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ABSTRACT

ABSTRACT

Buildings have become one of the most energy-intensive sectors globally, contributing to
about one-third of the worldwide energy consumption. The response to growing global
concerns regarding energy-use has prompted the building sector to develop strategies for
energy efficiency and investigate potential areas for optimizing building energy performance.
The research efforts have highlighted several underlying factors that are attributed to this
performance. Occupant Behavior (OB), or the way people interact with building systems, was
found to have significant influence on building’s performance, and further investigations
revealed the lack of understanding the sector has regarding this phenomenon. Moreover,
considerations of building occupants during the design stage rely on simplistic or
deterministic approaches that do not provide an accurate representation of occupants. This
challenge is also present in building performance simulation tools that are used to develop
policies and provide recommendations for enhancing building energy efficiency. The lack of
provisions for a dynamic human-building interaction is often attributed to the gap in expected
and actual performance of buildings. The difficulties in addressing the topic arise from OB
being a complex culmination of several phenomenon, including the occupant’s presence,
movement, actions, clothing, habits, social parameters and other contextual factors.
Consolidated research efforts in this area, such as the International Energy Agency’s Annex
reports highlight the need for improving the accuracy of monitoring and modeling OB. Key
recommendations also include the investigation and inclusion of social factors underlying OB,

which are often neglected or underreported in energy research.

This thesis aims to provide a better understanding of OB by analyzing several aspects of it, in
diverse contexts and settings. The work carried out can be categorized into three topics: OB
Monitoring, OB Profiles, OB Modelling. The first one of these comprises of case studies
using diverse methods to monitor and analyze occupants in different built environments. The
second one focuses on the preparatory work needed for developing OB models, by creating
occupant profiles, databases, and frameworks. The last one aims to provide insight and
recommendations regarding the modelling and simulation part. The four research questions

framed under these categories and their outputs can be summarized as follows:

viii



ABSTRACT

How to monitor and analyze the impacts of occupant behavior in different spaces: Three
distinct case studies were carried out to answer this question. The work consisted of using
multiple sensing modalities to monitor occupant presence, energy-use, movement, and
activities. Each study provided a unique perspective, with the first one using a combination of
PIR and environmental sensors to collect and examine granular device-level, office-level, and
occupant-level data in a shared office space. The second one made use of depth registration to
monitor occupant influences in an operating room, and the last study focused on capturing an
extensive activity-based dataset for smart homes. Since the lack of shared standards and
benchmark datasets is another challenge in the development of guidelines and models, one of
the goals of these studies was also to provide benchmark datasets that are available for a

broader use.

How can the social aspects of OB be evaluated for modelling/simulation purposes: The
research question was divided into three tasks, starting with the development of a hypothetical
framework and extended Theory of Planned behavior model, which was useful in quantifying
the social aspects. The second task put this model in implementation, by collecting data
through surveys and analyzing the factors that influence people's behavior. The investigation
process involved creating structural equation models, regressions, and path analysis.
Regression was found to be the best fit, while path analysis was acceptable. Influence factors
for occupant's energy-related behaviors were obtained for each building system. The addition
of additional variables improved the predicting power of current models. The framework and
evaluation of variables led to the creation of OB profiles, supported by analysis highlighting
valid and significant variables. The k-modes clustering technique yielded suitable clusters for

modelling purposes.

How can the social aspects of OB be modelled/simulated: An important part of this thesis
was incorporating an interdisciplinary approach, connecting social behavioral theories to the
engineering aspects of modeling and simulation. Addressing this question required assessing
modeling techniques that would be best suited to include the diversity and flexibility required
to include social aspects. Agent-based models were used to simulate this aspect, which proved
capable of executing the already defined fixed and static models while also accommodating
the diversity of OB.
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What kinds of prerequisites are needed to map environmental layouts around the
occupant: This question was part of a broader study aimed at developing a hypothetical OB
model that attempts to address multiple modeling requirements for OB, a part of which was to
simulate the environment around the occupant. The work carried out in this thesis aimed to
map occupant environmental layouts in a room by identifying seven variables for a library
and developing a Matlab application for spatial information collection. The library was tested
using a sample dataset of 80 offices at NTNU. A database was created to connect the
information generated from this study to larger models, which were expanded to include other

datasets from previous studies.

By addressing these questions, this thesis was able to contribute to a broader understanding on
the subject of occupant behavior, providing insights about the monitoring and modelling
process, and highlighting additional challenges in the subject. The findings may contribute to

a better design of building operation and management that places its occupants at the center.
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INTRODUCTION

1 INTRODUCTION

The rise in global energy-use has led to worldwide concerns and calls for sustainable
transitions across several disciplines. The building industry is a significant contributor to this
consumption, and as such, sustained effort has been directed to implement energy efficient
technologies in the whole life cycle of buildings. An integral part of the building are its users,
or occupants, and the interactions between them and the building systems have a major impact
on the building’s energy consumption. This interaction has been the focus of several research
efforts during the last decade, and there still exist several gaps in the understanding of this
human-building interaction. This thesis aims to explore aspects of this interaction, to provide
understanding of occupant behaviors, and lay the groundwork for developing models of the

same.

1.1 Motivation

The last few decades have seen buildings emerge as one of the most energy-intensive sectors
with regards to global energy consumption, contributing to about one-third of the total figure
[1]. The same sector has also been responsible for 39% of the nationwide consumption in the
United States, and 40% on average in countries part of the European Union [2][3]. These
numbers are projected to be increasing at a higher rate as well. In the global context, there is a
need to shift towards strategies that drive a more sustainable future, which is perhaps best
reflected in the United Nations Sustainable Development Goals, that advocate for more
energy efficient technologies and responsible consumption [4]. This has led to an increase in
efforts to optimize and bolster energy efficiency in buildings, which have taken the form of
certification programs, energy codes, financial and other incentives etc. The advent of low-
energy or zero-energy buildings contribute to the same cause as well. However, in operation,
it has been found that buildings far exceed their expected consumption, and this gap is more
pronounced in low-energy buildings [5][6]. In addition, studies have indicated that building
energy consumption is driven by several diverse factors, such as engineering technology,
geographical context, local climate, cultural background, social equity, occupant behavior
(OB), and more [7,8]. In order to advance energy-efficient strategies, it becomes imperative to

have an understanding of the underlying factors.
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Over the past decade, a central underlying theme has surfaced to the forefront, due to the
consolidated efforts of several global researchers and scientists. The theme is that of occupant
behavior, that is, the way that users/occupants interact with building systems [9]. The
International Energy Agency (IEA) has had multiple annexes devoted to the task, under the
Energy in Buildings and Communities (EBC) program, wherein researchers have studied,
analyzed, and documented this branch of study in detail. It has been evident that OB plays a
defining role in influencing the total consumption of buildings. This role has been
documented by several studies that demonstrated the differences in OB that can lead to
significant changes in the resulting building energy consumption, whether it is through
monitoring different occupants, or developing energy models with different occupant profiles
[10][11]. This behavior, however, is multifaceted in terms of the interaction with different
kinds of building systems, varied building physics and available technology, and needs to be
studied accordingly. Moreover, efforts directed at building energy management have adopted
approaches that classify the building into certain seasonal or temporal cycles, or gauge the
end-use of different building types, with the goal of reducing or optimizing the energy
consumption. Such strategies have been met with counter proposals that argue for a more
holistic approach that considers each influential component of the building system to arrive at
a sustainable building design. This approach gives space for including OB, which is one of
the main sources of uncertainty in building energy consumption [12]. In addition,
discrepancies between the expected and actual performance of buildings can often be

attributed to oversimplification in occupant’s presence and schedules [13].

A significant approach to tackle these issues is by using building performance simulation
(BPS) programs to identify the needs and schedules of the users and efficiently improve the
design and operation of buildings. Coupled with simulations, recommendations regarding
energy saving measures and improving comfort of the users benefit occupants as well as the
building facility managers. In addition, the results of these simulations provide better decision
support, including policy support, early phase design support and multi-scale approaches from
construction detail to district level. These programs include the modelling and evaluation of
different systems in buildings, such as the thermal or electric systems [14]. The models in
simulation sciences have had considerable advances in the past few decades. Physical
phenomena are being represented by increasingly sophisticated algorithmic domain models.

Geometrical representation of the building components, elements etc. has achieved substantial
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progress [15], and so has the representation of dynamic boundary conditions. Compared to
these developments, implemented models of people in buildings have been rather simplistic,
making use of fixed and static schedules, which are not accurately representative of OB [16].
In addition, the lack of shared methods and standards represents another challenge in this
field. These challenges invoke the need for sustained research and development efforts for

improving OB models.

As identified in the IEA EBC Annex 66 report, current research needs to be directed at
improving the accuracy of monitoring occupants and simulating procedures involving OB
[17]. Key directions highlighted by the experts in the community include occupant monitoring
and data collection, model development, model evaluation, and integration into building
simulation tools. This thesis aims to provide insight into the first two directions. The first of
which is to conduct case studies of occupants in different settings of the built environment,
such as private/shared office spaces, residential areas, and specialized zones like hospital
rooms. These studies use a range of data acquisition techniques to extract information about
several different aspects of occupant behavior, ranging from movement, presence, activities,

and energy-use behaviors.

The second key direction concerns OB modeling, which has its complications based in the
diverse set of actions as well the different aspects of the OB itself. The complexity and
uncertainty in this field stem from the fact that OB contains various similitudes in the form of
presence, movement, activity level, comfort level, social influences etc., and detailed attention
has to be given to each of these in order to construct a complete individual profile.
Furthermore, OB models tend to focus on the physical occupant interactions, neglecting the
socio-psychological factors that drive them [18]. This thesis aims to provide a bridge between
social behavioral theories and OB models, by identifying influencing factors and datasets that
need to be used to prepare profiles for a proposed agent-based modelling approach. The
studies in this thesis also focus on other aspects of OB such as their movement and

surroundings, and the preparatory work and profiles needed in order to construct the models.

This thesis is also a part of the overarching work proposed by Dziedzic [19], wherein a
bottom-up approach would be used to combine a series of simulators based on different
aspects of OB. Such an undertaking is vast in scope and would need significant effort directed
at each relevant topic, taking into consideration the datasets that need to be collected for each

OB aspect, the sensing modalities to be used, the privacy implications, suitable data
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processing techniques, model development and validation, and so on. Through the questions
raised and studies undertaken, this thesis also aims to contribute to the body of knowledge

required to build such a holistic model.
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1.2 Research questions and research tasks

Occupant behavior is a result of diverse, multidisciplinary phenomenon, and the approach to
modelling OB needs to consider several different aspects of it. This thesis aims to understand
and analyze OB with regards to several diverse contexts and settings. The three main areas

explored in the study were related to:

(i) OB monitoring: conducting case studies that use diverse modes of data acquisition to

monitor and analyze OB in various settings of the built environment

(i) OB Profiles: Collecting occupant behavioral data with regards to their environmental
layouts, social influences, movement, and energy-use habits, in order to generate profiles for,

and conduct preparatory work for OB modeling

(ili) OB Modeling/Simulation: Develop an agent-based model based on (2) to simulate the

social aspect of OB.

Figure 1-1 provides a visual description of the three research areas in focus.

Occupant Behavior Monitoring

Occupant Profiles

Occupant Behavior Models

Case studies aimed at using Targeted data acquisition Development of agent-
diverse data acquisition of selected aspect of based models for social
methods to capture multiple occupants, development aspects of occupant
aspects of occupant of databases/profiles to behavior. Deep learning
behaviors  in  different be suitable for modelling models for forecasting
building environments purposes energy-use of occupants.

Figure 1-1. Research Areas

The following four questions were considered to achieve the objective of this thesis, each

accompanied by a set of tasks outlined to answer them:
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Question 1. How to monitor and analyze the impacts of occupant behavior in different

spaces?

Task 1.1: Case study monitoring and analyzing occupant presence, and energy-use patterns

in shared office spaces
Task 1.2: Case study in Living Lab to collect data regarding activities of daily living
Task 1.3 Case study on influence of OB in operating rooms

Question 2. How can the social aspects of OB be evaluated for modelling/simulation

purposes?

Task 2.1: Perform a literature review to understand the extent of social influences and the
tools/methodologies that are used to assess it. Develop a framework for measuring these

influences in the context of energy-related occupant behavior in buildings.

Task 2.2: Conduct a study to collect data regarding social aspects of OB and analyze it to

identify significant factors

Task 2.3 Analyze different factors and clustering strategies to develop behavioral profiles to

be used for modelling purposes
Question 3. How can the social aspects of OB be modelled/simulated?

Task 3.1: Develop agent-based models using the profiles generated from (Q2) to conduct a

proof-of-concept study for OB modelling.
Task 3.2: Develop ABMs targeted at diversity in OB models

Question 4. What kinds of prerequisites are needed to map environmental layouts

around the occupant?

Task 4: Analyze variables required to construct a library for a zone/floor layout simulator.
Develop an application for geometric data collection and conduct a study for developing a

database for zone layout simulator.

Figure 1-2 categorizes the research questions and task into their respective research areas.
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1.3 Structure of the thesis

The rest of the thesis is structured as follows: Chapter 2 introduces the background of the
different topics covered in the study, in an order that explains the progression of the thesis.
The next three chapters follow the theme that is highlighted in Figure 1-1. As shown in the
figure, there are three main areas of research covered in the study (OB monitoring, OB
profiles and preparatory work, OB modelling), and each of the chapters is segregated based
on these themes. Chapter 3 explains the methodology for the OB monitoring case studies, the
preparatory work for OB models, the investigation and evaluation of the social aspects, and
finally the models developed. Chapter 4 then presents the results for each of these sections.
Chapter 5 outlines the main conclusions, provides the key limitations, and the considerations

for the future work.
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1.4 List of publications

The foundation of this thesis is built on a collection of nine papers, six of which were journal
articles, and the remaining three were part of conference proceedings. An overview of these
articles is presented in Figure 1-3. Here, they are distinguished between primary papers and
supporting papers, wherein the primary papers address the key research questions, and
supporting papers provide preparatory work for the former, along with additional insights
around the subject of Occupant Behavior. Each paper addressed one or more of the following

five different aspects of Occupant Behavior (OB):
3 Presence: Having to do with the occupant’s presence within an area

o Social: Effects and influences that the occupant has from their beliefs, perceptions,
or other people around them

. Environmental: Interaction of the occupant with their immediate surroundings, or
influences that an occupant can have on them.

. Activity: General activities that an occupant undertakes, specifically categorized
based on the zone/room they occupy.

. Energy-use: More specific activities that directly impact energy-use, such as plug

loads, lighting, heating/cooling, or intention to perform these.

The papers included in the thesis are listed below, along with the author’s contributions to

each:
Primary Papers
Paper 1

Annageeb M K, Dziedzic J W, Yan D, Novakovic V. Exploring the tools and methods to
evaluate influence of social groups on individual occupant behavior with impact on energy
use. Proceedings of the IOP Conference Series: Earth and Environmental Science. 2019; 352
(1): 012044.

Contribution: This paper presented a review of the social features in energy-related OB, and
their significance. The author was responsible for preparing the conceptual framework,
conducting the literature search, and original draft. Jakub Dziedzic, Da Yan and Vojislav

Novakovic reviewed and commented on the article.
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¢ Review of social features in energy-related OB, and their significance
o Developed conceptual framework on tools to assess social aspect of OB
e Preliminary factors identified to investigate topic

e Aspects of OB addressed: Social
Paper 2

Annageeb M K, Markovic R, Novakovic V, Azar E. Non-intrusive data monitoring and
analysis of occupant energy-use behaviors in shared office spaces. IEEE Access, 2020;
8:141246-141257.

Contribution: This paper developed a framework for monitoring OB with regards to energy-
use in shared offices. The conceptualization was done in collaboration with Elie Azar. The
author conducted the experiment, data collection and processing, formal analysis, and wrote
the original draft. Data visualization was done with Romana Markovic. Elie Azar Vojislav

Novakovic reviewed and commented on the work.

e Framework for monitoring OB with regards to energy-use in shared offices

e Case-study using sensors to monitor OB, environmental parameters and Miscellaneous
Electric Loads (MELS)

e Analysis of MEL energy-use behaviors

e Aspects of OB addressed: Presence | Environment | Energy-use

e Methods: Sensors
Paper 3

Annageeb M K, Azar E, Yan D, Novakovic V. Evaluating occupant perceptions of their
presence and energy-use patterns in shared office spaces. Proceedings of the 16th Conference
of the International Society of Indoor Air Quality and Climate: Creative and Smart Solutions

for Better Built Environments, Indoor Air 2020.

Contribution: This paper is based on the conceptual framework developed in Paper 1, and
parts of its datasets are from the experiment conducted in Paper 2. These were used to develop
profiles for occupant presence and energy-use and perform a comparative analysis. The
conceptualization was done with Vojislav Novakovic. The author conducted the formal
analysis, visualizations, and wrote the original draft. Elie Azar, Da Yan, and Vojislav

Novakovic reviewed and commented on the paper.

10
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e Use of conceptual framework from Paper 1

e Developed profiles for occupant presence and energy-use

e Comparative analysis of OB profiles (standard, perceptual, actual)
o Aspects of OB addressed: Presence | Social | Energy-use

e Methods: Surveys | Sensors
Paper 4

Annageeb M K, Das A, Arpan L, Novakovic V. Evaluating and Modeling Social Aspects of
Occupant Behavior in Buildings: An Agent-Based Modeling Approach (To be submitted to

Building Research and Information)

Contribution: This paper was an interdisciplinary study connecting social behavioral theories
with engineering applications. The idea was developed with Laura Arpan, Anooshmita Das
and Vojislav Novakovic. The author, along with Laura Arpan, developed the theoretical
model and survey design, who also guided the data analysis and structural equation modeling.
The data collection, processing, analysis, modelling, and writing were conducted by the
author. Anooshmita Das developed the profiles and assisted in the data collection and

analysis. All the authors reviewed and commented on the article.

e Proof-of-concept study in using Agent-Based Models for social models in OB
e Investigating influence factors for social aspects in OB

e Developing profiles for social models

e Aspects of OB addressed: Social | Energy-use

e Methods: Surveys

Paper 5

Annageeb M K, Dziedzic J W, Yan D, Novakovic V. Development of a Library for Building
Surface Layout Simulator. Proceedings of the 11™ the International Symposium on Heating,
Ventilation and Air Conditioning (ISHVAC). 2019;1137-1144.

Contribution: This paper was in conjunction with Additional Publications: Paper 1, providing
supplementary work to build a simulation for zone layouts. The conceptualization and data
collection were done with Jakub Dziedzic. The author was responsible for developing the
application and writing the original draft. Da Yan and Vojislav Novakovic reviewed and

commented on the paper.

11
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o Developed application for geometric data collection for surface layout simulator
e Database for furniture layouts

e Aspects of OB addressed: Environment
Paper 6

Annageeb M K, Zhang Y, Dziedzic J W, Xue K, Pedersen C, Stenstad L I, Novakovic V,
Cao G. Influence of surgical team activity on airborne bacterial distribution in the operating
room with a mixing ventilation system: a case study at St. Olavs Hospital. Journal of Hospital
Infection. 2021; 116:91-98.

Contribution: The concept and experiment design were developed by Jakub Dziedzic,
Vojislav Novakovic and Guangyu Cao. Dziedzic also developed the data capture and
processing techniques for the experiment. Christoffer Pederson, Kai Xue, and Yixian Zhang
assisted in performing the experiment, where Zhang analyzed the bacterial contamination of
the samples. Liv Inger Stensad provided technical assistance for the equipment at St. Olavs
hospital. The author was responsible for part of data collection, data analysis, visualizations,
and writing the original draft. Vojislav Novakovic and Guangyu Cao reviewed and

commented on the paper.

e Case study on analyzing human activity on bacterial contamination in ORs
e Aspects of OB addressed: Movement | Activity | Environment

e Methods: Sensors
Supporting Papers
Paper 7

Das A, Annageeb M K, Azar E, Novakovic V, Kjergaard M B. Occupant-centric
miscellaneous electric loads prediction in buildings using state-of-the-art deep learning
methods. Applied Energy. 2020; 269:115-135.

Contribution: This paper used the dataset from Paper 2 to develop deep learning models to
forecast occupant energy-use. Anooshmita Das created the models and the visualizations. The
author performed the data collection and assisted in the analysis and writing. Elie Azar,

Mikkel Kjeergaard and Vojislav Novakovic reviewed and commented on the paper.

e Same study as used in Paper 2

12
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e Forecasted MELSs, focusing on occupants and their energy-use behaviors
e Aspects of OB addressed: Presence | Energy-use

e Methods: Sensors, Deep Learning
Paper 8

Das A, Dziedzic J W, Annageeb M K, Novakovic V, Kjergaard M B. Human Activity
Recognition Using Sensor Fusion and Deep Learning Methods. Submitted to IMWUT.

Contribution: This was an extensive case-study conducted in ZEB Living Lab, about human
activities inside residential spaces, the results of which were documented in Paper 8 and Paper
9. The experiment design was developed by Jakub Dziedzic and Anooshmita Das. The author
assisted in the data collection, processing the skeleton datasets, and writing the original draft.
Mikkel Kjeergaard and Vojislav Novakovic reviewed and commented on the paper.

e Case-study of monitoring human activity in a living lab, and develop HAR models
e Aspects of OB addressed: Activity | Energy-use

e Methods: Sensors, Deep Learning
Paper 9

Das A, Annageeb M K, Schwee J H, Dziedzic J W, Novakovic V, Kjergaard M B.
Sequential Activity Recognition and Privacy Implications Using Fusion and Deep Learning
Methods Inside A Smart Living Lab. Submitted to Information Fusion.

Contribution: This paper was the second part of the results from the case study done at the
Living Lab. It focused more on the privacy risk and used additional deep learning models
developed by Anooshmita Das. The author contributed to the data collection, analysis,
literature search, and writing. Mikkel Kjergaard and Vojislav Novakovic reviewed and

commented on the paper.

e Same as above
e Aspects of OB addressed: Activity | Energy-use

e Methods: Sensors, Deep Learning

13
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The abovementioned studies were carried out with the aim of laying the groundwork for OB
models. As such, each study was conducted with one or more of the three goals: (i) OB
Monitoring (ii) Developing OB Profiles/Databases (iii) OB Models

The following table summarizes the contribution of each paper, along with indicating the goal

of the study:

Research Occupant Behavior Studied: Studied in relation to:
Papers

Presence Energy- OB OB OB
use Monitoring Profiles/ | Models
Databases
z | «
o r
v v v | v
v v | v v
« | y
o
o ’

Table 1-1. Contribution of research papers in respective areas of research

14
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Occupant Behavior Monitoring

Paper 2:

Non-intrusive data monitoring and
analysis of occupant energy-use
behaviors in shared office spaces

Paper 6:

Influence of surgical team activity on
airborne bacterial distribution in the
operating room with a mixing
ventilation system: a case study at St.
Olavs Hospital

Occupant Profiles

Paper 1:

Exploring the tools and methods to evaluate
influence of social groups on individual
occupant behavior with impact on energy use

Paper 3:

Evaluating occupant perceptions of their
presence and energy-use patterns in shared
office spaces

Paper 5:

Development of a Library for Building
Surface Layout Simulator

Occupant Behavior Models

Paper 4

Evaluating and Modeling Social Aspects of Occupant
Behavior in Buildings: An Agent-Based Modeling
Approach

Paper 7

Occupant-centric  miscellaneous  electric  loads
prediction in buildings using state-of-the-art deep
learning methods

Supplementary Works

Paper 8:

Learning Methods

Human Activity Recognition Using Sensor Fusion and Deep

Paper 9:

Sequential Activity Recognition and Privacy Implications Using

Fusion and Deep Learning Methods Inside A Smart Living Lab

Figure 1-3. Overview of papers considered in this thesis
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Additional publications:

Collaboration with the IEA Annex-79 and other researchers led to the following additional

publications:

Conference contributions:

1. Dziedzic J W, Annageeb M K, Yan D, Novakovic V. Zone Layout Simulator for
energy-related occupant behavior modelling. Proceedings of the 11" the International
Symposium on Heating, Ventilation and Air Conditioning (ISHVAC). 2019

Other contributions:

2. Carlucci, S., De Simone, M., Firth, S.K., Kjergaard, M.B., Markovic, R., Rahaman,
M.S., Annageeb, M.K., Biandrate, S., Das, A., Dziedzic, J.W. and Fajilla, G., 2020.
Modeling occupant behavior in buildings. Building and Environment, 174, p.106768.

3. Markovic, R., Azar, E., Annaqeeb, M.K., Frisch, J. and van Treeck, C., 2021. Day-
ahead prediction of plug-in loads using a long short-term memory neural network. Energy
and Buildings, 234, p.110667.
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2 BACKGROUND

2.1 Occupant Behavior in Buildings

In a rapidly urbanizing world, humans spend a vast majority of their lifetimes living and
working in buildings [20]. They play a central role in the performance of the buildings due to
their presence and actions, including the use of heating, cooling, water, electricity, and other
interactions with the building systems. Such interactions, collectively termed as Occupant
Behavior (OB) include the use of the building’s heating, cooling, and ventilation (HVAC)
systems to establish thermal comfort, use of shading devices and lighting systems for visual
comfort, appliance operation, etc. The first point of consideration of occupants comes from
the building design perspective. Appropriate understanding of the buildings’ occupants is
necessary to define control settings for its systems. One of the first studies considering the
active role of an occupant in the building’s performance took place in 1979, where Hunt
introduced a function for the lighting systems in offices [21]. Subsequent studies explored the
role of the occupant with regards to either lighting systems [22,23] or window operation [24—

26], providing insights about occupancy control actions.

The significance of OB from these niche studies became more apparent during the last
decade, with increasing number of studies documenting the impact that users have on energy-
use in buildings [10,27—-29]. Masoso et al. pointed out the way in which user’s actions would
negatively impact energy-use in commercial buildings, leading more energy used during non-
working hours than during working hours [30]. In another study, Hong et al. created different
profiles for offices and created building energy models based on them. The authors found that
mindful behaviors can save up to 50% of the current energy-use and heedless behavior can
increase it by 89% [11]. Similar studies conducted in residential buildings reflect the same
impact of OB, where the energy-use varies largely based on the occupants, despite the
building having the same or comparable physical characteristics and systems [31]. These

findings span across different geographic and cultural boundaries as well [32,33].

The impact of building energy-use and its contributions to carbon emissions around the globe
has been met with calls for transitions towards low-energy or Zero Energy Buildings (ZEBs
or nZEBs). This transition has been adopted as a goal by the European Union (EU)

parliament, with several countries following suit [34]. However, while there exist a
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pronounced gap in the expected and actual energy performance of buildings [35], this gap can
be wider in low-energy buildings if the theoretical assumptions about the user behaviors is not
accurate. Carpino et al. demonstrated the effects of an occupant’s actions on nZEBs, which
might generate much higher loads if the assumptions made during the building energy
simulations do not prove to be accurate [36]. In fact, a large-scale study in Netherlands
considered 200,000 dwellings and found that dwellings that were designed to be energy-
efficient ended up using more energy than predicted, whereas dwelling with poor energy
labels used less energy than predicted by the label [37]. The implication here is not the
shortcomings of technological advancements but highlighting the extended role of OB in
these situations. Since the physical characteristics and the building envelope is optimized for a
better energy performance, the uncertainty of the loads generated by the occupant now has a

greater influence on the outcome.

However, the uncertainties and complexities arising from this phenomenon are not easy to
mitigate. The challenges exist because OB is multifaceted in terms of its actions, which span
from direct adaptive actions to establish or restore comfort, to indirect and supporting actions
such as presence and movement. Furthermore, these are also driven by several underlying
factors that vary depending on occupant, building type, contextual factors etc. An accurate
representation of an occupant within a building will have to consider several aspects of OB

and these aspects, drivers and complexities are detailed in the next section.

2.2 Drivers, aspects, and complexities of OB

The consolidated efforts of scientists related to occupant behavior research have been
documented in multiple annexes of the International Energy Agency (IEA) under the program
of Energy in Buildings and Communities (EBC). OB was identified as one of the six driving
factors of total energy-use in buildings in Annex 53 [38], while the completed and ongoing
Annex 66 and Annex 79 (respectively) established benchmarks and frameworks within the
topic to cover different aspects of OB, from data acquisition strategies, to modelling and
integration with building simulation tools [39,40]. The results from the Annex 66 identified
challenges in OB to be a result of three distinct features: stochastics, diversity, and
complexity. The first one stem from occupants changing their day-to-day behaviors due to
several influencing factors [41,42]. The second feature refers to the differences in individuals’

actions even when the external stimuli are the same [43]. The third one revolves around the
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underlying drivers that influence the first two, which can be contextual, environmental,

physiological, or social.

The driving factors can be related to the physical environment, such as the building layout or
orientation, or physiological, such as those related to an individual’s thermal, visual, or
comfort levels. In addition, all behaviors can be linked to social behavioral theories, and this
dimension is explored in further detail in section 2.4. The aspects of OB can encompass their
movement, presence, habits, activities, social influences, clothing, latent emissions and so on.
Resulting energy-use from these aspects occur in the form of their interaction with different
building systems, such as operation of windows, shading, lighting, thermostat adjustment,
appliance use, etc. These aspects are the author’s attempt to group most of the observable and
unobservable features of an occupant inside a building but are in no way a final
summarization on the topic. Since the subject is vast and usually interdisciplinary, studies
conducted in the field tend to focus on one or more aspects of the occupant, such as their
presence or habits, and their relevance or influence on one particular building system. This
resultant energy-use is the main component of interest, for application in building energy

design, optimization, simulation, and operation.

2.3 Modeling Occupant Behavior

The goal of creating OB models is to understand how people use a space and how their
actions or presence impact the building energy-use. The impact from occupant presence stems
from the release of latent and sensible heat, while their impact from the actions centers on the
operation of building systems, and appliances. Existing building simulation tools often fail to
effectively represent this phenomenon, and the impact of such discrepancies has already been
elaborated in 2.1. OB is also one of the main sources of uncertainties in building energy
modeling [12]. Due to these reasons, several studies in the recent years have centered on
developing OB models [44]. The objective of these studies is either to apply this knowledge
in optimizing the building design, or represent the occupant in building performance
simulations, or to predict the behavior for the building control systems [45]. Oftentimes the
precursor for model development is creation of datasets by monitoring occupants in different
settings. This section provides a brief summary regarding the state-of-the-art and challenges

in OB monitoring and modeling.
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2.3.1 Monitoring OB

Earlier studies involving occupants would rely on manual measurements or self-reported data.
Technical advancements in sensing technologies have led to the deployment of these in the
built environment for capturing OB. These sensors or sensing modalities have varying range,
cost, accuracy, and applications. Their mode of collection can be based on a fixed sampling
time (periodic) or be triggered by certain events (event-based), such as door opening, window
interaction etc. A systemic review conducted as part of the activities in the Annex 66
classified the different sensing modalities into seven types: image-based, mechanical or
threshold, motion-based, radio signal, mixed, environmental, consumption-based, and human-
in-the-loop. The selection of the sensing modality is dependent on the research context, such
as the type of data to be collected; whether it is to sense the presence of the occupant, or track
their movement through a space, or the interaction with windows, shades, lights, or
thermostat. All of these technologies come with their advantages and disadvantages, ranging
from their cost, complexity, issues with the privacy of the occupant, under or over-reporting
of variables, reliability etc. A comprehensive description of each sensing modality and its
associated features is given in [46]. The first research question in this thesis centers around
this topic of OB monitoring, and the tasks undertaken to study this phenomenon consists of
case studies conducted in diverse settings, using multiple sensing modalities. From section 1.4

(List of Publications), it can be seen that Papers 2, 6, and 9 document three case studies.

One of the ways to capture OB data is through Non-Intrusive Load Monitoring (NILM), an
alternative to centralized data collection approaches through a Building Management System
(BMS) [47]. This concept includes a monitoring system consisting of multiple sensing
technologies to capture data about individual appliance consumption profiles. The main
feature of this technology is its non-reliance on existing monitoring infrastructure and the
little to no intervention from the occupant-side. However, a consistent lack in NILM in
building energy context is the granularity and resolution of occupancy information [48-50],
which leads to an open question regarding the combination of NILM with high resolution
occupancy data. From Paper 2, the first of the case studies in this thesis attempts to address
this gap [51].

The advances in sensing technologies, however, has not been implemented in all building
typologies where occupants are involved. Most studies centered on OB take place in offices,

commercial, residential, or institutional buildings. While that is necessary for assessing the
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relevance to the energy performance, there exist other spaces that can benefit from this kind
of monitoring. The second of the case studies in this thesis (Paper 6) took such a space into
consideration, wherein the occupant’s influence were monitored in an Operating Room (OR)
of a hospital. The activities and movement of an occupant have an influence on the
contamination of the room [52], and the studies measuring these influences have relied on
manual or restricted methods [53]. This case study was aimed at using depth registration

technology to measure the occupant’s influence [54].

