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Abstract

This thesis introduces a strategy for finding analytical derivatives of certain mechan-
ical properties, such as the stiffness matrix, with respect to geometry-defining pa-
rameters, such as the height of a cantilever beam. The calculation uses an implemen-
tation of the isogeometric method known as cut finite element method (CutFEM).

Analytical gradients of properties with respect to parameters are useful for gradient-
based optimisation. In particular, the case where minimising compliance using a
set maximum amount of material is discussed, although other possibilities are also
noted. CutFEM has the advantage of having a fixed background mesh that is in-
dependent of the geometry, which makes it particularly well suited for parametric
optimisation since it requires neither complicated meshing nor re-meshing.

The thesis aims is not to directly describe a general solution to a general CutFEM
implementation, rather it uses a specific minimalist implementation as a foundation
to introduce the necessary concepts in an easy and intuition-based manner. The im-
plementation flaws and shortcomings are used as examples of pitfalls, thoroughly
discussed, and improvements are suggested.

A sheet problem is introduced where parameters describe the shape of the smooth
function, particularly a B-spline, representing the height of this cantilever. All sides
are straight, except for the parameterised top. The shape of this smooth function
is optimised to minimise compliance against a point load placed at the lower right
corner, with constrictions on the total area. The optimal result was calculated us-
ing classical FEM and CutFEM, with similar but not identical results. Some analysis
suggest that some of the discrepancies likely would disappear if a uniformly dis-
tributed load along the right end was used. The reaming discrepancies could not be
accounted for, and the obtained results seem to indicate that for the sheet problem,
the CutFEM implementation has a slight bias towards evaluating curved geometries
as too soft compared when edges composed of straight lines. This bias does in turn
bias what is considered optimal.

Finlay suggestions for improvement of the schemes used are presented, these take
notes of what important characteristics are important in the context of optimisation.
With particular emphases on reducing discontinues, and quicker calculations.
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Sammendrag

Denne avhandlingen presenterer en metodikk for å beregne analytisk deriverivasjoner
av visse mekaniske egenskaper, for eksempel eksempel stivhetsmatrisen, med hen-
syn til parametrene som definerer geometrien, for eksempel høyden på en utkrage-
bjelke. Beregningen benytter en implementering av den isogeometriske metoden
beskåret finittelementmetode (CutFEM).

Evnen til å beregne analytiske gradienter av egenskaper med hensyn til parame-
tere er verdifull for gradientbasert optimalisering. Spesielt utforskes scenariet av å
minimere ettergivenhet mens man holder seg til en forutbestemt maksimal mate-
rialmengde, selv om andre muligheter også er bemerket. CutFEM gir fordelen med
et fast bakgrunnsnett som ikke påvirkes av endringer i geometri, noe som gjør det
særskilt egnet for parametrisk optimalisering da det eliminerer behovet for kom-
plekst nett, og omnettlegging.

Et utkrageraktig plateproblem introduseres hvor parametere beskriver formen til en
glatt funksjon (spesifikt en B-spline) som representerer høyden på en 2D utkragerb-
jelke. Alle sidene på platen er rette, bortsett fra den parameteriserte toppen. Målet er
å optimalisere formen på denne glatte funksjonen for å minimere ettergivenhet mot
en punktbelastning plassert i nedre høyre hjørne, samtidig som begrensninger på
det totale arealet er begrenset. Det optimale geometrien ble beregnet både med klas-
sisk Finittelementmetode (FEM) og CutFEM, som ga lignende, men ikke identiske,
resultater. Noen analyser tyder på at en del av avvikene ville forsvinne hvis en jevnt
fordelt belastning langs den høyre enden ble brukt. De gjenværende avvikene kunne
ikke forklares, likevell synes de oppnådde resultatene til å indikere at for plateprob-
lemet vurderer CutFEM-implementasjonen buede geometrier som for myke sam-
menlignet med når kanter består av rette linjer, og at dette påvirker dens dens vur-
dering av hvilken geometri som er optimal.

Til slutt presenteres forslag til forbedringer av de anvendte metodene, med særlig
vekt på å redusere diskontinuiteter og raskere beregninger. Disse forslagene tar hen-
syn til hvilke egenskaper som er viktige i sammenheng med optimalisering.
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Chapter 1

Introduction

In mechanical engineering, the design workflow often involves a sequential process
where the initial design of a mechanical part is conducted in computer-aided de-
sign (CAD) software. This is then followed by meshing and subsequent analyses in
specialized software. As noted by a pioneer in isogeometric analysis (IGA) Thomas
Hughes, Fixing CAD geometries and creating Finite Element Analysis models, can
take up to 80 % of an engineer’s time [1]. Because the geometry must be exported
and meshed, further alterations to the design necessitate modifications across mul-
tiple files, leading to increased overhead.

This thesis outlines a potential path to a more streamlined workflow for future en-
gineers. The suggestion based upon combining the advancing and increasingly rec-
ognized domains of isogeometric analysis (IGA) and parametric design, together
with convex1 optimization using analytic gradients. These gradients are the deriva-
tive of a certain property with respect to a user-defined parameter. The proposed
method improves the workflow in two ways. The first improvement is the potential
for doing analyses on a geometry defined by the CAD-file, with mesh that does not
adhere to the underlying geometry. Relatively new advances with methods such as
CutFEM has made these kinds of analyses increasingly stable, accurate, and diverse.
Note that it is called isogeometric due to its ability to capture the exact geometry,
without having to rely on an increasingly fine mesh, thus needing fewer degrees of
freedom (DOF) to capture curved geometry. The other benefit is that the result from
these analyses can be used to tune the geometry, based on constraints and optimiza-
tion objectives set by the user. This naturally allows more of the design iterations to
happen in the CAD program.

1.1 The Aim of the Thesis

The main objective of this thesis is to, derive and test an algorithm that allows for
parametric optimization with analytic gradients using CutFEM. Previously CutFEM
has only been limited to topological derivatives, the differences of these will briefly
be discussed. This thesis aims to be a foundation for further improving and expand-
ing the field of obtaining analytical derivatives from CutFEM solvers. This involves
starting with a simple setup, and discussing what needs to be included and what
should be improved. use

A great emphasis is placed on describing the mathematical framework of these

1"Convex" in the context of optimization means the objective function is unimodal, i.e. it only has a
single minimum, as is a common definition for optimization purposes.
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methods more understandably and intuitively, particularly from an engineering stu-
dent’s point of view. This is inspired by "Scientific Papers Made Easy" by West and
Turnbull (2023) [2], which focuses on decreasing the readers’ necessary knowledge,
by simple methods like using fewer abbreviations. This is noted due to the mathe-
matical nature of the more rigorous and proof-oriented sources of this thesis, as an
example the reader is encouraged to compare with the very good source material on
CutFEM by Hansbo, Larson, and Larsson (2017) [3].

1.2 Scope limitation

The scope of the thesis is limited to gradient-based convex optimization of geome-
tries using linear 2D analysis of structural problems. The optimization formulation
is limited to minimizing, maximizing, or constraining: Area/weight, compliance/s-
tiffness. Along with strategies for how to include other attributes such as stress/s-
train. The optimization is achieved by simultaneously tuning an arbitrary amount
of user-defined parameters. To keep the scope limited, only the theory necessary to
create and analyze the specific examples is implemented and tested. These short-
comings are noted along with a discussion about how to further, expand, general-
ize, and improve the strategies. This was deemed to be sufficient to demonstrate
the potential of this strategy, although it could not at this point be developed into
valuable software. Furthermore, the methodology has potential for wider applica-
tions, to any problems that can be solved with IGA, where analytical derivatives
could be calculated or estimated. IGA has various applications both in FEM and in
other modelling situations where Eulerian meshes are suitable. Among other things
is suited for advanced Dirichlet and Neumann boundary conditions, and fields such
as computational fluid dynamics.

1.3 Structure of the Thesis

Structuring the thesis traditionally has proven to be inconvenient, and a few changes
will be made. Firstly the results are simply the means to evaluate and discuss the
theory, and the most important component of the discussion is how to fix problems
and improve the strategies proposed in the theory. To best serve this purpose, the
discussion will be placed where it is the most relevant. The discussion is mostly
alongside the results, and partly in the theory and when discussing improvements
to the implementation. Additionally, there will be two chapters dedicated to poten-
tial improvements, both are located after the conclusion. The first of these is some-
what unconventional, in that it only discusses ideas for better implementations than
what is presented in the theory. The second of these is the more conventional further
work section, which aims to note the most relevant missing elements that would be
necessary for the technology to be useful in more general optimization problems,
along with shorter notes regarding the proposed improvements. Furthermore, to
introduce the motivation and background for parametric optimization of a CutFEM
implementation, it is beneficial if CutFEM already is introduced. To make the thesis
composition more natural, there is no dedicated section for motivation and back-
ground in between the theory. To solve this issue, the theory section introducing
Parametric Optimisation 3.1 aims to serve this purpose.

• Chapter 2 - Presents the required fundamentals of FEM, along with short de-
scriptions of Classical, and a longer introduction to CutFEM.
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• Chapter 3.1 - Presents The field of parametric optimization, along with a dis-
cussion of problems and good practices. Followed by a section on obtaining
analytical derivatives CutFEM.

• Chapter 4 - Presents results, along with discussion. The main focus is to eval-
uate the flaws through evaluating the quality of the results.

• Chapter 5 - Presents the conclusion of this thesis, based upon the interpretation
of the results.

• Chapter 6 - Presents ideas for changing the presented integration scheme, to
improve the scheme in various ways.

• Chapter 7 - Presents suggestions for further work, what new things should be
done, and what could be improved.

• Appendix A - Display of optimal solution obtained with different setups.

• Appendix B - Link to code repository.
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Chapter 2

FEM and CutFEM - Theory

2.1 Introduction

To calculate the stresses and deformation in an arbitrary geometry acted upon by
arbitrary forces, some sort of FEM is usually necessary. One disadvantage of the
classical FEM method is that it can only handle geometries that are not composed
of straight sides exactly, and an increasingly fine mesh is needed to approximate
curved edges. The field of IGA is introduced, witch to captures curved surfaces
exactly. IGA usually refers to the ability to capture any CAD geometry, where the
CAD geometry is composed of non-uniform rational B-spline (NURBS) [4]. The the-
ory behind NURBS is not strictly necessary to the aim of this thesis, and to keep the
theory as concise as possible the special case of non-rational uniform B-splines is in-
troduced and used instead.

One method of performing IGA is CutFEM which has a fixed background mesh
that is independent of the underlying geometry, where the geometry only affects the
Gauss points and numerical integration.

Two different FEM implementations will be discussed, classical FEM and CutFEM.
The term classical FEM is used to describe the implementation of FEM where, firstly
the shape functions that interpolate the displacement vector u are located inside
their corresponding element. Secondly, the mesh is fitted to the underlying geom-
etry, with straight lines between the nodes. For CutFEM neither of these two state-
ments holds.

To present CutFEM intuitively, it is most convenient to first introduce the more gen-
eral principles of FEM, and then subsequently study how CutFEM differs from clas-
sical FEM. The concept of B-splines is significant for the implementation of CutFEM
used in this thesis and is therefore presented between the sections, to keep the theory
as concise as possible only non-rational uniform B-splines are introduced.

