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Summary
As businesses increasingly rely on machine learning models to make informed deci-
sions, the ability to develop accurate and reliable models is critical. However, in many
industrial contexts, data annotation represents a major bottleneck to the training and
deployment of predictive models. This thesis focuses on data-efficient strategies for
developing machine learning models in label-scarce settings. The increasing availabil-
ity of unlabeled data in various applications has led to the need for efficient methods
that minimize the cost associated with collecting labeled observations. Traditional ac-
tive learning approaches, such as pool-based methods, have been extensively studied,
but the emergence of data streams has necessitated the development of stream-based
active learning strategies able to select the most informative observations from data
streams in real time.

The thesis begins with a survey of active learning, providing an overview of recently
proposed approaches for selecting informative observations from data streams. It
presents the strengths and limitations of the state of the art and discusses the chal-
lenges and opportunities that arise in this area of research. Next, the thesis presents
a novel stream-based active learning strategy for linear models inspired by the op-
timal experimental design theory. By setting a threshold on the informativeness of
unlabeled data points, the proposed strategy enables the learner to decide in real
time whether to label an instance or discard it. Then, the thesis investigates the
robustness of online active learning in the presence of outliers and irrelevant features.
The thesis also provides initial results related to an adaptive sampling scheme for
drifting regression data streams.

Finally, the thesis presents a stream-based active distillation framework for develop-
ing lightweight yet powerful object detection models. This approach combines active
learning and knowledge distillation, allowing a compact student model to be fine-
tuned using pseudo-labels generated by a large pre-trained teacher model.

Overall, this thesis contributes to the field of stream-based active learning by pro-
viding insights into various techniques and addressing concerns related to robustness
and scalability. The findings expand the potential applications of active learning
in real-time data streams and pave the way for more efficient and effective model
development.



ii Summary

“Discovery commences with the awareness of anomaly, i.e. with the
recognition that nature has somehow violated the paradigm-induced ex-
pectations that govern normal science. It then continues with a more or
less extended exploration of the area of anomaly. And it closes only
when the paradigm theory has been adjusted so that the anomalous has
become the expected.”

Thomas Kuhn, The Structure of Scientific Revolutions
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CHAPTER 1
Introduction

1.1 Label scarcity

In machine learning, obtaining curated and annotated data is essential for the devel-
opment of accurate and reliable predictive models. However, the annotation process
typically represents a significant bottleneck in model training and deployment [1].
For many industrial applications, acquiring labeled observations can be laborious, ex-
pensive, and occasionally unattainable, making the limited availability of such data
a relevant barrier in training machine learning models suitable for real-world appli-
cations. Indeed, despite significant recent advancements, the integration of artificial
intelligence (AI) algorithms into real-world applications, such as autonomous vehicles,
industrial robotics, and healthcare, continues to present substantial challenges. These
challenges largely emanate from the multifaceted nature of the data, which highlights
the necessity of machine learning models to be trained on extensive datasets that cover
as many scenarios as possible. However, in complex engineering problems, providing
such raw data, not to mention annotated data, becomes incredibly difficult. Consider
a scenario where our objective is to learn a supervised model f : X → Y using a
finite dataset of labeled examples D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Here, xi ∈ X
represents a vector of input measurements, and yi ∈ Y is a scalar corresponding to
the response value. In this context, label scarcity describes a common dichotomy
where obtaining the feature values (x) is relatively easy, but acquiring corresponding
labels (y) is challenging, leading to a shortage of labeled data for training supervised
learning models. This disparity poses substantial challenges in supervised learning,
as the effectiveness of learning algorithms heavily depends on the availability of a set
of paired instances (xi, yi) to learn the mapping f : X → Y.

The labeling process can be difficult for various reasons. This need for high-quality
labeling extends across various domains, each presenting unique challenges:

• Computer vision. In computer vision, labeling involves manually annotating
images or videos, which can be extremely time-consuming and requires a level of
expertise, particularly when dealing with complex scenarios such as identifying
defects in industrial components or interpreting medical images [2].

• Quality control. In industrial quality control, labeling might involve expert
assessment to identify defects or anomalies in products. This process can be
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highly subjective, leading to inconsistencies in labels, and is often limited by
the availability and expertise of human inspectors [3].

• Design optimization. In engineering design optimization, labels may represent
performance metrics of different design alternatives. Generating these labels
often requires extensive simulations or physical testing, which are resource-
intensive and time-consuming processes [4].

• Drug development. In the context of drug development, labels could be the
efficacy or side effects of compounds, which are determined through complex
biological experiments. The high cost and ethical considerations involved add
additional layers of complexity to the labeling process [5].

• Clinical trials. Similarly, in clinical trials, labeling patient data often involves
detailed medical diagnosis and monitoring patient responses over time, which
not only requires specialized medical knowledge but also faces stringent regula-
tory and privacy constraints [6].

In all these cases, the scarcity of labels poses a significant challenge, limiting the
ability of machine learning models to learn effectively and generalize to new, unseen
data. This challenge underlines the need for innovative approaches in data processing
and model training that can efficiently leverage limited labeled data, a key area where
active learning strategies offer promising solutions.

1.2 Active learning

In recent years, active learning has emerged as a key research area for addressing the
challenges posed by label scarcity in machine learning. Active learning is fundamen-
tally driven by the goal of training machine learning models using less labeled data,
thereby reducing the need for extensive human supervision [7]. More generally, this
paradigm involves a learning algorithm that iteratively queries an oracle to label new
data points, aiming to efficiently improve model performance while minimizing the
need for extensive labeled data [8]. Within the context of active learning, an oracle
is any entity capable of providing an accurate label yi for an unlabeled data point
xi. In many cases, an oracle can be a human annotator. For example, in computer
vision tasks, this role is often filled by a person who manually inspects and labels
images. In other cases, an oracle can be a large computational model that provides
the outcome of a simulation. As illustrated in Figure 1.1, active learning can be cate-
gorized into three primary variants, namely membership query synthesis, pool-based,
and stream-based active learning, each distinguished by its approach to data selection
and labeling.
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Active learning

Membership query 
synthesis

Pool-based active 
learning

Stream-based active 
learning

Model generates data 
points to be labeled.

Model selects data points 
to be labeled from a pool.

Model selects or discard 
data points from a stream.

Figure 1.1. Active learning scenarios.

1.2.1 Membership query synthesis

Membership query synthesis in active learning allows the algorithm to generate its
own queries by creating new data instances, rather than selecting from pre-existing
ones. This can be beneficial for investigating specific areas of the input space where
available data is sparse, enabling targeted exploration and learning. However, a key
limitation of this approach is its potential to produce data points that may be unre-
alistic or purely hypothetical [8]. Such artificial instances might represent scenarios
that are unlikely or impossible to occur in real-world settings. Consequently, human
annotators might find it challenging to assign meaningful labels to these contrived
data points, as they fall outside the realm of practical or recognizable examples (e.g.,
a mixture between a letter and a number). For these reasons, this scenario is less ex-
plored within the active learning domain, particularly in applied industrial contexts.

1.2.2 Pool-based active learning

Pool-based active learning is the simplest and most extensively studied variant of
active learning. In this scenario, we have access to a large pool of unlabeled data,
U = {x1,x2, . . . ,xn} ⊂ X , and our interest lies in selecting the b < n most informative
labels for training a model. Here, b is commonly referred to as the budget. The
selection of b instances from U for training is critical, as it substantially influences the
predictive performance of the resulting model [9,10]. To provide a simple example, let
us assume we have a folder with thousands of unlabeled images and we are interested
in training an object detection model. If we only have a few hours to prepare the
data and do not have time to manually label all the images, can we use a smarter
strategy than random sampling to select the images that we will need to label for
training our model? In this context, pool-based active learning can be defined as a
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strategy to identify the optimal subset of U with cardinality b for training our model.
The ultimate goal is to enhance model performance while minimizing the number of
queries to the oracle, thereby addressing label scarcity and reducing the cost of data
annotation. As depicted in Figure 1.2, active learning is not a static process but an
iterative one. It involves using a selection rule to guide the labeling process, with this
rule often being refined and updated as new labeled data becomes available to the
learning system. This dynamic nature of active learning ensures that the model is
continually updated with the most informative data, thereby enhancing its learning
efficiency and effectiveness.

Train/update 
model

Rank 
observations Ask for the labels

Labeled data

Unlabeled 
data

Select top 𝑘
instances

Model

Figure 1.2. The pool-based active learning framework (from Paper 2), where we prioritize
the labeling of the most informative observations. This iterative process usually continues
until a budget constraint for label acquisition is met, thereby optimizing learning efficiency.

In Paper 1 (Appendix A), we introduce the key active learning methods in the
pool-based setting and showcase the potential benefits of active learning through an
industrial case study.

1.2.3 Stream-based active learning

Stream-based active learning is a variant of active learning in which a learning
model sequentially receives unlabeled data points xi from a continuous stream S =
{x1,x2, . . .} ⊂ X . The model must evaluate the informativeness of each incoming in-
stance on the fly. If an observation xi is deemed informative, its corresponding label
yi is queried, and the model is subsequently updated. Stream-based active learning
extends the active learning paradigm to scenarios where data arrives sequentially,
such as in data streams [11]. The key difficulty in this scenario is that the learner
faces the challenge of making real-time decisions about which instances to label as
they arrive in a stream. This requires efficient and effective sampling strategies that
can cope with the dynamic nature of data streams, enabling the learner to make in-
formed decisions on the fly. The stream-based active learning framework is illustrated
in Figure 1.3.

To facilitate the understanding of this framework, we hereby provide two practi-
cal examples. The first example is a statistical riddle commonly referred to as the
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Train/update 
model

Observe an 
unlabeled data 

point

Ask for the labelLabeled data

Data 
stream

Is it 
useful?

Discard the 
observation

Yes

No

Model

Figure 1.3. Stream-based active learning framework (from Paper 2), where observations
are sequentially evaluated as they arrive in a stream.

secretary problem, also known as the optimal stopping theory [12]. This problem is
depicted in Figure 1.4, which illustrates the key steps of the decision-making process.
The secretary problem is a classic exercise in probability and decision theory that in-
volves selecting the best candidate for a position from a sequence of applicants. Each
candidate must be either hired or rejected immediately after their interview, with
no option to revisit previous candidates. The secretary problem metaphorically rep-
resents the challenges faced in scenarios where decisions must be made sequentially
and irrevocably, often with incomplete information. In the context of stream-based
active learning, the decision-making process in the secretary problem parallels the
determination of whether to label a data point and include it in the model, based on
its perceived informativeness. Here, the interview process can be analogized to the
evaluation of an unlabeled information criterion for each observation in the stream,
guiding the decision on whether the costly label should be requested or not.

Figure 1.4. Illustration of the secretary problem, highlighting the immediate decision-
making process after each interview (individual icons composing the flowchart are down-
loaded from [13]).

An additional example to motivate the relevance of stream-based active learning
in real-world scenarios comes from industrial manufacturing, as shown in Figure 1.5.
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Manufacturers often rely on predictive models and soft sensors to estimate measure-
ments that are challenging to acquire directly [14–16]. However, the crux of employing
these soft sensors lies in the training of the underlying models, which necessitates real-
world labeled data [17, 18]. In a typical production scenario, where components are
produced continuously, there might be a narrow window of opportunity to decide
whether a particular item should undergo further inspection to acquire a label. This
decision is crucial for updating the predictive model and must be made promptly
before the component progresses further in the manufacturing process, such as being
added to a work-in-progress inventory or undergoing physical alteration.

Figure 1.5. Illustration of a real-time sampling problem in industrial production, where
the process involves deciding on the fly whether to perform a quality inspection on a product
or forward it to the subsequent workstation or machinery (individual icons composing the
flowchart are downloaded from [13]).

In Paper 2 (Appendix B), we provide a comprehensive survey on active learning
approaches for data streams, highlighting key concepts like:

• Active learning scenarios. We explain the key characteristics of the three active
learning scenarios: membership query synthesis, pool-based active learning, and
stream-based active learning.

• Instance selection criteria. We list the main approaches used to evaluate the in-
formativeness of the unlabeled data points: uncertainty-based query strategies,
expected error or variance minimization, expected model change maximization,
disagreement-based query strategies, diversity- and density-based approaches,
and hybrid strategies.

• Application areas. We provide a description of potential application areas:
chemical or manufacturing processes, video streaming, clinical trials, fraud de-
tection, and online customer service.

• Data drifts. We describe the different types of drifts that can affect the data
stream: abrupt drift, gradual drift, incremental drift, and recurring concepts.



1.3 Data-centric AI 9

• Taxonomy of stream-based active learning methods. We classify the state-of-
the-art approaches into four categories: stationary data stream classification
approaches, drifting data stream classification approaches, evolving fuzzy sys-
tem approaches, and experimental design and bandit approaches.

• Evaluation strategies. We explain the differences between the two main evalua-
tion approaches: holdout test set and prequential evaluation (test-then-train).

• Challenges. We highlight the key challenges and opportunities for future im-
provements in this research area: algorithm scalability, labeling quality, distri-
bution shift, model interpretability, real-life assessment, and human-computer
interaction.

It is important to note that within Paper 2, the term online active learning is
frequently used interchangeably with stream-based active learning. Both terms re-
fer to the challenge of selecting the most informative observations from a stream in
real-time. However, this should not be confused with online learning, a related but
distinct research area. Online learning is an approach where models are incrementally
updated with the continuous influx of new data. It aims to make accurate predictions
in a sequence, based on previous outcomes and any additional available information.
Online learning spans various research fields including game theory, information the-
ory, and machine learning [19, 20]. This methodology is essential in scenarios where
processing the entire dataset at once is impractical or impossible, often due to data
volume or the dynamic nature of data generation. Online learning algorithms are
designed to adapt their parameters incrementally, making them ideal for real-time
applications and environments characterized by evolving data distributions.

1.3 Data-centric AI

Active learning is an approach to data collection and experimentation that highlights
the importance of carefully selecting relevant observations for training machine learn-
ing models. In a broader landscape, even when data collection is feasible, various
inherent biases and anomalies can permeate the process, potentially leading to biased
or inaccurate predictive models. These challenges form the foundation of the recent
shift from model-centric to data-centric AI [21]. For many years, a model-centric
approach dominated the AI field. Model-centric AI places a stronger emphasis on the
design, architecture, and optimization of AI models themselves. It focuses on develop-
ing sophisticated algorithms and architectures that can learn from the available data.
Model-centric AI often involves engineering complex neural network architectures,
fine-tuning hyperparameters, and optimizing the model structure and parameters to
achieve high accuracy and performance. While model-centric AI acknowledges the
importance of data, it tends to assume that the data is readily available and of suf-
ficient quality. Conversely, data-centric AI is a paradigm that places a significant
emphasis on data quality over mere quantity, advocating for the careful collection,
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annotation, and management of datasets. This perspective recognizes that while a
larger volume of data may provide a broader context, the accuracy and relevance of
the data for the task at hand are crucial. The juxtaposition between model-centric
and data-centric AI highlights the different perspectives and priorities within the
AI workflow. Both approaches are valuable and can be complementary, with data-
centric AI providing the foundation for effective model training and model-centric AI
enhancing the capabilities of the models.

Essentially, data-centric AI is a machine learning approach where the empha-
sis is placed on enhancing the quality, structure, and consistency of the dataset
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. This paradigm asserts that the performance
of learning algorithms, which approximate the function f : X → Y , is contingent not
only on the algorithmic sophistication but critically on the integrity and representa-
tiveness of D. The key elements of the data-centric approach related to developing
and maintaining reliable training data include:

1. Data collection and integration. Gathering and combining relevant data from
various sources, such as sensors, databases, social media, or other platforms [22].

2. Data labeling and annotation. Assigning annotations to the data, a task which is
often performed by human experts, to provide ground truth labels for supervised
learning tasks [23].

3. Data preprocessing and feature extraction. Cleaning, transforming, and organiz-
ing data in a format suitable for the analysis. This step often involves tasks like
data normalization, feature engineering, and handling missing values [24]. At
this stage, statistical techniques or machine learning models can also be used
to extract salient features from the data.

4. Data reduction and augmentation. Undersampling techniques can be used to
improve the performance on underrepresented populations [25], or to cope with
class-imbalance [26]. Data augmentation can be used either to increase the
training set size by creating variants of the same data point [27], or to gen-
erate observations that are relevant but rarely encountered in real life (e.g.,
low-probability high-risk events) [28]. Finally, data reduction can also be seen
from a feature perspective. That is, column-wise data reduction rather than
row-wise, in the case of a data matrix.

