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Abstract 

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable 
waste. A circular economy of the existing building stock can contribute to minimising mining of finite 
resources and reducing the construction industry’s waste. However, stakeholders often list lack of 
information about the existing building stock as a barrier against implementing a circular economy in the 
construction industry. This study provides a framework for construction industry stakeholders to combine 
publicly available data sources to obtain probability-based information about the building stock. The study 
analyses existing building data at city level using Bayesian Networks, a probabilistic modelling approach that 
accounts for the missing data consistently in contrast to other methods. The framework can be extended to 
incorporate first principle, data-based and empirical models from disciplines such as structural engineering, 
architecture, and industrial ecology to facilitate a circular economy.  
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1 Introduction 

The built environment stock and construction 
industry are among the biggest contributors to 
global greenhouse gas emissions, energy 
consumption, and unsustainable waste. This can 
partly be attributed to the production of building 
materials and components, construction, and 
demolition. In fact, in Europe, one third of all waste 
stems from construction and demolition activities 
[1].  

A circular economy of the existing building stock 
can contribute to minimising mining of finite 
resources and reducing the construction industry’s 
waste. Citywide circular economy approaches aim 
at implementing this approach at the local level. 
This makes it easier to set up a framework for a 
circular economy when working together with 
relevant actors, but also reduces the need for 
transport that can counteract the economic and 

environmental benefits of reusing and recycling. 
However, stakeholders often list a lack of 
information about the existing building stock as a 
barrier against implementing a circular economy in 
the construction industry [2].  

There are attempts to collate information about 
existing buildings from several European countries 
including footprint, height, building type, and age 
[3]. However, not only are there many missing 
entries for these attributes, but also, countries 
such as Norway were not included and important 
information like the main construction material is 
missing. Moreover, there is no suggestion on the 
part of the researchers on how to deal with data 
scarcity.  

Probabilistic modelling is one way to effectively 
capture information on the building stock to 
facilitate circularity, allowing us to deal with an 
increased level of uncertainty due to either random 
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chance, or lack of knowledge [4]. An application 
can be found in [5], where information from 
different data sources was collected and merged to 
make inferences based on geospatial, material, and 
typologies building data. In contrast to the current 
study where the uncertainty of the data is part of 
the model, they use statistical approximations to 
fill in missing data fields.  

For this reason, we suggest Bayesian Networks 
(BNs) - a probabilistic modelling tool characterised 
by directed acyclic graphs (DAGs) of nodes 
representing variables with causal (dependent) 
relationships i.e., directed links without loops or 
cycles. Each node has a conditional probability 
table (CPT) with a probability for each possible 
state, given the state of its parents. The prior CPTs 
can be created directly from data or reflect expert 
information. Thereafter, evidence is set in one or 
more of the nodes resulting in the updating of the 
entire network’s CPTs [6]. Not only have BNs and 
causal inference been used in the medical field and 
several others but also for structural reliability, 
design optimisation, and risk assessment in civil 
engineering [7, 8]. 

BNs provide the opportunity to combine data or 
observations with scientific principles. This makes 
it possible to expand data sets with experts’ 
opinions and prior scientific findings without 
explicitly requiring the data that these are based 
on. Compared to other popular machine learning 
approaches, BNs display some more key 
advantages. These include a probabilistic nature, 
meaning all results are explicitly uncertain, overall 
good performance, and high interpretability. The 
latter characteristics can be summed up under the 
term “grey box”, which stands in between highly 
interpretable but poorly performing models (e.g., 
linear regression) or highly performing but difficult 
to interpret models (e.g., neural networks).  

In this paper we present a case study to apply BNs 
to building stock information from the City of 
Trondheim in the northern part of south Norway in 
the Trøndelag region. The city has a population of 
about 200 000 people and 77 641 buildings of 
which 40 167 of them are residential buildings 
mostly constructed after 1960  [9].   

We gathered information about a sample of 
existing buildings from national databases. We 

then used this information to create a probabilistic 
model with BNs. Finally, we made inferences from 
the model about other existing buildings for which 
we do not have data. The purpose of the case study 
was to illustrate the benefits and possibilities of 
using probabilistic modelling and BNs, but it is not 
exhaustive and can be built upon in the future. 

The study methodology is described in Section 2. 
The results and discussion are presented in Section 
3 and conclusions in Section 4. 

2 Methodology 

The following section presents the study 
methodology – refer to Figure 1. We first gathered 
building stock variables from publicly available 
databases. Next, we compared and analysed the 
variables to test the fidelity of the data available in 
each database. This then determined which 
database and variables to select and use for the 
study. Finally, we used these variables to create a 
BN for probabilistic modelling and material 
prediction. 