2.2 Finite Element Method

This section will introduce some basics of FEM, with the implicit assumption of a
2d in-plane problem. The introduction to finite elements will be brief, and only the
most relevant formulas, and intuition that need a particular emphasis in the context
of this thesis will be introduced. For a more complete description the reader is re-
ferred to "The finite element method: Theory, implementation, and applications" by
Larson and Bengzon (2013), [5]. Additionally, knowledge about the von Mises stress
and principal stresses will be assumed but not introduced.
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2.2.1 Nodal displacement and stiffness

In general FEM analysis, requires that a domain/area Ω is split into a discrete set of
nodes, that composes the vertices of the mesh. For the purposes of this thesis, four
nodes, in a quadrilateral shape define an element. Each point has two deg degrees
of freedom, its displacement in the x and y direction, these are the element of the
displacement vector u. The external force acting on each node in the direction of its
degree of freedom is f. The relationship between these are

Ku = f, (2.1)

where K represents the stiffness matrix. K is composed by the contribution of each
element stiffness, this is found using the principle of virtual work and balancing
inner and outer forces. In reality, these forces are difficult to balance at every location
and, thus are content with solving the weak form of the problem, i.e. accepting that
it should be satisfied over the integral, instead each location. The stiffness is based
upon the strain-displacement matrix B, which describes the relation between strain
εx, εy, γ and degrees of freedoms. Where each row of B dotted with u is εx, εy, γ
respectively. The following definition for K is slightly different from other sources,
this formulation is chosen to better represent both FEM formulations used in this
thesis.

K =
∫

Ω
B⊤DB |J| t dΩ̂, where: (2.2)

B =


∂Nx,1

∂x 0 ∂Nx,2
∂x 0 . . . ∂Nx,n

∂x 0
0 ∂Ny,1

∂y 0 ∂Ny,2
∂y . . . 0 ∂Ny,n

∂y
∂Nx,1

∂y
∂Ny,1

∂x
∂Nx,2

∂y
∂Ny,2

∂x . . . ∂Nx,n
∂y

∂Ny,n
∂x

 . (2.3)

The integration area is the entirety of Ω. This definition relies on the definition that
the 2d shape function Nx/y,k = 0 when it’s inactive/undefined, where k represents
the k’th degree of freedom. Note that Nx/y,k = 0, is an (outer)product of two 1d-
shape functions, making it a 2d surface and that each node has two corresponding
shape functions so that we can represent any movement x and y direction. This
definition is equivalent to the definition often used in classical FEM, where the con-
tribution of each shape function is integrated over each element it is used before the
contribution of each element is added to K. The material property matrix D, based
on the Young’s modulus, E, and Poisson’s ratio, ν is

D =
E

(1 − ν2)

1 ν 0
ν 1 0
0 0 (1−ν)

2

 . (2.4)

Hooke’s law for 2D tensors is expressed as σ = Dε, where ε is the strain vector
ε = [εx, εy, γ]T and σ is the stress vector σ = [σx, σy, τ]T.

As noted in [6] the integration can be done using for instance 2-point Gaussian
quadrature rule meaning there are 4 Gauss points in each 2D element, this will be
assumed for the remainder of this thesis. A 2D element should be able to exactly
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ingrate a third-degree polynomial surface. Exact integration is known as full integra-
tion, in contrast to reduced integration, which is the case when the polynomial order
is higher than what can be integrated. Note that when full integration is used the
obtained solution is usually stiffer than the exact solution, while reduced integration
can be softer. Piecewise polynomial surfaces of order 3, could also be integrated ex-
actly, as long as the integration borders of the element align with the position of the
connection of the "pieces". Note that if the order is higher than 3. All together we
have that

K
NGauss

∑
i=1

wi

(
B⊤DB |J| t

)
at Gauss point i

(2.5)

A concept that describes how stiff a structure is to a given load is compliance, com-
pliance is quantified as the work done by external forces on the displacements of a
structure. It is defined as

C = uTf = uTKu (2.6)

2.3 Theory: B-Splines

This section describes B-splines and its properties. For simplicity, it is assumed that
the problem it solves is to interpolate points with evenly spaced coordinates be-
tween 0 and 1 (later on from 0 to b) along the local coordinate u, where these points
are "weighted" equally, and where all the polynomials are of the same order. This
lets us simplify the formulas significantly, which is why it differs from the usual defi-
nitions. This also helps us circumnavigate the concept of "knot points", which would
introduce additional complexity without contributing to the aim of this thesis. This
simplification was made to not introduce unnecessary complexity, although all the
applications for splines used in this thesis could be done with the more advanced
versions of splines, such as the Non-uniform rational B-spline (NURBS), as shown
in [7]. The concept of NURBS will be referred to, but it is only necessary to know
that it is a generalisation of the theory presented here. All theory presented regard-
ing B-splines and NURBS is from "The NURBS Book" by Les Piegl and Wayne (1996)
[4], and the reader is encouraged to investigate this book for more information.

For the later FEM applications, it is beneficial to look at the problem from a per-
spective where basis functions are combined to obtain the primary interpolation
function, and this perspective will thus be empathised.

2.3.1 Properties

When selecting a smooth interpolating function or curve between in set of points,
from now on called control points, a few properties are often desired.

• Controllable: The curve should be able to make a variety of different (smooth)
shapes.

• Local Control: Moving a single control point affects only a local portion of the
curve.

• Limited oscillatory behaviour: Small degree of oscillations between the con-
trol points.

• Smooth: Highly differentiable, meaning the function remains continuous after
several layers of differentiation.
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• Linear Combination of Basis Functions: The final curve is constructed as a
linear combination of basis functions, this makes it behave intuitively.

• Partition of unity: The basis functions should sum to 1 for every input.

In short, B-splines is a function that satisfies this criterion using piecewise poly-
nomials, where the degrees of freedom of these polynomials are used to maximise
the continuity across the borers.

The can be smart to note that the last property implies that you can use superpo-
sition to add the contribution of the different control points. Meaning that the i’th
basis function’s contribution is just the value of the ’ith control point times its basis
function.

2.3.2 B-spline basis functions

Let’s say we have n, evenly spaced control points, the first is u0 = 0 the last is
un−1 = 1, they have a spacing of ∆u. Let’s say we want to find the B-spline of order
p, where p ≤ n − 1. For the zeroth order base function at location i, denoted Ni, 0
we have.

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Higher order polynomials from p=1 are defined by the recursive relation:

Ni,p(u) =
1

p∆u
((u − ui)Ni,p−1(u) + (ui+p+1 − u)Ni+1,p−1(u)). (2.7)

With the derivative

N′
i,p(u) =

1
∆u

(Ni,p−1(u)− Ni+1,p−1(u)). (2.8)

The left part of Figure 2.1, shows these basis functions for n = 5 and p = 3 for all
i, it can be seen that they smoothly approach 0 at the end of each span. Since they
are order 3, their partial derivative up to p − 1 is 0 at this point, and thus their p − 1
derivative never jumps. This gives them the property that any linear combination of
them is what is called Cp−1-continuous. This is also somewhat apparent in Eq. 2.8,
since the derivative has the continuity order of p − 1. The right part of Figure 2.1
shows the basis functions for n = 5 and i = 1 for all possible p, keep in mind that
all your basis functions should have the same P and that this is only for illustration
purposes. Note that the span of each basis function reaches P*∆u to the left and right
of the control point, except at the ends.

There are more efficient algorithms than what is presented here for calculating the
basis functions and their derivatives. An open-source Python implementation of
these is the package geomdl [8], which is based on algorithms from Piegl & Tiller
[4]. Further performance gain may be obtained by changing the source code on the
most crucial functions. The package NumPy [9] utilises arrays instead of a list and
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FIGURE 2.1: Basis function of B splines with n=5 control points at u=
{0,0.25,0.5,0.75,1}

makes it so that the code can be compiled using the just-in-time compiler package
Numba [10], this can speed up the code by several orders of magnitude.

2.3.3 Applying the basis functions

Combining the basis functions into a B-spline is simple. It is just a linear combination
of the basis function, where each basis function is multiplied by the second entry
of their corresponding control point. This can be seen in Figure 2.2, which is just
2*N1,3+1*N4,3 from figure 2.1, because the the height of the control P1 and P4 is 2 and
1 respectively. We call this new curve S(u), this is more formally defined as

S(u) = ∑
i

Ni,p(u)Pi. (2.9)

Note that the B-spline does not pass through the control points, this has the down-
side that you cannot simply tell what value of the function will be at a control point,
but with the upside of dampening the oscillating behaviour. This last statement can
somewhat be explained when recalling that the basis functions should sum to one at
all locations, the property of passing through control point i would then imply that
Ni,p = 1 and all other Nj,p = 0 at that point. If a sooth function is periodically equal
to zero it must necessarily either oscillate or stay zero outside its closes control point,
neither of which is desired.

Figure 2.2, also has a change of basis from u to x. In general, if a function f (u) is de-
fined in the interval u ∈ [0, 1] and you want a new function g(x) that is "stretched" so
that x ∈ [0, b] in a linear fashion. Intuitively we know that the steepens/derivative is
1/b at the corresponding "locations" from f to g, and the area is b times larger at the
corresponding interval. For the remainder of this thesis relationship between u and
x will not be given any further attention, and for simplicity, any function that has
been introduced with u/b can be used in the x/v domain using the same symbol.
Note that if such a mapping is done, the functions are not isoparametric, due to the
fact that the parameters of the physical domain will not match the shape functions.

2.3.4 hpk-refinement

If higher resolution is wanted, there are commonly 3 ways of doing this: Increasing
n is called h-refinement, increasing p is called p-refinement, and increasing n and p
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FIGURE 2.2: Third order B-spline and its control points.

is called k-refinement. It has been shown in an important bublication by Hughes,
Cottrell, and Bazilevs (2005) that k-refinement converges fastest among these. Al-
though this assumes that the integration scheme is of sufficiently high order, witch
is not the case in this thesis.

2.3.5 Surfaces their relevance in FEM

We can also generalise into higher dimensions, this thesis will only focus on 2D, M is
introduced as the basis function along the second axis to distinguish between these
two dimensions. The B-spline surfaces and basis functions in 2D can be defined to
be

S(u, v) =
n

∑
i

m

∑
j

Ni,p(u)Mj,p(v)Pi,j. (2.10)

One such example of surface can be seen in Figure 2.3. All 2D FEM implementa-
tions discussed in this thesis will have two displacement fields composed of nodal
displacement functions represented by N, that is the product of some combination
of Ni,p(u) ∗ Mj,p(v). Make sure to note the differences between N and N, since they
are related and easily interchanged. N represent displacements in x or y direction,
with the corresponding notation Nx and Ny. With the interpretation that Nx is a dis-
placement field, Figure 2.3 could represent the x-displacement of a plate with fixed
edges and a force acting in positive x-direction in the upper-left region.