5. Learning and feedback loop. Adopting mechanisms to continuously update and
improve AI models as new data becomes available. This involves monitoring the
performance of the model and collecting new observations to adapt to evolving
and drifting data distributions [29].
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1.4 Contributions

The key objective of this thesis is to investigate the development of predictive mod-
els in label-scarce environments through the use of active learning-based sampling
strategies. The main contributions of this thesis can be summarized as follows:

• We present an introductory paper on active learning, highlighting practical
aspects of sampling strategies and their potential benefits, illustrated through
a case study using real-world data.

−→ Paper 1 – Sampling strategies for industrial applications through active
learning (Appendix A).

• We provide a comprehensive survey on active learning for data streams, which
will be beneficial to researchers and practitioners interested in the development
and application of online active learning. The survey adopts a pedagogical
approach to make the field accessible to those seeking to learn the basics of this
research area in a comprehensible manner. In addition to analyzing sampling
strategies in detail, we also elucidate related methodologies, offering a broader
perspective of the field.

−→ Paper 2 – Active learning for data streams: a survey (Appendix B).

• We propose a novel stream-based active learning approach for linear regression
models, based on optimal experimental design theory. This approach is based
on the connection between conditional D-optimality (CDO) and unscaled pre-
diction variance (UPV). We demonstrate how this methodology can be used to
develop accurate regression models under a limited labeling budget.

−→ Paper 3 – Stream-based active learning with linear models (Appendix C).

• We investigate how the presence of outliers affects the performance of the pro-
posed stream-based active learning strategy (and related benchmark strategies)
and propose a two-fold solution to mitigate their impact on the predictive mod-
els. The solution includes the use of robust estimators and a double-threshold
approach to bound the search area of the active learning algorithm.

−→ Paper 4 – Robust online active learning (Appendix D).

• We conduct an initial analysis of the impact of irrelevant features on the learning
efficiency of stream-based active learning strategies for linear regression models.
We explain how incorporating a feature selection step can enhance the estima-
tion process, especially when the learner has access to only a small number of
observations.

−→ Paper 5 – Stream-based active learning for regression with dynamic feature
selection (Appendix E).
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• We propose a residual-based sampling strategy to identify localized concept
drifts. This strategy is likely to expedite the monitoring of concept drift, facili-
tating faster discovery and more prompt model updates.

• We introduce the stream-based active distillation framework, wherein special-
ized lightweight student models are fine-tuned using pseudo-labels from a large
pre-trained teacher model. Our analysis reveals that careful selection of the
frames used for fine-tuning leads to more efficient training.

−→ Paper 6 – Stream-based active distillation for scalable model deployment
(Appendix F).

1.5 Organization

Chapter 1 serves as an introduction to active learning, providing basic definitions
and explaining the critical issue of label scarcity in machine learning. Following this,
Chapter 2 delves into the broader research field. It offers a comprehensive description
of alternative methodologies in industrial statistics and machine learning that parallel
or complement active learning. In Chapter 3, we present the conditional D-optimality
stream-based active learning method, specifically tailored for linear models. This
chapter also encompasses related works that address the challenges posed by outliers
and irrelevant features. Chapter 4 is dedicated to exploring the dynamics of concept
drift in data streams. We examine how shifts in data distribution can impact the
effectiveness of learning strategies and propose methods to adaptively respond to
such changes. Finally, in Chapter 5, we provide a brief overview of object detection
models and present the stream-based active distillation framework.

1.6 Notation

Whenever possible, lower-case italic letters are used for scalars (e.g., x), lower-case
bold letters indicate vectors (e.g., x), and upper-case bold letters indicate matrices
(e.g., X).



CHAPTER 2
Related research areas

This thesis navigates the intersection of industrial statistics and machine learning,
bringing together insights and methodologies from both fields. In this chapter, we
offer a general overview of alternative approaches pertinent to sampling and label
scarcity, prevalent issues in these broad disciplines. We categorize these approaches
into two groups. The first group presents methodologies (mostly from industrial
statistics) related to sampling and monitoring, which can be used to drive data collec-
tion schemes in industrial settings. The second group describes training approaches
for machine learning models that can facilitate model development in environments
characterized by label scarcity. Our aim is to contextualize our research within the
wider landscape of these fields, highlighting the connections and distinctions that
characterize our study. For a comprehensive literature review on the core topic of the
thesis, stream-based active learning, readers may consult Paper 2 in Appendix B.

2.1 Sampling and monitoring methods

In industrial statistics, a wide range of statistical methods have been historically de-
veloped to assist practitioners in complex tasks such as sampling and data collection.
This section will provide an overview of several sampling-related research areas that
have been pivotal in industrial applications. These methodologies not only form the
foundation for modern statistical practices but also offer insights into the evolution
of data collection techniques in response to industrial challenges. By providing a
framework for efficient and effective data collection and experimentation, they ensure
quality and reliability in diverse industrial processes. Furthermore, the principles and
methodologies of these traditional strategies continue to influence contemporary sta-
tistical techniques, including the growing field of active learning in machine learning.
Thus, this exploration serves not only as a retrospective analysis but also as a bridge
to understanding the transition to and relevance of newer methodologies like active
learning.

2.1.1 Design of experiments

Experimentation is at the core of scientific discovery. In industrial statistics, design of
experiments (DoE) represents a systematic approach to the planning of experiments
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in order to support process understanding and optimization. It involves planning
the experiments in such a way that appropriate data is collected, which can then be
analyzed to yield valid and objective conclusions. In most of the cases, DoE is used to
analyze the relationship between the input and output factors of a process. In general,
various tests are performed to see the effect of varying levels of input factors on the
response. For example, in a chemical process, we might be interested in designing an
experiment to understand the effect of temperature and pressure on chemical yield.
By systematically varying these factors, researchers can identify optimal operating
conditions and interactions between variables. The critical aspect of DoE is the way
the factor levels are varied throughout the experiment.
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Figure 2.1. A two-factor factorial experiment for a chemical process, where we are inter-
ested in observing the effect of pressure and temperature on the yield.

One of the most common types of design is the factorial design, where in each
complete trial or replicate of the experiment all possible combinations of the levels
of the factors are investigated [30]. Figure 2.1 shows a factorial experiments where
both temperature and pressure can be set at two levels. The black dots represent the
points where the tests are performed, namely where the response is measured. Then,
the effect of a factor is defined as the change in response produced by a change in the
level of the factor. Assuming linearity in the factor effects within the design space,
an ordinary least square (OLS) regression model is usually fit on the experimental
data. The regression model allows to analyze the response surface and identify process
optimization directions.

In factorial designs, the property of orthogonality plays a pivotal role in enhanc-
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ing the effectiveness and clarity of the experimental analysis. Orthogonality in this
context means that the effects of any factor, or combination of factors, can be esti-
mated independently of other factors. This independence is crucial as it allows for the
isolation of each factor’s impact on the response variable, free from the influence of
other factors’ levels. A key benefit of this independence is the prevention of confound-
ing, ensuring that the main effects and interaction effects are distinct and not mixed
with each other. Consequently, the statistical analysis, particularly techniques like
analysis of variance, becomes more straightforward and effective due to the ability to
calculate the sum of squares for each factor independently. Additionally, orthogonal
designs ensure balanced comparisons between factor levels, meaning each level of a
factor appears equally with each level of every other factor, facilitating fair and unbi-
ased estimates of effects. This balance and independence in factorial designs not only
maximize the information obtained from experimental data but also significantly re-
duce experimental error, thereby enhancing the precision of effect estimation. Hence,
the orthogonality of factorial designs is a fundamental attribute that contributes sub-
stantially to their efficacy in experimental research, especially when investigating the
simultaneous effects of multiple factors.

In traditional settings, DoE primarily aids practitioners in planning experiments
within a controllable, offline environment. Here, factors can be deliberately manipu-
lated at different levels to observe the corresponding responses. In contrast, machine
learning often deals with observational data, where control over factor levels is not
allowed. Despite this, the principles of DoE can be highly relevant and beneficial in
assessing the quality of training data in machine learning applications [31]. Crucially,
the concepts of design optimality, foundational to DoE, can be adeptly applied to
evaluate observational data. Optimal experimental design is a research methodology
that closely aligns with the objectives of active learning, where the focus is on esti-
mating accurate and unbiased models while minimizing the number of experimental
runs [32]. By leveraging design optimality principles, one can effectively choose data
points that enhance the training process of a regression model. A deeper discussion
on the conjunction between optimal experimental design and stream-based active
learning is presented in Paper 2 (Appendix B).

2.1.2 Adaptive sampling

Adaptive sampling represents an interesting research area within industrial statistics
that is closely linked to data collection methodologies and active learning principles.
It is a dynamic strategy where the sampling process is adjusted in real-time, based
on insights gained from previously collected data. This method is particularly ef-
fective in environments characterized by heterogeneous populations, where certain
subgroups warrant more focused investigation. For instance, consider the application
of adaptive sampling in environmental monitoring, specifically in the assessment of
water quality in a lake. Imagine an initial survey reveals higher pollution levels in a
certain section of the lake. Subsequent sampling efforts can then be strategically con-
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centrated in this area. This approach not only optimizes resource utilization but also
ensures more detailed and relevant data collection. Figure 2.2 depicts the scenario
where the lake is explored with initial sampling points distributed uniformly across
its surface. The plot illustrates a region with higher pollution levels, where additional
sampling points should be placed. As the sampling progresses, the visual representa-
tion would typically use distinct colors or symbols to differentiate between the initial
uniform sampling points and the later, concentrated points, clearly demonstrating
the adaptive nature of the sampling strategy.

Figure 2.2. A fictional example of adaptive sampling for environmental monitoring. After
a passive uniform sampling phase, a region of higher pollution (shaded in red) is identified
for further investigation.

Recently, adaptive sampling has extended its utility beyond traditional applica-
tions, embracing the complexities of modern data-rich environments [33, 34]. This
evolution of adaptive sampling closely aligns with the principles of stream-based ac-
tive learning, particularly in its ability to discern and prioritize valuable information
from vast data streams for efficient process monitoring. For example, adaptive sam-
pling can be employed when a stream of images is sequentially observed, and the goal
is to detect alterations within these images while adhering to a budget on the num-
ber of pixels that can be investigated [35]. Here, the budgeted sampling highlights
a common aspect of stream-based active learning. However, while active learning
primarily focuses on model improvement, adaptive sampling, even when applied to
data streams, is predominantly concerned with sampling for process monitoring and
anomaly detection.
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2.1.3 Acceptance sampling

Acceptance sampling, a foundational technique in statistical quality control, is uti-
lized to decide whether to accept or reject a lot of products based on the inspection
of a sample from that lot. This method is deeply rooted in the history of quality
assurance, tracing back to the early 20th century [36]. It represented a shift in focus
towards inspection and decision-making regarding the quality of products, a corner-
stone of quality assurance practices. To give a simple example, consider the case of an
electronic components manufacturer, who needs to decide whether to accept or not a
batch of incoming raw material. Using acceptance sampling, a random sample of the
raw material is tested, and if the number of defective items is below a pre-determined
threshold, the entire batch is accepted. This decision is usually referred to as lot
sentencing. Lot inspection does not only refer to incoming material from suppliers
but it is often performed at various stages of the production process to ensure quality
and reliability. When compared with 100% inspection, acceptance sampling offers
many advantages [36]. First of all, it is a less expensive practice due to reduced in-
spection efforts. Moreover, the decreased sampling also minimizes the risk of product
damage within the lot, allowing the use of destructive testing (since we do not need
to test all products). Another key benefit is that the rejection of entire lots based
on a few samples might provide a stronger incentive for suppliers to enhance quality.
However, acceptance sampling carries inherent risks, such as the potential acceptance
of substandard lots and rejection of satisfactory ones. The method generates less in-
formation about the product and its manufacturing process compared to complete
inspection. Additionally, it requires meticulous planning and documentation of the
sampling procedure, which is not a necessity in 100% inspection.

In general, we can distinguish between two types of acceptance sampling plans:

1. Single sampling plans. In this case, the decision about the lot is taken after
the inspection of n items randomly sampled from the lot. Random sampling is
usually employed to avoid introducing biases into the process.

2. Multiple sampling plans. After an initial random sample, we can decide whether
to accept the lot, reject the lot, or take another sample before achieving lot
sentencing.

Sequential sampling plans extend the concept of multiple sampling plans, offering
a more advanced and dynamic approach to acceptance sampling. Unlike single or
multiple sampling plans, which use a predetermined sample size, sequential sampling
allows for decisions to accept, reject, or continue sampling based on each item in-
spected. This method is especially advantageous when sampling costs are high or
when rapid decision-making is essential. In this regard, sequential sampling shares
similarities with the stream-based active learning framework and the secretary prob-
lem, as it requires immediate decisions after observing each sample. Furthermore,
just as stream-based active learning is categorized into single-pass and batch-based
methods [37], multiple sampling plans can be divided into item-by-item and group
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sequential sampling [36]. However, despite these similarities, it is important to note
that sequential sampling and stream-based active learning are fundamentally different.
Active learning involves sequential evaluation of data points to determine their inclu-
sion in a predictive model. In contrast, item-by-item sequential sampling is focused
on iteratively assessing whether a batch of products meets conformity standards.

Figure 2.3. Example of a sequential sampling plan from [38], based on the data from
the Engineering Statistics Handbook published by the National Institute of Standards and
Technology [39].

Figure 2.3 shows the typical sequential sampling test, which is based on the se-
quential probability ratio test proposed by Wald [40]. In the plot, the test results
show the cumulative number of defective items observed against the total number of
items inspected. We can see how two parallel decision lines guide the acceptance or
rejection of a lot. If the plot of cumulative defectives against items inspected falls
within these lines, the inspection process continues with the next item. The lot is
rejected if a point falls on or above the upper line (rejection region) and accepted if it
falls on or below the lower line (acceptance region). The process of the item-by-item
sequential sampling plan may continue potentially until the entire lot is inspected.
However, it is common practice to truncate the inspection process, typically after the
number of items inspected reaches three times the number inspected in a correspond-
ing single sampling plan. The decision lines are determined by specific equations,
which are functions of parameters such as the probabilities of type I and type II er-
rors (α, β), the acceptable quality level (p1), and the rejectable quality level (p2) [39].
The efficiency of this sequential sampling scheme is measured by the average sample
number, which reflects the average number of samples needed over many trials at a
fixed incoming defect level. This metric can be somewhat similar to the measurement
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of learning efficiency in active learning, which is commonly assessed using learning
curves [37].

2.1.4 Statistical process control

Statistical process control (SPC) involves using statistical methods to monitor and
control a process [41–44]. This technique is designed to detect significant changes in
process behavior through continuous sampling and analysis. It is particularly relevant
for stream-based active learning, especially because the methodology proposed in the
upcoming chapters is largely influenced by the thresholding approach used in SPC.
SPC comprises two key steps:

1. Phase I. This phase represents the offline segment of the analysis, where data
considered to be under control is examined to estimate thresholds. These thresh-
olds statistically determine whether a process output is behaving as expected
or not.

2. Phase II. This phase encompasses the online segment of the analysis. Here, the
thresholds established in Phase I are applied to detect deviations from standard
conditions as they occur.

The application of SPC is profoundly relevant to stream-based active learning and
scenarios with limited labeled data for several reasons. Primarily, SPC is inherently
an unsupervised technique, relying predominantly on process measurements gathered
via sensors to detect anomalies. Secondly, the online nature of Phase II, where mea-
surements are analyzed sequentially, aligns with the real-time sampling objectives
of stream-based active learning. However, a critical distinction between SPC and
active learning lies in their primary objectives; SPC is primarily focused on anomaly
detection, and it does not offer a mechanism for selecting specific observations to be
labeled for enhancing a predictive model. For a deeper discussion on SPC, readers
may wish to consult Montgomery [36].

Figure 2.4 shows an example of a Hotelling T 2 control chart, which is used in
contexts where the data stream comprises multiple variables [45–50]. When each
incoming observation xi follows a multivariate normal distribution N (µ0,Σ0), the
Hotelling T 2 chart employs Phase I data to estimate µ0 and Σ0, and to set the upper
control limit (UCL), which is used to decide whether the observations from Phase II
are in-control or not. We can see how the chart in Figure 2.4 effectively highlights
out-of-control situations, as most of the Phase II data points fall outside the UCL.