 

Figure 1. Study methodology. 

2.1 Database identification and data 
gathering 

The study focusses on four building variables – 
main construction material (Material), year of 
construction (Year), Type, and total floor area 
(Area). The building variables were sourced from 
two databases: Geodata Norway and City Antiques 
databases referred to as Geodata and Antiques 
respectively in this paper.  

Geodata is a geographical information systems 
(GIS) platform with, among others, downloadable 

Identify databases/sources of building 
variables.  
 

Compare and analyse data between databases 
then select building variables of interest.  

  

Set up Bayesian Network and perform 
probabilistic modelling and inference. 
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files about buildings [10]. The Trondheim buildings’ 
geodatabase contains information on 75 634 
buildings (Table 1) i.e., almost all the buildings in 
Trondheim. 

Table 1. Number of buildings for each variable in 
each database and missing data (X). 

Variable  Data type Geodata Antiques 

No. 
buildings 

- 75634 7313 

Year Interval 62203 5043 

Type Nominal 74752 X 

Material Nominal X 4547 

No. stories Interval 74252 X 

Footprint 
area 

Ratio 75634 X 

In addition, Trondheim Municipality has an ongoing 
project of collecting and digitising historical 
building information from various sources. From 
this project, the Antiques department has 
compiled a geographical database that comprises 
data for 7313 buildings (Table 1)[11] that have 
been selected for conservation. The two databases 
are linked by building numbers i.e., the unique 
identifier assigned to each building. This is useful 
because it allows us to combine data from both 
databases thereby increasing the information we 
have (Table 1). 

2.2 Variable description 

There are a total of 7313 buildings which are in 
both the Geodata and Antiques databases. 
Although there is an overlap of building variables in 
the databases, there is also inhomogeneity and 
scarcity of data. This is further exemplified in Table 
2 which shows that on the one hand, the Geodata 
database has Year, Type, No. of stories, and 
Footprint area available. On the other hand, the 
Antiques database has Year and Material available 
but not Type, No. of stories, and Footprint area. 
Additionally, Footprint area is the only variable we 
have on all buildings while there is information 
missing for all the other variables. 

 

 

Table 2. Number of buildings in one or both 
databases for each variable and missing data (X). 

Variable  Geodata Antiques 

No. of buildings 7313 7313 

Year 4024 5043 

Type 7147 X 

Material X 4547 

No. stories 6967 X 

Footprint area 7313 X 

2.2.1 Year 

The construction year is available in both the 
Antiques and Geodata databases. The Year is listed 
for 4024 and 5043 buildings in the Geodata and 
Antiques databases respectively as shown in Table 
2 and Figure 2.    

 

 

Figure 2. Venn diagram describing the number of 
buildings in the sample with valid entries for the 
property Year in each database. 

We elected to use the “Year” variable from the 
Antiques database since it has a higher number of 
entries than the Geodata database. 

2.2.2 Type 

The building’s use type found in the Geodata 
database is based on the Statistics Norway’s three 
level classification system [12].  The Geodata 
database provides a different description of 
buildings than the Antiques database. The Antiques 
database’s building type describes what can be 
viewed as a subset of the Statistics Norway type. 
Therefore, we elected to use the type in the 
Geodata database in this study. 

2.2.3 Material 

The Antiques database provides the main building 
material for 4547 buildings. However, as an 
example of missing data, there are 2766 buildings 
whose main material is listed as unknown. The 

Antiques= 5043 Geodata = 4024 

Total=7313
3 

In both 
= 3573 
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building materials listed are Timber, Masonry 
(Brick), Concrete, Stone (Natural Stone) and Steel. 

2.2.4 Area 

The shape area or footprint of the building is 
available in the Geodata database as is the number 
of building stories. Area is a derived property which 
was included as the product of the Footprint area 
and No. of building stories. Area is assumed to 
approximate the total floor area of each building. 
Neither Geodata nor Antiques database have the 
area and height for each building story. 

2.2.5 Discretization of building data 

The selected variables were divided into the 
categories listed in Table 3. 

Table 3. Building variables and categories. 

Year Type Material Area 

A: Before 
1920 

A: Rowhouses 
A: 
Timber 

A: Less than 
249sqm 

B: 1920 to 
1944 

B: Detached 
houses 

B: 
Masonry 

B: 250 to 
499sqm 

C: 1945 to 
1969 

C: Semi-
detached 
houses 

C: 
Concrete 

C: 500 to 
749sqm 

D: 1970 
to 1999 

D: Large houses D: Stone 
D: 750 to 
999sqm 

E: 2000 
and after 

E: Holiday-
Shared-Farm 
house 

E: Steel 
E: 1000sqm 
or more 

The construction year categories were grouped to 
align with a study on the European building stock 
[13] as well as release years of the Norwegian 
Regulations on Technical Requirements for 
Construction Works (TEK) which are likely to have 
influenced building practices.  