One aspect of OB and its data acquisition is sensing and recognition of the daily activities of
the occupant. This kind of monitoring uses diverse sensing modalities to collect information
about and automate the identification of the occupant’s actions, often using machine learning
or deep learning models. This field of Human Activity Recognition (HAR or AR) has a wide
range of applications, from smart homes and intelligent building systems to safety and
surveillance, and adaptive control of building systems. The last of the case studies (Paper 8
and 9) was conducted in a smart Living Lab to capture 22 discrete activities of the occupants
using sensor fusion methods with the goal of developing Deep Learning (DL) models. In
order to ascertain the trends in the field and gauge the rise of trends in using Machine
Learning (ML) and DL models, a review was carried out using the PRISMA methodology
[55]. An overview of the review methodology and number of studies pertaining to the use of

these models for HAR is given in Figure 2-1.
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Figure 2-1. From Paper 9: Literature screening procedure using PRISMA framework for the
recent work in the field of ML/DL

2.3.2 Current strategies for OB modeling

As described in 2.1, the first few studies involving occupant were centered around light and
window operation. These studies made use of probit analysis, based on the correlations
observed [22,24,25]. Subsequent simulation or modeling strategies could be broadly classified
into two different groups. The first one comprises of models that focus on the systems that the
occupant is interacting with, rather than directly with the occupant. These would include
linear regressions [56], sub-hourly occupancy-based control models [57] etc. The second
group of models deals directly with the occupant and their actions, making use of Agent-
Based Models (ABMs) [58], and Markov Chains [59]. A benchmark review on OB modeling
by Carlucci et al. had contributions from the author during the course of this thesis work
(Additional Publications: Paper 2) [45]. The systematic review selected 278 publications on
the subject and grouped the OB models into three different paradigms. The first one was
regarding rule-based models which make use of time-dependent user profiles, also known as

diversity profiles, such as the ones issued by the American Society of Heating, Refrigeration
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and Air-conditioning Engineers (ASHRAE) standards [60]. The second paradigm was that of
stochastic models, which recognizes that OB is a result of complex relationships and varies
over time and context. The third paradigm covers data-driven models, wherein the goal is less
to understand OB and more to use ML methods that would replace ‘knowledge-driven’
models that target physical behavior. The work in this thesis concerns the last two paradigms,
developing datasets and profiles to enhance knowledge-based occupancy information, and

laying the groundwork for and preparing OB models for specific aspects of OB.

The complexity and uncertainty in the field of OB modeling stem from the fact that OB
contains various similitudes in the form of presence, movement, activity level, comfort level,
social influences etc., and detailed attention has to be given to each of these in order to
construct a complete individual profile. Dziedzic et al. proposed a bottom-up approach
wherein the collected data from these different fields of simulations could be used to
eventually develop a Building Occupant Transient Agent-Based Model (BOT-ABM) [61].
This kind of approach was proposed as a holistic method, where each aspect of OB has its
own model, and would be better equipped to represent the diversity in OB (model shown in
Figure 2-2).
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Figure 2-2. Dziedzic (2021): A novel monitoring and modeling technique for energy-related
occupant behavior
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A large part of simulating OB is modeling the indoor movement and transition of the
occupant. Markov chains were used by Wang et al. [62] wherein the movement process was
simulated by associating each occupant with a homogeneous Markov matrix. A different form
of data collection was used by Martani et al. where the Wi-Fi connections were used as proxy
for the occupant sensing [63]. Similar to the occupant monitoring and data collection, this
comes with its own set of privacy concerns. To overcome those, another study used a depth
registration camera to track and monitor the movement and presence while maintaining a

sufficient amount of privacy [64].

A complementary aspect in consideration with the modeling of movement is the simulation of
the floor surface layout and the placement of objects/furniture around the occupant. In order
to accomplish these simulations, the surface simulator will need access to a database or library
of specific information regarding the furniture, as well as the details of the occupant’s
interaction with it. Current literature does not contain any specifications that can support a
surface simulator with that kind of a database. This will have to include the information about
the order of importance of the object for the occupant, their access points, area of influence,
placement criteria for each, amongst others. The necessity of this information arises from the
need to understand the boundaries and potential paths for the occupants’ movement, as well as
their order of actions with the objects around them. A part of this thesis is centered on the

work needed to establish such a library of information for simulation purposes.

2.4 Social aspects of OB

A landmark study on the advances in the field of OB summarized the research gaps and future
research directions in the form of ten questions [65]. Two of those questions concern the
social aspect of OB, the first one regarding the need of using quantitative methods from social
sciences (such as surveys) to understand and provide insight on OB. The point of emphasis
was creating appropriate surveys, using suitable social behavioral theories. Despite the
limitations of these quantitative methods, surveys are quite useful in assessing latent and
unobserved variables that drive behaviors [66,67]. The second of the two questions concern
the implication of such an understanding from a social perspective. This understanding, in
order to be used for promoting energy-efficient strategies and behaviors, would need
interdisciplinary investigations from the physical and social sciences. While there is a marked

growth in studying OB in the built environment, technological solutions are often promoted
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whilst the socio-psychological factors that drive the behavior are ignored[68,69]. Sovacool et
al. identified social factors as one of the most under-examined in energy research, especially
the factors related to energy-use and decision-making among individuals. It was determined
that negligence of these factors during OB or energy modeling would negatively impact the

reliability of such models [68].

Quantifying the social drivers of behavior takes place through behavioral theories, and one of
the most commonly used ones is the Theory of Planned Behavior, that enlists the three
components of attitudes, subjective norms, and perceived behavioral control as the main
drivers of an individual’s behavior. Abrahamse and Steg used the theory of planned behavior
to explain subjective norms in residential households, that is, behaviors that would rely on the
extent of importance to other members of the household, and the social pressure to carry out
the actions [70]. Chen and Knight used the same theory to examine the influence of
colleagues among more than 500 employees in electric power companies in China, and the
results indicated that the approval or disapproval from the colleagues was the major factor
influencing the individual’s energy saving actions [71]. Chen et al. also made use of agent-
based modeling to build a network level computational model that simulates the decision-

making process of individuals under different type of network configurations [72].

A large part of this thesis is dedicating to using this theory to make a framework for assessing
and analyzing social aspects of OB, investigating influence factors in that aspect, and use the
datasets and results generated for a proof-of-concept model. This work also feeds into the
proposed BOT-ABM, with the contribution aimed at a social structure module. The modeling

technique considered is described in the next section.

2.5 Agent-based modeling

Agent-based modeling or Individual Based Modeling is a computational modeling
technique which rose to prominence during the 2000s in several fields. The core principle of
this model is that it consists of autonomous agents, which can be individuals or belong to a
collective of individuals. These agents interact with other agents and with the environment,
with the objective of measuring their effect on the system as a whole. It is a microscale model,
where the high-level system changes come into effect as a result of interactions between the

low-level subsystems[73].
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When it comes to building performance simulations, ABMs have been used to assess
occupant behavior. Erickson et. al used this process to address issues related to oversizing of
HVAC equipment, by introducing ABMs to model room occupancy. Their results showed
that HVAC consumption could be reduced by 14% by using occupancy simulations[74]. In
another study targeted at zones in healthcare facilities, occupancy modeled using ABMs
showed that using accurate simulations would lead to changes in the design loads and sizing
of HVAC equipment that could produce up to 43% reductions in the energy consumptions
[75]. Furthermore, this approach has been used to incorporate different types of occupant
behaviors as well, with Lee et. al. testing an agent’s consideration of five different factors
(ranging from clothing levels, activity level, window use, blind use, and personal heater) to
restore their comfort levels [58]. Azar et. al. used a similar approach for incorporating three
different kinds of occupant behaviors and their changing energy-use behaviors. The changes
were triggered when the agents with less energy-conscious behaviors interacted with agents
with more energy-conscious ones, thereby learning by simulated social influences between

occupants in a commercial building [76].

The last part of this thesis is based on the last two cited examples, to use ABM as a technique

to model occupant behavior and incorporate social aspects in OB models.
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3 METHODOLOGY

This chapter describes the methodology of this thesis. Section 3.1 centers on the monitoring
of occupant behavior, introducing the different data acquisition strategies and experimental
setups for the case studies. These studies were conducted to provide answers to the first of the
research questions (Q1) outlined in the beginning of the thesis. In addition, it provides an
overview of the data processing undertaken during the process. Section 3.2 explains the
groundwork for the development of OB models, describing the preparatory work done in
establishing a database for some aspects of OB. Section 3.3 includes a proposal for a
framework for assessing social aspects in OB, targeting Q2 and Q4 of the research questions.
Section 3.4 aims to answer Q3 and details the methods used for developing the models from

the datasets collected in the first two subsections.

3.1 OB Monitoring

One of the main tasks of the studies conducted in this thesis was to contribute to the
understanding of OB. This was achieved by collecting data regarding occupant presence,
movement, habits, interactions or influences on their surroundings, and energy-use. Building
occupants were monitored in diverse settings and spaces, using a variety of sensors and data
acquisition strategies. Each setting came with its own set of requirements, challenges, etc.
pertaining to the spatial structure, privacy demands, need for accuracy etc. The following
subsections delve into each of the individual studies, explaining the selection of the data

acquisition and data processing strategies according to the needs of the experimental setup.

3.1.1 Occupant energy-use behaviors in shared office spaces

In order to control energy-use efficiency, costs, and meet the requirements for occupant
comfort, building facility managers make use of a system of sensors, networks and controls.
Such a system is termed as a Building Management System (BMS), which falls under a
centralized process of collecting data about occupants or building systems in (mostly)
commercial buildings. While a good number of studies typically gather data through such
centralized systems, it is important to note that the applicability of these is limited to buildings
with similar monitoring capabilities. The high cost and incompatibility of such monitoring

systems with building that are either too old or already have existing BMSs, gives space for
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other monitoring/data collection alternatives to emerge, and Non-Intrusive Load Monitoring
(NILM) is one such methodology [77,78]. This alternative to a centralized BMS is based on a
collection of smart sensors or energy meters that separate the aggregated electrical load to
individual appliance consumption profiles. The uniqueness of NILM stems from the minimal
to no intervention required from the end-user (occupants) and its ability to operate without the
need to connect to any existing infrastructure, thereby making it ideal in cases where the

application of BMS is either restricted or too expensive.

However, in both these procedures, studies often lack granular information about occupancy,
either due to absence of measured occupancy data [79-82] or binary occupancy states about
zones [83,84]. Studies that do take into account individual occupancy of a space analyze it
with regards to the energy-use of the entire space or as a sum of all used devices. This leaves
an open question regarding the potential of identifying energy-saving opportunities by
applying NILM methods to end-uses such as plug loads or lighting loads, in combination with

granular occupancy information.

The goal of this particular study was then to monitor occupants and their energy-use at an
individualistic level, both to investigate energy-saving opportunities and generate datasets for
building OB models. The occupants were monitored at the desk level, capturing their
presence, as well as the electric loads for specific devices. In addition to quantifying the
relationship between individual presence and energy-use and two end-uses (plug-loads and
lighting), the data was also used to compare the measured and standard profiles (from
ASHRAE) that are generally used during building design and simulation [60]. Additionally,

surveys were used to capture the social aspect of the energy-use as well (Subsection 3.3.6).
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Figure 3-1. From Paper 2: Area of study and sensor placement

The experiment was conducted in an academic building in Abu Dhabi, UAE, in a shared
office space. The area of study consisted of 6 primary workstations, 2 shared workstations,
and 1 common table. The layout can be seen in Figure 3-1 (Schematic view and View A). The
space was used primarily by students and was subject to change in occupancy every semester.
The study was conducted for a period of 8 months, and 8 different occupants were monitored
during this time. At a time thought, no more than 6 primary users were present at the office,
occupying the workstations. While the operational hours of the academic institution were

from 8am-5pm on weekdays, the area was open to access at all times. In addition, the area
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was not restricted for visitors. Both of these factors were in-lieu with the non-intrusive nature
of the proposed study. Access to daylight was limited, which meant that the occupants mainly

relied on the artificial lighting system.

Three different types of sensors were employed in this study. The first type was Passive Infra-
red based (PIR sensors), to detect the occupancy at each of the workstations, as well as the
common table. A total of 9 such sensors were deployed, wherein sensor had a unique ID, and
a range of up to 80 meters. These sensors only communicated with the server during a change
in occupancy status, reporting a binary measurement (occupied/unoccupied). The position of
an individual sensor, as seen in Figure 3-1 (View A), was calibrated based on three factors:
detection of actual occupancy over the entire range of the workstation, avoidance of false

triggers from passersby, and zero occlusions.

Each workstation had 6 power outlets, and the plug load sensors were installed in each of
them, contributing to a total of 48 such sensors. They were installed and configured to each
specific device (laptops, monitors, docking stations, desk lamp, misc.). The only intervention
from the occupants that occurred during this study was the agreement to use each outlet for a
specific device. However, this intervention was not strictly necessary since the reported
energy-use could be compared to the power specification of the device that was being
monitored. The last set of sensors were for recording the illuminance of the area. The office
space was illuminated by 6 fixtures and one sensor was attached to each of them as shown
(Figure 3-1: Schematic View). The lighting was motion-controlled, without any manual
control options. Based on the monitored level of illuminance, the status of the lighting was
inferred. Figure 3-1 shows the placement of all the sensors, occupancy (O), plug-load (P), and
lighting (L).

The data collection process was continuous, with each plug-load and lighting sensor reporting
measurements at 15-minute intervals. The data from (passive infrared) PIR (occupancy)
sensors, however, was event-based, recording ‘blank’ triggers for an unchanged event. These
blank triggers had to be first replicated with the last recorded trigger. After this up-sampling,

the data was in accordance with the 15 minute-interval of the other sensors.

The data analysis was conducted in three parts, the first of which was to determine the
relationship between the occupancy and energy consumption in the shared office. The

consumption included distinct figures for lighting and plug-loads. Box-and-whisker plots
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were used to visualize the power levels for varying occupancy levels. The second part was to
measure the amount of energy consumed when an occupant was not present at their
workstation. Two analyses were drawn for this part, the first one targeting office-level, which
compared the total office level consumption when occupancy was at zero (vacant), and when
at least one occupant was present (occupied). This analysis is the one commonly used in the
literature. The second analysis measured the consumption at a device-level, while also
distinguishing between each device’s consumption when the occupant is present/absent from
their workstation. The last part of the data analysis was the development of diversity profiles
for occupancy, plug-loads, and lighting patterns in the area of study. These profiles show the
intensity of a variable (such as occupancy) throughout the day (marked hourly). The
intensities are represented numerically from 0 to 1, O being the least possible value and 1
being the highest. These profiles are generally used by energy models, building facility
managers etc. while predicting the performance of a building. These were then compared to
standard ASHRAE profiles that are used for common building types. More information about

the calculation is presented in 3.3.1.

3.1.2 Occupant activity influences in operating rooms

While the perspective of understanding OB relies mostly on its relationship to the building’s
energy performance, building occupants exert their influence in numerous other ways. Newer
and more advanced monitoring systems provide a method to quantify and document these
influences. Specialized settings and spaces offer interdisciplinary opportunities of testing such
methodologies in conjunction with other fields. One such setting was used in this study,
which centered on monitoring occupant influences in an Operating Room (OR). The way
occupants’ presence and activity play a role in such a specialized space is by being a source of
contamination. In fact, in modern hospitals, the most significant source of airborne
contamination is from the dispersal of particles from people in the OR [85,86]. This can be
caused due to the staff movement that can increase Colony Forming Units (CFUs) by
shedding [87], re-suspension of settled particles on the floor or other surfaces into the air, or

pumping effects inside clothes [88].

While a number of studies have explored this influence and documented the correlation
between occupant activity and bacterial distribution in the OR, the experimental methods used

to monitor occupants show potential for improvement. In some cases, the studies would rely
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on manual observations and door openings [53], while in other cases the air quality would be
used to infer the occupancy count [89]. The setting for this study is quite unconventional
considering that occupant behavior studies tend to take place in commercial or residential
buildings. However, the lack of individual and dynamic monitoring of occupant activity in
ORs, combined with developments of sophisticated data acquisition strategies in OB studies,

served as an opportunity to employ OB monitoring in such a setting.

This study was conducted in a cardiopulmonary OR located in St. Olav’s Hospital in
Trondheim, Norway. The OR was used to conduct three mock surgeries, during which the
occupants playing the role of the surgical staff would perform a controlled series of actions.
The movement and activity of the staff was then monitored using depth registration cameras.
The selection of depth registration was based on its capabilities of capturing dynamic
geographic information of the occupants. The principle behind such a device is similar to that
of a projector, wherein the device emits an incident infrared beam that gets reflected back to
the device. An additional sensor measures the time for the reflection of this incident beam,

thereby inferring the distance of the objects in its field of view.
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Figure 3-2. From Paper 6: a) Layout of the mock surgery experimental setup (Top View) (b)
& (c¢) Bird’s angle view of different perspectives of the setup
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The experimental setup is shown in Figure 3-2, wherein 6 participants represented 1 patient
and 5 staff members (main surgeon, assistant surgeon, sterile nurse, distribution nurse,
anesthetic nurse). In order to assess the influence of the occupant activities on the airborne
bacterial contamination, a total of 24 passive agar plates (in groups of 4) were used in 6
different locations around the operating zone. The mock surgeries consisted of 4 different
phases, during which the participants performed a designated set of actions for each phase.
During the start of these phases, a set of agar plates would be opened to record the
contaminations corresponding to the start of the phase till the end of the mock surgery. Here,
‘group’ represents the 4 agar plates present at each of the locations (A-F) and ‘set’ is the
specific plate from each group that would be opened during the start of a phase. Figure 3-3

provides a visualization of the procedure, depicting the sampling windows.

The occupants were monitored using 4 Kinect devices (cameras) present in each corner of the
room. The devices pick up any human body present in their field of view and process it into a
skeleton model consisting of 25 points in a 3-dimensional matrix. All of them were capable of
registering 6 people simultaneously and the use of 4 of these negated any possibilities of
misregistering any activity. Since each device operated on its local coordinate system, the data
from the 4 devices had to be adjusted by selecting one of them as a reference point. The
details regarding the activities conducted in the mock surgery, along with the reasoning
behind them are further elaborated in [54]
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Figure 3-3. From Paper 6: Sampling windows of the agar plates

3.1.3 Occupant activities in residential spaces

Another dimension of monitoring OB that has garnered much attention is the necessity of
studying occupant movement and activities to develop Activity Recognition (AR) systems.
The applications of AR are extensive, from establishing smart homes to improve the end-user
efficiency of the residence [90,91], to healthcare, fitness, safety monitoring and elderly
assistance [90-94]. The principle behind AR is to infer an action or activity an occupant is
performing based on discrete consecutive actions or movements they take. For example,
cooking can be considered an activity that comprises of several atomic actions, such as
turning the stove on, taking utensils from a cabinet, pour water from the sink, etc. This way,
an activity gets described as an ordered sequence of events.

The advancements in sensing modalities combined with the exponential growth of Artificial
Intelligence and Deep Learning (DL) paradigms has transformed the smart environment and
made AR a pivotal process to facilitate the ambient intelligence of such environments.
Establishments of an AR system, however, is dependent on capturing a significantly large
amount of data about each discrete action undertaken by the occupant. This data must then be

assigned accurate labels and be granular enough to avoid mislabeling. In addition, real-world
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data in this context can be generated from multiple sensors. Some of the challenges associated
with AR have to do with how similarly the atomic or discrete actions are performed within a
time interval, and how quickly occupants move between different activities. Data collection
regarding these activities has to be precise enough to address these issues. Depth registration
cameras provide a better alternative to traditional RGB (red, green and blue) cameras in this
regard, considering their capabilities for background segmentation and object detection. It

also offers better possibilities for preserving the privacy of the occupants.

Setup 1 (b) Setup 1 (c)

Setup 3 (a) Setup 3 (b) Setup 3 (c)

Figure 3-4. From Paper 9: Case scenario and experimental design setups in the smart living
lab

Similar to the previous case study (Section 3.1.2), this study utilized Microsoft Kinect
cameras in a smart living lab to capture occupant activities typically performed in a residential
space. These activities are mundane everyday tasks, collectively termed as Activities of Daily
Living (ADL). The living lab is built to resemble a modern home, complete with a bathroom
and kitchen. Three different experimental setups were utilized to perform the study. As shown

in Figure 3-4, these setups were centered on kitchen (Setup 1), bedroom (Setup 2) with three
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participants performing activities typically associated with that space. Three depth cameras
were used in each setting to avoid occlusion and enhance the accuracy of data acquisition. A
total of 14 continuous activities were performed, ranging from ‘cooking a meal’,
‘dishwashing’ in the kitchen, to ‘sleeping’, ‘reading’ in the bedroom. While the participants
were given a set of tasks to conduct in a specified order, they performed it with their own
interpretation, in order to have subject variability. Each activity was performed ten times,
contributing to thirty recordings for each activity from the three participants. These activities
were punctuated with a calibration pose to provide segmentation between the recordings, to

make it feasible to identify individual activity for training a DL model.

3.2 Developing libraries and databases for OB models

Since the establishment of a holistic OB modeling system such as a BOT-ABM is vast in its
undertaking, the studies conducted for this thesis centered on laying the groundwork for
modeling social aspects and aid in the surface layout simulator module. This section discusses
the preparatory works done in this regard. For the layout simulator, the task consisted of
establishing a library of knowledge about indoor office layouts, along with the development
of an application for the related data collection. The process for the social aspect was more
comprehensive and is presented in section 3.3. It consisted of identifying key concepts
regarding OB and social influences and creating a framework which enabled an extensive
survey for data collection. The data was used to create path diagrams and regression models,

and eventually develop OB profiles.
3.2.1 Library for a floor surface layout simulator

Occupant movement and indoor transitions constitute an important part of OB modelling.
Dziedzic et al. developed a movement simulator for the proposed BOT-ABM system [95]
which simulated each step of the occupant’s movement based on pre-defined metrics. A
complementary aspect for the movement simulator is the simulation of floor surface layouts
and the placement of objects in indoor areas, since occupants have to navigate their movement
based on these factors. These layouts need not reflect a ‘standard’ room setting, but the lack
of information about typical layouts and object placement can be an obstacle for developing
future models. Generating such layouts can also be useful for deciding the optimal placement
of HVAC installations, by giving the building designers the ability to compare different

layouts. More detailed description of Dziedzic’s layout simulator is present in the additional
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publications. The upscaling of this simulator needed an access to a database or library
containing information about object placement, along with data about occupants’ interaction
with it. To achieve this, the work outlined in Paper 5 was focused on identifying the variables

to be incorporated in such a library.

The seven variables identified are shown in Table 3-1. The ‘object class’ is to denote the type
of object/furniture, that would be acquired from a compiled list, whereas the ‘room category’
would represent the room type. The ‘order of importance’ would be used to prioritize the
placement of objects during the simulation process, while ‘placement criteria’ would be based
on referential distance from doors, openings, edges etc. The ‘area of influence’, ‘access
points’, ‘hinge points’ would be used to establish the constraints in modeling the path of an
occupant. In order to collect data that would fulfill the requirements of the study, an
application was developed using Matlab App Designer toolbox. This application was
designed to provide users with an interface consisting of a grid based on the room size, and a
geometric layout where they could proceed to select different objects and place them around
the two-dimensional grid. Figure 3-5 depicts a sample of the interface. The application also
registered the order of importance for each object that the user had to denote before placing
the selection. This information would be then processed into a database to be used by the

simulator. Further description of the database design is detailed in Section 3.2.2.

Furniture  Room Order Of Placement Area  Of Access  Hinge
Class Category Importance  Criteria Influence  Points Points
1 Criterial
Classl 2 Criteria2
3 Criteria3
1 Criterial
Class2 2 Criteria2
3 Criteria3

Table 3-1. Identified factors for the database
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The objectives of this study were threefold; to identify the type of information needed for this
library, develop an application for data collection, and collect a sample dataset to create the
architecture for a database. The sample dataset was collected at the Norwegian University of
Science and Technology, consisting of spatial information of 80 individual offices (private
and shared). This dataset contained details about the placement of objects in offices, location
of HVAC installations, type of occupancy and number of occupants.

General Information  Placement of Fumniture

1. Please select your gender/sex
Female Male
2. Select the number of ather occupants you livelshare the space with
Drop Down |0 v
3. Enler your age and the age of ather occupants (if any).

Your Age 0 1 2 3, 4 5 6. 7

4. Approximate area of your Living Room (sq. meters) 0

5 Selow is a list of commonly used Iiving room fumiture. Please check all the fumiture you have. For each checked item indicate an order of
importance in the bax next to it. 1 béing the highest importance regarding your habits of Iving room usage. If same appliances are combined
grve ther the same number. (Example. if you use the TV unit the most then s order is 1)

1. Sofa/Couch . Chairs 9. Lamp
2.TV Unit 6. Bookshell 10. Other
3. Armchair 7. Sideboards/Drawers

4. Coffee Table 8 Display Shelf

Save Information

General Information Placement of Furniture

Select the Approximate shape of your living room | Square v

Panel

Sefa/Couch
TV Unit
Ammchair

Appliances

Coffee Table

Chairs

Bookshelf
Sideboards/Drawers
Display Sheif

Lamp

Cither

Save

Reset

Figure 3-5. Interface of the MATLAB Application
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3.2.2 Database design

The studies from this thesis generated multiple datasets, and profiles that were developed to
be used in eventual OB models. In addition, the aim to contribute to a system such as the
proposed BOT-ABM created a need for having structured databases to be used by simulators.
A database can be defined as an organized collection of data that can be accessed and
interacted with. This is done through a Database management System (DBMS) by using
appropriate queries. A majority oof DBMS use SQL (Structured Query language) to
communicate with a database, such as to insert, update, or retrieve data. The DBMS used in
this thesis was MySQL, which is a Relational Database Management System (RDBMS). It
provides a user interface to perform tasks on the data and organizes it into different tables that

are linked together.

The idea behind the creation of these databases is to have an efficient data organizational
system that provides a platform for simulators connected on a shared server. This process
involves normalizing the data in databases collected during the thesis. Data normalization is
done to reduce data redundancy and provide tables of data that only contain relevant
information. The benefits of data normalization include reduced storage space, limit
anomalies regarding insertion and deletion of new data, and improve query performance.
Another reason for establishing these databases through MySQL is to have data that is related
to each other. Tables are related to each other through primary and foreign keys, which take
the form of one-to-one, one-to-many, or many-to-many relationships. For one-to-one
relationships, a single record of data in one table is associated to a single record in a different
table, whereas one-to-many denotes that single record is associated with multiple records in
another table. The resulting database from this section is described in Results and Discussions
(4.2).

3.3 Social aspects of OB

As elaborated in Section 2.4, social aspects tend to be largely neglected and underexamined in
energy research, especially concerning the integration of this aspect in modelling and
simulation. This provided the motivation for developing a framework to quantify social
aspects in OB, with the aim of collecting data based on the framework and generating profiles
of occupants to be used in models. Subsections 3.3.1 — 3.3.5 provide the evolution of the

framework, data collection, data processing, analysis, and the resulting OB profiles from the
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study. Subsection 3.3.6 describes an addendum to the case study presented in 3.1.1, where

surveys were used along with all the sensing modalities to explore the social aspect.

3.3.1 Addendum to the case study in shared office spaces

In order to explore social aspects of OB, the case study presented in 3.1.1 included a survey
that the occupants had to fill in during the course of the experiment. This was done to map an
occupant’s perception of their own occupancy and energy-consumption patterns, and draw a
comparison to standard and observed values. This was only an exploratory study, to gain an

insight into the relationships between perceived and actual occupancy and energy-use.

The surveys attempted to create a schedule similar to the ones used in ASHRAE. For this
process, the occupants had to denote their occupancy for each hour, ranging from ‘always
occupied’ to ‘never occupied’. This was repeated for device-level consumption as well, with
options ranging from ‘always switched off” to ‘always switched on’. The profiles resulting
from these surveys were then compared to the data from sensors and the standard ASHRAE

profiles.

The diversity profile values were calculated using the equations (1) and (2), which takes the
ratio of sensors that indicate ‘occupied’ status over the total number of occupancy sensors in
the study. This was averaged over the period of study, from the first day ‘d’ to day ‘N’.

Z N #Sensors Occupied
d=1 #Sensors Total

Occupancy Diversity = N (D)
Z Energy Consumed
. . d=1"" Max Energy Observed|
Energy Diversity = N & 2)

3.3.2 Extended TPB model

The quantification of social aspects occurs through the use of social behavioral theories like
the Social Cognitive Theory [96], the DNAS framework[97], or the Theory of Planned
Behavior (TPB) [98]. The last of these, developed in 1991 by Azjen has been used widely in
conjunction with social sciences and energy research. The implementation of this theory has
been to analyze energy-related behaviors and target factors that are responsible for more
environmentally friendly or energy conscious behaviors. According to TPB, the major

predictor of human behavior is the intention to perform that behavior, which is in turn
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influenced by three key components: (i) Attitudes: that describe the beliefs and motivations a
person has towards a behavior or action, (ii) Subjective Norms: beliefs about others will
respond to their behaviors and, (iii) Perceived Behavioral Control: ideas about the ease of
performing an action. Subjective norms are further split into Descriptive Norms and
Injunctive Norms, where the former measures perceptions about how others behave, and the
latter is about how other might respond to your behavior. Within the field of OB in buildings,
this theory was used to confirm that the components of TPB were able to predict up to 81% of
the occupant’s intention to act in an energy-conscious manner [99]. Greaves et al. also
demonstrated that TPB could explain 61- 46% of the variance in occupant energy-related

behavior at the workplace [100].

With the rise in the use of TPB in energy-related behavior, researchers have also sought to
construct extended TPB models by integrating it with their behavioral theories, adding
selected components to it. D’Oca et al. developed an interdisciplinary framework based on
TPB, DNAS framework and Social Cognitive Theory for OB in buildings [101]. Chen
demonstrated that an extended TPB model can also be more effective in explaining behaviors
[102]. An example of extended TPB model can be seen in [103], where Xu et al. added two

components to the theory to analyze energy-saving at work.

Awareness of \ Personal

\ Consequences : \ . Norms
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( Identity )
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T Behavioral
Control
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77” Additional variables
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Figure 3-6. From Paper 4: Theoretical extended-TPB model
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The study in this thesis utilized an extended TPB model as well. There were two reasons
behind this selection. Firstly, creating models with higher number of variables in the
hypothesis is helpful because some of the variables might get discarded during the data
analysis stage, due to lower reliability. Secondly, components such as habits (past behaviors)
or identity have been shown to be strong predictors when added to TPB [104,105]. The
addition of habits as a component in an extended TPB model has been applied with successful
results in consumer behavior, transportation, etc.[106,107] but the application in energy-
related OB is still lacking. In addition to habits, the factors of social connectedness and
identity were added, to moderate the effect of Descriptive Norms. Furthermore, to test it out,
another component, that of Self-Construals was added, which was identified as a strong
potential moderator of pro-environmental or sustainable behavior [108]. This component
measures whether the behavior is conducted as an independent or collective decision. The

Extended-TPB model is shown in Figure 3-6.

3.3.3 Data collection

This framework was used to create a questionnaire that presented respondents with 40
questions, wherein each variable from the model was measured with two or more questions
(items). More items are included to reduce the measurement error or increase the reliability of
the data. The questionnaire used a 5-point Likert Scale, a commonly employed instrument for
measuring people’s attitudes towards behaviors. It records a respondent’s reaction to a series
of statement on a scale from ‘Strongly Agree’ to ‘Strongly Disagree’. Each response has a
corresponding numerical value, the sum of which contributes to an individual’s score for that
variable. The questions targeted people’s attitudes and behaviors at the workplace, and their
intentions regarding energy-related behavior, which was in the form of interactions with the
building systems. These systems consisted of lighting, thermostat, windows, and appliances.
Before conducting the data collection, a pilot study was carried out with a focus group of 10

people to gauge the suitability of the questionnaire.

The feedback from the pilot study was used to improve the questionnaire by adding
statements for clarification, adjusting the length etc. The order of questions was also edited to
avoid bias in the responses. Since it can be difficult to validate models that are based on self-
reported surveys, a section was devoted to asking specific scenario-based questions,

presenting the respondents with a set of circumstances in the workplace and asking how likely
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they would be to perform an action. The idea behind this was to create training and testing
data. The occupant profiles would be based on their scores for each of the variables (training)
and validate the models with the scenario-based questions. It would involve constructing the
circumstances in the model and check whether an occupant in the model would behave the

same way as their corresponding responses in the scenarios.

The data collection was carried out using Qualtrics, an online survey platform. Prior to the
distribution of the questionnaire, a privacy assessment was conducted by the Norwegian
Centre for Research Data, to ensure all compliance with data protection legislation. It was
distributed among the employees at the Norwegian University of Science and Technology,
collecting 110 responses. Some of these were discarded since they were incomplete, resulting

in a final tally of 101 samples.

