑝𝑞𝑏) − 𝐽𝑝 (𝑘 𝑝𝑞𝑏)𝑌𝑝 (𝑘 𝑝𝑞𝑎) = 0, (B.15)

where the roots 𝜄̃𝑝𝑞 = 𝑎𝑘 𝑝𝑞 are calculated from the second algorithm provided
bySorolla et al. (2013), and ordered by increasing values. Irregular frequencies
are then expressed as in Eq. (B.14). The first five lowest frequencies are given
in Table B.2, the first two ones being in the range of simulated frequencies. The
same treatment as in the previous section was applied in WAMIT to remove the
irregular frequencies.

Table B.2: First five lowest non-dimensional irregular frequencies 𝜎𝑖𝑟𝑟𝑝,𝑞
2
𝑏/𝑔 for an

annular cylinder of internal to external radii ratio 𝑎/𝑏 = 0.75 and draught 𝑑/𝑏 = 2.

Modes 𝜎2𝑏/𝑔
𝑝 = 0, 𝑞 = 1 5.33

𝑝 = 1, 𝑞 = 1 5.83

𝑝 = 2, 𝑞 = 1 7.04

𝑝 = 3, 𝑞 = 1 8.55

𝑝 = 4, 𝑞 = 1 10.13

B.3 Hydrodynamic sloshing coefficients

The hydrodynamic coefficients 𝜇 and 𝜆 presented in Eq. (3.65) for the closed-bottom
dock with spar are given below:

𝜇𝑝,𝑞 =
𝜌

𝜅𝑝,𝑞

∫
Σ0

𝜑𝑝,𝑞 (𝑟, 𝜃, 0)2𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏2

𝜅𝑝,𝑞
, (B.16)

𝜆1,1,𝑞 = 𝜌
∫
Σ0

Γ (1)
1 (𝑟, 𝜃, 0)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏√

𝜐1,𝑞

[
− 𝑎20
𝑎2 − 𝑎20

𝐼1,𝑞 −
𝑎2𝑎20(
𝑎2 − 𝑎20

) 𝐼2,𝑞]
,

(B.17)

𝜆2,1,𝑞 = 𝜌
∫
Σ0

Γ (2)
1 (𝑟, 𝜃, 0)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏√

𝜐1,𝑞

[
𝑎2

𝑎2 − 𝑎20
𝐼1,𝑞 +

𝑎2𝑎20(
𝑎2 − 𝑎20

) 𝐼2,𝑞]
,

(B.18)

𝜆3,1,𝑞 = 𝜌
∫
Σ0

Ω(1)
2 (𝑟, 𝜃, 0)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏√

𝜐1,𝑞𝑘1,𝑞
tanh(𝑘1,𝑞 𝑑

2
)G (1)

𝑞 (𝑎, 𝑎0),
(B.19)
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𝜆4,1,𝑞 = 𝜌
∫
Σ0

Ω(2)
2 (𝑟, 𝜃, 0)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏√

𝜐1,𝑞𝑘1,𝑞
tanh(𝑘1,𝑞 𝑑

2
)G (2)

𝑞 (𝑎, 𝑎0),
(B.20)

𝜆5,1,𝑞 = 𝜌
∫
Σ0

𝑟 cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝜌𝜋𝑏√
𝜐1,𝑞

𝐼1,𝑞, (B.21)

where we defined the integrals:

𝐼1,𝑞 =
∫ 𝑎

𝑎0

Ψ1,𝑞 (𝑟)𝑟2𝑑𝑟 = 1

𝑘21,𝑞

[
2𝑟

(
𝑌 ′
1(𝑘1,𝑞𝑎)𝐽1(𝑘1,𝑞𝑟) − 𝐽′1(𝑘1,𝑞𝑎)𝑌1(𝑘1,𝑞𝑟)

)
,

(B.22)

+ 𝑟2𝑘1,𝑞
(−𝑌 ′

1(𝑘1,𝑞𝑎)𝐽0(𝑘1,𝑞𝑟) + 𝐽′1(𝑘1,𝑞𝑎)𝑌0(𝑘1,𝑞𝑟)
) ]𝑟=𝑎

𝑟=𝑎0
(B.23)

𝐼2,𝑞 =
∫ 𝑎

𝑎0

Ψ1,𝑞 (𝑟)𝑑𝑟 = 1

𝑘1,𝑞

[ − 𝑌 ′
1(𝑘1,𝑞𝑎)𝐽0(𝑘1,𝑞𝑟) + 𝐽′1(𝑘1,𝑞𝑎)𝑌0(𝑘1,𝑞𝑟)

]𝑟=𝑎
𝑟=𝑎0

.

(B.24)

We now consider the open-bottom dock with spar, similar as in Sec. 5.2.1. The
radiation potentials 𝜙 (𝑘 ) ,𝐼𝑉,RFS

𝑗 when a rigid free-surface boundary condition is
imposed inside the dock are decomposed in the domain IV into a homogeneous
and particular solutions 𝜙 (𝑘 ) ,𝐼𝑉,RFS

𝑗 = 𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 ,ℎ + 𝜙 (𝑘 ) ,𝐼𝑉,RFS

𝑗 ,𝑚 . We propose the
expansions:

𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 ,ℎ (𝑟, 𝑧) = 𝜓

∞∑
𝑛=0

𝜖𝑛 [𝐴𝐼𝑉1,𝑛𝑃𝐼𝑉𝑛 (𝑟) + 𝐴𝐼𝑉2,𝑛𝑄𝐼𝑉
𝑛 (𝑟)] cos( 𝑛𝜋(𝑧 + ℎ)

ℎ
) (B.25)

𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 ,𝑚 (𝑟, 𝑧) = 0, for 𝑘 = 1 or 𝑘 = 2, 𝑗 = 1, (B.26)

𝜙 (2) ,𝐼𝑉,RFS
5,𝑚 = −𝑟 (𝑧 + ℎ)

2 − 𝑟3

4

2ℎ
(B.27)

Where we redefined the functions 𝑃𝐼𝑉𝑞 𝑄𝐼𝑉
𝑞 similar to the domain II:

𝑃𝐼𝑉0 (𝑟) =
( 𝑟𝑎0 ) − ( 𝑎0𝑟 )
( 𝑎𝑎0 ) − ( 𝑎0𝑎 )

, (B.28)

𝑄𝐼𝑉
0 (𝑟) = ( 𝑎𝑟 ) − ( 𝑟𝑎 )

( 𝑎𝑎0 ) − ( 𝑎0𝑎 )
, (B.29)
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Chapter B Semi-analytical model - Complements