One should also note that the derivative of the surface in the direction of a unit
vector n = [nx, ny]T, that could represent the normal vector on a function passing
through the domain, is

∂S(u, v)
∂x

= ∑
i

∑
j

Pi,j(
∂Ni,p(u)

∂x
Mj,p(v) ∗ nx + Ni,p(u)

∂Mj,p(v)
∂y

∗ ny). (2.11)



Chapter 2. FEM and CutFEM - Theory 10

FIGURE 2.3: Surface S(u, v) from B-splines where p = 2 and P1,2 = 1,
while all other Pi,j = 0.

In the context of the previously introduced interpretation of a surface representing
either Nx or Ny, one could find the strain in the x direction, εx, by using nx = 1
and ny = 0. Note that the contribution of the Ny to εx always is 0. It would
affect the shear deformation γ, witch in general i calculated from ∂Nx(u, v)/∂y +
∂Ny(u, v)/∂x.

2.4 CutFEM

This section introduces the theory behind CutFEM. The implementation of basis
functions is based on the influential paper "Isogeometric Analysis" by Thomas J.R.
Hughes [1]. The CutFEM theory is based upon the aforementioned paper "Cut fi-
nite element methods for elliptic problems on multipatch parametric surfaces" by
Hansbo, Larson, and Larsson [3]. The former of the two uses mesh that adheres to
the geometry, while the latter does not.

2.4.1 Introduction to cutting elements

The most fundamental concept of CutFEM is simple. And can be summed up with
Figure 2.4. The underlying geometry is independent of the regular background
mesh. In principle, it is only required to know whether or not any given point is
inside or outside the geometry. Although there are some caveats. In particular, in
the coming sections the following will be discussed

• How to find the actual displacement û, from the u obtained from K−1 ∗ f?

• How to accurately calculate the stiffness contribution of a shape function that
is only partly inside an element?
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• How to enforce the von Neuman boundary conditions of the free boundaries?
Meaning that there is no strain normal to the boundary, i.e. that σn = 0.

• How to avoid the reduced numerical stability of the degrees of freedom that
corresponding shape functions fall entirely or almost entirely outside the ge-
ometry.

FIGURE 2.4: Rectangular elements with underlying geometry. The
region is only considered active in the domain of the underlying ge-

ometry

2.4.2 Physical interpretation of the displacement vector

The classical FEM implementation has the advantage that the values obtained from
u directly translate to the displacements at the nodes. When using B-splines the
physical displacement u∗, at any point X, Y can be found with

û(X, Y) =

(nx−do f s−1)

∑
i=0

ui ∗ Ni(X, Y),
(ny−do f s−1)

∑
i=0

ui ∗ Ni(X, Y).

T

(2.12)

Other relations like

ε̂x
∗(X, Y) =

(nx−do f s−1)

∑
i=0

ui ∗
∂Ni(X, Y)

∂x
=

(nx−do f s−1)

∑
i=0

ui ∗+εx,i(X, Y) (2.13)

is found similarly. In this case, the hat notation indicates that u is used to obtain the
answer. When hat is not used we are considering functions of the underlying shape
functions. Other properties are calculated in similar ways. For the remainder of this
thesis bot û and u will be referred to as u, this was done to keep the syntax simple,
and was deemed acceptable since it is apparent from context what is referred to.
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2.4.3 Gaussian quadrature

For the quadrature to be truly isogeometric, it should be able to integrate the under-
lying geometry exactly. This should include geometry with holes, one scheme for
such general integration is described in [3], which involves quadrature points with
negative weights. For the purposes of this thesis, only the cases where the area un-
derneath a "well behaved" function is used, where the three types of Gauss points
Figure 2.5 are used. In each case, the weights of the Gauss points wi are different.
When integrating a completely active element with area=A, shown in green, we can
intuitively see that wi ∗ |J| = 0.25 ∗ A, so that the sum of Gauss points in an ele-
ment can capture the area. For the Gauss points partially filled elements, marked
with blue, the Gauss points should be given weight proportionally to the area they
describe. If the element is divided into 5 subsections with a total of 10 Gauss points
each element 0 ≥ wi ∗ |J| ≤ 0.1 ∗ A. The weight of each pair of points with the same
x coordinate is equal to each other and proportional to the "height" of the function
above the element bottom, divided by the element’s height.

The Gauss points marked with grey, do not represent anything physical and are
only used for numerical reasons. These are introduced with inspiration from, lec-
ture series (2020) [11], and not the previously introduced sources. M. Scott proposes
not using the partial element Gauss point, and binary choosing if the regular Gauss
points are active or not, but this strategy is not deemed sufficient for the later pur-
poses of finding parametric derivatives. The inactive Gauss points are given a value
of almost zero. i.e. 1e − 8. These are important in this implementation of CutFEM
FEM, to ensure that no degree of freedom has stiffness approximately equal to zero.
This would intern make K singular or close to singular, meaning the matrix inver-
sion would be impossible or ill-conditioned respectively.

It can be noted that this method will give a step-like stiffness contribution on
the right-most active element when moving the right wall to the left or right. These
details are noted with more detail in section 6.1, and their unfortunate implications
are first introduced in section 3.2.4. For this reason, this scheme is not suited for
general optimisation purposes. Although the scheme was not changed due to time
limitations, and due to the simple nature of the implemented problems.

2.4.4 Neumann boundaries

The two most notable boundary conditions are Direch and Neumann boundaries.
Which in this case enforces predefined displacements and surface forces respectively.
This is again based upon Hansbo, Larson, and Larsson (2017) [3], and their work is
recommended for a more mathematical introduction to these. The only displace-
ment constraint used for this thesis is that some degrees of freedom are fixed, how-
ever, these can be set to zero by removing the from Eq. 2.1. And are thus trivial to
enforce in the case where a fixed end lies on the boundary, to limit the scope of this
thesis, the more general version is not investigated further.

To get the strain force normal to the boundary of the surface, where this normal
vector is defined by n = [nx, ny]T. We have that

εn = εx · n2
x + εy · n2

y + γ · nx · ny =
∂Nx

∂x
· n2

x +
∂Ny

∂x
· nx · ny +

(
∂Nx

∂y
+

∂Ny

∂x

)
· nx · ny

(2.14)
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FIGURE 2.5: Distribution of the three different types of Gauss points,
used for integrating the domain Ω. Green x are the Gauss points used
to integrate filled elements, and blue x integrates the active domain of
a partially filled element. Grey x are Gauss points that are not active

and have weight set to a very small value.

and further
σn = σxn2

x + σyn2
y + 2τxynxny (2.15)

In this context Nx is any subset of all Nxi , and similarly with Ny. This is dependent
on the context of the total εn is considered or the interaction between two degrees of
freedom is. Using this we can get an expression to enforce any strain or stress in any
direction on the surface, for the stress the property matrix D is also needed.

If it is assumed that the boundary is defined by an explicit function f(x), nx,ny is
found by the following relation

nx =
− f ′(x)√
f ′(x)2 + 1

(2.16)

ny =
1√

f ′(x)2 + 1
(2.17)

The strain values are obtained from superimposing all εn values for each degree
of freedom, these are obtained using the theory from Section 2.3.5. At a free surface
σn should equal 0, in the strong form. However, when a finite amount of degrees of
freedom is available a more reasonable simplification is either to penalise σn! = 0 at
K evenly distributed points or to exactly enforce the integral of σn over some segment
is equal to 0. These methods will be called the penalty method and Lagrange multiplier
method respectively, the latter is sometimes referred to as the Lagrange method.
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Let’s note that in cases like the top part of a non-uniform cantilever beam from Fig-
ure 2.5, the k’th points on the geometries top should be weighted

wk =

∆y if line is vertical√(
( f (xk)′)

2 + 1
)
· ∆x otherwise

(2.18)

to adjust for the fact that steeper functions have more length per x coordinate. Simi-
larly defined weights will be present at all free sides. Let’s introduce the terminology
that is the gradient of order 1 at a point along the edge indexed by k representing the
degree of freedom nr. i, is σni(Xk, Yk)

The penalty method does not enforce the boundary conditions exactly. It is based
upon that K∗ = K + βBC ∗ KBC, will give a solution that approximately satisfies
their respective conditions. The free boundary penalty matrix KBC is

KBC,ij =
K−1

∑
k=0

εni(Xk, Yk) · εnj(Xk, Yk) · wk. (2.19)

For the Lagrange multiplier method [12], there exists a vector gl such that gl · u = 0
is equivalent to the condition that the integral of εn over a segment indexed by l is
zero. In short, we can enforce all of these exactly using[

K GT

G 0

] [
u
λ

]
=

[
F
0

]
. (2.20)

Where each gl is a row of G, λ is not useful in this context. The notation K∗ is also
used here for the new constrained stiffness matrix. To make the implementation iso-
geometric the integration of each area can be done with evenly distributed points
with weight wk for the top and bottom part of the geometry distributed along the
x-axis. For a geometry similar in nature to the one displayed in Figure 2.5, the top of
the right geometry border will in general not coincide with the element boundary,
the integration points should be able to move smoothly to fit the given geometry. To
reduce what will later be introduced as non-gradient-preserving discretisation disconti-
nuitie in section 3.2.4, a straightforward approach keeps the number of points and
integration areas about the total number of included elements (both partial and full),
and then let the points have different spacing to fit the correct size of the geometry.
If a proper isogeometric penalty is desired, the integration region should be small
compared to the features of the geometry.

Note that the aforementioned methods bring a framework to enforcing forces on
the edges of the geometry. From the aforementioned CutFEM article [3], it seems
that it is implied that this is done in a similar way to the penalty method proposed,
although the author does not have sufficient understanding of the mathematical syn-
tax used to deem if they are indeed equivalent.

Note on enforcing free boundaries

The free boundaries are in principle not strictly necessary to enforce, meaning they
are "naturally" satisfied when the forces are balanced [12]. However, this will only
be exactly true if the strong form of the solution is satisfied, which is not generally
the case, as long as the edges are not parallel to the underlying mesh. Based on the
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author’s experience the strain normal to the geometry surface from the numerical so-
lutions can be significant in some situations. There seem to be two likely reasons for
this, the first is that underlying degrees of freedom can not describe natural bound-
aries perfectly at all points (in the general case), due to a finite amount of degrees of
freedom. The second seems to be related to situations when local regions are non-
convex (convex as in f”(x) < 0), meaning that the same shape function can enter two
sides of the geometry with a valley in between. The difference between an "enforced
free boundary" and an "unenforced free boundary" is geometry-dependent. This
makes it so that these two methods will order the performances of some geometries
differently in some specific situations. It is more important that one method order
two similarly ordering corresponds with the ordering that would be found in the
corresponding physical systems. And enforcing Neumann boundaries is an attempt
to investigate potential solutions to this. One takeaway from this, that must be kept
in mind the choosing and tuning a scheme is that the most important attribute of a
scheme is that it ranks solutions realistically, and that correct displacements are an
additional benefit.

For further details of the implementation, the full code is available and found in
Appendix B, the text in the appendix refers to the most relevant part of the code.