3.3.4 Data analysis overview

The collected data was processed and analyzed with the statistical software SPSS [109]. The
data screening was performed to check for outliers and missing data. A univariate analysis
was used for outliers, and both the outliers and missing data were under the ordained limit of
5%. The missing data was handled using replacement methods, based on the average of the
nearest corresponding values. An overview of the data analysis is shown Figure 3-7, that
consisted of three steps. The first one was measurement modelling, which was concerned with

checking the reliability and internal consistency of the data.
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Step 1

— [ Reliability Analysis J

Measurement
Modelling

— [ Confirmatory Factor Analysis ]

Step 2

Influence

Factors [ Path Analysis/ Regression ]

Step 3

OB Profiles [ K-modes clustering ]

Figure 3-7. From Paper 4: Overview of Data Analysis

The reliability analysis was done on each variable in the questionnaire. Here, variable denotes
the factors identified in the extended TPB model, such as ‘Attitudes’ or ‘Perceived Behavioral
Control’. Each variable was recorded based on two or more questions. For example, to record
people’s attitudes towards energy-saving at work, they would be asked to express how much
they agreed or disagreed with the following two statements: ‘I feel like saving energy at work
is beneficial’, and ‘I feel like saving energy at work is good’. The answers to both of them
should be correlated enough to ensure reliability. Similarly, all the answers that are used to

assess a variable should be strongly correlated to classify the data as reliable and consistent.

For variables that had two questions (or items) the parameter used was Pearson’s correlation
coefficient, while for variables with more than two items, Cronbach’s alpha was used. For
some variables however, this approach was not suitable. Past behavior, or habits, contained
four items, each dealing with one building system. These items need not be correlated
strongly because an occupant might have different habits for different systems (for example,
lighting and windows), that are influenced by the type of installations in the building. In
addition, the ease of access for both systems can be different. For these variables, a
confirmatory factor analysis was performed. Factor Analysis is a method for modeling
observed variables to identify unobserved ‘factors’. Factor Loadings are generated, that show

the correlation between the original variables and the factors. The analysis is tested using two
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parameters, the p-value for significance, and the Kaiser-Meyer-Olkin measure of sampling

adequacy (KMO value).

3.3.5 Path analysis, SEM, and regression models

Path analysis, Structural Equation Models (SEM), and regression are all statistical methods to
study the relationship between multiple variables. Regression models are suitable to analyze
the strength and direction of relationships between one dependent variable and one or more
independent variables. SEM, on the other hand, is a broader term that refers to a family of
models that are more complex and allow researchers to examine the relationships between
multiple variables simultaneously. In SEM, researchers can examine the relationships
between multiple observed and unobserved (latent) variables. Latent variables are constructs
that are not directly observable, but are inferred from observable measures, such as survey
responses or test scores. These can be the underlying factors that influence people’s attitudes,
beliefs etc. A theoretical model is first hypothesized, that includes both observed and latent
variables. This model is then tested using the data to determine if the relationships
hypothesized are valid. An important difference between SEM and path analysis is the
inclusion of error terms. Error terms represent the amount of unexplained variation in a
variable and are included in the model to account for measurement error, unobserved
variables, and other sources of variance. In SEM, error terms are often included for each
observed variable and for each latent variable. This allows for the estimation of the amount of

error associated with each variable, and to assess the overall fit of the model to the data.

In addition, SEM allows for testing moderation effect. Moderation is when the strength or
direction of the relationship between an independent variable and a dependent variable
depends on the level of a third variable (moderator). It is examined by including interaction

terms between the independent variable and the moderator variable in the model.
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Figure 3-8. From Paper 4: Path analysis model

The data collected from the survey had variables as shown in Figure 3-6, with intention being
the dependent variable. While most of the other variables were independent, there were some
that were both dependent and independent. For example, ‘awareness of consequences’ is a
predictor for ‘personal norms’, which is in turn a predictor for intention. Here ‘personal
norms’ becomes a dependent variable for ‘awareness of consequences’ while being an
independent variable for intention. Such a variable is also termed as a mediating variable.
Furthermore, variables like ‘social connectedness’ and ‘identity’ are theorized to moderate the
effect of ‘descriptive norms’. To address these complexities and challenges, SEM and path
analysis were both included to investigate the relationships between these variables. The
models were developed in SPSS Amos [110], a tool for statistical modeling, that works in

conjunction with SPSS.

Figure 3-8 depicts one of the path analysis models used. The independent variables were
determined from the results of the reliability analyses described in the previous section. After
determining that the variables were reliable and consistent based on the survey data, the
scores for the questions were averaged to obtain a single score for each independent variable.
These were used to draw covariance between each of them. Error terms were only calculated
for the dependent variables, of which there were two (personal norms and intentions; error

terms el and e2, respectively).
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Figure 3-9. Structural Equation Model

The SEMs were more complex, as depicted in Figure 3-9. This model was drawn without
taking the average of the scores, but rather taking the raw input from the survey. For example,
to determine Attitudes, 2 questions were used in the survey. Here, the scores for each of them
were used as observed variable, and following the theory of SEM, a latent variable was drawn
for them. These are the inferred, or unobserved variables. Error terms in an SEM are

generated for each of the observed variables and dependent variables.

Individual models were developed for each of the building systems, since occupants can have
completely different interactions depending on the building system. As depicted in Figure 3-
10, 4 regression models were made, one for each building system (windows, lighting,
appliances, computers). Similarly, there were 4 SEMs, and 4 path analysis models. It should
be noted that thermostat is not available as an individual category, but instead, merged with
windows. This was done since the questions in the survey regarding window opening
behavior were linked to people’s use of thermostat, such as their willingness to regulate the
indoor temperature using windows or thermostats. After this step, several model variations

were applied, along with the baseline TPB model (which includes Attitudes, Perceived
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Behavioral Control, Descriptive Norms, Injunctive norms and Behavioral Intention). These
variations took the form of including one or both moderator variables, the additional variables
such as Habits and Personal Norms (PN) or those that were not directly predicting the
dependent variables (Awareness of Consequences). The fit of the models is assessed using
several fit indices, such as the chi-square test, root mean square error of approximation
(RMSEA), goodness of fit index (GFI) and comparative fit index (CFI).

Model Building System Model Variation
+ Moderator
variables
+PN
~ Windows ‘ i

. - o + Habits
Regression /

] .~ Lighting ‘ + Habits +PN

L + Habits +Moderators

‘ + Habits +Moderators

Appliances o

Path Analysis +Moderators +PN

—

Computers ‘ i)
—_— +(AoC/PN)
+ (AoC/PN) +Habits

+ (AoC/PN)
+Moderators

+ (AoC/PN)
+Moderators +Habits

Figure 3-10. From Paper 4: Model Variations
3.3.6 OB profiles

The dataset and resulting influence factors were then used to create occupant profiles by using
clustering methodologies. These methods are unsupervised machine learning algorithms that
use the similarities or dissimilarities between data groups to categorize them together. The
two clustering techniques considered were k-means and k-modes clustering. For k-means, the
clusters are based on mathematical measure, i.e., the distance between the centroids of each
data group. The centroids are computed by the means of each group. This technique is more

suitable for continuous measures, while k-modes is more suited for categorical variables.
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Here, the modes (most occurring values) are used to gauge the dissimilarities and mismatches
between data points. Both SPSS and the programming language Python were used to perform

these clustering analyses

In order to pick the optimal number of clusters (k), an elbow score was used. This score is
calculated based on the sum of squared distances from each data point to its centroid
(distortion score). A cost curve is then plotted with the number of clusters on the x-axis and
the distortion score on the y-axis. The line that is drawn on the chart has a point of inflection

(elbow) that indicates the optimal number of clusters.

3.4 Agent-based model

The objective behind this OB model was to develop a proof-of-concept model that can
simulate behavior based on the social aspects and incorporate occupant diversity. The
building system that gave the most consistent results from the survey was windows, hence
window-opening behavior was targeted in this model. The environment used in this project to
create agent-based models was Netlogo[111]. It is an open-source programmable environment
for simulating natural and social phenomena, particularly well-suited to handle complex
models that develop over time. It uses the Logo dialect for directing the agents and runs on
the Java Virtual Machine. A review of different agent-based modeling tools took into
consideration several aspects of these tools, from the user-interface to their ability to handle
complexities. Netlogo was found to have low modelling effort required to deliver models with
medium to high-scale complexities [112]. The language and user interface were one of the
easiest, and yet capable of simulating very complex environments. For the purposes of this
study, it was preferred to develop a model that would be accessible and available to people
without requiring expertise in using or changing the model. Hence, Netlogo was considered as
the most suitable option. The following sections delve into the creation of the model, based on

the findings of the previous sections.

3.4.1 Environment setup and agent creation

Traditional BPS tools, such as eQuest and DesignBuilder allow for the construction of a
three-dimensional layout for building models, providing physical boundaries for the model to
take place within. One drawback of using an agent-based model is the lack of access to such a
tool, which requires the user to use their own interpretation of the modeling environment to

generate a building layout. Netlogo consists of two main elements: ‘turtles’ (mobile agents)
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and a grid of ‘patches’ (stationary agents), within which the turtles move and perform actions.
The grid is adjustable, and a default 32 x 32 grid was utilized here, which contained 1024
distinct patches. Each patch is associated with a label (plabel), color (pcolor), and is
distinguished by the coordinates (pxcor and pycor) on which it lies. These associated
variables for patches were used to construct a building office type layout wherein the agents
would associate the patches with specific variables as elements of a building. The sample
layout that functioned as an environment for the agents to move around and perform actions
in is shown in the Figure 3-11. It consisted of 16 office-zones and one central-zone. Each
office-zone was modeled as a shared office, occupied by two or more people. It also consisted
of a workstation for each person present inside the zone, as well as a window for the person to
interact with. The office-zones were all equipped with a door that was connected to a lobby-
zone. The central-zone was created to represent an area that would consist of the entrance,
stairs, restrooms etc. These were not vital to for the window-opening simulation, hence

confined to a single area.

The layout was loosely based on an office building in NTNU (Norwegian University of
Science and Technology) Dragvoll campus, and was selected because it maximized the access
to windows for all the people present in the office. It is by no means an extensive
representation of an office building layout, but ideal for the scope of simulating the interaction

between occupants and windows.

The next step was the creation of ‘turtles’, or mobile agents, which would execute actions.
Similar to patches, agents are associated with distinct variables as well, which included an id,
size, label, heading, coordinates, shape, and breed. One functionality of an agent-based
model is that agents can be ‘asked’ to follow certain rules by assigning them to a particular
breed. Each breed will have to be first defined with respect to the rules it will have to adhere
to. Two distinct types of agents were created in this model: people, and windows. The
windows were created as agents so they could record the interactions with occupants and
denote themselves as open/closed. Furthermore, there were 8 different types of people

created, based on the OB profiles generated in 3.3.6.

Upon creation, a person would be assigned the following attributes: my-type, which would
denote the OB profile the person belonged to; my-window, the window assigned to the

person; my-office, giving the office number of the person; my-office-mates, the other people
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sharing the office with them. The windows were assigned two attributes: my-person, and my-

state (open/closed).

‘ A single office-zone

‘ Lobby-zones ‘

‘ Central zones ‘

Internal Walls

‘ Desks/workstations

Windows (agents)

Figure 3-11. Office-floor layout and elements in netlogo model

3.4.2 Adding temporal elements

The need for a temporal element was necessary to dictate when an agent should execute a
certain action. Normally, the simulation keeps running till it executes the block of code, or
until it is stopped by the user, with no accounting for the number of simulation runs that have
passed. However, there is a provision of a feature of ‘ticks’, where the user can design a tick
counter, which gets advanced according to the model design. For this model, the ticks were
used to create a timeframe that consisted of hours, days, months, seasons, and years. Each
advance of the ticks was associated as the passing of one hour. After 24 hours, the ticks
would be reset to zero and the process would start again. In addition, the passing of 24 hours
would denote that a day has passed, and a counter for days would record this change.
Similarly, counters would keep track of months, seasons, and years. The day would also
consist of working-hours, meaning that all the activity is confined to this time (since the

simulation is of an office).
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3.4.3 Movement simulation

An additional model generated for a different office layout attempted to simulate movement.
The goal was to provide a possibility to cover another aspect of OB with agent-based models.
The movement simulation commenced with the occupants generating links with their
associated workstations. Upon creation, each occupant already had a link with their associated
desks and windows. The heading variable of the occupant is a value that denotes the direction
that an agent is facing in, and is measured in degrees (0-360), where the North direction
would be 0/360. The path selection for the agents was based on a multilayered decision-
making process, wherein the agent examined the patch ahead of it before moving forward by
one step. If the patch ahead belonged to the lobby-zones, it would continue moving forward. If
it belonged to the internal-walls, it would take a step back, reset its heading, check the patch
ahead again, and move forward or backward where it could. It would have to seek out a door
through which it could enter, to get to its destination. A simplified version of the control of

flow and logic in this simulation is shown in Figure 3-12.

ﬁ Establish link with desk H Move towards link-neighbor ‘ Desk: Stop, engage
i work-mode

@ —+ Check patch ahead ‘ [
Wall: change Lobby/office: Door: enter*
direction move forward (at heading)

Figure 3-12. Logic behind the movement simulation
3.4.4 Behavioral rules

Once the value of the tick counter was in motion, an agent would be able to use the counter to
segregate the days and working-hours, and perform actions based on it. In accordance with
standard ASHRAE schedules, the working-hours was set to start between 6:00am — 9:00am.
During this temporal range the agents would ‘arrive’ at their respective workstations, either
using the movement rules specified above, or just be generated (or ‘spawned’) next to their
workstations. The next temporal range to take into consideration was the end of working-

hours, which would assign the agents as ‘not working’.
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The next consideration was the interaction with the building system, in this case, the
windows. This interaction depended on the season. The occupants would open windows for a
duration that would be suitable based on the season. This meant that windows would be open
for longer during summer (around 6 hours), and much shorter during winter (around an hour).
The window-opening duration was selected based on case studies on shared office spaces in
different seasons. During the working hours, each agent would ‘open’ the window once till
the hourly target based on the season is fulfilled. In order to create a baseline model, all
occupants had to act in the same manner, thereby adopting an aggregated behavior pattern
where no deviation from the norm was allowed. Realistically, human occupants cannot be
expected to behave as a programmed entity, which is why this model was designed for the
inclusion of occupant diversity. Within an agent-based model, it is possible to design each
agent separately. This model takes into consideration a continuous distribution, wherein the
traits of window-opening behaviors are across a range. Occupants would be assigned a ‘type’,
and their chances of opening a window for the set duration would depend on their type. Type
1, for example, was the standard one, wherein the occupant would use the rules for the
baseline model for their actions. Types 2-6 would have a decreasing chance of adhering to the
baseline model, where they would be assigned a probability to act according to its rule (type
2: 80% probability, type 3: 60%, and so on). Types 7 and type 8 were more dynamic ones,
which would be based on the actions of their office-mates. Their willingness to act the same
as, or opposite, to their peers depended on the strength of the subjective norms that was
calculated in the SEM/regression models. The logic of the simulation is visualized in Figure
3-13.

The proportion of each type of occupant was kept flexible, in order to provide the user with
control over the simulation. For that purpose, a slider was added to the model, which could be
used by the designer to set the composition and vary the amount of any specific personality
trait. Extensive testing and analysis can be carried out in this manner, utilizing different
compositions to determine occupant-window interactions associated with different occupant

diversities.
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Figure 3-13. From Paper 4: Logic and flow of the agent-based model
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4  RESULTS AND DISCUSSION

This chapter describes the results from the studies conducted as part of this thesis, and their
association with the research questions raised during the commencement of the work. Section
4.1 compiles the results generated from the case studies used to monitor occupants along with
their actions and influences, addressing Q1. Section 4.2 briefly summarizes the outputs from
the library and database development and contains insights regarding Q4. Section 4.3
describes the results of the social framework, surveys, and path analysis models targeting Q2.
Lastly, section 4.4 describes the proof-of-concept model that was developed using agent-
based modelling, exploring the implications of such models and the outputs gained from them
(Q3). It also includes a summary of the deep learning models that were based on the datasets
from the case-studies.

4.1 OB Monitoring

The case studies for OB monitoring were conducted as described in the previous chapter, in
three different settings, each with their own set of goals. The results from the shared offices
are presented in 4.1.1 and include the relationship between occupancy and the electric load,
energy consumption at occupant and device level, and the diversity profiles. The next
subsection details the findings from the sensors used in the operating room at St. Olavs, and
its implications regarding occupant movement and activity levels in surgical rooms.
Subsection 4.1.3 describes the activity dataset from the living lab and the contribution to

benchmark datasets.

4.1.1 Occupant energy-use behaviors in shared office spaces

Box-and-whisker plots were used to analyze the relationship between the occupancy in the
shared offices and the electricity consumption Figure 4-1. The central, red-colored lines
represent the median consumption, and the blue boxes mark the 25™ and 75" quartiles. Along
with the red-colored lines outside representing the outliers, the figure shows the distribution

of the electric loads measured using the plug-load and lighting sensors.
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Figure 4-1. From Paper 2: Box-and-whisker plots of electric load function of the number of
occupancy sensors that are indicating occupied status

The lighting system in the monitored workspace was found to consume an excessive amount
of energy during vacant periods, with mean power values exceeding 200W and 25% and 75%
quantiles ranging between OW and 300W. The system is triggered by motion sensors, which
were confirmed to be activated by occupants passing by the monitored workspace.
Interestingly, even with five independent occupancy motion sensors controlling the lighting
zones, the presence of only 1-2 occupants was sufficient to activate the entire lighting system,
with an average power level of approximately 350W. This highlighted the importance of
selecting appropriate light control systems and ensuring their proper calibration and
maintenance. Similarly, plug-loads were found to exhibit high power levels exceeding 200W
during vacant periods, indicating that occupants were leaving equipment running when
leaving their desks. However, unlike the lighting system, plug-loads showed a positive
relationship between average power levels and occupancy count. Total electric loads were
characterized by high consumption values during vacant periods and a moderate positive

relationship with occupancy count.
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Equipment loads [W]

Figure 4-2. From Paper 2: (a) Office-level comparison of energy consumed during vacant and
occupied periods. (b) Device-level comparison of energy consumed during vacant and

The lab's energy consumption was analyzed during periods of occupancy and vacancy, with
results presented in Figure 4-2. The analysis showed that a significant portion of the building's
energy systems operate after hours. Specifically, the bar chart on the left side of the figure
indicates that 35% of the lab's electric consumption occurs during vacant hours. Further
analysis by end-use showed that the lighting system and plug-loads accounted for 38% and
26% of consumption during vacant hours, respectively. However, the observed plug-load

values are conservative because the definition of "occupied" period assumes at least one
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occupant is present. This assumption may have led to overestimation of plug-load energy
consumed during operation and underestimation of the energy consumed during vacant

periods.

The energy consumption at the device-level granularity was also analyzed, which revealed
that 64% of the plug-load energy was consumed when the occupancy status of desks is
reported as '"vacant”, reinforcing the need of occupant intervention in controlling the
unnecessary consumption. The shared personal computer was found to be a major contributor
to unnecessary consumption with 93% of its energy consumption occurring without the
presence of an occupant. The analysis demonstrated that device-wise monitoring can reveal
important energy-saving potentials that were not observed when considering occupancy in the
office as a binary variable. Overall, the results highlight the need to identify instances of
unoccupied consumption, particularly for shared equipment such as printers and appliances,
and to curtail energy consumption during vacant periods for monitors and lamps.
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0.8
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load ratio [-]

0 6 12 18 0 6 12 18

hour of day [-] hour of day [-] hour of day [-]
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occupancy - standard deviation lighting - standard deviation MEL - standard deviation

Figure 4-3. From Paper 2: Comparison between the ASHRAE 90.1 profiles with the
measured occupancy, plug loads, and lighting consumption

The occupancy and energy consumption patterns of an office building were analyzed and
compared to the schedules recommended by ASHRAE 90.1 (Figure 4-3). The study found
significant deviations between the standard schedules and the measured occupancy and
energy consumption. The absolute hourly error between the theoretical and observed
occupancy, lighting, and plug-loads was presented to shed more light on the discrepancies.

The error values showed that occupancy and plug-loads were overestimated over the typical
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working hours of workdays while being underestimated outside of working hours. In contrast,

lighting loads were consistently underestimated throughout the week.

The study found that the observed discrepancies could be attributed to several factors. Firstly,
the studied area is a shared office space in an educational facility, where the occupants are
graduate students with a flexible working schedule. Secondly, the number of occupants
studied is relatively low, making the impact of individual behavior significant on the general
patterns. Thirdly, schedules, such as ASHRAE's, assume a good correlation between
occupancy patterns and the energy use levels of systems, such as lighting and plug-loads.

However, there is an important difference in the scale or magnitude of the profiles.

The observed discrepancies can lead to inefficient use of lighting and equipment and
contribute to misestimations of the actual energy use levels, resulting in an energy
performance gap. This study highlights the importance of considering the unique
characteristics of each building and its occupants when designing and implementing energy-
efficient systems. A non-intrusive framework with the level of granularity this study
demonstrated is beneficial in engaging fault detection in buildings, handling

miscommunication from occupants or mismanagement on part of the facility management.

4.1.2 Occupant activity influences in operating rooms

The data collected from the four Kinect cameras was processed and merged to plot an activity
heat map. This map had a resolution of cells measuring 5cm by 5cm, and the cells
corresponded to geographic locations of the OR. Each cell registers movement in its
corresponding location and increments its value by one. No activity is registered for static
occupants. The spatial activity distribution map shown in Figure 4-4 was developed in this

manner.
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Figure 4-4. From Paper 6: Activity levels around the surgical site

For the data regarding bacterial contamination, the agar plates measured the number of
Colony Forming Units (CFUs) that were formed by settling on the exposed surface of the agar
plates. These measurements were standardized for comparison in the form of CFU density
(CFU/m?/hour). Table 4-1 summarizes the CFU levels at each of the locations along with the
percentage of activity level during a phase. The average CFU levels at each location are also

indicated in Figure 4-4.
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The results indicated that while activity levels played a role in the distribution of
contamination, other factors also had an impact. For instance, location E had consistently high
activity levels due to the presence of the Distribution Nurse, who had to move across the
room, bringing particles from other areas into that location. Higher CFU densities were found
in locations A, B, and E, where the surgical staff were more active, compared to locations C,
D, and F, where the anesthetist nurse had less activity. The CFU density in location B was
particularly high, which can be attributed to the stronger activity levels of the assistant
surgeon. This participant’s roster of activities included squatting at the location as part of the
mock surgery procedure and was responsible for opening the lid of the agar plates at A, B,
and C. Additionally, the obstruction caused by a large table in the area may have obstructed

air flow, leading to higher CFU densities.

Experiment
Phase Phase 0-3 Phase 1-3 Phase 2-3 Phase 3
Activit . . .
Activity Activity Activity
Agar Plate y CFU/ CFU/ CFU/ CFU/
] Level Level Level
Location Level m2/h m2/h m2/h m2/h
A 12.7% 302.15| 20.9% 264.34| 18% 302.02 | 24.7% 476.03
B 0.5% 377.68 8% 469.94 | 10.3% 855.72| 10%  285.62
C 13% 151.07| 0.9% 176.23| 05% 352.35| 3.3% 95.21
D 23.9% 5036 | 37% 8811 | 36% 100.67 | 30.1% 285.62
E 609% 302.15| 315% 323.08| 34% 402.69 | 28.9% 380.83
F 1.6% 20143 | 1.7% 14686 | 12% 151.01 3% 95.21

Table 4-1. From Paper 6: CFU measurements and their corresponding activity levels

However, irregularities were also observed. For example, location D was expected to have
high CFU due to its proximity to the main surgeon and sterile nurse, but no distinguishable
CFUs were found. This might indicate a lack of sufficiently large agar plates to capture the
airborne contamination in the area. The overestimation of CFU counts during the hypothesis
of the study proved to be a significant limitation. While it was expected that the highest CFU
levels would correspond to the areas with highest activity levels, the results show that this was

not always true.
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4.1.3 Occupant activities in residential spaces

The case study in the Living Lab resulted in an extensive dataset labelled as ADL SmartLab
Dataset. The aim of establishing this dataset was to build an Activity Recognition framework
that represents activities as 3D trajectories of the 25 body joints of the human torso (also
known as a Skeleton Model). The developed framework was able to segment and identify the
performed 14 activities (comprised as 22 discrete atomic activities. The deep learning models
used for this framework were Long Short-Term Memory (LSTM), Bi-directional Long Short-
Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU) and Bi-directional Gated Recurrent
Unit (Bi-GRU).

It should be noted that this case study forms a part of the supplementary works as described in
the Introduction (Figure 1-3). The resulting deep learning models are described in further
detail in the attached papers (Paper 8 and 9 in Supplementary works). The contributions from
this study to this thesis comprise of a literature review regarding the use of machine learning
and deep learning models for AR (Figure 2-2), and the generation of a dataset for occupant

activities.

4.1.4 Answer to Question 1

Based on the above findings, a summary of the case studies conducted is presented in Table 4-

2. An answer to Research Question 1 can be formulated as follows:

Question: How to monitor and analyze the impacts of occupant behavior in different

spaces?

Answer: It is important to note that the question presented here is not unique in its goal.
Rather, multiple studies have examined it within their respective contexts. However, despite
the generic nature of the question, it still merits discussion due to the variation of its answers
depending on the context and setting. The studies presented highlight the importance of
considering the unique characteristics of each building/environment and its occupants while
designing an OB monitoring system. It also demonstrates that such monitoring systems can
vastly benefit from using multiple modalities of sensors, which makes it possible to obtain
detailed and individualistic data. The use of the sensors also addressed the need for privacy

and non-intrusiveness of the monitoring system.
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Each study provided a unique perspective on the answer. The first study achieved a
framework capable of examining granular device-level, office-level and occupant-level data
in a shared office space while exhibiting its non-intrusiveness. The second study made use of
an advanced monitoring system to examine occupant influences in an operating room. The
last study made use of a similar monitoring system, but with procedures aimed at capturing an
extensive activity-based dataset suited for smart homes and activity recognition systems.

The complexities in developing standard OB models often arise from lack of benchmark
datasets, since each study is focused on a specific case and the models are based on its own
dataset. This creates difficulties for researchers to compare models or provide meaningful
information for the building design stage. One of the objectives of conducting these case
studies was to contribute to benchmark datasets that would be available for wider use. Table

4-2 summarizes the datasets resulting from the case studies.

Shared office Energy-use, PIR, Plug Load Miscellaneous
presence Sensors, surveys Electric Loads

(Occupant-centric)

Operating Room Activity influence on  Depth registration OR Activity

surroundings Influence

Residential space Activities of Daily Depth Registration ADL dataset
(Living Lab) Living

Table 4-2. Summary of case studies

In addition, ASHRAE invited researchers to contribute to a global database for OB to address
the same challenges. This database was processed and launched in 2022 in Nature’s Scientific
Data, consisting of 34 datasets that were selected as representative samples for different
aspects of OB [93]. The dataset from the study in shared office spaces was selected as one of
them and is now available online. The dataset on OB activities has been submitted as an open

dataset as well.
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4.2 Database for layout simulator and BOT-ABM

This section describes the database that was developed to facilitate exchange of information
regarding different aspects of occupant behavior for an OB model. It also provides a sample
of the results achieved from the Matlab application built for data collection purposes. The
methodology for this part of the thesis consisted of (i) identifying key variables needed in a
library for layout simulation, (ii) establishing an application for the collection of such data,
(iii) data collection at NTNU. The next step was to create a functional database that could be
used by OB models, such as the hypothesized BOT-ABM.

4.2.1 Application for data collection

The application for the spatial data collection of occupant’s environment consisted of two
pages. The first one asked the general information regarding the room, such as the occupancy
type, order of importance for placing the objects around the room, the area etc. The user
interface, presented in the previous chapter (Figure 3-5), resulted in a data collection format
as shown in Figure 4-5. This interface generated a grid based on the input of the room area,
dividing it into cells. The occupant would then have to proceed by highlighting the areas
inside their rooms that are occupied by a certain object. The object list provides a list of
common objects, specified for the room type. This list was by no means exhaustive, but users
had an option to specify what other object was used.
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Figure 4-5. Sample output from the Matlab application
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4.2.2 Database design

Databases created through MySQL consists of tables that are related to each other via primary
and foreign keys. A ‘table’ consists of rows of information, wherein one type of information
is assigned as a ‘primary key’, unique to the table. In most cases, this is an id for the row of
information. For example, in a table containing data about a room, the id could be the room
number, and designated as a primary key. Tables consisting of information about other parts
of the building can now have a ‘foreign key’ that is connected to this room number. Use of
this foreign key will indicate which table to access to extract information. This helps with
eliminating data redundancy, since only the desired set of information is accessed for an
operation. Additionally, the keys might be in the form of one-to-one relationships, or one-to-
many. The former links a single record in one table to a single record in another, whereas the
latter connects a single record to multiple records. The database schema (Figure 4-6) provides
a graphical representation of the information present in the tables and the connections

between them.

‘

Toccupant id (INT) ‘

@ plug loads(NUM)
@ lighting load (NUM)
|@ presence (BOO)

g

id (INT) MysQL Database server
® Occupancy type (VC)
@ Nr. of occupants (INT)
\ )

Object directory | | - Layout Shared
id (INT) ; ) )

@ object name (VC) : —| Simulator Offices

| ] = Database Database

—_ Room layout Occupant perceptions

id (INT)

e [ roomid (INT)
@ perceptions

[ object id (INT)
|® spatial layout (NUM)
\

J ’ Occupant
o, Profiles
Database

Primary Key

Foreign Key
Data with constraints

/N o Mg

One-to-many relationships

—— One-to-one relationships

Figure 4-6. Database schema for the collected datasets

The database created for surface layouts consists of three tables wherein the parent table in the
‘room directory’. This table contains a generated id for the room, and additional details about

the room such as the number of occupants and occupancy type (private/shared). The id in this
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parent table is connected to a table that displays information about the spatial layout of the
room. There are multiple layout tables, and each of them has a one-to-one relationship with
the parent table via the room id. It also has the information about the objects located in the
room, denoted by specified object id. These ids are connected to another table with
information about the objects. Hence, information about objects and rooms has to be entered
only once in the relevant table and just connected to the layout, where information is
represented with a single- or double-digit id. These connections contribute to avoiding data
redundancy and reducing computational power. Instead of having a number of irrelevant

details in each file, the relevant information can be accessed via queries.

Similarly, as shown in the schema, the shared offices database contains the dataset from the
case study, wherein the tables reflect the actual and perceived energy-use behaviors of

occupants.

4.2.3 Answer to question 4

The research question addressed in this section can be summarized as follows:

Question: What kinds of prerequisites are needed to map environmental layouts around

the occupant?

Answer: The response to this question took into consideration the movement of an occupant
inside a room and their interactions with the objects present inside it. Prerequisites needed to
map these occupant environmental layouts were identified in the form of a library that
contains sufficient information for a surface layout simulator. The resulting study had three
goals, the first one being the identification of seven variables for the library, presented in
Table 3.1 in the previous chapter. Secondly, a Matlab application was developed for
collecting spatial information about the environment, the interface and sample output of
which is described above. These ideas were tested by collecting a sample dataset of 80 offices
at NTNU. A subsequent part of this answer was the development of a database to connect the
information generated from this study to larger models, which was then expanded to include

other datasets from previous studies as well.

4.3 Social Aspects of OB

This section details the results obtained to answer question 3, regarding the social aspects of

OB. To that end, the study explored the literature for quantification of social aspects and
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developed a framework and extended-TPB model to address it. Using these, a questionnaire
was created and distributed for data collection. The data analysis (overview in Figure 3-7)
consisted of three steps (i) Reliability Analyses, (ii) Path analysis/ SEM/ Regression models,
and (iii) OB profiles. The following subsections 4.3.2 — 4.3.4 describe the results obtained for
each of these. Subsection 4.3.1 describes the results for the addendum to the case study on
shared offices (Paper 2).

4.3.1 Addendum to the case study in shared office spaces - Results

The reason for including this addendum in this section is that the topic revolved around social
perception of energy-use behaviors. The study analyzed occupancy schedules and device
utilization in a building using sensors and occupant surveys. The actual schedules obtained
from the sensors differed significantly from both the perceived and standard schedules, with
one of the biggest deviations being a delay in the start of the day. However, occupant
perceptions about their presence, obtained from the surveys, showed a smaller gap in this
delay and followed the trend of the actual schedules more than the standards. Statistical
analysis showed that perceived occupancy had a stronger correlation to actual occupancy, but

a significant gap still persisted, as can be seen in Figure 4-7
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Figure 4-7. From Paper 3. Comparison of Standard, measured and perceived profiles of
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On the other hand, the study found that device utilization did not yield significant
correlations. The perceived energy-use of occupants varied greatly from occupant to
occupant, as well as device to device. Even devices subjected to frequent use, such as laptops
and monitors, showed discrepancies regarding perceptions. For example, laptops were the
most consistent, and monitors the least. Occupants that considered themselves to be switching
off their monitors while leaving found that their perceptions were inaccurate, according to

plug load sensor measurements. These results are highlighted in Paper 3.