𝑃𝐼𝑉𝑛 (𝑟) = 𝐾1( 𝑛𝜋𝑎0ℎ )𝐼1( 𝑛𝜋𝑟ℎ ) − 𝐼1( 𝑛𝜋𝑎0ℎ )𝐾1( 𝑛𝜋𝑟ℎ )
𝐾1( 𝑛𝜋𝑎0ℎ )𝐼1( 𝑛𝜋𝑎ℎ ) − 𝐼1( 𝑛𝜋𝑎0ℎ )𝐾1( 𝑛𝜋𝑎ℎ ) , 𝑛 ∈ N

∗, (B.30)

𝑄𝐼𝑉
𝑛 (𝑟) = 𝐾1( 𝑛𝜋𝑟ℎ )𝐼1( 𝑛𝜋𝑎ℎ ) − 𝐼1( 𝑛𝜋𝑟ℎ )𝐾1( 𝑛𝜋𝑎ℎ )

𝐾1( 𝑛𝜋𝑎0ℎ )𝐼1( 𝑛𝜋𝑎ℎ ) − 𝐼1( 𝑛𝜋𝑎0ℎ )𝐾1( 𝑛𝜋𝑎ℎ ) , 𝑛 ∈ N
∗. (B.31)

The rest of the radiation problem is solved similar as in Sec.2.3.2.

The hydrodynamic coefficients for the open-bottom dock with spar intervening in
Eq. (5.25) are then given by:

𝜇𝑝,𝑞 =
𝜌

𝜅𝑝,𝑞

∫
Σ0

𝜑𝑝,𝑞 (𝑟, 𝜃, 0)2𝑟𝑑𝜃𝑑𝑟 = 𝑏2𝜌𝜋

𝜅𝑝,𝑞
, (B.32)

𝜆 (𝑘 )1, 𝑗 ,𝑞 = 𝜌
∫
Σ0

𝜙 (𝑘 ) ,𝐼𝑉,RFS
𝑗 ,ℎ (𝑟, 0) cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟,

=
𝑏𝜌𝜋𝜓√
𝜐1,𝑞

∞∑
𝑛=0

(−1)𝑛𝜖𝑛
[
𝐴𝐼𝑉1,𝑛

∫ 𝑎

𝑎0

𝑟Ψ1,𝑞 (𝑟)𝑃𝐼𝑉𝑛 (𝑟)𝑑𝑟 + 𝐴𝐼𝑉2,𝑛
∫ 𝑎

𝑎0

𝑟Ψ1,𝑞 (𝑟)𝑄𝐼𝑉
𝑛 (𝑟)𝑑𝑟

]
,

(B.33)

𝜆2,1,𝑞 = 𝜌
∫
Σ0

𝜙 (2) ,𝐼𝑉,RFS
5,𝑚 (𝑟, 0) cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟, (B.34)

𝜆3,1,𝑞 = 𝜌
∫
Σ0

𝑟 cos(𝜃)𝜑1,𝑞 (𝑟, 𝜃, 0)𝑟𝑑𝜃𝑑𝑟 = 𝑏𝜌𝜋√
𝜐1,𝑞

𝐼1,𝑞, (B.35)

and the 𝑃 (𝑘 )
𝑞, 𝑗 coefficients:

𝑃 (1)
𝑞,1 = −𝜆 (1)1,1,𝑞/𝜇1,𝑞, (B.36)

𝑃 (2)
𝑞,1 = −𝜆 (2)1,1,𝑞/𝜇1,𝑞, (B.37)

𝑃 (1)
𝑞,5 = −𝜆 (1)5,1,𝑞/𝜇1,𝑞, (B.38)

𝑃 (2)
𝑞,5 = −

(
𝜆 (2)5,1,𝑞 + 𝜆2,1,𝑞 + 𝜔−1𝜆3,1,𝑞𝑔

)
/𝜇1,𝑞 . (B.39)

Analytical solutions of these integrals exist Olver et al. (2010). In particular, the
following identity needs to be used to calculate the integral (B.34):
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B.4 Kinetic energy of the first sloshing mode

∫
𝑧𝑣+3𝑌𝑣 (𝑧)𝑑𝑧 =2(𝑣 + 1)𝐽𝑣+2(𝑧) cot(𝜋𝑣)𝑧𝑣+2 + csc(𝜋𝑣)

Γ(−𝑣) (2𝐽−𝑣−2(𝑧)Γ(−𝑣)𝑧𝑣+2

+ 𝐽−𝑣−1(𝑧)Γ(−𝑣)𝑧𝑣+3 − 𝐽𝑣+3(𝑧) cos(𝜋𝑣)Γ(−𝑣)𝑧𝑣+3 + 2𝑣+3 + 2𝑣+3𝑣),
(B.40)

where csc is the cosecant function.

The relative velocity on the baffle is expressed by:

𝑣𝑟 (𝜃, 𝑡) =𝑅1,1(𝑡)
𝜕𝜑1,1
𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+
∑

𝑘∈{1,2}
�𝜂 (𝑘 )1 (𝑡) 𝜕𝜙

(𝑘 ) ,𝐼𝑉,RFS
1

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

cos(𝜃)

+ �𝜂 (2)5 (𝑡)
[
𝜕𝜙𝐼𝑉,RFS

5

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

+ 𝑎 cos(𝜃)
]
+ �𝜂 (1)5 (𝑡) 𝜕𝜙

(1) ,𝐼𝑉,RFS
5

𝜕𝑧

""" 𝑟=𝑎
𝑧=−𝑑𝐵

cos(𝜃).

(B.41)

B.4 Kinetic energy of the first sloshing mode

The analytical expression of the kinetic energy (3.89) in the tank without spar nor
baffle can be expressed as

𝐸𝑘 =
1

2
𝜌𝑅2

1,1

[
𝜄21,1𝜋

𝑎2𝐽21 (𝜄1,1) cosh2(
𝜄1,1𝑑
𝑎 )

] [
− 𝑎2

64𝜄21,1
𝑔E(𝜄1,1)

(
𝑎

4𝜄1,1
sinh

(
2𝜄1,1𝑑

𝑎

)
+ 𝑑
2

)

+ 𝑎2

2𝜄1,1
𝑓 E(𝜄1,1)

(
𝑎

4𝜄1,1
sinh(2𝜄1,1𝑑

𝑎
) − 𝑑

2

)

+
[

𝜋

𝐽21 (𝜄1,1) cosh2(
𝜄1,1𝑑
𝑎 )

]
ℎE(𝜄1,1)

(
𝑎

4𝜄1,1
sinh(2𝜄1,1𝑑

𝑎
) + 𝑑

2

) ]
, (B.42)

where 𝑓 E(𝜄1,1), 𝑔E(𝜄1,1) and ℎE(𝜄1,1) are given below, both analytically and
numerically for 𝜄1,1 � 1.841:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓 E(𝜄1,1) = 𝜄1,1𝐽20 (𝜄1,1) + 𝜄1,1𝐽21 (𝜄1,1) − 2𝐽0(𝜄1,1)𝐽1(𝜄1,1) � 0.439,

𝑔E(𝜄1,1) = 𝜄41,13𝐹4
( [

3
2 , 2, 2

]
,
[
1, 3, 3, 3

]
,−𝜄21,1

) + (−16𝜄21,1 + 32)𝐽21 (𝜄1,1) − 16𝜄21,1𝐽
2
0 (𝜄1,1)

� −7.923,

ℎE(𝜄1,1) = 1

2

[ − 𝐽0(𝜄1,1)2 − 𝐽1(𝜄1,1)2 + 1
] � 0.281.