The material categories were selected based on the 
number of materials listed in the databases. 
Nonetheless, it is worth noting that there was no 
description of the material percentage in a building 
to qualify for the category. For instance, there are 
several composite buildings (e.g. steel and 
reinforced concrete) in Norway as identified by 
other researchers [14]. 

Residential buildings or dwellings make up more 
than half of the Trondheim building stock [9]. 
Therefore, it was decided to focus only on 
residential buildings, a common strategy for 
building stock studies [15–17].  

Statistics Norway have categorised residential 
buildings as rowhouses, detached houses, semi-
detached houses, large houses (multi-dwelling 
buildings), holiday houses, shared houses and 
farmhouses [12]. The last 3 are less common in the 
database and were therefore combined into a 
single category as shown in Table 3.  

Area categories were selected to have a middle 
category of 500 to 749 square meters (sqm) based 
on sample descriptive statistics that showed that 
the median was ≈450 sqm and the 75 percentile of 
the data is ≈730 sqm. Two categories on either side 
of the middle category were added in keeping with 
five categories as for the other variables.  

2.3 Setting up the Bayesian Network 

2.3.1 Setting up the Directed Acyclic Graph 

The Directed Acyclic Graph (DAG) was determined 
using a combination of automated structure 
learning and engineering judgement. For the 
former, we used Probabilistic Graphical Models 
Python (PGMPY)’s ranked exhaustive search 
algorithm [18] to find the most optimal 
relationships between the data. This resulted in 
several ranked DAGs. The chosen DAG used to 
create the BN is illustrated in Figure 3.  

 

Figure 3. Bayesian Network with parent nodes of 
Material being Type and Area, and Year as child 
node of Material. 

Type 

Year 

Area 

Material 
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The structural equations for the Bayesian Network 
are presented in Eqn. 1 and 2. 

  𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∶= 𝑓(𝑇𝑦𝑝𝑒, 𝐴𝑟𝑒𝑎) (1) 

where Type, and Area are causes or parents of 
Material.  

 𝑌𝑒𝑎𝑟 ∶= 𝑓(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙) (2) 

where Material is the cause or parent of Year.  

We used the PGMPY package [19] to perform the 
analysis of the BN due to its availability and ease of 
use. Structural learning was performed using the 
Bayesian Estimator rather than the Maximum 
Likelihood estimator to avoid underestimation due 
to several cases of missing data.   

2.3.2 Calculation of prior probabilities 

The prior shows the probability before any 
conditioning and inference. In effect, prior 
probabilities represent the knowledge that we 
already have before performing inferences on the 
data. For each category 𝑖, its relative frequency or 
prior probability is its number of observations ni, 

divided by the sum of observations of all 
categories, as presented in Eqn. (3). 

𝑝(𝑥𝑖) =
𝑛𝑖

∑ 𝑛𝑖
𝑛
𝑖

 (3) 

For instance, there are 5043 observations with the 
Year classification (the others have no entry for the 
Year variable) – refer to Table 2. Of those 
observations, 2671 of them are in the category ‘A: 
Before 1920’ and therefore the probability for this 
category is 0,530. Note that the sum of 
probabilities for categories must equal 1. 

Model validation was confirmed by checking that 
prior probabilities calculated by PGMPY resulted in 
the same numbers as a manual calculation.   

2.3.3 Calculation of posterior probabilities  

For inference or posterior probabilities, the joint 
probability mass function of the BN is calculated 
based on the chain rule for DAGs as presented in 
Eqn. 4 [6]: 

𝑝(𝑥1, …  , 𝑥𝑛)  = ∏ 𝑝[(𝑥𝑖  |𝑝𝑎(𝑥𝑖

𝑛

𝑖=1

)] (4) 

where the BN has n variables, and the right-hand 
side refers to the product of the probability of each 
variable, 𝑥𝑖   conditioned on its parents, pa(𝑥𝑖)  in 
the DAG.  