2.1.5 Multi-armed bandits

Multi-armed bandit (MAB) problems are another noteworthy example of sequen-
tial decision-making and sampling, where the primary objective is to systematically
choose actions that maximize an overall outcome [51–54]. In the MAB framework,
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Figure 2.4. Example of a Hotelling T 2 control chart where three variables are being
monitored and the mean of the process variables is increased from 0 to 1 while transitioning
from Phase I to Phase II.

the learner needs to discern the most rewarding option from a set of alternatives,
each characterized by distinct reward probabilities. This scenario is akin to a gam-
bler choosing which arm to pull on a bank of slot machines, where each machine
offers varying rewards. Similar to active learning techniques, MAB problems revolve
around making sequential choices and sampling to obtain more information. In active
learning, the choice involves selecting the most informative data points for labeling
to enhance a learning model. In contrast, MAB focuses on picking the arm that
promises the highest reward. Both paradigms are united by their reliance on feed-
back — learning from each action taken, whether it is acquiring a data label in active
learning or receiving a reward in MAB.

Two primary formulations of MAB problems have been proposed, each distinct in
its approach and objective. The first, regret minimization, seeks to optimize cumu-
lative rewards across numerous trials. This strategy hinges on a nuanced interplay
between exploration, which entails testing different arms to glean insights into their
reward patterns, and exploitation, where the focus shifts to utilizing accumulated
knowledge to select the arm with the highest expected payoff. Algorithms grounded
in this approach strive to strike a balance between effective learning and the attain-
ment of high rewards. This method finds its utility in diverse applications such as
online advertising, recommendation systems, and treatment design. Conversely, the
pure exploration strategy is centered around the identification of the most promising
arm, given specific constraints like a finite number of trials. Unlike regret minimiza-
tion, the emphasis here is not on immediate rewards but rather on acquiring a deeper
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comprehension of the system at play with the fewest possible trials. This approach
is particularly relevant in scenarios where safety concerns or resource constraints are
dominant, such as drug discovery and design optimization. In these cases, the goal is
to discern the most effective course of action with minimal experimentation, ensuring
safety and efficiency.

Both MAB problems and stream-based active learning exemplify frameworks of
sequential experimental design, where each step in the process builds progressively
upon previous knowledge. However, while active learning primarily targets model
improvement through selective data labeling, MAB problems focus on maximizing
rewards through strategic choices among available options. The key contrast lies in
their objectives and application domains, with active learning concentrated on data-
driven model enhancement and MAB on reward optimization. Within the realm of
MAB problems, the study of linear bandits, where the reward is a linear combination
of some input parameters, bears the closest resemblance to active learning [55–58]. A
more detailed discussion about the commonalities between linear bandits and stream-
based active learning can be found in Paper 2 (Appendix B).

2.2 Training Methods

Beyond sampling and monitoring strategies from industrial statistics, another rele-
vant research area is represented by techniques that can be used to enhance training
efficiency and model deployment in scenarios characterized by label scarcity. These
methodologies are particularly adept at harnessing the value of the available labeled
data while also leveraging the knowledge hidden in the unlabeled portion of the data or
different models. This section delves into some of these innovative training methods,
shedding light on their principles and applications in the context of label scarcity and
streaming data. We explore how these methods, though distinct in their operational
mechanics, share the goal of enhancing learning efficiency and model performance
with limited labeled data. The techniques discussed here complement the sampling
strategies addressed in the previous section, providing a broader spectrum of tools
for tackling the challenges associated with label scarcity in machine learning.

2.2.1 Semi-supervised learning

Semi-supervised learning is one of the most commonly employed approaches for train-
ing models when we have a large dataset, but only a portion of it is labeled. It tackles
the challenge of limited labeled data from a perspective opposite to that of active
learning. While active learning strategically minimizes the labeling requirement for
model training, semi-supervised learning integrates both labeled and unlabeled data
into its training process [59]. Semi-supervised learning approaches can be classified
into three categories:
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1. Unsupervised preprocessing. This approach involves employing unsupervised
learning techniques, such as dimensionality reduction, clustering, or feature
extraction, across the entire dataset (both labeled and unlabeled) before its
utilization in a supervised model. The aim is to transform the data into a
format that facilitates the supervised task.

2. Wrapper methods. These methods utilize one or more supervised learners,
trained on a combination of labeled data and (pseudo-labeled) unlabeled data.
Pseudo-labels can be defined as labels that are inferred or estimated for the
unlabeled data based on the predictions of the supervised model. These la-
bels, though not verified by human annotators, are used to extend the training
dataset, allowing the model to leverage more data for learning and improving
its overall predictive accuracy. There are two key variants:

• Self-training. A single supervised model is trained on labeled data, and
confident predictions are used to pseudo-label other data points.

• Co-training. Multiple supervised models exchange confident predictions
for generating pseudo-labels for the unlabeled portion of the data.

3. Graph-based methods. In this strategy, a graph is constructed using all avail-
able data, and a supervised model is trained with a loss function that includes
both a supervised component and a regularization term. This term penalizes
discrepancies in predicted labels for connected data points in the graph.

Combining semi-supervised learning with active learning can refine data selection
strategies, potentially leading to enhanced performance and greater efficiency. Figures
2.5 and 2.6 illustrate how semi-supervised learning can be integrated into the stream-
based active learning routine.

2.2.2 Transfer learning

While semi-supervised learning involves leveraging knowledge from unlabeled data,
transfer learning tries to leverage models trained on different, yet related, data. It in-
volves transferring knowledge from a related task, which has abundant labeled data,
to a target task with limited labeled data [60]. This approach leverages the com-
monalities between the source and target domains, enabling the learning process to
benefit from pre-existing knowledge, thus reducing the need for extensive labeled data
in the target domain. There are several forms of transfer learning, but the most com-
mon one involves fine-tuning a model pre-trained on a large dataset (like ImageNet
or COCO) using a smaller dataset from the target domain [61]. This method has
proven particularly effective in deep learning, where models trained on millions of
images can learn general features that are applicable across a wide range of tasks.

The connection between transfer learning and the methodologies discussed in this
thesis lies in their shared goal of overcoming the limitations imposed by label scarcity.
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Figure 2.5. Combining semi-supervised learning based on preprocessing with stream-based
active learning.

However, transfer learning differs significantly in its approach. While active learning
strategies in this thesis focus on selecting the most informative samples from data
streams for labeling, transfer learning circumvents the need for large amounts of
labeled data by leveraging pre-existing models and knowledge.

2.2.3 Continual learning

Continual learning, also known as lifelong learning, is a dynamic approach in machine
learning where the model aims to learn new tasks from new data while retaining
previously acquired knowledge [62, 63]. This is particularly important in environ-
ments where data distribution evolves over time or when new tasks are introduced
sequentially. The primary challenge in continual learning is mitigating catastrophic
forgetting, a phenomenon where a model loses previously learned information upon
learning new data. To address this, several strategies have been developed:

• Regularization approaches. These methods, such as elastic weight consolidation
[64], add constraints to the learning algorithm in order to preserve important
parameters for previous tasks while learning new ones. The general idea is not
to let the new data significantly affect the parameters that are important for
the previous task.

• Reharsal methods. These techniques, like experience replay, involve retaining
a subset of previous data and mixing it with new data during training [65].
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Figure 2.6. Combining semi-supervised learning based on self-learning with stream-based
active learning.

Similar to an actor rehearsing lines to retain them in memory, this approach
repeatedly presents old data to the model to prevent it from forgetting what it
has previously learned.

• Architectural methods. This approach, exemplified by progressive neural net-
work models [66], involves dynamically expanding the network architecture to
accommodate new knowledge without altering the existing structure.

Continual learning can prove beneficial in scenarios with label scarcity as it enables
the use of knowledge from previous tasks to enhance the efficiency of learning new
tasks [67]. In this context, continual learning can be viewed as an extension of transfer
learning, where the objective is not only to leverage knowledge from previous models
to build new ones but also to maintain accuracy on previous tasks. Unlike traditional
transfer learning, where the focus is on efficiently learning a new task often at the
expense of older knowledge, continual learning seeks a balance to avoid catastrophic
forgetting.

2.2.4 Few-shot learning

Meta-learning is a research area that is highly related to continual learning. It is
often described as learning to learn, and it encompasses techniques that improve the
learning process of algorithms, enabling them to quickly adapt to new tasks or retain
knowledge across different tasks. Within meta-learning, few-shot learning is one of
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the most promising approaches, which emphasizes the model’s capability to learn
and generalize from very limited data. There are two primary approaches to few-shot
learning:

• Model-agnostic meta-learning. This methodology focuses on training a model
in such a way that it can be quickly adapted to new tasks with only a few
training examples [68]. This is achieved by finding a model initialization that
is particularly effective for fine-tuning on various tasks.

• Matching networks. This approach employs a unique training scheme that in-
volves creating support and query sets to simulate few-shot learning scenarios
during the training process [69]. Matching networks aim to learn a model that
can generalize well to new tasks based on the learning experience from these
simulated scenarios.

Both methods address the fundamental challenge in few-shot learning, developing
models capable of making accurate predictions from a small number of samples.

2.2.5 Curriculum learning

Curriculum learning is another intriguing approach in the field of machine learning,
which is related both to sampling and training. This technique aims at improving
the training efficiency while providing examples to the learning model in a specific
order [70]. It draws inspiration from the way humans learn: starting with simpler
concepts and gradually progressing to more complex ones. In machine learning, this
translates to initially training the model on simpler or easier examples and progres-
sively introducing more complex or difficult ones. This approach is believed to im-
prove the learning efficiency and final performance of the model. The rationale is
that by starting with easier instances, the model can quickly learn the basic pat-
terns, which then serve as a foundation for understanding more complex patterns.
Curriculum learning shares similarities with active learning in terms of enhancing
training efficiency by prioritizing the training on specific labeled examples. However,
while active learning focuses on selecting the most informative samples (which may
not necessarily be the easiest or simplest), curriculum learning is specifically about
structuring the learning process based on the difficulty level of the examples.
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CHAPTER 3
Stream-based active
learning with linear

regression models
This chapter introduces and discusses the methodology developed to address the
stream-based active learning problem for linear regression models. Our investigation
of this scenario is detailed in three different papers:

• Paper 3 (Appendix C), which presents the active learning methodology based
on the concept of CDO.

• Paper 4 (Appendix D), which extends CDO by accounting for the presence of
outliers.

• Paper 5 (Appendix E), which explores the impact of irrelevant features in the
data stream.

This chapter serves as a cohesive narrative that illustrates how these works are
interconnected, placing the developed methodology in context and discussing its main
strengths and limitations. These papers are grouped together in this chapter because
they represent variations of the same methodology, and they share a common experi-
mental design and underlying theoretical framework, which collectively contribute to
a more comprehensive understanding of the stream-based active learning process in
the context of linear regression models.

3.1 Problem statement

Regression models are pervasive in data science and rank among the most commonly
employed types of models for various applications, ranging from forecasting in energy
and finance to quality prediction in manufacturing. Among regression models, linear
models are widely used due to their ease of interpretation, with the possibility of
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performing tests on coefficients to verify relationships between specific input variables
and process outcomes. Indeed, for industrial practitioners, process understanding and
optimization are often more interesting than prediction per se. That is why linear
models continue to be widely employed in many fields. A multiple linear regression
model is generally defined as

y = Xβ + ϵ (3.1)

where y is the n×1 vector containing the response variable, X is an n×p design matrix,
β is a p × 1 vector of regression coefficients, and ϵ ∼ N (0, σ2I) is an n × 1 vector
representing the zero-mean Gaussian noise. Here n is the number of observations,
and p is the number of predictors (or covariates).

The general stream-based active learning framework for linear regression is illus-
trated in Figure 3.1. We typically start with an initial random design comprising
k observations, which is used to obtain an estimate of the regression coefficients, β̂.
This initial model might be trained on historical data or on preliminary experiments
conducted to gain a basic understanding of the problem. Subsequently, the model
interacts with a data stream S, receiving unlabeled observations, x, in real time. For
these observations, the learning model can decide whether to request the correspond-
ing labels, y, or not. However, there is an operational budget limiting the number
of labels that can be collected. The main objective is to refine the model estimate β̂
by iteratively selecting the most informative labeled examples, (x, y). These are the
observations that, in hindsight, would lead to the most significant improvement in
the model if all the labels were known. Here, model improvement is often measured
in terms of predictive performance, such as the root mean square error on an external
test set or using the prequential evaluation scheme [37].

Data stream
Observe an 
unlabeled data 

point 𝐱!

Is it 
useful?

Ask for the 
label

Discard the 
observation

Update the 
model "𝛃

No

Yes Get a noisy 
measurement 
𝑦! = 𝐱!𝛃 + 𝜖!

Figure 3.1. Stream-based active learning with linear regression models. This routine is
repeated until we meet the budget constraint on the number of labels that can be queried.
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3.2 Proposed methodology

The general approach we adopt for the stream-based active learning problem draws
inspiration both from the secretary problem (see Chapter 1, Figure 1.4) and from the
traditional SPC approach (see Section 2.1.4). Indeed, our strategy is based on two
phases:

1. Warm-up Phase. This phase is analogous to Phase I data in SPC, where, in this
case, we observe the process without querying any labels. Instead, we collect an
unlabeled calibration set that is used to estimate the covariance matrix of the
data and a threshold Γ, which is later utilized to identify the most informative
data points.

2. Sampling Phase. This phase is similar to Phase II data in SPC and repre-
sents the phase where we select the most informative observations. Instead
of declaring faulty or abnormal situations, data points falling above Γ are the
observations used to update the model β̂.

This approach is also similar to the general solution to the secretary problem.
Indeed, the general solution involves deciding a sample size r, blindly rejecting the
first r−1 candidates, and then selecting the first candidate whose skill set is superior
to those observed in the previous r − 1 candidates [71]. In Figure 3.2, we can see
how this is somewhat similar to our proposed methodology, where we first gather a
reference set to gain a general idea of the level of the candidates and then use that
set to inform our hiring decision. The key difference in our framework is that we
are not focused on selecting a single best data point; instead, we continuously select
data points until our budget is exhausted. This approach simplifies the problem, as it
allows for some margin of error in individual selections while still progressing towards
overall model improvement.

Reference set Hired

Figure 3.2. General solution of the secretary problem, where we initially reject a sample
of candidates and then select the first one who is better than those in the reference set.

3.2.1 Conditional D-optimality

The previous section introduced the key thresholding approach adopted. However,
the fundamental question of how to determine if a data point is informative was not



30 3 Stream-based active learning with linear regression models

answered. In Paper 3 (Appendix C), we propose the CDO approach for selecting
the most informative observations in the stream-based active learning framework for
linear regression. We propose the use of an instance evaluation criterion borrowed
from the optimal experimental design theory. The key contributions of the paper are:

• We propose labeling observations that have a high UPV, highlighting the con-
nection between UPV and D-optimality. Indeed, points with high UPV are
those that contribute to maximizing the determinant of the moment matrix.
These points are useful to the model as they belong to less explored locations of
the input space; thus, their inclusion in the model encourages the exploration
of new regions.

• We propose a thresholding approach, demonstrating how a warm-up set can
be used to estimate the covariance matrix of the data (which can be used for
whitening purposes) and to estimate the threshold Γ.

• We propose the use of kernel density estimation (KDE) for determining Γ. In
particular, we used a KDE with a Gaussian kernel to estimate the UPV scores
of the observations in the warm-up set.

• We provide extensive results on numerical simulations and the Tennessee East-
man Process, focusing on two aspects:

– Learning efficiency. We show how the proposed approach allows for a
faster reduction in the error rate compared to random sampling and the
norm-thresholding approach [72].

– Computational time. We demonstrate that the decision time of the pro-
posed sampling strategy is extremely low (around 0.004 milliseconds), prov-
ing that it is a suitable method for streams with very high arrival rates.