4.3.2 Reliability analysis (Measurement modelling)

This section details the results from the first step of the data analysis. As described in the
previous chapter (section 3.3.4), the data collection resulted in 101 samples that were deemed
suitable for use. A brief look at the demographics indicated that a majority of the respondents
were from Norway (33%) and the rest were a mixture of different nationalities. The age
groups in the range 21-35 years constituted the vast majority of the respondents, at 85%.
Almost all the participants were working in shared offices, which is why the agent-based
model was centered on shared offices. Post data processing (for outliers and missing data), the

collected data was ready for testing reliability.

A reliability analysis is a test performed on each variable of the extended-TPB model to check
whether the theorized model is reliable and valid. For testing this, each variable in the model
has minimum two questions. The responses to both needed to be correlated enough, since they
measured the same variable. The scores used for this test were pearsons correlation
coefficient (when the variable had 2 questions) and cronbach’s alpha (when the variable had

more than two questions). Figure 4-8 summarizes the results for this step.

Variables testing for reliability analysis were ‘attitudes’, ‘personal norms’, ‘awareness of
consequences’, ‘descriptive norms’, ‘injunctive norms’, ‘social connectedness’, ‘identity’, and
‘self-construals’. Out of these, all except ‘self-construals’ passed the limit of 0.6 for pearson’s
coefficient and 0.7 for cronbach’s alpha. ‘Personal norms’ and ‘awareness of consequences’
scored the highest (0.8 and 0.79 respectively), while ‘social connectedness’ and ‘descriptive

norms’ scored the lowest (0.61).

Since ‘perceived behavioral control (PBC)’ and ‘habits’ targeted different building systems, it
was not necessary for them to be highly correlated. These were instead subjected to a

confirmatory factor analysis that models observed variables to have unobserved ‘factors’. In
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this test for example, the answers regarding habits had one factor that accounted for lighting,
appliances, and computers, and one factor that accounted for windows. This denoted that
people’s behavior was similar, or stemmed from similar reasons, when it applied to lights,
computers and appliances. And this was different from the habits and behaviors while
interacting with windows. The scores used to test on confirmatory factor analysis were the p-
value for significance, and the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO
value). Both these variables scored well to clear the ordained limits of these scores. Extensive

results of these tests are attached in the appendix of paper 4.
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Figure 4-8. Results of reliability analysis

4.3.3 Path analysis/Regression models

Following the reliability analysis, the variables deemed to be valid were then subjected to the
second stage of the data analysis, which was aimed at determining the influence of each
variable on the intention to perform energy-related behavior. This section summarizes the
results obtained from these models. Recalling the variations of the models run (Figure 3-10),
each building system had separate models developed to evaluate the behavior associated with
it. This was done since the previous steps in the analysis pointed out that the behavior for each
building system could have different results and reasoning behind them. In addition, it could
provide clearer insights regarding social aspects of OB. However, the results displayed here

are those from the path analysis and regression. The SEMs required that the dependent
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variable (intention to perform an action) would be a latent variable that would be associated
with two observed variables. This meant that it was not possible to create a model for each
building system. At least two building systems would have to be clubbed together to give a
valid output. While this made for interesting observations, it did not fit with the objective of

the analysis. However, results from these SEMs are also attached in the appendix (paper 4).

For both path analysis and regression, it is important to assess whether the theoretical model
fits with the observed data. To evaluate the fit of a model, several fit indices are used. These
indices can be classified into Absolute Fit Indices and Increment Fit Indices. The Absolute Fit
Indices provide a measure of how well the specified model fits the observed data without any
reference to a comparison model. These include the Chi-square test (%), Root Mean Square
Error of Approximation (RMSEA), and Standardized Root Mean Square Residual (SRMR).
Increment Fit Indices provide a measure of how well the specified model fits the data
compared to a comparison model, such as a null model. Incremental fit indices examine the
difference in fit between the specified model and a more restrictive model that assumes no
relationships between the variables. These include the Goodness-of-Fit Index (GFI), Adjusted
Goodness-of-Fit Index (AGFI), Comparative Fit Index (CFI), and Relative Fit Index (RFI)

A non-significant chi-square () value indicates that the observed data fit the specified model
well, which is generally desirable. However, it's important to note that the chi-square test is
sensitive to sample size, and small or moderate sample sizes can lead to a significant chi-
square value even if the model fits the data well. Therefore, in addition to the chi-square test,
it's recommended to use multiple fit indices to evaluate the goodness of fit of the model.
These fit indices should include both absolute fit of RMSEA and SRMR as well as a

minimum of two Increment Fit Indices.

The models were subjected to variations such as testing them with or without the additional
variables like moderator variables (Social Connectedness and Identity), Awareness of
Consequences (AoC), Habits, or Personal Norms (PN). These variations were conducted since
the extended-TPB model was a theoretical one, and it was necessary to assess which parts of
the hypothesis rang true. Table 4-3 depicts the best of these results, along with the evaluation
metrics (model fit indices). The desired value of these is present in the parentheses beside
each of the indices, except the degree of freedom (which needs to be positive but not
excessively high). The values in red denote the scores that did not pass the mark for the

desired value, whereas the figures in bold represent the best fit achieved.
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Baseline TPB Model Variations
+AoC/PN +Habits + Habits +PN +Habits + PN
+ Habits + Moderators + Moderators
B GFI (>0.9) 0.81 0.9 0.98 0.98 0.98
i CFI (=0.9) 0.12 0.85 0.996 0.99 0.99
< £ | AGFI (>0.9) 0.558 0.7 0.87 0.87 0.9
f’g E RFI (>0.9) 0.4 0.5 0.91 0.91 0.086
% é RMSEA (<0.08) | 0.02 0.17 0.05 0.05 0.029
5 2| SRMR (<0.08) | 0.08 0.1 0.18 0.04 0.059
& & | Chi-square 0.000 0.000 0.26 0.26 0.36
(>0.05)
Degree of 73 4.0 7.6 1.2 1.08
freedom

Table 4-3. From Paper 4: Evaluation of path analysis/ regression models (windows)

All the models shown in the Table 4-3 pertain to windows, since that was the building system
that continued giving consistently well-fitted models. This also reflected in the reliability
analysis, where the factor analysis confirmed that behaviors regarding windows was different
than other building systems. After determining the goodness of fit, a closer look can be taken
at the models to understand the influences of each variable on occupants’ intention to act.
Figure 4-9 shows the results from the two best models, one from regression (+Habits +PN),
and one from path analysis (+AoC/PN + Habits). It can be seen from the results that 3-4 of the
variables were statistically significant, i.e., had a p-value less than 0.05. This was in line with
other models seen in literature, where not all of the variables have statistically significant
relationships but are nevertheless important for drawing interpretations. The numbers
indicated beside the path line (arrows) of each variable denotes the path coefficient (between -
1 to 1 for standardized estimates). This indicates the amount of variance that will occur in the
dependent variable when the independent variable changes by one. For example, from Figure
4-9, the path coefficient of ‘Attitudes’ is 0.03. This means that if the value of attitudes
changes by one, the intention will vary by 0.03. Negative signs indicate the direction of the
relationship.

The results indicated that around 60% of the variance in the intentions is covered by the
independent variables in the model. From all the variables, ‘Habits’ was the one that had
consistently strong influence on intention, in addition to always being statistically significant.

‘Injunctive Norms’ reported the second highest scores, while ‘Personal Norms’ displayed a
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strong influence, albeit in a negative direction. The path analysis also proved the ‘AoC’
variable to be statistically significant, as well as a strong predictor of ‘Personal Norms’. This
interpretation was applicable to the windows-related behavior. Since (IN) was a variable that
measured people’s willingness to act according to the expectations of their peers, this gave an

important insight into people’s behavior.

Analysis of the models for lighting, appliances, and computers revealed slightly different
results. However, ‘Habits’ was still the major influencer across all the building systems.
‘Descriptive Norms’ proved to be a good influencing factor for lights, whereas ‘Personal
Norms’ was more strongly associated to appliances. The windows model was also the one
with the best fit, and hence was selected as a baseline for developing the agent-based model.
The best ones of these models are summarized with the respective coefficients of the variables
in table 4-4.

Variables Building System
Windows Lights Computers Appliances
Attitudes 0.03 0.01 0.01 -0.02
Personal norms -0.17 0.06 0.06 0.20
Descriptive 0.00 0.10 0.01 -0.01
norms
Injunctive 0.25 -0.13 -0.01 0.02
norms
Perceived 0.10 0.06 0.02 0.02
Behavioral
Control
Habits 0.70 0.82 0.70 0.72

Table 4-4. From Paper 4: Variable coefficients for different building systems
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Figure 4-9. From Paper 4: (top) Regression with +PN +Habits (bottom), Path Analysis with

4.3.4 OB Profiles

+A0C/PN +Habits

After determining the reliable variables as well as their influences, the processed data was

used to generate OB profiles. The goal of developing these profiles was to have an optimal

number of occupant types to use in the agent-based model, as well as adjust their defining

characteristics based on their profile. The methodology for generating these profiles was k-

means and k-modes clustering, the latter of which was more suitable for the dataset used in

the study. Establishing an optimal number of clusters was essential, since the data could be
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adjusted into 5-20 clusters. Elbow score was used in this case, which plots a cost curve as
shown in Figure 4-10. The x-axis represents the number of clusters, while the y-axis plots a
distortion score. The drawn curve has a point of inflection that indicates the optimal number,

which in this case, was 8 clusters.
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Figure 4-10. From Paper 4: Cost curve to determine optimal number of clusters
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Figure 4-11. Distribution of clusters/ OB profiles

Further analysis of these 8 clusters (or profiles) is shown in Figure 4-11. This represents the
amount of people present in one cluster. These were divided based on their responses, where
the scores for each response was used to denote a centroid of a cluster. The densest cluster
was number 2, with 23 people who gave similar responses, while number 7 was the least
dense with just 3 people in it.

4.3.5 Answer to question 2

Based on the results obtained from these studies, an answer to research question 2 can be
formulated as follows:

Question: How can the social aspects of OB be evaluated for modelling/simulation
purposes?

During the formulation of the research questions, this question was divided into three tasks in
order to be addressed. The study presented provided answers to each part, starting with a
hypothetical framework and extended-TPB model developed to start the process (Task 2.1).
This proved meaningful in quantifying the social aspects. The second task (Task 2.2)

answered this question by deploying the framework to collect and analyze the social aspects.
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The analysis resulted in eliminating some factors, such as ‘self-construals’ from the extended-
TPB model. Rest of the variables were proved to be reliable and valid based on reliability

analysis and confirmatory factor analysis (Figure 4-8).

The investigation process included the creation of structural equation models, regressions, and
path analysis. Regression proved to be the model that provided the best fit, while path
analysis was also acceptable (Table 4-3). SEMs did not result in eligible models due to the
lack of segregation in building systems. The influence factors for occupant’s energy related
behaviors were obtained for each building system, highlighted in Table 4-4. The addition of
‘Habits’ strengthened the model significantly, where the variable was the strongest predictor

for all building systems, in all model variations that were used.

Lastly, the construction of the framework and subsequent evaluation of all the variables
enable the creation of OB profiles (Task 2.3). These profiles were now backed by analysis
that emphasized which variables were valid and significant enough to justify the clustering
techniques use. The k-modes clustering technique yielded suitable clusters, elig.ible to be

used for modelling purposes.

4.4 Agent-based modelling

This section describes the resulting model using the agent-based modelling in Netlogo. It
includes the interface of the model, the applicability, and the simulation of window-opening
behavior. It also includes the result from the movement simulation that was modelled as a

separate entity, with capabilities for integration with the larger model.

441 Model interface

The idea behind creating a proof-of concept model was to initiate the process of bridging the
social behavioral theories with the engineering methods of modeling OB. The aim was also to
provide an open model that would have a degree of flexibility for the user to control and run
several iterations of the window-opening behavior. For this to be eligible for use to other
researchers, especially those involved in social sciences, the model had to be simplistic and
user-friendly, with blocks of code that ran on the press of a button, and the parameters are
adjustable in the form of sliders. The interface is presented in Figure 4-12. The Setup and Go
buttons are those common to most agent-based models, the first run setting up the parameters

to the desired settings as a starting point, and the second one running the simulation. In this
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example, the starting point was the generation of the layout, the agents, their personalities,

and the distribution of occupants.

= Setup
Max-years
. Go
Simulate one hour
2 14 16 48
Simulate one day
- Profiles
Simulate one
season 1
| L T T

Simulate one year U
Distribution

Figure 4-12. From Paper 4: Interface of the agent-based model in Netlogo

Several provisions are present in the model to investigate the window-opening behavior. The
resulting profiles from previous steps were modeled into 8 different personalities, or ‘types’
that each occupant would be assigned. However, the model had a slider to choose the number
of profiles to run the simulation on. Moreover, the distribution here was selected to provide a
sufficient number of types to run simulations with good amount of occupant diversity. This
feature was also kept flexible to a certain extent, where 4 different distribution types were

present. This can be expanded and scaled to include more types and distributions as well.

4.4.2 Simulation of window-opening behavior

The window-opening behavior would be carried out by each agent (occupant) in accordance
with the rules. These rules were the ones associated with their respective types, as well as
general rules about window opening durations during different seasons. The simulation could
be done from the period of one hour, up to a period of 10 years. The slider for ‘Max-years’
gives the user the option to choose the maximum number of years they would like to run the
simulation for or set a maximum limit. The user could also choose to run the simulation in
increments of one hour, one day, one month, or one season. A season would last for a period

of three months, hence one year would have equal distributions for summer, fall, winter, and
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spring. Each season instructed the agent with a standard opening duration of windows during
the workday. The probability of the agent of following the instruction would differ from type
to type, which would mimic the OB profiles developed. For example, a person belonging to a
cluster that scored higher on window interaction would have more chance to follow the

instruction.

Based on these behavioral criteria, the simulations would run for the cycle specified in the
model interface. The data would be shown in the form of a graph that summed the number of
hours a window was open throughout the day (the increment was originally for each hour but
was changed to one day to be more visually evident). Figure 4-13 depicts graphs illustrating
the duration of window openings on each day, one for each sort of occupant/agent. Type 1
depicts the typical baseline model, with a graph made up of straight lines. The agents in the
baseline model would simply open the window for a set amount of time each day based on the
season, resulting in a deterministic model. Winter seasons would be shorter than summer
seasons, and so on. The remaining graphs can be observed, with some variation in behavior.
The simulation results were for a complete year, with three months between seasons.

However, for clarity, the figure only includes one month from each season.
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Figure 4-13. Window opening duration of different OB profiles

As can be observed, the graphs progressively demonstrate shorter and shorter window-

opening timings, which corresponds to the tapering structure developed when the agent kinds
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were created. The results demonstrate the ABM's capacity to add personality-specific traits
for a set of occupants. This operates within a user-specified range but allows the model to be
flexible within that range. For example, because type 3 had a 60% chance of obeying the
guidelines, their deviation from the baseline model would be between 0 and 40%. The
subsequent versions, which opened the windows for progressively shorter periods of time,
yielded similar findings.

The simulation results for types 7 and 8 were particularly noteworthy. These two categories
were created to express occupants' Subjective/Injunctive Norms beliefs/concerns by either
acting in the same way as their peers or "officemates" or acting in the opposite way. These
agents had a greater proclivity to follow routines influenced by those around them. However,
it was difficult to plot these since they appeared random without the context of which other
type of agent was present in the workplace with Type 7 and Type 8. Some images in the
Appendix of Paper 4 exhibit screenshots from the simulations, which demonstrate the office

layout and the agents impersonating their coworkers.

4.4.3 Movement simulation results

The movement simulation was carried out based on the logic presented in the previous
chapter in Figure 3-13. This simulation was run to mimic a standard day according to
ASHRAE profiles, wherein the occupant would enter the office at a designated time, move to
their assigned desks/workstation, and leave at the end of the day. As the agents were
generated, each agent had a link established to their respective workstation The heading of the
occupant, that denotes the agent’s direction, would be set based on the angle between the
occupant and its destination. A simulation in progress is shown in figure 4-14. An occupant
would be denoted as ‘moving’ if the distance between the agent and its destination was larger
than one patch (red agents), whereas, when the distance from their target was less than a
patch, i.e. the occupant was as closest as it can get to the target, it would be denoted as

‘working’ (blue agents).
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Figure 4-14. Occupants moving in the direction of their linked desk (2-D and 3-D views)
4.4.4 Additional deep learning models

Other OB models contributed from the work of this thesis include support work in developing
deep learning models, some of which were mentioned in section 4.1.3, as part of
supplementary work. In addition, the study presented in paper 7 revolved around the use of
state-of-the-art DL models to predict occupancy and plug loads. It used the dataset from the
case study on shared offices, with the objective of developing LSTM, Bi-LSTM and GRU
models to assess which ones predict occupant’s plug load patterns more accurately. This
dataset was dividing into training, test, and validation sets, where the training set was used to
develop the models, and predictions were made on the test set. LSTM was selected as the
baseline model, and the predictions were carried out for a ‘day-ahead’ and ‘week-ahead’

period.

The result was three predictive models developed in the Python language, which were
evaluated using the RMSE and Mean Absolute Error (MAE). The methodologies and
optimization strategies are better outlined in the attached paper. The plug loads being
predicted were for six devices (laptop, two monitors, docking station, desk lamp, and
miscellaneous). The miscellaneous plug-loads proved to be the real challenge, since it had
unstable consumption patterns. However, the Bi-LSTM model was the best one to forecast
these with the least amount of error. All the three models performed well on the day-ahead

predictions, capturing the peaks and lows of all devices with minimal deviations. For the
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week-ahead predictions, it was again the Bi-LSTM model that performed the best. These
predictive models are useful for implementing demand-response assessments, as well as

providing insights for pricing and tariffing energy-usage.

4.45 Answer to question 3

The results obtained from these simulations can be used to formulate an answer to research

question 3 as follows:
Question: How can the social aspects of OB be modelled/simulated?

Answer: It can be worthwhile to note that this was the original question considered while
formulating the goal of this doctoral study. It is a fairly straightforward question at first glance
and addresses the core objective of aiding building energy performance simulations and
optimizing energy efficiency of the same. However, as the work progressed, it was evident
that there were several questions that lay in the background that had to be addressed first. This
question was originally about modelling OB in general, and got modified to center around
social aspects of OB. It also proved to be the source of all the other questions considered in
the thesis.

The key to answering the question lay in Question 2, about assessing and evaluating social
aspects in order to prepare them for simulation purposes. All in all, social aspects in OB can
be modelled using diverse modelling strategies, but first require a framework that is suited to
the method of modelling selected. Agent-based models were the ones selected in for this task,
and were assessed to be a suitable conduit for capturing and channeling the complexities in
OB. It had the capability of implementing the already established fixed and static models,
while also accommodating the diversity of OB. Furthermore, the simulations could be

adjusted using a simple user interface and incorporate flexibility as desired by the user
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5  CONCLUSIONS

This chapter summarizes the key takeaways from the studies conducted in this thesis. Section
5.1 provides the main conclusions of the three main parts, or themes that the work in this
thesis can be divided into. Section 5.2 talks about the various limitations present in these

studies. Section 5.3 presents some considerations for future work.

5.1 Concluding Remarks

Regarding monitoring of occupant behavior

Occupant behavior has a vital influence on the energy performance of buildings, and it is
therefore essential to understand and document it to improve building design and operation.
The first focus of this thesis, hence, was to build strategies to monitor OB and their influence

in diverse settings using an assortment of sensing modalities.

The first case study of OB in shared office spaces yielded interesting insights. The use of a
non-intrusive monitoring framework made it eligible for application in different buildings,
especially those lacking BMS infrastructure. The insights about energy-related OB after
monitoring a shared office for a year showed large amounts of energy being consumed when
the occupants were not present in the area. In addition, device-level and occupant-level
granularity made it possible to point out the devices that were causing the unnecessary
consumption. Lastly, discrepancies were observed between the standard ASHRAE profiles
and measured values of occupancy, lighting, and energy-use. These also provided insights for

the kind of patterns that occur in academic buildings.

The second study was undertaken inside an operating room of a hospital. The aim of this
research was to tackle the issue of limited investigation into human activity in hospital rooms
during experiments. The findings indicate a correlation between higher activity levels and
increased bacterial contamination in various areas. However, the study also revealed that
areas near physical obstructions had the highest CFU densities, indicating that airflow
patterns may have a role to play in such environments. Insights gained from studies like this
could help to implement infection control measures, such as optimizing airflow and
positioning of surgical instruments based on staff activity, as the current indoor environment

design does not consider the effects of human activity during real surgical procedures. By
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dynamically recording human activity and using reproducible techniques to measure airborne
contamination and airflow patterns, valuable information could be obtained that could

influence the design of operating theatres and working practices.

It is crucial to acknowledge that the outcomes obtained in these studies are not intended to be
broadly applicable or extended to conventional buildings. Rather, they demonstrate the
effectiveness of the proposed high-resolution occupant monitoring systems in identifying
possibly wasteful energy consumption patterns in office spaces, and potential sources of
contaminations due to occupant activities in ORs. The results reveal the significant influence
of individuals on their environment and can be beneficial including facility managers who

maintain and adjust centralized systems.

The case study in residential spaces successfully demonstrated the precision of data fusion in
capturing human activities by using multiple depth registration devices. An automated, real-
time, and reliable activity recognition framework was able to monitor and assess occupant’s
activities of daily living in an unrestricted environment. The data collected from three
cameras were fused into a single skeletal model and calibrated to synchronize spatial and
temporal dimensions. In addition, the study showed the reliability of depth registration in
accurately capturing activities, with 22 discrete atomic activities labeled and recognized. The

resulting dataset is vital in establishing benchmark datasets for occupant activities.
Regarding OB profiles and preparatory work for OB models

While the first theme of the thesis focused on using sophisticated data acquisition techniques
to collect detailed datasets, the second theme revolved around the preparatory work needed
for OB models. This was a direct question generated while addressing the complexities of
creating holistic models. Since OB has several aspects to it, the chosen ones to address here
were the social aspects. In addition, supplementary work was done for generation of surface
layouts for an occupant’s environment. Both of these also tied into the proposed BOT-ABM
model, covering two of the aspects mentioned in the model hypothesis. Lastly, a database to

be used for OB models addressing multiple aspects was established.

The support work done for the simulation of the occupant’s environmental layout and the
database development is more of a methodological approach, making it difficult to draw
conclusions on. Since there exist no such application that collect the data or contains variables

that were defined, there cannot be a comparative analysis on it either. The main conclusions
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hence comprise of the methodology. To map occupant environmental layouts, a prerequisite
library containing sufficient information for a surface layout simulator was identified. The
study had three objectives: first, the identification of seven variables for the library; second,
the development of a Matlab application for collecting spatial information about the
environment, with the interface and sample output described above; and third, testing the
ideas by collecting a sample dataset of 80 offices at NTNU. Additionally, a database was
developed to connect the information generated from this study to larger models, which was

then expanded to include other datasets from previous studies.

Meanwhile, the preparatory work for the social aspect of OB was much more complete,
conducted from start to finish, including the conceptual theories, proposed extended-TPB
model framework, data collection, analysis and evaluation. The necessity of using behavioral
theories was well highlighted during the survey formulation, since it provided ground for
quantification of these behaviors. These theories also assisted in the evaluation of the
variables obtained from the data collection, in terms of their reliability and accuracy. The
theoretical extended-TBP model finally concluded in one that included habits and injunctive
norms as the best fit, although the models including awareness of consequences were not far
behind. The addition of moderating variables did not prove to significantly change the
outcome of these models. The data analysis to determine the influence of the different
variables consisted of using path analysis, regression, and structural equation modelling. The
latter of these did not have good capabilities to address the individual building systems, and
the models created were for a general behavior pattern. This was not consistent with the
objective of the study, hence the focus turned to the path analysis and regression models.
Although SEM and path analysis are powerful tools to analyze complex relationships,
regression analysis allows for the examination of relationships between a small number of
variables, which can be useful when the goal is to identify the most important predictors of a

particular outcome.

Habits consistently proved to be the best predictor for behavioral patterns regarding all
building systems, while personal norms, injunctive norms, and descriptive norms competed
for the second most influential predictors for different systems. Furthermore, the results of
these models aided in the construction of OB profiles to be used for models. The optimal
number of profiles was calculated using the elbow score in k-modes clustering methods,

which turned out to be 8 profiles.

91



CONCLUSIONS

Regarding OB models

While the bulk of this thesis focused on preparatory work for OB models, the end goal was to
develop accurate and more representative models, that could be used for building performance
simulations. Two of the datasets became available as benchmark datasets and were used for
developing machine learning and deep learning models. One of them even became part of the
global OB database that has been made available by the IEA’s Annex-79. The results from the
deep learning models summarized the performance of state-of-the-art DL models with regards
to occupancy, plug-loads, and activity recognition. Bi-LSTM models predicted the energy-use

patterns most accurately.

The agent-based model was developed to simulate the social aspects of OB, as part of a proof-
of-concept study to showcase the abilities of ABMs in capturing the diversity and
complexities of this phenomenon. Moreover, an important contribution of this study was to
provide an interdisciplinary connection for social sciences and the engineering part of the
field. Studies concerning OB often highlight the necessity of incorporating multiple branches
of sciences in order to provide an accurate and representative assessment of occupant’s
energy-use behaviors in buildings. This recommendation extends to it modelling and
simulation as well. The agent-based model created in this study was grounded in and based on
the social behavioral theories, and then used the assessments and profiles provided by the
preparatory step to simulate window-opening behavior. It also provided a simple and
accessible user interface and flexibility for simulations and is scheduled to be released for
access as a Netlogo model. This can serve as a starting point for building larger and more

detailed models and optimize the research methodology on OB.

5.2 Limitations

Occupant behavior is an evolving topic, where the lack of global standards regarding OB
modelling and simulation leads to the need for several assumptions. There are also restrictions
due to the scale and complexities involved in the topic. This section briefly discusses the key
limitations regarding the studies, with more detailed discussion provided in the individual
papers.

Regarding monitoring of occupant behavior
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The main limitations with regards to OB monitoring studies in this thesis can be summarized

in three key points: scale, homogeneity, and lack of additional considerations.

1. Scale: The sample size of the participants in the studies was sufficient enough to test
the framework, assess the occupants’ influences etc. However, it was only sufficient to
point out the eligibility of either the framework or the methodology. For example, 8
occupants were monitored in the shared office space, and while this was to show the
efficiency of a granular monitoring framework, it could benefit vastly from an
increased sample size. Similarly, the study conducted in the residential Living Lab
could benefit from a larger number of occupants, as well as scalability. All three
studies were very specific for their environments and need to incorporate scalability in
their approaches.

2. Homogeneity: The homogeneity referred to here is with respect to the building types,
building systems or monitoring systems involved in the studies. For instance, passive
sampling strategies were used to collect data about the bacterial accumulation in the
operating room, which has several limitations in comparison with active sampling
strategies. Moreover, the ventilation systems present in the study come with their own
set of limitations. Studies need to be conducted in rooms with different ventilation
systems to see if the occupant activity levels are impactful enough in other
environments. Similarly, the room layout and placement of furniture is always kept
constant in order to have a controlled study. However, this can reduce the applicability
of the monitoring methodologies, since different environments may contribute to
different results. Lastly, additional sensors such as wearable sensors, HVAC
monitoring etc would have improved the application of these monitoring systems as
well.

3. Lack of additional considerations: Some of the considerations missing in the studies
are those of HVAC systems. This is a significant part of energy-use in buildings and
could not be considered due to the requirements of the study, either being non-
intrusive or due to lack of valid data. Other additional considerations include occupant
bias in reporting and the need for strong computing systems for the activity

recognition.

Regarding OB profiles and preparatory work for OB models
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Both the library for the surface layout simulator and the database developed for connecting
different datasets across a platform are in the initial stages. There is a lack of testing and
validation involved, due to these being developed for hypothetically larger models. However,
this scope was taken into account since works like these would be parts of a larger project.
That makes it difficult to run them in a real-world scenario. In addition, there is a
computational expense involved that makes it expensive and laborious to implement, thereby

requiring a lot more optimization.

For the work regarding the social aspect of OB, the sample size is again one of the major
drawbacks. Since this was more of a proof-of-concept study, the aim was to build a functional
model and provide an interdisciplinary link between two different sciences concerning OB.
For social aspect, larger sample size, different types of buildings and rooms, more

investigation around behavior regarding appliances, computers etc. needs to be addressed.
Regarding OB models

The most significant drawback of the agent-based model developed in the study is the lack of
validation. While the model offers flexibility and incorporates the diversity in OB, there is no
way to gauge how accurately that is done. This problem persists in OB models in general,
since behavior is hard to predict, and even harder to validate. Protocols for validation were
adopted in the study but fell out of scope. The future work considerations elaborate on the
proposed validation strategies. The model is also extremely limited to a specific office layout
and cannot be easily transferred to other settings. The agents in the model, representing the
occupants, already have ties to the layout, setting, and desks/windows. This limits the
transferability of the model. While other layouts can be made keeping the occupants intact,
the process is time-consuming and computationally demanding, at least to encompass a bigger

range of layouts and environmental settings.

5.3 Considerations for future work

Regarding monitoring of occupant behavior
All the considerations for future work of OB monitoring stem largely from the limitations
observed. First and foremost is the scalability. All the case studies mentioned in the thesis can

benefit from a larger sample size. More occupants would make it viable to draw standard

conclusions regarding OB, as well as test out the applicability of the monitoring frameworks
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proposed in the individual studies. The diversity of occupants would make it easier to train
models on a large scale of data with varying energy-use and activity patterns. Secondly, the
monitoring systems can be expanded to be used in different building types, thereby increasing
the scope of the studies. Different monitoring strategies can be compared, which take into
account the sensing modalities used here and compare it with other sensors. A significant
hindrance on setting up such monitoring systems is the cost involved. Economic assessments
need to be made about these systems with regards to the capital needed and the improvement
in energy efficiency offered. Incorporation of HVAC systems is another goal for the future
considerations, which would introduce more complexities and would need more capable

monitoring systems to accurately record the use-patterns.

These considerations would provide building facility managers with adequate data about how
building energy performance is being affected by occupant behavior, and what optimization
strategies could be adopted to improve it. This also helps policymakers provide better

guidelines and make decisions in a more informed manner.
Regarding OB profiles and preparatory work for OB models

The developments around these have been all about initial steps. In order to take it forward,
the application developed for the surface layout needs to be used in different environments to
evaluate its applicability. Future work can also start with testing out the capabilities of the
database, by connecting it to multiple models, or simply releasing it for wider use for entering

benchmark datasets that are accessible to a larger community.

While a major part of this thesis focused on the social aspects of OB, starting from conceptual
frameworks to a working model, similar care and effort has to be given to the other aspects as
well. For example, some aspects identified in the BOT-ABM proposal have been researched
on and analyzed in a similar manner, whereas others need to be assessed. This has to
contribute in building a holistic OB model that can standardize datasets from across

disciplines, use profiles for multiple aspects of OB, and have dedicated models for each.
Regarding OB models

In order to proceed with OB models, the question of validation has to be tackled. The
selection of agent-based models was also done due to its capacity to program individual

agents and monitor the outcome on a larger scale. A validation protocol can hence be
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established by programming the agents based on the profiles and subjecting them to a
scenario where we already know what the outcome is supposed to look like. This protocol
was initiated in the study during the survey creation. Two scenarios were presented to the
participants, one regarding their interactions with lighting systems and the other regarding
appliances. Since all participants are categorized into profiles, agents can be modelled
according to the general rules of the profiles. A single agent from a profile can then be placed
in a scenario that is the same as presented to the participants during the survey. The actions of
these agents would give an idea to the accuracy of the behaviors being simulated. This would

be the next step in terms of agent-based modelling.

The DL models provided forecasts and predictions around energy-use of the occupants. The
benefit of developing these models would include the awareness of OB and their patterns of
energy-use, which could be further utilized by building facility managers to develop energy-
efficiency programs. These programs can aim at spreading awareness, identifying the
requirements of the occupants through feedback systems, and incentivize reduction in energy
consumption.
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Abstract. One of the key elements in driving the energy performance of buildings has been
recognized as occupant behavior (OB). However, available tools for assessing and simulating
occupant behavior are based on fixed schedules and aggregated profiles, which fail to capture
the diversity of OB. A significant aspect of OB is its relation to social groups and their influence
and interdependence on each other. The data regarding the influence of social groups is important
to achieve an effective model of OB as it accentuates the individual OB profile based on the
influences it can have from the social groups they belong to. This added module is not present
in traditional building simulation tools. This study aims to explore the tools and methods to
evaluate the factors that are responsible for the influence of social groups on individuals’ energy-
related behavior. The paper investigates the kind of data sets needed for understanding this
interdependence, including the occupant’s social group, their standing in the group, and the intent
behind different actions and its comparison to the actions the individual would take without any
external influence. The results will be used to construct questionnaires, which can prove
beneficial in developing social group profiles in OB models.