(B.43)

3𝐹4 denotes the corresponding generalized hypergeometric function (Olver et al.,
2010).
For a standing standing wave 𝛽1,1(𝑡) = |𝛽1,1 | sin(𝜎1,1𝑡), 𝑅1,1 in Eq. (B.42) is
determined from the dynamic free surface boundary condition:

𝑅1,1(𝑡) = |𝑅1,1 | cos(𝜎1,1𝑡) = 𝑔

𝜎1,1
|𝛽1,1 | cos(𝜎1,1𝑡) (B.44)

B.5 Shift of the natural sloshing frequency due to annular
baffle

The expression of the first shifted sloshing frequency in the dock with either solid
or perforated baffle but without spar is calculated from Eq. (3.84):

𝜎′2
1,1

𝜎2
1,1

= 1 −
4𝜄31,1 sinh

2
(
𝜄1,1

𝑑−𝑑𝑏
𝑎

)
𝜌𝜋𝑎2 sinh

(
2𝜄1,1

𝑑
𝑎

)
(𝜄21,1 − 1)

[
𝛼0𝐴

𝑝𝑙𝑎𝑡𝑒
0 𝜋 + 𝛼1𝐶𝜃 𝐴𝑝𝑙𝑎𝑡𝑒0 𝐾𝐶

2
3

]
, (B.45)

where we have defined 𝐾𝐶 = 𝐾𝐶 cos(𝜃) and 𝐶𝜃 =
∫ 2𝜋

0
| (cos(𝜃)) | 83d𝜃 � 2.80. In the

same way, the shifted frequency due to the baffle in the dock with the spar is given
by:

𝜎′2
1,1

𝜎2
1,1

= 1−
𝑘21,1𝑎Ψ

2
1,1(𝑎) sinh2

(
𝑘1,1(𝑑 − 𝑑𝐵)

)
𝜌𝜅1,1𝜋𝜐1,1 cosh

2(𝑘1, 1𝑑)

[
𝛼0𝐴

𝑝𝑙𝑎𝑡𝑒
0 𝜋+𝛼1𝐶𝜃 𝐴𝑝𝑙𝑎𝑡𝑒0 𝐾𝐶

2
3

]
. (B.46)

B.6 Viscous boundary layer - Empirical formulas

Both Mikishev and Dorozhkin (1961) and Stephens et al. (1962) carried out
experimental work to determine the damping due to the turbulent boundary layer
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B.7 From a closed- to an open-bottom dock

flows on the wall of circular cylinders. They proposed empirical formulas based on
these studies, respectively:

𝜉 = 0.79
1√
𝑅𝑒

[
1 + 0.318

sinh(𝜄1,1𝑑/𝑎)

(
1 + 1 − 𝑑/𝑎

cosh(𝜄1,1𝑑/𝑎)

)]
� 0.79

1√
𝑅𝑒
, (B.47)

𝜉 = 0.83
1√
𝑅𝑒

[
tanh(𝜄1,1𝑑/𝑎)

(
1 + 2

1 − 𝑑/𝑎
cosh(2𝜄1,1𝑑/𝑎)

)]
� 0.83

1√
𝑅𝑒
, (B.48)

where 𝑅𝑒 =

√
𝑔𝑎3

𝜈
is the Reynold number, and the approximations made in

both cases are made assuming that 𝑑 > 2𝑎. These formulas have become common
methodology to estimate such viscous damping, and used in several NASA projects.

B.7 From a closed- to an open-bottom dock

The contribution of the loads on the internal surface of the dock without spar to
the added mass coefficients 𝑎5,1 are shown in Fig. B.2.
Figs. B.3 and B.4 compare the added mass coefficients in the subdomain IV
calculated either from the method presented in Sec. 2.3.2 for the dock with spar
without baffle, or in Sec. 5.2.1 for the dock with spar with baffle. We verify that
the coefficients converge when the effects of the baffle goes to 0.

Figure B.2: Contribution of the domain IV to the non-dimensional added mass coefficients
𝑎5,1. Same legend as in Fig. 5.1.
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Figure B.3: Added mass coefficients 𝑎 (2)1,1 (top), 𝑎 (1)1,1 (middle) and 𝑒 (1)1,1 (bottom) for
the dock with spar, calculated by integrating the pressure on the bodies’ surface in the
subdomain IV. 𝑎𝐼𝑉 is calculated with a DD method for the case without baffle (cf. Sec.
2.3.2), 𝑎 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆 (or 𝑒 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆) and 𝐴slosh are the add mass coefficients calculated for
the open-bottom dock with baffle. In that case, the equations of motions presented in the
next section have been solved to estimate 𝜉1 and 𝜎′

1,1. When the effects of the baffles are

set to 0 (𝜎′ → 𝜎 and 𝜉1 → 0), we verify that this model converges to 𝑎𝐼𝑉 .
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Figure B.4: Added mass coefficients 𝑎 (2)1,5 (top), 𝑎 (1)1,5 (middle) and 𝑒 (1)1,5 (bottom) for
the dock with spar, calculated by integrating the pressure on the bodies’ surface in the
subdomain IV. 𝑎𝐼𝑉 is calculated with a DD method for the case without baffle (cf. Sec.
2.3.2), 𝑎 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆 (or 𝑒 (𝑘 ) ,𝐼𝑉,𝑅𝐹𝑆) and 𝐴slosh are the add mass coefficients calculated for
the open-bottom dock with baffle. Same legend as in Fig. B.3.
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C | Experimental results
C.1 Decay Tests

Decay tests were also achieved for lateral motions in sway, roll and yaw. They are
given for the dock alone in Table C.1.

Table C.1: Natural periods in sway, roll and yaw of the dock estimated from the decay tests,
in seconds. BB1 corresponds to the smaller bilge boxes: 𝐻𝑠𝑘𝑚 = 0.04m and 𝐵𝑠𝑘𝑚 = 0.05m,
and BB2 to the larger bilge boxes: 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m.

𝑑 + 𝑠 = 0.5m

BB1

𝑑 + 𝑠 = 0.5m

BB2

𝑑 + 𝑠 = 0.8m

BB1

𝑑 + 𝑠 = 0.8m

BB2

𝑑 + 𝑠 = 0.5m

unmoored

BB2

𝑑 + 𝑠 = 0.8m

unmoored

BB2

𝜂 (2)2 7.82 8.15 10.50 10.53 / /

𝜂 (2)4 2.40 2.51 2.10 2.20 2.93 2.34

𝜂 (2)6 2.32 2.44 2.81 2.81 / /

Fig. C.1 shows the spectra for the dock of the time series in Fig. 4.7.