3.2.2 Dealing with the presence of outliers

One of the key aspects of seeking points with high UPV is that these points will
likely be far from the current design space. While this approach allows us to explore
new, unseen regions and improve our model, it might be counterproductive if the
data stream is affected by the presence of outliers. Indeed, if isolated outliers exist
in the data stream (e.g., measurement errors), the model is likely to be attracted to
them due to their high UPV, but their inclusion in the training set could eventually
degrade prediction performance. In Paper 4 (Appendix D), we provide a solution to
this problem. The contributions of this paper are:

• The inclusion of robust estimators in the CDO scheme, based on the Huber and
Tukey loss functions. These approaches allow for the development of models
that are less sensitive to the inclusion of outliers. This means that even if
outliers are inadvertently included in the training set, the model estimation
will not be significantly influenced.
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• The suggestion of using two thresholds to bound the search area of the CDO
algorithm. If extremely large UPV values suggest that a data point is an outlier,
we will not query its label. The double-threshold approach works by estimating
two thresholds (Γ1, Γ2) to identify a safe sampling interval.

• An investigation into the difference in performance when the initial training set,
composed of k observations, includes outliers versus when it is clean.

• The exploration of a weighted UPV, using the weight matrix W derived from
the robust estimators.

• An investigation into the performance of two performance-based stopping cri-
teria. Instead of stopping the active learning routine when the budget is ex-
hausted, we consider approximating the true (unobservable) learning curve.
This approach allows us to stop the procedure earlier if we are not improv-
ing the model or to suggest the experimenters continue sampling even after
exhausting the budget.

3.2.3 Dealing with the presence of irrelevant features

Another potential challenge that may affect the stream-based active learning frame-
work is the presence of an excessive number of features. This is increasingly common,
as collecting process data is usually straightforward, leading to a large number of
predictors, p. However, in supervised modeling processes, it is unlikely that all p
features significantly affect the response y. In Paper 5 (Appendix E), we provide
an initial analysis of the potential benefits of including a feature selection step in the
CDO algorithm. The contributions of the paper are:

• The evaluation of the performance of different feature selection methods, includ-
ing an information criteria-based one, a sparse method, and a linear regression-
specific method.

• The assessment of the effectiveness of the feature selection methods in two
aspects:

– Learning curve. We compare how the learning methods perform relative
to the optimal approach, where we know beforehand which features truly
affect the response.

– Detection rapidity. We evaluate how quickly the feature selection strategies
can identify the relevant features, i.e., the number of learning steps required
before they can effectively screen.

• We highlight two potential causes for the decreased efficiency when irrelevant
features are present in the stream:
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– Parameter estimation. When we have a few number of observations to
estimate the regression coefficients, the burden posed by the presence of
additional features might significantly impact the efficiency of the active
learning routine.

– Suboptimal exploration. If we calculate the UPV based on irrelevant fea-
tures, we might be exploring areas of the input space which are uncertain
for a misspecified model, and thus might not be optimal queries for the
true model which is only based on a subset of the observed features.

3.3 Key results

The first significant result pertains to the improvement achieved using the CDO strat-
egy compared to random sampling. In Figure 3.3, we can observe how the proposed
CDO approach yields substantial improvements to the learning curve, especially when
the experimental budget is limited. Generally, as more observations are collected, all
strategies converge to the performance level achieved by random sampling. However,
in the initial steps, a performance improvement of up to 25% compared to the pas-
sive random approach can be observed. This is also evident in Figure 3.4, where the
residuals of the model obtained after five learning steps are displayed. Here, we see
how carefully selecting a small number of observations can significantly impact the
performance of the resulting model.

In Figure 3.5, we can see how the presence of outliers can dramatically decrease
the learning efficiency of the proposed methodology. Adopting a flexible strategy
based on robust estimators and two thresholds proves to be an effective solution to
this problem. Lastly, Figure 3.6 reveals the varied effectiveness of different feature
selection methods in promptly identifying the relevant features. The Lasso estimator
quickly and accurately identifies relevant features, while F-tests, though slower, are
effective over time. Mutual information heatmaps initially show potential but tend
to mistakenly include irrelevant features, especially in the early stages with limited
data. This highlights the diverse strengths and limitations of each feature selection
approach in such a dynamic learning environment.

3.4 Discussion

The proposed methodology offers new insights and approaches to stream-based active
learning for linear regression models. Here are some discussion points that underscore
the limitations of the works and potential directions for future research:

• Model choice. While the approach is specifically tailored for linear models, it
is not restricted to simple first-order models. It can be easily adapted for high-
order polynomials that are linear in parameters, allowing the learning of more
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Figure 3.3. Learning curves obtained on numerical simulations (from Paper 3). The
proposed method is the CDO strategy.

complex nonlinear functions. Additionally, a linear model could be employed
after extracting nonlinear features from the data using unsupervised learning
methods, as highlighted in Section 2.2.1.

• Threshold estimation. KDE is a generally efficient method, surpassing simple
empirical quantile approaches. However, it introduces complexities such as in-
creased computational demands and the challenge of bandwidth selection. We
utilized a scalar factor multiplied by the standard deviation of the scores, result-
ing in a bandwidth that adapts to data spread. Nevertheless, the bandwidth
choice significantly influences the KDE shape, and different methods may be
more suitable depending on the specific data distribution.

• Outlier definition. The statistical definition of an outlier can greatly affect the
performance of the developed procedure. In Paper 4, an outlier is defined as
an isolated point with a shift in covariates, and a response not deriving from the
same underlying model as the other points in the stream. It is an anomalous
point that does not contribute to estimating the true regression coefficients β.
While this yields interesting results, many ways to define an outlier exist, and
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Figure 3.4. Residuals after five learning steps on the Tennessee Eastman Process (from
Paper 3). The proposed method is the CDO strategy.

the effectiveness of the proposed solution may vary significantly based on these
definitions.

• Screening scenario. The experimental scenario in Paper 5 is quite simplistic,
considering a data stream with uncorrelated predictors. The investigation was
also limited to relatively basic feature selection methods. Future work should
explore more complex data distributions (e.g., with varying levels of feature
correlation) and more sophisticated feature selection techniques.
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Figure 3.5. Learning curves obtained on numerical simulations, with 5% of the observations
in the data stream corresponding to outliers (from Paper 4).
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Figure 3.6. Scores obtained with the different feature selection methods with 30 irrelevant
features. Subplot (a) shows the squared regression coefficients obtained with Lasso. Subplot
(b) shows the feature importance scores obtained by performing univariate F-tests. Subplot
(c) shows the mutual information scores (from Paper 5).



CHAPTER 4
Adaptive sampling for

concept drift monitoring in
data streams

This chapter investigates the use of adaptive sampling methods for identifying con-
cept drifts in data streams. Before delving into the adaptive sampling methodology,
we provide a preliminary section where we underline the significance and potential
impacts of concept drift for the active learning routine. We then present initial re-
sults on the use of a residual-based sampling strategy for data streams, based on
weighted KDE and the Metropolis-Hastings (MH) algorithm. For an explanation of
concept drift and other types of distribution shifts in data streams, readers may wish
to consult Section 3.2 of Paper 2 (Appendix B).

4.1 Preliminaries on active learning with concept drift

Concept drift in data streams can generally be defined as a circumstance where the
presence of hidden effects alters the relationship between the input features and the
response of a model [73]. This leads to a change in the conditional distribution of the
response from time t to time t+∆, as in

Pt(y|x) ̸= Pt+∆(y|x), while Pt(x) = Pt+∆(x) (4.1)

This means that concept drift cannot be detected simply by monitoring covari-
ates, as it is usually done in SPC (see Section 2.1.4). In this brief experiment, we
demonstrate what happens to the residuals of a regression model, measured using a
prequential evaluation scheme [37], in three different scenarios. In each scenario, the
ith covariates vector is generated as xi ∼ Np (0,Σ0), where p is the number of input
features and Σ0 = σ2

xI, with σx = 1. At each time step, the response is obtained using
yi = xiβ + εi, where β are the true regression coefficients, and εi ∼ N

(
0, σ2

ε

)
is the

zero-mean Gaussian noise, with σε = 1. After fitting an initial model on an initially
labeled training set, we collect additional observations by drawing, at each time step,
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a number r ∼ U(0, 1) and selecting the data point only if r ≥ 0.9. This corresponds
to a random sampling scheme with a sampling rate of 10%. Random sampling is
used for simplicity, as the main scope of this chapter is to show the behavior of the
residuals in drifting environments.

Figure 4.1. Learning curve on a stationary data stream (random sampling with α = 10%,
100 simulation runs).

Figure 4.1 reports the performance obtained on a stationary data stream, where
the coefficients β used to generate the response remain constant throughout the
observation period. It is evident how the performance decreases, indicating that the
additional labeled observations allow for a better estimation of the underlying model
relating the process variables to the response. Conversely, Figure 4.2 illustrates what
happens to the residuals when abrupt concept drifts affect the data stream. Here,
an abrupt concept drift is represented by a sudden change in the true regression
coefficients β, suggesting that the underlying relation between predictors and response
variable is altered by hidden effects [73]. Specifically, we introduced a concept drift
every 100 observations, which is evident from the spikes in the residuals. When a drift
occurs, the model trained on obsolete data cannot accurately predict the response.
However, with the collection of new labels, the learning curves show an attempt to
learn the new concept, which is continually negated by newly induced drifts. Then,
once the sampling budget of 50 observations is exhausted (approximately around
observation number 500), the residuals cease decreasing as the learner has used all of
its exploration budget. A similar behavior is evident in Figure 4.3, where the only
difference from the previous case is that the concept drift is gradually introduced,
with a transition phase showing the switch between the two underlying models.

These simple experiments aim to highlight the main challenges that arise when
sampling from data streams experiencing concept drift, and the actions that may
need to be taken to address them:
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Figure 4.2. Learning curve on an abruptly drifting data stream (random sampling with
α = 10%, 100 simulation runs).

• Adjusting sampling rate. When a drift occurs, it is crucial to collect a significant
amount of data to facilitate the learning of the new model.

• Forgetting obsolete data. Attempting to learn new concepts without disregard-
ing obsolete data will hinder the model from achieving optimal predictive per-
formance.

• Balancing sampling budget. In the presence of drifts, it is necessary to judi-
ciously balance the sampling budget, discerning when the data stream is in a
stationary phase and when it is transitioning to a new concept.

4.2 Problem statement

We now introduce the problem of detecting localized concept drifts in data streams.
In the previous section, we demonstrated what happens to the learning curve when
the underlying regression model changes over time. However, in that scenario, we
assumed that all the model coefficients were altered, meaning that all incoming data
points from the stream would report significantly higher residuals, regardless of their
specific location within the design space. In reality, it is possible that only some
coefficients of the model are affected, or that the new concept is revealed only in
certain regions of the covariates. For instance, the effect of changing a material in
production or replacing a component might only lead to different behaviors when the
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Figure 4.3. Learning curve on a gradually drifting data stream (random sampling with
α = 10%, 100 simulation runs).

temperature or pressure rises above a certain levels. Similarly, for a large product
or batch of products, the change might only be observable in specific locations. This
phenomenon is illustrated in Figure 4.4, where the model is altered only in the region
where x ∈ [1, 2]. The original function is from Gramacy and Lee [74]. This obser-
vation underlines the necessity for detection methodologies specialized for localized
drifts. For any observation x ∈ [0.5, 1]∪ [2, 2.5], the residual pre and post-drift would
remain the same (except for inherent noise). Therefore, if one were to employ random
sampling across the feature space, the detection of the drift could easily be missed.
An aggregated measure of residuals, such as the sum of squares or absolute values,
would likely show minimal deviation from zero, particularly if a significant number of
points were sampled from unaffected regions. This could misleadingly indicate that a
model update is not necessary, potentially compromising the predictive performance
of the model in use. Thus, it becomes evident that a more nuanced approach is re-
quired for effectively identifying and responding to concept drifts, particularly those
with a localized nature. Another example is depicted in Figure 4.5. Here, the concept
drift appears in a region where the response was previously flat. This example also
modifies a function proposed by Gramacy and Lee [74]. A different visualization of
the same drifting function is presented in Figure 4.6. These examples highlight the
necessity of an adaptive sampling strategy that can recommend optimal sampling
locations for prompt drift identification, followed by an appropriate model update.
In Figure 4.7, we see an additional example that represents the sequential nature of
the problem, where a drift gradually increases in magnitude over time.

Since we are dealing with data streams, we assume that at each time step t, we
need to estimate the function over the entire feature space. At each time step, we are
also given a finite budget for performing quality inspections along the domain X to
double-check the validity of the model. Thus, the core idea is to inform the location
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Figure 4.4. Effect of localized concept drift on a 1D function. The underlying model is
locally altered from time t1 to time t2, indicating Pt1(y|x) ̸= Pt2(y|x) only when x ∈ [1, 2].

(a) (b)

Figure 4.5. Effect of localized concept drift on a 2D function. Subplot (a) shows the
original function, and subplot (b) shows the drifted function (in the region where x1 and x2
are between 3 and 5).

of the sampling at time ti+1 using the information available at time ti. Intuitively, if
we are at time t1, we might start the process by collecting data randomly or using
a space-filling design [75] to initialize the model and obtain some initial samples to
measure its accuracy. Then, from successive time steps, we can use the model and
the newly collected observations to adapt the sampling strategy in an attempt to be
more sensitive to potential model alterations.
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(a) (b)

Figure 4.6. Effect of localized concept drift on a 2D function (contour plot). Subplot (a)
shows the original function, and subplot (b) shows the drifted function (in the region where
x1 and x2 are between 3 and 5).

Figure 4.7. Observing concept drift over time: the curve is changing in the same region
but the magnitude of the coefficients changes gradually. These plots are obtained using a
B-spline function where only one coefficient is gradually increased over time. We can see
how the concept drift is mostly affecting the region where x ∈ [0, 0.5].

4.3 Proposed methodology

The proposed methodology aims to assign a sampling probability to each point x ∈ X ,
based on some informativeness measure that encourages sampling in drifting regions.
We investigate the performance of two different kinds of models. The first model is a
polynomial [76], which can be described as

y = β0 +
p∑

j=1
βjxj +

p∑
j=1

p∑
k=j

βjkxjxk + ϵ

where y is the response variable, xj are the predictors, β0, βj , βjk are the coefficients
for the intercept, linear and interaction terms up to the pth predictor, and ϵ rep-
resents the error term. The second model is a Gaussian process regression (GPR)
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model. A Gaussian process (GP) can be generally described as a collection of ran-
dom variables, any finite number of which have a joint Gaussian distribution [77]. In
the regression case, the random variables represent the continuous value of a function
f(x) at location x. A GP can be defined as

f(x) ∼ GP(m(x), k(x,x′)) (4.2)

where m(x) represents the mean function, usually assumed to be zero, and k(x,x′)
represents the covariance function, also referred to as the kernel. The squared expo-
nential (SE) covariance function is frequently utilized as a kernel in various models
due to its highly smooth nature. The SE kernel between two points x and x′ in the
input space is given by:

k(x,x′) = exp
(
−||x− x′||2

2ℓ2

)
(4.3)

where ℓ represents the length scale parameter. The SE kernel might also include a
scale factor σ2 to control the variance. The Gram matrix K is the covariance matrix
for a set of input points xi, with i = 1, . . . , n, where Kij = k(xi,xj).

Assuming these models have already been trained on historical data (or data col-
lected from the first time steps), we suggest using the residuals observed up to the
current time step, to assign a sampling probability to each point x ∈ X . This prob-
ability will then be used to inform the sampling decisions in successive time steps.
To do this, we propose the use of KDE to estimate the probability density function
(PDF) of the sampling locations explored up to the previous time step, which in this
case corresponds to. This provides insight into the spread of the observations across
the x domain. Areas with higher density values suggest regions where more observa-
tions were collected, and lower densities indicate regions with fewer observations. If
observations are uniformly spread, the density remains constant across x. While this
representation captures the distribution of observations, it does not inherently reflect
the model performance or account for potential concept drifts. To integrate model
performance into the density estimation, we suggest using residuals from the previous
time step as weights in the KDE. By computing a weighted KDE of the data locations
using squared residuals as weights, we are effectively creating a density estimation
that magnifies regions of the input space where the model made larger errors. Given
N data points x1, x2, . . . , xN , the weighted KDE is given by

f̂(x) =
∑N

i=1 r
2
iK(x− xi)∑N
i=1 r

2
i

(4.4)

where ri is the residual of the current model for the ith observation, and K(x − xi)
is the standard Gaussian kernel

K(x− xi) =
1√
2πh2

e−
1
2 ( x−xi

h )2 (4.5)
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Here, the standard deviation h denotes the bandwidth, a smoothing parameter that in
this study was set to 0.05. In essence, KDE works by placing a Gaussian (or another
kernel) at each data point. By summing up these Gaussians, we obtain a smooth and
continuous representation of the data distribution. Using the residuals as weights
means that regions with larger residuals will have a more pronounced representation
in the KDE. This can be valuable when deciding where to sample next, especially if
you want to focus on regions where the model previously performed poorly.

