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Abstract

Unmanned underwater vehicles (UUVs) have become indispensable tools for inspection,
maintenance, and repair operations in the underwater domain. The major focus and nov-
elty of this work is collision-free autonomous navigation of UUVs in dynamically changing
environments. Path planning and obstacle avoidance are fundamental concepts for enabling
autonomy for mobile robots. This remains a challenge, particularly for underwater vehicles
operating in complex and dynamically changing environments. The elastic band method has
been a suggested method for planning collision-free paths and is based on modeling the path
as a dynamic system that will continuously be reshaped based on its surroundings. This pa-
per proposes adaptations to the method for underwater applications and presents a thorough
investigation of the method for 3D path planning and obstacle avoidance, both through sim-
ulations and extensive lab and field experiments. In the experiments, the method was used
by a UUV operating autonomously at an industrial-scale fish farm and demonstrated that
the method was able to successfully guide the vehicle through a challenging and constantly
changing environment. The proposed work has broad applications for field deployment of
marine robots in environments that require the vehicle to quickly react to changes in its
surroundings.



1 Introduction

1.1 Background

Unmanned underwater vehicles (UUVs) play an important role in monitoring and interacting with the oceans,
and are widely used for mapping, or inspection, maintenance, and repair (IMR) operations for industry
and research within fields such as research, oil and gas, military, oceanography, archaeology and aquacul-
ture (Petillot et al., 2019; Shukla and Karki, 2016; Yu et al., 2019; Schjølberg and Utne, 2015; Føre et al.,
2018). The use of UUVs has also replaced divers in dangerous operations in shallow waters (Holen et al.,
2018) and enabled exploration of previously inaccessible deeper waters (Kyo et al., 1995).

In general, UUVs can be placed in two categories; autonomous underwater vehicles (AUVs) that are un-
tethered and operate autonomously, and remotely operated vehicles (ROVs) that are usually tethered with
an umbilical to a support vessel and manually controlled by a pilot. However, there is an ongoing effort
to develop new methods that can support remote or autonomous ROV operations (Petillot et al., 2019;
Schjølberg and Utne, 2015). Such operations can greatly reduce operational costs and can increase the
weather window in which operations can safely be conducted.

Underwater environments pose unique engineering and scientific challenges due to their harsh and unfor-
giving nature. Vehicles must operate in the presence of hydrodynamical forces from waves and ocean
currents (Faltinsen, 1990), with low bandwidths for wireless transmission due to high signal attenua-
tion (Diamant et al., 2017), and in the absence of terrestrial technologies such as global navigation satellite
systems (GNSS) (Fossen, 2021). Despite these challenges, autonomous operations are crucial for a wide
range of applications in the marine domain. To safely operate autonomously in a real-world environment, a
UUV must have some sort of strategy to handle spatial constraints due to static or moving obstacles.

Tasks such as path planning and obstacle avoidance become increasingly challenging when the vehicle
must operate in an environment that changes over time. UUV operations in aquaculture is an example
of such a case, where the vehicle operates in close proximity to living fish, flexible structures such as net
pens (Klebert et al., 2015), other vehicles, and numerous other obstacles (e.g., ropes, sensors, and under-
water cameras (Kelasidi and Svendsen, 2022)). The dense population of fish renders this a highly cluttered
and complex space. Furthermore, the position and geometry of the net pens are ever-changing due to waves
and currents, rendering the spatial constraints of the environment unknown. It is also a safety-critical
environment, as structural failures might lead to fish escape incidents, which can have drastic economic
and environmental consequences (Føre and Thorvaldsen, 2021). This dynamic and changing environment
requires that a UUV is able to replan its path quickly such that it avoids disturbing or harming the fish,
or damaging the net pen or itself. The use of UUVs for IMR operations in aquaculture has grown rapidly
over the last decades (Balchen, 1991; Schjølberg and Utne, 2015; Føre et al., 2018; Kelasidi and Svendsen,
2022), and are often used for inspections of the structural integrity of the facilities, net cleaning opera-
tions for biofouling management, and biomass monitoring. This has resulted in a corresponding increase
in research aimed at autonomous UUV operations in this field(Amundsen et al., 2022; Kelasidi et al., 2022;
Cardaillac et al., 2023).The investigation of path planning and obstacle avoidance for aquaculture is an
important component of this development.

The problem of finding the shortest collision-free path in a 3D space is known to be NP-hard (Canny and Reif,
1987) and planning algorithms thus tend to become computationally expensive. To mitigate the computa-
tional complexity, path planning are often categorized into local planning algorithms that only consider
limited information and short time horizons, and global algorithms that take more information into ac-
count (Raja and Pugazhenthi, 2012). Because the computational costs of local algorithms are small, they
are often suitable for real-time systems but are prone to making suboptimal decisions or getting stuck into
local minima. Global algorithms, on the other hand, can calculate a path closer to the global minimum but
are often infeasible for real-time systems. Usually, planning alogrithms must both react to sudden changes
in the environment and plan optimal maneuvers, which have led to the development of hybrid architectures



consisting of both local and global algorithms (Wang et al., 2020).

The long-term goal of our research is to enable safe and reliant autonomy for UUVs in dynamically changing
and cluttered environments such as aquaculture net cages. In this work, we limit the scope to local path
planning and reactive obstacle avoidance. Future work can combine our contributions here with subjects such
as obstacle detection, mapping, and global path planning in a hybrid architecture. The literature review,
therefore, focuses on local path planning and obstacle avoidance, with an emphasis on real-time capabilities,
applications to underwater domains, and experimental investigations.

1.2 Previous work

One of the first applications where collision-free path planning was a subject of research was in the robot
manipulator research community in the 1980s. An early method was presented in Hanafusa et al. (1981),
where the desired path is projected in the null space of the obstacles. Another method developed in the
1980s is the now famous potential field method (Khatib, 1985), in which the target applies an attractive
artificial potential field onto a moving robot, while obstacles apply repulsive potential fields. The robot
is then guided toward the target by following the valleys of the resulting potential field. The method
represented an efficient and easy-to-conceptualize algorithm which is still an inspiration for many other
methods. However, Koren and Borenstein (1991) exemplified shortcomings of the method, which include
stability issues in the presence of narrow passages or obstacles.

One method inspired by the potential field method is the elastic band method (Quinlan and Khatib, 1993).
The motivation of the elastic band method is to conceptualize the desired path as a physical system imitating
a stretched elastic band. Instead of obstacles applying a potential field to the robot, they are applying a
potential field to the desired path which will repel the path from the obstacles. Similarly, artificial contracting
forces that simulate the internal tension of the rubber band are applied to the desired path, optimizing the
path by removing any ”slack” in the path. The method thus incorporates both obstacle avoidance and
optimality with respect to path length elegantly in its planning algorithm. Letting the path be inspired by
a physical system has an intuitive appeal - as the behavior of objects in the real world is well understood,
this can make the method easier to conceptualize. The elastic band method has been implemented for
helicopters (Lee and Tsai, 2011), ground vehicles (Sattel and Brandt, 2008; Brandt and Sattel, 2005), and
an aquaculture net crawling robot (Føre et al., 2021). In (Wang et al., 2020), the method was combined
with a global rapidly-exploring rapid tree (RRT) method (LaValle, 1998) in a hybrid architecture.

Alternatives to potential field-based methods include methods that are derived from vehicle kinematics
or dynamics. A popular method is the dynamic window approach (Fox et al., 1997), which considers the
dynamics of the robot. The possible desired trajectories are restricted to a valid search space where all
trajectories render the robot able to stop before collisions. The optimal velocity maximizing the obstacle
clearance and velocity within the search space is then selected. Tusseyeva et al. (2013) formulated the
dynamic window approach for 3D AUV path planning. Another popular method is the velocity obstacle
method (Tychonievich et al., 1989; Fiorini and Shiller, 1998), where the forward projection of the velocity
vectors of obstacles are defined as velocity obstacles. To avoid collisions, the algorithm selects a velocity
vector outside of these velocity obstacles. The velocity obstacle approach is extended to the 3D space for
unmanned aerial vehicles in (Jenie et al., 2016). A third type of method is the constant avoidance algorithm
proposed by (Savkin and Wang, 2013). The constant avoidance algorithm uses a constant heading angle
calculated through the vehicle kinematics and makes the vehicle avoid collisions, while also compensating
for the obstacle velocity vectors. This method was experimentally demonstrated for 3D obstacle avoidance
using the HUGIN AUV in (Wiig et al., 2020).