2.4.5 Basis removal

This section will include a very simplified technique to ensure that the behaviour
of the shape function that crosses the border of the geometry is well-behaved. It
works to minimize the problem that arises when almost little to no force is required
to excite a degree of freedom to a very large extent in the case where the only part
of the domain of a mode shape is inside the geometry. One way to indicate that
this has happened is when an element on the diagonal of K is small. The method
proposed in this section is to remove all degrees of freedoms i where Ki,i is less than
a set threshold value r. This threshold should be small to not lose any significant
behaviour, i.e. 1/2000 of the bottom left corners x (or y) directions diagonal stiff-
ness entry. In order not to be geometry dependent, this should be calculated when
the displacement function is entirely within the geometry. The value of the inactive
Gauss points from Figure 2.5 is set to zero, in this case.

Removing degrees of freedom is only one way of removing this problem, the lit-
erature often refers to ghost penalty, which is a method for penalising discontinuous
high-order derivatives of functions at borders. It was shown in [13] that these two
methods had a similar result. Neither ghost penalties nor basis removal change in
a continuous manner when continuously changing the geometry. Rather their con-
tribution to the stiffness when changing the underlying geometry behaves in a step-
like manner. For reasons that are discussed in Chapter 4, the choice method could
simply be changed without needing to consider the derivative, making this choice
arbitrary to the later discussion of this thesis.

A note on the choice of this simple method. There are methods of basis removal
that ensure optimal convergence order when refining the mesh, presented by Mats
Larson in [13] , which the chosen method is inspired by. The proposed method was
chosen so that it could be appended to the code written relatively easily. Further, the
scheme does not affect the scope of the thesis. The simplification was necessary due
to a large amount of time being lost to a misunderstanding concerning the ghost
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penalty, from which all produced code, analytical derivatives, results and writing
had to be discarded.

2.5 Comparisons

This section will aim to give a summary of some of the relevant differences between
classical FEM and CutFEM and highlight their respective advantages and limita-
tions.

2.5.1 Comparative Overview

Some of the main strengths of classical FEM are that is simple, and its connection
to a physical interpretation is relatively straightforward. This makes it inherently
robust, and modifiable to diverse contexts, and the results can generally be trusted.
It also has the advantage that it tends to create space matrices, where each node only
interacts with 9 nodes, including itself, in the 2d case, and 27 in the 3d case. The
three major disadvantages are that it requires meshing, it can only capture geometry
with straight edges exactly, and the implementation used in this thesis is only C0
continuous across element borers.

The CutFEM implementation on the other side has the advantage that it uses smooth
high-order functions, that can naturally describe deformation, without needing many
degrees of freedom. It has the advantage of being able to do h,p and k, refinement.
Where can p and k refinement, where these, generally speaking, can not be toggled
as easily in classical fem, gets more accuracy increase

• Continuity

– Classical FEM: Uses simple localised shape functions. That can to some
extent approximate any function.

– CutFEM: Uses smoother more spread-out function, that can approximate
smooth functions well. This makes non-smooth loading functions cum-
bersome.

• Meshing

– Classical FEM: Requires meshing and can only capture geometry with
straight edges exactly. Curved edges must be approximated with fine
mesh.

– CutFEM: Meshing is trivial and can more naturally describe any geome-
try.

• Sparsity

– Classical FEM: Tends to create spatial matrices where each node inter-
acts with a maximum of 3 raised to the number of dimensions (including
itself).

– CutFEM: Each node interacts with a maximum total amount of nodes of
4p − 1 raised to the number of dimensions (including itself). That means
for 3d volume using p=5, where each node has 3 degrees of freedom, each
degree of freedom can interact with over 20,000 others.

• Refinement Capabilities
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– Classical FEM: Relies on h refinement.

– CutFEM: Offers flexibility in h, p, and k refinement, p and k allowed for
more accuracy gain per degree of freedom.

• Continuity Across Element Borders

– Classical FEM: Only C0 continuous across element borders.

– CutFEM: Employs smooth, high-order functions that is Cp−1 continuous
across borders.

• Ease of Implementation

– Classical FEM: Generally easier to implement due to its simplicity, and
inherent stability.

– CutFEM: Quite involved to implement and stabilize
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Chapter 3

Parametric optimisation

Parametric optimization is the name used in this thesis for the process of adjusting
the parameters which describe a design, to minimize an objective function, under
a set of constraints. The objective function is somewhat circularly defined as "what
should be minimized", and can be among other things stiffness, mass, or stress in a
particular location.

This section will first introduce the field of parametric design, then its followed by
an introduction to optimization. As noted in section 1.3, the former will implicitly
describe the motivation and background of this thesis. And finally introduce how
to find the gradients of any objective function that is only composed of K,u,A, or
other variables where the user knows its derivative with respect to the parameters
that describe its design, denoted αj.

The only theory that is strictly new to this thesis is ∂K/∂αj and ∂K∗/∂αj in the imple-
mented version of CutFEM, the "*" indicates that penalization is included. The star
notation will not be used unless it is of particular interest in a given section. These
sections will thus have additional emphasis.

3.1 Parametric Design

This section will describe some important principles and use cases in Parametric
Design while using a simple illustrative example. Parametric design represents a
significant segment of the field of structural optimization. It involves the use of pa-
rameters to define and manipulate the characteristics of a design, often within a CAD
environment. This approach allows for a high degree of flexibility and adaptability,
essential in exploring a wide range of design possibilities.

3.1.1 Definition and Principles

At its core, parametric design is about establishing relationships between different
design elements. These relationships are governed by an arbitrary amount of pa-
rameters αj, which can be dimensions, geometric properties, or any other quantifi-
able attribute relevant to the design. As an example, when designing a table the
table width, length, thickness, and leg radius can be α0...α3, whilst the leg length
and distance between the legs and outer edge of the table might be a set value. The
parameters can also determine a smooth shape.

One example of parametric optimization is where the parameters describe a smooth
shape that will be referred to as the Sheet Optimization Problem. It is very similar to
Example 7.4 in [14], and it describes a 2D sheet with a cantilever-like structure, where
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the load is placed at the bottom right node, the left side is fixed, and the remaining
edges are free to move. It has a set length, and thickness (out of plane), and plane
strain is assumed. The bottom and right side is straight and the top side is defined
by N equally spaced control points. α0...αN−1 indicates the y position of each of
these points. The specific details of numerical values will be given in Table 4.1 in
the Results chapter. While mirroring the relationship from Eq. 2.9, the notation used
will be a bit different, the top spline defines the height h(x) along the beam and is
composed of the basis functions bj(x) giving

(x) = ∑
j

bj(x)αj (3.1)

3.1.2 Transition to Optimization

Parametric design sets the foundation for one type of structural optimization, here
referred to as parametric optimization. By defining the design space and the re-
lationships between various parameters, an optimization algorithm could tune the
parameters to achieve the desired goal. One very important feature of parametric
optimization is that the engineer defines the solution space, meaning that an op-
timized table still would look like a table, in the sense that the table would not
have cavities or other unspecified features. The previously mentioned cantilever
would still have a flat underside if this was a manufacturing constraint known to
the engineer. These optimization algorithms, which will be discussed in the follow-
ing section, seek to find the best possible design within the defined parametric and
specified constraints.

3.1.3 Usefull Information in Gradients

One use case that is not commonly noted in the literature, but is very useful in en-
gineering, and closely tied in with optimization is presentable gradients. For humans
working with engineering challenges, knowing the gradient of a solution could be
important, partly because they are very understandable. There are two categories of
this, the first is direct use, the statement "The deformation of the table top subjected
to the design load would be y mm less per x mm thickness added, for small x" is such
an example. The second is the manipulated use, which requires a successfully termi-
nated optimization and often further manipulation, an example of this would be the
statement "If another x kg of material is used, and distributed optimally, the table
could hold take another y Newton more". This is not discussed or noted further but
is noted since it is a potential benefit. Please note that there are no sources included
on this topic and that is exclusively based on the author’s personal experience.

3.1.4 Alternatives in Structural Optimization

One should note that one other major field in structural optimization exists. This
is topology optimization, and it can roughly be described as a technique where the
material is removed/added where it is needed least/most in the previous simula-
tion/iteration. This will generally be able to optimize better than parametric opti-
mization, somewhat regardless of the objective function. The obtained solution will
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be it is very tailored to this objective function. The result will generally be more or-
ganic, and require more complex manufacturing techniques like 3d printing. Para-
metric design can be preferable in the three following cases: In cases, where pro-
duction limitations and production cost are limiting factors, in cases with simplified
load cases, like only optimizing for a point load in the middle of the table, and in
cases where specific geometries are proffered, like wanting a flat tabletop. This is
already implemented for CutFEM and presented in [15].

3.2 Convex Optimization

Convex optimization studies the problem of minimizing the output of a convex func-
tion, by tuning a set of parameters. As noted earlier, for the purposes of optimiza-
tion, a convex function is a function where the only local minimum is also the global
minimum. This characteristic ensures that one will obtain the optimal solution by
iteratively moving in the direction of decreasing function value, often referred to as
"walking downhill," provided that the steps taken are sufficiently small. An example
of optimization is: minimize compliance while keeping the area A less than some set
value CA.

3.2.1 Constraints

One subclass of optimization problems is constraint optimization problems. Where
the objective is to minimize something, given that a constraint must be satisfied.
A constraint can be either an equality constraint (where some function must equal
zero) or an inequality constraint (where some function of the parameters must be
greater or equal to zero). I.e. A − CA = 0, and A − CA ≥ 0, constrains the area equal
and "greater or equal" to CA respectively. To constrain the area to smaller than CA,
the sign on the left can be switched yielding −(A − CA) ≥ 0. Constraints divide the
parameter domain into a feasible and an infeasible region, the feasible is the domain
where all constraints are satisfied. One such example is displayed in Figure 3.1

3.2.2 Gradients

The concept of gradients plays a central role in general non-linear convex optimiza-
tion. Gradients can either be calculated analytically, or numerically through finite
differences. Analytical gradients are generally preferred since this greatly reduces
the number of function calls needed, as shown in Figure 3.2. The gradient of a func-
tion provides both the derivative of the output concerning the parameters and si-
multaneously the direction of the steepest ascent at any point. In the context of opti-
mization, one is interested in the negative gradient, as it points in the direction of the
steepest descent, which is typically along the shortest path towards the minimum.
Constraints can also have gradients, and in cases where the optimal solution lies
on a constraint boundary, the gradients of the objective function and the constraint
function align in such a way that the descent direction is tangent to the constraint
boundary, as shown in Figure 3.1.

3.2.3 Optimization algorithms

One comparatively fast algorithm is Sequential Least Squares Programming (SLSQP)
which is one of the algorithms implemented in the SciPy optimization package [16]
used in this thesis. SLSQP is a numerical optimization algorithm used for solving
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FIGURE 3.1: A contour plot of a constrained and convex optimization
problem. The optimal solution is marked with red.

FIGURE 3.2: Comparison of function calls needed for analytical and
numerical gradients. The objective function is the sum of errors to
the fourth power of regression of a straight line using third-order B-
splines with uniformly distributed points. There are 1.5x more re-
gression points than degrees of freedom, to ensure that several exact

solutions don’t exist
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problems of nonlinear optimization with constraints. It works by iteratively approx-
imating the objective function and constraints as quadratic and linear functions, re-
spectively, and solving these approximations using least squares methods. It uses
information both from previous function evaluations, and gradient evaluations, to
suggest changes in the parameters. These changes will be referred to as steps. This
approach allows for efficient handling of both the objective function and the con-
straints, making SLSQP particularly suitable for problems where gradient informa-
tion is available and constraints must be strictly satisfied.