Once we have a PDF, we can use it to decide where to sample at the next time step.
However, sampling from an estimated PDF, especially when it is non-parametric like
our KDE, is not trivial. One possible approach is to use the MH algorithm, which is
a kind of Markov chain Monte Carlo (MCMC) method. It can be particularly useful
when we are interested in sampling from a target distribution, in this case represented
by our KDE, for which we can evaluate the density but cannot directly sample from
because the analytical form of the distribution is not tractable. The main idea behind
the MH algorithm is to construct a Markov chain whose stationary distribution is the
target distribution. By running this chain for a long duration and taking samples
from it, we can approximate samples from our target distribution. The key steps are:

1. Initialization: start with an arbitrary point x0 in the domain.

2. Proposal Distribution: at each step, propose a new point to be sampled x′ using
a proposal distribution q(x′|xt).

3. Acceptance Criterion:

• Compute the acceptance ratio α as

α = min
(
f(x′)q(xt|x′)
f(xt)q(x′|xt)

, 1
)

(4.6)

where f(x) is the value of the KDE at x.
• Generate a random number u ∼ U(0, 1).
• Accept x′ if u ≤ α.

4. Repeat: continue this process for a predefined number of iterations.

Here, we used a random walk MH algorithm, where q(x′|xt) is a Gaussian centered
at the current point xt. This means that at each step the proposal is obtained as
x′ = xt+N (0, σ), where σ is a parameter to be tuned. The essential intuition behind
MH is that even if our proposal distribution is not perfect, the acceptance criterion
corrects for it, ensuring that over time we obtain samples that are representative of
our target distribution.

To ensure this procedure ensures the discovery of drifts arising in new locations, it
is necessary to balance exploitation and exploration. Indeed, the approach proposed
so far is solely focused on exploiting the residuals from the previous time steps. While
this is valuable, there is a risk of being short-sighted and missing concept drifts
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emerging in new areas. A more comprehensive strategy would balance both the
exploitation of the high-residual locations and the exploration of new regions. To
achieve this balance, we can employ the ϵ-greedy strategy, a method well-established
in reinforcement learning. In the case of Q-learning with k actions, it selects its
highest valued (greedy) action with fixed probability (1− ϵ(k − 1)/k) and randomly
selects among the other k − 1 actions with probability ϵ/k [78]. Here, we can use it
to sample with probability ϵ at random from the entire domain, and with probability
1− ϵ, from the MH algorithm based on residuals. This ensures that some fraction of
the samples will always be exploratory.

4.4 Key results

In Figure 4.8, we observe the PDF estimated using the weighted KDE approach with
the polynomial model, along with the sampling locations suggested by the MH algo-
rithm. For this estimation, we utilized 200 previously collected labeled observations
from the drifting function depicted in Figure 4.5. The sampling strategy effectively
recommends placing new samples in the region where the drift is occurring. In Figure
4.9, we present the outcomes of the sampling strategy, on the same function, based
on the residuals obtained from the GPR model.

(a) (b)

Figure 4.8. KDE weighted by the residuals obtained from the polynomial model (a), and
sampling locations suggested by the MH algorithm.
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(a) (b)

Figure 4.9. KDE weighted by the residuals obtained from the GPR model (a), and sampling
locations suggested by the MH algorithm.

4.5 Conclusion

Despite the promising results obtained with the residual-weighted KDE, the approach
we have presented is still in its initial, proof-of-concept stage. Moving forward, our
aim is to expand this framework by implementing it in a more sequential manner.
This advancement would facilitate an iterative enhancement of the PDF estimation
through weighted KDE, effectively illustrating the gradual detection process of con-
cept drifts. Furthermore, while our current strategy primarily addresses the sampling
aspect in data streams, it is crucial to integrate a robust monitoring mechanism. This
mechanism would be pivotal in accurately determining the precise moment to declare
the occurrence of a concept drift. In pursuit of this objective, we are contemplating
the adoption of an exponentially weighted moving average (EWMA) control chart.
This method would allow for a dynamic and responsive monitoring system, capable of
quickly identifying shifts in data stream patterns and facilitating timely interventions.



CHAPTER 5
Stream-based active

distillation with object
detection models

Object detection is a foundational task in computer vision with applications ranging
from real-time surveillance to advanced robotics. In this chapter, we introduce the
stream-based active distillation framework for object detection models proposed in
Paper 6 (Appendix F). However, since the topic of object detection has not been
extensively treated in the literature review (Paper 2) or in the introductory chapters,
before delving into the proposed methodology we will briefly cover the core techniques,
metrics, and strategies for fine-tuning object detection models. We also discuss the
relevance of active learning in this context. Such an overview not only elucidates
the foundational mechanics and inherent challenges of the domain but also paves the
way for the stream-based active distillation methodology presented in the upcoming
sections.

5.1 Preliminaries on object detection

Object detection enables the development of advanced models capable of identify-
ing and locating objects of interest within images or videos. In recent years, the
advancements in deep learning have led to significant progress in object detection,
with state-of-the-art models achieving impressive performance on various benchmarks.
Object detectors can be broadly divided into two classes, traditional computer vision
techniques and deep learning models [79,80].

5.1.1 Traditional approaches vs. deep learning-based approaches

In the early stages of computer vision, object detection was primarily dominated
by traditional approaches that heavily relied on handcrafted features and ad-hoc
algorithms. These methods laid the foundation for the field and solved some specific
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tasks effectively. Among these methods, the Viola-Jones algorithm [81] has long been
the go-to method for face detection. It utilizes Haar-like features, which are divided
into edge, line, and four-sided features, to efficiently capture local intensity variations
in an image. The most relevant sub-regions of the image are then estimated using
an AdaBoost classifier [82]. Viola-Jones achieved remarkable speed and accuracy in
face detection and became widely adopted in various applications. Another popular
traditional method is the histogram of orientated gradients (HOG), which relies on
the gradients of the image to capture local edge or intensity variations. After a
preprocessing step, HOG usually computes horizontal and vertical gradients using
techniques like Robert, Prewit, or Sobel operators [83]. It then divides the image
into small overlapping cells and computes a histogram of gradient orientations for
each cell. These histograms are then concatenated to form the final feature vector
used for classification. Deformable parts models (DPM) are another approach that
has been highly effective in detecting objects with articulated structures, like humans
or animals. Instead of treating the entire object as a single entity, DPMs represent
objects as a collection of deformable parts. Each part is associated with its appearance
model and spatial constraints that capture the typical spatial relationships among the
parts. DPMs excel at handling variations in object pose and articulation. Due to
their simplicity, ease of implementation, and interpretability, traditional approaches
like the Viola-Jones algorithm, HOG, and DPMs have been widely employed by the
computer vision community. However, it is important to notice that these approaches
have some limitations, in particular:

• Manual feature crafting. One major drawback of traditional methods is that
they heavily rely on handcrafted features, which require domain expertise and
can be time-consuming to design. These features may not fully capture the
complexities present in real-world data, limiting their ability to generalize well
across diverse object variations.

• Sliding window techniques. Traditional approaches often use sliding window
techniques to scan an image at multiple scales and locations to identify potential
object regions. This process can be computationally expensive, especially when
dealing with large-scale datasets or high-resolution images.

• Limited robustness. Traditional methods struggle with complex object config-
urations, occlusions, and variations in scale and viewpoint. They may not be
well-suited for detecting objects in cluttered or challenging scenes.

Deep neural networks revolutionized the object detection domain, offering sig-
nificant improvements in accuracy, speed, and robustness. The foundation of deep
learning-based object detection lies in the ability to automatically learn hierarchical
representations from data, eliminating the need for manual feature crafting that is
prevalent in traditional approaches [84]. The main advantages of deep learning-based
methods over traditional methods are:
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• Automatic feature learning. Instead of relying on handcrafted features, deep
learning methods learn features directly from the data, allowing them to adapt
to a wide variety of object detection tasks and handle complex real-world data.

• Unified framework. These methods often operate in a unified framework where
different components (feature extraction, object localization, and classification)
are integrated and trained jointly, leading to superior performance and better
optimization.

• Robustness to variations. Deep learning models are robust to a wider range of
variations in object configurations, scales, and viewpoints. They can effectively
handle occlusions and detect objects in cluttered or challenging scenes.

• Scalability. The computational efficiency and scalability of deep learning models,
especially one-stage detectors, make them suitable for real-time object detection
applications and large-scale datasets.

Despite these advantages, it should be noted that deep learning-based methods are
data-intensive, requiring large labeled datasets and substantial computational re-
sources for training. This motivates the use of intelligent sampling strategies based
on active learning to reduce the need for unnecessarily large training sets.

5.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) form the backbone of most of today’s ad-
vanced object detection mechanisms. At the core of CNNs are convolutional layers,
which employ filters (or kernels) to detect specific patterns or motifs in an image.
These filters slide or ‘convolve’ across the input image, and at each position, a dot
product is computed between the filter and the portion of the image it covers. If
the filter and the image portion are similar, this dot product yields a high value,
indicating a strong presence of the motif represented by the filter. CNNs can detect
motifs anywhere in the input, allowing the system to recognize shapes or patterns
irrespective of their position within the image [85]. For instance, consider the CNN
depicted in Figure 5.1, which is designed to distinguish between the letters ‘C’ and ‘D’.
Intuitively, the letter ‘C’ can be characterized by the presence of open-end segments,
while the letter ‘D’ has a closed curve with two corners. By employing filters that can
detect these unique features, the CNN can classify the image based on the presence
or absence of these detected motifs.

Convolution operations can be thought of as local feature detectors that are shift
equivariant. If we shift an image and then apply a convolution operation, the result
is the same as if you had first applied the convolution and then shifted its output.
We can observe this property is shown in Figure 5.2. The weighted sums in Figures
5.1 and 5.2 are called feature maps, and they are derived by sliding the filter across
the image pixel-by-pixel, producing darker outputs where there is a significant match
with the filter. In real-world applications of CNNs, the filters or templates are not
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Figure 5.1. An illustrative example from [85] showcasing a hand-designed CNN for classify-
ing images as either ‘C’ or ‘D’. The detectors in this context represent filters that specifically
seek out the presence of endpoints and corners in the image.

Figure 5.2. Shift equivariance property of the convolutional layers [85].

hand-designed as in the illustrative examples; instead, they are learned by the model
during the training process. This is one of the primary advantages of deep learning:
the ability of the model to learn appropriate features or patterns directly from the
data without requiring manual feature engineering. In addition to the fundamental
convolution operation, techniques such as padding and stride play important roles in
the functioning of CNNs. Padding ensures the spatial dimensions of our image are
retained post-convolution by adding a zero-value border around it. This way, the
filter application preserves the original image size. On the other hand, stride dictates
the movement of the filter across the image. Rather than the standard one-pixel
shift, it allows for larger leaps, like two pixels at a time for a stride of two, making it
possible to adjust the granularity of feature extraction. These parameters are crucial
in fine-tuning CNN architectures for optimal depth and computational efficiency.
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Following convolutional layers, pooling layers are often used to reduce the spatial
dimensions of the feature maps obtained from convolutional layers. This downsam-
pling serves a dual purpose: it reduces computational demands and also diminishes
the risk of overfitting, ensuring the network remains both efficient and generalizable.
Moreover, pooling introduces translational invariance to the architecture. This criti-
cal attribute ensures the network remains consistent in its recognition even if objects
within the image undergo slight positional shifts or distortions. Among the various
types of pooling, max pooling is the most commonly employed. For each segment of
the feature map, it only retains the highest value, contrasting with average pooling
which retains the average value of a segment. These pooling operations often use
a sliding window mechanism that traverses the feature map, with the stride of this
window determining the degree of downsampling. In essence, while convolutional
layers focus on feature extraction and recognizing intricate patterns, pooling layers
compactly represent these patterns, ensuring resilience to minor spatial alterations,
which is foundational for robust tasks like object detection.

In summary, the combination of convolutional layers and pooling layers creates
an intricate map of feature representations at multiple levels of abstraction, laying
the foundations for the object detection task [86].

5.1.3 Object detection metrics

Before diving into the complexities of object detection models, it is necessary to un-
derstand the metrics used to evaluate their performance. Unlike simple classification
or regression tasks, object detection not only classifies objects but also locates them
within an image using bounding boxes. This spatial aspect necessitates unique eval-
uation metrics. Here, we introduce foundational metrics that offer insights into the
accuracy and robustness of object detectors.

A foundational metric in object detection is the intersection over union (IoU), also
known as the Jaccard Index. It quantifies the overlap between two bounding boxes:
the predicted box and the actual (ground truth) box. Specifically, IoU calculates the
ratio of the area where the two boxes overlap (the intersection) to the area covered
by both boxes combined (the union)

IoU = Area(Predicted ∩Ground Truth)
Area(Predicted ∪Ground Truth)

(5.1)

As Figure 5.3 illustrates, varying overlaps yield different IoU scores. For model evalu-
ation, a threshold (often, IoU > 0.5) determines whether a predicted box accurately
detects an object (true positive) or misidentifies it (false positive). Adjusting this
threshold lets us balance precision and recall, two key metrics in detection tasks.

Beyond IoU, Average precision (AP) offers a holistic view of an object detector’s
performance. AP evaluates both precision and recall across varying IoU thresholds,
effectively measuring a model’s consistency in detection accuracy. By charting pre-
cision against recall for IoU thresholds ranging usually from 0.5 to 0.95, and then
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(a) (b) (c)

IoU = 0 IoU = 1/7 IoU ≈ 1

Figure 5.3. Different IoU scores obtained on the same image. In this example, the green
bounding box represents the ground truth, and the red bounding box represents the predic-
tion.

calculating the area under this curve, AP provides a singular metric capturing detec-
tion efficacy across diverse scenarios. Mean AP (mAP) is an extension of AP that
calculates the average AP across multiple object categories or classes. In multi-class
object detection tasks, there is a separate AP computed for each class, and the mAP
is the average of these AP values. It is a useful metric for evaluating the overall per-
formance of an object detection system when dealing with multiple object categories.

5.1.4 YOLO object detector

Object detectors based on CNNs can be broadly divided into two categories: two-
stage detectors, which initially propose potential object regions and subsequently
refine these proposals in a separate phase; and one-stage detectors, which perform
object location prediction and classification simultaneously in a single step [87]. The
dual-phase approach of two-stage detectors tends to make them more accurate than
one-stage detectors, but also more computationally intensive. The most popular two-
stage detector is Faster R-CNN [88]. In its first phase, a region proposal network
locates a predefined number of regions that may contain objects. These sparse region
proposals are represented by bounding boxes, which usually have an associated score
representing the probability of an object being within it. These bounding boxes
are then used to obtain classification scores and the spatial offsets [89]. Faster R-
CNN’s two-phase nature allows high predictive accuracy, especially in scenes with
intricate object configurations and occlusions. However, this comes at the cost of
reduced speed during inference compared to one-stage methods. Instead, one-stage
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object detectors aim to streamline the detection process by predicting the class and
bounding box of objects in a singular pass through the network. Their architecture
is inherently faster, making them particularly suitable for real-time applications. A
notable example is the single shot multibox detector (SSD), which operates on an
array of feature maps extracted from the input image [90]. This multilayer approach
enables the detection of objects across varying sizes. SSD employs default anchor
boxes at each feature map cell, adjusting during training to match the actual objects
in the images. While SSD is renowned for its speed, it can occasionally lack accuracy,
especially for smaller objects. Another prominent one-stage detector is you only look
once (YOLO) [91]. This is the model1 we used in Paper 6 (Appendix F), for its
high accuracy coupled with rapid inference capabilities. This choice was particularly
pertinent for our objective of real-time monitoring of streams of images collected from
closed-circuit television (CCTV) cameras. An essential component in our sampling
strategy was the confidence score tied to the bounding boxes predicted by YOLO.

Figure 5.4. Grid-based prediction process [91].