Other approaches include the task-priority inverse kinematics framework (Simetti and Casalino, 2016) and
the set-based task framework (Moe et al., 2020), where different control objectives such as path following,
obstacle avoidance and singularity avoidance are prioritized relative to their respective importance. A control
function is then used to choose the higher-priority control objective at each timestep. There also exist



methods based on formal verification, such as control-barrier functions (Ames et al., 2019) and the concept
of Hamilton-Jacobi (HJ) reachability (Bansal et al., 2017). For approaches based on control-barrier functions,
which play a role similar to Lyapunov theory in the study of the stability of dynamical systems, the forward
invariance of some set can be designed such that it renders operational tasks as a safe set. Demonstrated
applications includes legged robots (Nguyen et al., 2016), quad-copters (Wang et al., 2017), and surface
vehicles (Thyri and Breivik, 2022).

Furthermore, recent developments in computational powers have rendered online trajectory optimization
possible (Schulman et al., 2014). Approaches include methods that incorporate handling of state uncer-
tainty (Majumdar and Tedrake, 2017; Xanthidis et al., 2023) and methods that combine optimization with
HJ reachability (Chen et al., 2021). Model predictive control (MPC) methods have also been successfully
applied, for instance for autonomous surface vessels (ASVs) that have to avoid collisions while complying
with the COLREG convention (IMO, 1972; Johansen et al., 2016; Tengesdal et al., 2023).

1.3 Contributions

While obstacle avoidance is a thoroughly researched topic, there have been few experimental investigations of
3D underwater obstacle avoidance algorithms in dynamically changing environments. In such environments,
there is a need for quickly being able to alter the plan based on changes in the surroundings. When the
environment and the vehicle are subject to fast dynamics, the path planner is required to re-plan very fast, a
requirement that few methods are able to fulfill in the 3D space. Furthermore, many methods are designed
based on the dynamics of the vehicle, and, as such, it can be challenging to transfer the method between
different vehicles. This paper adapts the elastic band algorithm for underwater vehicles and experimentally
investigates its ability to produce safe paths in real-time in dynamically changing environments.

The elastic band algorithm is appealing due to its intuitiveness, low computational load, ability to incor-
porate both obstacle avoidance and optimization, and natural formulation in the 3D space. Furthermore,
it is independent of the vehicle dynamics, which makes it easy to transfer between vehicles with different
configurations and dynamics. To adapt the method to underwater environments, we also propose changes to
the algorithm to incorporate the spatial constraint of the environment, including potential fields from the sea
surface and seafloor. The path planner was implemented in a generalized control framework together with a
guidance law, a set of super-twisting sliding mode motion controllers, and an extended Kalman filter (EKF)
for state estimation. In the paper, we will present the entire proposed control framework to give a complete
example of how the path planner can be implemented in a physical system. The method is demonstrated
through numerical simulations using a mathematical model of an ROV, controlled lab experiments using a
lightweight ROV, and field trials at a fish farm using an industrial ROV. In addition to demonstrating the
ability to produce safe paths in cluttered environments, this set of trials also show-cases the versatility of
the approach across scales.

1.4 Paper outline

Section 2 presents a mathematical model of an ROV. The elastic band path planner is then presented in
Section 3, while Section 4 presents the control framework. Section 5 presents results from a simulation study
and the laboratory experiment. Results from field experiments are then presented in Section 6 and Section 7
discusses the results and future prospects. Finally, 8 concludes the paper.

2 Vehicle Model

For simulation and notation purposes, we will here present a general model for an ROV, similar to the
UUV used in the experiments. We assume that the ROV is designed such that the roll and pitch angles are



Figure 1: Illustration of the vehicle’s position in the inertial frame (x, y, z) and velocity in the body-fixed
frame (u, v, w, r). Image courtesy of Argus Remote Systems AS (Argus Remote Systems AS., 2023).

passively stabilized by gravity, and, therefore, we neglect these degrees of freedom (DOFs). Note that this
is a common assumption for UUVs (Ohrem et al., 2022). The maneuvering model (Fossen, 2021, Ch. 6) of
the vehicle is considered:

η̇ = J(ψ)ν

Mν̇ +C(ν)ν +D(ν)ν + g = τ + τwave + τcurrent ,
(1)

where the generalized vector η , [pT , ψ]T represents the position p = [x, y, z]T , and heading ψ of the vehicle
in the inertial frame, and ν , [vT , r]T contains the linear velocity v = [u, v, w]T and angular velocity r in
the body frame (see Figure 1). The translation matrix

J(ψ) =

[

Rz(ψ) 03x1

01x3 1

]

(2)

relates the inertial frame and body frame, with Rz(ψ) ∈ SO(3) being the principal rotation matrix around
the z-axis. The matrix M = MT > 0,M ∈ R

4x4 is the system inertia matrix, D(ν) ∈ R
4x4 is a damping

matrix, the Coriolis and centripetal terms are contained in C(ν) ∈ R
4x4, while g = [0, 0, B −W, 0]T is the

vector of gravitational and buoyancy forces, with B and W referring to the vehicle buoyancy and weight,
respectively. The environmental forces are contained in the vectors τwave and τcurrent, where τwave ∈ R

4

contains the wave forces and τcurrent ∈ R
4 contains the generated force contribution from the ocean current

in the body frame, both assumed to be bounded. As we will later estimate and control the absolute velocity of
the vehicle, we choose to model the current forces as an unknown independent force rather than incorporating
the current forces directly into the dynamics by utilizing the relative velocity between the vehicle and the
water flow (Antonelli, 2018, Ch. 2.8.3). We make no assumptions about the irrotationality of the ocean
currents, which can generally not be assumed to hold in aquaculture (Gansel et al., 2014). Finally, the
vehicle is assumed to be actuated in 4 DOFs and τ = Bf note the generalized control forces. The thruster
allocation matrix B ∈ R

4×m will distribute the generalized control forces τ ∈ R
4 to the thruster input

f ∈ R
m, where m is the number of thrusters, and will in general depend on the arrangement of thruster on

the vehicle (Johansen and Fossen, 2013).



3 Elastic band path planner

The elastic band algorithm calculates a path from the vehicle position to a set of waypoints that is continu-
ously reshaped by taking into account spatial constraints and the positions of obstacles. The vehicle control
system can then use the path to steer the vehicle to the waypoints. This section outlines the elastic band
planner by first describing the objective of the method and how the elastic band is built and structured. This
is followed by descriptions of how artificial forces are used as proxies to describe internal tensions within the
elastic band, the impacts of external obstacles and constraints, and how these contribute to deforming the
elastic band structure.

3.1 Objective

The path planner’s objective is to produce and update a collision-free path from one position to a set of
waypoints. To target real-time performance, we simplify by letting the path planner overestimate the spaces
occupied by the vehicle and obstacles to spheres and put no requirements on the vehicle orientation along
the path. Note that since the vehicle is actuated in surge, sway, and heave, it can follow paths even without
fixed requirements on its orientation. We can then let the configuration space and waypoints be defined in
three DOFs. The set of k waypoints is denoted byWP = {w1,w2, . . . ,wk},wi ∈ R

3, while the configuration
space is given by

Cspace = {p ∈ R
3 | 0 ≤ z ≤ zmax(x, y)} , (3)

where the depth is bounded between the surface and a max depth zmax(x, y) > 0 (e.g., the depth of the
seafloor at horizontal position x, y). Furthermore, let the obstacle space Cobs ( i.e., the subset of Cspace which
is covered by obstacles) be defined as

Cobs , {p ∈ Cspace,V(p) ∩ O 6= ∅} , (4)

where V(p) ∈ R
3 is the volume covered by the vehicle and O ∈ R

3 the obstacle region. The free-space, Cfree,
is then defined as the complement of Cobs: Cfree , Cspace\Cobs. Cfree is thus the part of Cspace that is not
covered by obstacles, and thus the area in which the vehicle can safely travel without colliding.

The objective is then to produce and update a continuous function h : [0, 1]× J0, k − 1K→ X , where X is a
connected topological space (LaValle, 2006), such that ∀s ∈ [0, 1] and ∀i ∈ J0, k − 1K,

h(s, i) = ci(s) (5)

ci : [0, 1]→ Cfree (6)

ci(0) =

{

p, i = 0

wi, else
(7)

ci(1) = wi+1 , (8)

or in simpler terms, h is a set of connected, collision-free paths from the vehicle that reaches all remaining
waypoints.

We also make the simplifying assumptions that the waypoints are always feasible to reach (e.g., that they are
never covered by obstacles), there always exists at least one connected path from the vehicle to all remaining
waypoints, the obstacles do not move in an antagonist manner (i.e., they do not alter their trajectories to
maximize the potential of a collision), and that obstacles do not move faster than the maximum speed of the
vehicle. When evaluating the spatial constraints imposed by the sea surface, we disregard wave elevations
and tidal shifts and assume that the sea surface is stationary at z = 0. We note that for sea operations of
long durations, this assumption will no longer hold, and the spatial constraint will have to change with tidal
shifts. However, for operations of short durations, similar to the cases investigated in this paper, this change
can be neglected.



