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Abstract
There are sparse opportunities for direct measurement of upper stratospheric winds,
yet improving their representation in subseasonal-to-seasonal prediction mod-
els can have significant benefits. There is solid evidence from previous research
that global atmospheric infrasound waves are sensitive to stratospheric dynamics.
However, there is a lack of results providing a direct mapping between infra-
sound recordings and polar-cap upper stratospheric winds. The global International
Monitoring System (IMS), which monitors compliance with the Comprehensive
Nuclear-Test-Ban Treaty, includes ground-based stations that can be used to char-
acterize the infrasound soundscape continuously. In this study, multi-station IMS
infrasound data were utilized along with a machine-learning supported stochas-
tic model, Delay-SDE-net, to demonstrate how a near-real-time estimate of the
polar-cap averaged zonal wind at 1-hPa pressure level can be found from infrasound
data. The infrasound was filtered to a temporal low-frequency regime dominated by
microbaroms, which are ambient-noise infrasonic waves continuously radiated into
the atmosphere from nonlinear interaction between counter-propagating ocean sur-
face waves. Delay-SDE-net was trained on 5 years (2014–2018) of infrasound data
from three stations and the ERA5 reanalysis 1-hPa polar-cap averaged zonal wind.
Using infrasound in 2019–2020 for validation, we demonstrate a prediction of the
polar-cap averaged zonal wind, with an error standard deviation of around 12 m⋅s−1

compared with ERA5. These findings highlight the potential of using infrasound
data for near-real-time measurements of upper stratospheric dynamics. A long-term
goal is to improve high-top atmospheric model accuracy, which can have significant
implications for weather and climate prediction.
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1 INTRODUCTION

The zonally averaged stratospheric circulation at high
northern latitudes is characterized by pronounced jets that
flow eastward in the cold season and westward in the
warm season. The prevailing wintertime eastward strato-
spheric flow is regularly disturbed by planetary waves that
propagate from below, occasionally leading to either a tem-
porary weakening or a reversal to a summer-like westward
mean flow, associated with phenomena called minor and
major stratospheric sudden warmings (SSWs). SSW events
and their onsets can be defined in various ways, with most
definitions involving stratospheric zonal winds and tem-
peratures at the 10-hPa pressure level (see, e.g., Butler
et al., 2015; Baldwin et al., 2021, for reviews). Although
the 10-hPa pressure level is more commonly involved
in the SSW definitions, these dramatic disruptions of
atmospheric circulation affect the entire atmospheric col-
umn, from the troposphere to the thermosphere, across a
broad range of latitudes (Limpasuvan et al., 2016; Orsolini
et al., 2022; Pedatella, 2023; Pedatella et al., 2018). SSW
events, that can last for several days to week (Orsolini
et al., 2018), have an impact on tropospheric weather and
climate patterns, such as cold-air outbreaks over North
America and Eurasia (Kolstad et al., 2010), southward
jet-stream displacements over the Euro-Atlantic sector,
and the negative phase of the North Atlantic Oscillation
(Butler et al., 2017). An episodic strengthening of the
stratospheric eastward jet can also occur with a mirrored
signature in the troposphere (Baldwin & Dunkerton, 2001;
Limpasuvan et al., 2005; Orsolini et al., 2018).

Enhancing the representation of stratospheric
dynamics in models can improve long-range weather
prediction, particularly during winter (e.g., Domeisen
et al., 2020a, 2020b; Scaife et al., 2022, and the refer-
ences therein). Considerable efforts have been made at
operational meteorological centers to improve the pre-
diction of the stratospheric circulation (Karpechko, 2018;
Scaife et al., 2016) and of SSWs in particular.
State-of-the-art seasonal or subseasonal-to-seasonal (S2S)
dynamical ensemble prediction systems are coupled
ocean–atmosphere models that extend into the strato-
sphere or above. For example, the most recent operational
Seasonal Prediction System (SEAS5) at the European
Centre for Medium-Range Weather Forecasts (ECMWF)
extends up to 0.01 hPa, or about 90 km altitude (Johnson
et al., 2019). Ensembles of forecasts are then produced,
initialized from analyses generated by data assimilation
of a large amount of atmospheric, surface, and oceanic
multi-platform observations (e.g., satellites, balloons,
weather stations, aircraft, ships, buoys, etc.).

Low-frequency infrasound waves resulting from
interactions between ocean surface waves moving in

opposite directions, known as microbaroms (Benioff
& Gutenberg, 1939), can travel for extended distances.
Microbaroms are quasi-continuous in time and are glob-
ally observed at infrasound stations of the International
Monitoring System (IMS; see, e.g., Marty, 2019) in both
hemispheres (De Carlo et al., 2021; Hupe et al., 2022).
This is attributed to low attenuation and efficient strato-
spheric ducting, occurring between the ground and
the stratopause at ∼50 km altitude, corresponding to a
pressure level of around 1 hPa (Drob et al., 2003; Hupe
et al., 2019; Le Pichon et al., 2006). The propagation of
infrasound waves in the atmosphere is governed by wind
and temperature fields (Diamond, 1963), and it has previ-
ously been shown in the literature that infrasound signals
can serve as a tool for probing atmospheric dynamics
(Le Pichon et al., 2010, 2019, and the references therein).
Pioneering work in the domain of microbarom-based
atmospheric observation was performed by Donn, Rind
and co-authors in several studies: for example, Donn
and Rind (1971) and Rind and Donn (1975). Later, the
potential to use such data to observe stratospheric wind
variability was further demonstrated: for example, by Le
Pichon et al. (2006), who analyzed 5 years of microbarom
detections.