The complete grid-based prediction framework utilized by YOLO is depicted in
Figure 5.4. It works by dividing the image into an S × S grid. A grid cell is given
the job of identifying the object and drawing a bounding box around it only if the
center of the object falls within it. Other cells might also make predictions, but the
cell where the object center lies has the primary responsibility. Each grid cell predicts
B bounding boxes, confidence scores for those boxes, and C class probabilities. It
should be noted that both S and B are typically chosen based on the nature of the
dataset and the specific requirements of the application. For datasets where objects
are generally large and centered in the image, a smaller S might be sufficient, while

1we used YOLOv8, the latest available version available at the time.
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for datasets with many small objects or overlapping objects, a larger S and B might
be more appropriate to capture all the objects accurately. In the original YOLO
paper [91], the authors chose S = 7 and B = 2, meaning that the image is divided
into a 7 × 7 grid, and each cell predicts two bounding boxes. Each bounding box
is characterized by five predictions: x, y, w, h, and the confidence. The coordinates
(x, y) represent the center of the bounding box, while w and h are, respectively, the
width and height relative to the whole image. The confidence score associated with a
bounding box is intended to encapsulate two core notions, how confident the model is
that the box contains an object and how accurate the model believes its predicted box
is. Formally, they defined it as P (Object) ∗ IoU truth

pred . If there are no objects in the
grid cell, the confidence should be zero. Conversely, the confidence score should be
equal to the IoU between the predicted box and the ground truth. Additionally, every
grid cell predicts C conditional class-specific probabilities P (Classi|Object) using a
softmax activation over the network outputs for the C class predictions.

Combining the four bounding box coordinates, the confidence, and the class prob-
abilities, the model produces B × 5 + C values for each grid cell. Thus, throughout
the whole grid, the model produces a tensor of shape S × S × (B × 5 + C). For
each predicted bounding box, the model confidence score is multiplied by the class
probabilities. This results in B × C class-specific confidence scores for each grid cell.
These scores represent the likelihood that the bounding box contains an object of
each specific class. Often, many of the predicted bounding boxes have low confidence
scores, indicating that they likely don’t contain any object. To reduce the number
of bounding boxes, a confidence threshold is applied, and boxes with scores below
this threshold are discarded. Then, non-maximum suppression (NMS) is applied to
further prune the bounding boxes. This process involves sorting all remaining bound-
ing boxes by their confidence scores and taking the box with the highest score and
removing any other box that has a high overlap (measured by IoU) with it. These
two steps are repeated until all boxes have either been kept or discarded. The NMS
process ensures that we are left with only the most confident bounding box for each
detected object. After thresholding and NMS, we are left with a set of bounding
boxes that the model believes most accurately represents the objects in the image.
Each of these boxes is associated with a class label (determined by the class with the
highest class-specific confidence score for that box) and a confidence score (the afore-
mentioned class-specific confidence score for the determined class). This extraction
process transforms the dense output tensor S × S × (B × 5 + C) into a sparse list of
bounding boxes, each with an associated class label and confidence score.

5.1.5 Fine-tuning object detection models

When fine-tuning object detection models, there are generally two approaches:

1. Layer freezing. In this approach, we take a pre-trained model (usually trained on
a large dataset like COCO or ImageNet) and freeze some of its layers, typically
the early layers. This means that the weights of these layers will not be updated
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during fine-tuning. The rationale is that the early layers capture generic features
(e.g., edges, textures) which are common across many tasks. Thus, there is often
no need to retrain them. Only the later layers, which are more task-specific, are
fine-tuned on the new dataset. A common strategy is to replace the last few
layers (e.g., the softmax layer) with new layers that are initialized randomly
and trained on the new dataset.

2. Initialization. In this approach, we initialize the model with weights from a pre-
trained model, but we do not freeze them. All layers are fine-tuned using the
new data. This method allows the model to adjust all of its weights based on
the new data. This can be especially useful if the new dataset is quite different
from the dataset the model was originally trained on.

Which approach to choose depends on several factors. If the dataset is small, we
are more prone to overfitting, so freezing early layers might be beneficial. However, if
the new data is significantly different from the original dataset, fine-tuning all layers
might yield better results. It should be noted that fine-tuning all layers requires
more computational resources than just training a few layers. If we are looking for
the highest accuracy possible and have a large dataset, fine-tuning all layers might
be the best approach. On the other hand, if we need a quick and versatile solution,
transfer learning with layer freezing might suffice. In practice, a combination of both
approaches could also be used. For example, one might start with layer freezing, and
if results are not satisfactory, proceed to fine-tune all layers. In the stream-based
active distillation framework proposed in Paper 6 (Appendix F) we fine-tuned all
the layers of the models, given the high dissimilarity of the street views from the
dataset used for the pre-training (COCO).

5.1.6 Relevance of active learning for object detection

The development of sophisticated object detection models presents two specific chal-
lenges that are intrinsically related to active learning. The first one is the necessity
for these models to be trained on voluminous annotated datasets, which can be ex-
pensive and time-consuming to obtain. In particular, the average price to obtain
human-annotated images ranges from $0.25 to $7 per image [92]. This can easily
make the development costs skyrocket if we consider that some models require thou-
sands of labeled examples to achieve satisfactory performances. The second challenge
revolves around the generalization of these models to unseen data when they are
deployed to new environments. The idea of a ‘one model fits all’ solution is now
becoming old-fashioned, ushering in a renewed interest in finding efficient ways to
fine-tune models for specific scenes or applications. However, fine-tuning object de-
tection models when obtaining labels is expensive becomes a difficult task. In light of
this, the ensuing chapter delves deep into real-time sampling strategies that synergize
active learning with knowledge distillation, aiming to substantially reduce the needed
number of (pseudo) labeled examples for fine-tuning.
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5.2 Problem statement

The problem addressed in Paper 6 can be seen as an extension of the methodol-
ogy developed in Chapter 3, applied to scenarios involving object detection models.
The significant innovation is the formulation of the stream-based active distillation
framework, as illustrated in Figure 5.5. In this framework, the primary goal is to
fine-tune student object detectors using pseudo-labels provided by a large, general-
purpose model. Typically, student models are compact versions of the teacher model
that can be deployed with reduced resource requirements. The key distinctions from
the stream-based active learning framework presented in Figure 3.1 include:

• The learning model guiding the data collection scheme and being fine-tuned is
a pre-trained object detection model and not a linear regression model.

• The oracle providing labels for model updates is not a perfect entity like a
human annotator, but a large pre-trained model. Therefore, the labels from the
oracle should be regarded as imperfect pseudo-labels, not ground truth.

• The model is not updated at each iteration. Frames selected for fine-tuning are
chosen in a streaming fashion, but the model is updated only when a batch of
frames is accumulated. This approach aligns with the batch-mode active learn-
ing paradigm [93], which indicates that updating large deep neural networks
each time a new labeled example is made available is inefficient.

5.3 Proposed methodology

In Paper 6, we develop a sampling strategy that leverages the confidence scores
provided by the student model at inference time. It is important to consider that
the limited resource we aim to minimize is the number of pseudo-labels requested
from the teacher model. We can freely ask the student model to detect objects in
incoming frames without incurring any cost. As discussed in Section 5.1.4, for each
image, the model generates bounding boxes for identified instances, accompanied by
a confidence score for each box. Therefore, we can select the most informative frames
by evaluating the confidence of the student model in detecting objects in each frame.
A direct approach might be to adopt a least confidence strategy, under the assumption
that the model would benefit most from data points with high uncertainty (a typical
strategy in active learning [37]). However, since we are not working with a perfect
oracle, this approach risks encountering confirmation bias [94]. This issue arises
when a data point uncertain for the student is likely also uncertain for the teacher,
leading to inaccurate pseudo-labeling. Therefore, we propose querying frames with
high confidence scores, hoping they will be accurately pseudo-labeled by the teacher.
We prioritize a simpler but correctly labeled training set over a more complex but
inaccurately labeled one. The key contributions of the paper are:
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Figure 5.5. Stream-based active distillation framework (from Paper 6).

• The introduction of the stream-based active distillation framework, conceptual-
ized for fine-tuning object detection models with pseudo-labeled frames selected
in real-time.

• An assessment of the effectiveness of confidence-based sampling strategies (top
confidence and least confidence), compared to more straightforward methods
such as random sampling and the N -first approach, which samples the initial
N images in the stream.

• The application of this framework to a real-world dataset sourced from CCTV
cameras in the United States.

5.4 Key results

The most notable result from Paper 6 is the enhanced learning efficiency observed
when implementing the top confidence sampling strategy. As shown in Figure 5.6, this
approach enables the student model to closely match the performance of the teacher
model using only 250 pseudo-labeled frames. This outcome is particularly significant
as it suggests the possibility of fine-tuning a compact model to achieve performance
comparable to that of a larger model without requiring human annotation.

The plot also shows that the initial performance of the models is lower than that
of the original pre-trained student model before fine-tuning. This initial decrease can
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Figure 5.6. Learning curves of the stream-based active distillation framework (from Paper
6).

be attributed to the use of the initialization approach rather than the layer freezing
method for fine-tuning, as discussed in Section 5.1.5. Consequently, in the early
stages of the learning process, where the models are fine-tuned with a limited number
of frames, there is a higher risk of overfitting to this small training set. However, the
strategy proves to be effective as the number of frames increases.

5.5 Additional results

In this section, we provide additional results and analyses that are not included in
Paper 6.

Confidence aggregation operators. For object detection models, the presence
of multiple objects in the same image significantly increases the complexity of deter-
mining an image-level confidence score. Indeed, different aggregation operators can
be used when performing active learning with object detection, in order to compute
a unique score for each image from the individual detection metrics. Let us assume
that, on the image i, an object detector identified the set of bounding boxes {bi} for
each class c. Then, aggregating by maximum, we can define the confidence of the
model with respect to the image i as
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max
c

maxj∈{bic} p(j) (5.2)

where p(j) is the probability or confidence score that the bounding box j belongs
to the class c. Aggregation by max has been used by Roy et al. [95]. Additionally,
aggregation functions like sum and average can also be used [96].

0 250 500 750 1000 1250 1500 1750
(a)

0

200

400

600

800

1000

1200

1400

0 250 500 750 1000 1250 1500 1750
(b)

0

200

400

600

800

1000

1200

1400

0 250 500 750 1000 1250 1500 1750
(c)

0

200

400

600

800

1000

1200

1400

Figure 5.7. Most confident images according to different aggregation functions: max (a),
sum (b), and average (c).

In Figure 5.7, we observe the impact of employing different aggregation metrics to
determine the most confident image for an object detector. The images refer to the
first camera of the WALT dataset [97]. When utilizing the max as the aggregation
function, the selected image is the one where the model identifies a single object,
with a substantially high confidence score (e.g., the bus). However, this approach
may overlook other objects for which the model is not as confident (e.g., the bench).
Alternatively, following the suggestion of [96], when we use the sum as the aggregation
function, images with numerous objects receive high scores, regardless of the individ-
ual bounding box confidence scores. This approach might not accurately represent
the confidence in each object but focuses on the total number of objects in the image.
Finally, using the average as the aggregation function yields two possible outcomes.
It can either result in an image containing multiple objects with a high average score
or as observed in this case, it may select images with only one object that has a
remarkably high confidence score. In summary, the choice of aggregation metric has
a substantial impact on the selection of the most confident image, and each metric
has its advantages and limitations when considering the confidence scores of objects
in the image.

Confirmation bias. Confirmation bias refers to a situation where a student per-
formance declines due to the training on incorrect pseudo labels provided by the
teacher. This inaccuracy arises from the disparity between the teacher predictions for
unlabeled frames and the actual ground truth labels. When the student is fine-tuned
using these incorrect pseudo labels, it becomes more confident in making incorrect
predictions. Within the stream-based active distillation framework, the confidence
level plays a pivotal role in the selection of samples to be pseudo-labeled by the stu-
dent. Specifically, opting to sample challenging data points where the student is least
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confident proves counterproductive. Indeed, as pointed out by Baykal et al. [98], hard
instances for the student are often hard to predict correctly by the teacher, making
the pseudo labels for these points more likely to deviate from the actual labels. This
discrepancy can mislead the student during training. Given this insight, we explore
the effectiveness of the least confidence and top confidence approaches, in providing
accurately labeled training sets for the student models. In particular, we argue that
least confidence will provide the student with less accurate training sets. To validate
our hypothesis, we manually labeled the pseudo-labeled training sets and computed
their mAP scores.

Table 5.1. Training set reliability (mAP)

Camera Top confidence Least confidence
1 0.586 0.199
2 0.589 0.284

Table 5.1 reports the quality of the pseudo labels provided by the teacher according
to the different sampling strategies. These results are obtained by evaluating the
performance of the teacher when 96 frames are sampled by the student according to
the two sampling strategies. It can be seen how the gap between the learning curves
obtained by the student with the two sampling strategies is highly supported by the
quality of the pseudo labels used for the fine-tuning. Indeed, we can confirm that
when the students query examples that are highly uncertain by minimizing the confi-
dence associated with the selected images, the teacher is not able to provide accurate
labels. Figure 5.8 shows a specific example that explains the poor performance of
least confidence on the first camera. This particular scene (e.g., dark with few to no
cars) is deemed highly uncertain by the students and, when it is queried, the teacher
model that has not been fine-tuned for this camera is not able to detect the parked
cars on the right. This missed detection is one of the examples highlighting the poor
performance of least confidence.

To provide an additional view on confirmation bias, we explore the performance
of the student model on the test set when the training set is labeled by teachers
of different sizes, and by a human annotator. To avoid introducing biases in the
evaluation, the annotator for the training set and the test set were the same. Table
5.2 provides an overview of the percentage improvement that is observed by switching
from least confidence to top confidence. The YOLOv8 models are shown in decreasing
order of size. On average, we can see that the smaller the model becomes the more
the confirmation bias is pronounced. This reinforces the idea that when querying
uncertain images for the students, imperfect oracles might provide inaccurate pseudo-
labels. However, it should be noted that even in the case of a human annotator there
remains a clear improvement with the use of top confidence. This could be explained
by the fact that the high-confidence images selected with this strategy tend to be
frames taken during the day, in broad light, when more instances are present in the
images. This allows the model to get more easily specialized by seeing more objects.
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Not detected

Figure 5.8. An example of hard-to-label image sampled using least confidence.

Table 5.2. Performance Difference (% mAP)

Oracle Cam 1 Cam 2 Average
Human 21.40% 32.67% 27.03%

YOLOv8x6 34.62% 36.30% 35.46%
YOLOv8l 40.14% 33.79% 36.97%
YOLOv8m 53.27% 33.88% 43.58%
YOLOv8s 62.96% 38.63% 50.80%
YOLOv8n 110.25% 42.13% 76.19%

Clustering-based distillation. In the extension of this paper, we are exploring
how to improve the efficiency of the stream-based active distillation framework when
many cameras are considered. In particular, we are investigating the transferability
of the trained models between different cameras and scene clustering in order to
reduce the number of models required. Additionally, we are also trying to examine
the relationship between model size and detection accuracy.

5.6 Discussion

The stream-based active distillation framework presents a compelling approach for
fine-tuning object detection models, especially when faced with limited operational
resources, such as storage and hardware constraints. However, several aspects merit
further exploration to enhance this approach:

• Theoretical foundations. While the results are promising, the proposed approach
lacks robust theoretical underpinnings that explain why the top confidence ap-
proach yields better performances compared to other strategies.
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• Diverse sampling strategies. The current assessment primarily focuses on simple
model confidence-based sampling strategies. Ideally, more intricate strategies
that also consider the information at the image level and the temporal correla-
tion between images could be explored to minimize redundant queries.

• Varied datasets. Although the methods are tested on real-world data, examining
their performance across datasets from different contexts, such as sports scenes
or other CCTV scenarios, would provide broader insights into their applicability
and effectiveness.



CHAPTER 6
Conclusion

6.1 Summary

This thesis has primarily concentrated on advancing the field of stream-based ac-
tive learning, a critical area in machine learning that addresses the challenge of label
scarcity in data streams. Our exploration has been centered around developing and re-
fining sampling strategies that can be used to prioritize data labeling in data streams.
These methodologies diverge from traditional pool-based active learning, adapting
to the unique characteristics of data streams where data points arrive sequentially
and decision-making must be done in real-time. The key contributions of this thesis
include:

• The development of the CDO algorithm tailored for stream-based active learning
with linear regression models. This approach showcases a significant reduction
in labeling costs while maintaining model accuracy.