Figure 2: The discretized desired path is modeled as an elastic band where neighboring nodes apply retracting
forces to the path, while obstacles and the sea surface apply repulsive forces.

3.2 The elastic band

The motivation behind the elastic band theory is to treat the desired path as a physical object, and as such
give it dynamics inspired by a physical system, namely that of a stretched elastic material (Quinlan, 1994).
This path, the elastic band, will then be subject to an internal energy potential that works to contract the
band and external energy potentials that repel the band from obstacles and constraints. The former will
thus optimize the path length, while the latter will enforce obstacle avoidance. These energy potentials will
dynamically reshape the state of the elastic band such that the path is updated according to the environment
at every time step.

We let the connected path h be approximated by a finite set C of discrete nodes. To ensure that the vehicle

stays within Cfree if moving along the path, each node is covered by a sphere bi = [pbT

i rbi ]
T referred to as a

bubble with position pb
i = [xbi , y

b
i , z

b
i ]

T centered on the node and radius rbi > 0. Furthermore, each bubble is
a subset of Cfree, has a minimum radius, and an overlap dol > 0 with neighboring bubbles such that if the
vehicle travels in a straight line between two consecutive bubbles, it stays entirely within the area covered by
the bubbles and thus within Cfree. Figure 2 illustrates the concept of the desired path modeled as an elastic
band.

3.3 Artificial forces

Since the elastic band is modeled as a dynamic system, its shape is manipulated by applying artificial forces.
Internally, consecutive bubbles will apply contracting forces on each other. Let each bubble be connected to
its neighbors with virtual linear springs according to Hooke’s law, such that the i-th bubble will be subject
to a quadratic internal potential energy, Vint, expressed as

V i
int(p

b
i−1,p

b
i ,p

b
i+1) =

kint
2

(

||pb
i+1 − pb

i || − rmin

)2

+
kint
2

(

||pb
i − pb

i−1|| − rmin

)2
,

(9)



where kint > 0 denotes the spring stiffness, rmin mimics the natural spring length, and || · || denotes the L2

norm. The internal forces on bubble i can then be calculated from the gradient

f i
int(p

b
i−1,p

b
i ,p

b
i+1) =−∇p

b
i
V i
int(p

b
i−1,p

b
i ,p

b
i+1)

=kint
pb
i+1 − pb

i

||pb
i+1 − pb

i ||

(

||pb
i+1 − pb

i || − rmin

)

+kint
pb
i−1 − pb

i

||pb
i−1 − pb

i ||

(

||pb
i−1 − pb

i || − rmin

)

.

(10)

Obstacles are defined similarly to bubbles, oj = [poT
j , roj ]

T with position po
j ∈ R

3 and radius roj > 0. They
should apply repulsive forces on any nearby bubbles that decay exponentially with the distance between the
obstacle and the bubble. Let the repulsive potential field from obstacle j to bubble i be modeled as

V i,j
ext(bi,oj) = kexte

−Daff (11)

with
Daff = ||pb

i − po
j || − rmin − r

o
j − dsafe, (12)

where dsafe ≥ 0 is a safety margin set by the designer.

Equation (11) can be considered a nonlinear spring model with spring stiffness kext > 0 and no contracting
component. Similarly to (10), the forces on bi from oj are given by the gradient

f
i,j
ext(bi,oj) =−∇p

b
i
V i,j
ext(p

b
i ,p

o
j)

=kexte
−Daff

pb
i − po

j

||pb
i − po

j ||
.

(13)

To encapsulate the constraints from the sea surface and seafloor, we propose to add virtual potential fields
from the surface and bottom of the sea. The potential from the sea surface on the i-th bubble is given by

V i
surface(bi) = ksurfacee

−zb
i , (14)

where ksurface > 0 is a designer parameter. The surface forces on bubble i are then given by the gradient

f i
surface(bi)−∇p

b
i
V i
surface

=ksurfacee
−zb

i
[0, 0, zbi ]

T

zbi
.

(15)

Similarly, the potential field from the seafloor on bubble bi is given by

V i
seafloor(bi) = kseafloore

−(zb
i−zmax(x

b
i ,y

b
i )−rmin−dsafe), (16)

with resulting forces

f i
seafloor(bi) = −∇p

b
i
V i
seafloor

= kseafloore
−(zb

i−zmax(x
b
i ,y

b
i )−rmin−dsafe)

[0, 0, zbi − zmax(x
b
i , y

b
i )]

T

zmax(xbi , y
b
i )− z

b
i

.
(17)

Here, kseafloor > 0 is a design parameter.

Finally, the net forces onto bubble bi from its neighboring bubbles and m obstacles are given by

f i
sum = f i

int + f i
surface + f i

seafloor +

m−1
∑

j=0

f
i,j
ext. (18)



3.4 Reshaping of the elastic band

The new state of the elastic band can be found by calculating the state where each bubble has reached an
equilibrium, i.e., when f i

sum = 0 for all i. This entails solving several highly nonlinear equations. How-
ever, a solution can be approximated by updating the position of each bubble by using a gradient descent
method (Lemaréchal, 2012; Lee and Tsai, 2011).

To enforce that each bubble remains a subset of Cfree, bubble i is given the new radius

r
b
i =











rmax, min{||pb
i − p

o
j || − roj , ||z

b
i − zmax(x

b
i , y

b
i )||} > rmax

rmin, min{||pb
i − p

o
j || − roj , ||z

b
i − zmax(x

b
i , y

b
i )||} < rmin + dsafe

min{||pb
i − p

o
j || − roj , ||z

b
i − zmax(x

b
i , y

b
i )||} − dsafe, otherwise,

(19)

where oj = [po
j , r

o
j ]

T represent the nearest obstacle and rmax > rmin is an upper bound on the bubble radius.

Finally, the path is scanned for instances where either a bubble is redundant, i.e., when a bubble is completely
covered by its neighbor, or if a bubble’s neighbors overlap each other or if two neighboring bubbles no longer
overlap, rendering the path disconnected. If a bubble is redundant, the following holds

|rbi−1 − r
b
i | ≥ ||p

b
i−1 − pb

i ||, (20)

or
rbi−1 + rbi+1 > ||p

b
i − pb

i−1||+ ||p
b
i+1 − pb

i ||+ dol (21)

and the bubble is removed. Conversely, the path is rendered disconnected if

rbi + rbi−1 − dol < ||p
b
i − pb

i−1|| (22)

and a bubble with suitable parameters is inserted. Finally, to ensure that the path stays collision-free and
feasible, a new equilibrium state has to be re-calculated and evaluated after an insertion per Sections 3.3-3.4.

3.5 Algorithm

An implementation of the proposed method is described in the pseudo-code given in Algorithm 1. After
first initializing a connected path, the artificial forces on bubbles (Sec. 3.3) and reshaping of the elastic band
(Sec 3.4) are calculated in a loop until the final waypoint is reached. We also note that care should be taken
when implementing (10), (13), (15), and (17) to avoid dividing by zero.

4 Control system

The control system is described using the guidance, navigation, and control (GNC) architecture (Fossen,
2021), as shown in Figure 3. The guidance system, consisting of the elastic band path planner and a
guidance law, uses the positions of waypoints, obstacles, and the vehicle to calculate the reference signals for
the control system. The low level control system then uses the reference signals and feedback of the vehicle
states to calculate the control input for each thruster. Finally, the navigation system, consisting of an EKF,
estimates the vehicle state based on sensor readings.