Machine learning has brought about a revolutionary
change in data-driven research and is receiving con-
siderable attention in the field of numerical weather
prediction (e.g., Charlton-Perez et al., 2023, and the refer-
ences therein). Deep-learning-based approaches not only
have the potential to replace traditional end-to-end data
assimilation, but may also facilitate bias correction and cal-
culation speed-up (Cheng et al., 2023; Schultz et al., 2021).
Recent experiments involving the use of ERA5 reanalysis
in the training have shown potential for machine learning
in operational forecasting (Ben-Bouallegue et al., 2023).
Lam et al. (2023) demonstrated that a machine-learning
model trained on ERA5 data outperformed the High
RESolution forecast (HRES) system of ECMWF at up to
10 days lead time. S2S forecasting can also benefit from
hybrid machine-learning and mixed approaches (Cohen
et al., 2019).

Building a physics-based model that relates infra-
sound data directly to atmospheric properties in near-real
time is a challenging task and an active area of research.
This would require fast and accurate modeling tools that
are not yet available to the community. Alternatively,
deep-learning approaches have recently gained interest
by leveraging the sheer amount of continuous weather
and infrasound data streams to perform various tasks,
including automatic classification of coherent arrivals
(Albert & Linville, 2020; Bishop et al., 2022; Brissaud &
Astafyeva, 2022; Liszka, 2008; Witsil et al., 2022) or trans-
mission loss modeling (Brissaud et al., 2023). In particular,
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VOROBEVA et al. 3

Albert (2022) built a recurrent neural network based on
Long–Short Term Memory (LSTM) units to forecast tem-
perature and wind profiles 12 h in advance up to 30 km
using all available radiosonde observations 12 and 24 h
before the current time. The network prediction was then
evaluated against ERA5 reanalyses. This work also demon-
strated the benefit of better constraints on infrasound
propagation paths. Further developments based on this
model may involve uncertainty quantification and explor-
ing its limits in terms of overfitting and generalization.

In the current study, a first attempt is made to pro-
vide a robust stratospheric polar vortex diagnostic using
high-latitude infrasound data. These data are used to
train a stochastic-based machine-learning model called
Delay-SDE-net (Eggen & Midtfjord, 2023). This is a novel
neural network model using a stochastic differential
equation (SDE) in a time-series modeling framework.
SDEs are differential equations to which a random func-
tion is added for the purpose of quantifying uncertainty:
see, for example, Øksendal (2003). A recently devel-
oped strategy for time-series modeling within the field of
machine learning is to represent the derivatives in deter-
ministic differential equations as neural networks (Chen
et al., 2018), providing an example of physics-informed
neural network models (Raissi et al., 2019). A particular
development of such physics-informed neural networks
using a simple SDE (in place of deterministic differential
equations) as a modeling framework is called SDE-net
(Kong et al., 2020). Further innovations have emerged
from SDE-net: see, for example, Wang et al. (2021) and
Hayashi and Nakagawa (2022). Delay-SDE-net is an
example of such innovation, using a more complex SDE as
the modeling framework, where past states of a system are
also taken into account. This makes Delay-SDE-net more
flexible, as it holds inherent memory. This trait is particu-
larly beneficial in the prediction of weather variables.

The analysis carried out in this study spans the 7 years
2014–2020. Delay-SDE-net is trained to map microbarom
observations at the three northernmost IMS infrasound
stations and day of year (DOY) to the ERA5 zonal-mean
zonal wind at 1 hPa averaged between 60◦ and 90◦ latitude
(hereafter denoted as the polar-cap averaged zonal wind).
We focus on this pressure level, because stratospherically
ducted infrasound is typically the most sensitive to winds
in the upper stratosphere, where sound waves refract
back towards the ground, as shown in, for example, Drob
et al. (2003), Le Pichon et al. (2006), and Hupe et al. (2019).
Using years 2019 and 2020 as validation, we show that
there is good agreement between ERA5 and the wind pre-
dicted by the infrasound-based machine-learning model.
The dissimilarity between these datasets is estimated in
terms of root-mean-square error (RMSE) and does not
exceed 12 m⋅s−1 for both validation years. The results

obtained reveal a possibility of using quasi-continuous
microbarom observations for the near-real-time measure-
ment of the zonally averaged polar stratospheric circula-
tion. The purpose of this study is not to compete with exist-
ing comprehensive, ocean–atmosphere coupled model
forecasts, but rather to demonstrate that infrasound obser-
vations can be used as an additional source of information
to existing atmospheric models.