1. Introduction

Current statistics on worldwide energy consumption indicate that more than one-third of the expenditure
comes from residential and commercial buildings [1]. Reportedly, this consumption would have been
40% higher if not for the implementation of energy-efficient technologies, but despite the technological
advancement, the challenges in energy reduction are enormous, and these are compounded with the
increasing global pressure and concerns to meet the worldwide goals for this reduction [1]. In addition,
the disparity between the expected and the actual energy performance [2] [3]of buildings is another
cause for concern, and it leads to a need of having a more innovative and holistic approach to bridge
this gap and adapt to the energy demands in an efficient manner.
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However, occupants are an integral part of the building systems, and due to the dynamic nature of
occupant interactions with these systems, building sectors become much more complex in terms of their
energy performance. While there can be several other factors involved in the contribution of the
performance gap, most notably, faults in the mechanical and electrical systems, malfunctioning of
equipment etc. [4], occupant behavior(OB) has been identified as one of the major drivers of this gap
[5]. This trend has also been reflected in the fact that, over the last 30 years, the research community has
shifted a lot of its focus towards OB [6]. This behavior, then becomes a deciding factor when it comes
to the variability in the comfort settings and the implications it has on the energy usage.

In that context, there is a marked dissonance when it comes to the building design and performance
simulations as well. Low-energy, or zero-energy buildings, are designed to comply with high-efficiency
standards, which are vital for reducing carbon emissions, and these designs are dependent on an active
occupant interaction with the building systems. However, the predictions of the energy performances
result in an even larger error for these low-energy buildings [7]. This can be attributed to the actuality
that the potential for achieving that high level of efficiency in these buildings is reliant on the building
being operated in a specific way according to the design. Another side of this problem is also the rigidity
in the building performance simulation (BPS) process, wherein OB is most often considered as a fixed
or schedule-based model [8]. Earlier BPS tools utilized deterministic inputs to represent OB over the
life cycle of the building, which took the form of daily, weekly, and monthly schedules. The main
advantage of these inputs was the ease of use and simplicity of the models. However, more and more
BPS tools have started incorporating stochastic models to capture the diversity and include the
uncertainties which arise in OB [9].

The need to incorporate an interdisciplinary approach is based on this human-building dynamic, and
this approach can be viewed at three different levels: the individual occupant, the group behaviors
(building level), and the collective behaviors (district scale) [10]. In these terms, a multi-scalar approach,
one that deals with different zones and interdisciplinary considerations of occupants’ activities (habits,
movement, presence, etc.) will be necessary for both the data collection and the simulation processes,
and this will involve an amalgamation of engineers, architects, social scientists etc. Along these lines,
Dziedzic et al. proposed a Building Occupant Transient — Agent-Based Model, which would contain
several different modules for the different aspects of OB [11]. This would include distinct, individual
modules in the simulations to account for the movement, habits, surroundings, and social structure.

This added modules for the social structure and influences is often neglected, since a lot of focus
tends to be towards measuring the physical occupant interactions, but not the socio-psychological
drivers of that behavior. Researchers have often been sensitive to the cost and technological availability,
and largely ignored accompanying factors such as social equity, group status, peer influence etc.
Sovacool et al. identified three main negative patterns from the energy research literature over the last
15 years and the first of them was that the social dimensions are under-examined, especially those
pertaining to perceptions about energy use, and decision-making process among individuals,
organizations, and communities [12].

2. Social group influences on individual occupant behavior

2.1 Occupant social groups and networks

Measurement of social influences is often conducted through the evaluation of social groups. These
social networks, or groups, comprise of the group of people that occupants have to interact or share the

space with. This is applicable to both residential and commercial buildings. It is an umbrella term which
includes distinct nodes, where the nodes would represent the number of people in a particular group
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(size), the strength of the relationship between the members (connection), and in some cases, they
represent events and ideas that affect the group as well [13]. These networks have been documented has
having a significant effect on the energy-us behaviors of occupants [14] [15] [16]. While the framework
of this paper has its focus on commercial buildings and workplaces, the intended scope is to recognize
the kind of behaviors needed to be studied to collect the datasets, and that data collection can be adapted
to residential buildings as well, by modifying the kinds of questions asked within the data collection
surveys.

2.2 Theory of planned behavior

In order to quantify these influences and behaviors, literature in energy research and social science relies
heavily on the theory of planned behavior [13] [18]. The theory states that there exist three factors
behind the behavioral intentions and behaviors; attitudes and beliefs towards the action, beliefs about
how significant others may respond to the action (subjective norms), and the perceived behavioral
control (i.e. beliefs about the ease of performing the action). These three factors have been taken as the
foundation in this study, to build the framework for the social structure module in OB modeling.

Abrahamse and Steg used the theory of planned behavior to explain subjective norms in residential
households, that is, behaviors that would rely on the extent of importance other members of the
household, and the social pressure to carry out the actions [19]. For instance, changing the thermostat
settings as an energy saving measure might not be carried out if the family members disapproved of
those settings. In addition, when it comes to workplaces, or commercial buildings, the utilization of
energy is integrated with the group behaviors, since the equipment and facilities are often shared
between co-workers. Chen and Knight used the same theory to examine the influence of colleagues
among more than 500 employees in electric power companies in China, and the results indicated that
the approval or disapproval from the colleagues was the major factor influencing the individual’s energy
saving actions [18].

Streamlining the study of these influences can also take the form of studying the social networks in
relation to energy use. Anderson et al. used an agent-based model to investigate different types of social
networks in buildings and the extent of their significance on administrative actions designed to reduce
energy use [14]. The results indicated that accurate representations of the social networks, in relation to
the historical data of the administrative actions, are vital in predicting energy use. Chen et al. also made
use of agent-based modeling to build a network level computational model that simulates the decision-
making process of individuals under different type of network configurations [15].

3. Framework for incorporating social influences in OB modeling

While quite a few studies have highlighted the impact of this social influence, not much research has
been done on integrating this aspect in the OB simulation process. Anderson et al, did manage to conduct
simulations based on occupant’s susceptibility to social influences depending on their position in the
social network, and the model also took into account the corresponding peer influence on their energy-
use behavior [16]. However, this topic warrants a lot more study, especially in the wider context of how
it fits into the overall OB profile.

3.1 General Principles
This framework takes into account all the above-mentioned factors that have been determined to be the
drivers of the social influences in OB, combined with the principles of the theory of planned behavior,

and dictates the datasets required from the framework’s perspective. Since a major part of the topic has
its focus on the social networks, this framework will involve the creation of a database that details the
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occupant’s involvement and interaction with their respective networks. This would be a representation
of the subjective norms, and will include a mapping of the network grid around the workplace, the
number of people in the network that count as significant enough to influence the behavior, and the rank
of the occupant in their networks. Considering the sharing of facilities in workplaces, the database also
has to involve these interactions in designated areas, such as the common areas,
lunchrooms/breakrooms, shared office spaces etc.

Regarding the perceived behavioral control (PBC) and the attitude/beliefs of the occupant towards
different actions, gathered data has to include their perceptions about the energy-use, concerns for
reducing that usage, and awareness of facilities or obstacles that accommodate a specific action. The
collection of these datasets can then be utilized by connecting them to different energy-use behaviors
such as thermal control, lighting control, ventilation etc.

3.2 Required Datasets to construct the module

As seen in figure 1, the datasets can be divided according to the principles, and the combined effect be
correlated to the energy-related behavior using weighed factors that are derived on the basis of the extent
of each parameter’s perceived influence. For subjective norms, this influence would be the variability
in the action, with and without the external influence. A general description of these is summarized as
follows:

e Perceived behavioral control (PBC): Occupants perceptions about their own ability to conduct
the action, awareness of the kinds of facilities that are available to ease the performance of the
action, or obstacles that may hinder it. This could come in the form of technological aids present
at the workplace, administrative actions that incentivize certain behaviors etc.

e Subjective norms: These factors will be tied in with each of the spaces that involve the
interaction within the social network, and the factors are as mentioned in 3.1

o Beliefs/Attitudes: These would investigate the occupant’s personal beliefs and perceptions
about the action.
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Figure 1. Schematic of datasets required.
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3.3 Survey Methodology
There is a growing trend in adapting survey methodology to explore the nuances in OB. The reason

behind this is that surveys still remain the most effective method for measuring variables that cannot be
monitored or observed directly such as the intentions behind the energy-related behaviors, concerns, and
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perceived norms (latent variables) [20] [21]. However, surveys carry their own share of risks, and doubts
regarding the validity, since discrepancies are often present between the reported and actual behaviors.
To minimize these risks, several factors have to be taken into consideration during the design process
of the survey/questionnaire. In addition, in order to incorporate the beliefs and motivations of the
occupants’ behind their actions, quantitative survey methods may not be sufficient [22], and qualitative
interviews with the occupants might have to be combined with them to give a better understanding of
the behaviour. Since the focus and scope of this work is towards OB modelling, the qualitative step will
be taken into consideration after the initial results of the quantitative survey, in order to identify the
factors that were insufficiently covered, and achieve better design of the process.

When measuring social and psychological parameters, it is necessary to avoid using absolute
responses or brief scales, and instead adopt combined items and contextually large scales based on
established theories. Vague quantifiers need to be avoided and equal number of choices should be
provided on both the positive and negative sides. Apart from these, other general guidelines for
designing questionnaires should be implemented as well, such as the use of simplified words over
specialized ones, general aesthetic, and response that are mutually exclusive.

4. Discussions and conclusions

Energy research literature gives us definitive insights about the impact of social influences on occupant
behavior, and the theory of planned behavior is an effective tool to quantify these influences. This paper
brings out the necessity of considering these factors in conjunction with the energy-use behaviors to
obtain a better approach to OB modeling. The guidelines and types of datasets outlined in this paper will
be used to construct questionnaires and gather the required data. Results from the data collection will be
vital for constructing the social modules in OB modeling, in addition to providing insights about general
behavioral intentions and norms. However, most limitations here are due to the discrepancies in the
reported behaviour. Special care has to be taken to avoid any kind of sampling errors, response bias, or
reliance on occupant’s estimations based on long-term memory.
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ABSTRACT A non-intrusive data collection framework is developed to analyze the desk-level occupancy
and energy use patterns of occupants in shared office spaces. The framework addresses the limitations of
previous studies in the literature, which either lacked the granularity to study individual occupants’ behaviors
or relied on data from complex Building Management Systems (BMS). The framework is applied to a shared
office space of an academic institution in the United Arab Emirates (UAE), where occupancy, lighting, and
plug-load data were collected from individual desks for 6 months. The results highlight weak relationships
between the occupancy status and the total electric loads, with 35% of the total electric loads consumed when
the area is completely vacant, and 64% of the plug-load energy consumed when the desks were reported
as unoccupied. While specific to the studied building, the results highlight the role that a high-resolution
data monitoring framework plays in capturing inefficient consumption patterns. The findings also confirm
the contribution of occupant behavior (OB) to the energy performance gap commonly observed between

predicted and actual energy levels.

coe

shared office.

I. INTRODUCTION

A. BACKGROUND

Building energy management is an increasingly used process
to control energy consumption and costs in buildings while
maintaining comfortable indoor environmental conditions for
occupants and fully meeting functional needs [1]. In com-
mercial buildings, facility managers are often tasked with
managing building energy demands and indoor conditions by
continually monitoring, evaluating, and optimizing the oper-
ation efficiency of different building systems [2]. A common
way to gather the needed data for analysis is through Building
Management Systems (BMS). A BMS is a system of sensors,
communication networks, and controls, which can be used
to monitor the performance of various building systems and
control their operation patterns. Benchmarking can then be
performed (with the help of additional utility data), which
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consists of comparing the energy performance of a building to
a baseline or “benchmark’ [3]. The baseline can be obtained
from a group of similar buildings (i.e., cross-sectional bench-
marking), or from past performances of the building under
study (i.e., longitudinal benchmarking). This method allows
facility managers to identify higher than expected energy
consumption levels. Along the same lines, Fault Detection
and Diagnostics (FDD) is another method that helps iden-
tify abnormal operation patterns that can cause excessive
energy use levels [4]. Based on the faults detected in differ-
ent building systems, facility managers can perform corre-
sponding maintenance actions to reduce energy consumption
levels [5], [6]. Despite significant advancement in the design
of efficient building systems and energy management strate-
gies, important discrepancies are commonly found between
the energy levels estimated for buildings during the design
phase, and those observed during operation [3], [7]. This is
often referred to as the energy performance (or efficiency)
gap.
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B. OCCUPANT BEHAVIOR

Among various contributing factors to the energy per-
formance gap (e.g., faults in systems or weather varia-
tions), recent studies indicate that occupant behavior (OB)
is one of its major drivers since actions taken — or not
taken — by occupants can significantly impact building per-
formance [3], [7]-[10]. In [7], the authors demonstrated that
different OB patterns could vary the total energy used by
150% for commercial buildings. In [8], different occupant
profiles were created and used as inputs to building energy
models. The authors found that occupant behavior can save
up to 50% of current energy use levels or increase them
by 89%.

The growing body of knowledge on the impact of OB on
buildings’ energy performance has motivated further research
on OB data acquisition [11], analytics [12]-[15], and pre-
dictive modeling [12]. Previous studies analyzed occupancy
and energy consumption data using different data granularity.
For instance, zone-wise energy use data, in combination with
estimated occupancy levels, were used in [13]. The authors
in [16] fused measured binary zone-wise occupancy with
zone-wise energy consumption. In other studies, the energy
use per device type was investigated while no data regard-
ing the measured occupancy count was available [17]-[19],
or, in conjunction with binary occupancy states (e.g., [20]).
In parallel, a higher granularity of the energy consumption
data for single occupants has been explored. Here, the energy
consumption has commonly been analyzed as a sum of all
used devices [12], [21], [22]. Resultantly, the device-wise
data, in combination with the occupancy data for each in-situ
monitored occupant, has been rarely analyzed in the scope of
existing studies. It is also important to note that the majority
of studies typically gather their data through a centralized
BMS, which makes their analysis replicable only to buildings
with similar monitoring capabilities. Such systems are often
incompatible with other existing systems (especially for old
buildings) or might be too expensive to install.

C. NON-INTRUSIVE LOAD MONITORING

Non-intrusive load monitoring (NILM) is a mature technol-
ogy [23] that has been widely researched and can offer an
alternative to centralized data collection approaches, such
as through BMS. The concept of NILM is based on having
a monitoring system in the form of energy meters, smart
sensors, or other sensing technologies, that separates the
aggregated data regarding the electrical consumption in the
area of study into individual appliance consumption profiles.
The novelty of this method stems from the involvement
from the user-end since it requires little to no intervention
on behalf of the occupants [23], [24], and its negation of
the necessity to connect the monitoring devices or sensors
to existing infrastructure. It was acknowledged as a suit-
able data collection procedure, especially in cases where the
connection to a BMS is restricted. NILM was applied to
recognize the appliance types in commercial and residential
buildings [24]-[28]. For instance, the authors of [26] dis-
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aggregated device types collected by NILM using Hidden
Markov Model (HMM). Others proposed unsupervised learn-
ing for recognizing the device type and load segregation in
household energy consumption, based on load classification
and source separation [24].

However, the non-intrusive monitoring commonly applied
in the context of energy analysis often lacked explicit and
granular occupancy information [29]-[32]. As a conse-
quence, the potential of NILM in combination with high-
resolution occupancy data remains an open question. As an
example of non-intrusive monitoring efforts, the authors
of [30] investigated the relationship between the energy con-
sumption and occupancy that was implicitly detected based
on WiFi count. They concluded that the number of con-
nected WiFi devices correlated with the resulting energy
consumption. However, their scope was limited to zone-level
energy load values that were estimated from trends reported
by a BMS. In a more recent study, researchers proposed
a non-intrusive occupancy count in an effort to optimize
Heating, Ventilation, and Air Conditioning (HVAC) energy
consumption [31]. They argue that reheat energy use can be
reduced by 38% if the HVAC settings are adjusted to reflect
actual occupancy levels. While the authors did not explore
end-uses such as plug-loads or lighting levels, their findings
support the potential of non-intrusive monitoring of OB in
identifying energy-saving opportunities.

D. OBJECTIVES

The goal of this study is to develop a non-intrusive data
collection framework that can be used to capture the energy
use patterns of individual occupants in a shared office space
and quantify energy-saving opportunities. The framework is
unique in its ability to monitor — at the desk level — the
occupancy status and energy consumption levels by type of
device (e.g., monitor, laptop, task light), in addition to general
lighting loads. Such a level of granularity is rarely achieved
in the literature, especially for shared office spaces. Further-
more, the non-intrusive nature of the proposed data collection
approach makes the framework completely independent from
a BMS, and hence applicable to any building. In this context,
the framework is deemed as non-intrusive in terms of the non-
invasive nature of data collection to existing building systems
and its independence from any BMS infrastructure. The inde-
pendence from a BMS was a crucial factor in this work, which
is why HVAC data was excluded since any kind of HVAC data
is reliant on an existing BMS. The framework instead focused
on the energy consumption patterns generated directly by the
occupant at their desks, with emphasis on granularity and
device utilization.

The framework is demonstrated through a case study of a
shared office space in an educational facility where data is
collected for a duration of 6 months. The data is then used to:

1) Quantify the relationship between the presence of indi-

vidual occupants at their desks and the amount of
energy they consume for two end-uses: plug-loads and
lighting.
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TABLE 1. Related work.

Occupant-related

Author and year Building type Region (associated KGCC climate) datacoliected Sensing modality Granularity
Anand et al. (2019) Academic Singapore (Af) Occupancy, plug-  Vision-based sensors, Office-level
[33] loads plug-load meters

Bennet and O’Brian Commercial Ontario, Canada (Dfb) Lighting, plug- Electricity meters Floor-level
(2017)[13] loads

Gunay et al. (2016) Office (private) Ottawa, Canada (Dfb) Occupancy, plug- PIR sensors, plug-load Office-level
[12] loads meters

Gandhi and Brager Office (private, Oakland, USA (Csb) Plug-loads Plug-load meters Desk-level
(2016) [34] shared)

Rafsanjani and Ahn Academic Lincoln, USA (Dfa) Occupancy, plug- Wi-fi, plug-load Desk-level
(2016) [35] loads meters

Murtagh et al. Academic Surrey, England, UK (Csb) Plug-loads Plug-load meters Desk-level
(2013) [27]

Webber et al. (2006) Commercial (offices, San Francisco, Pittsburgh, and Equipment status Energy Audits (field Building-level
[19] schools, medical) Atlanta, USA (Csb, Dfb, Cfa) investigations)

Kawamoto et al. Office Japan (Cfa) Plug-loads Field investigations Office-Level
(2004) [17]

2) Estimate the potential energy savings from reducing
consumption during unoccupied periods, both at the
office level and by device type (e.g., monitors or task
lights).

3) Compare the monitored energy consumption profiles
of the occupants to the standard profiles (obtained from
ASHRAE) that are commonly used by energy modelers
when designing and simulating the performance of a
similar building environment. Such an assessment can
help explain — or contribute to the discussion of — the
role of OB in the energy performance gap commonly
observed in commercial buildings.

In summary, the main contributions of this work stem from
the granularity and resolution of the data collection, cou-
pled with the multiple sensing modalities and data streams
effectively capturing the occupant presence status, the envi-
ronmental parameters, and the associated plug loads of each
device. This data was captured at the individual desk level,
in a shared office space in Abu Dhabi, UAE, thereby also
contributing a new regional perspective to a body of case stud-
ies (highlighted in the next section) that commonly originate
from western countries.

1l. RELATED WORK

This section explores previous research works relevant to this
study, particularly OB and NILM applications. The summary
is presented in Table 1, organizing the studies according to
the type of buildings they covered, the region that they were
conducted in, the specific type of occupant data collected,
the sensing modalities used for data acquisition, and the
granularity of this data. The regional information column
is accompanied by the respective Koppen—Geiger climate
classification (KGCC), which is one of the most commonly
used classifications systems. The first letter of the classifica-
tion represents one of five broad climate types (A: tropical,
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B: dry, C: temperate, D: continental, and E: polar). The sec-
ond and third letters represent subcategories corresponding
to seasonal precipitation and heat levels. For instance, ‘fb’,
represents a warm summer humid sub climate.

The following two main observations from Table 1 recon-
firm the gap in the literature and the need for the current work:
(i) while plug loads have been the primary focus of the listed
studies, very few of them consider occupancy parameters,
especially at desk level, to better explain the impact of OB
on the monitored energy data; (ii) along with the granularity
and resolution of the data collection, the lack of studies from
the Middle East region (e.g., KGCC of Bwh) is clear, which
is another viable gap to address given the complex and case-
specific nature of OB.

lll. METHODOLOGY

The area of study is an open-office space in an educational
building in Abu Dhabi, UAE, as shown in the bottom part
of Fig. 1 (View A). It is occupied by graduate students and
research employees where an individual desk is assigned to
each student. The working hours vary due to the absence of
official working hours, and the building operating 24/7. The
shared office space consists of 6 individual desks, 2 main
computer workstations (designated as shared), and a common
table, as shown in Fig. 1. A total of 8 students occupied the
space over the evaluation period of six months. A maximum
of 6 students were present at the same time since 2 stu-
dents graduated during the study period and were replaced
by 2 new ones. The area is illuminated by motion-controlled
area lights, while each desk is equipped with its own manually
operated desk light. The area is accessible throughout the
week by the employees of the educational facility. It may
be noted that this is not a completely controlled environ-
ment, since the working hours are flexible, and though there
are 6 primary occupants, there are no restrictions for visitors,
who often do occupy the common table. This suited the
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FIGURE 1. Area of study and sensor placement.

objectives of the work since the non-intrusive nature of the
proposed monitoring and analysis approach signified that
the occupants should not be imposed upon by the nature of
the study, such as adding rigid working hours or restricting
access.

Fig.1 presents a schematic view of the area showing the
number and placement of different sensors around each work-
station along with four closer looks at representative setups
(views A-D). Fig.1 also shows the back-end wall of the office,
which is the only facade exposed to the outdoor environment.
The window-to-wall ratio (WWR) of the studied area is 26%.
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Overall, access to daylight was limited in the building due
to the low WWR stated above in addition to external shading
devices installed on the windows. These shading devices were
part of passive cooling strategies meant to reduce the heat
gains in the building considering the extremly hot climate of
the region. This resulted in low daylight availability, which
is further examined in [36], leading to a high reliance on
the artificial lighting system. Moreover, the artificial lighting
system was motion-based, eliminating the potential for the
occupant to control its status, regardless of the amount of
daylight available.
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A. SENSOR INSTALLATION AND CALIBRATION

In the scope of this study, occupancy, plug-load, and lighting
(illuminance) sensors were installed. The latter is used to
determine the on-off status of lighting fixtures and calcu-
late their electric energy use accordingly. The sensors were
commercially available and required no connection to BMS,
which allows the replicability of the study to other built
environments.

1) OCCUPANCY SENSORS
A total of 9 PIR-based (passive infrared) occupancy sensors
are placed in the study area, including 6 at the individual
desks, 2 at the shared computer workstation, and 1 at the
shared table (Refer to Fig. 1, Schematic view). Each sensor
is installed under the desk it monitors, has a unique ID, and
reports the occupancy status of the desk (i.e., occupied or
unoccupied) in real-time to a host receiver over WiFi. More
specifically, the sensor only communicates with the server
(without noticeable delays) whenever there is a change in the
occupancy status, such as from ‘occupied’ to ‘unoccupied’,
and vice-versa. The detection range of the sensor was up
to 80 meters, provided there was no obstruction. In order to
calibrate the sensors, three factors were taken into account:
detection of the occupant at all positions at their desk, avoid-
ance of false triggers from passersby, and no occlusions.
The exact placement of the sensors is an essential factor in
the installation/calibration process. At each desk, the sensor
needs to register the presence of the occupant in all extents
of their position in front of the desk. At the same time,
it should avoid false triggers from people passing in the
area or sitting at nearby desks. To understand the sensors’
radius of influence, sensitivity, and trigger points, a sensor
was first placed in a fixed position on the desk while an
occupant was seated. The authors then asked the occupant to
move between the ends of the desk as well as away from it
while recording the occupancy status reported by the sensor.
An optimal position was found and shown in Fig. 1 (View
B), reporting an ‘occupied’ status only when the occupant
was within the boundaries of the desk and up to half a meter
away from it. The process was repeated for all 9 occupancy
sensors, which were then connected to the host WiFi receiver.
The sensors were evaluated for a period of one week by com-
paring their measurements to manually recorded occupancy
at different times of the day. This process confirmed that
the occupancy sensors were calibrated and properly placed.
Additional information on the specifications of the occupancy
sensors can be found on the manufacturer’s website [37].

2) PLUG-LOAD SENSORS

The office space has a total of 48 different power outlets,
6 per desk, which are used by the occupants to connect
their plug-loads devices (refer to Fig. 1, Schematic view).
A plug-load monitoring device is installed for each power
outlet (48 in total), allowing the authors to monitor the energy
consumed at each outlet at a 15-min interval. Each sensor
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has a unique ID and connects to a host receiver over WiFi.
Fig. 1 (Views C and D) show sample pictures of the sensors
and their placements in the electric sockets.

The authors configured and installed each sensor, con-
nected it to the receiver’s network, and labeled it to clarify
what type of plug-load it is measuring. This was done in
collaboration with the occupants who agreed to connect their
devices (e.g., laptops, monitors) in the specific plugs that are
labeled for that use. Each occupant had 6 power outlets at
their desks, which were used for different devices as follows:
1 desk lamp, 1 docking station, 2 computer monitors, 1
laptop, and 1 miscellaneous. Apart from the necessity of con-
necting each device to its associated power source, the occu-
pants were free to leave any device switched on during their
absence, or take it with them. The overall list of plug-loads
that are measured in the shared office are listed next along
with their instances: 6 docking stations, 6 laptops/notebooks,
2 desktop computers (shared), 14 computer monitors, 6 desk
lamps (task lights), and 14 miscellaneous loads. Following
the installation, the authors confirmed the accuracy of the
sensors during a one-week evaluation period by comparing
their reported energy use to the power specifications of the
devices they are monitoring. This concluded the verification
process for the plug-load sensors. Additional information on
the specifications of the plug-load sensors can be found on
the manufacturer’s website [38].

3) LIGHTING SENSORS

The area of study is illuminated by 6 ceiling fixtures, which
were positioned as shown in Fig. 1 (Schematic view and
View A). Each of the fixtures is equipped with and is activated
by motion sensors, without any option for manual control
and/or dimming. In addition, natural daylight was also avail-
able, which led to a low need for using desk lamps. Given
the non- intrusive nature of the proposed research approach,
it was important to monitor the energy consumption of the
lighting system without having to connect to the existing
building’s infrastructure (e.g., BMS or electric supply lines).
This is achieved by installing light illuminance sensors that
measure the intensity of the light (in lux) near each lighting
fixture at 15-min intervals. Then, based on the monitored
levels of illuminance, the on/off status of each lighting fixture
can be inferred and used to determine the energy consumed by
simply multiplying the duration of use by the power wattage
of the fixtures.

The placement of the lighting sensors was carefully done
to first, have each lighting fixture monitored by one lighting
sensor, and second, minimize the noise in the measurement
from neighboring lighting fixtures, or daylight. The final
placement of the sensors is shown in Fig. 1 (Schematic view).
It should be noted that Fixtures 5 and 6 are triggered by the
same motion sensor; hence, one lighting sensor was placed
between these fixtures. Following the installation of the sen-
sors, the illuminance output of the sensors was monitored for
one week, and thresholds were set to distinguish between the
on/off statuses of the fixtures. Put differently, it was important
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to identify a reference illuminance value (for each light illu-
minance sensor) above which the neighboring lighting fixture
is “on”, and below which it is “off”. After analyzing the
data that was collected, it was noticed that the average value
between the lowest and highest illuminance value monitored
by each sensor is a good and reliable threshold. In addition,
since the sensors were positioned very close to the light
sources, the availability of daylighting did not create a signifi-
cant difference in these illuminance thresholds. Observations
at different times of the day confirmed the adequacy of this
approach in implying the actual on/off status of each fixture.

Finally, unlike the previous occupancy and plug-load sen-
sors, lighting sensors stored the data locally. Manual data
transfers were performed bi-weekly through the USB ports
of the sensors and stored on a local computer. Additional
information on the specifications of the lighting sensors can
be found on the manufacturer’s website [39].

B. DATA COLLECTION AND PROCESSING

Following the verification process for the three types of
sensors described above, data was collected for a period
of 6 months, covering the months of April-May, July-August,
and October-November 2017. A routine check (weekly or bi-
weekly) was carried out to ensure that the sensors are working
properly, restarting, or reconfiguring malfunctioning sensors
when needed. All the collected data (over WiFi or manually)
were gathered in one CSV Excel spreadsheet file for data
processing and analysis.

In this study, the plug-load and lighting sensors reported
data in a 15-min interval, while the occupancy sensors only
reported data when the occupancy status changes (i.e., a space
became ‘occupied’ or ‘unoccupied’). To ensure consistency
between the different datasets, the occupancy sensor data was
converted to a 15-min format by setting the last recorded
trigger type (i.e., occupied/unoccupied) within each 15-min
time as the new occupancy status for that period. If no triggers
are observed within a period, the state of the preceding period
is taken by default. Lighting energy consumption was calcu-
lated for each fixture in 15-min intervals. If the fixture was
estimated to be “on”, then its energy consumption is calcu-
lated by multiplying the power wattage of each fixture, which
consists of two lamps consuming 28W each, by 15 minutes.

C. VALIDATION PROCESS

As mentioned in the previous section, routine checks were
carried out every week to ensure the proper functioning of
sensors. This would comprise of manual notation of occu-
pancy triggers and checking them with the reported data,
along with checking the functionality of plug-load sensors to
ensure that they are representational of the occupant activi-
ties. The illuminance sensors were battery-operated and had
to be accessed through their respective dashboards to ensure
that they had enough power to function for the next few
weeks. Written consent was obtained from all the occupants
included in the study. The weeks that had a significant amount
of missing data, or malfunctioning sensors, were removed
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before the final data analysis. However, it should be noted
that those weeks were mostly at the beginning of the course
of study, and after conducting the required adjustments, the
study was able to operate smoothly.

D. DATA ANALYSIS

The data analysis consists of three main stages. The first
stage is to quantify the relationships between the presence
of occupants in the office space and the levels of energy
that are consumed. A distinction is made between the energy
consumption of plug-loads and that of general lighting loads.
Plug-loads are directly controlled by the occupants, which
makes it their responsibility to operate these loads efficiently
(i.e., turning them off when leaving a space). Lighting loads
are triggered by dedicated motion sensors that are installed
and maintained by facility managers (FMs). Therefore, it is
the responsibility of FMs to ensure the proper calibration
and operation of these systems to avoid over-lighting (e.g.,
passing occupants triggering the lighting system) or under-
lighting (e.g., motion sensors failing to capture occupancy
presence). The link between occupancy presence and differ-
ent end-use consumption is studied using box-whisker-plots
of the monitored power levels for varying levels of occu-
pancy; the minimum occupancy level being zero occupancy
sensors indicating an “occupied’ status while the maximum
occupancy level being all 9 sensors indicating an “occupied”
status. Such a representation helps visualize how dependent
energy demand is given a certain level of occupancy in the
space.

The second stage consists of quantifying the amount of
energy that is consumed while the occupants are away from
their desks. In theory, this portion of energy can be considered
as unnecessary or as a potential for energy conservation.
In practice, some plug-loads such as the shared desktop com-
puters may be used to run experiments or simulations without
the presence of occupants at the desk, which may explain
a portion of any energy consumed during vacant periods.
Therefore, it is essential to make such a distinction before
labeling some of its energy consumed as unnecessary. Two
particular analyses are presented. The first is an office level
analysis comparing the energy consumption of the office
during ‘““vacant” periods (i.e., zero occupancy sensors trig-
gered) and “occupied” periods (i.e., at least one occupancy
sensor triggered). This approach is commonly used in the
literature when occupancy is monitored at the office level
rather than the desk and corresponding device (i.e., plug-load
level). The second analysis covers the performance of specific
device- types (e.g., laptops, monitors, and docking stations)
while distinguishing between their energy consumption while
occupants were present at or away from their desks. In this
stage of the analysis, the “vacant” and ‘“‘occupied” occu-
pancy statuses refer to the presence and absence of occupants
from their desks (respectively), while a specific plug-load was
consuming energy.

The last stage of analysis consists of developing diver-
sity profiles (i.e., schedules) of the occupancy, lighting, and
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FIGURE 2. Box-and-whisker plots of electric load function of the ber of occup % that are indicating occupied status.

plug- load patterns observed in the studied area. Diversity
profiles show the intensity of a variable (i.e., occupancy,
lighting, and plug-load) over the 24 hours of a typical day.
The intensity is expressed in numerical values from O to 1,
where 0 represents the minimum possible value (e.g.,
no occupancy or no energy consumption), and 1 represents
the maximum possible value (e.g., maximum occupancy or
maximum energy consumption). Diversity profiles are com-
monly used by energy modelers when simulating/predicting
the performance of actual buildings.