4.1 Guidance system

We utilize the elastic band path planner to calculate the desired path, where the positions of bubbles act as
a set of intermediate waypoints. To transform the desired path into suitable reference signals for the motion
controllers, we utilize a 3D guidance law. The guidance law will calculate a velocity vector pointing from the



Algorithm 1 The pseudo-code of the elastic band path planner

1: procedure ElasticBand

2: Read a list of waypoints WP
3: Initialize a connected path C from vehicle position to waypoints
4: while WP 6= ∅ do
5: Fetch current vehicle position p and obstacles O = [o0,o1, · · · ,om]T

6: Remove the first bubble bo of C ⊲ Shall rebase at p
7: while ||p− pb

0|| ≤ r
b
0 do

8: Remove bo ⊲ Remove additional reached bubbles and waypoints

9: Insert a bubble at p to the start of C ⊲ Path now starts at p
10: for bi ∈ C, i > 0 and pb

i /∈WP do

11: f i
sum ← f i

int + f i
surface + f i

seafloor ⊲ Eqs. (10), (15), (17)
12: for oj ∈ O do

13: f i
sum ← f i

sum + f
i,j
ext ⊲ Eq. (13)

14: pb
i ← argmin||f i

sum||

15: for bi ∈ C, i > 0 and pb
i /∈WP do

16: Recalculate rbi ⊲ Eq. (19)
17: if bi is redundant then ⊲ Eqs. (20) or (21) holds true
18: Remove bi

19: if Path disconnected then ⊲ Eq. (22) holds true
20: Insert new bubble at 1

2 (p
b
i + pb

i−1)
21: Go back to 10

Figure 3: The block diagram of the guidance, navigation, and control system.



vehicle position p to the position of the next bubble pb
1 in the elastic band. Let the vector to the next bubble

be [∆x,∆y,∆z]T = pb
1 − p. The references for the velocity controllers are then given by (Breivik and Fossen,

2005)

vd =





ud
vd
wd



 = Rz(ψ)
TRz(χd)Ry(Γd)





1
0
0



Ud(t), (23)

where Ry(·),Rz(·) are the principal rotation matrices about the y and z axes, respectively. Further,

χd = atan2(∆y,∆x) (24)

is the desired course angle,

Γd = atan2(−∆z,
√

∆x2 +∆y2) (25)

is the desired elevation angle, and Ud is the desired speed.

As the radii of the bubbles in the elastic band will vary based on their clearances to obstacles, the bubble
radii will thus reflect the complexity of the environment. We, therefore, choose to let the radius of the first
bubble dictate the desired speed according to

Ud(t) = (rb0(t)− rmin)
Umax − Umin

rmax − rmin
+ Umin, (26)

where Umax ≥ Umin > 0 represents the upper bound and lower bound to the desired speed, and rb0(t) is the
radius of the first bubble on the elastic band. Setting the desired speed to be proportional to the bubble
radius will thus lead to a slower speed when in close proximity to obstacles and a faster speed when clear of
obstacles. Furthermore, as rb0 will decrease when nearing a waypoint, the desired speed will also decrease as
the vehicle is approaching the waypoint, minimizing the chance that the vehicle will overshoot the waypoint.
Finally, the reference for the heading controller is the desired course angle, i.e., ψd = χd.

4.2 Low level control

To make the ROV follow the reference signals in velocity and heading, we employ the generalized super-
twisting algorithm (GSTA) (Castillo et al., 2018; Haugaløkken et al., 2023). This is a higher-order sliding
mode controller of order two. An advantage of second-order sliding mode compared to the more common
order first-order sliding mode (Slotine and Li, 1991) is that it aims at making the control input continuous
by placing the signum term in an augmented state which is then integrated. It is then able to attenuate
chattering while maintaining the robust properties of sliding mode control (Castillo et al., 2018).

The sliding mode variable is defined as

σ =

[

v − vd + v̇ − v̇d

ψ − ψd + 2(ψ̇ − ψ̇d) + ψ̈ − ψ̈d

]

(27)

where v̇d, ψ̇d, ψ̈d are calculated via appropriate reference models (Fossen, 2021, Ch. 12). We note that if σ
converges to its origin, the origins of the tracking errors v − vd, ψ − ψd, ψ̇ − ψ̇d are globally exponentially
stable equilibrium points.

The controller output is given by
τ = −K1φ1(σ) + σint, (28)

where σint is the augmented state whose derivative is

σ̇int = −K2φ2(σ). (29)

Furthermore,
φ1(σ) =||σ||

1/2sign(σ) + βσ

φ2(σ) =||σ||
0sign(σ) +

3

2
||σ||3/2sign(σ) + β2σ,

(30)



where K1,K2,β are positive definite, diagonal matrices, and sign(·) ∈ R
4 is the vector equivalent of the

signum function.

4.3 Navigation system

An EKF similar to the proposed observer in (Candeloro et al., 2012) is used as a state estimator. It considers
a state space model

ẋ = F (x) +Ew

y = Hx+ v̄

with x ∈ R
12 being the state vector

x = [ηT ,νT , bT ]T ,

y ∈ R
8 the measurement vector, w ∈ R

12 and v̄ ∈ R
8 being zero-mean white-noise vectors, E ∈ R

12x12 is
the process noise matrix, and b ∈ R

4 is a vector of bias terms used to model slowly varying forces. The state
Jacobian is given by

F (x) =









Rz(ψ)ν

M̂−1

[

−D̂(ν)ν − Ĉ(ν)ν
−ĝ(η) +RT

z (ψ)b+ τ̂

]

T−1
b b









,

where M̂ , D̂(ν), Ĉ(ν), ĝ(η) are estimates of M ,D(ν),C(ν), g(η), the control input τ̂ is an estimate of τ
calculated from the latest measured revolutions-per-minute (RPM) of the thrusters, and Tb is a positive defi-
nite design matrix. At each time-step, the Jacobian F (x) is linearized about the a posteriori state estimation
x̂k|k before the system is discretized. The measurement matrix is given by H = [diag(18x1),0

T
8x4]

T .

5 Simulations and lab trials

5.1 Simulations

In this section, simulation studies aimed at verifying and demonstrating the basic functionality of the elastic
band method are presented. Examining the system in simulations prior to field tests has several advantages.
First, it helps understand the challenges and limitations of the method prior to deployment. Secondly, we
can quickly tune the design parameters without risking damage to the vehicle or the aquaculture facility.
Finally, we are able to test the system in many different environmental conditions in a controlled setting.

5.1.1 Setup and configuration

The simulation environment was implemented in FhSim, a SINTEF Ocean developed modeling and sim-
ulation framework that offers a large collection of numerical models relevant for aquaculture and marine
operations such as net pens, underwater vehicles, and fish behaviour (Reite et al., 2014; Su et al., 2019;
Kelasidi et al., 2022). The simulations studies include two cases. In the first case study, an ROV is com-
manded to reach a set of four waypoints while simultaneously avoiding five dynamic obstacles. The second
case study was set up with a virtual environment resembling that one might face at a fish farm, and was set
up to mimic an operation where an ROV uses the elastic band planner to first plan a path to circumvent a
net pen. A second vessel performing a docking operation next to the net pen then moves into the path of
the ROV, acting as an obstacle and thus enforcing the adjustment of the path to avoid collision.

The simulation model of the ROV is presented in Appendix A. Model parameters and thruster allocation are
based on the Argus Mini ROV, the same vehicle as used in the field experiments of this study, and the model



parameters were found using the WAMIT software (Lee, 1995). The net pen was simulated using the model
presented in (Su et al., 2021) with a diameter of 50m, which is the standard size for the farming of Atlantic
salmon, and can in generalized terms be described as a flexible cylinder with a conic shape bottom that will
deform in response to water movements due to waves and currents. The obstacle vessel was simulated as
a simple 3DOF surface vehicle with a length of Loa = 10m and a beam of Bmax = 4m. The ocean current
affecting the ROV, net pen, and obstacle vessel had a speed of 0.1m/s and a direction of 90◦, while ocean
waves were simulated using the JONSWAP spectrum (Fossen, 2021, Ch. 10.2) with a significant wave height
of Hs = 0.3m, a mean wave period of Tp = 4s, and a direction of 90◦.

To respect the spatial constraints from the moving net pen in the second case study, the elastic band path
planner was set up to also consider repulsive forces from the net pen by adding forces acting onto bubble i
from the net pen as found by:

f i
net =

{

knete
−(||rnet||−rmin) rnet

||rnet||
, when pb

i is outside of the net

knete
−max(−1,(−||rnet||−rmin)) rnet

||rnet||
, when pb

i is inside of the net
(31)

where knet > 0 is a design parameter, and rnet is the vector from the net panel closest to the bubble. The
saturation in the exponential term was added to ensure that the exponential term does not grow large when
a bubble is inside of the net pen, as this might lead to instability. The gains of the elastic band path planner
were given according to kint = 10, kext = 10, knet = 20, ksurface = 0.3, kseafloor = 0, while the minimum and
maximum bubble radii were rmin = 0.9 m and rmax = 5 m, respectively. Desired overlap between adjacent
bubbles was dol = 0.65 m, the safety margin was dsafe = 0.3 m, and the maximum and minimum desired
speeds of the vehicle were Umax = 0.5 m/s and Umin = 0.1 m/s, respectively.

The motion controller in the simulation was the GSTA system presented in (28)-(30), and the gains were
given byK1 = diag(1, 1, 1, 2),K2 = diag(5, 5, 10, 0.008),β = diag(10, 10, 15, 15). Unlike the field experiments
where the vehicle states were estimated with sensors and an EKF, the simulations used the true vehicle states
from the model as feedback to the control system.