This article is organized as follows. The atmospheric
and infrasound datasets are introduced and discussed in
Sections 2.1 and 2.2. The stochastic-based machine learn-
ing approach is presented in Section 2.3. The results are
collected and discussed in Section 3 and the study is con-
cluded in Section 4.

2 DATA AND METHODS

2.1 ERA5 atmospheric reanalysis
product dataset

As data assimilation schemes, computational perfor-
mance, and forecast models evolve, the performance of
atmospheric reanalyses improves. Today, the fifth gen-
eration of the ECMWF’s atmospheric reanalysis, ERA5,
has replaced the earlier ERA-Interim reanalysis (Dee
et al., 2011). ERA5 provides global hourly estimates
of atmospheric, ocean-wave, and land-surface quanti-
ties with higher resolution compared with the previous
ECMWF reanalysis products (Hersbach et al., 2020).
The atmospheric product has an approximate horizon-
tal resolution of 0.28◦ × 0.28◦ and covers 1000–0.01 hPa
or 0–90 km altitude (137 model levels). The ERA5 data
are currently available from 1959 and have a latency of
five days (Bell et al., 2021), and their uncertainty is esti-
mated from the 10-member ensemble with three-hourly
temporal and 0.56◦ × 0.56◦ horizontal resolution. For an
overview of the ERA5 strengths and biases and a compari-
son with other reanalyses, we refer the reader to Hersbach
et al. (2020) and Bell et al. (2021).

In this study, the ERA5 zonal wind, U, at 1-hPa pres-
sure level (∼50 km altitude) is extracted from the ECMWF
archive (see the Data Availability statement at the end of
the article) for the years 2014–2020. The polar-cap aver-
aged zonal wind, defined here as the zonal-mean zonal
wind, cosine of latitude weighted and averaged between
60◦–90◦ latitudes, ̄U1 hPa, is calculated for every day of the
year based on the ensemble mean. For the leap years,
February 29 is removed from consideration. The ensem-
ble uncertainty (spread) is estimated on the basis of the
standard deviation with respect to the mean. The ensem-
ble mean and spread of ̄U1 hPa for the 7 years considered are
presented in Figure 1. In addition, we calculate a seasonal
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4 VOROBEVA et al.

F I G U R E 1 Polar-cap averaged zonal wind at 1 hPa for
2014–2020. ERA5 ensemble mean and spread are shown as a blue
solid line and a blue shade, respectively. The Fourier-series-based
seasonal cycle is plotted as a black dashed line. SSW events are
indicated with vertical solid lines (major SSW, red; minor SSW,
green). A gray shade highlights the warm season when the seasonal
cycle has negative values. [Colour figure can be viewed at
wileyonlinelibrary.com]

cycle by fitting the following Fourier series to the wind
data:

y(t) = a0 +
2∑

i=1
ai cos(𝜔it) + bi sin(𝜔it), (1)

where 𝜔i = i𝜋∕365 day−1. The Fourier-series-based sea-
sonal cycle is plotted in Figure 1 as a black dashed line.

Two features typical of the stratospheric circumpolar
circulation can be seen from these plots. First, positive
̄U1 hPa values (eastward jet) prevail in the cold season and

negative values (westward jet) in the warm season. The
warm season is estimated as days of the year 97–232 (gray
shade in Figure 1) based on days when the ̄U1 hPa sea-
sonal cycle (found from a Fourier series fit to all years
considered) changes sign. Second, the ERA5 uncertainty

is larger in winter due to the high temporal variabil-
ity of the stratospheric jet in the Northern Hemisphere
(Waugh et al., 2017). Moreover, the strong deviations of the
polar-cap averaged zonal wind from its seasonal average
observed in Figure 1 are associated with SSW events, as
indicated by vertical lines.

SSWs are typically associated with a sudden tempera-
ture increase at high latitudes and either zonal-mean flow
weakening or reversal at mid and high latitudes. A recent
review on SSWs can be found in Baldwin et al. (2021).
During 2014–2020, four major (reversal of the zonal-mean
flow at 10 hPa) and nine minor (weakening of the
zonal-mean flow at 10 hPa) occurred. The major events
occurred on March 27, 2014 (de Jesus et al., 2017), March
5–6, 2016 (Manney & Lawrence, 2016), February 11, 2018
(Pérot & Orsolini, 2021; Rao et al., 2018), and January 1,
2019 (Pérot & Orsolini, 2021; Rao et al., 2019). The onsets
of the minor events are estimated as February 9 and 19,
2014, March 1 and 16, 2014 (de Jesus et al., 2017), January
4, 2015 (Manney et al., 2015), February 1 and 26, 2017
(Eswaraiah et al., 2019, 2020), and February 5 and March
23, 2020 (Yin et al., 2023). The minor SSWs are presented
in Figure 1 as vertical green lines, and major events as red
vertical lines. In most cases, we see that the ̄U1 hPa values
change sign from positive to negative shortly before the
onset estimated at the standard 10-hPa pressure level. This
effect, with a change in zonal wind initiated in the upper
stratosphere (1 hPa) descending to the mid-stratosphere
(10 hPa), was reported previously (e.g., Limpasuvan
et al., 2016; Shepherd et al., 2014; Vignon & Mitchell, 2015;
Zülicke & Becker, 2013, and references therein). A detailed
analysis of such extreme events is not the focus of this
study; however, we would like to highlight the potential of
using ̄U at 1 hPa for SSW identification in further studies.