The American Society of Heating and Refrigeration Engi-
neers (ASHRAE) has developed profiles for common build-
ing types (e.g., office), which are extensively used in the
literature (e.g., [40]). However, recent research (e.g., [41])
shows significant discrepancies between ASHRAE profiles
and those observed in actual buildings. Moreover, since the
developed profiles are for common building types, academic
buildings are not explicitly covered; there is often a need to
build new schedules for these buildings to achieve an efficient
energy management system [42]. This has motivated the cur-
rent stage of the analysis, where a comparison is conducted
between the ASHRAE profiles and those of the studied area.
In total, diversity profiles are developed for occupancy levels,
lighting, and plug-loads energy consumption. A distinction is
also made between weekdays and weekends, which typically
witness different occupancy and energy use patterns.

The occupancy diversity value for a typical hour h of the
day (e.g., 00:00-01:00 am) is computed using (1), which
averages the ratio of sensors with “occupied” status over
the total number of sensors over the study period from the
first day “d” of the study to day N. Equation (2) is used
to compute the diversity factors for plug-loads and lighting
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energy use. The diversity for the end-uses is defined as the
ratio of the observed energy (i.e., monitored) to the maximum
energy observed throughout the study. Here again, to obtain
the diversity value for an hour h, the values observed for that
hour over the N days of the study are averaged.

Zd:] N#S(’nsorx Occupied

Occupancy Diversity = #;_\Ylensurs Total M
Z Energy Consumed
iversi d=1"N Max Energy Observedl
Energy Diversity = ax Energy Observea @
N
IV. RESULTS

A. RELATIONSHIPS BETWEEN OCCUPANCY LEVEL AND
ELECTRIC LOAD

The relationship between the occupants’ count and electric-
ity consumption in the space is analyzed using box (and
whisker) plots (Fig. 2). Here, the median consumption (cen-
tral red-colored line), 25 and 75® quartiles (blue-colored
box limits), and the outliers (red-colored crosses outside of
the boxes) are used to present the distribution of the measured
power loads. The resulting boxplots show that the total light-
ing and plug-loads power could be correlated to the number
of present occupants. However, the baseline energy values
corresponding to the null occupancy are higher than expected,
as detailed next.

Starting with the lighting system (central box plot
in Fig. 2), during vacant periods (i.e., 0 occupants present in
the space), the mean power values for the lighting system
exceeds 200 W, with 25% and 75% quantiles between approx-
imately 0 W and 300 W, respectively. The lighting system,
which is controlled by motion sensors, seems to be triggered
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FIGURE 3. Office-level comparison of the energy consumed during vacant
and occupied periods. “Vacant” refers to periods where there are no
people in the office space. “Occupied” refers to periods with at least one
occupant in the office.

by occupants passing by the monitored workspace. Such a
scenario was tested by the researchers who confirmed that
walking in the hallway near the office space was triggering
the lighting system. Additionally, for the three higher ranges
of occupancy (i.e., 1-2, 3-4, and 5+ occupants), the aver-
age power level is almost the same (~350W). The results
indicate that the presence of 1-2 occupants was sufficient
to activate the lighting for the whole workspace, despite
having 5 lighting zones that are controlled by independent
occupancy motion sensors. These results pointed out the
importance of the choice of suitable light control systems
and the crucial role of the building operation management to
ensure the proper calibration and maintenance of the systems.

The box-plots of the plug-loads, shown on the right side
of Fig. 2, reveal similar inefficient patterns as with the light-
ing system. High power levels are observed during vacant
periods, here again exceeding 200 W in average value. The
results imply that occupants are constantly leaving plug-load
equipment running when leaving their desks, which is fur-
ther explored in the upcoming sections. However, unlike the
lighting systems, there is a positive relationship between
the average power levels and the occupancy count bins
of 1- 2, 3-4, and 5+ occupants. Such a trend was expected as
an office space with a higher number of occupants is expected
to consume more, and vice-versa.

Finally, the patterns of total electric loads shown on the left
side of Fig. 2 are simply an addition of the lighting and plug-
load power values. The box plots are characterized by high
consumption values during vacant periods (average power
levels exceeding 400 W) and a moderate positive relationship
between occupancy count and total electric loads.

B. ENERGY CONSUMPTION DURING “OCCUPIED” AND
“VACANT” PERIODS

1) OFFICE-LEVEL ANALYSIS

The energy consumption of the lab was analyzed for the peri-
ods of occupancy (i.e., with 1 occupant or more) and vacancy
(i.e., 0 occupants). The results are presented in Fig. 3. The bar
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chart on the left side shows that 35% of the lab’s electric
consumption occurs during the vacant hours. A similar trend
could be observed when energy consumption was separately
analyzed by end-use. Here, 38% and 26% of the consumption
occurred during vacant hours for the lighting system and
plug-loads, respectively. These results confirmed the findings
of previous studies (e.g. [12], [43], [44]) that have observed
a significant proportion of building energy systems running
after hours.

It is important to note that the observed values for the plug-
loads are conservative due to the definition of the office-level
“occupied” period that was used; the space is considered
occupied if there is at least one occupant present. Such an
assumption might lead to an overestimation of the plug-load
energy consumed during operation and an underestimation of
the portion consumed during *“‘vacant™ periods. For instance,
in a scenario where occupant A is the only occupant present
in the shared office while the computers and monitors of all
occupants are running during that period, the energy con-
sumed by all occupants would be labeled as energy during
an “occupied” period. Hence, the results presented in Fig. 3
(right side) can be considered conservative, and in reality,
more plug-load energy is consumed when individuals are
away from their desks, as shown in the next subsection.

2) DEVICE-LEVEL ANALYSIS

Eventually, the energy consumption for occupied and absent
periods was analyzed at the device-level granularity. In this
section, the occupancy status of each desk was evaluated
separately and was used to classify the energy consumption
of associated plug-loads between “vacant” and “‘occupied”.
As presented in Fig. 4, between 31% and 93% of the energy
consumed by each type of the plugged-in device was con-
sumed while no occupancy was detected at the respective
desk. Hence, by recalculating the total plug-load energy con-
sumed during “vacant” and “occupied” periods at the desk-
level, it is seen that 64% of the plug-load energy is actually
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consumed when the occupancy status of the desks is reported
as ‘vacant’. As such, even though all the 8 desks cannot be
occupied at the same time, the occupants are responsible for
switching off relevant equipment when leaving the worksta-
tion, which is why any consumption at a desk when it is
unoccupied is classified as ‘unnecessary consumption’.

A major contributor to this misbalance is the use of the
shared personal computer, with 93% of its energy consump-
tion occurring without the presence of an occupant. This can
be caused by the use of computers to run experiments sched-
uled by occupants for unoccupied periods, and, resultantly,
could not be identified as a clear saving potential. While such
kind of shared computer is specific to this particular academic
setting, shared equipment (e.g., printers and appliances) is
an integral part of office spaces and commercial buildings.
Therefore, the need to identify instances of unoccupied con-
sumption can be beneficial in cases wherein they do represent
a clear saving potential.

In parallel, end-uses, such as monitors and lamps, also
show important energy consumption during vacant peri-
ods and can be easy targets of energy curtailment efforts.
In summary, the adopted device-wise monitoring granularity
revealed important energy-saving potentials that were not
observed when considering occupancy in the office as a
binary variable, as in the previous section.

C. DIVERSITY PROFILES AND COMPARISON TO ASHRAE

Eventually, the mean daily occupancy and energy consump-
tion patterns were analyzed and compared to the schedules
recommended by ASHRAE 90.1 [40] for office buildings
(Fig. 5). The figure illustrates the difference between the
measured loads and the ASHRAE-proposed profiles for each
operating schedule, including workdays and the two pro-
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files defined for weekends. The workdays, as defined by
ASHRAE, were the typical working days (i.e., Sunday to
Thursday in Abu Dhabi). Consequently, the ASHRAE 90.1
schedules proposed for Saturday and Sunday were compared
to the data collected on Fridays and Saturdays, respectively.

The results showed that the schedules proposed by the
guidelines could not realistically depict the magnitude nor the
course of the occupancy and energy consumption in the build-
ing in question. Significant deviations are observed between
the standard schedules and the measured occupancy and
energy consumption. To shed more light on the discrepancies,
Fig. 6 presents the absolute hourly error between the theoret-
ical and observed occupancy, lighting, and plug-loads. The
error values show that occupancy and plug-loads were (for
the most part) overestimated over the typical working hours
of workdays while being underestimated outside of working
hours. In contrast, lighting loads were consistently under-
estimated throughout the week. The following are potential
contributing factors to the observed discrepancies.

Firstly, the studied area is a shared office space in an
educational facility, where the occupants are graduate stu-
dents. Unlike a traditional office space with clear working
hours, the studied environment provides the researchers with
a flexible working schedule that allows them to attend classes,
events, or work remotely. The students often choose to work
over the weekends, which is less common in traditional
office environments. Secondly, the number of occupants stud-
ied is relatively low, which makes the impact of individual
behavior significant on the general patterns shown in Fig. 5.
Such an effect will be less significant if the office has a
higher number of occupants. Thirdly, schedules, such as
ASHRAE’s, assume a good correlation between occupancy
patterns and the energy use levels of systems, such as lighting
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and plug-loads. The results from Fig. 5 show that the lighting
and plug-load patterns seem to follow the occupancy patterns
to a good degree. However, there is an important difference
in the scale or magnitude of the profiles. From an operation
perspective, the observed gap reconfirms the inefficient use
of the lighting and equipment, where a low occupancy level
can lead to electric consumption levels near their maximum
possible values. From a design perspective, the observed
discrepancies are difficult to account for during the design
stage and could contribute to misestimations of the actual
energy use levels (i.e., energy performance gap).

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK
The framework presented in this paper evaluated and quanti-
fied the weak relationships between occupancy patterns and
electric loads in the studied space. More importantly, the
granularity of analysis ensured the identification of the causes
of those discrepancies. As discussed earlier, one primary
source of unnecessary lighting consumption at the office
level was attributed to the improper calibration and mainte-
nance of the motion sensors activating the lights. This can
be an indication of mismanagement by facility managers,
as well as miscommunication from the occupants who failed
to report inefficiencies in building systems. A non-intrusive
framework with high levels of granularity has the potential
to identify such discrepancies and bring it to the notice of
the facilities management, so that appropriate action can be
taken to avoid more unnecessary consumption. As such, this
framework can be vital to the FDD process as well. It can also
motivate the need for more effective communication channels
between FM and occupants.

It is important to highlight some assumptions that were
made in the study, along with its limitations. The first assump-
tion was regarding lighting consumption. In order to maintain
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is the same at a particular hour of the day.

the framework’s non-reliance on a functioning BMS, the
lighting consumption was calculated based on the nominal
wattage and the light status (i.e., on or off), which works on
the assumption that the nominal wattage is a good approxi-
mation of the actual consumption. While such an approach
has been used in the literature [45], [46], deviations from the
actual levels can be observed due, for instance, to inefficien-
cies in electronic components.

Another limitation of the framework is that it does not
currently measure or estimate HVAC loads. Such an addition
is essential to make the proposed framework comprehen-
sive and provide a holistic evaluation of building energy
performance. Another potential expansion of the work can
include indoor environmental factors and various metrics of
occupants’ comfort (e.g., thermal, visual, acoustic, etc.). This
will allow understanding and capturing adaptive actions that
occupants may take to maximize their comfort, which in turn
affect building performance (e.g., window opening).

When it comes to the “non-intrusive” description of the
framework, the term in this paper referred to the concept
of minimal deployment of sensors on the property [23],
[25], with a special emphasis put on the independence from
existing BMS infrastructure. This was rarely achieved in
similar studies in the literature. However, ‘‘non-intrusive’
can also refer to data collection methods that protect and
anonymize information collected from individuals. While
important steps were taken in this study to protect the occu-
pants’ information, this process can be further developed
and standardized as part of future research and before any
deployment of the framework at larger scales.

Finally, an important limitation pertaining to the case study
is the small sample size used. However, it is important to note
that the aim of the case study was to illustrate and validate the
capabilities of the proposed framework, which, in the opinion
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of the authors, was well achieved. Nonetheless, applications
of the framework on a large number of occupants can further
confirm the observed findings and draw general conclusions
on the role of occupants in achieving low-energy building
performance.

VI. CONCLUSION

This paper proposed a non-intrusive data collection and
framework that was used to capture the energy use patterns
of individual occupants in a shared office space and identify
areas for energy savings. The framework is characterized
by its ability to capture occupancy presence and plug-
load usage at the desk level. This helped identify energy-
saving opportunities that could not be captured with a more
general office-level analysis of energy use. Moreover, the
non-intrusive characteristics of the framework make it inde-
pendent of a BMS infrastructure and easily applicable to other
building environments.

The application of the framework to a shared office space
of an educational facility confirmed the capabilities of the
framework by observing: (1) large amounts of energy being
observed when no occupants are in the office; (2) 64% of the
energy consumed by plug-load devices occurring when the
desks are unoccupied; and (3), large discrepancies between
the observed occupancy and energy consumption profiles on
the one hand, and those provided by ASHRAE, on the other.

It is important to note that the specific results that were
obtained are not meant to be generalized nor extrapolated to
typical academic buildings. Rather, they serve to showcase
the capabilities of the proposed high-resolution data mon-
itoring infrastructure in identifying unexpected (and poten-
tially wasteful) energy consumption patterns in office spaces.
More specifically, the findings highlight the important impact
of people on building energy performance. These include
facility managers, in their role of maintaining and calibrating
centralizing systems (e.g., lighting), and occupants, in their
role of operating end-uses that they control (e.g., plug-loads).

Moreover, the difference observed in the diversity profiles
(Fig. 5 and Fig. 6) from ASHRAE contributes to the growing
body of literature on the drivers of the energy performance
gap commonly observed between predicted and actual energy
use levels. While predicting occupancy patterns and behav-
iors during the design phase is a highly complex — if not
impossible — task, designers can apply methods, such as
uncertainty analysis and parametric variation, to quantify the
performance risk and then apply robust design practices to
mitigate it. In parallel, large-scale data collection efforts can
help refine the diversity profiles used in building standards,
adjusting for different building types, levels of automation,
and geographical locations.
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SUMMARY

The understanding of occupant behavior (OB) is vital to improve building energy
performance, and this understanding needs an interdisciplinary approach that incorporates a
holistic view of the topic. However, social dimensions of this behavior tend to be neglected.
Based on the Theory of Planned Behavior, this study assesses the perceptions of occupants
about their own presence and device utilization. This is done in the form of hourly schedules
for presence, and energy-use patterns of plug loads in a shared office space, which were
gained through a survey. The perceptions are then compared to the actual measurements,
which were derived from monitoring these occupants with regards to their presence,
environmental parameters, and plug loads for a period of six months. This enabled a
comparative analysis that evaluates the correlations between perceived presence, actual
presence, and standard schedules from ASHRAE. The results from this study can be used for
developing social models for OB, by defining driving factors for different parameters of social
influences.

KEYWORDS

Occupant behavior, Perceived Behavior, Energy-use Patterns, Occupant Presence.

1 INTRODUCTION

Occupant Behavior (OB) in buildings is a complex phenomenon, and has several facets,
ranging from occupant comfort, presence, movement, habits, and the associated energy-use
patterns of each. OB has also been identified as a driving factor in building energy
performance, and the research in the last few decades has highlighted the importance of
improving the understanding of OB, in order to enhance energy efficiency of buildings, along
with occupant comfort (Hong et al., 2016; Yan et al., 2017). Consideration of OB has to be
inclusive of all its aspects, and the accompanying models should reflect this
comprehensiveness.

A significantly neglected part within this field of study is the lack of investigation of the
social aspect of OB, comprising of their intentions behind the interactions with the building
systems, the social influences, perceptions etc. A review of energy research literature over the
past two decades highlighted the main negative patterns, the first of which was the under-



exploration of the social dimensions, especially those concerning energy-use (Sovacool et al.,
2015).

The quantification of these dimensions often happens through the Theory of Planned Behavior,
which considers three underlying factors behind behaviors and intentions: the beliefs and
motivations regarding the action; peer influences (how significant others may respond to the
action); and perceptions regarding the performance of the action. While some studies have
investigated the first and second factor (Abrahamse & Steg, 2011; Chen & Knight, 2014),
occupant perceptions remain an unexplored topic. An understanding of the occupant’s own
perception regarding their actions, and the associated effects on their behavior, is necessary to
construct a complete profile of their social structures (Annageeb et al., 2019).

The main objective of the paper is to commence addressing these gaps, by assessing occupant
perceptions regarding their own presence, and energy-use behaviors with regards to their
device utilization. These perceptions are evaluated by drawing a comparative analysis with the
actual occupancy and energy-use patterns, to measure the influence that these parameters have
on OB.

2 METHODOLOGY

2.1 Area of Study

The study was part of a larger experiment aimed at monitoring and understanding occupant
behavior in shared office spaces. It took place in a graduate research facility in Abu Dhabi,
United Arab Emirates, and lasted for a duration of eight months, from April to November
2017. The office space consisted of eight individual desks (single occupancy), six of which
were designated for specific individuals, and the other two were assigned as shared
workstations. Since all the occupants taking part in the study were students at the research
facility, the specific occupancy of each desk could change every semester. Over the course of
the study, eight different occupants were included. Each desk was equipped with six power
outlets, wherein each of the power outlet was assigned for a particular appliance (a desk lamp,
two monitors, a docking station, a laptop, and miscellaneous), and the entire area was lit by
six lighting fixtures. While the office was operational from 8am to S5pm on weekdays, it
remained accessible to the staff at all hours throughout the week.

2.2 Data Collection

The data collection was conducted on two fronts: quantitative surveys and sensor-based
measurements. The surveys were conducted to measure each occupant’s perceptions about
their own presence, energy-use patterns, and intents behind their actions. The sensor-based
measurements recorded the actual presence, energy consumption, as well as the environmental
parameters such as lighting status, temperature, and humidity.

For the surveys, it was vital to know the perceived schedule at every hour of the day, in order
to have a comparison with standard schedules of shared offices from ASHRAE (American
Society of Heating, Refrigeration, and Air-conditioning Engineers) (Abushakra et al., 2000).
The occupants had to select an option from a scaled range of typical hourly occupancy
patterns, ranging from ‘never occupied’ to ‘always occupied’. This was done for both
weekdays and weekends. In addition, their behavior with regards to unnecessary energy
consumption was recorded for each device, where the occupant had another scale of options to
denote the status of each appliance when the occupant left their workstation, ranging from



‘always switched off” to ‘always switched on’. Other questions in the survey focused on the
personal beliefs and energy-saving motivations of the occupant. As for the sensor-based
measurements, three different kinds of sensors were included: PIR-based occupancy sensors
for each desk, plug load sensors for each power outlet, and six environmental sensors placed
at appropriate locations. Each of the sensors was installed and calibrated accordingly with
their purpose. Routine checks were conducted to ensure the functionality of the sensors and
the compliance of the participants with the experimental setup. A more detailed description of
the experimental setup, calibration and data acquisition process is presented in this work (Das
et al., 2020)

2.3 Data Processing and Analysis

The data from the occupancy sensors was event-based (recording data whenever the presence
status changed), while the plug load and environmental sensors reported at a frequency of
fifteen-minute intervals. Since the occupancy data was event-based, it lacked consistency in
the temporal resolution. The first step in processing the data was the temporal alignment of
the input from all the three sensors, followed by upsampling. This led to a consistent datasheet
that consisted of four readings every hour for each sensor, conforming to a uniform temporal
resolution of fifteen minutes. The consequent step was to address missing values, which were
caused due to sensor malfunction in the early stages of the study. The nature of the study
made in necessary to have consistent data for each occupant and their associated device, and
weeks with missing values were excluded.

The first part of the data analysis involved a comparison of the standard ASHRAE schedules
with the measurements from the sensors and the schedules obtained from the survey. In order
to construct schedules from the sensor-based measurements, occupancy diversity factors were
used. Diversity Factors denote the intensity of a variable throughout the day, ranging from 0
to 1. In this case, it is the ratio of occupants present in an area to the maximum possible
occupancy, for every hour of the day. Equation (1) was used to determine the diversity factors,
wherein & denotes the hour of the day. The value obtained expresses the ratio of sensors which
had an ‘occupied’ status over the total sensors present in the area of study, averaged over the
N days of the study, starting from the first day d. The occupancy diversity factor was
determined for the entire office space.

N number of zenzorsin foccupied! mode
a=1 Total number of sensors (1)
N

Occupancy diversity factor, =

The data from the surveys was used to calculate the occupancy in a similar manner, by
obtaining the diversity factors from the response of each occupant regarding their presence at
a particular hour. The schedules obtained from surveys and ASHRAE were each subjected to
a regression analysis with the actual schedules, to gauge their respective correlations.

The second part of the analysis focused on the perceived energy-use behaviors regarding the
appliances available to the occupant. Each occupant expressed their perception about the
manner in which they would leave their appliances when they left their workstations, whether
they were switched off to avoid unnecessary energy consumption or left switched on. These
perceptions were then compared to the actual energy consumption data, obtained from the
plug load sensors. The ‘unnecessary consumption’ was determined by summing up the plug
loads during periods of long absence, as denoted by the occupancy status of the workstation.



2.4 Privacy Handling

All the participants were involved on a voluntary basis and were provided with a consent form
approved by the Human Research Ethics committee of the research facility, that detailed the
data that was to be collected. In addition, to avoid recording of any personal details, each
occupant was associated with an ID. No other personal details of the occupant were
documented.

3 RESULTS
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Figure 1. Comparison of Standard, measured and perceived profiles of occupancy

The occupancy schedules were plotted according to the hours and their corresponding average
diversity factors. As seen in Figure 1, the actual schedules obtained from the sensors had
significant differences from both the perceived and standard schedules. One of the biggest
deviations was the delay in the start of the day, which is an important piece of information for
the consideration of the building facility managers. However, the occupant perceptions about
their presence, obtained from the surveys, had a smaller gap in this delay, and the schedules
followed the trend of the actual ones more than the standards. These results were corroborated
by a statistical analysis, the results of which are displayed in Table 1. The perceived
occupancy shows a stronger correlation to the actual occupancy, and the higher R-square
value signifies the dependency of the variable, and its predictability using the occupant’s
perceptions. The reported value of correlation is high, but it must be noted that the cause of
this is the similarity in following the trend. Nevertheless, a significant gap still persists, as
seen in the Figure 1.

The results for the device utilization, however, did not yield any significant correlations.
Figure 2 displays the results for one of those devices (Laptop). The actual energy
consumption is displayed with regards to the perceived energy-use. Occupant 1, 3, and 6 had
all reported the device to be frequently switched on while leaving the office, while Occupant 4



and 5 always left it on, and Occupant 2 rarely left it switched on. However, this consistency
between the reported and actual behavior was limited to very few devices. The perceived
energy-use of the occupants varied greatly from occupant to occupant, as well as device to
device. Even devices subjected to frequent use (such as laptops and monitors), showed
discrepancies regarding the perceptions. For example, laptops were the most consistent, and
monitors the least. Occupants that considered themselves to be switching off their monitors
while leaving found that their perceptions were quite inaccurate, according to the
measurements from the plug load sensors.

Table 1. Statistical correlations of standard and perceived schedules with measured occupancy

Statistical Analysis Standard Occupancy Schedules  Perceived Occupancy Schedule
Correlation 0.76 0.95

R-squared (Linear
Regression) 0.58 0.91
Covariance 0.04 0.03

Device: Laptop
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Figure 2 (a) Perceptions about device utilization: Laptops

4 DISCUSSION

It is important to note that due to the small sample size of both the occupants, and the building
type, the objective of this study is not to draw conclusions regarding the occupancy schedules
and energy-use patterns, but to highlight the importance of including social dimensions while
trying to understand occupant behavior. Constructing an appropriate smart environment in
office spaces is expensive, and several buildings do not have access to a technologically
advanced Building Management Systems. In such cases, standard schedules are adopted to
regulate the energy performance of the building. However, Post Occupancy Evaluation
techniques can suit this task better, as occupant perceptions are more attuned to their presence
patterns, which was also corroborated in the results of this study. Moreover, considering the
gap between the perceived and actual energy consumption, the perception accuracies can still
be improved further, by employing suitable feedback systems that keep occupants better
informed about their energy-use behaviors in the office.



5 CONCLUSIONS

This work conducted an assessment of occupant perceptions regarding their own presence and
energy-use patterns in shared office spaces. The data collection and consequent analysis
showed the extent of influence perceived behaviors have on actual ones, and the respective
correlation between the actual, standard, and perceived schedules. Results of the device
utilization, however, showed no significant correlations in this regard. However, future works
need to expand on these social dimensions by conducting such experiments at a much larger
scale, and incorporate the occupants perceived behavior within the social modules of occupant
behavior patterns.
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1 Introduction

Global energy trends have indicated building energy consumption to be emerging as
one of the most energy-intensive sectors, with more than 55% of the global electricity
usage belonging to commercial and residential buildings [1]. Recent reports estimate
this sector being responsible for 39% and 40% of the nationwide energy consumption
in the USA and EU countries, respectively [2]. Several efforts have been directed
to increase energy efficiency in buildings in the form of incentives, certification
programs, building codes, etc., but despite the advent of these efforts, buildings
continue to show a large variation in their consumption patterns, with respect to the
expected performance [3, 4].

This performance gap can be attributed to several different causes, pertaining to
the mechanical and electrical faults within the buildings, to the weather and climatic
variations, or architectural design [5]. However, the past decade has seen a lot of
research efforts focus on one particular aspect: occupant behavior (OB). Through
the efforts of several global researchers and scientists in the “Energy in Buildings
and Communities (EBC)” program of the International Energy Agency (IEA), the
way occupants interact with the building systems have been identified as one of the
major drivers of a building’s energy performance [6]. Clevenger et al. demonstrated
that occupant behavior could vary the total energy use by 150% for commercial
buildings [7]. Hong et al. created different occupant profiles and ran building energy
models. The authors found that occupant behavior can save up to 50% of current
energy use levels or increase them by 89% [8]. One particular approach to tackle
this issue is using building performance simulation (BPS) programs to efficiently
improve the design and operation of buildings. These programs include the modeling
and evaluation of different systems in buildings, such as thermal or electrical, and
are vital for drafting energy-saving recommendations [9]. Even so, BPS programs
often lack accurate OB models, with most of the traditional BPS tools using fixed or
pre-loaded schedules [10].

Within the field of OB modeling, the current simulation strategies can be broadly
classified into two different groups. The first one comprises models that focus on the
systems that the occupant is interacting with, rather than directly with the occupant.
These would include linear regressions [11], sub-hourly occupancy-based control
models [12], etc. The second group of models deals directly with the occupant and
their actions, making use of agent-based models [13] and Markov chains [14]. How-
ever, the application of these models is often limited to one particular function (e.g.,
window opening and lighting control). In addition, their dependence on an aggregated
model ignores the diversity and inhibits the accuracy in simulating the OB.

OB modeling has its complications based in the diverse set of actions as well as
the different aspects of the OB itself. The complexity and uncertainty in this field
stem from the fact that OB contains various similitudes in the form of presence,
movement, activity level, comfort level, social influences, etc., and detailed attention
has to be given to each of these in order to construct a complete individual profile.
Dziedzic et al. proposed a bottom-up approach wherein the collected data from these
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different fields of simulations could be used to eventually develop a building occupant
transient agent-based model (BOT-ABM) [15].

A large part of simulating OB is modeling the indoor movement and transition of
the occupant. Markov chains were used by Wang et al. [16] wherein the movement
process was simulated by associating each occupant with a homogeneous Markov
matrix. A different form of data collection was used by Martani et al. where the Wi-Fi
connections were used as proxy for the occupant sensing [ 17]. Similar to the occupant
monitoring and data collection, this comes with its own set of privacy concerns. To
overcome those, another study used a depth registration camera to track and monitor
the movement and presence while maintaining a sufficient amount of privacy [18].

A complementary aspect in consideration with the modeling of movement is the
simulation of the floor surface layout and the placement of objects/furniture around
the occupant. In order to accomplish these simulations, the surface simulator will
need access to a database or library of specific information regarding the furniture,
as well as the details of the occupant’s interaction with it. Current literature does
not contain any particular specifications that can support a surface simulator with
that kind of a database. This will have to include the information about the order
of importance of the object for the occupant, their access points, area of influence,
placement criteria for each, among others. The necessity of this information arises
from the need to understand the boundaries and potential paths for the occupants’
movement, as well as their order of actions with the objects around them. The next
section describes the development of this database, definition and properties of each
variable, and their necessity for the simulator.

2 Database Description

The library is intended to provide necessary information about the furniture and
its placement to be used for a floor surface layout. The furniture would be the one
typically used in residential buildings and will consist of different variables associated
with each object, the information about which will be determined by collecting data
from the occupants themselves. Each variable is selected based on its connection to
the way the object influences or hinders the actions of the occupant with regard to
their location and movement. The description of each of these is as follows:

e Furniture class: This variable contains the description regarding the type of fur-
niture. The different classes will be procured from a compiled list of the typical
furniture used in different rooms.

e Room category: Represents the type of room (bedroom, living room, etc.). This
variable would further influence the order of importance, since the objects having
the same furniture class can have different significance depending on the room
category. For instance, the order would be different for a table in a study (where
it might be prioritized higher) and in a bedroom (where its importance will be
relatively lower).
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e Order of importance: This variable describes the order of the object’s importance
to the occupant based on the frequency of use within a particular room category.
It also indicates the rank of this furniture when it comes to the placement. The
simulator will be using the allotted ranks to generate the sequence of each simulated
object within the room. This will have to work in accordance with the next variable,
wherein objects with higher rank will be prioritized and placed according to their
placement criteria and those criteria will be re-evaluated for the next object, without
disturbing the placement of the preceding object.

e Placement criteria: This will ascertain the typical factors that influence the occu-
pant while placing the furniture with reference to the distance from the corners,
edges, doors, windows, etc. The information will be significant in generating a
surface layout based on the floor map of the rooms and will further ease modeling
the path of movement that the occupant will be taking. It will also enhance under-
standing about the intent behind the occupant’s actions, and these preferences can
also be used as input for building habit profiles for the occupant.

e Area of influence: This variable reflects what kind of constraints and influences
the particular furniture creates for the occupants’ movement around them. It also
constitutes how it affects the placement of the other objects. Along with hinge
points, this serves as a decisive factor for the path simulation.

e Access points: The position respective to the object through which the occupant
would be interacting with a particular furniture class.

e Hinge points: These points would indicate the corners or edges of the furniture
and will form the basis for movement simulation, as the distances from different
hinge points will reflect a range of the potential path the occupant could take.

Table 1 consists of the seven different but interconnected variables for the database
and is meant to showcase how the library is structured. Variables like these will be
necessary to act as trigger points for further actions, and as specified for some of
them, the use of them goes beyond floor surface simulation. One instance of this is
the placement of outlets for the HVAC design. Better surface layout simulations can
help adjust the outlet placement in accordance with the occupant’s thermal comfort
needs and their surroundings.

Table 1 Variables to be used in the database

Furniture Room Order of Placement | Area of Access Hinge
class category impor- criteria influence points points
tance
Class 1 1 Criteria 1
2 | Criteria 2
3 Criteria 3 I
Class 2 1 Criteria 1
2 | Criteria 2
3 | Criteria 3
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3 Preliminary Survey

The survey to gather the necessary input from occupants to create an adequate
database was designated to be set in an online format. The main factor respon-
sible for the design format was the need for different possible combinations and
scenarios with regard to the occupants’ preferences. The database needed a large
number of layout preferences while keeping the models realistic by using different
constraints. It would be extremely difficult to accomplish this using the traditional
experimental data collection platforms. Fortunately, the advent of massive online
experiments (MOEs) has made possible conducting studies with large-scale partici-
pation, an exponential combination of different variables, while retaining the control
on the experimenter’s side. These web-based experiments provide specific advan-
tages over the lab-based ones in terms of collecting larger sample sets at a much
lower cost.

Additionally, the main requirement of this study was to have sufficient features
that enable the occupant to assemble their own layout and provide feedback regarding
that preference, which is possible through these MOEs. The development platform
chosen for this was Meteor, because of the template-based structure it offered, in
addition to its useful packages and dynamic scripting.

However, a preliminary survey was conducted to test out the feasibility of the
concept and gather feedback from the occupants. The survey was designed to inves-
tigate the home space usage of kitchens in residential buildings. The scope was to
seek out information regarding the different kitchen appliances and how they are
placed around by the occupants. This was done to generate a sufficient database for a
kitchen layout simulator. It explored the number of occupants and their demograph-
ics. These occupants were then provided with a questionnaire along with a list of
typical appliances found in a kitchen, with the option to add any that were not present
in the compilation.

The room category in this case would remain fixed, as the study was still in its
preliminary stages and would not extend beyond the kitchen. There were in total 18
furniture classes in the compiled list provided for the participants to choose from
(Fig. 1). The occupants had to denote the presence of the appliance and provide the
order of importance for each. In addition, they were also asked to mark down the
position of windows, doors, orientation, and the approximate shape of the kitchen.
In order to have better insights, they were asked to mark down this information on a
grid, as shown in Fig. 2.