Fig. C.2 shows similar linear regression as Fig. 4.8, but for the lower draught
𝑑 + 𝑠 = 0.5m. The same method presented for surge in Sec. 4.2.2 can be applied in
pitch, disregarding once again the coupling with surge motion. Linear regressions
are presented in Fig. C.3, and the results are given in Table C.2. Quadratic
damping in pitch is most likely caused by viscous eddies created at the sharp
corners of the bilge boxes. The bilge boxes’ size do seem to have an effect on 𝐵𝑄5,5
for the higher draught, even though it should be noted that motions’ amplitudes are
much more scattered than for surge. Because of this bad correlation, a non-physical
negative linear damping was even obtained for the higher draught.

Table C.2: Linear and quadratic damping in pitch for the dock. BB1 and BB2 are
defined as in Table 4.4.

𝑑 + 𝑠 = 0.5m
BB1

𝑑 + 𝑠 = 0.5m
BB2

𝑑 + 𝑠 = 0.8m
BB1

𝑑 + 𝑠 = 0.8m
BB2

𝐵5,5 [kg.m/s] 0.78 0.02 7.98 -3.74

𝐵𝑄5,5 [kg.m] 42.15 36.88 46.97 81.09
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C.3 Time series

Figure C.1: Example of spectra from decay tests for the dock’s motions in surge, heave
and pitch. Same case as in Fig. 4.7.

C.2 Wave conditions

Examples of specified and measured incident wave periods and amplitudes of
regular waves are presented in Fig. C.4. The amplitude of waves with higher
periods were generally closer to the one specified.

C.3 Time series

Additional time series from experimental tests are presented in this section. Fig.
C.5 shows results for the dock without spar, both with and without damping
devices in regular and irregular waves.
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Chapter C Experimental results

Figure C.2: 𝐵𝐸1,1 as function of 𝜂 (2)1,𝑖 , plotted from decay tests’ time series for the
dock without spar and without damping devices. Linear and quadratic damping in surge
are estimated thanks to a linear regression. Draught: 𝑑 + 𝑠 = 0.5m. Top: large bilge
boxes: 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m. Bottom: small bilge boxes: 𝐻𝑠𝑘𝑚 = 0.04m and
𝐵𝑠𝑘𝑚 = 0.05m.
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C.3 Time series

Figure C.3: 𝐵𝐸5,5 as function of 𝜂 (2)5,𝑖 , plotted from decay tests’ time series for the
dock without spar and without damping devices. Linear and quadratic damping in pitch
are estimated thanks to a linear regression. First: draught: 𝑑 + 𝑠 = 0.8m, large bilge
boxes: 𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m. Second: draught: 𝑑 + 𝑠 = 0.8m, small bilge
boxes: 𝐻𝑠𝑘𝑚 = 0.04m and 𝐵𝑠𝑘𝑚 = 0.05m. Third: draught: 𝑑 + 𝑠 = 0.5m, large bilge boxes:
𝐻𝑠𝑘𝑚 = 0.05m and 𝐵𝑠𝑘𝑚 = 0.09m. Fourth: draught: 𝑑 + 𝑠 = 0.5m, small bilge boxes:
𝐻𝑠𝑘𝑚 = 0.04m and 𝐵𝑠𝑘𝑚 = 0.05m.
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Figure C.4: Specified and measured incident wave period and amplitudes for tests made
for the dock without spar and without damping devices (2019, Set 1). Wave steepness:
𝜖 = 1/60.

Figure C.5: Top: time history of the free-surface elevation 𝜁𝑊𝑃1 inside the dock in
regular waves for three cases, without damping devices, with foam balls (3mm, 1.2L), and
with solid baffle. The incident wave period is 𝑇 = 0.74s (i.e. 𝜔2𝑏/𝑔 = 2.94), and the wave
steepness 1/60. The time window that is post-proceeded is shown for the dock alone between
the cut-off delimiters. Bottom: extract of the time series of 𝜁𝑊𝑃1 in irregular waves for
the same three configurations. 𝐻𝑠/𝑏 = 1/40, and 𝑇𝑝 = 0.8s (i.e. 𝜔2𝑏/𝑔 = 2.52).
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C.4 Spar’s motions in an dock-fixed coordinate system

C.4 Spar’s motions in an dock-fixed coordinate system

The motions of the SPAR are initially either calculated or measured in the
Earth-fixed coordinate system (ECS)

(
𝑂𝐸𝑥𝐸𝑦𝐸 𝑧𝐸

)
. In this section, we describe how

the motions of a point P fixed to the spar can also be expressed in the dock-fixed
coordinate system (DCS)

(
𝑂𝐷𝑥𝐷𝑦𝐷𝑧𝐷

)
. The dock’s motions are restrained to the

three degrees of freedom in surge, heave and pitch. We denote (𝒆𝐸1 , 𝒆𝐸2 , 𝒆𝐸3 ) the
orthonormal basis associated to the ECS, and (𝒆𝐷1 , 𝒆𝐷2 , 𝒆𝐷3 ) associated to the DCS.
The relation between the two basis can be expressed:

𝒆𝐸1 = cos
(
𝜂 (2)5

)
𝒆𝐷1 + sin

(
𝜂 (2)5

)
𝒆𝐷3 , (C.1)

𝒆𝐸3 = − sin
(
𝜂 (2)5

)
𝒆𝐷1 + cos

(
𝜂 (2)5

)
𝒆𝐷3 (C.2)

.
The motions of a point P fixed to the spar are given in the ECS:

𝒓𝐸 (𝑃) =
[
𝜂 (1)1 + 𝑧𝑆 sin

(
𝜂 (1)5

)
+ 𝑥𝑆 cos

(
𝜂 (1)5

)]
𝒆𝐸1 +

[
𝜂 (1)3 − 𝑥𝑆 sin

(
𝜂 (1)5

)
+ 𝑧𝑆 cos

(
𝜂 (1)5

)]
𝒆𝐸3

(C.3)
.
where the upper index 𝑆 is here associated to the spar-fixed coordinate system
(SCS). The motions of the same point P in the DCS is then:

𝒓𝐷 (𝑃) = 𝒓𝐸 (𝑃) − 𝒓𝐸 (𝑂𝐷) (C.4)

where the position of the origin 𝑂𝐷 of the DCS is 𝒓𝐸 (𝑂𝐷) = 𝜂 (2)1 𝒆𝐸1 + 𝜂 (2)3 𝒆𝐸3 .
Inserting the Eqs (C.1) to (C.3) into (C.4), we finally have:

𝒓𝐷 (𝑃) = 𝑥𝐷 (𝑃)𝒆𝐷1 + 𝑧𝐷 (𝑃)𝒆𝐷3 (C.5)

with

𝑥𝐷 (𝑃) =
[
𝜂 (1)1 + 𝑧𝑆 sin

(
𝜂 (1)5

)
+ 𝑥𝑆 cos

(
𝜂 (1)5

)
− 𝜂 (2)1

]
cos

(
𝜂 (2)5

)
−

[
𝜂 (1)3 − 𝑥𝑆 sin

(
𝜂 (1)5

)
+ 𝑧𝑆 cos

(
𝜂 (1)5

)
− 𝜂 (2)3

]
sin

(
𝜂 (2)5

)
, (C.6)

𝑧𝐷 (𝑃) =
[
𝜂 (1)1 + 𝑧𝑆 sin

(
𝜂 (1)5

)
+ 𝑥𝑆 cos

(
𝜂 (1)5

)
− 𝜂 (2)1

]
sin

(
𝜂 (2)5

)
+

[
𝜂 (1)3 − 𝑥𝑆 sin

(
𝜂 (1)5

)
+ 𝑧𝑆 cos

(
𝜂 (1)5

)
− 𝜂 (2)3

]
cos

(
𝜂 (2)5

)
. (C.7)
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Finally, for small motions, we can linearise Eqs (C.6) and (C.7):

𝑥𝐷 (𝑃) =𝜂 (1)1 + 𝑧𝑆𝜂 (1)5 + 𝑥𝑆 − 𝜂 (2)1 − 𝑧𝑆𝜂 (2)5 , (C.8)

𝑧𝐷 (𝑃) =𝑥𝑆𝜂 (2)5 + 𝜂 (1)3 − 𝑥𝑆𝜂 (1)5 + 𝑧𝑆 − 𝜂 (2)3 . (C.9)

C.5 Repetition tests

Mean values and standard deviations of the spar’s heave motions from 2019
repetition tests are given in Fig. C.6. Comparisons of the dock’s RAOs in surge
and pitch between 2018 and 2019 tests with the same set-up for the dock alone
are presented in Fig. C.7 and C.8, showing even lower discrepancies than for the
free-surface elevation 𝜁𝑊𝑃1’s RAOs, already discussed in Sec. 4.5.1.

Figure C.6: .Mean values and standard deviations of the RAOs of the spar’s heave
motions for the same repetitions tests as in Fig. 4.19.

Figure C.7: . Comparisons of 𝜂 (2)1 ’s RAOs for several tests made between 2018 and
2019 with the same set-up for the dock alone, and in the same range of incident wave
frequencies. 𝜖 = 1/60, draught of the dock: 𝑑 + 𝑠 = 0.8m, larger bilge boxes’ size (BB2).
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Figure C.8: . Comparisons of 𝜂 (2)5 ’s RAOs for several tests made between 2018 and
2019 with the same set-up for the dock alone, and in the same range of incident wave
frequencies. 𝜖 = 1/60, draught of the dock: 𝑑 + 𝑠 = 0.8m, larger bilge boxes’ size (BB2).

C.6 Irregular waves

The theoretical and measured incident waves’ spectra for tests without the spar
are presented in Fig. C.9 for 2018’s model tests and Fig. C.10 for 2019’s model
tests, while Fig. C.11 shows the motions’ spectra for 2018 tests with 𝜔2

𝑝𝑏/𝑔 = 2.52
and 𝐻𝑠/𝑏 = 1.5/40.

Figure C.9: JONSWAP spectra of incident waves, as instructed to the command of the
wave maker (theoretical), and measured in front of the dock without spar at the wave probe
WP8 with the model in place (experimental). 𝜎𝐺 = 0.0109. Tests from 2019.

Numerical and experimental results in irregular waves for the dock without spar
nor damping devices are presented in Figs. C.12 and C.13 for two draughts and
two BB’s sizes. The agreement is good near sloshing resonance, the numerical
motions are over-predicted for lower frequencies. The semi-analytical does not
indeed include any viscous damping, and these observations are similar the ones
made for results in regular waves (cf. Sec. 6.1.4).
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Figure C.10: JONSWAP spectra of incident waves, as instructed to the command of the
wave maker (theoretical), and measured in front of the dock without spar at the wave probe
WP8 with the model in place (experimental). 𝜎𝐺 = 0.0208. Tests from 2019.

Figure C.11: Normalised spectra of the dock’s responses in surge (upper left), pitch
(upper right), as well as of 𝜁𝑊𝑃1 (bottom) from the 2018 model tests without the spar
with the peak frequency of incident waves 𝜔2

𝑝𝑏/𝑔 = 2.52 and the significant wave height
𝐻𝑠/𝑏 = 1.5/40. 𝜎𝐺 = 0.0109.
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Figure C.12: Analytical and experimental (2018 tests) RAOs for irregular waves for
the dock without spar, for the two draughts and two BB’s sizes. Peak frequency of the
JONSWAP spectrum: 𝜔2

𝑝𝑏/𝑔 = 2.52. 𝜎𝐺 = 0.0109.

LIV



Chapter C Experimental results

Figure C.13: Analytical and experimental (2018 tests) RAOs for irregular waves for
the dock without spar, for the two draughts and two BB’s sizes. Peak frequency of the
JONSWAP spectrum: 𝜔2

𝑝𝑏/𝑔 = 0.72. 𝜎𝐺 = 0.0109.
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D | Numerical results
D.1 Velocity profiles

Example of velocity profiles near the bilge boxes are given in Fig. D.1, decomposed
in horizontal and vertical components in Fig. D.2. The complexity of the flow
makes it difficult to obtain simple estimations of the damping coefficients caused
by the flow separation at the sharp corners.

Figure D.1: Velocity profile in 𝑦 = 0m in the body-fixed coordinate system near the bottom
of the dock at the incident wave frequency: 𝜔2𝑏/𝑔 = 2.94 (i.e. 𝑇 = 0.74s), calculated from
the DD model. Same case as for Fig. 6.2 at the time 𝑡 = 0s. Wave steepness: 𝜖 = 1/60.

(a) Horizontal velocities. (b) Vertical velocities.

Figure D.2: Velocity profile in 𝑦 = 0m in the body-fixed coordinate system at the incident
wave frequency: 𝜔2𝑏/𝑔 = 2.94 (i.e. 𝑇 = 0.74s), calculated from the DD model. Same case
as Fig. D.1, with a decomposition of the horizontal and vertical components of the velocity.
Wave steepness: 𝜖 = 1/60.
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D.2 Variations of the draught

Added mass and damping coefficients for the four draughts of the dock described in
Sec.6.1.3 are presented from Figs. D.3 to D.6 and exciting force and moments from
Figs. D.7 to D.9.. Added mass and damping coefficients in surge an pitch sharply
decline with the draught, without significant shift of the natural sloshing periods.
The same number of modes in the domain decomposition methods were used for
the three lower draughts as for the highest one, for which a proper convergence
study were carried out. Thus, the peaks observed in the damping coefficients for
the two lower draughts are most likely numerical errors that should be expected
to vanish for higher number of modes. The piston mode natural frequency is
increased from 𝜔2𝑏/𝑔 = 0.4 to 𝜔2𝑏/𝑔 = 1.3 when the draughts is decreased from
(𝑑 + 𝑠)/𝑏 = 2 to (𝑑 + 𝑠)/𝑏 = 0.38, also observed in the exciting force in heave.