2.2 Infrasound dataset

Microbaroms are the dominating signals in infrasound
ambient noise and span the frequency range of 0.1–0.6 Hz,
with a peak frequency of∼0.2 Hz. These waves are detected
globally throughout the year, as shown by De Carlo
et al. (2021) based on observations at 45 IMS infrasound
stations in both hemispheres. Under wind conditions that
favor acoustic waveguides, microbaroms propagate over
large distances in the atmosphere (e.g., Donn & Rind, 1971;
Garcés et al., 2004; Le Pichon et al., 2006). The dominat-
ing frequency of microbaroms depends on the size of the
water basins, with higher frequencies typical for spatially
limited water areas and coastlines (e.g., Hupe et al., 2019).
As the main focus of this study is on characterizing the
stratospheric circulation on a large scale, microbaroms
generated by large water basins are of the greatest interest.
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VOROBEVA et al. 5

To this end, a low-frequency (0.15–0.35 Hz) micro-
barom dataset from Hupe et al. (2021, 2022) is used. The
dataset is generated from IMS infrasound station data
using the Progressive Multi-Channel Correlation (PMCC)
array signal-processing approach (Cansi, 1995; Cansi & Le
Pichon, 2008; Kristoffersen et al., 2022) and output param-
eters include wavefront characteristics as a function of
time under the assumption of a far-field plane-wave model.
Among other output parameters, the processing of Hupe
et al. (2022) provides a quality parameter, Q, for the data at
each time sample. This parameter is based on the number
of available sensors, the number of sensors contributing
to a PMCC detection, and correlation between sensors, as
well as the Fisher ratio (see eq. (1) in Hupe et al., 2022).
The Q parameter is distributed between 0 and 1, and we
set a threshold of Q > 0.4 to perform our further analysis
using only the high-quality data. To focus on stratospher-
ically ducted microbarom arrivals, we also excluded some
data points based on the apparent velocity, Vapp, which is
the plane-wave horizontal velocity as it propagates along
the array. Previous works have demonstrated that, for
microbaroms propagating in stratospheric ducts, Vapp is
typically in the 340–380 m⋅s−1 range (see, e.g., Vorobeva
et al., 2021, and the references therein). We removed all
data points with Vapp > 380 m⋅s−1. Microbarom detections
from all back azimuths were used.

Microbarom data from the three northernmost IMS
infrasound arrays (IS18, IS37, and IS53) located within
the polar cap are utilized in this study. Table 1 presents
information about these arrays, such as location, number
of sensors, and aperture. Note that the IS37 array was
certified 10 years later than IS18 and IS53. Given the time
span of processed microbarom infrasound data from these
stations available in Hupe et al. (2021), our study consid-
ers 7 years of data between 2014 and 2020. Figure 2 shows
the location of the three arrays on the map, together with
their geometrical configurations and the directional distri-
butions of microbarom detections for the cold and warm
seasons. For every day of the year, we extract information
about the strongest microbarom source, namely, the maxi-
mum microbarom amplitude and the corresponding back
azimuth. For times when there were no data available
(4.8%, 14.8%, 13.5% for IS18, IS37, and IS53, respectively),
the amplitude and back-azimuth values are replaced with
the mean values for that specific day calculated based

on the 7-year dataset. Typical reasons for missing data
are equipment failure, array maintenance, or weather
conditions (Marty, 2019).

Figure 3 displays the daily variations in microbarom
amplitude and back azimuth over the course of 7 years.
The microbarom amplitudes for all three stations have a
pronounced seasonal pattern, with the highest amplitudes
being recorded in winter. This pattern is similar to the sea-
sonal variations of ̄U1 hPa also plotted in Figure 3. This can
be explained by the enhanced microbarom source activ-
ity in winter coinciding with the eastward stratospheric
wind, beneficial for ducting infrasound waves over long
distances (De Carlo et al., 2021; Landès et al., 2012; Le
Pichon et al., 2006). The same effect occurs in the South-
ern Hemisphere during the austral winter (Le Pichon
et al., 2006).

From the directional distributions of microbarom sig-
nals presented in Figures 2 and 3, a certain seasonal pat-
tern can also be seen for each of the stations. For IS37,
the signals arriving from the North Atlantic (255◦–260◦
back azimuth) dominate throughout the year, with addi-
tional detections from the Barents Sea (10◦–15◦) during
the warm season. Microbaroms generated in the North
Atlantic are also regularly observed at IS18, with com-
peting signals arriving from around 270◦–300◦ in winter.
In the warm season, arrivals from two source regions in
the North Atlantic are detected with back-azimuth values
of 125◦–130◦ and 145◦–150◦. At IS53, southwest arrivals
from the Pacific Ocean dominate in winter, whereas dur-
ing the warm season additional sources are detected from
the south and northeast.