Another method available is the trust method available in SciPy as "trust-constr",
this always uses linear approximations, and restricts the step size to within the trust
region. This converges much slower than SLSQP but avoids taking large steps when
the derivative changes abruptly close to a discontinuous function. These two afore-
mentioned methods are used interchangeably throughout this thesis, since their re-
sults are identical, no further emphasis will be given to the choice of these.

It is worth noting that the method of moving asymptotes is the optimization al-
gorithm of choice, for Christensen et al. in [14], and based on the presented results
presented there it is quite likely to be better than the aforementioned algorithms
used in this thesis. The author was not able to find an easy-to-use python-package
with a good implementation, and making a custom was not prioritised, due to its
irrelevance to the aim of the thesis.

3.2.4 Obtaining the Correct Solution

This section will cover three notable issues, that must be kept in mind in order to get
the optimal solution. This is not an extensive list, but it is chosen based on what is
relevant to the broader context and discussion.

Multiple Minima

The first problem is that it only works with convex problems, and geometric op-
timization has no guarantee of being convex. Consider the example in Figure 3.3,
excluding buckling and so on, the softest configuration is when the three hinges fall
on the same line. This does in practice mean that the optimization would find dif-
ferent solutions with different initial conditions, α0 equal to its lower bound would
not give the best solution. While not all structural problems are convex, it appears,
from the author’s perspective, that convexity is a fair assumption in many practical
cases as long as good practices are followed, and several different initial conditions
are tried. What makes a practice is noted briefly in section 3.2.5

3.2.5 Erroneous discontinuities

The second problem is related to the first one, which will be referred to as numerical
noise and discretisation discontinuities, both can create small local minima. An exam-
ple of numerical noise can be a floating point error that propagates throughout the
code or loops with convergence criterion. These loops can run different amounts
of time for input that differ with a small delta, breaking continuity. These are usu-
ally small, and easy to circumvent, and will not be discussed further. Discretisation
discontinuities refer to discontinuities that appear when continuous phenomena are
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FIGURE 3.3: Two local optima in an optimization problem. In the
figure on the left α0 is equal to its upper bound, on the right it equals

its lower bound.

represented by discrete elements or steps. An example of a discretisation disconti-
nuity is when shifting between quadrature schemes for an element, as shown with
blue and green in Figure 2.5. An element can change between being partially or
fully active for arbitrary small changes in α. If the polynomial degree is higher than
what one of the schemes can capture, a numerical discontinuity will appear. Note
that other quadrature schemes would not necessarily have this problem. Another
example would be re-meshing. For the purposes of this thesis, there are two cate-
gories of discontinuities if the function analytical gradient is not affected to a high
degree, this will be called gradient-conserving discontinuity and is shown on the left
part of Figure 3.4. For gradient-conserving discontinuities, the gradient and numeri-
cal gradient will differ around the discontinuity. Numerical derivatives will in these
situations be more reliable using a larger step size, at the cost of precision. This
problem does not have severe ramifications with analytic gradients meaning that
the solver can usually still find the optimal solutions.

Discontinuities

The second category is a significant problem, important to keep in mind when choos-
ing strategies for a FEM implementation. It appears when either the objective or the
constraint function does not have a smooth derivative, as shown in the right part of
Figure 3.4, these are non-gradient-conserving. In some cases, the solver would poten-
tially terminate at the wrong spot since the objective function is pointing the wrong
way. A problem the author has experienced while working on this thesis is that the
solver struggles to find a point where the gradients of the objective function, align
with the gradient of the constraint function. In these case, the solver will in that case
not terminate as fast as it should, but rather jump around the optimal region until
it terminates when no improvements is found. An example of a constraint function
with non-gradient-conserving discontinuities is shown in Figure 3.4. There are some
ways of making the optimization scheme more robust for such problems, but they
are outside the scope of this thesis.

An important note is that most of the democratisation discontinuities in the prob-
lem affect K but not ∂K/∂αj. However as shown later in Eq.3.5, ∂u/∂αj depends on
both these terms. In short, this means that the implementation and/or optimization
algorithms should have a strong emphasis on reducing discontinuities.

If the same answer is obtained regardless of the initial alphas, then the problems
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FIGURE 3.4: A contour plot of a constrained and convex optimization
problem. With two types of discontinuities in the constraint problem.
On the left, only the function values are discontinuous, while the gra-
dients point in the correct direction, on the right the gradients are also

affected.

with multiple local minima are not considered severe. However, to the author’s
knowledge, there is not a single way to generally prove that can tell if a specific
problem is indeed convex.

Specification Gaming

The third and final notable problem in convex optimization that needs to be ad-
dressed is what can be referred to as specification gaming. This issue arises when
the optimization algorithm exploits the bugs or nonphysical quirks in the speci-
fied objective function or constraints. Although such solutions are technically cor-
rect within the defined mathematical framework, they are practically undesirable or
nonsensical. One such example is shown in Figure 3.5, which shows two optimal
solutions to the archetype problem where the B-spline was modelled with 6 and 30
degrees of freedom respectively. The displacement of the bottom right node was 8%
smaller using 30 degrees of freedom, although the displacement for the node above
this one was 2% larger. This indicates that the optimization algorithm exploited the
fact that an increased area on the lower-right element would distribute the point
load over a larger area, resulting in a less stretched lower-right element. The reasons
for the oscillations are not certain, but it can be observed that a running average over
the oscillating region would somewhat co-inside with the optimal solution from 6
degrees of freedom, this indicates that the peaks were the bi-product of averaging
this ideal shape while compensating for the effect of the extreme behaviour at the
edge.

Choosing Parametrisation Scheeme

Problems with multiple minima and specification gaming can sometimes be avoided
by choosing the correct parametrization of the geometry. Although there are many
things to keep in mind, two general principles will be presented based on the au-
thor’s personal experience from this and previous projects. A parametrisation scheme
should first make sure that two similar geometries should not be able to be expressed
through dissimilar parameters, since this can lead to multiple minima. The second
is to make sure that the objective can give all feasible solutions a well-justified objec-
tive value, this includes making sure all feasible parameter combinations are well-
defined.
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FIGURE 3.5: Optimal solution of the archetype problem, with 6 and
30 degrees of freedom respectively. Only deformed mesh is shown

In order to choose a good parameterisation scheme, a rule of thumb is to try to ob-
tain predictable and intuitive mapping between the parameters and their physical
interpretation, defining the top side of the Sheet Optimization problem as geometry
as a sum of sine waves with amplitude αj waves would not give an intuitive map-
ping. This would make the relationship between the α values and their derivative
very nonlinear. Another important rule of thumb is to restrict unnecessary freedom.
Letting the control points in the sheet optimization problem have freedom in the x
direction, would lead to many cases with almost equal geometry, and many difficult
to predict cases, such as cave-like cavities or self-intersection points along the spline.
It should be noted that even the proposed B-spline based solution has the downside
of not passing through the control points, so the mapping is less predictable, for
instance, αmin, αmax is not equivalent to setting a min and max value of the curve’s
domain. To achieve better bounds of the geometry either more complicated con-
straints should be used, or using interpolation functions such as the Cubic Hermite
spline described by Burden in [17], although this has more occilatiory dependencies,
as noted in section 2.3.3. The chosen method was considered sufficient since the op-
timal solutions obtained were not affected by the bounds, except in the case of the
unrealistic right side of Figure 3.5.

3.3 Analytic gradient in FEM

This section will first introduce the most relevant formulas, that generalise to both
classical FEM and CutFEM, from the simplest fundamental derivatives. Then some
information about how to obtain these, in the two FEM implementations. This sec-
tion, with exceptions of the references to CutFEM, is entirely based upon [14].

When calculating the derivative of functions, that is composed of other functions.
The two most important things to keep in mind are the chain rule, and the product
rule described as
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∂

∂x
( f (g(x))) =

∂ f
∂g

· ∂g
∂x

, and (3.2)

∂

∂x
( f (x) · g(x)) =

∂ f
∂x

· g(x) + f (x) · ∂g
∂x

(3.3)

The key to finding the gradients objective and constraint functions for FEM systems
is finding ∂K

∂αj
, K is calculated using Eq. 2.5. Using the product rule we thus have.
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(3.4)
Further, we can observe that in the general case all the terms in Eq. 2.1 are dependent
on αj. In order to find ∂u/∂αj, and circumvent finding the derivative of K−1, the
derivative should be taken before rearranging to solve for ∂u/∂αj. It can be shown
that this gives

du
dαj

= K−1
(

df
dαj

− dK
dαj

u
)

(3.5)

In every problem used in this thesis f is independent of any αj, and its contribu-
tion to the gradient is thus zero. Further one could find the derivatives of stress or
strains directly from ∂u/∂αj using equations like Eq. 2.13 in the case of CutFEM or
similar relations from classical FEM. Using this same method, other gradients from
other properties such as the von Mises stress at any given spot could be derived.
The derivation of the derivative of the compliance is shown in [14], but it elegantly
resolves to be

∂C
∂αj

= 2uT ∂f
∂αj

+ uT ∂K
∂αj

u (3.6)

3.3.1 Gradients in classical FEM

In the context of classical FEM B and |J|, are functions of the shape and size of the ele-
ments, meaning that it is a function of the geometry and thus of αj. The term ∂wi/∂αj
is zero for classical FEM, and its corresponding term can be ignored in this section.
In order to find ∂B/∂αj,∂Nx/y,i/∂αj is needed. Both ∂Nx/y,i/∂αj and ∂|J|/∂αj requires
the derivative of the node positions with respect to the parameters. In the proposed
method, the node y position is placed a constant fraction of the distance between the
top and bottom of the geometry, this fraction is given by the initial placement of the
nodes. This means that when moving the top of the surface some delta, the nodes on
the top will move this same delta, and the nodes on the bottom will stand still. For
further explanation about these details, including both a more general description
of the node’s positions relationship with αj, and a detailed description of obtaining
the derivatives of B and |J|, the reader is referred to "An Introduction to Structural
Optimization" by Christensen and Klarbring (2008) [14].

3.3.2 Gradients in CutFEM

Before further introducing how to obtain the relevant gradients in the CutFEM im-
plementation, let’s note what relevant information will be assumed to be available.
For the geometry borders, it is assumed that the normal direction, and the gradient
of this with respect to each αj, is available. Every evaluation and derivative of N is
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known. Further, it is assumed that the change of the position and weight of each in-
tegration point is available, although this will be discussed further in the following
section.