The collected information would then be used to generate appropriate hinge points
to determine the movement path. Other variables such as the area of influences and
placement criteria were not added at that stage. They were to be approximated based
on the layout given but later added in the main questionnaire to remove the need for
any assumptions. It was due to the ease of incorporating the feature of having a base
layout that can be modified by the participants that the choice was made to shift the
process online.
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Q O Freezer E QO B8lender Q
Q O Cooker i QO O Exhaust ‘
Q O Built-in Oven - QQOsink
Q OHob QO Dishwasher
Q O Microwave D 0 O Washing Machine
Q O Espresso Machine h QO Tumble Dryer
Q Okettle m aQw
Q OFryer i Q ORadio
QQother........

Fig. 2 Grid to record layout
and preferences

4 Discussion and Conclusion

As seen from the literature review, there is still a significant potential for improving
building performance simulations through OB modeling. Considering the diverse
aspects of OB, this study supports the bottom-up approach and highlights the need
to consider a more dynamic process for delivering the surface layout simulation.
It should be noted that the primary purpose of this database is to provide a library
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for the layout simulation. Furthermore, the layout simulator is intended to act as a
building component for an eventual BOT-ABM.

As mentioned previously, some of the variables can prove useful for other pur-

poses, such as HVAC design. However, that is beyond the scope of this particular
study. Future research can be directed toward incorporating this kind of a database
and surface simulator in traditional BPS programs.
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Background: Operating rooms (ORs) have strict requirements regarding cleanliness. While
existing standards concerning the ventilation and staff guidelines are theoretically suffi-
cient to subvert the threats posed by micro-organisms within the room, there exist
potential sources of contamination due to human activity around the area. Studies
exploring this influence of human activity on distribution of micro-organism contamination
in ORs have relied on manual observations, or indirect methods such as number of door
openings.
Aim: To utilize depth registration sensing technology to identify the activities of surgical
staff and investigate their effect on the distribution of airborne micro-organism con-
tamination in ORs.
Methods: A mock surgical experiment was performed using a depth registration technique
for the dynamic capturing of human presence and activity levels. Field measurements
were carried out in one real OR to analyse its influence on the bacterial distribution in ORs
with mixing ventilation system. Findings: Bacterial contamination levels tended to cor-
relate with higher activity levels, albeit with some inconsistencies. The highest activity
levels were around the surgical bed when the patient was placed, and around the
instrument table during the surgical procedure. Locations with obstructions had the
highest cfu densities, indicating that airflow patterns are important in such spaces.
Conclusion: Our activity monitoring methods demonstrate a novel means of studying the
influences of human activities in hospital rooms.
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Introduction

Operating rooms (ORs) in hospitals have to uphold the
highest standards of cleanliness [1]. Introduction of bacterial
contamination into the surgical wound, through direct airborne
transmission or indirectly, e.g., through airborne con-
tamination of instruments that then enter the wound, can
cause infection [1,2]. Theoretically, the installed ventilation
system is sufficient to protect the surgical zone from any
potential sources of contamination, with staff inside the sur-
gical zone having limited contact with those outside the zone.
However, in practice, the dynamic of the environment may
change during the surgery, especially if there is poor com-
pliance with OR discipline. Even when OR personnel are fully
compliant, the transitions and movement inside the whole
room can still be a source of potential contamination [3].

In modern hospitals, the most important source of airborne
contamination is related to the dispersal of particles from
persons present in the OR and their movements [4,5]. A high
volume of staff movement and activities could play a role in
higher risk of surgical site infections (SSIs) [6]. Generally, staff
movement can increase the colony forming unit (cfu) level by
three means: (1) clothes rub against the skin, leading to
increased shedding [7]; (2) a pumping effect inside clothes that
creates air streams that can transport skin scales into the OR
air through pores in the fabric structure or from openings (such
as the wrists, neck, ankles and the waist) [8]; and (3) move-
ment may cause settled particles on the floor and other sur-
faces to be re-suspended into the air [7].

A number of studies have explored influencing factors using
various experimental methods. For example, You et al. utilized
the emission rates of particles in a sealed chamber [9], whereas
Scaltriti et al. focused on a recently built operating theatre
using measurement of microbiological and dust contamination
to assess the influence of human activity [3]. Andersson et al.
investigated 24 orthopaedic operations in Sweden and con-
cluded that different activity intensities highly influence the
cfu level [10]. However, these studies investigated the influ-
ence of human activity by relying on air-quality data, corre-
lating those with the occupancy, and the type of clothing worn,
or the traffic flow within the operating room. In some cases,
manual observations and door openings served as the basis for
this comparison [10]. The occupants in the room were not
monitored individually, regarding their locations or movement
trajectories. Developments within the field of occupant mon-
itoring in indoor spaces has allowed for much more sophisti-
cated techniques of data acquisition [11], which have not yet
been widely utilized for experimental procedures in operating
rooms.

The objective of this study was to use of depth registration
sensing as a tool to investigate the effect of surgical activities
on the distribution of airborne micro-organism contamination
in ORs.

Methods

Three mock-up surgeries were performed with a control-
lable series of actions. The main monitoring parameters were
dynamic registration of staff movement and passive air sam-
pling, using downward displacement of air and enumeration of
bacterial cfu, where these settle on to the surface of exposed

agar plates, at floor height. Bacterial contamination was
established by cumulatively exposing agar plates positioned
inside the surgical room and the surgical staff were monitored
with the use of a depth registration camera. This method made
it possible to assess the influence of medical personnel’s
activity, especially their movement, on the potential
contamination.

Experimental setup

Three mock surgeries were performed in the cardiopulmo-
nary OR with a mixing ventilation system in St. Olavs Hospital,
Trondheim, Norway. There were six participants in the study,
one of whom represented the patient and the rest carried out
the roles of five staff members (main surgeon, assistant sur-
geon, sterile nurse, distribution nurse and anaesthetic nurse).
The layout of the room and the respective positions of each
participant is shown in Figure 1. A total of 24 passive agar
plates (internal diameter 85 mm) were used in six locations
(A—F), placed around the surgical bed (Figure 1).

The experiment consisted of four different phases, and each
agar plate group consisted of four agar plates. Each set of the
agar plates was opened at the start of the different phases and
kept open until the end of the experiment. ‘Group’ refers to
the four agar plates present at each of the six locations, and
‘set’ refers to the plates from each group that would be opened
at the start of specific phases. The first set of agar plates were
open from Phases 0 to 3 (140 min), the second set were opened
from Phases 1 to 3 (120 min), and so on (Figure 2). The dura-
tions of the phases were based on the timings of a typical hip
arthroplasty procedure. The sampling windows for the agar
plate groups is depicted in further detail in Figure 2. All of the
locations (A—F) followed the same pattern. Agar plates incu-
bated for 48 h at 35 + 2°C, followed by 24 h at room temper-
ature, before counting.

The clothing used by the staff was provided by and adhered
to the standards of the hospital. The staff wore an EN 13796-
compliant two-piece disposable non-woven polypropylene
suit. The main surgeon, assistant surgeon and sterile nurses
wore surgical gowns outside the two-piece disposable non-
woven suit, which were made of nonwoven polyester/poly-
ethylene and approved according to the EN13795: 2011
standard. The surgical masks worn by the staff were approved
according to EN 14683 type Il, which were the double band, tie-
on type with an integrated adjustable nose clamp. Latex
gloves, surgical caps and hoods were also used to cover hands
and the exposed parts of face. The patient wore a two-piece
disposable non-woven suit and a surgical cap.

Monitoring and processing movement of participants

Participants were monitored using Microsoft Kinect Xbox
devices, which use depth registration to capture geometric
information about human activity [12]. The principle of depth
registration is similar to a traditional projector, but visible light
is replaced by an infrared beam. An additional sensor measures
the time it takes for this incident ray to be reflected back to the
camera, and this is used to gauge the distance of nearby
objects. These measurements are recorded in a matrix array,
which makes it possible to recreate a three-dimensional rep-
resentation of the observed surface. If the human body is
present within its field of view (FoV), it gets processed with a
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Figure 2. Sampling windows of the agar plates.

skeleton model (SM), with 25 joints representing the human
body in a three-dimensional matrix. For this trial, four cameras
were used, each having a registration angle of 46° in a 5-m
radius, and a 30-Hz sampling rate. To cover the OR entirely
and avoid occlusion, each device was placed in a corner of the
room (Figure 1). Because all the devices have a capability of
capturing up to six persons simultaneously, there was no pos-
sibility of misregistering any participant’s activity.

Data processing consisted of unification of planes, data
fusion, and plotting an activity heat map. Each device captured
information according to its own local coordinate system. This

197

had to be synchronized by selecting one device as referential
and changing its horizontal plane to be parallel to the floor. The
data from other devices were then accordingly adjusted and
combined to create the final map. Based on previous studies
[13], another significant component to validate the synchro-
nization of the data is by using the most stable joints from the
SM. The plotted map has a resolution of 5 x5 cm. Each time the
movement readings indicate a position in a particular cell of
the heat map, it increases the value of this cell by adding one.
After all the movement recordings are processed in that man-
ner, a developed figure can show a spatial activity distribution.
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Movement and action plan for the surgical team

Activity Main surgeon Assistant surgeon Sterile nurse Distribution nurse Anesthetic nurse
1 Body and arm Arm movement: Arm movement: Body and arm Sit still (1 min)
movement: continuous towards and away movement:
towards and away circular motions from main surgeon Towards and away
from sterile nurse with one hand (10 times) the sterile nurse
(10 times) close to the wound (10 times)
(1 min)
2 Hand and arm Body and arm Body and arm Body movement: NA (no activity)
movement: movement: movement: walking to a
continuous Side to side (10 towards and away cabinet and back
random finger times) from distribution again
motions close to nurse (10 times)
the wound (1 min)
3 Arm movement: Hand movement: Arm movement: Arm movement: NA
fast up and down holding a steady shaking arms twisting of hands
movement of arm hand close to the continuously (1 in front of the
(10 times) wound (1 min) min) chest (1 min)
4 Arm movement: Body movement: NA NA NA
shaking arms close squatting — three
to the wound times
continuously (1
min)
5 Resting position (1 Resting position (1 Resting position (1 Resting position (1 NA

min)

min)

min)

min)

Static persons do not register any readings. With such filtering,
it was possible to obtain a heat map of the staff activity in the
OR during the experiments. This heat map represents the
concentration of the activities within a particular cell.

Mock surgery procedure

Based on a typical hip arthroplasty procedure, a definite
movement and action plan was formulated for each participant
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Figure 3. Distribution of activities within each phase, for each staff member.
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Table Il
cfu Counts of three experiments

Agar plate Experiment  Phases Phases Phase Phase

location phase 0-3 1-3 23 3
Experiment no. cfu

A Experiment 1

Experiment 2
Experiment 3
B Experiment 1
Experiment 2
Experiment 3
€ Experiment 1
Experiment 2
Experiment 3
D Experiment 1
Experiment 2
Experiment 3
E Experiment 1
Experiment 2
Experiment 3
F Experiment 1
Experiment 2
Experiment 3

= A WO WWO= = WN=0NU WN-N
= NNAMNUONON=RAMANOOOU WO =N
S ONANNNOOUI = 20 WOoNWw=aN
OO -_AN-_-_2AaNO—_L, 00 NO == W

during the mock surgeries in the experiment. The mock sur-
geries (repeat thrice) were divided into three main phases:
phase 1 — incision (50 min); phase 2 — joint replacement (33
min), phase 3 — wound suture (37 min). In addition, 20 min of
non-activity and non-speaking phase (Phase 0) was added
before the start of the mock-surgery to establish the difference
in cfu levels of activity compared with non-activity of the
surgical team.

A detailed description of the activities performed by each
participant during the mock surgeries is given in Table | and
Figure 3. In addition to considering the body movement, the
participants were also required to speak (by reciting the
alphabet out loud every 7*" minute), because speech can dis-
seminate respiratory tract bacteria including important
pathogens such as Staphylococcus aureus [14].

Because the measuring time is highly dependent on the type
of surgery, specifically the operating time, it is hard to compare
the results with other different cfu standards by directly listing
the cfu counts captured on the agar plates. Therefore, the

measured data were normalized by transferring them to cfu
density, which is formulized as cfu counts/agar plate area per
measuring time (cfu/m? per h).

Results
Measured cfu levels with different activities

The cfu counts of three experiments are shown in Table II.
The observed amount of cfu counts were limited, with the
maximum count being eight. Locations A, E and F showed
higher average counts with the first set of plates (open from
Phases 0—3), while the location B and C showed the highest
counts in the third set of plates (open during Phase 2—3).

The mean values for the normalized cfu density for each
agar plate during different phases of the mock surgery are
illustrated in Table Ill. The cfu/m? per h at locations B, E, A
were higher than those at location C, F and D (Figure 4). The
highest cfu/m? per h was measured in location B during Phases
2 and 3. The highest value was observed as 1208.07. Very high
values were observed in other repeated experiments, with
906.05 in the first experiment and 453.03 in the second
experiment. The lowest cfu/m? per h was measured several
times at locations C, D and F.

Mapping of human activities

The human activity from the depth registration measure-
ments was in the form of a spatial activity distribution map
(Figure 4).

Discussion

Considering the activity levels associated with the cfu
measurements in each location, it is clear that activity levels
are not the only influencing factor on the distribution of air-
borne micro-organism contamination. However, the area
around location E had consistently high activity levels in dif-
ferent phases, a trend that was also reflected in the cfu
measurements. It might also be noteworthy that the Dis-
tribution Nurse was stationed near that area, and was the only
one of the surgical staff that had to move across the room
(Activity 2: walking to the cabinet and back), which would
introduce particles from other areas of the room into the area
near E, thus resulting in consistently higher cfu levels.

Table Il

cfu Measurements and their corresponding activity levels
Experiment Phases 0—3 Phases 1-3 Phase 2—3 Phase 3
phase
Agar Activity cfu/m? per Activity cfu/m? per Activity cfu/m? per Activity cfu/m? per
plate location Level h Level h Level h Level h
A 12.7% 302.15 20.9% 264.34 18 % 302.02 24.7% 476.03
B 0.5% 377.68 8% 469.94 10.3% 855.72 10 % 285.62
C 1.3% 151.07 0.9% 176.23 0.5% 352.35 3.3% 95.21
D 23.9% 50.36 37 % 88.11 36 % 100.67 30.1% 285.62
E 60 % 302.15 31.5% 323.08 34 % 402.69 28.9% 380.83
F 1.6% 201.43 1.7% 146.86 1.2% 151.01 3% 95.21

In bold: The highest recorded values of activity level and CFU/m? per h in each phase.
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Figure 4. Activity levels around the surgical site. Each pink dot represents a single recorded activity. The average cfu measurements for

each test location are also indicated.

Measurements in locations A, B and E reported higher cfu
densities than C, D and F, which was consistent with the sur-
gical staff within the respective region (main surgeon, assistant
surgeon, sterile nurse) being more active than the anaesthetist
nurse. It can also be seen that there is a strong body movement
(Activity 4: Squatting — three times) of the assistant surgent in
Phase 1 and Phase 2, which agreed well with high significance
of cfu density for Phases 0—3, Phases 1—3 and Phase 2—3 in

location B. In addition, the assistant surgeon during Phase 2 was
responsible for opening the lid of the agar plates at locations A,
B and C. And the agar plates at location B were placed closer to
the assistant surgeon. These reasons might be the cause of
having extremely high cfu densities in location B. Another
possible explanation for the high cfu densities in agar plate
location B is the obstruction caused by the amount of objects in
that area. Most of the area around B is occupied by a large
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table, thereby obstructing the flow of fresh filtered air to that
region. As such, measured cfu results may be influenced by
both activity levels and airflow patterns within the OR.

However, there were unexpected findings. For example, it
was expected that the cfu in location D would be high due to its
close distance to the main surgeon and the sterile nurse. In
addition, there was a walking movement by the distribution
nurse with a path bypassing location D. It may be that different
results would be obtained with a more sensitive bacterial
sampling technique.

A significant limitation during this study was the over-
estimation of the cfu counts in the experiments, especially
those measured at the beginning of the experiment with no
activity. While designing the experiment, it was expected that
these cfu counts would be highly correlated to the activity
level at a location, and it can be seen from the results that this
was not entirely the case. Furthermore, the conducted surgery
was a controlled imitation, which will undoubtedly contain
significant differences from a real surgery.

Several studies have examined the efficiency of both active
and passive air sampling, with variable results. Napoli et al.
compared the results from active and passive sampling in 32
ORs with turbulent flows and concluded that both methods are
applicable for monitoring of air contamination. However, it is
pointed out that passive sampling, as we used, is more suitable
in studies designed to monitor the risk of microbial wound
contamination, whereas active sampling is more suitable for
investigating the concentration of all inhalable particles [15].
In similar comparisons, other studies recommended the use of
passive sampling for evaluating airborne risk of contamination,
due to its relevance, simplicity and economy of use [16—18].
However, this technique also has its own limitations. Firstly, it
may collect more relatively larger particles that are settled
down mainly due to gravity, which has more influence than the
indoor turbulent air. Secondly, ORs have surgical tables, X-ray
equipment, and other facilities that pose as physical obstruc-
tions to the airflow and can have an impact on the cfu meas-
urements. As mentioned previously, the second effect can be a
significant factor in this study, considering the measured high
cfu concentration around location B.

In order to overcome these limitations, future studies might
include both active and passive techniques in order to provide a
better comparison. The active sampler can also be pro-
grammed to be activated remotely, which would remove the
need to physically interact with it, thereby minimizing addi-
tional contamination during measurements.

Because the vast majority (80—90%) of postsurgical con-
taminants in wounds have their sources in ORs [19], it is
imperative to discuss the significance of the ventilation system
present in the study. The mock surgeries were performed in an
OR with turbulent mixing ventilation (MV). Typically, the main
types of ventilation systems employed to reduce the airborne
bacterial load are laminar airflow (LAF) and MV. While many
national standards considered LAF to be superior to MV in
reducing the bacterial load, many recent studies have con-
tested this claim [20,21]. A systematic review of studies from
1990 to 2016 showed that LAF did not reduce the risk of SSIs in
comparison with MV [20], which became the basis for new
World Health Organization (WHO) guidelines recommending
against employing LAF systems after total joint arthroplasty
[22]. More recently however, these guidelines were again
contested by several studies [23—25], providing the evidence

201

that showed otherwise. In light of these studies, it is even more
important to have a detailed understanding of the influence
that movement and activity can have on SSI. Taking these dif-
ferences into account, future expansions of this study could
include experiments performed in different ventilation sys-
tems to obtain a more detailed insight into the correlation
between activity, airborne contamination and risk of SSI.

In conclusion, this study was designed to address the lack of
dynamic capturing of human activity in experiments conducted
in hospital rooms, which can be vital in investigating the stand-
ards of cleanliness, and other influences that human activity
might have in such spaces. The results highlight trends of bac-
terial contamination in different locations. In general, higher
activity levels correlated with higher cfu densities, but we also
observed that locations near physical obstructions had the
highest cfu densities, suggesting that airflow patterns might play
arole in such spaces. Results from studies such as this might be
used for implementing infection control practices concerning
the staff activity and positioning of surgical instruments to
optimize the airflow within the OR, because the current indoor
environment design does not take into account the effect of
human activities during real surgical procedures. We believe
that dynamic recording of human activity, together with repro-
ducible techniques to measure airborne contamination and air-
flow patterns can provide valuable information that could
change operating theatre design and/or working practices.
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® Case-study to capture individualistic plug load patterns of occupants.
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ARTICLE INFO ABSTRACT

Buildings have emerged as one of the dominant sectors when it comes to worldwide energy consumption. While
a large portion of this consumption is due to the Heating, Ventilation, and Air Conditioning (HVAC) loads, a
significant portion is contributed through the use of standard equipment, also known as Miscellaneous Electric
Loads (MEL). It is necessary to understand the consumption patterns to optimize the MELSs of the occupants using
the building and conduct accurate forecasts for building energy management. One of the methods to achieve that
purpose is the employment of Deep Learning (DL) methods. This study provides an analysis using Long Short-
Term Memory (LSTM) model as a baseline for predicting MELs. The predictions were conducted for a day-ahead
and a week-ahead period. Furthermore, the results from the baseline model were then used in a comparative
analysis with two other state-of-the-art DL models; Bidirectional Long Short-Term Memory (Bi-LSTM) and Gated
Recurrent Units (GRU).

The results from this study showed that both the Bi-LSTM and GRU models were significantly better than the
LSTM model, especially when the prediction horizon was longer. The conclusions obtained can help implement
these models in building energy management systems to draft strategic responses and schedules for more effi-
cient energy usage.
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Miscellaneous Energy Loads (MEL)
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Plug loads
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1. Introduction to the cooling loads, around 17% constitutes the load consumption from

standard equipment in buildings. It is crucial to have an understanding

The building sector is a significant contributor to the massive and
expanding energy demands which are responsible for greenhouse gases
and carbon emissions [1]. Worldwide, this sector accounts for 35% to
40% of total energy consumption [2]. This ratio is even higher in
countries with extreme climatic weather such as the United Arab
Emirates (UAE), where buildings devour more than 70% of the power
produced [3,4]. While a significant portion of that consumption is due
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of consumption patterns to achieve energy savings in office buildings or
shared spaces [4]. To mitigate the growing energy demands of the
building sector, the impact of occupant behavior has become a focus of
recent studies. Various studies have investigated the impact of occu-
pants on the energy consumption in buildings to qualitatively and
quantitatively comprehend occupant behavior, foster energy efficiency,
and minimize the gap between the actual and predicted energy
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consumption [5,6].

Miscellaneous Electric Loads (MELs) are a critical hindrance for
creating low energy buildings, and are a significant contributor to the
building’s energy load. This has been documented by Roth et al. [7] in
the case of residential buildings located in the United States of America
(US), and in studies regarding US office buildings [8]. These loads can
contribute up to 20% of the total building energy consumption, and are
set to increase by 40% in the next two decades [9]. MELs in buildings
get referred to as the diverse electric loads emanating from electronic
devices not responsible for Heating, Ventilation, Air Conditioning
(HVAQ), or lighting [10,11]. Syed and Hachem [3] considered MELs as
a factor in a simulation study of a greenhouse-retail complex and found
that MELs accounted for 23% of the building energy load. Burgett and
Chini [12] conducted an analysis regarding the improvement of MEL
prediction using occupant-centric methods. MELs are gaining attention
as electronic devices get accumulated inside offices or buildings, and
have become more sophisticated, thus generating upsurge in the mis-
cellaneous electric usage [12,13]. MELs are one of the fastest expanding
loads and are evolving to become one of the dominant load categories
[3]. This growth reveals the fact that personal computers (PCs) and
other office devices are penetrating office buildings, creating a sizeable
base of installed computing equipment [1]. MELs comprise the vast
majority of office equipment, while a fundamental part of them is plug
loads related to Information and Communication Technologies (ICTs),
such as desktops, monitors, and printers [14]. Plug load disaggregation
is imperative for evaluating and investigating the underlying causes of
energy wastage and developing strategies for energy reduction inside
buildings [1,3].

1.1. Challenges of occupant-centric miscellaneous electric loads

The challenges in occupant-centric MELs energy research in build-
ings can get summarized as (1) unexplored and understudied as com-
pared to design-focused research studies; (2) combined effects of un-
certainty in numerous parameters responsible for the upsurge in MELs
are neglected; and (3) particular types of buildings (e.g., educational
facilities), or buildings exposed to extreme climatic settings are not
considered, or inspected thoroughly.

Another challenge is that MELs are difficult to predict because in-
dividual occupants are in control of the electronic devices in a shared
office or building. Burgett et al. [12] used an occupant based opera-
tional model to predict MELs and found that the results improved sig-
nificantly when compared to the standardized occupant behavior
models.

1.2. Benefits of predicting MELs

Considering the significance of MELs in the contribution to building
energy, it is not only necessary to have an understanding of the con-
sumption patterns, but also reliable estimates of those MELs. These
estimates are important for decision-making processes [15], and es-
tablishing predictive control [16]. Also, accurate estimations are ben-
eficial for predicting internal heat gains [16], and more importantly, for
building performance simulations [17]. Building facility managers can
benefit from an understanding of these patterns, and then look ahead
into the future, for recommending energy-saving strategies, and de-
termine the period of the peak loads.

However, these predictions often rely on typical load profiles and
schedules, which are obtained from published benchmarks. A review of
these benchmarks for offices in United Kingdom (UK) highlighted their
inaccuracy, stemming from these benchmarks being outdated and un-
representative of the equipment currently used in buildings (that con-
tribute to the MELs) [18]. Only a handful of studies employ more so-
phisticated models for such predictions [19,20]. For example, Menezes
et al. [19] introduced two methodologies for predicting MELs, one of
which made use of detailed monitored data, and the other was
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independent of it.

The use of deep learning models is rare, but some studies have made
use of the Long Short-Term Memory (LSTM) algorithms to forecast
electricity consumption in commercial and residential buildings. Wang
etal. [16] applied an LSTM model to predict internal load in buildings,
in order to facilitate predictive HVAC control. Marino et al. [21] em-
ployed the same technique in building energy load forecasting, while
Rahman et al. [22] used it to predict electricity consumption. The
motivation for using LSTM models is based on the transient nature of
electricity consumption patterns. Arahal et al. [23], and Fan et al [24]
explored this temporal dependency. Another problem with such pre-
dictions is the long term dependencies, which is not accounted for in
vanilla Recurrent Neural Networks (vRNNs). Hochreiter and Schmid-
huber [25] recommended LSTM algorithms to address both these is-
sues. Based on these studies, the baseline model in this paper was taken
as LSTM. Besides, newer models like Gated Recurrent Units (GRUs), or
variants of LSTM (such as Bi-directional LSTM) have not yet been tested
for these purposes, which motivated the comparative analysis in this
research work.

1.3. Research contributions

This research work enables us to delve into the limitations in the
previous studies by proposing a comparison between state-of-the-art
prediction models to quantify the impact of occupants on MEL energy
consumption. The prediction models apply time-series data analysis
methods to capture potential synergetic repercussions of occupant ac-
tions and consumption patterns on building performance. In this paper,
a case study is presented on a typical educational building located in
the extreme hot climate of Abu Dhabi, United Arab Emirates (UAE).
Such climates have not yet been the target of studies focusing on MEL
predictions, signifying a notable gap in the literature.

In this research work, we try to find a solution to the following
questions:

(1) LSTM, Bi-LSTM, or GRU? Which model yields better results and
achieve greater prediction accuracy on extrapolating consumption
patterns for plug load devices using heterogeneous sensors?

(2) How can we make accurate predictions on the number of occupants
and energy consumption patterns in a non-intrusive and reliable
manner? Does occupancy duration have more influence on pre-
diction accuracy compared to the occupancy ratio? Does the
duration of prediction (look ahead into the time horizon) have an
impact on the prediction accuracy of the different models?

The significant contributions of this research work:

(1) Present predictive models to forecast energy consumption more
transparently and consistently and try to find out where the energy
consumption is coming from, measuring in detail its energy foot-
print for the different plug load devices. Thus, it is interesting to
identify and present state-of-the-art techniques regarding efforts to
characterize, analyze, measure, and reduce the consumption of
MELs.

(2) Propose a comparison between state-of-the-art prediction models.
Experimental results highlight that the Bi-LSTM model is slightly
more accurate than the GRU and the LSTM (baseline model).
However, the GRU and Bi-LSTM converges around the same
number of epochs than the baseline LSTM model.

(3) Device-utilization patterns for multiple occupants get extrapolated
inside the multi-utility test-space. A comparison between ground-
truth and predicted patterns was carried out to demonstrate which
model yields higher accuracy. Also, proposed reasonable strategies
for the reduction of MELs inside buildings.

Besides the upsurge in energy consumption, MELs also influence the
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power quality of the network, generally by implanting harmonics and
transients in the voltage signal. However, this is not the prime focus of
this research work; the practitioners and model developers should
consider it as another essential aspect that affects the power quality
inside a building that requires further investigation [3].

The rest of the work in this paper is structured as follows: Section 2
highlights the related work in this field. Section 3 describes the problem
formulation. Section 4 explicitly describes the case scenario and the
experimental set-up. Section 5 illustrates the data acquisition to ana-
lysis methods in detail. Section 6 explicitly describes the deep neural
network models as well as the implementation steps of the prediction
models. Section 7 describes the hyper-parameter tuning and optimiza-
tion strategies. Section 8 describes the experimental results for the case
study, and Section 9 discusses the model evaluation results. The sum-
mary of the lessons learned is presented as a discussion in Section 10.
Section 11 elucidates the applications of the prediction framework and
also includes open research questions for future research directions.
Finally, the conclusion is presented in Section 12.
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2. Related work

This section explores the related works found in literature, which
includes the use of MEL for whole-building energy simulations, beha-
vioral impacts on energy savings, and control systems for building en-
ergy management.

A significant amount of these studies obtained the loads from re-
gional or global design standards [26,4], regional surveys [12,27,26] or
electricity meters [15,13,28,29] installed in buildings. A broad range of
building types are covered as well, most common ones being offices or
commercial ones, but there is a notable dearth of academic buildings in
these studies. The key findings of these related works, and the asso-
ciated Képpen-Geiger climate classifications (KG-CC) of the cities they
were conducted in, are presented in Table 1. The Koppen climate
classification (KG-CC) system is one of the most commonly used sys-
tems, wherein the regions are represented by letters that indicate the
amount of precipitation and the normal temperatures that region ex-
periences. The regions are first divided into five main climate types; A
(tropical), B (dry), C (temperate), D (continental), and E (polar). The
second letter indicates the seasonal precipitation, while the third letter
indicates the heat levels [30]. It can be identified from the table that
there are various prediction methods used for the consumption pat-
terns, including LSTM [16]. However, it can be noted that no works are
making the use of Bi-LSTM or GRU.
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3. Problem formulation

The prediction of an occupant’s energy consumption into the future
at any time instant t gets represented by the occupant’s presence status
S and consumption patterns C. Occupancy varies throughout the week
within the monitored space, and each occupant is perceived as a deci-
sion-making agent who considers multitudes of different environmental
and contextual parameters before deciding which plug load devices to
use. At any time instant t, the nth occupant represented as (O,) has a
fixed desk position D, assigned to the occupant and plug load devices
deployed at each desk P, where P = p,,...,p, — 1. This task gets per-
ceived as a regression problem. The time-series data we observe of the
occupant for different plug load devices are from time-stamp T, to
Tops — values. And, the predictions made from T,ps — values + h to
Tpredice With h as the desirable horizon ahead of the current time instant.
h is called the windowing method, where the size of the window is a
parameter that gets used to predict the miscellaneous load in the next
time-stamp t + 1, based on the current time-stamp t and past time-
stamp t — 1 and t — 2. An occupant spawns an input consumption
sequence that corresponds to the values observed, and the task of the
prediction models is to generate an output sequence for the different
MEL plug load devices predicting the occupant’s future consumption

Typical building profiles and data from Urban Planning  Mixed-use office

Council
Design criteria from ASHRAE Energy end-use survey by =~ Commercial

SRCI
Power consumption profiles Load factor profiles

Time use survey Metering data
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Christiansen et. al. 2015  Plug load measurements
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households (US EIA 2011)

Occupancy (PIR) Plug loads (energy meters)
Occupancy (PIR) Plug loads (energy meters)
Occupancy Hourly electricity measurements

Electricity data (energy meters)

Data Used

Author and Year
Afshari et. al. 2014
Burgett et. al. 2014
Wang et. al. 2019
Mahdavi et. al. 2016
Mahdavi et. al. 2017
Wang et. al. 2018
Yalcintas et. al. 2008
Lee et. al. 2001
Sarfraz et. al. 2018
Ren et. al. 2013

Related work.

Table 1
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7 Shared
Workstations

Plug Load
Sensors

Environmental
Sensors

PIR Sensors

Fig. 1. Experimental Set-up (a) Bird’s view angle of the space layout. (b) Environmental sensor placement in the space layout (c) Six Plug-load Sensors on each desk
(Miscellaneous, Dock, Monitor 1, Monitor 2, Laptop, Lamp). (d) PIR sensors on each occupant desk.

patterns. The horizon of the prediction required (look ahead into the
future) is flexible for an extension. It also depends on the demands
which can range from an hour to day-ahead or week-ahead prediction.
In this paper, we have a 24 h-ahead (day-ahead) and week-ahead
prediction from the different deep learning models.

4. Experimental set-up and design scenario

The data collection was performed at a research facility located in
the city of Abu Dhabi, UAE. The area used for data collection served as
a shared work-space consisting of eight individual desks, which would
be occupied by up to 6 graduate students at a time. The remaining two
desks were designated as shared desks for the occupants. Also, another
common table was present for shared use, as shown in Fig. 1. Since
students used the test-space, the specific occupancy of each desk was
subject to change every semester, with incoming and outgoing students.