Therefore, the joint probability mass function of 
the BN (refer to Figure 3) is: 

𝑝(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐴𝑟𝑒𝑎, 𝑌𝑒𝑎𝑟, 𝑇𝑦𝑝𝑒)  
= 𝑝(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙|𝑇𝑦𝑝𝑒, 𝐴𝑟𝑒𝑎) ∙ 𝑝(𝑇𝑦𝑝𝑒)
∙ 𝑝(𝐴𝑟𝑒𝑎)  ∙ 𝑝(𝑌𝑒𝑎𝑟 |𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙) 

(4) 

Evidence is applied to one or more nodes to infer 
information from the BN. The probability of one 
node, given another node as evidence, can be 
determined using Eqn. 5. 

𝑝(𝑥𝑖| 𝑥𝑗)  =
𝑝(𝑥𝑖  , 𝑥𝑗) 

𝑝(𝑥𝑗)
 (5) 

where variable, 𝑥𝑖   is conditioned on variable 𝑥𝑗. 

3 Results and discussion  

Based on the number of buildings per database and 
per variable in Table 2, Year and Material are two 
of the building variables with the scarcest data. 
Therefore, the following section will focus on these 
two variables and how they relate to the other 
variables. 

3.1 Probability of Type given the Year 

In this section, we use the BN to investigate the 
probability of finding a certain Type when given the 
Year.  

Figure 4’s “Prior” row shows that types with 
categories A to D are almost evenly distributed 
with probabilities of 0,25, 0,27, 0,21 and 0,22 
respectively. In contrast, Statistics Norway lists 
Type B: detached houses as making up around half 
of all residential buildings in Trondheim [20]. 
Nonetheless, they estimate that Type C: Semi-
detached and Type A: Rowhouses have a frequency 
of 0,21 and 0,22 respectively, similar to what is 
found here. Contrastingly, Type D: Large dwellings 
(multi-dwelling buildings) have a 0,08 frequency. 
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Figure 4.  Conditional probability of building Type 
with varying Year - P(Type | Year). 

Applying evidence i.e., conditioning on Year, 
reveals that the probability of Type A, B, and C does 
not change significantly depending on the Year. For 
example, the probability of Type B: Detached 
dwellings for Years A to E respectively are 0,26, 
0,28, 0,27, 0,25, and 0,27 respectively.  

Nevertheless, there is an increase in Type D: Large 
houses and Type E: Holiday-Shared-Farm houses 
with time. Their combined probabilities are 0,26, 
0,26, 0,28, 0,30, and 0,34 for Years A to E 
respectively. This suggests that the fraction of 
apartment buildings and shared houses are 
increasing with time. 

3.2 Probability of Material given the Type 

This section presents the results of inferring the 
Material given the Type. 

As illustrated in Figure 5 in the “Prior” row, 77% of 
residential buildings in the sample were 
constructed with timber. A fifth were constructed 
with masonry, and 4% with concrete. Less than one 
percent are made from stone and steel materials. 
These results are consistent with Norway’s history 
of building with timber. As of the year 2000, 74% of 
all existing Norwegian dwellings were constructed 
from timber [21]. 

 

 

Figure 5. The conditional probability of building 
Material with varying Type - P(Material| Type). 

Even if we condition on the Type, Timber remains 
the most common building material with over 0,7 
probability for all types. Still, there is a clear 
difference in probability depending on the 
residential building type.  

For instance, the probability of Type B: Detached 
houses being constructed from timber increases 
from the prior of 0,77 to a posterior of 0,94. In 
contrast, the probability of Type E: Holiday-Shared-
Family houses being constructed from timber 
decreases from the prior of 0,77 to a posterior of 
0,71. 

3.3 Probability of Year given the Material 

Figure 6 shows the building year category 
probabilities for Material categories prior to 
inference and after inference. 

0 0,2 0,4 0,6 0,8 1

 Year(A: Before 1920)

 Year(B: 1920 to 1944)

 Year(C: 1945 to 1969)

 Year(D: 1970 to 1999)

 Year(E: 2000 and after)

Prior

Type(A: Rowhouses)

Type(B: Detached houses)

Type(C: Semi-detached houses)

Type(D: Large houses)

Type(E: Holiday-Shared-Farm house)

0 0,2 0,4 0,6 0,8 1

Type(A: Rowhouses)

Type(B: Detached houses)

Type(C: Semi-detached
houses)

Type(D: Large houses)

Type(E: Holiday-Shared-
Farm house)

Prior

 Material(A: Timber)  Material(B: Masonry)

 Material(C: Concrete)  Material(D: Stone)

 Material(E: Steel)
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Figure 6. Conditional probability of building Year 
with varying Material - P(Year| Material). 

The prior probabilities show that 53% of the 
buildings in the sample were constructed before 
1920 and 28% were built between 1920 and 1944. 
17% of the buildings were constructed between 
1945 and 1969. Therefore, close to 98% of the 
buildings are over 53 years old. The aged 
population is to be expected considering that the 
sample is for buildings that have been earmarked 
for conservation. 