In order to obtain ∂K/∂αj using analytical derivatives, every contribution to K

FIGURE 3.6: Result of a change in a parameter α, in a single partially
filled element. The blue x’s represents two Gauss point that moves
along the top of the geometry boundary. Their respective integration
area and their change are marked in grey and greyish-yellow respec-

tively.

that changes with a small movement of αj must be considered. To do so consider
the Gauss points displayed in Figure 2.5. Notably neither the weight nor positions
of the Gauss points in the completely filled elements change, and will thus not con-
tribute. The only contribution to ∂K/∂αj is the Gauss points in the partially filled
elements, two of which are displayed in Figure 3.6. Since the elements always have
the same size |J| is constant and has zero gradient. For the Gauss point placement
scheme proposed in this thesis, the x-positions of these remain the same, while their
y-position and weight change. In general with other schemes and problems, it could
be considered that the y-position would also change, so it is included for complete-
ness. The weight change is proportional to the change in area that is covered by the
Gauss points and is based upon the implementation elements both the weight and
the position change. The weight change ∂Wi/∂αj is simply the change in the area.
Looking at Eq. 2.2, the final component ∂B/∂αj must be obtained. This problem
simplifies down to finding ∂Nx/y,i/∂αj at each Gauss point, where Ni is a general 2d
shape function, and the subscript x and y is used when it represents a shape function
that represents deformation in those respective directions. Further let’s consider a
Gauss point located at X,Y, we then have that

∂Nx,i(X, Y)
∂αjx

=
∂Ny,i(X, Y)

∂αjx
=

∂Ni(X, Y)
∂xx

· ∂X
∂αj

+
∂Ni(X, Y)

∂yx
· ∂Y

∂αj
(3.7)

∂Nx,i(X, Y)
∂αjy

=
∂Ny,i(X, Y)

∂αjy
=

∂Ni(X, Y)
∂xy

· ∂X
∂αj

+
∂Ni(X, Y)

∂yy
· ∂Y

∂αj
(3.8)

At the risk of repeating well-understood concepts, note that Nx and Ny are not tech-
nically equal in a strict mathematical sense, since they represent different quantities.
Their values on the other hand are the same at every position. If a higher order
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derivative is desired, the formulas remain the same with the last symbol underneath
the partial derivative of every N repeating more times.

3.3.3 Boundary Condition Gradients in CutFEM

Up to this point, only the contribution to ∂K/∂αj is presented. For the gradient to
represent the underlying functions exactly the full ∂K∗/∂αj must be calculated. In
general, the nodes used for integration around the geometry boundary have three
values that are dependent on αj. They can move in x- or y-direction, and they can
change their weights. Let’s assume that the derivative of each position X,Y is known
with respect to each αj, and follow the progression of section 7.0.2. Further, the the-
ory presented in this section depends a lot on the parametrisation scheme used, in
order not to complicate things with over-generalisation the specific case of the Sheet
Optimization Problem is used. This was deemed sufficient, to introduce the relevant
concepts, although some potential cases are not covered.

In order to get ∂εn/∂αj lets examine Eq. 2.14, and observe that the following prop-
erties are needed: ∂nx/∂αj, ∂ny/∂αj is needed, along with ∂Nx/y,i/∂αj. The latter
is already discussed. To obtain the former, only ∂ f (x)/∂αj is needed. Proceeding
with the example and notation from the top part of the Sheet Optimization Problem,
where h(x) is the function describing the height of the top boundary of the geome-
try. Since h(x) is the sum of all bj(x) · αj. The derivative with respect to αj is bj(x).
To clarify, ∂h(x)/∂αj = bj(x) in the case of the B-spline defining the top boundary
in the Sheet Optimization Problem. For the straight edges on the other side of the
geometry, the change in the norms is zero.

Similarly, in the case of the integration weight Eq. 2.18, the weights are affected
by two things. The extra weight is provided by the the steepness from f (x)′, and
the spacing between the points represented by dx and dy. In general, both might be
a function of a aj, but in the case of the proposed integration scheme and the Sheet
Optimization Problem the weight from the gradient is only relevant for the top part,
and the spacing changes for the right part.

In principle, all necessary components are now introduced, if assuming ∂X/∂αj and
∂Y/∂αj is known for every point from the chosen integration scheme. The results
can be obtained by using the rules of derivatives. Combining everything into one
formula could in principle be done, although when implementing this in practice it
is better to combine the variables on separate lines of codes anyway. And to do that,
only these core principles are necessary.

For further details of the implementation, the full code is available and found in
Appendix B, the text in the appendix refers to the most relevant part of the code.
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Chapter 4

Results

This section contains the analysis of several cantilever-like beams, all of which fol-
low the previously introduced setup referred to as the sheet optimization problem in
Section 3.1.1, although not every example involves optimization. Important discus-
sion elements will be alongside the results, however, it is mostly restricted to serve
the aim of this thesis. This leads to the problem that some results will be discussed
very little, one such example is that multiple mesh resolutions are tested, with the
only takeaway being an estimate on the minimal mesh resolution.

TABLE 4.1: Assumptions for the sheet optimization problem, used stated oth-
erwise. All values are unit-less for the purposes of these calculations.

Description Symbol Numerical Value
Young’s Modulus E 1
Poisson’s ratio ν 0.3
Vertical force at bottom right node F 1
Thickness of the cantilever t 0.01
Elements along x in classical FEM ex,Cls 50
Elements along y in classical FEM ey,Cls 20
Elements along x in CutFEM ex,Cut 17
Elements along y in CutFEM ey,Cut 20
Gauss points partially filled element/2 npart 10
B-spline polynomial order x px 3
B-spline polynomial order y py 3
Height of background mesh H 20
Length of beam and mesh L 17
Number of ghost points on top spline nghost 6
B-spline polynomial order on top ptop 3
Minimum area CA 180a

Initial height of ghost points αinit 15a

Min height of ghost points αmin 1.5a

Max height of ghost points αmax 20a

a Only for optimization.

One important thing to note is in the examples where displacement is calculated us-
ing CutFEM the displacement second lowest node on the right side is set equal to
the displacement of the lowest node using the Lagrange method. This is to reduce
the effect of the tip displacement being very large, and so that the obtained results
become less informative. To make the optimization results easier to interpret this
technique will not be used. It could potentially also lead to erroneous specification
gaming, and analyzing this behavior would be outside of the scope of this thesis.
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Composite Stress-Direction Plot

In order to illustrate and analyze the internal stresses computed for a given geometry
the Composite Stress-Direction Plot is used. This does primarily show three things.
The shape of the geometry, the von Mises stress, and the direction of the principal
stresses σ1 and σ2 is shown. An example of this is Figure 4.3. The active region is
colored in relation to von Mises stress, the inactive region is colored grey but kept,
the white region has a von Mises stress of approximately 0. The Black arrows are
the direction of the σ1 and σ2. The length of σ2 is scaled with the magnitude ratio
between the two, and the first has a set length. The angle θ between the x-axis and
the σ1 stress is

θ =
arctan 2(2τxy, σx − σy)

2
, (4.1)

while σ2 has an additional π/2 radians. Several details about this plot might not
feel intuitive, but it should be noted that along the free boundaries there should be
unidirectional strain, meaning that σ1 should be in the direction as the geometry and
σ2 = 0, in these cases there are no shear force. In contrast when σ1 = σ2 the shear
force is high, this typically happens around the neutral axis of the beam.

4.1 Simple cantilevers

This section will compare cantilevers solutions, from different solvers.

4.1.1 Uniform cantilevers

This section assumes a uniform cantilever with properties displayed in Table 4.2.

TABLE 4.2: Assumptions used current section.

Attribute Description Numerical Value
αi All equal, uniform height 1
L Length of the cantilever 10

Table 4.3 verifies that the setup works for simple simple beams. Further, it should be
noted that having a spacing between the top of the geometry and the grid reduces
the quality of the solution.

4.1.2 Tapered cantilevers

This section assumes a tapered cantilever with the following properties. This test
is designed to understand the effects introduced when the geometry does not align
with the underlying mesh.

The assumptions used for all beams are given in Table 4.4, the different setups
their results from different setups are shown in Table 4.5, and a Composite Stress-
Direction Plot of two geometries are shown in Figure 4.1. Note that the order that
the cases with orders 2 and 3 converged faster than 1 and 4. This corresponds with
the expectation that a higher polynomial order is better, with the caveat order than
3 will have an additional error because only third-order Gauss integration is used.
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TABLE 4.3: Displacement for different uniform cantilevers

Method ex ey px py H u end [×104] Error [%]
Analytical - - - - - 40 Reference
Classical FEM 100 10 1 1 - 40.09 0.21a

CutFEM 5 5 1 1 1 15.75 -60.62
CutFEM 5 5 2 2 1 39.67 -0.82
CutFEM 5 5 3 3 1 40.01 0.04
CutFEM 5 5 4 4 1 40.05 0.12
CutFEM 5 5 1 1 3 15.63 -60.93
CutFEM 5 5 2 2 3 40.18 0.45
CutFEM 5 5 3 3 3 47.96 19.90
CutFEM 5 5 4 4 3 75.73 89.31
CutFEM 5 10 1 1 3 15.73 -60.68
CutFEM 5 10 2 2 3 39.65 -0.88
CutFEM 5 10 3 3 3 40.28 0.69
CutFEM 5 10 4 4 3 40.78 1.96
a With ν = 0 the error becomes 0.08%

TABLE 4.4: Assumptions used in current section

Description Symbol Numerical Value
Number of ghost points on top spline nghost 2
B-spline polynomial order on top ptop 1
Height root α0 2
Height end α1 1
Length of the cantilever L 10

FIGURE 4.1: Composite Stress-Direction Plot of two notched can-
tilevers. On the left 20x20 elements polynomial order 1, and on the
right 20x20 elements polynomial order 3. Both is using third order

elements

4.1.3 Notched Cantilever

This section assumes a notched cantilever with the properties presented in Table
4.6. This test is designed to test the ability to test the effects of mathematically non-
convex geometries.
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TABLE 4.5: Displacement and error, relative to reference, for different
tapered cantilevers

Method ex ey px py H u end [×104] Error [%]
Classical FEM 100 20 1 1 1 8.34 Reference
CutFEM 5 5 1 1 2 5.27 -36.79
CutFEM 5 5 2 2 2 8.32 -0.16
CutFEM 5 5 3 3 2 8.36 0.28
CutFEM 5 5 4 4 2 8.36 0.32
CutFEM 5 5 1 1 4 5.22 -37.35
CutFEM 5 5 2 2 4 8.32 -0.24
CutFEM 5 5 3 3 4 8.58 2.85
CutFEM 5 5 4 4 4 10.58 26.90
CutFEM 5 10 1 1 4 5.27 -36.79
CutFEM 5 10 2 2 4 8.36 0.33
CutFEM 5 10 3 3 4 8.48 1.77
CutFEM 5 10 4 4 4 8.96 7.52
CutFEM 10 10 1 1 4 7.24 -13.12
CutFEM 10 10 2 2 4 8.42 0.97
CutFEM 10 10 3 3 4 8.57 2.75
CutFEM 10 10 4 4 4 9.03 8.33
CutFEM 20 20 1 1 4 8.06 -3.30
CutFEM 20 20 2 2 4 8.39 0.61
CutFEM 20 20 3 3 4 8.39 0.66
CutFEM 20 20 4 4 4 8.41 0.84

TABLE 4.6: Assumptions used in every example

Description Symbol Numerical Value
Number of ghost points on top spline nghost 8
B-spline polynomial order on top ptop 2
Height of beam αj ̸=2 2
Valley control point α2 0a

Length of the cantilever L 10
a Lowest point is 0.5, due to spline smoothing.