2.3 Stochastic modeling and the
Delay-SDE-net

Classically, ordinary and partial differential equations are
used to represent physical systems in time and space.
These are deterministic relations derived on the basis of
physical laws and are restricted to systems with strict
constraints. It is not possible to describe most dynami-
cal systems exactly, either because they are too complex
or because of natural randomness. In many cases, it is
sufficient to model such systems stochastically, which
means that the evolution of the system is associated with

T A B L E 1 Details of the infrasound arrays used in the study.

Array Location (◦N, ◦E) Elevation (m) Nsensors Aperture (km) Certified in

IS18 (77.48, −69.29) 69 8 1.16 2003

IS37 (69.07, 18.61) 74 10 1.95 2013

IS53 (64.88, −147.86) 200 8 1.97 2003
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6 VOROBEVA et al.

F I G U R E 2 The IMS infrasound
arrays used in this study and their
geometrical configurations. The
directional distributions of microbarom
detections are plotted for the cold
(orange) and warm (green) seasons.
[Colour figure can be viewed at
wileyonlinelibrary.com]

a certain probability distribution. This is done by repre-
senting a dynamical system as accurately as possible using
deterministic differential equations, where a stochastic
term is added to represent uncertainty. Such modeling
frameworks are called SDEs.

It is established in the literature that dynamical
systems of weather variables are well represented by
statistical linear autoregressive models (e.g., Benth
et al., 2008; Benth & Benth, 2010; Broszkiewicz-Suwaj
& Wyłomańska, 2021; Campbell & Diebold, 2005;
Eggen, 2022; Eggen et al., 2022). Overviews and imple-
mentations of such models are provided in Brockwell and
Davis (2016) and Gómez (2019). The continuous-time
counterparts of such models are linear systems of SDEs
(e.g., Brockwell, 2004, 2014; Marquardt & Stelzer, 2007).
In the current work we consider a multivariate dynam-
ical system consisting of polar-cap averaged zonal wind
at 1 hPa, data-processing output variables retrieved from
infrasound array recordings, and also DOY.

Results from our initial analysis of the datasets lead to
the assumption that co-variations between stratospheric
wind and infrasound variables are non-stationary and/or

nonlinear. Based on this, we chose a so-called stochas-
tic delay differential equation (SDDE) as modeling
framework. Note that the SDDE is a generalized ver-
sion of the continuous-time linear autoregressive model
(Basse-O’Connor et al., 2020). The SDDE is a multivariate
(possibly non-stationary and nonlinear) SDE explaining
co-variation between variables of a dynamical system, as
well as co-variation between time-lagged versions of these
variables. This ability applies to both the deterministic
and stochastic (uncertainty) parts of the model. When the
SDDE is used as a modeling framework, due to its gener-
ality, a suitable model can be challenging to work out.

A novel methodology for elaborating such frame-
works using neural networks is derived by Eggen and
Midtfjord (2023), where Delay-SDE-net is presented. The
Delay-SDE-net model can be considered as a discrete-time
SDDE where the model coefficients are independent
neural networks. The model trained for this work makes a
near-real-time prediction and is of the form

ŵt = f (t, xt−p−1, … , xt)Δt + g(t, xt−p−1, … , xt)𝜖t, (2)

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4731 by N
orw

egian Institute O
f Public H

ealt Invoice R
eceipt D

FO
, W

iley O
nline L

ibrary on [01/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


VOROBEVA et al. 7

F I G U R E 3 Amplitude and back azimuth of the strongest
microbarom detection per day over the course of 7 years
accompanied by ERA5 polar-cap averaged zonal wind at 1 hPa
(blue). The infrasound station code is indicated in the plot. The right
panels present the back-azimuth distributions calculated for 10◦ bins
(black) as well as distributions for cold (orange) and warm (green)
seasons. [Colour figure can be viewed at wileyonlinelibrary.com]

where Δt = 1 is the time-step size of one day, p − 1 is
the number of time lags in the model, and 𝜖t ∼ N(0, 1)
is a standard normally distributed random variable.
We use p = 4, following Eggen et al. (2022). Further-
more, xs = [xs,1, … , xs,9], with s = t − p − 1, … , t, is a
nine-dimensional vector of infrasound measurement val-
ues at time s, the functions f and g represent trained
neural networks for the deterministic and stochastic parts
of the model, respectively, and ŵt represents the corre-
sponding estimated stratospheric wind, ̄U1 hPa. The input
and output variables for this model are explained thor-
oughly in Sections 2.1 and 2.2. In particular, see Figures 1
and 3. The back-azimuth features are decomposed into
their x- and y-directions, corresponding to the cosine and
sine of the back-azimuth angle, respectively. This provides
continuous ranges of back-azimuth features over all direc-
tions. As a result, the feature vector, xs, with infrasound
measurements from three stations, holds nine variables,

consisting of three microbarom amplitudes and six val-
ues representing the cosine and sine of the back-azimuth
values estimated at the stations.