Conditioning on the Material node reveals that 
Steel residential buildings have a 0,49 probability of 
being constructed in Year D: 1970 and 1999. The 
0,49 probability for that period is higher than the 
probability of the preceding and succeeding Year 
categories. Similarly, concrete residential buildings 
have 0,56 and 0,37 probability of being constructed 
in Year C: 1945 to 1969 and Year B: 1920 to 1944 
respectively. In contrast, material categories, 
Timber, Masonry, and Stone have a probability of 
being constructed in Year A: Before 1920 of 0,59, 
0,74, and 0,76. This would suggest that these more 
natural materials became less common after 1920 
in favour of steel and concrete. 

3.4 Probability of Area given the Type and 
Material  

If we were to further use the information that we 
have gained so far and condition the building Area 

on both Type and Material = Timber, we obtain the 
results shown in Figure 7. 

 

Figure 7. Conditional probability of building Area 
with varying Material - P(Area| Type, Material=A: 
Timber). 

The prior results show that 77% of residential 
buildings have total areas less than 750 square 
meters (based on combining probabilities of 
categories Area: A, B, and C). 

The conditioned results reveal that area 
probabilities change with type of timber residential 
building. The combined probability of Area: A, B, 
and C is 0,79, 0,78, 0,83, 0,93, and 0,98 for Type A, 
B, C, D, and E respectively. This result makes sense 
considering that the types are related to the size of 
the building. 

3.5 General discussion 

3.5.1 Brief overview 

A sample of buildings in Trondheim, and four 
building variables Year (of construction), Material, 
Area, and Type was selected for preliminary 
analysis of the methodology. These variables were 
sourced from two databases and used to create a 
BN for probabilistic modelling and prediction of 
unknown quantities in the Trondheim building 
stock.   

The results show that a simple BN can be used for 
bottom-up estimates of building stock properties. 

0 0,2 0,4 0,6 0,8 1

 Material(A: Timber)

 Material(B: Masonry)

 Material(C: Concrete)

 Material(D: Stone)

 Material(E: Steel)

Prior

 Year(A: Before 1920)  Year(B: 1920 to 1944)

 Year(C: 1945 to 1969)  Year(D: 1970 to 1999)

 Year(E: 2000 and after)

0 0,2 0,4 0,6 0,8 1

Type(A: Rowhouses)

Type(B: Detached houses)

Type(C: Semi-detached
houses)

Type(D: Large houses)

Type(E: Holiday-Shared-
Farm house)

Prior

 Area(A: Less than 249sqm)
 Area(B: 250 to 499sqm)
 Area(C: 500 to 749sqm)
 Area(D: 750 to 999sqm)
 Area(E: 1000sqm or more)
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Despite the simplicity of the model, the results 
make sense and agree with other literature and 
statistics.  

3.5.2 Critical analysis of findings 

The results presented here are preliminary and 
simply a means to test out the methodology. Other 
factors such as the neighbourhood, building height, 
renovation history etc., will also influence the 
results. Moreover, it is important to consider the 
limitations in the sample of buildings before 
applying it to the population. For instance, the 
results here are specifically for Trondheim 
residential buildings constructed before 2007.  

3.5.3 Implications 

The case study can be extended to include more 
variables in the network and georeferenced as 
done by other researchers [3]. Thereafter, the 
results can be used for e.g., estimations of reusable 
components, material intensity or materials 
estimations for calculating embodied carbon [15]. 

4 Conclusions 

In order to promote a circular use of building 
components and materials, we need information 
about what is currently available. Multiple national 
sources and databases provide information about 
existing buildings. However, the data is often 
inhomogeneous, in some cases missing or 
incomplete. We suggest BNs to account for the 
missing and scarce data in a probabilistic way. 

The next step would be to find more data sources 
and extend the network by increasing the number 
of variables. Additionally, rather than categories, 
we could assign random variables and distributions 
for the prior data and conditioning observations. 
This will lead to a better understanding of the limits 
and uncertainties of the data and the observations 
which can then be applied to the population i.e., 
Trondheim building stock. Moreover, there can be 
further investigation into structure learning 
methods and incorporation of discipline-specific 
knowledge such as structural engineering, 
industrial ecology and architecture to determine 
the best network.   

Finally, such a BN could be part of a dynamic 
platform that is connected to different databases 
and updated continuously. In this way, probabilistic 
information can be available for construction 
industry stakeholders to make sustainable and 
informed decisions. 
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