5.1.2 Simulation results

The results from the first simulation case study can be seen in Figures 4-5. From the snapshots, it can be
seen that the elastic band was successfully updated such that the bubbles stayed clear of the obstacles, and
that the vehicle safely followed the desired path. The performance of the GSTA controller and the vehicle
clearance to obstacles can be seen in Figure 5. Although the wave excitation force induced a high-frequent
disturbance to the system, the motion controller was able to track its reference with good accuracy.

Figure 6 shows snapshots of the second simulation case study, where the ROV was commanded to travel
from pstart = [−25,−30, 0]T to pgoal = [5, 32, 6]T . Starting from position pobs = [40,−30, 0]T , the obstacle
vessel was commanded to dock next to the net pen at pdock = [−25, 12, 0]T . From the figure, it can be seen
how the net pen deforms, and how the obstacle vessel travels into the path of the ROV, thus requiring the
elastic band path planner to update the path and vary the bubble size to avoid collisions. The performance
of the GSTA controller can be seen in Figure 7, again demonstrating its ability to track its reference signals.
Figure 7 also shows that the ROV avoided collisions during the simulation study. The simulation with 3D
visualization, including the elastic band path planner, the net cage, the ROV, and the obstacle vessel, ran
faster than real time with a step size of 0.033s (i.e., a frequency of 30 Hz), demonstrating the real-time
capabilities of the elastic band algorithm.

5.2 Laboratory experiments

This section will present results from a preliminary laboratory experiment featuring the elastic band path
planner. The laboratory experiments served as an early evaluation of the method and allowed us to identify
challenges and improvements needed before final field deployment. The laboratory experiments utilized a



(a) Time = 15s. (b) Time = 30s.

(c) Time = 100s. (d) Time = 150s.

Figure 4: Snapshots from the first simulation study. The state of the elastic band can be seen in green,
obstacles in magenta, waypoints in gray, and the ROV trajectory in colormap corresponding to the vehicle
depth. Note that the apparent overlap between some bubbles and obstacles is only due to the 3D rendering,
which does not fully show the deformation along the y-axis.

Figure 5: Reference tracking and obstacle clearance during the first simulation study.



(a) Time = 2s. (b) Time = 20s.

(c) Time = 120s. (d) Time = 210s.

Figure 6: Snapshots from the second simulation study with ROV, net pen, and obstacle vessel. The state of
the elastic band can be seen in green, while the trajectory of the ROV is marked in blue.

Figure 7: Reference tracking and obstacle clearance during the second simulation study.
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Figure 8: Block diagram of the control setup used in laboratory experiments.

different vehicle, which also serves to demonstrate the performance across different robotic platforms. Due
to the early stage of the test and because of the different vehicle, the control system had some differences
compared to the field deployment.

5.2.1 Setup and configuration

The experimental tests were conducted at the Marine Cybernetics Laboratory (MC-lab) at NTNU, Trond-
heim, which is a basin with dimensions L×W ×D = 40m× 6.45m× 1.5m (NTNU, 2022). The laboratory
is fitted with six Oqus underwater cameras and the Qualisys motion tracking software (Qualisys AB, 2022),
which together constitute a local positioning system. Light emitted by the system is reflected by markers
that can be fixed to rigid bodies. The reflected light is then captured by the cameras, enabling the Qualisys
software to estimate the position of the markers, and hence the position and orientation of the bodies they
are attached to. The volume observed by the underwater cameras was L×W ×D = 12m× 5.45m× 1.35m.

The vehicle used in the experiments was a BlueROV2 (Blue Robotics, Inc., 2022b), which is an observation
class ROV with four horizontal and two vertical T200 thrusters arranged so that the ROV is actuated in
surge, sway, heave, and yaw. The BlueROV2 weighs about 11 kg in air, is neutrally buoyant, and has
dimensions L × W × H = 0.457m × 0.338m × 0.254m. The vehicle comes with the autopilot software
ArduSub (Blue Robotics, Inc., 2022a) pre-installed on its onboard Pixhawk, and an on-board Raspberry Pi
computer that relays communication between ArduSub and the topside computer. To enable Qualisys to
estimate the position and orientation of the ROV, the vehicle was fitted with six markers. Moreover, a set
of obstacles that were placed inside the basin were also fitted with markers such that Qualisys could detect
their positions.

As these experiments used a different vehicle platform than the one used in the field trials in Section 6 and
because of time constraints, the lab experiments were conducted using a simpler proportional-integral (PI)
controller to control velocity and a first-order sliding mode controller (Antonelli, 2018) to control heading
rather than using the control law presented in (28)-(30). Furthermore, since the Qualisys system offered
positions with very high accuracy, these were used directly as inputs to the control system instead of using
an EKF to estimate the vehicle’s state. Estimates of linear velocity v for the vehicle were obtained by finding
the numerical derivatives of the position estimates.

Figure 8 shows the computer setup and signal flow mapping used in the laboratory studies. The proposed
control system, including the elastic band path planner, was implemented in FhSim on the topside computer.
Calculated control forces and torques were then transmitted via user diagram protocol (UDP) to the onboard



Table 1: Parameters during laboratory experiments

Parameter Value Parameter Value

kint 0.5 Umin 0.05 m/s
kext 2.5 Umax 0.3 m/s

ksurface 2.5 tc 4 s
kseafloor 0 rmax 0.4 m
dsafe 0.05 m rmin 0.3 m
dol 0.1 m

(a) Design parameters

Object x y z radius
pdock 0.2 m 0.27 m 1 m
w1 −2 m −0.8 m 0.25 m
w2 1.6 m −0.8 m 0.25 m
w3 1.6 m 1.2 m 0.25 m
w4 −2 m 1.2 m 0.25 m
o1 −1.52 m −0.69 m 0.24 m 0.2 m
o2 0.64 m −0.87 m 0.7 m 0.2 m
od Varying Varying Varying 0.2 m

(b) Positions of obstacles and waypoints

ArduSub software, using the MAVlink (Koubâa et al., 2019) message protocol. Thruster allocation was
handled by the onboard ArduSub software, while the vehicle and obstacle positions estimated by Qualisys
were transmitted to the topside computer using UDP.

As these experiments served as early testing of our first iteration of the method, some implementation
details were based on literature rather than the proposed method in Sections 3-4. First, as suggested by
(Lee and Tsai, 2011), instead of Eq. (26), the desired speed calculated by the guidance law was given by

Ud(t) =











Umax,
||p1−p||

tc
> Umax

Umin,
||p1−p||

tc
< Umin

||[p1−p||
tc

, else ,

(32)

where tc > 0 is a time constant. Furthermore, instead of Eq. (12), the exponent of the repulsive potential
(11) was given as

Daff = ||pb
i − po

j || − rmax , (33)

similar to (Føre et al., 2021).

The space observed by the Qualisys system determines the positions observable by the system, and thus
effectually limits the space for feasible paths in the basin. To avoid having the vehicle ending outside this
space, the elastic band path planner was restricted to only alter the desired path along the vertical axis,
deviations along the x-y plane could easily lead to coordinates outside the observed volume. This was done
by replacing the gradient ∇pj

in (10) and (13) with the gradient in the z-direction: ∂/∂z. The design
parameters of the elastic band path planner and guidance system are given in Table 1a.

5.2.2 Laboratory results

The laboratory experiments featured several case studies to test the basic properties of both the method
and the vehicle. Here we only present the results from the most relevant of these, where the ROV had
to maneuver an obstacle course with both static and dynamic obstacles. From a starting position pdock,
the vehicle was commanded to do three laps around a course defined by the four waypoints w1-w4, before
returning to pdock. The course was also fitted with two static obstacles, o1 and o2, that were placed such
that the path planner was required to plan a path that ascended above or descended below the obstacles.
Furthermore, a third obstacle od was used as a dynamic obstacle in that it was lowered into the path ahead
of the ROV while it was following its planned path. This forced the path planner to dynamically alter the
path to avoid collisions. The placement of waypoints and obstacles and the radius of obstacles are given in
Table 1b.

During the experiments, we found that the path planner successfully guided the ROV to the waypoints while
avoiding obstacles. Snapshots of the experiment, including the state of the path planner and obstacles can



(a) Time = 79s. (b) Time = 80s.

(c) Time = 82s. (d) Time = 120s.