As already implied, the deterministic part, f , of the
trained Delay-SDE-net provides an expected value of
̄U1 hPa, and the stochastic part, g, is used to provide model

uncertainty estimates. This is obtained by first training f
by minimizing the prediction error of the training data
compared with the ERA5 wind (ŵt − wt). This procedure
is followed by a training of g in two steps to capture both
aleatoric and epistemic uncertainty (Der Kiureghian &
Ditlevsen, 2009). The aleatoric uncertainty comes from the
natural randomness inherent in the task and it captures
the residuals from the deterministic net

ŵt = f (t, xt−p−1, … , xt)Δt. (3)

The epistemic part can be considered as the uncertainty
due to lack of knowledge within the model and provides a
higher uncertainty estimate when the model sees unusual
states or unusual combinations of states. For the strato-
spheric polar vortex, SSW events with strong deviations
from the seasonal average can be considered unusual fea-
tures. We therefore suggest that properties of the epistemic
part could make a useful tool for assessment of SSW events
and other stratospheric vortex anomalies.

We train Delay-SDE-net on 5 years (2014–2018) of
infrasound data from three stations (Section 2.2), ERA5
ensemble-mean polar-cap averaged zonal wind ̄U1 hPa, and
DOY. The validation is performed on years 2019 and 2020
based on the trained model, DOY, and infrasound observa-
tions. The trained stochastic part of Delay-SDE-net is used
to provide prediction intervals (PIs) of ̄U1 hPa predicted by
Delay-SDE-net. The prediction confidence is given as 90%
intervals. Since the expected value of wind is different for
every day of the year, we consider the Delay-SDE-net wind
estimates for each day of the year as independent popu-
lations. The training dataset consists of 5 years, meaning
that we have sample size n = 5. The PIs are computed
according to Devore et al. (2012) (their eq. (8.14)). See
Figure 4 for the estimated PIs.

3 RESULTS AND DISCUSSION

3.1 Inferring the polar-cap averaged
zonal wind based on microbarom
infrasound recordings

The core results of this study are presented in Figure 4,
which compares estimates of the polar-cap averaged
zonal wind by the infrasound-based Delay-SDE-net
and ERA5 (blue curve) for the validation years 2019
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8 VOROBEVA et al.

F I G U R E 4 Comparison
between the ERA5 and
Delay-SDE-net estimates of the
polar-cap averaged zonal wind at
1-hPa pressure level for (a) 2019
and (b) 2020. Blue: ERA5 ensemble
mean; black: Delay-SDE-net
estimate when trained on
infrasound data and DOY; red:
Delay-SDE-net estimate when
trained on infrasound data only;
green: Fourier-series-based
seasonal cycle based on ERA5. The
uncertainties are indicated with
shaded areas: blue denoting ERA5
and gray denoting Delay-SDE-net
trained on infrasound data and
DOY. Note that the black and red
curves correspond to
Delay-SDE-net trained on
microbarom amplitudes and
back-azimuth data from all three
infrasound stations (IS18, IS37, and
IS53). [Colour figure can be viewed
at wileyonlinelibrary.com]

and 2020. Note that data from these years were not
seen in the Delay-SDE-net training. Two ̄U1 hPa esti-
mates by Delay-SDE-net are shown as black and red
curves that represent instances where Delay-SDE-net
was trained with and without incorporating information
on the DOY, respectively. For comparison, we also dis-
play the Fourier-series-based seasonal cycle fit based on
Equation (1) (green dashed curve). The ̄U1 hPa estimates
by ERA5 and Delay-SDE-net trained on infrasound and
DOY are plotted together with their uncertainties. These
are obtained from the ERA5 10-member ensemble spread
(blue shade) and from the 90% PIs for Delay-SDE-net
(gray shade).

Looking at the two realizations of Delay-SDE-net,
we note that (1) the two approaches yield very simi-
lar results in both validation years, and (2) including
the DOY in the training does not over-constrain the
method to the seasonal cycle. This can be explained
by the sensitivity of infrasound propagation to sea-
sonal variations in stratospheric winds as discussed in
Section 2.2. The RMSE over the years 2019 and 2020
between the ERA5 and Delay-SDE-net ̄U1 hPa estimates
is 11.3 and 11.5 m⋅s−1 respectively when the DOY is
included, while the RMSE is 11.7 and 13.6 m⋅s−1 respec-
tively when DOY is not included. As the Delay-SDE-net
realization with the DOY included in the training pro-
vides slightly lower RMSE in this comparison, we will

include the DOY in simulations for the remainder of
this study.