• Addressing specific challenges in stream-based active learning, such as robust-
ness against outliers and effective feature selection, to enhance the applicability
and reliability of active learning in dynamic data environments. Additionally,
we explored the use of methods to approximate the learning curve, with the
potential to move from a fixed-budget setting to a performance-based stopping
criterion.

• Conducting exploratory studies on the behavior of regression models under the
influence of concept drift in data streams, laying a foundation for future in-depth
research in this area. In particular, we propose a residual-weighted adaptive
sampling strategy that showed promising results in detecting localized concept
drifts.

• Introducing a stream-based active distillation framework, a novel approach
to efficiently train object detection models using strategically selected pseudo-
labeled frames.

These findings significantly contribute to the field of stream-based active learn-
ing, offering practical solutions and novel insights for handling label scarcity in data
streams.
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6.2 Limitations

Reflecting on the broader implications and challenges encountered in this thesis, sev-
eral key themes and considerations emerge, shaping the future trajectory of research
in stream-based active learning.

• Adaptability and scope of models. A recurring theme in our work is the bal-
ance between model specificity and generality. While tailored solutions for
linear models showed promise, their applicability to diverse, real-world scenar-
ios with complex data structures remains a question. This highlights the need
for model-agnostic approaches that can adapt to varying data landscapes and
model complexities.

• Methodological complexities. The introduction of advanced techniques like KDE
and robust estimators significantly enhanced our methodologies. However, these
additions also brought about increased computational complexities and nuanced
parameter tuning challenges. This raises a crucial point about the trade-off
between methodological sophistication and practical usability, especially in fast-
paced industrial environments.

• Defining and addressing data anomalies. Our work touched upon the critical
aspect of outliers and concept drifts, which are pivotal in stream-based scenar-
ios. However, the multifaceted nature of these anomalies, ranging from simple
outliers to complex drift patterns, calls for a more detailed understanding and
approach. Future research could benefit from a deeper dive into the nature of
these anomalies and the development of more adaptive, context-aware strate-
gies.

• Theoretical foundations and practical implications. While our approaches have
shown promising results, the underlying theoretical foundations need further
strengthening. This is particularly true for strategies like top confidence in ac-
tive distillation, where empirical success prompts a deeper theoretical inquiry.
Additionally, the practical implications and feasibility of deploying these strate-
gies in real-world settings remain areas ripe for exploration.

• Diversity in data and application scenarios. Our investigations were constrained
by the types and sources of data used. Diversifying the data sources and appli-
cation scenarios, such as exploring different industrial domains or incorporating
varying types of streaming data, can provide more comprehensive insights into
the applicability and robustness of the proposed methods.

In summary, this thesis provides novel stream-based active learning approaches,
while also opening avenues for substantial future research. The challenges and lim-
itations encountered not only underscore the complexities inherent in this field but
also highlight the dynamic nature of machine learning research, where every solution
brings new questions and every finding leads to unexplored pathways.
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6.3 Future research directions

Looking ahead, several promising research directions emerge that can further enhance
and expand upon the work presented in this thesis:

1. Advanced adaptive sampling techniques. Developing more sophisticated adap-
tive sampling strategies that can intelligently respond to concept drifts in data
streams, thereby improving the model’s adaptability and predictive power.

2. Clustered active distillation frameworks. Investigating the balance between
model specialization and the diversity of models in clustered active learning
setups, with a focus on scene similarity and the effects of varying teacher model
sizes.

3. Expanding to complex model architectures. Extending the proposed methodolo-
gies to accommodate more complex, non-linear models, thereby broadening the
scope and applicability of stream-based active learning.

4. Temporal dynamics and redundancy reduction. Incorporating the temporal as-
pect of data streams to enhance the efficiency of the learning process and mini-
mize redundancy in data selection.

5. Cost-Sensitive Learning Approaches: Integrating cost considerations into the
sampling strategy, reflecting the variable nature of labeling costs in real-world
scenarios.

6. Deployment and real-world evaluations. Applying and rigorously testing stream-
based active learning methodologies in practical industrial contexts to assess
their scalability, robustness, and economic viability.

By pursuing these future research directions, the field of stream-based active learn-
ing is poised to make significant strides, offering innovative solutions to address label
scarcity and enhancing the performance and applicability of machine learning models
in various real-world applications.
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Abstract
Online active learning is a paradigm in machine learning that aims to select the most infor-
mative data points to label from a data stream. The problem of minimizing the cost associated
with collecting labeled observations has gained a lot of attention in recent years, particularly
in real-world applications where data is only available in an unlabeled form. Annotating each
observation can be time-consuming and costly, making it difficult to obtain large amounts
of labeled data. To overcome this issue, many active learning strategies have been proposed
in the last decades, aiming to select the most informative observations for labeling in order
to improve the performance of machine learning models. These approaches can be broadly
divided into two categories: static pool-based and stream-based active learning. Pool-based
active learning involves selecting a subset of observations from a closed pool of unlabeled
data, and it has been the focus of many surveys and literature reviews. However, the growing
availability of data streams has led to an increase in the number of approaches that focus on
online active learning, which involves continuously selecting and labeling observations as
they arrive in a stream. This work aims to provide an overview of the most recently proposed
approaches for selecting the most informative observations from data streams in real time.
We review the various techniques that have been proposed and discuss their strengths and
limitations, as well as the challenges and opportunities that exist in this area of research.
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1 Introduction

The deployment of machine learning models in real-world applications is often reliant on the
availability of significant amounts of annotated data. While recent advancements in sensor
technology have facilitated the collection of larger amounts of data, this data is not always
labeled and ready for use in training models. Indeed, the process of obtaining labeled observa-
tions for supervised learning models can be cost-prohibitive and time-consuming, as it often
requires quality inspections or manual annotation. In such cases, active learning proves to be
a valuable strategy to identify the most informative data points for use in training, thereby
reducing the overall cost of labeling and improving the performance of the model. Over the
years, a plethora of active learning approaches have been proposed in the literature, each
with its own benefits and limitations. These approaches seek to strike a balance between the
cost of labeling and the quality of the model by selectively choosing the most informative
observations for querying. By carefully selecting the most informative observations, active
learning helps to minimize the amount of labeled data required and streamlines the learning
process, contributing to its overall efficiency.

While several surveys have been published on pool-based active learning (Aggarwal et
al., 2014; Settles, 2009; Fu et al., 2013; Kumar & Gupta, 2020), which involves selecting a
fixed set of observations from a pool of unlabeled data, the dynamic and sequential nature
of many real-world problems often renders these approaches impractical. This has led to
growing interest in the online variant of active learning, also referred to as stream-based
active learning, which involves continuously selecting and labeling observations as they
arrive in a stream, allowing for real-time adaptation to changing data distributions. Lughofer
(2017) provided a review of online active learning approaches with a focus on fuzzy models.
However, since its publication, numerous other online active learning approaches have been
proposed, and to the best of our knowledge, no other surveys have been published to synthesize
these developments. Moreover, surveys purely focusing on online learning from data streams
(Lu et al., 2018; Tieppo et al., 2022; Lima et al., 2022; Hoi et al., 2021) discuss methods
that assume a complete availability of labels, which is not the case in many real-world
applications. The aim of this review is to fill this gap by providing a comprehensive overview1

of the most recently developed query strategies for online active learning. It is worth noting
that in certain cases, stream-based active learning is narrowly defined as the act of selecting
the most informative observations from a data stream to fit a predictive model. Instead, the
act of determining which observations to query while making predictions is referred to as
online selective sampling (Hanneke & Yang, 2021). In this work, we cover and examine all
the methods that address the crucial problem of selecting the most informative data points
to label from a data stream in an online fashion. We will present the techniques that have
been proposed so far, discussing their strengths and limitations, as well as the challenges and
opportunities that exist in this field. In addition, we will provide an overview of evaluation
strategies for online active learning algorithms and highlight some real-world applications.
Finally, we will identify potential future research directions in this area.

1 We conducted a search on SCOPUS and Google Scholar using the following keywords: “on-line active
learning”, “online active learning”, “stream-based active learning”, “single pass active learning”, “online
selective sampling”, “sequential selective sampling”, and “active learning” combined with “data stream”. Each
paper was reviewed individually to determine its relevance to online active learning. We eliminated irrelevant
papers and manually added some papers that did not contain these keywords but used online active learning
methods or were relevant to our discussion. Additionally, we included related papers that were necessary to
understand the bigger picture from the references of the reviewed strategies.
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This survey comprehensively explores various facets of active learning, encompassing
both theoretical foundations and practical challenges. By delving into this review, we aim to
shed light on pertinent research questions, including:

1. Query strategy. What sampling strategy should be used to maximize learning efficiency
in a streaming context?

2. Timing of queries.When and how often should data points be queried to balance learning
and resource constraints?

3. Model updates. When should predictive models be updated and how can they adapt to
changing data distributions and concept drift?

4. Scalability. How can active learning methods be made scalable and efficient for high-
velocity data streams?

5. Evaluation. What are appropriate evaluation metrics for assessing the performance of
stream-based active learning algorithms?

The structure of this paper is as follows. In Sect. 2, we provide an overview of active
learning, including the main instance selection criteria, an overview of the main active learn-
ing scenarios, and the connection between active learning and semi-supervised learning.
Section 3 represents the core of the review, with a brief overview of how online active learn-
ing approaches have been classified, followed by a detailed description of the state-of-the-art
approaches. In Sect. 4, we examine evaluation strategies for online active learning algorithms.
Section 5 highlights real-world applications and challenges. Section 6 provides a summary
of the most common online active learning methods and highlights potential directions for
future research. Finally, Sect. 7 provides conclusions and summarizes the key contributions
of the review.

2 Preliminaries on active learning

In supervised learning, we seek to learn a function that can predict the output variable, also
known as response, given a set of input variables, also known as covariates. This function
is often learned by training a model on a labeled dataset that consists of a large number of
input–output pairs. However, obtaining labeled examples is not always straightforward, and
it may not be possible or practical to label all the available data. In these cases, active learning
can be used to select a subset of the data for labeling in order to improve the performance of
the model, when there is a budget constraint on the number of unlabeled observations that
can be queried. Indeed, there are many examples of how a classification or regression model
can achieve a performance that is similar to what can be achieved when all the labels are
available, using only a small fraction of the available observations.

2.1 Instance selection criteria

The main challenge in active learning is deciding which data points to label. There are many
strategies for selecting data points in active learning, and most of them can be associated
with one of these groups:

• Uncertainty-based query strategies. These approaches focus on selecting data points that
the model is least confident about, in order to reduce its uncertainty (Lu et al., 2016; Tong
& Koller, 2002). When using classification models, the most widely used is the margin-
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based query strategy, where data points close to the decision boundary are selected (Roth
& Small, 2006; Balcan et al., 2007).

• Expected error or variance minimization. These strategies estimate the future error or
variance, when a newly labeled example is made available, and try to minimize it directly
(Cohn et al., 1996; Roy & Mccallum, 2001).

• Expected model change maximization. This strategy involves selecting data points that
would have the greatest impact on the estimate of the current model parameters if they
were labeled and added to the training set (Cai et al., 2013).

• Disagreement-based query strategies. These approaches focus on selecting data points
where there is disagreement among multiple models or experts (Hanneke, 2014; Wang,
2011; Steve & Liu, 2014; Sheng et al., 2008). One of the most common approaches that
use an ensemble of models is query by committee (Seung et al., 1992; Freund et al., 1997;
Burbidge et al., 2007), which uses an ensemble of models to identify instances where the
models have conflicting predictions.

• Diversity- and density-based approaches. These methods exploit the structural informa-
tion of the instances and try to select data points that are diverse and representative of the
overall distribution of the data. One example of this approach is the use of Mahalanobis
distance to seek observations that are far from the currently labeled data points (Ge,
2014; Cacciarelli et al., 2022a). Clustering may be applied to label representative data
points (Nguyen & Smeulders, 2004; Min et al., 2020; Ienco et al., 2013), and graph-based
methods can be employed to explore the structure information of labeled and unlabeled
data points (Zhang et al., 2020b) or to build upon the semi-supervised label propagation
strategy (Long et al., 2008).

• Hybrid strategies. These are active learning algorithms that combine multiple instance
selection criteria (Donmez et al., 2007; Huang et al., 2014). For example, by combining
margin-based sampling with clustering the learner can select the most uncertain obser-
vations within different areas of the input space.

By considering these different strategies, one can select the most appropriate approach
for a given problem based on the characteristics of the data and the specific requirements of
the application.

2.2 Active learning scenarios

Active learning can be broadly categorized into three macro scenarios, based on how the
unlabeled instances are supplied to the learner and then selected to be labeled by an oracle.
Regardless of the particular query strategy being employed, these macro scenarios provide a
framework for understanding the flow of information and the decision-making steps involved
in active learning. These scenarios serve as a high-level categorization of different methods
for approaching the active learning problem, each with its own set of advantages and disad-
vantages depending on the specific use case. Understanding these macro scenarios is crucial
for selecting the appropriate active learning technique for a particular problem and for com-
paring different active learning algorithms. In the next subsections, each of the three macro
scenarios will be discussed.

2.2.1 Membership query synthesis active learning

This scenario represents the case when the learner is given complete freedom to ask for the
label of any data point belonging to the input space or for a synthetically generated one.
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Fig. 1 Membership query synthesis active learning

Some examples of membership query synthesis active learning include image classification,
where the learner can generate modified versions of existing images to be labeled, or object
detection, where the learner can generate new instances by combining and transforming
existing instances. In natural language processing (NLP) tasks such as text classification or
sentiment analysis, the learner might generate synthetic examples in the form of sentences or
paragraphs that cover a wider range of variations in the language. Also, in speech recognition,
the learner might generate synthetic speech samples in different accents, pronunciations, or
speaking styles in order to improve the recognition accuracy. However, as highlighted by
Baum and Lang (1992) and Settles (2009), the main drawback of this strategy is that it could
generate unlabeled examples for which no labels can be associated by a human annotator
(e.g., a mixture between a number and a letter). A general flowchart for this scenario is
reported in Fig. 1, where the scheme is repeated until a budget constraint on the requested
labels is met, or a stopping criterion on the achieved performance is satisfied.

In the context of deep active learning (Ren et al., 2022), the membership query synthesis
scenario can be addressed by using generative models. For instance, generative adversarial
networks (GANs) have been used to generate additional instances from the input space
that may provide more informative labels for the learner (Goodfellow et al., 2014). This
can be done by using GANs for data augmentation, as GANs are capable of generating
diverse and high-quality instances (Zhu & Bento, 2017). Another approach is to combine
the use of variational autoencoders (VAEs) (Kingma & Welling, 2013) and Bayesian data
augmentation, as demonstrated by Tran et al. (Tran et al., 2019, 2017). The authors used
VAEs to generate instances from the disagreement regions between multiple models, and
Bayesian data augmentation to incorporate the uncertainty of the generated instances in the
learning process.

2.2.2 Pool-based active learning

Pool-based active learning is one of the most widely studied scenarios in the machine learning
literature. The goal is to select the most informative subset of observations from a closed,
static set of unlabeled data points. The majority of the proposed pool-based active learning
approaches have been developed for classification tasks (Cai et al., 2013), with image clas-
sification being a common application in computer vision (Li & Guo, 2013), as manually
labeling large image datasets can be a challenging task.

The flowchart in Fig. 2 provides an overview of pool-based active learning sampling
schemes, where k represents the number of unlabeled instances whose label is queried at each
round. Traditional machine learning models that do not require substantial computational
resources to train are typically associated with a choice of k equal to one (Vahdat et al.,
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Fig. 2 Pool-based active learning

2019). This allows a timely update of the instance selection criteria, avoiding the redundant
labeling of similar data points. However, larger values of k have also been used in practice,
such as the analysis performed by Ge (2014) for values ranging from 5 to 30 or the approach
used by Cai et al. (2013) to add 3% of the total number of observations to the training set
each time. Using a higher k value may be more practical when working with large models,
as repeated training can be computationally expensive and challenging. To this extent, batch
mode active learning is generally considered to be a more efficient and effective option
for image classification or detection tasks compared to the one-by-one query strategy, as
the latter can be resource-intensive and time-consuming when working with large neural
networks (Ren et al., 2022). This is because re-training the model with just one new data
point with high input dimensionality may not result in significant improvement (Ren et al.,
2022). In general, the choice of k may be problem- or model-specific, as it represents a
trade-off between computational efficiency and the risk of querying redundant labels.