Figure 9: Snapshots from a laboratory experiment where the ROV traveled three laps around an obstacle
course. The trajectory of the ROV is given with varying colors which specify the depth. Static obstacles are
in red and the dynamic obstacle is in magenta.

be seen in Figure 9. The path planner was able to quickly find a new path with respect to the dynamic
obstacle, as seen in Figures 9a-9c. We also identified certain situations where the distance between the
vehicle and the obstacle was slightly less than the safety margin dsafe set by the designer. It was identified
that the primary reason for this was that the dynamic obstacle was lowered toward the vehicle at a faster
speed than the maximum speed of the vehicle (Umax), thus exceeding the natural constraints of the path
planning framework. However, this was valuable for identifying necessary changes to the GNC system before
field deployment, which included the guidance law and repulsive forces in the elastic band method.

6 Field experiments

This section presents the outcomes of the full-scale field trial that functioned as the final validation of the
elastic band method in this study. The experiment was conducted at an industrial-scale fish farm, and we
will here describe the setup and configuration of the study, covering elements such as the hardware and
software used in the study, and the fish farm that was the venue of the experiments, before presenting the
results from case studies. The case studies were planned with gradually increasing difficulty with the aim
of a step-wise evaluation of the control framework performance, which incorporated as many tested cases
as possible given our time and resources. To validate that the ROV was able to follow a commanded path,
we first evaluated the performance of simple waypoint following without obstacles. The second test case
involved waypoint following with obstacle avoidance using virtual obstacles to validate that the path planner
was able to avoid obstacles in a controlled setup. The third and final test case was waypoint following with
a dynamic obstacle in the form of another vehicle intercepting the planned path. The path planner therefore



had to continuously replan its path to avoid the intercepting vehicle. As we were operating in the wave zone
in an industrial fish farm, the robustness of the proposed control framework to challenges such as sensor
noise, sensor dropouts, and wave-induced disturbances was thoroughly tested.

6.1 Setup and configuration

Argus Mini ROV

Experiments were conducted using an Argus Mini ROV (Figure 10a, to the right), which is a 90 kg observation
class ROV developed by the Norwegian company Argus Remote Systems AS (Argus Remote Systems AS.,
2023). The vehicle measures L×W×H = 0.9m×0.65m×0.5m in size, and has four horizontal and two vertical
electric thrusters (Argus 800W, capable of forces up to 117.5 N) arranged such that the vehicle is actuated
in surge, sway, heave, and yaw. Further, the vehicle was fitted with an HD camera, a fluxgate compass
for heading measurements, a pressure sensor for depth measurements, a forward-facing Nortek DVL1000
Doppler velocity log (DVL) for velocity measurements, and a gyro for measuring yaw rate. The ROV was
also equipped with a Sonardyne Nano transponder to enable 3D position monitoring using a Sonardyne
MicroRanger 2 ultra-short baseline (USBL) system. Due to the air-filled swim bladder of salmon, the fish
may interfere with the transmission of hydro-acoustic signals, introducing both scattering and multipath,
which can limit the performance of the USBL and DVL systems (Rundtop and Frank, 2016). As achieving
bottom-lock with the DVL was unlikely in a fully-stocked fish cage, the instrument was rather installed
front-facing such that it could lock with the wall of the net pen as the vehicle-wall axis is less likely to be
obstructed by fish than the vehicle-bottom axis (Rundtop and Frank, 2016; Amundsen et al., 2022). Despite
these measures, the performance of the DVL was severely degraded with large periods of measurement
dropouts during the trials.

The ROV was operated using a surface control computer onboard the support vessel M/S Torra (a 14 m
research vessel, Figure 10b) through an umbilical that transmits power and control commands back to the
ROV. This surface control computer includes an Argus control console with a joystick and automatic heading
and depth control which is typically used during normal manual control. The console also features a switch
that enables overriding the commands from the control console and rather relaying control signals received
through an RS232 port. By attaching a separate control computer to this port, it is then possible to send
control commands from an autonomous control system to steer the vehicle, which was done during the trials.

Intercepting vehicle

A BlueROV2 (Figure 10a, in the middle) was used as the intercepting vehicle in the third case
study. This vehicle was manually controlled using the QGroundControl graphical user interface
(GUI) (Dronecode Project, Inc., 2023) and the ArduSub control system. Since the obstacle avoidance method
also required the position of the BlueROV2, it was also fitted with a Sonardyne Nano USBL transponder.

SINTEF ACE Rataren fish farm

The trials took place at Rataren, an industrial-scale salmon farming site outside the coast of the mid
of Norway that is part of the SINTEF ACE full-scale laboratory which is a cluster of fish farming sites
dedicated to the research and development of aquaculture technology (Figure 10b) (SINTEF, 2023). The
site features several net cages that each may contain up to 200 000 salmon at a total biomass of up to 1000
t, and these trials took place during the final ongrowing phase for the salmon, with each individual weighing
approximately 5 kg. SINTEF ACE Rataren is located in open waters such that it is exposed to ocean waves
and current forces, and the net pens will therefore deform from the sea loads.

Guidance, navigation and control system

In preparation for the trials, the proposed control framework from Section 4 was implemented in Fh-
Sim. During operations, the sensor readings from the Argus and the Nortek DVL were transmitted



(a) The Argus Mini (yellow) and BlueROV2 (blue)
ROVs at the back of the research vessel M/S Torra.
Photo: Eleni Kelasidi.

(b) M/S Torra at the SINTEF ACE Rataren fish
farm. Photo: Magnus O. Pedersen.

Figure 10: The vehicles and research vessel used during the trials at SINTEF ACE aquaculture laboratory.
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Figure 11: Guidance, navigation and control system during the field experiments. The modules in the blue
boxes were implemented in FhSim, while the modules in the green boxes contain the hardware interfaces.

to the topside computer using serial connections, while measurements from the Sonardyne USBL sys-
tem were transmitted over UDP. The sensor readings were parsed in FhSim, and the measurement vec-
tor y = [xusbl, yusbl, zpressure, ψcompass, udvl, vdvl, wdvl, rgyro]

T was directed to the EKF. From waypoints
w1, · · · ,wk, state estimations η̂, ν̂, and the measured position of the obstacle vehicle pobstacle, the elas-
tic band path planner and guidance law calculated the reference signals νd, ψd for the control system. The
GSTA control law calculated the control forces and moments, and, using the control allocation as specified
in Appendix A, the thruster forces were calculated and transmitted back to the ROV over serial connection.
Figure 11 shows a block diagram of the implemented control framework. The GNC system, including the
path planner, ran at a frequency of 10 Hz.

6.2 Results

The parameters of the elastic band path planner and guidance law are given in Table 2, while the pa-
rameters of the control law were K1 = diag(0.5, 1, 1, 2),K2 = diag(5, 1, 1, 0.008),β = diag(5, 10, 10, 15).

Further, the parameters of the matrices M̂ = M̂RB + M̂A, D̂(ν̂) and vector ĝ(η̂) of the EKF were cho-
sen similar to the simulation model parameters presented in Appendix A, while the Coriolis and cen-
tripetal matrix Ĉ(ν) was calculated from the mass matrix M̂ (Fossen, 2021). The bias time matrix



Table 2: Design parameters of the path planner and guidance system

kint kext ksurface kseafloor rmin rmax dsafe dol Umin Umax

4 4 0.3 0 1m 3m 1.5m 1.5m 0.05m/s 0.25m/s

of the EKF was given by Tb = diag(100, 100, 100, 100), while the process noise matrix was given by
E = diag(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2). Finally, the covariance matrices for the process and measurement
noises were given by Q = diag(0.5, 0.5, 2, 2, 3, 3, 1, 2, 1, 1, 1, 1) and R = diag(3, 3, 1, 1, 1, 1, 5, 2) respectively.

6.2.1 Waypoint following without obstacles

For the first case study, four waypoints were placed in a square pattern at varying depths, and the ROV was
commanded to travel one lap. The positions of the waypoints were
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The trajectory of the ROV can be seen in Figure 12. As seen in Figure 12a, the elastic band path planner
calculates the shortest path consisting of straight lines to the waypoints, while Figure 12b shows that the
ROV successfully reaches the waypoints within the acceptance sphere of 1m. Although the update frequency
of the USBL measurements varied between intervals of 2 and 6 s, the dead-reckoning of the EKF compensated
for this such that the control system was able to maneuver the vehicle along the path. The performance
of the control system is shown in Figure 13, which shows that the GSTA controller was able to follow the
reference signals, albeit with some oscillations in heave. The oscillating response in the heave velocity could
be the result of induced wave forces, as the vehicle is operating in the wave zone.

6.2.2 Obstacle avoidance with virtual obstacles

In the tests with virtual obstacles, the waypoints were placed at the same horizontal positions as in the first
test, but all with the same depth of 3 m rather than letting this be variable:
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Two static obstacles were programmed with parameters
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The positions of the obstacles were such that the ROV had to dive below O1 to reach w2 and ascend above
O2 to reach w4.