In total, eight different occupants were included in the study over
the entire course of the data collection, which spanned over a period of
eight months during April - November in the year 2017. Each desk
contained a personal lamp for illumination, controlled by the occupant,
while the area itself was illuminated by six different lighting fixtures,
each controlled by localized motion sensors. Besides, each desk was
equipped with six power outlets, including the power source for the
lamp. While the university was operational from 8 am to 5 pm on
weekdays, the area was open for access throughout the week.
Moreover, it should be noted that the area of study was not a fully
controlled environment, which meant that the occupants had flexible
hours for work, and while there were six primary occupants in the area,
there were no restrictions for visitors to access the area. Such visitors
occasionally occupied the shared table. However, all these visitors were
students or staff members of the institute.

5. Approach

In this section, we explicitly describe the methodology implemented
in this research work. The overview is also highlighted in Fig. 2.

5.1. Sensor placement strategy and calibration

The occupants were monitored with regards to their presence, de-
vice consumption patterns (via plug loads), and the associated en-
vironmental parameters such as illuminance, temperature, and relative
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Fig. 2. Overview of the methodology.

humidity. This was achieved with the use of three different kinds of
sensing modalities: plug load sensors, PIR (Passive Infra Red) sensors
for the occupant presence, and environmental sensors to record the il-
luminance (lighting status), temperature, and humidity. For more in-
formation about the specific sensors, the individual datasheet can be
referred to [31,32]. In total, nine PIR sensors from OccupEye [31] were
deployed in the area, eight on the work desks, and one on the common
table. The sensors were placed under the work desks, as shown in
Fig. 1(d), and no other objects were placed in the area beneath the desk,
so as to avoid occlusion and have a better range of detection. To find
the optimal position of the PIR sensor at each desk, three factors were
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taken into consideration; first, the sensors needed to be able to detect
the occupant’s presence at all positions at the desk, and second, the
optimal position should enable the sensor to avoid any triggers from
passers-by near the desk. Thirdly, the sensors are mounted to ensure
there is no occlusion in its Field of View (FoV). Different positions and
scenarios were performed, recording the triggers from the sensor to
determine the optimal position with respect to the three conditions.

For the plug loads, each desk was equipped with six sensors, and
each power outlet was designated to be used by a specific device, as
seen in Fig. 1 (¢). This was done in order to label and segment the plug
load consumption according to the devices plugged in. The devices used
for each socket and sensor were kept constant throughout the data
collection process. To ensure the due procedure was followed, weekly
checks were conducted.

As for the environmental sensors, one of the objectives of the study
was to be independent of any Building Management System (BMS),
which is why the data was not extracted from any BMS. Instead, the
environmental sensors were used locally to monitor the environmental
conditions around the occupant. The sensors were placed at different
heights and positions near the lighting fixtures in order to accurately
capture the luminance levels for each, without any significant inter-
ference from the others. Hence, six such sensors were used, one for each
lighting fixture.

While the data collection included input from all the sensors, it
should be noted that the environmental data was not used in the deep
learning models in this research work. The environmental data was
collected to understand the relationships and dependencies of occu-
pants’ visual and thermal comfort with the energy consumption pat-
terns, which was not included in the scope of this study. However, there
is a possibility to extend this work in that direction in the future. With
regards to the data from the two remaining sensing modalities, the
application of the PIR data was for the authors to understand the oc-
cupant presence status within the domain and context of the space. The
deep learning models were modeled for the weeks wherein the authors
had determined that the occupants were present in the area of study,
and tested the models in the week with maximum occupancy. The plug
load data represented the MEL consumption data for each device, and
was the dataset used to develop the deep learning models.

5.2. Data acquisition

The occupants were monitored for a period of 8 months (April —
November 2017) in total. However, due to the malfunction of devices
and the associated missing data, the time period taken into considera-
tion was for around 6 months, or 167 days precisely. The data were
individually collected from each sensor’s respective data storage plat-
form in the form of comma-separated values (CSV) files. Along with the
routine checks to ensure the functionality of sensors, this procedure was
conducted at weekly intervals. Among the sensors deployed, both PIR
and environmental sensors were battery-operated and could collect
data for up to 6 months at a stretch. The plug load sensors used the
power source they were attached to for functioning.

The data collection process for the environmental and plug load
sensors was continuous, reporting the associated device consumption
and environmental parameters at 15-min intervals. The PIR sensors,
however, were event-based, recording triggers as soon as the occupant
enters the detection range of the sensor. The sensor also registered the
absence as soon as the occupant was out of the range. However, to
account for cases where the occupant may have momentarily left the
area, on occupancy duration of five minutes was selected. The five
minutes was a wait-period before reporting for an ‘Absent’ reading; i.e.,
the sensor would have to detect the absence of the occupant for a
continuous five minutes.
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5.3. Data pre-processing and data transformation

In this section, we explicitly describe the pre-processing steps for the
collected data. Since the PIR sensor was event-based, it was not aligned
to a consistent temporal resolution. Also, those sensors recorded ‘blank’
triggers when there was no change in the previously reported presence
status. To counter these issues, all the ‘blank’ triggers had to be first
substituted with the occupancy triggers they were indicative of. The
data was then processed to sort and replicate the last recorded trigger
for every fifteen minutes. After up-sampling, each sensor now had four
readings every hour (one reading every fifteen minutes), totaling 96
readings per day.

For anomaly detection, the routine checks involved determining if
data was being continuously reported by each sensor. In some cases,
there was some missing data, frequently attributed to sensor malfunc-
tion. The malfunctions included sensors running out of battery and
removal of sensors from designated positions by maintenance per-
sonnel.

Considering the nature of the study, it was necessary to have con-
sistent data for each device and its user, and in order to maintain that
consistency, weeks with missing data were discarded. That was the
reason for the difference between the original monitored time of
8 months and the final duration of 6 months after data pre-processing.
The final data set consisted of 16,032 rows (96 readings X 167 days) of
data for each occupant. After the pre-processing step, the data was
transformed into a structured and consistent format to work with and
build the prediction models.

The sufficient amount of data needed for modeling depends both on
the complexity of the problem at hand and on the complexity of the
chosen algorithm. However, one heuristic about the relation between
the number of features and training samples is that the number of
training data should be 10 times more than the number of features. Our
MEL dataset comprises of consumption data (via plug loads) for 6 de-
vices (Miscellaneous, Monitorl, Monitor2, Docking Station, Laptop and
Lamp).

The dataset was split into training, testing and validation sets in the
ratio 60%: 20%: 20% respectively, which consists of 57,715 training
samples, 19,238 testing samples and 19,239 validation samples. There
are 6 features in the dataset. Thus, it is ensured that the training data,
with approximately around 60,000 samples and 6 features in the da-
taset is sufficient to build the predictive models.

5.4. Privacy handling and data suppression

This section details the steps that were taken to ensure the privacy
of the occupants that were monitored. Each occupant was monitored on
a voluntary basis, and was provided with a consent form detailing the
data that was being collected, and the duration and aims of the study.
This consent form was approved by the Human Research Ethics
Committee of the host university. In order to avoid revealing the
identification of the occupant, the data was labeled as Occupant 1, 2,
etc. No names or other personal details of the occupants were recorded.

The most sensitive part of this dataset is the data collected outside of
the opening hours since those readings are most likely collected from
employees working in the monitored area. This part of the data can be
used by the employer to estimate the work performance of the em-
ployees in the area. Data suppression is generally referred to as the
process of withholding or ad-hoc removal of a selected piece of in-
formation from the data to protect the identity, privacy, and revealing
confidential information of any individual occupant. This is a crucial
step when sharing data publicly or with third parties to protect the
privacy of each occupant. Due to this, for the future release of the da-
tasets, we will not release any of the readings collected outside of the
opening hours. Furthermore, the occupants in the monitored area also
have the right to privacy. We have decided to protect the identity of the
days, by not including the dates as part of the dataset. Furthermore, re-
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Table 2
The attributes included in the dataset (which is collected for a period 8 months).
Attributes Description
Time Time-stamp when the entries were collected.
Time-Interval Every 15 min (up-sampled).
Day ID Randomly assigned number which holds the ID for the specific day in the dataset.
Week ID Randomly assigned number which holds the ID for the specific week in the dataset.
Workday Boolean, telling if the entries were collected on a workday.
Weekend Boolean, telling if the entries were collected on a weekend.
Holiday Boolean, telling if the entries were collected on a national holiday.

Occupant ID
Presence Status
No. of occupants
Consumption Data

Each head-count is assigned a unique Occupant-ID, in number.

The occupancy status in a boolean format (0/1) from PIR sensors.

8 occupants observed (in-situ)

MEL Devices: Miscellaneous, Dock, Monitor 1, Monitor2, Laptop, Lamp

ordering the days by mapping the date component, thus creating a
random permutation of the days.

Similarly, for the weeks, we have a Week ID indicator. These pre-
cautions make it significantly more difficult for adversaries to perform
data linkage attacks upon the released data, and hence identifying/re-
vealing the identity of the occupants or the location of the monitored
area. In the dataset, we have introduced a workday indicator that ac-
counts for weekends and national holidays. Furthermore, we included a
national holiday indicator. The time-stamp remains in the up-sampled
form (15 min). Table 2, presents an overview of all the attributes in the
dataset.

Later, we want to release the full dataset, which can serve for
benchmarking and foster data-driven research in occupant centric MEL
prediction. This dataset used in this paper would help to extract the
inter-relationships of different devices influencing occupant behavior
and utilization patterns.

6. Models used

Initially, the time-series dataset gets split into training, test, and
validation set. The prediction models have been developed using the
training sets, and the predictions are made on the test set, which is
unseen by the model. The prediction model used for comparison are -
Long Short-Term Memory (LSTM) [baseline model], Bidirectional Long
Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU).

The next step is transforming the time-series data into a supervised
learning problem, i.e., the data gets organized into input and output
patterns where the observation at the previous time step is fed to the
network as an input to predict the observation at the current time step.
Another step would be that the observations get transformed to have a
specific scale, i.e., re-scale the data values to lie between —1 and 1. The
re-scaling gets done to meet the default hyperbolic tangent activation
function of the model. These transforms are inverted on predictions to
revert them into their original scale before calculating an error score.

LSTM was proposed by Hochreiter et al. in 1997 [25], and the major
motivation behind building the model using LSTM for MEL predictions
on plug load devices for multiple occupants is that the model can ac-
count for energy savings and efficient device utilization within the test
zone. Also, to comprehend the significant factors influencing decision-
making for different device choices and individual consumption pat-
terns in the multi-utility test zone. This could further help to perform
intelligent building operations and curtail energy wastage. Bidirec-
tional LSTMs (Bi-LSTMs) proposed by Graves et al. in 2005 [33] are an
augmented version of conventional LSTMs that can boost up the per-
formance of the model on prediction problems. Cho et al. in 2014
proposed GRU and it got successfully implemented for sequence pre-
diction tasks [34].

For implementing the prediction models, we have used Python
language to evaluate and process the time-series data. For the data
analysis, we developed prototypes using Scikit-Learn, Scipy, Pandas,
Numpy, Seaborn, Matplotlib libraries. We also used sequential models
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in Keras (compatible with python 3.6 version) under Tensor-flow as
back-end. We used a workstation with an Intel i7-8850H with a base
frequency of 2.6 GHz and a turbo boost to a decent 4.3 GHz. Our al-
gorithm utilizes Tensor-flow as the back-end to evaluate the overall
model performance and computational efficiency. The explicit de-
scription of how each model gets implemented follows in the next
subsections:

6.1. Long Short-Term memory (LSTM) [Baseline Model]

The advantage of using LSTM as a baseline model over others is that
LSTM’s can randomize the order dependencies, possess memory blocks
across observations in the input, which Multi-Layer Perceptron (MLP’s)
lack. The gates involved in implementing the LSTM and the informa-
tion-flow is described below:

1) Forget Gate(Ft) decides which information to delete that is not im-
portant from the previous time-stamp. The unnecessary parts of the
previous cell state are forgotten. To decide which information to be
omitted to form the cell in that particular time step, it is decided by
the sigmoid function o. It looks at the previous state h(t — 1) and the
memory of the previous unit represented as m; and the current
input X, then compares the function. The weights get represented by
w. The weights in the LSTM module is updated using Back-
Propagation through Time (BPTT). This enables stability in the
model. This can be given by the Eq. (1):

Ft = oWX; + wh,_, + wm,_; + bias(Ft)) @
2) The second layer comprises 2 parts i.e., input gate (It) and cell state
(St). There are two activation functions, one is the sigmoid function,
and the other is tanh. The sigmoid function then decides which
values to let through (0 or 1). The tanh function gives the weightage
to the values which are passed, deciding their level of importance
(-1 to 1). Cell state (St) can selectively update cell state values and
decide what part of the current cell state makes it to the output and

gets defined by the Egs. (2) and (3):
It = oc(wX, + wh,_; + wm,_, + bias(It)) 2)

St = o(wX, + wh,_; + wm,_, + bias(St)) 3)

3) The third step is to decide what will be the output. It gets governed
by the output gate (Ot), and Ht captures the entire process, defined
in Egs. (4) and (5):

Ot = o(wX, + wh,_; + wm, + bias(Ot)) “

Ht = (Ot) * tanh(St) ®)

6.2. Bidirectional Long Short-Term memory (Bi-LSTM)

Bi-LSTMs train on two rather than one LSTM on the input time-
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series data. BILSTMs runs the inputs in two approaches, one from past
to future and one from future to past, i.e., the first on the input se-
quence as it is, and the second is a reversed copy of the input sequence.
However, what varies this approach from others is that in the LSTM that
runs backward, the information from the future gets retained. Using the
hidden states in combination enables the preservation of information at
any point in time from both past and future. The implementation steps
are defined by Egs. (6)-(8).

k! = f, (wX,, hl))---Forward (6)
ht = f, wX,, ht,,)---Backward (7)
he = f,(h!, h})---OutputLayer ®

Bi-LSTMs can provide additional context to the neural network and
result in faster convergence and even fuller learning on the prediction
problem, although it depends on the task. The structure of Bi-LSTM
allows having both backward and forward information about the se-
quence of consumption patterns at every time step. By using the in-
formation from the future, it becomes easier for the network to predict
the consumption patterns efficiently.

6.3. Gated Recurrent Unit (GRU)

In this section, we describe the execution of the prediction model,
using Gated Recurrent Units (GRU). GRU performs better since it has a
less complicated structure and is computationally less expensive. Also,
the GRU training phase is faster than RNN or LSTMs on limited training
data.

Another advantage of GRU is that it solves the problem of vanishing
gradient, which generally occurs with vanilla RNN. Vanishing Gradient
problem occurs when the gradient shrinks as it back-propagates
through time. If the gradient value becomes too small, it doesn’t con-
tribute much in the learning phase.

To solve the vanishing gradient problem and short-term memory,
the gates in GRU help to regulate the flow of information and handle
which data in the sequence is essential to retain and others to throw
away. By continuing this process, the relevant information is passed
along the sequence-chain and makes accurate predictions.

The GRU discloses the memory content at each time-stamp between
the previous and the upcoming next memory content with the help of
an update gate. The update gate governs how much of the previous
memory state should get forgotten and how much new content should
pass into the future. The update gate is analogous to the forget and
input gates of an LSTM model. GRU has fewer parameters and train a
bit faster and also need fewer data to generalize. GRU’s got rid of the
cell state value and directly use the hidden layers to transfer the in-
formation ahead. The update gate z, at time-stamp t gets defined in the
Eq. (9):

2t = o (WX, + Uhi_y) ©)]

X, is the input that gets multiplied with its weight w” Similarly, h.,,
which holds the information regarding the previous time-stamp t-1, is
multiplied by its own weight U” The results added together, and a
sigmoid activation function gets implemented to squish the results be-
tween 0 and 1. The reset gate decides how much of the past information
to forget. It can be defined as given in Eq. (10):

r=ocWX, + Uh_;) (10)

The current memory content h,, which uses the reset gate to store
the necessary information from the previous time-stamp, is given in Eq.
(11). An element-wise product between the reset gate r, and Uhy. is
performed. This step handles what information is needed to be removed
from the previous time-stamps and apply the tanh activation function.
The tanh activation function squishes the values between —1 and 1,
thus regulating the output while performing the parameter tuning
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through successive runs.

h=tanh(wX, + r, © Uh,_, an

6.4. Model evaluation metrics used

For the evaluation, a rolling-forecast gets implemented, also known
as walkforward model validation. Every time step of the test set gets
escorted one at a time. The prediction models are used to make a
forecast on the MEL consumption for the time step, and then the actual
expected value from the test dataset gets captured and made accessible
to the model for the prediction on the next time step. This walk-forward
model validation mimics a sophisticated real-world setting where
training data would be accessible, and test data gets used in forecasting
(in a oneshot method), i.e., the energy consumption of the occupants.
All forecasts on the test dataset get accumulated; thus, an error score
gets calculated to encapsulate the skill of the prediction model.

For the evaluation of the models, the first metric used is Root Mean
Squared Error (RMSE), and it quantifies the amount by which the es-
timator deviates from the targeted output. The RMSE gets used as the
evaluation metric as it penalizes significant errors, and the outcome is a
score that is in the same units as the forecasted data, i.e., occupants
plug load energy consumption.

Another metric used is Mean Absolute Error (MAE), which is the
average of the absolute values of the differences between predicted and
the corresponding observation in the plug load consumption data. The
evaluation results are elucidated in Section 9.

7. Hyper-parameter tuning and optimization strategies

The hyper-parameter for a model is a configuration that is external
to the model and whose value cannot get approximated from the data.
The hyper-parameters are often practiced to help estimate model
parameters and are usually specified heuristically. The hyper-para-
meters get tuned for a given prediction problem. The best value for a
parameter tuning on a given problem is not known; however, we often
use different rules of thumb or explore for the best value by trial and
error. The hyper-parameters for the prediction model gets discussed
below:

The number of training epochs is the number of times that the entire
training dataset gets demonstrated to the network during training. The
batch size of a model can be referred to as iterative gradient descent in
the patterns exhibited and defining what patterns to read at one go and
restore in-memory and discard others before the weights get updated in
the model [35]. Dropout layer was added to prevent overfitting. Mean
squared error (MSE) is used as the loss function as it helps to evaluate
the accuracy of the model in predicting the test data.

Optimization Strategies:. We implemented a grid search for hyper-
parameter optimization. Grid search helps to find the optimal hyper-
parameters of the predictive model, which results in better predictions.

Table 3
Hyper-parameters selected for the three different deep learning models.
Hyper-parameters LSTM Bi-LSTM GRU
1) No. of Training Epochs 100 100 100
2) No. of Neurons Activated 64 64 64
3) No. of Layers 3 2 3
4) Batch-size 64 256 256
5) Dropout 0.1 0.1 0.1
6) Learning Rate 0.001 0.001 0.001
7) Activation Function tanh tanh tanh
8) Optimizer Adam Adam Adam
9) Loss Function MSE MSE MSE
10) Evaluation Metric MSE MSE MSE
MAE MAE MAE
MAPE MAPE MAPE
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Table 3 highlights the selected hyperparameters for the three different
deep learning models. Also, we choose Adam because it can get per-
ceived as a merged version of RMSprop and Stochastic Gradient Descent
(SGD) with momentum [36]. The advantage of using Adam is that it is
computationally efficient and straightforward to implement for big
datasets; also, hyper-parameters have intuitive interpretation cap-
abilities and require less parameter tuning. Adam is also appropriate for
noisy datasets or a sparse gradient.

Batch Normalization (BN) is another optimization technique where
the distribution of each layer in the input of the deep learning model
can change quite consistently. As the input changes, the model para-
meters keep changing too, during the training phase. Lower learning
rates can be set to deal with the dynamic parameters. However, lower
learning rates slow down convergence and therefore make the learning
process slower. There seems to be a trade-off between dynamic para-
meters and learning rates. The trade-off gets more emphasized with
saturating nonlinearities across different layers in the deep learning
model. It has been demonstrated how by initializing values of para-
meters with zero mean and unit variance, also known as normalization.
By updating parameters as training progresses for every mini-batch, and
then back-propagating through time (BPTT), it is viable to use higher
learning rates, and to pay less attention to the initial values of the
parameters. This process not only makes learning more robust but also
speeds up the training process, as higher learning rates need fewer
epochs to converge. Notably, batch normalization acts as a regularizer,
requiring less dropout and discouraging overfitting [37], normalizing
the loss, i.e., sum the loss terms along with the sequences and divide by
the maximum length of the sequence. In that way, it becomes easier to
reuse the hyper-parameters between multiple case scenarios.

Another strategy is early pruning of the training phase to avoid
overfitting and to evade from training a neural network more than
needed. Detecting when a model offsets to overfit the data is a chal-
lenge and one of the few methods to discover when the network is not
learning anything new about the data comprises of investigating the
validation loss, which gets calculated on the validation dataset. If the
validation loss does not improve, it indicates that further training
doesn’t add anything new to the current parameters of the model. Early
pruning is decided based on the patience parameter in Keras. In our
case, a value of 30 epochs was used for the early pruning of the models
if the validation loss doesn’t decrease and remains almost stagnant for
30 epochs).

A good fit represents a case where the performance of the deep
learning model is extremely well on both the training and validation
sets. This can get diagnosed from a plot where the train and validation
loss decrease and stabilize around the same number of epochs. We have
highlighted diagnostic plots for the three deep learning models, see
Fig. 3 for LSTM, Bi-LSTM, and GRU, respectively. The Fig. 3 shows that
the models stabilize around the same point indicating a well-fitted
model. The loss function used is Mean Squared Error (MSE).

8. Experimental results

This section highlights the day-ahead and week-ahead prediction for
the different plug load devices in Figs. 4 and 5, respectively, for Oc-
cupant No. 6. The week chosen for the week-ahead prediction was se-
lected based on its high occupancy. In order to compare the occupancy
between different weeks, diversity factors were used. Diversity factors
represent the ratio of actual occupancy to the maximum possible oc-
cupancy of an hour. These factors form the basis for generating stan-
dard occupancy schedules in offices [38,39]. The week selected was the
one with the highest diversity factor.

The six plug load devices are - Miscellaneous (no fixed device label
i.e., occupants had the flexibility to plug in any device), dock charging
station, monitor 1, monitor 2, laptop, and desk lamp.

From Fig. 4, it is evident that the traffic of occupants starts at
around 9 am. Based on the prediction result analysis, Occupant No. 6
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Fig. 3. Training Loss vs. Validation Loss for the LSTM, Bi-LSTM and GRU Model
respectively, using Mean Squared Error as the Loss Function. The unit is in kW.

has unstable patterns for the Miscellaneous plug load. Miscellaneous is
hard to predict, and the reason is that there is less training data, and it
becomes hard for the models to learn and capture the consumption
patterns for it. However, the Bi-LSTM model was the best one to capture
the miscellaneous plug load patterns with the least RMSE and MAE. The
lower value of RMSE and MAE interprets that the predictions were
closer to the groundtruth data.

As seen in Fig. 4, dock consumption had quite a consistent pattern
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Fig. 4. Day-ahead Prediction for Occupant 6 shows comparison between the prediction models (LSTM (baseline), Bi-LSTM and GRU with the actual MEL con-

sumption (dashed) for the six plug load devices [in kW].

during office hours.

However, it can be noted that there is a peak right before midnight,
which coincides with the deviation in the models’ prediction (LSTM, Bi-
LSTM, and GRU). This peak is again repeated in the monitor and laptop
consumption as well. This would constitute a scenario where the desk
occupant has stayed much longer than the regular office hours.
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Nevertheless, the deviation of the prediction is less than two decimal
points, indicating the accuracy and reliability of such a prediction. The
peak consumption of the monitors starts with the regular office hours,
taking a dip at noon, which represents the occupants leaving for lunch.
The similarity in the consumption patterns for the monitors is corro-
borated by the fact that both of the monitors are simultaneously



A. Das, et al.

Applied Energy 269 (2020) 115135

Predicted vs Original usage (24 April - 30 April, 2017)
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switched on and used by the occupant.

The peak load for laptop consumption occurs from 12 pm to 1 pm,
indicating a lag in the initiation of the consumption compared to the
monitors and the dock. In comparison to the rest of the devices, the
lamp is rarely used by the occupant. The area of study was well lit by
the motion-controlled lights, which were complemented with natural
daylight during the day. Hence, the need to use the lamps did not often
arise, which can be seen in both Figs. 4 and 5.

From the week-ahead predictions in Fig. 5, it can be seen that the

largest deviations occur in the miscellaneous plug load and lamp con-
sumption. Both of these categories had the least amount of training data
since the occupants rarely used the lamps, and miscellaneous plug load
had no consistent device attached to it. Fig. 6 highlights validation loss
[in kW] for the different prediction models. It shows that the Bi-LSTM
model is more stable compared to GRU and the baseline LSTM model.

The monitors consumed extra power, and the least power was de-
voured by the lamp, out of the six plug load devices. After the com-
parison of the different models, we can see that the LSTM predictions
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Fig. 6. Validation loss [in kW] for the three different prediction models.

were better for day-ahead predictions. However, the LSTM model per-
formance dropped significantly for the week-ahead predictions, and the
comparison is illustrated in Figs. 4 and 5. On the contrary, GRU did not
perform very well on the day-ahead predictions; however, it captured
the future consumption patterns more competently in the week-ahead
predictions. Furthermore, when comparisons are made between Bi-
LSTM and GRU, Bi-LSTM is slightly better than GRU.

9. Model evaluation results

In this section, we explicitly describe how we evaluated the model.
As mentioned in Section 6.4, the evaluation metrics used are RMSE and
MAE. The RMSE is directly interpretable, making it a better measure of
goodness of fit rather than using a correlation coefficient. Furthermore,
the errors are squared before they are averaged, thus applying a rela-
tively high weight to significant errors. In this case, RMSE is an ap-
propriate metric since it provides the benefit of penalizing large errors.
Table 4 highlights the average RMSE [in kW] from each plug load de-
vice for the different prediction models for the day-ahead and week-
ahead predictions.

The RMSE values for the GRU model for the plug load devices were
closer to the groundtruth, except miscellaneous plug load, see Fig. 7 in
subplot A and C, for comparison. Finally, we can interpret from the
plots that the miscellaneous plug load has a vital role in the MEL pre-
diction, and it can negatively impact the performance of the prediction
models.

Another evaluation metric used is Mean Absolute Error (MAE) for
evaluating the three different deep learning models. The Mean Absolute
Error is the average of all absolute errors between actual and predicted
values. Table 5 highlights the MAE values from each plug load device
for the different prediction models for the day-ahead and week-ahead
predictions. The MAE values for the GRU model mirrored the values
from the RMSE evaluation, by being closer to the groundtruth except

Table 4

Average RMSE Comparison [in kW] between the different prediction model on
the plug- load devices [Bold indicates lowest RMSE out of the three prediction
models for individual plug load devices].

Prediction Day- Week-Ahead
Ahead Prediction
Prediction

Devices/Model ~ LSTM  Bi-LSTM GRU LSTM  Bi- GRU

LSTM

RMSE _Misc 0.7527  0.3960 1.3805 3.1515 1.5172 2.0673

RMSE _Dock 0.0281 0.0430 0.0413 0.1302 0.1387 0.0874

RMSE _Monitorl 0.0741 0.0760 0.0749 0.2388 0.2454 0.2355

RMSE_Monitor2 0.0667 0.0672 0.0674 0.2116 0.2189 0.2142

RMSE _Laptop 0.0600 0.0855 0.0969 0.3613 0.3843  0.2860

RMSE _Lamp 0.1020 0.0765 0.0651 0.2353 0.2123 0.3107
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for the miscellaneous plug load. The comparison can be seen in Fig. 7
between subplot B and D.

10. Discussion and lessons learned

A significant conclusion from this state-of-the-art overview is that
user behavior has a significant impact on energy consumption and
device utilization in commercial buildings, and institutional buildings
reflect the same pattern.

The influence of user behavior is a challenge to quantify for meth-
odological interpretation. The decision-making process of end-user is
multi-factorial and complex; thus, factors influencing behavior are also
numerous and varied. The dynamic nature of occupant’s energy beha-
vior is hard to comprehend, and multi-disciplinary approaches and
meticulous investigations are required to contribute new insights into
the energy-use domain.

To determine building occupant behaviors, a scientific study that
interprets the dominant factors that are involved in energy behaviors
has to be conducted with the users. Since the users do not always make
rational decisions, the manner of presenting the choice itself becomes
determinant in adopting energy-efficient behaviors. Also, the energy
conservation measures introduced without taking into account user
comfort and satisfaction can often have negative impacts and be
counter-productive because users are likely to try to adapt to their
environment to attain satisfactory conditions.

The prediction of energy-use complements the process of under-
standing and optimizing building energy consumption by providing
valuable insights regarding the occupant’s consumption patterns and
device-utilization. These predictive models used in this research work
become vital for implementing demand-response assessments, as well
as providing pathways for valid pricing and tariffing for energy usage.
Moreover, the benefits of such models can get amplified through the use
of software tools to achieve these objectives.

11. Application and future research directions

An essential application of this work is the light it sheds on the
accuracy of MEL prediction using deep learning models. These esti-
mates through software tools can be beneficial to building owners and
facility managers in design and decision-making processes to re-
commend energy-saving control strategies and identifying energy
footprints from each device. Another important application is the usage
of these predictions to identify periods of peak loads for equipment to
further recommend energy retrofit measures more efficiently.

Studies investigating the effect of feedback on user consumption
patterns highlight that it has indeed been a successful strategy [40]. The
results of this work are useful in highlighting the diversity of occupant
energy-use patterns with regards to MELs, and illustrates the sub-
sequent opportunities that arise for contributing to such potential
feedback systems.

An example of inducing behavioral changes can be in the form of
gamification approaches in offices/mixed-use building, wherein occu-
pants are provided with incentives for adopting energy-saving mea-
sures. However, case studies in this regard are rare and warrant further
research and evidence. Some potential applications of MEL predictions
to incorporate energy-saving measures can be:

. Developing occupant awareness programs, coupled with awards or
financial ncentives for reducing their energy usage.

. Identifying the requirements of occupants through feedback systems
and assess the trade-off between those requirements and actual
energy usage.

. Investigating heterogeneous sensing modalities to adopt the best
metering technique for extrapolating such data.

For future studies, attention has to be paid to the interaction
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Table 5

Mean Absolute Error (MAE) Comparison [in kW] between the different pre-
diction model on the plug load devices [Bold indicates lowest MAE out of the
three prediction models for individual plug load devices].

Prediction Day- Ahead Week-Ahead
Prediction Prediction
Devices/Model ~LSTM Bi-LSTM GRU LSTM Bi- GRU
LSTM

MAE _Misc 0.0078  0.0041 0.0144 0.3939 0.1897 0.2584
MAE _Dock 0.0003 0.0005 0.0005 0.0163 0.0173  0.0109
MAE Monitorl  0.0008 0.0009 0.0008 0.0298 0.0307  0.0294
MAE _Monitor2 0.0008 0.0008 0.0008 0.0265 0.0274  0.0268
MAE Laptop 0.0008 0.0009 0.0011 0.0452 0.0480  0.0357
MAE _Lamp 0.0011  0.0008 0.0007 0.0294 0.0265 0.0388

between the occupants’ preferences and advanced building automation
systems. Another aspect could be the comparison of predictions when
inputs from the HVAC systems are available. There are still some open
research questions and scope for further investigation about the design
of such building control systems regarding occupant behaviors and
preferences. One aspect is the synergy between the building control
systems, with the occupant preferences regarding their comfort and
energy usage. Another aspect is the flexibility or robustness of those
control systems towards occupant behaviors, and how well they can
adapt to those behaviors.

12. Conclusion

This work was successful in performing a case study focused on MEL
prediction through deep learning methods. The data comprised of the
MEL consumption of each occupant and the associated device-utiliza-
tion. This data was used to develop a baseline LSTM model for MEL

predictions, which was suitably efficient for predicting consumption
patterns over a shorter period. Furthermore, the study compared the
results from this baseline model with two state-of-the-art deep learning
models (Bi-LSTM and GRU) and highlighted the evaluation results of
each model. The experimental results on this new dataset collected
demonstrate that considering device-utilization patterns and occupant
interactions with these devices is fundamental for miscellaneous loads
prediction.

In this paper, our comparative analysis results show that in terms of
RMSE and MAE, all three deep learning models can achieve the best
results depending on the considered devices and also the duration of the
prediction required, i.e., short-term or long-term prediction. The low
RMSE and MAE values indicate that the deviation of the predicted
values from the measured values was quite low. Besides, Bi-LSTM
proved to be the marginally more stable model out of those three, in
both day-ahead and week-ahead predictions. Usually, due to GRUs less
complicated structure and fewer gates, the training phase is faster and
converges faster than other models. But, in our case, GRU and Bi-LSTM
converge around the same number of epochs. As discussed in Sections
10 and 11, the accuracy of these prediction models can be beneficial to
building management systems and can enable the BMS authorities to
perform intelligent energy management strategies.
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