Figure D.3: Added mass and damping coefficients in surge for different draughts of the
dock without spar (BB2).

Figure D.4: Added mass and damping coefficients in heave for different draughts of the
dock without spar (BB2).
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Figure D.5: Added mass and damping coefficients in pitch for different draughts of the
dock without spar (BB2).

Figure D.6: Coupled added mass and damping coefficients in surge and pitch for different
draughts of the dock without spar (BB2).

Figure D.7: Exciting forces in surge for different draughts of the dock without spar
(BB2). Amplitudes and phase.
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Figure D.8: Exciting forces in heave for different draughts of the dock without spar
(BB2). Amplitudes and phase.

Figure D.9: Exciting moments in pitch for different draughts of the dock without spar
(BB2). Amplitudes and phase.
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D.3 Relative flow velocity

The amplitude of the relative flow velocity from the semi-analytical model on
perforated baffles both due to pitching and sloshing in a dock-fixed coordinate
system are given in Fig. D.10 as functions of incident wave frequencies. Contrarily
to a closed-bottom dock, a vertical flow velocity is also caused by both the surge
and heave motions of the dock when the internal free surface is rigid. However,
their amplitudes is negligible, as shown in Fig. D.11.

Figure D.10: . Top: 𝜏 = 0.15. Bottom: 𝜏 = 0.30. Amplitude of the vertical relative flow
velocity from semi-analytical simulations on the perforated baffle in 𝜃 = 0◦ in a dock-fixed
coordinate system. Both the contribution of the dock’s pitching (dash lines) and the sloshing

waves (solid lines) are given for three values of
𝑑𝐵
𝑎
. Wave steepness: 𝜖 = 1/60.
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Figure D.11: . Top: 𝜏 = 0. Middle: 𝜏 = 0.15.Bottom: 𝜏 = 0.30. Amplitude of the vertical
relative flow velocity from semi-analytical simulations on the perforated baffle in 𝜃 = 0◦ in
a dock-fixed coordinate system. contribution of the dock’s surge and heave motions when
the free-surface is rigid are given for three values of 𝑑𝐵/𝑎. Wave steepness: 𝜖 = 1/60.
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D.4 Numerical simulations with annular baffles.

The number of iterations over which the equations of motion are solved until
convergence of the dock’s motions’ RAOs when non-linear terms describing the
baffles’ viscous effects are included (cf. Sec. 5.1) are given in Fig. D.12.

Figure D.12: Number of iterations required for the convergence of 𝜂 (2)1 ’s, 𝜂 (2)5 ’s and
𝜁𝑊𝑃1’s RAOs when solving the equations of motions with non-linear effects of annular
baffles. Wave steepness: 𝜖 = 1/60.

The variations of the shifted natural sloshing frequency 𝜎′
1,1 estimated from

variational theory are presented in Fig. D.13 as a function of the incident wave
frequency, showing little dependency of 𝜎′

1,1 on 𝜔2𝑏/𝑔, which does not vary more
than 2% over the range of incident wave frequencies showed on the figure.

The amplitude of the moments in pitch 𝐹𝑀5 on the baffles, as well as the amplitude
of the vertical loads on the baffles in 𝜃 = 0◦, both estimated from Morison’s formula
(cf. Eq. (5.7)) are also presented for solid and perforated baffles in Fig. D.14 and
Fig. D.15, respectively. As expected, the loads are lower for perforate baffles. For
these last, the damping loads dominate compare to inertial loads.

Several parameters resulting from numerical simulation for the dock+spar system
when a solid baffle is installed at 𝑑𝐵/𝑎 = 0.17 are given in Fig. D.16. These results
are similar to the ones discussed for the case without spar. We can note that
the relative flow velocity on the baffle is again dominated by the contributions of
sloshing waves, in particularly compared to the radiated flow caused by the spar’s
motions.

RAOs of the spar’s surge and pitch motions for the case with and without baffles are
presented in both a dock-fixed (DCS) and Earth-fixed (ECS) coordinate systems
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Figure D.13: Shifted lowest natural sloshing frequency estimated from variational method
(cf. Eq. (3.84)), and Mentzoni’s coefficients from Table 3.2 as a function of the incident
wave frequency. 𝜎′

1,1/𝜎1,1 = 1 when there is no baffle. Same legend as in Fig. 6.14. Wave
steepness: 𝜖 = 1/60.

in Fig. D.17. Because of the phase shift of the dock’s motions in 𝜔2𝑏/𝑔 = 2.5 (see
Sec. 6.3) which become in opposition of phases with the spar’s motions for higher

frequency, 𝜂 (1)1 ’s and 𝜂 (1)5 ’s amplitudes are higher in the dock-fixed coordinate
system.

D.5 Time domain solver

A time domain solver is implemented for the simplified representation of the dock
without spar and with a closed bottom (see Fig. (2.3) in Sec. 2.1.2). The motions
are restricted to surge in this example. The internal flow is described by the
damped modal equations (cf. Eq. (3.85) in Sec. 3.5).
Added mass and damping coefficients 𝑎1,1 and 𝑏1,1 are calculated for the external
problem only, in the way of Yeung (1980), as well as the diffraction problem to
determined the exciting force 𝐹𝑆1 in the way of Garrett (1971), i.e. through a
domain decomposition approach. 𝑎1,1, 𝑏1,1 and 𝐹𝑆1 are solved in the frequency
domain. Incident irregular waves are discretised in the frequency domain from a
JONSWAP spectrum, and represented as the summation of regular waves. Due
to linearity of the diffraction problem, the scattering force 𝐹𝑆1 (𝑡) is then obtained
by summing the contribution of each frequency. Assuming a non-linear damping
of dock’s motions by the sloshing waves, it is a priori not possible to sum the
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𝜏 = 0

𝜏 = 0.15

𝜏 = 0.30

Figure D.14: Amplitude of the moment 𝐹𝑀5 on the baffle estimated from Morison’s
formula (cf. Eq. (5.7)) for solid baffle (top) and perforated baffles with perforation ratios
𝜏 = 0.15 (middle) and 𝜏 = 0.3 (bottom). The amplitude of the inertial and damping terms
in Morison’s equations are also indicated, and referred to in the legend as 𝐶𝑀 and 𝐶𝐷,
respectively. The Submergence of the baffle: 𝑑𝐵/𝑎 = 0.17. Wave steepness: 𝜖 = 1/60.
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𝜏 = 0