At the onset of 2019, a pronounced SSW is evi-
dent from the negative ERA5 ̄U1 hPa values shown in
Figure 4a. The Delay-SDE-net estimate of ̄U1 hPa that
includes DOY in the training captures this distinctive
SSW feature effectively, aligning significantly more closely
with the ERA5 ensemble mean than the Fourier-based
seasonal cycle. However, it is noteworthy that, when
Delay-SDE-net is trained exclusively on infrasound data,
its ̄U1 hPa estimate exhibits positive values up to DOY 11
and diverges significantly from the ERA5 estimate dur-
ing this period. Despite this, a good agreement with the
ERA5 ensemble mean is obtained throughout the year,
with 96.9% and 98.1% of the ERA5 values falling within the
Delay-SDE-net PIs when trained on both infrasound and
DOY and exclusively on infrasound, respectively. Exam-
ining the ̄U1 hPa amplitude during the recovery phase of
the polar vortex, our analysis reveals the following find-
ings. During days 45–80, the difference between ERA5
and Delay-SDE-net ̄U1 hPa increases. The Delay-SDE-net
estimate is approximately 20 m⋅s−1 smaller than the
ERA5 ensemble mean. Notably, during days 51–57, the
difference reaches up to 30–40 m⋅s−1. Subsequently, a
much better agreement is observed for the remainder
of the year, with the difference centered consistently
around 5 m⋅s−1.
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VOROBEVA et al. 9

Figure 4b compares the ERA5 and Delay-SDE-net
̄U1 hPa estimates for year 2020. From this display, it is

clear that ̄U1 hPa in 2020 is significantly closer to the sea-
sonal cycle compared with 2019. As therefore expected,
informing Delay-SDE-net with infrasound data in addi-
tion to the DOY turns out to provide less added value
in 2020 compared with 2019, when there was more
stratospheric variability. However, despite a generally
good agreement in 2020, some discrepancies can be
seen. For example, in the beginning of the year up
to around day 15, both realizations of Delay-SDE-net
estimate ̄U1 hPa to be weaker compared with ERA5.
In addition, the negative values of ̄U1 hPa estimated by
ERA5 around two minor SSWs (DOYs 35–37 and 78–82,
respectively: Yin et al., 2023) are not well predicted by
Delay-SDE-net. Despite these discrepancies, a good agree-
ment is obtained, with 96.6% and 95.3% of ERA5 values
falling within the Delay-SDE-net PIs when trained on
both infrasound and DOY and exclusively on infrasound,
respectively.

3.2 Sensitivity to the choice of
infrasound stations and data

Figure 4 showed the results of Delay-SDE-net trained on
microbarom amplitudes and back azimuths from all three
infrasound stations (see Figure 2 and T able 1), but it is
also important to assess the sensitivity of Delay-SDE-net
to different combinations of infrasound stations and
array-processing parameters. We therefore perform a sen-
sitivity analysis for the validation years 2019 and 2020,
where 21 scenarios are run for each year: seven different
combinations of stations (single station, two stations, three
stations) with three combinations of infrasound array
data parameters (microbarom amplitude, back azimuth,
both amplitude and back azimuth). Note that we use the
Delay-SDE-net that includes DOY in the training, as stated
in Section 3.1.

Figure 5 shows the sensitivity analysis results, with
RMSEs plotted for different scenarios. For year 2019, with
a lot of stratospheric wind variability and a major SSW,
the difference between the ERA5 and Delay-SDE-net esti-
mates decreases significantly when increasing the number
of stations and array data-processing output parameters
used. The lowest 2019 RMSE of 11.3 m⋅s−1 is obtained
when training Delay-SDE-net on all available infrasound
data. In contrast, the RMSEs for year 2020, with relatively
undisturbed stratospheric dynamics and no major SSW,
remain consistent across the scenarios analyzed. This indi-
cates that, for seasons like 2020, training Delay-SDE-net on
observations from a single station yields a ̄U1 hPa estimate
of nearly the same quality as when utilizing infrasound

data from multiple stations. Nevertheless, a better estimate
of ̄U1 hPa is generally expected with observations from all
three infrasound stations. The RMSE is within 10–14 m⋅s−1

and reaches 11.5 m⋅s−1 when training on the entire infra-
sound dataset.

We note that the combination of data from IS37 and
IS18 gives a lower RMSE than the other station pair com-
binations, in particular for year 2019. A reason might be
that these two stations are located at comparably close dis-
tances to the North Atlantic microbarom source hotspot
(see Figure 2 and D e Carlo et al., 2020, 2021). They
are thereby “illuminated” by this source from comple-
mentary back-azimuth directions, and the combined or
complementary station detection/non-detection of micro-
baroms from this region might be particularly sensitive
to the upper stratospheric wind morphology. For 2020,
where there was less stratospheric polar vortex variability,
there is limited added value in using data from multiple
infrasound stations.