Figure 4.2 shows the deformation of the cantilever using both implementations.
Note that the degrees of freedom that have been removed are simply given 0 dis-
placement. This is the reason for the stretched elements outside the geometry. Fig-
ure 4.3 shows the results with 10x10 and 20x20 elements. Third-order elements have
a width of between 6 and 3 elements, depending if it is close to the edge or not. It
seems apparent that 10x10 elements are not enough to capture the behavior across
the notch, because there is strain going across the boundary. In the cases where this
happens, the obtained results are too stiff. Although it would be possible to con-
strain this behaviour with additional constraints, it would make the solution stiffer,
and thus not beneficial.
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FIGURE 4.2: Original and deformed mesh for classical FEM (left) and
for CutFEM (middle and right). Classical FEM with 100x20 first-order

elements. CutFEM with 20x20 third-order elements.

FIGURE 4.3: Composite Stress-Direction Plot of two notched can-
tilevers. On the left are 20x20 elements, and on the right are 10x10

elements. Both is using third order elements
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TABLE 4.7: Comparison of CutFEM method results, for notched can-
tilevers

Method ex ey px py H u end [×104] Abs error [%]
Classical FEM 100 20 1 1 - 6.66 Reference
CutFEM 5 5 1 1 2 9.01 -86.47
CutFEM 5 5 2 2 2 1.588 -76.15
CutFEM 5 5 3 3 2 1.426 -78.59
CutFEM 5 5 4 4 2 1.348 -79.77
CutFEM 5 5 1 1 4 0.884 -86.73
CutFEM 5 5 2 2 4 1.584 -76.22
CutFEM 5 5 3 3 4 1.426 -78.59
CutFEM 5 5 4 4 4 1.503 -77.44
CutFEM 5 10 1 1 4 0.901 -86.47
CutFEM 5 10 2 2 4 1.587 -76.17
CutFEM 5 10 3 3 4 1.428 -78.56
CutFEM 5 10 4 4 4 1.352 -79.69
CutFEM 10 10 1 1 4 3.022 -54.63
CutFEM 10 10 2 2 4 3.699 -44.45
CutFEM 10 10 3 3 4 2.594 -61.04
CutFEM 10 10 4 4 4 2.579 -61.27
CutFEM 20 20 1 1 4 4.747 -28.72
CutFEM 20 20 2 2 4 6.451 -3.15
CutFEM 20 20 3 3 4 6.64 -0.31
CutFEM 20 20 4 4 4 6.21 -6.63

4.2 Optimalisation

To test the optimization the previously introduced Sheet Optimization Problem is
used. This was run for the setup shown in Table 4.8.

TABLE 4.8: Setup used in current section
Name px/y βBC Lagrange Side penalized
Classical FEM 1 0 é -
px = py = 1 1 0 é -
px = py = 2 2 0 é -
px = py = 3 3 0 é -
px = py = 4 4 0 é -
βBC,all = 0.05 3 0.05 é all
βBC,all = 0.1 3 0.1 é all
Lagrange all 3 0 Ë all
βBC,top = 0.05 3 0.01 é top
βBC,top = 0.1 3 0.05 é top
Lagrange top 3 0 Ë top

The optimal shapes obtained from the different setups are displayed in Figure
4.4. The most important takeaway from the figure is that classical FEM and the Cut-
FEM implementation used in this thesis do not rank all solutions equally. A selection
of optimal shapes is presented in Figure A.1 inside Appendix A, none of these dis-
play any signs of non-physical behaviour, except for increasing oscillatory behaviour
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FIGURE 4.4: Comparison of obtained optimal shapes, the left part
compares solutions with different polynomial orders, the middle with
forced natural boundaries on all sides, and the right enforces only

forces out of the top.

in the behaviour of the point load.

One likely contributing factor is that the method’s respective displacement func-
tions spread out differently, and will interact with every displacement function it
overlaps with. When a point load is applied to the lower right corner, the displace-
ment should in theory become unbounded at this point. In practice, the degrees of
freedom can not describe this exactly, and the displacement function becomes large.
For classical FEM the effect of this large deformation is contained to the neighbor-
ing elements, while for the case of p=3 the directly affects a 3 unit by 3 unit area.
This distributes the force differently, which ultimately leads to a different optimal
shape. Further, it can be noticed that when a penalty constrains the deformation of
the bottom left node, the elements further up contribute more, and more of them are
included.

Another thing that seems apparent from Figure 4.4 is what will be referred to as
straight line bias. The non-penalized CutFEM solutions seem to have a "hump" of
about 8 units on the x-axis, with straight lines on either side. This seems unrealistic
to be present in the true optimal solution and might be an example of specification
gaming. As noted in Section 2.4.4, a finite amount of degrees of freedom cannot
satisfy the strong form of the solution along a boundary in the general case. One
likely explanation for the straight-line bias is that the CutFEM model, is better able
to capture the correct behaviour around straight edges, compared to curve one. The
computed utilization of geometry close to the edge would thus be slightly higher for
the straight edges. This could lead to higher calculated stiffness along straight lines.

It should be noted that the most similar topology optimisation example to this is pre-
sented on page 21 in [18], here distributed load and non-regular background mesh
were used. Although it is difficult to state whether or not this setup has any bias, it
can be noted as an option for further investigation.

Other attempts were made to test the persistency of the straight-line bias, these are
shown in Figure 4.5. The description no basis reduction, referees to not removing the
basis functions that had a low contribution to the stiffness. The description stiffened
right, referees enforcing the displacement of the second lowest node on the right side
equal to the displacement of the lower node through the Lagrange method.
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FIGURE 4.5: Comparison of obtained optimal shapes

FIGURE 4.6: Relationship between compliance and the rightmost con-
trol point. The derivative is calculated using central finite differences

A way to identify the straight-line bias could potentially be by investigating the
stiffness relationship between the parameters and compliance in regions where the
parameter almost formed a straight line. Figure 4.6 is an attempt to investigate this.
The conclusion from this seems to be that the effect must necessarily be really small
and that it only marginally would affect the stiffness. The test was tested with and
without basis spline removal, here it is apparent that discontinuities appear when
ill-conditioned basis functions are not removed. Note that some sort of discontinu-
ity also appears when removing basis functions, although such examples are not
present in the figure.

The discontinuities will likely create local minimums, to test this the standard px =
py = 3 setup was run several times with different initial conditions, and the results
were distinguishable, each α had a range of about 0.2, this is however not distin-
guishable on a plot. It cannot conclusively be said, without more analysis, if these
are caused by local minima or termination of the optimisation algorithm.

4.2.1 Reduced Integration

As noted in Section 2.2.1 using reduced integration on higher-order polynomial solu-
tions can potentially be too soft. On the other hand, when enforcing natural bound-
ary conditions the solution becomes stiffer. This section is an attempt to see if good
results can be produced by counteracting the softness tendency effect with addi-
tional stiffness. And as an opportunity to better understand the behaviour of the
results.

Using ex = 20, ey = 20, px = py = 10, H = 4, and the notched cantilever test,
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FIGURE 4.7: Comparison of optimal results using 8th order B-splines
as basis functions, and reduced integration.

this resulted in Table 4.9. Some penalised geometries have lower errors, the error is
likely smaller simply because of the stiffening effect and not inherently better solu-
tions.

TABLE 4.9: Setup used in current section

Name px/y βBC Lagrange Side penalized Error [%]
Unpenalised 10 0 é - 9.12
βBC,all = 0.05 10 0.05 é all 4.81
βBC,all = 0.1 10 0.1 é all 4.14
Lagrange all 10 0 Ë all 0.35
βBC,top = 0.05 10 0.05 é top -0.86
βBC,top = 0.1 10 0.1 é top -1.55
Lagrange top 8 0 Ë top 4.07

To better test whether or not the enforcing of natural boundary conditions gener-
ally compliments the downsides of using high-order polynomial surfaces with low-
order Gauss integration, it is possible to utilise one aforementioned problem with
optimization. Here the same boundary condition setup was used, although px and
py were set to 8. As noted in section 3.2.5 specification gaming is when there are any
problems with the objective function/solver, that unfairly ranks some solution dif-
ferently than what would be considered correct. The optimization algorithm is likely
to exploit this and the obtained optimal solution. Figure 4.7 shows that the optimal
solution provided by 8th-order B-spline surfaces unfairly favoured solutions that go
up on the right side of the geometry. The reason for this is not known, but it seems
unrealistic compared to the non-penalised px = py = 3 solution. The results with
penalisation barely seem closer to the true solution.

Another thing that can be noted is that some of the solutions did indeed converge
around discrete values. Out of the 7 optimal solutions found using the setups using
8th order polynomials, 4 solutions had a value of α0 less than 1/1000th away from
an integer number, and similarly 2 with αn−1.This indicates a democratisation dis-
continuity on both sides.

On the left side, the number of constrained nodes increases by one every time an-
other element becomes active. The difference was investigated, and Figure shows
that for the Lagrange Top case, the compliance changes with 0.008% when α0 crosses
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FIGURE 4.8: Compliance as a function of α0, around α0 = 13. The op-
timal solution for the Lagrange penalty on the top was used, with
only small changes to α0. Compliance is normalised such that it

equals 1 when α0 = 13.

13.

The two cases when αn−1 was almost equal to an integer, happened when the right
side had a penalty. More penalty integration points are added along that edge when
an integer value is reached. Although the total weight of the points remains the
same, their location will jump, and will thus cause a discontinuity.
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Chapter 5

Conclusions

The aim of the thesis was to implement a version of CutFEM, find analytical deriva-
tives of important functions, and compare the optimal solutions obtained using Cut-
FEM and classical FEM. This was accomplished, with notable simplifications mak-
ing the CutFEM implementation less general than the comparable implementations
discussed in the sources. This chapter includes a short description of what was and
was not done, and key insights gained.

The following list discusses the theory of CutFEM implementation presented in this
thesis, with emphasis on its shortcomings.

• Von Neumann boundary conditions were introduced, however, it was only
tested to enforce traction forces equal to 0.

• The general Dirichlet boundary conditions were not implemented, the fixed
boundaries were obtained by removing degrees of freedom. The mathemati-
cal framework for enforcing Dirichlet boundary conditions was partially intro-
duced.

• True CAD, meaning geometry compatible with NURBS describing the bound-
aries, was not introduced. To limit the scope of this thesis the implementation
and theory were limited to B-splines with uniformly distributed control points.
The theory should generalize easily, with the caveat that the introduced func-
tion had an explicit relation between the X and Y position on the edge. This
means that finding the gradient of the position of a given point with respect
to a geometry-defining parameter will have added complexity in the general
case.

• The Gauss point integration scheme was chosen to be as simple as possible
and work with the specific examples of the thesis. This scheme yields a K that
would be discontinuous as a function of a geometry-defining parameter. In
cases presented in this thesis, small discontinuities appear when an element
goes from being completely inside the geometry, to partially being inside the
geometry. In the worst-case scenario, in cases that are not analyzed in this
thesis), the stiffness would decrease in steps.