𝜏 = 0.15

𝜏 = 0.30

Figure D.15: Amplitude of the vertical loads on the baffle in 𝜃 = 0◦ estimated from
Morison’s formula (cf. integrand of Eq. (5.7)) for solid baffle (top) and perforated baffles
with perforation ratios 𝜏 = 0.15 (middle) and 𝜏 = 0.3 (bottom). The legend is the same as
Fig. D.14. The Submergence of the baffle: 𝑑𝐵/𝑎 = 0.17. Wave steepness: 𝜖 = 1/60.
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Figure D.16: Several results from semi-analytical simulations for the dock with the spar
and a solid baffle (𝜏 = 0) in regular incident waves. Wave steepness: 𝜖 = 1/60.
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Figure D.17: Dimensional surge and pitch motions of the spar in both an Earth-fixed
(ECS) and dock-fixed (DCS) coordinate systems from the semi-analytical model. Motions
in full scale. Wave steepness: 𝜖 = 1/60.

contribution of the loads caused by the dock’s motions. The equations of motions
are thus expressed in time domain (Faltinsen and Timokha, 2009):

[
𝑀 + 𝑎1,1(∞)] 
𝜂 (2)1 (𝑡)+𝑏1,1, (∞) �𝜂 (2)1 (𝑡)+

∫ 𝑡

0
ℎ1,1(𝜏) �𝜂1(𝑡−𝜏)𝑑𝜏+𝑐1,1𝜂 (2)1 = 𝐹𝑆1 (𝑡)+𝐹slosh

1 (𝑡),
(D.1)

where ℎ1,1(𝑡) is the retardation function, which can be estimated either from the
added mass or from the damping coefficients. The asymptotic behaviour of 𝑎1,1 for
high frequency is a priori unknown, such that the use of 𝑏1,1, which convergences
to 0 for high frequency, is preferred here:

ℎ1,1(𝑡) = 2

𝜋

∫ ∞

0
(𝑏1,1(𝜔) −

=0︷����︸︸����︷
𝑏1,1, (∞)) cos(𝜔𝑡)𝑑𝜔. (D.2)

ℎ1,1 is shown in Fig. D.18. 𝐹slosh
1 (𝑡) in Eq. (D.1) includes all the hydrodynamic

loads caused by the internal fluid. Near sloshing resonance, and under first mode
approximation, it is given by:

𝐹slosh
1 (𝑡) = −𝜌𝑎2𝜋𝑑︸���︷︷���︸

𝐶1


𝜂 (2)1 −𝜌 𝜋𝑎
𝑘1,1

tanh(𝑘1,1𝑑)︸��������������������︷︷��������������������︸
𝐶2

�𝑅1,1(𝑡), (D.3)
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where 𝑅1,1 also contains here the transient part of the solution of the modal
equation, contrary to the solution presented in Sec. 2.1.2. For the simplified model
considered here, the excitation in the right hand side of the modal equation is
simply given by:

𝐾1,1(𝑡) = −𝜆1,1
𝜇1,1


𝜂 (2)1 (𝑡), (D.4)

with

𝜆1,1 =
𝜌𝜋𝑎

𝜄21,1
, (D.5)

𝜇1,1 =
𝜌𝜋𝑎3(𝜄21,1 − 1)

2𝜄31,1 tanh(
𝜄1,1𝑑

𝑎
)
. (D.6)

Figure D.18: Retardation function ℎ1,1 (cf. Eq. (D.2)

At this point, we established a system of equations constituted by the the equation
of motion (D.1) for the external problem, and the damped modal equations for the
internal problem (cf. Eq. (3.85) in Sec. 3.5), for which the unknown are 𝜂1 and
either 𝛽1,1 or 𝑅1,1. This system is expressed as the ordinary differential equation
(ODE):

�𝑢 = 𝑓 (𝑢, 𝑡), (D.7)

where the variable 𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 is given by:
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𝑢1 = 𝜂
(2)
1 , (D.8)

𝑢2 = 𝛽1, (D.9)

𝑢3 =
[
𝑀 + 𝑎1,1(∞) − 𝐶1

]︸��������������������︷︷��������������������︸
𝐷1


𝜂 (2)1 (𝑡) −𝐶2︸︷︷︸
𝐷2

�𝛽1, (D.10)

𝑢4 = �𝛽1 +
𝜆1,1
𝜇1, 1︸︷︷︸
𝐷3

�𝜂1 (2) , (D.11)

and where 𝐶1 and 𝐶2 are defined in Eq. (D.3). The function 𝑓 (𝑢, 𝑡) =
⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1(𝑢, 𝑡)
𝑓2(𝑢, 𝑡)
𝑓3(𝑢, 𝑡)
𝑓4(𝑢, 𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ is

expressed as:

𝑓1(𝑢, 𝑡) = 𝑢3 − 𝐷2𝑢4
𝐷1 − 𝐷3𝐷2

, (D.12)

𝑓2(𝑢, 𝑡) = 𝐷3𝑢3 − 𝐷1𝑢4
𝐷2𝐷3 − 𝐷4𝐷1

, (D.13)

𝑓3(𝑢, 𝑡) = −
∫ 𝑡

0
ℎ1,1(𝜏) 𝑓1(𝑢, 𝑡 − 𝜏)𝑑𝜏 − 𝑐1,1𝑢1 + 𝐹𝑆1 (𝑡), (D.14)

𝑓4(𝑢, 𝑡) = −2𝜉1𝜎1,1 𝑓2(𝑢, 𝑡) − 𝜎2
1,1𝑢2, (D.15)

where the 𝐷 coefficients are defined in Eqs. (D.14)-(D.15). A Runge-Kutta scheme
of order 4 is implemented to solve the ODE (D.7).

The method is first verified for different incident regular waves, and compared to
the frequency domain solution, determined from the equations of motions presented
in Chapter 5. Fig. D.19 shows an example of result in regular waves for an incident
wave period near resonance 𝑇 = 0.74s, and with the arbitrary damping 𝜉1 in the
modal equations. The time domain solution includes the transient phase of the
signals, as well as the natural period in surge due to mooring. Because of the
damping, both solutions in time and frequency domains converge for high 𝑡.