The trajectory of the ROV during the case study can be seen in Figure 14, demonstrating that the ROV
reached the waypoints while diving underneath O1 and ascending above O2. Figures 14a-14b show that the
bubbles were placed such that the path stayed within the free-space. The performance of the control system
is seen in Figure 15, which shows a very good performance by the GSTA controller. The distance between
the vehicle and the obstacles can also be seen in Figure 15, where it is clear that the vehicle did not collide
with the virtual obstacles.



(a) Snapshot, including the state of the elastic band, after
60s.

(b) Trajectory at completion.

Figure 12: Trajectory of ROV during waypoint following without obstacles. The color variation of the
trajectory reflects variation in vehicle depth; a deeper blue signals a shallow depth and yellow signals a
deeper depth.

Figure 13: Reference tracking during waypoint following without obstacles.



(a) Snapshot after 10s, including the bubbles on the elas-
tic band up to w2.

(b) Snapshot after 120s, including the bubbles on
the elastic band up to w4.

(c) Trajectory at completion.

Figure 14: Trajectory of ROV during waypoint following with virtual obstacles. The color variation in
trajectory reflects variation in vehicle depth; a deeper blue signals a shallow depth and yellow signals a
deeper depth.



Figure 15: Reference tracking and obstacle clearance during waypoint following with virtual obstacles.

6.2.3 Obstacle avoidance with intercepting vehicle

In the final case study, the objective was for the ROV to travel from the waypoint w1 = [−3.5, 5.2, 1]T to
the waypoint w2 = [2.7, 19.4, 0]T , while avoiding collisions with the intercepting BlueROV2 vehicle. The
BlueROV2 was programmed as an obstacle Od with a dynamic position and a one-meter radius whose
position was measured with a second USBL transponder. As the BlueROV2 did not have a state estimator
to perform dead reckoning, a zero-order hold was used to combine the USBL measurements. The intercept
operation was facilitated by manually piloting the BlueROV2 into the Argus’s path, such that the Argus
had to dive below the BlueROV2 and then ascend to reach w2.

The trajectory of the Argus can be seen in Figure 16, showing that the ROV has to dive to avoid colliding
with the obstacle vehicle after which it then ascends to reach the goal position successfully. Figure 17
includes combinations of the state of the elastic band and screenshots of a simultaneous video taken from a
third ROV. It can clearly be seen that the elastic band deforms to avoid collisions with the obstacle vehicle.
Figure 18 shows that the control system was able to track the reference signals and that the ROV kept a
safe distance from the obstacle vehicle.

7 Discussion

Autonomous navigation in cluttered and changing underwater environments remains a challenging problem
to solve. The problem consists of several parts, such as 3D path planning, robust and precise motion control
in the presence of sea loads, and pose estimation and perception when the performance of several sensor types
can be degraded. In our research, we have targeted local and reactive path planning and obstacle avoidance
with real-time capabilities, with a special emphasis on applications in aquaculture. In this section, we will
discuss the key findings of this research, the challenges that we faced, and future work and prospects.

Through extensive studies in situations, laboratory experiments, and sea trials, we found that the elastic
band is a viable candidate for fast path planning and obstacle avoidance in environments that are quickly



(a) Snapshot at 0s. (b) Snapshot at 40s.

(c) Trajectory at completion.

Figure 16: Trajectory of the Argus Mini (yellow) during obstacle avoidance with obstacle vehicle (blue). The
color variation in trajectory reflects variation in vehicle depth; a deeper blue signals a shallow depth and
yellow signals a deeper depth.



(a) Time = 30s. (b) Time = 40s.

(c) Time = 50s. (d) Time = 70s.

Figure 17: Obstacle avoidance with an intercepting vehicle acting as a dynamic obstacle. The state of the
elastic band is rendered on top of video screenshots.

Figure 18: Reference tracking and obstacle clearance during dynamic obstacle avoidance.



changing. The method proved to plan paths that avoided moving obstacles with a planning update frequency
of fractions of a second. Further, modeling the dynamics of the path as a physical system has its advantages,
as it is easy for humans to conceptualize the internal mechanics of the planner. While the method requires
the tuning of several parameters, they all have a basis in physics and a close resemblance to the tuning
of familiar control concepts such as proportional-integral-derivative (PID) control, making the tuning fairly
intuitive.

In our research, we utilized that the ROV was actuated in 4DOFs such that we were able to control it to
quickly change direction in all three translation axes. Many underwater vehicles, such as torpedo-shaped
AUVs, are not actuated in sway and heave, which puts constraints on the paths that they can follow. For
such systems, the elastic band path planner may produce paths that are infeasible for the vehicle. A potential
improvement to the method can therefore be to include extensions that consider the dynamics of the vehicle,
which should ensure that the produce paths are feasible. It should be mentioned, however, that this forces
the method to be tailored to the vehicle, thus making it difficult to quickly transfer the method between
different systems.

Another extension to the method could be to also consider the velocity and potential future states of obstacles.
An intuitive way to include this is to make changes to the repulsive field generated by obstacles, as suggested
in (Lee and Tsai, 2011), or by considering the swept-out volumes of moving obstacles (Amundsen et al.,
2024). Further, this problem also includes the problem of target tracking of the obstacles, which might
enable more sophisticated methods to model the future state of obstacles as suggested by (Rothmund et al.,
2022). Another prospect is to enable obstacles of varying shapes. The current formulation of the generated
repulsive field from obstacles assumes that the volume occupied by the obstacle can be represented as a
sphere, which works sufficiently for simple shapes but does not encapsulate slender or more complex shapes.
A reformulation of the generated repulsive field would require that one is able to accurately measure the
shortest distance between the obstacle and the vehicle, as the repulsive force from the obstacle will be decided
by this.

As the elastic band models the path as a dynamic system, the new configuration of the path is found by
searching for a configuration where the system is in equilibrium. In our implementation, we have solved
this by the use of gradient descent iteratively through each bubble. This proved to efficiently find solutions
close to equilibria. However, there is no guarantee that the method will find an exact solution and the
computation efficiency decreases as the required number of bubbles increases. We found in our research that
the performance of the method is highly dependent on choices of parameters and imprecise tuning can lead
to scenarios where the position and radius of bubbles may oscillate between timesteps, which can introduce
challenges to the control system. A better way of solving the set of dynamic equations may therefore improve
the overall performance of the method.

The method is inspired by potential fields and therefore shares some of the pros and cons of potential fields.
In our testing, we found that the method was quickly able to find short and safe paths to waypoints, but,
as the repositioning of bubbles follows valleys in their potential fields, the method will not generally be
able to find local optimal solutions quickly if the bubbles’ potential fields do not lead them towards optimal
positions. In scenarios where the normal vectors from obstacles lead away from the optimal path, the path
planner will be unable to find this solution, and, more critically, if the bubbles’ potential field does not lead
toward a feasible solution, the path planner may not be able to find a solution at all. In such scenarios,
it will be important to combine the elastic band path planner with a global path planner that can find an
optimal path (Wang et al., 2020) and have a fall-back approach in cases where it is not able to quickly find
a feasible path.

Another interesting point is the similarities between the method and that of optimal control theory, as first
mentioned by (Quinlan, 1994). In fact, it can be shown that if one is to use optimization theory to minimize
the length of a path, the minimum point of the cost function has great similarities to the equilibrium condition
of the elastic band path planner (the only difference being a scalar gain). This point would suggest that
the paths calculated by the elastic band path planner will often be close to the shortest path. It would be



interesting to further study the similarities between the two approaches.

In our field experiments, we tested the method in a fully stocked fish cage. This is a difficult terrain for
navigation systems. Firstly, hydro-acoustic sensors are prone to dropouts and measurement errors because
the fish may lead to scattering or multipath propagation effects of the hydroacoustic signals. Secondly, water
turbidity and a lack of clear landmarks due to the fish schools blocking the field-of-view (FOV) of the camera
may degrade the performance of visual-based pose estimation methods. Lastly, the high signal attenuation
in water makes several sensors commonly used in terrestrial applications unavailable, including GNSS and
LIDARs. In our navigation system, we relied on internal sensors (compass, pressure sensor, and gyro), as
well as a DVL and a USBL system. We found that both of these hydroacoustic sensors were affected by
the fish. Particularly, this was the case for the DVL, which had longer dropout periods. As our EKF was
based on a sophisticated model of the vehicle, it was able to provide a good state estimation, even in periods
without position or velocity measurements. However, errors will naturally grow over time as integration is
greatly affected by biases and noise. Therefore, it could be observed that the state estimation made big
corrections when new USBL measurements arrived after long dropout periods. Further improvements to the
navigation system and sensor suite should be able to provide more reliable state estimations, for instance,
better tuning of the EKF, sophisticated outlier detection modules to compensate for measurement errors,
or, if high-rate IMU measurements were available, formulate the EKF in an error-state form (Solà, 2017).