3.3 Avenues for future work

To evaluate the performance of Delay-SDE-net com-
prehensively, it is proposed to blend the training and
validation years, allowing for the generation of results
encompassing all possible permutations across the 7 years
of data. In addition, investigating the impact of incorporat-
ing the SSW events in the training dataset on their predic-
tive performance during the validation stage presents an

F I G U R E 5 Sensitivity analysis of the infrasound and DOY
based Delay-SDE-net to different combinations of training
parameters for years 2019 (top panel) and 2020 (bottom panel). The
RMSE between the ERA5 and Delay-SDE-net estimates of the
polar-cap averaged zonal wind is plotted as a function of training
parameters used. Note that the DOY is included in all these
numerical experiments, and that panels have different limits for
vertical axes. [Colour figure can be viewed at
wileyonlinelibrary.com]
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10 VOROBEVA et al.

intriguing avenue for further exploration. Albeit irregular,
major SSW events occur approximately every 2 years on
average, and to obtain a dataset without them one would
need to delve deeper into historical records and compile a
training dataset from years without SSWs. Moreover, the
epistemic uncertainty part of Delay-SDE-net, as explained
in Section 2.3, has potential to, during inference, flag
unusual events such as SSWs that are less common in the
training data. Hence, a future study could exploit the epis-
temic uncertainty output of Delay-SDE-net to detect SSWs
and other stratospheric anomaly events. Furthermore, a
more detailed examination of different SSW types (vortex
split or displacement) can be performed in order to define
in which cases the infrasound-based machine-learning
model performs better.

Microbaroms are generated by counter-propagating
ocean waves, and their source field is dynamic in time
and space. Therefore, an interesting further analysis
could be to assess the benefits of also informing the
machine-learning model about the microbarom source
locations and strength as a function of time. Such micro-
barom generation and radiation models have been
elaborated, for example, in De Carlo et al. (2020). Another
possible direction of research could be to apply differ-
ent infrasound array data-processing approaches. For
example, the back azimuth and apparent velocity of
several coherent infrasound arrivals can be obtained using
the CLEAN algorithm (Högbom, 1974), as presented by
den Ouden et al. (2020). Furthermore, a velocity spectral
analysis (vespa) processing can be applied to microbarom
observations in order to provide a directional distribution.
Recently, Vorobeva et al. (2021) showed that vespa pro-
vides realistic estimates of microbarom soundscapes when
compared with the state-of-the-art microbarom radiation
and propagation model of De Carlo et al. (2020).

The Delay-SDE-net performance is fast (72 s for 2 years
of data when DOY is included and 162 s when DOY is not
included), and additional infrasound-based variables can
be added straightforwardly. Another natural extension to
the current work is to add data from more stations and
to examine the prospects for a more fine-grained mid-
dle atmospheric probing in terms of both altitudes and
geographical areas.

4 CONCLUDING REMARKS

Microbarom observations at three polar IMS infrasound
stations are proposed as an additional source of observa-
tional information on the upper stratospheric circulation,
thereby addressing a wind observation gap at these alti-
tudes. We developed a mapping that uses infrasound data
from these stations and the DOY as input to provide an

estimate of the polar-cap averaged zonal wind at 1-hPa
pressure level as output. The applied stochastics-based
machine-learning model (Delay-SDE-net) is trained on a
5-year-long time series of processed microbarom infra-
sound data, the DOY, and the ERA5 ensemble mean
polar-cap averaged zonal wind. In the inference stage, the
model is informed about the infrasound data and the DOY.
In addition, we showed that the mapping also works well
without involving the DOY in training and inference.

On the basis of 2 years of validation, it is demon-
strated that the Delay-SDE neural network informed by
ground-based infrasound observations and DOY performs
well in predicting the ERA5 polar-cap averaged zonal
wind with an RMSE of around 12 m⋅s−1. Moreover, a series
of additional numerical experiments were conducted to
explore the sensitivity of the Delay-SDE-net output to the
number of infrasound stations and the amount of array
data-processing output parameters. For year 2019 with a
major SSW, the RMSE between the ERA5 ensemble mean
and the infrasound-based polar-cap averaged zonal wind
decreases significantly when increasing the number of sta-
tions and array data parameters. In contrast, for the year
2020, with no major SSW and less stratospheric vortex
variability, the RMSE is persistent across the different
number of stations and array data parameters included in
the training.

In addition to the nowcasting methodology applied
in this work, a forecasting training methodology is avail-
able through the Delay-SDE-net framework (Eggen &
Midtfjord, 2023), and these capabilities might be utilized
to forecast the stratospheric circulation in future studies.
Further numerical experiments can also be conducted
to assess to what extent stratospheric wind forecasting
benefits from being informed with infrasound data in
addition to the present and past stratospheric wind and
temperature.

This study confirms that microbarom observations
carry valuable information about the upper strato-
spheric dynamics, thus highlighting the potential to use
near-real-time IMS infrasound data in stratospheric diag-
nostics. The only previously published infrasound data
assimilation studies are offline experiments that pro-
vide a more localized stratospheric probing using signals
from explosive events (Amezcua et al., 2020; Amezcua
& Barton, 2021). A long-term goal is to develop data
assimilation approaches for microbarom infrasound, con-
tributing to an enhanced upper stratospheric dynamics
representation in atmospheric models, and ultimately to
improve the subseasonal-to-seasonal forecast skill.
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