Then, irregular waves are considered and a JONWSWAP spectrum characterised
by the peak period 𝑇𝑝 = 0.8s and the significant wave height 𝐻𝑠/𝑏 = 1/40 is
discretised in the frequency domain (cf. Fig. D.20) in order to generate time
series of incident waves. Time series are hence generated over 600s, and the power
spectra of 𝜂 (2)1 and 𝜁𝑊𝑃1 calculated and filtered from the time domain solutions.
Several arbitrary values of the damping ratio 𝜉1 are tested, and the results once
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Figure D.19: Time series of 𝜁𝑊𝑃1 (top) and of the dock’s surge motions (bottom),
both solved in the frequency and time domains for regular incident waves with a period
𝑇 = 0.74s. Wave steepness: 𝜖 = 1/60. The dimensions of the dock are those described in
Chapter 4 with 𝑑/𝑏 = 2. Damping: 𝜉1 = 1%. The natural period in surge due to mooring
is observed from the time domain solution.

again compared to the frequency domain solutions.
RAOs are presented in Fig. D.21. The results calculated from the time solver
seem to converge to the frequency domain solution, except at the peak sloshing
resonance, for which the time domain solutions are lower. The difference between
the amplitudes of the time and frequency domains-calculated RAOs is even higher
for low damping ratios, most likely caused by longer transient phases of the signals,
which are not included in the frequency domain solutions.

LXXI



D.5 Time domain solver

Figure D.20: Discretisation of the JONSWAP’s spectrum. 𝜎𝐺 = 0.0159.

Figure D.21: RAOs of 𝜂 (2)1 (top) and 𝜁𝑊𝑃1 (bottom) calculated from both the time
domain (TD) and frequency domain (FD) solutions. Gaussian filtering of the spectra
obtained from the time domain solutions: 𝜎𝐺 = 0.0159.
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Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 

Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-

2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 

Subjected to Random Excitation. (PhD-thesis, 

CeSOS) 



IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-

thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 

vessels. (PhD thesis, CeSOS) 

IMT-

2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-

2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 

Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-

2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 

Scheduling. PhD-thesis, IMT 

IMT-

2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 

Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 

2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 

2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 



IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 

2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-

Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 

2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-

Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 

Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 

Ph.d.Thesis, IMT. 



Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 

Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 

considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 



IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 

2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 

diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 

CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 

Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-

2013 

Yang, Dan Transitional wake flow behind an inclined flat 

plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 

Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 

around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 

Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 



IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-

2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 

and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 

Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-

2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 

an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-

2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 

heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-

2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 

bodies, IMT 



IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-

2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 

IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 

Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-

2015 

Dagfinn Husjord Guidance and decision-support system for safe 

navigation of ships operating in close proximity, 

IMT 

IMT-15-

2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 

Effects, IMT 

IMT-16-

2015 

Qin Zhang Image Processing for Ice Parameter Identification 

in Ice Management, IMT 

IMT-1-

2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 

Experiential Learning, IMT 

IMT-2-

2016 

Martin Storheim Structural response in ship-platform and ship-ice 

collisions, IMT 

IMT-3-

2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 

and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-

2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 

sections, IMT 



IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 

CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 

seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 

uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-

based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 

Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 

Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 



IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 

and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 

stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 

Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-

Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 

Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 

operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 

Vehicles 



IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 

in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 

Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 

Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 

axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 

monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 

presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 

 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 

Marine Structures 

 
IMT-23-

2018 

Jan-Tore Horn 

 

Statistical and Modelling Uncertainties in the 

Design of Offshore Wind Turbines 

 



IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 

 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 

 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-

Roll Tank 

 
IMT-3-

2019 

Håkon Strandenes 

 

Turbulent Flow Simulations at Higher Reynolds 

Numbers 

 

IMT-4-

2019 

Siri Mariane Holen 

 

Safety in Norwegian Fish Farming – Concepts and 

Methods for Improvement 

 

IMT-5-

2019 

Ping Fu 

 

Reliability Analysis of Wake-Induced Riser 

Collision 

 

IMT-6-

2019 

Vladimir Krivopolianskii 

 

Experimental Investigation of Injection and 

Combustion Processes in Marine Gas Engines using 

Constant Volume Rig 
 

IMT-7-

2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 

to Ventilation and out of Water Condition. 

IMT-8-

2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 

Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 

Sea Ice 

IMT-9-
2019| 

 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 

Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 

IMT-12-
2019 

Jørgen Bremnes Nielsen Modeling and Simulation for Design Evaluation 

IMT-13-
2019 

Yuna Zhao Numerical modelling and dyncamic analysis of 
offshore wind turbine blade installation 

IMT-14-
2019 

Daniela Myland Experimental and Theoretical Investigations on the 
Ship Resistance in Level Ice 

IMT-15-
2019 

Zhengru Ren Advanced control algorithms to support automated 
offshore wind turbine installation 

IMT-16-
2019 

Drazen Polic Ice-propeller impact analysis using an inverse 
propulsion machinery simulation approach 

IMT-17-
2019 

Endre Sandvik Sea passage scenario simulation for ship system 
performance evaluation 



IMT-18-
2019 

Loup Suja-Thauvin Response of Monopile Wind Turbines to Higher 
Order Wave Loads 

IMT-19-

2019 

Emil Smilden Structural control of offshore wind turbines – 

Increasing the role of control design in offshore 
wind farm development 

IMT-20-

2019 

Aleksandar-Sasa Milakovic On equivalent ice thickness and machine learning 

in ship ice transit simulations 

IMT-1-

2020 

Amrit Shankar Verma Modelling, Analysis and Response-based 

Operability Assessment of Offshore Wind Turbine 
Blade Installation with Emphasis on Impact 

Damages 

IMT-2-

2020 

Bent Oddvar Arnesen 

Haugaløkken 

Autonomous Technology for Inspection, 

Maintenance and Repair Operations in the 

Norwegian Aquaculture 

IMT-3-

2020 

Seongpil Cho Model-based fault detection and diagnosis of a 

blade pitch system in floating wind turbines 

IMT-4-

2020 

Jose Jorge Garcia Agis Effectiveness in Decision-Making in Ship Design 

under Uncertainty 

IMT-5-

2020 

Thomas H. Viuff Uncertainty Assessment of Wave-and Current-

induced Global Response of Floating Bridges 

IMT-6-

2020 

Fredrik Mentzoni Hydrodynamic Loads on Complex Structures in the 

Wave Zone 

IMT-7- 

2020 

Senthuran Ravinthrakumar Numerical and Experimental Studies of Resonant 

Flow in Moonpools in Operational Conditions 

IMT-8-

2020 

Stian Skaalvik Sandøy 

 

Acoustic-based Probabilistic Localization and 

Mapping using Unmanned Underwater Vehicles for 
Aquaculture Operations 

 

IMT-9-
2020 

Kun Xu Design and Analysis of Mooring System for Semi-
submersible Floating Wind Turbine in Shallow 

Water 

IMT-10-

2020 

Jianxun Zhu Cavity Flows and Wake Behind an Elliptic 

Cylinder Translating Above the Wall 

IMT-11-

2020 

Sandra Hogenboom Decision-making within Dynamic Positioning 

Operations in the Offshore Industry – A Human 
Factors based Approach 

IMT-12-

2020 

Woongshik Nam Structural Resistance of Ship and Offshore 

Structures Exposed to the Risk of Brittle Failure 

IMT-13-

2020 
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