7.1 Future prospects

The research presented in this paper is part of a greater research goal, namely providing autonomy in
dynamically changing environments. The path planner presented is able to quickly calculate safe and short
paths within a limited space, but is, like most local path planners, prone to getting stuck in local minima
as they only consider a limited scope of information. Future work for us is, therefore, to combine the elastic
band path planner with a global path planner, where the global path planner should be able to find feasible
paths, while the elastic band path planner will quickly react to changes in the environment to avoid collisions.

To further be equipped to handle the challenges of dynamic environments with fast-moving obstacles, we are
looking into extending the method by incorporating the velocity space of obstacles, for instance by employing
the approach suggested in Amundsen et al. (2024). Furthermore, to be robust to state uncertainty, either
from unmodeled dynamics, noisy measurements, or poor control performance, we take inspiration from works
such as Majumdar and Tedrake (2017), Chen et al. (2021), and Xanthidis et al. (2023) and aim to formulate
an extension where the radii of bubbles and their overlap change dynamically in accordance with the system
state uncertainty. Finally, we want to make modifications to the artificial forces to enforce path smoothness
between the sub-paths connected at waypoints.

In our field experiments, we measured the position of obstacles using a USBL system. However, in a practical
scenario, the position of obstacles must be measured using the vehicle’s sensors. Therefore, obstacle detection
remains future work for us, either by using visual-based methods (Kelasidi et al., 2019) or hydroacoustic
sensors such as multibeam sonars(Cao et al., 2023).

In our simulation studies, we studied one example of how the elastic band can be used to navigate a fish farm,
taking into account the position and geometry of the fish cage. However, we were unable to test this in field
experiments, as the position and geometry of the fish cage were unknown to us. Further testing of this is left
for future work, where for instance the net cage shape can be measured with acoustic tags (Kelasidi et al.,
2022; Su et al., 2021; Haugaløkken et al., 2018), DVL (Amundsen et al., 2022) or sonars (Cardaillac et al.,
2023). Common operations with ROVs in aquaculture are inspection and cleaning operations of the nets,
in which the ROV must keep a fixed distance to the net. In such a scenario it can be considered to use the
elastic band path planner in a different context where the net also applies an attracting force to the path.

Finally, many UUV operations in aquaculture, such as net inspection and cleaning, rely on knowing which
part of the net cage has been traversed. Simultaneous localization and mapping methods that both estimate



the state of the vehicle and map the inspected sections of the structure are therefore very attractive, as
this will provide information about both the vehicle and structure. This is also something we would like to
investigate in the future.

8 Conclusion

Raising the autonomy level for UUV operations in complex underwater environments that are changing in
time and space puts several requirements on the vehicle control systems. In our work, we have studied
fast path planning and obstacle avoidance in a dynamically changing 3D space. Particularly, this paper
has presented an obstacle avoidance and path planning framework for UUVs based on the elastic band
method. Through simulations, laboratory experiments, and sea trials, we have shown that the path planning
framework can guide the vehicle to reach waypoints in the presence of moving obstacles and non-fixed spatial
constraints. We have had a special emphasis on aquaculture operations, as this is the domain in which we
apply our research, but presented the methods in a more general setting to make it relevant for other
industries. The proposed control framework has been demonstrated using two underwater robotic platforms
showing the validity of the proposed work and its applicability to a wide range of subsea applications and
UUV platforms. In the field experiments, we applied the path planner framework on an ROV operating
in a full-scale aquaculture fish farm, which successfully demonstrated the performance of the system. The
results, the intuitiveness of the method, and its real-time performance suggest that the elastic band method
is a viable method for underwater obstacle avoidance in dynamically changing environments.

In summary, in all the investigated case studies the proposed method managed to quickly and efficiently plan
paths that enabled collision-free navigation, also in the presence of moving obstacles and spatial constraints.
While the deployment of fully autonomous control systems for UUVs in dynamically changing environments
requires further components, this research supports this development and demonstrates that this is within
the grasp of the robotic research community.

Appendix A

The system inertia matrix of the vehicle simulation model, consisting of the rigid-body mass matrix MRB

and the added mass matrix MA, is given by

M = MRB +MA =









90 0 0 0
0 90 0 0
0 0 90 0
0 0 0 13









+









54 0 0 0
0 72 0 0
0 0 360 0
0 0 0 5.2









=









144 0 0 0
0 162 0 0
0 0 450 0
0 0 0 18.2









,

while the damping matrix is given by

D(ν) =









250 + 350|u| 0 0 0
0 200 + 350|v| 0 0
0 0 175 + 400|w| 0
0 0 0 15 + 75|r|









.

The Coriolis and centripetal matrix can be calculated from M according to

C(ν) =









0 0 0 162v
0 0 0 −144u
0 0 0 0

−162v 144u 0 0









,



and the vector of gravitational and buoyancy forces is given by

g(η) =









0
0

−0.91
0









.

Units are given in SI.

The forces and moments from the ocean current are given according to

τc = C(νc)νc +D(νc)νc

where νc is the velocity of the ocean current in the body-fixed frame, while the wave excitation forces are
calculated according to the generalized Morrison’s equation for small-volume structures (Faltinsen, 1990)

τw =

(

B

W
MRB +MA

)

ν̇w

where ν̇w = [u̇w, v̇w, ẇw, 0]
T is the water acceleration at p. The current and wave model implementations

are based on the SINMOD oceanographic model (Slagstad and McClimans, 2005).

The thruster allocation has the form

τ = Bf

where the thruster allocation matrix is

B =









cos(35◦) cos(35◦) cos(35◦) cos(35◦) 0 0
sin(35◦) − sin(35◦) − sin(35◦) sin(35◦) 0 0

0 0 0 0 1 1
b1 b2 b3 b4 0 0









,

with

b1 = 0.216 cos(35◦) + 0.202 sin(35◦),

b2 = −0.216 cos(35◦) + 0.202 sin(35◦),

b3 = 0.265 cos(35◦)− 0.195 sin(35◦),

b4 = −0.265 cos(35◦)− 0.195 sin(35◦),

and the thruster vector is

f =
[

f1 f2 f3 f4 f5 f6
]T

.

The distributed control forces can be found by solving

f = BT
(

BBT
)−1

τ .

The control forces of each thruster are saturated according to

f̄i = max (−85,min(fi, 117.5)) ,

and their rate is limited according to

yik =















1.5 (tk − tk−1) + yik−1
,

f̄i,k−yik−1

tk−tk−1

≥ 1.5

−1.5 (tk − tk−1) + yik−1
,

f̄i,k−yik−1

tk−tk−1

≤ 1.5

f̄i,k, else,

where tk is the time at step k, f̄i is the commanded input of thruster i at step k, and yik is the output at
step k.



Appendix B

A video file is included as an appendix to this work. The video contains recordings of the simulations and
field experiments presented in this work. The video is also available at https://youtu.be/rIwrpKp4HnQ.
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Koubâa, A., Allouch, A., Alajlan, M., Javed, Y., Belghith, A., and Khalgui, M. (2019). Micro air vehicle
link (MAVlink) in a nutshell: A survey. IEEE Access, 7:87658–87680.

Kyo, M., Hiyazaki, E., Tsukioka, S., Ochi, H., Amitani, Y., Tsuchiya, T., Aoki, T., and Takagawa, S. (1995).
The sea trial of ”KAIKO”, the full ocean depth research ROV. In ’Challenges of Our Changing Global
Environment’. Proc. OCEANS ’95 MTS/IEEE, pages 1991–1996.

LaValle, S. M. (1998). Rapidly-exploring random trees : a new tool for path planning. The annual research
report.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Lee, C. H. (1995). WAMIT theory manual. Technical Report MIT Report 95-2, Dept. of Ocean Eng., MIT.

Lee, C.-T. and Tsai, C.-C. (2011). 3D collision-free trajectory generation using elastic band technique for
an autonomous helicopter. In Li, T.-H. S., Tu, K.-Y., Tsai, C.-C., Hsu, C.-C., Tseng, C.-C., Vadakkepat,
P., Baltes, J., Anderson, J., Wong, C.-C., Jesse, N., Kuo, C.-H., and Yang, H.-C., editors, Next Wave in
Robotics, pages 34–41. Springer Berlin Heidelberg.
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