The CutFEM implementation gives too stiff solutions in cases when the geome-
try has mathematical non-convex regions compared to classical FEM. This happens
where many of the shape functions are wide enough to enter the geometry on both
sides of the non-convex region. This can be seen in Figure 4.3. These cases got com-
parable results when the underlying mesh was refined. The study was not detailed,
but it seems that the width should not exceed the width of two elements.



Chapter 5. Conclusions 40

In cases where the geometry was convex CutFEM gave comparable results to clas-
sical FEM, even with comparably very coarse meshes. CutFEM could give close to
exact solutions of cantilever beams with as little as 5x5 elements with polynomial or-
der 2 or 3. For the cases with 20x20 elements, the error was small, although it seems
that the error is geometry-dependent.

The small error in the calculated stiffness leads to the optimal configuration using
CutFEM being slightly different than the optimal solution using Classical FEM. Al-
though no conclusive analyses were done, two observations with respective theo-
ries were noted, based upon Figure 4.4. Firstly the optimal classical FEM solution
is higher at the end than for CutFEM, the difference might be because the point
load’s respective degree of freedom will get a large amplitude, and the shape of its
displacement function will determine how this point load is distributed throughout
the geometry. The second observation is that the optimal geometry obtained using
CutFEM seems to have a straight-line bias, meaning that the optimal solution has re-
gions with straight lines that are not there in the classical FEM solution. This might
be a consequence of the degrees of freedom being better able to capture the correct
behaviour around straight edges. As noted, it cannot be conclusively stated if there
is a general tendency towards straight lines, and it is not known if this tendency
holds for finer meshes and all polynomial orders. It should nevertheless be noted
that this potentially is a problem for regular rectangular meshes.

Parametric optimisation is useful, as long as the designer knows what variables
should be tuned, and what variables should not, in a manner that ensures that tun-
ing the parameters does not have the opportunity to change the geometry in an
undesirable manner. In general, a given parameterisation is not convex and might
be subjected to specification gaming. Nonetheless, if careful consideration is made
to the formulation of the problem, it can be a useful tool for speeding up the design
process.



41

Chapter 6

Integration scheme i Improvements

An integration scheme that is well suited to analyse a single case is not necessarily
best suited for optimization. For the optimization methods suggested in this thesis,
to be able to accurately distinguish the difference in stiffens from two similar geome-
tries might be more important than accurately calculating the correct stiffens. The
integration scheme used in this thesis was not optimal in all cases, and this chapter
will discuss some potential improvements.

6.1 Stiffens integration suggestions

During the writing of this thesis better ideas for calculating K and ∂K/∂αj for par-
tially cut elements were developed. The improvements can potentially increase ac-
curacy, reduce discontinuities, and lower computational time. None of what is pre-
sented here was implemented or tested. It is important to keep in mind the previous
integration scheme from Figure 2.5, in this paragraph the blue x’s showed in this
figure will be called partial Gauss points. The improvements for integration of any
given geometry is

• Reduction from total: In cases where an element has three of four corners in
the active region. Standard Gauss point integration should be used for the
entire element, and partial Gauss points with negative weights should be to
remove the contribution from the geometry that is not there.

• Dynamic corner Gauss points. In cases where an element has one of four
corners in the active region. Partial Gauss points should mostly be spaced in
the manner that is already presented, each integrating the area ∆x/2 to each
side. There should be one exception to this: The last partial Gauss points before
the boundary exists the element should be placed in the middle of where the
last integration regime ends and where the edge of the element ends, as shown
in Figure 6.1. An update of Jacobean is required to account for the increased
area.

• Choosing most beneficial orientation: The partial Gauss points scheme should
potentially flip 90 degrees where it is beneficial for accuracy, computational
speed, and robustness for edge cases should be considered.

Some notes about these suggestions. The first item will be about half the number
of Gauss points in the element on average, and remove the numerical discontinu-
ity at the intersection when the elements become partially active. However, an-
other (smaller) discontinuity will appear when changing the reduction from the to-
tal method to the regular method. The second item will make the stiffness function
continuous, this is important since the previous method scheme led to a not gradient
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FIGURE 6.1: A better placement of partial Gauss point close to edge

FIGURE 6.2: Suggested integration scheme in four cases, dotted line
represent the change of geometry border as a function of change of a

parameter

preserving discontinuity. The criterion for choosing the direction for the third item
would require further investigation because there would be a trade-off of traits in
some cases.

Let’s recall that only the partially filled elements contribute to the ∂K/∂αj. More
specifically it is strictly only dependent on the movement of the boundaries. This
section proposes using special integration points to calculate ∂K/∂αj, which is not
useful to obtain K. ∂K/∂αj could be obtained from integrating virtual Gauss points
shown in green and cyan in Figure 6.2. Let’s first discuss the green and red points
from case 1, A. If the boundary at the x position of the red point moves ∂Y/∂αj. The
area marked in yellow will be ∆x ∗ ∂Y/∂αj, and the movement of the virtual integra-
tion point will be 0.5 ∗ ∂Y/∂αj, both of which need to be taken into account. Moving
the position will change its interaction with the displacement function so i.e. to find
∂2N/∂(αjy), ∂2N/∂(yy) is required. The details of finding the position of the purple
spot are similar to the dynamic corner Gauss points discussed previously. The most
involved step in the general case would be finding the change of the intersection
point of the element border with the geometry border. If this requires iterations, it
might be more efficient to employ automatic derivatives for these specific calcula-
tions.

One way to reduce the complexity of the algorithm that is better suited to the case
where NURBS is to distribute the point along by a parameter u, where u each u X and
Y position along a curve is given. Is to evenly distribute the points along this u. To
compensate for the fact that the spacing is not even, a compensation weight could be
found with the following process: At a given location ∂x/∂u ∂y/∂u could be found,
the compensation weigh would be ∂s/∂u, where ∂s/∂u =

√
(∂x/∂u)2 + (∂y/∂u)2.

This would also be easier to generalise to cases with holes and cave-like structures.
A continuous result could be obtained if the same number of integration points was
kept for the entirety of the optimization process, although this has the obvious dis-
advantage of risking sparse or dense placement with large α changes.
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Chapter 7

Recommendations for Further
Work

This chapter presents some topics and shortcomings that have been identified through-
out the thesis, but due to limitations of time and/or the topic of the thesis, they were
not pursued further. The first two sections regard necessary developments to get
derivatives for more general problem statements. The remaining sections present
potential strategies for improvement of the already presented strategy presented in
this thesis.

7.0.1 CAD Geometry

The methodology in this thesis can work in very specific cases, although it is not
developed enough to be used for all paramedic CAD geometries. Any position
used in this thesis was defined in an explicit manner Y = f (x, α), and no function
X = g(y, α) was required for the integration schemes chosen. This means that the
movement of the positions of interest when adjusting α could be found straightfor-
wardly. One important note is that the general NURBS-defined geometry is not this
simple. Any position X, Y on the NURBS curve is defined by parameter u, generally
with a nonlinear relationship. Similarly to B-splines, the basis functions are defined
on u. This complicates the matter of finding the positional derivative. Calculating
these using automatic derivatives, or numerical methods, might be more convenient
than finding them explicitly.

7.0.2 Boundary conditions

This thesis used constrained Dirichlet boundaries in a way that only works for com-
pletely fixing displacements on a position that lies on the border of the underlying
grid. This lacks a few layers of complexity, three of which will be noted. Firstly,
several degrees of freedom determine the displacement at a point, when the point
is not on an edge. The second is that constraining the node vertexes would not be
exact, especially when the edges between them are curved. The third is that any
given method is not stable. The theory necessary for addressing the first two points
can be deducted from the theory in Section , with the constraint that the displace-
ment should be zero, or another predefined value. This can be done with either the
penalty or Lagrange method. The third point is not addressed, meaning that the
derivatives are not either. The stabilized Nitsche form presented in [3], addresses
the general problem using a penalisation method. Future work should incorporate
this, and find its derivative. Dirichlet boundaries have the benefit of the possibility
of being without discretisation discontinuities.



Chapter 7. Recommendations for Further Work 44

7.0.3 Ghost penalties

As noted in section 2.4.5, either removing basis functions or ghost penalty to assure
well-behaved basis functions in the general region of the geometry boundary. Ghost
penalty would likely, cause smaller discretisation discontinuities, although this is
not known.

7.0.4 Imporved Gauss Scheme

The integration scheme used in this thesis was chosen to be simple and to work well
with the solution used in this thesis. The strategy has some fundamental problems
and possibilities for improvement. Some remedies for these problems are presented
and discussed in Chapter 7.

7.0.5 Smarter Gradient

The strategy to get ∂K/∂αj implemented in this can be looked at as the "naive" ap-
proach, where the derivatives are directly calculated by looking at what changes
when α changes. Chapter 7 presents ideas for a potentially smarter way of calculat-
ing the derivatives.

7.0.6 Multifidelity Optimization

To find the optimal solution quicker it is possible to interchange using a fast less
accurate calculation (low fidelity) and a slower more accurate calculation (high fi-
delity). There are several potential paths to faster obtain the optimal solution, two
things should be considered, the best way of interchanging the high and low fidelity
solutions, and what low fidelity solution is best. Before proceeding with the sugges-
tions note that calculating ∂K/∂αj is much faster than K, K−1, and u. Three will be
presented on how to obtain low fidelity approximated solutions, note that it is faster
to obtain, the suggestions for low fidelity are:

• Multi resolution: Using coarser mesh.

• Updating only stiffness gradient: Dont update u (every time) when obtaining
the gradient of the compliance from Eq. 3.6. The stiffness derivative is much
faster to calculate since it is only dependent on the outer border.

• Updating only stiffness gradient: Updating u, using a first (possibly second)
order approximation, using the results from Eq. 3.5. Along with the exact
calculation of ∂K/∂αj. Note that the solution becomes path-dependent if an
approximated u is used to calculate the next u.

7.0.7 Non rectangular mesh

As previously noted the method of choice for a similar example in topology opti-
mization that is presented on page 21 in [18], uses triangular background mesh. This
could potentially reduce the possibilities of reducing specification gaming, although
it is difficult to say if some biasing is inherent in any mesh configuration.
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Appendix A

Composite Stress-Direction Plots
of Optimized Sheets

FIGURE A.1: Composite Stress-Direction Plots of optimized beams,
with the assumptions provided in Table 4.6
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Appendix B

Python Codes

All relevant Python codes used can be found at the following address:
https://github.com/mbkjaer/Parametric-Optimization-With-CutFEM.
The codes can be used to reproduce optimization run methods and to reproduce the
results of the thesis. The code is rather involved, so it is not recommended to under-
stand how it works as a whole. Although the functions named x_inner_builder()
and x_inner_builder_deriv() in iso_geometric_optimization.py are likely to be
the most insightful, to gain an understanding of the core insight of this thesis. The
different x_inner_builder() builds the different stiffness, and penalty matrices, and
x_inner_builder_deriv() builds their derivatives.

https://github.com/mbkjaer/Parametric-Optimization-With-CutFEM
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