To enhance pool-based active learning, many approaches combine uncertainty-based
instance selection criteria with acquisition functions such as entropy (Shannon, 1948; Wu
et al., 2022), mutual information (Haussmann et al., 2020), or variation ratio (Schmidt et
al., 2020). Entropy is commonly used as an acquisition function in active learning because it
provides a way to measure the uncertainty of the model predictions for a given data point. The
entropy of a probability distribution is a measure of the amount of disorder or randomness
in the distribution. In the context of active learning, the entropy of a model’s predicted class
probabilities for a data point can be used as a measure of the model’s uncertainty about the
correct class label for that data point. Acquiring examples with the highest uncertainty is
one way to select data points for annotation, but it is not the only way. Mutual information
and variation ratio can also be used on the predictions obtained with the current model, in
order to seek a diverse set of data points for which the predictions are the most uncertain.
For a more comprehensive discussion on pool-based active learning, readers are referred to
the surveys (Aggarwal et al., 2014; Settles, 2009; Fu et al., 2013; Kumar & Gupta, 2020).
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Fig. 3 Single-pass online active learning

2.2.3 Online active learning

In this type of active learning, we cannot greedily select the most informative observations
from a static pool, as the instances are generated in a continuous stream and cannot be stored
in their entirety before a decision is made. This is similar to the famous statistical puzzle
known as the secretary problem (Freeman, 1983), where a hiring manager must make a hiring
decision for each applicant as they are interviewed, without the benefitof seeing all applicants
first. In general, online active learning is a crucial scenario for various real-world applications
where the ability to make a sampling decision in real-time is of utmost importance. A few
examples are:

• Chemical or manufacturing processes. In these applications, a learner is tasked with
predicting the quality of the final product but may only have a short timeframe to make
the sampling decision, to avoid traceability issues, particularly in high-volume production
(Schmitt et al., 2013; Lieber et al., 2012). Also, tasks like predictive maintenance and
visual inspection might benefit from a real-time selection of new examples to be labeled
and included in the training set (Rožanec et al., 2022).

• Video streaming and clinical trials. In these cases, a decision must be made on the fly,
as users arrive or volunteers appear sequentially, and there may not be enough time to
accumulate a pool of potential users or patients (Fowler et al., 2023; Riquelme, 2017).

• Text classification: In NLP, online active learning can be used for tasks such as sentiment
analysis and spam detection, where the learner continuously learns from new incoming
data points which need to be labeled to update the model in real-time and improve
accuracy (Kranjc et al., 2015).

• Fraud detection. To effectively detect fraudulent activities, the learner must continuously
select new examples to label so that it can continuously update its decision-making
process (Carcillo et al., 2018, 2017).

• Online customer service. Online customer service agents can use online active learning
to improve their performance by continuously learning from customer interactions. To do
this, the learner must continuously select new examples to label or customer information
to obtain, so that it can predict the best response based on past interactions and improve
its accuracy over time (Zheng & Padmanabhan, 2006).

• Marketing.Online active learning could also be applied in the field of marketing to select
informative examples in real-time and continuously optimize customer targeting and
personalization (Carnein & Trautmann, 2019; Jamil & Khan, 2016).

One of the defining features of online active learning strategies is their data processing
capabilities. Figures 3 and 4 provide a visual representation of the two main approaches;
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Fig. 4 Window- or batch-based online active learning

single-pass and window-based. Single-pass algorithms observe and evaluate each incoming
data point on the fly, whereas window-based algorithms, also referred to as batch-based
methods, observe a fixed-size chunk of data at a time. In this approach, the learner evaluates
the entire batch of data and selects the top k observations as the most informative ones to be
labeled. This approach is referred to as best-out-of-window sampling. The specific value of k
and the dimensionality of the buffer can vary based on the storage capabilities of the system
and the computational time required to update the model. Window-based methods are useful
in situations where data is generated in large quantities and the algorithm does not have a
tight constraint on the time available for decision-making. In contrast, single-pass methods
are necessary when the algorithm needs to make a decision immediately after observing a
specific data point.

Another critical property in the design of an effective online active learning strategy is the
assumption made about the data stream distribution. One important difference to consider is
whether the data stream is stationary or drifting. A stationary data stream is characterized
by a stable data generating process where the statistical properties of the data distribution
that remain constant over time. Conversely, a drifting data stream is marked by changing
statistical properties of the data distribution over time, potentially due to alterations in the
underlying data generating process. The distinction between stationary and drifting data
streams is significant because it affects the performance of the active learning strategies.
Online active learning strategies that have been developed for stationary data streams may
lead to suboptimal performance when applied to drifting data streams. This is because concept
drift can alter the scale of the informativeness measure of unlabeled data points or even urge
a complete change of the model, with the acquisition of more observations to accommodate
the new concept. Therefore, it is important to accurately assess the nature of the data stream
distribution in the design of an active learning strategy. A failure to do so can result in a
suboptimal performance and a reduced ability to effectively leverage the strengths of active
learning. Another important property to consider when designing an active learning strategy
is the label delay or verification latency. This refers to the time needed by the oracle to
provide the label when it is requested by the learner. In some cases, there may be a delay
L in the oracle providing the label after it has been requested. This property must be taken
into account when designing a sampling strategy as there may be redundant label requests
for similar instances if this issue is not properly addressed. Label delay can be classified into
null latency, intermediate latency, or extreme latency (Souza et al., 2018). The case with null
latency, or immediate availability of the label upon request, is commonly used in the stream
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mining community, but may not be realistic for many practical applications. Extreme latency,
where labels are never made available to the learner, is closer to an unsupervised learning
task. Intermediate latency assumes a delay 0 < L < ∞ in the availability of the labels from
the oracle.

Finally, the training efficiency of the online active learning algorithms should also be taken
into consideration. There are two main training approaches in active learning; incremental
training and complete re-training. Incremental training involves updating model parameters
with a small batch of new data, without starting the training process from scratch (Polikar
et al., 2001; Wu et al., 2019; Shilton et al., 2005; Istrate et al., 2018). This approach allows
the model to learn from new data while preserving its existing knowledge. This can be
achieved through fine-tuning the model parameters with the new data, or by using techniques
such as elastic weight consolidation, which prevent previous knowledge from being erased.
Complete re-training, on the other hand, involves training a new model from scratch using
the entire labeled data collected so far. This approach discards the previous knowledge of
the model and starts anew, which may result in the loss of knowledge learned from previous
data. Complete re-training is typically used when the amount of new data is substantial, the
previous model is no longer relevant, or when the model architecture needs to be altered. It
is important to note that the choice of training approach in online active learning algorithms
can have a significant impact on the overall performance and effectiveness of the model.

2.3 Connection between active learning and semi-supervised learning

Semi-supervised learning is a field of research that is closely related to active learning, as
both methods are developed to deal with limited labeled data. While active learning aims to
minimize the amount of labeled data required to train a model, semi-supervised learning is
a technique that trains a model using a combination of labeled and unlabeled data. Active
learning can be considered a special case of semi-supervised learning, as it allows the model
to actively select which data points it wants to be labeled, rather than relying on a fixed
set of labeled data. In the context of online learning, Kulkarni et al. (2016) conducted a
study that provided an overview of semi-supervised learning techniques for classifying data
streams. These techniques do not address the primary question of active learning, which is
when to query, but they are useful in exploiting the information contained in the unlabeled
data points and in addressing issues related to model update and retraining in limited labeled
data environments. It is also worth noting that semi-supervised learning can be used in
combination with active learning to improve the data selection strategy. By leveraging the
strengths of both methods, it is possible to achieve better performance and more efficient
learning compared to using either method alone.

Semi-supervised learning approaches can be distinguished into three categories, unsu-
pervised preprocessing, wrapper methods, and graph-based methods. Unsupervised pre-
processing refers to the use of unsupervised learning techniques, such as dimensionality
reduction (Cacciarelli & Kulahci, 2023), clustering, or feature extraction, to preprocess the
entire dataset, labeled and unlabeled, before it is fed to the supervised model (Frumosu &
Kulahci, 2018). The goal is to transform the data into a more useful representation that can be
learned more easily by a supervised model and can support the sampling of more informative
data points. This strategy can also help reduce the dimensionality of the learning problem,
thus improving the model parameter estimation when only a few queries can be made. Related
to the online active learning problem, Rožanec et al. (2022) used a pre-trained network to
extract salient features from unlabeled images before starting the sampling routine. Simi-
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larly, Cacciarelli et al. (2022a) used an autoencoder trained on all the available unlabeled
data points to improve the performance of online active learning for linear regression models.

Wrapper methods, on the other hand, use one or more supervised learners that are trained
on labeled data and pseudo-labeled unlabeled data. There are two main variants of wrapper
methods, self-training and co-training. Self-training uses a single supervised model that is
trained on labeled data, and pseudo-labels are used for the data points with confident pre-
dictions. Co-training, on the other hand, extends self-training to multiple supervised models,
where two or more models exchange the most confident predictions to obtain pseudo-labels.
Pseudo-labels can be very beneficial in label-scarce environments, but one must be mindful
of the confirmation bias issue, where the model might rely on incorrect self-created labels.
This problem has been extensively analyzed by Baykal et al. (2022) in the active distillation
scenario, which is a strategy where a smaller model, known as the student model, is trained
to mimic the behavior of a larger pre-trained model, known as the teacher model (Hoang et
al., 2021; Kwak et al., 2022). In this context, confirmatory bias refers to the student model
tendency to reproduce the predictions of the teacher model, even when the teacher predictions
are incorrect. This can happen when the student model is trained to mimic the teacher model
output too closely, without considering the underlying errors. To mitigate this, active distilla-
tion techniques use sample selection methods that encourage the student model to learn from
data points where the teacher model makes errors, rather than just reproducing the teacher
model predictions. In the more general active learning framework, confirmation bias might
also refer to the tendency of an active learning algorithm to select examples that confirm its
current hypothesis, rather than selecting examples that would challenge or improve it.

Finally, graph-based methods construct a graph on all available data and fit a supervised
model, where the loss comprises a supervised loss and a regularization term that penalizes
the difference between the labels predicted for connected data points. In the online active
learning scenario, the graph structure can be used to model the similarity between data points,
and the active learning algorithm can select the examples to label based on their position on
the graph, such as selecting examples that are in low-density regions or are distant from other
labeled examples.

3 Online active learning approaches

In this review, we present a taxonomy of online active learning strategies into four categories:

1. Stationary data stream classification approaches. These methods are designed to tackle
online classification tasks, where the model is updated on the fly using newly labeled
examples selected from a stream of data that does not change significantly over time.
These methods are particularly useful in scenarios where the data distribution is rela-
tively stable, such as quality control in industrial processes, where stationarity is often
ensured by control actions taken at regular intervals and continuous maintenance of the
components of the system (Bisgaard & Kulahci, 2011). Another example is represented
by human activity recognition using wearable devices, where data is collected over time
from wearable devices such as fitness trackers to identify patterns of activity like walking,
running, or sleeping. This scenario would fall into this category because the data stream
is relatively stable, and the model can be updated in real-time as new labeled examples
become available (Miu et al., 2015).

2. Drifting data stream classificationapproaches. These online active learning strategies are
specifically designed to handle classification tasks in dynamic environments where the
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data distribution constantly changes. These approaches are designed to adapt to changes
in the data distribution in order to maintain high classification accuracy. Some real-world
applications might be fraud detection or intrusion detection. In financial fraud detection,
fraudsters often change their methods to evade detection, so a classification model used
for fraud detection must be able to adapt to new patterns of fraud as they emerge or to new
customer habits (Zhang et al., 2022). In real-time intrusion detection, computer networks
detection systems must be able to detect new forms of cyberattacks as they appear, so the
classification models used must be able to adapt to changes in the data distribution over
time (Nixon et al., 2021). This scenario would fall into this category because the data
stream is constantly changing, and the model must be able to adapt to changes in the data
distribution over time to maintain high accuracy.

3. Evolving fuzzy system approaches. These approaches are based on a type of fuzzy system
that can adapt and change over time, in response to new data or changes in the environment
(Gu et al., 2023). In traditional fuzzy systems, the rules and membership functions that
define the system are fixed and do not change over time. Evolving fuzzy systems, on the
other hand, are able to adapt their rules and membership functions based on new data or
changes in the environment. This is particularly useful in applications where the data or
the environment is non-stationary and evolves over time, such as in control systems for
autonomous vehicles, where we must be able to adapt to changes in the environment, such
as traffic patterns, road conditions, and weather (Naranjo et al., 2007; Wang et al., 2015).

4. Experimental design and bandit approaches. These methods, mostly related to regression
models, actively select the most informative data points to improve model predictions.
This category includes online active linear regression and sequential decision-making
strategies like bandit algorithms or reinforcement learning. These methods adaptively
select the most promising options in a given situation. An example is given by online
advertising, where a model is used to select the most promising advertisements to display
to users based on their browsing history and other factors (Avadhanula et al., 2021).
This scenario would fall into this category because the model must adaptively select
the most promising options in real-time based on the information available at that time.
Also, in clinical trials, a model is used to select the most promising patients to enroll
in a clinical trial based on their medical history and other personal information. Finally,
in drug development studies (Réda et al., 2020), online active learning can be used to
select the most promising compounds for further testing and development, based on their
potential efficacy and safety.

This categorization provides a comprehensive overview of the different types of online active
learning strategies and how they can be applied in various scenarios. While the simplest
active learning strategy, random sampling, is available and involves selecting data points
randomly from the stream for annotation, we will primarily focus on more specialized strate-
gies designed to address scenarios where informed decisions are crucial due to resource
constraints or where the data distribution is non-stationary.

Figure 5 depicts a general framework illustrating the essential components shared by the
various categories of online active learning algorithms. The accompanying callouts high-
light key options utilized by these methods. The following sections will provide an in-depth
analysis of these strategies. For a more detailed flowchart regarding the drift detection and
adaptation process, please refer to Lu et al. (2018), Lima et al. (2022).
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Fig. 5 Online active learning: general framework

3.1 Stationary data stream classification approaches

In online active learning, a commonly employed strategy is to request labels for data points
that are considered to be informative enough based on a pre-determined threshold. This
threshold can be established through a variety of techniques, depending on the instance
selection criterion used to evaluate the informativeness of the unlabeled observations. Another
method, sometimes referred to as b-sampling, is to calculate the probability that a data point
will be queried by adjusting the parameter of a Bernoulli random variable, as proposed by
Cesa-Bianchi et al. in one of the pioneering studies on online active learning (Cesa-Bianchi et
al., 2004, 2006). They used a linear predictor characterized by the weight vectorw ∈ Rd and,
at each time step t , after observing the current data point xt , the binary output y ∈ {−1, +1}
is predicted using

ŷt = SGN
(

w�
t−1xt

)

(1)

wherewt−1 is the weight vector estimated with the previously seen labeled examples (x1, y1) ,

. . . , (xt−1, yt−1). The valuew�
t−1xt is the margin, p̂t , ofwt−1 on the instance xt . If the learner

queries the label yt , a new weight vector is estimated using the newly added labeled example
(xt , yt ) with the regular perceptron update rule (Rosenblatt, 1958) as in

wt = wt−1 + Mt ytxt (2)

where Mt represents the indicator function of the event ŷt �= yt . If the label is not requested,
the model remains unchanged, and we have wt = wt−1. At each time step t , the learner
decides whether to query the label of a data point xt by drawing a Bernoulli random variable
Zt ∈ {0, 1}, whose parameter is given by

Pt = b
b + | p̂t | (3)
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where b > 0 is a positive smoothing constant that can be tuned to adjust the labeling rate. In
general, as p̂t approaches 0, the sampling probability Pt converges to 1, suggesting that the
labels are requested for highly uncertain observations. The sampling scheme introduced by
Cesa-Bianchi et al. (2004) is referred to as selective sampling perceptron, and it is reported
in Algorithm 1.

Algorithm 1 Selective sampling perceptron
Require: a data stream S, an initial model w0 = (0, . . . , 0)�, a time horizon T , a sampling budget B, a

parameter b.
t ← 1 � Timestamp
c ← 0 � Labeling cost
while c ≤ B, t ≤ T do

Observe an incoming data point xt ∈ S and set p̂t = w�
t−1xt

Predict the label ŷt = SGN ( p̂t )
Draw a Bernoulli random variable Zt of parameter Pt = b/ (b + | p̂t |)
if Zt = 1 then � Sampling decision

Ask for the true label yt and update the model
c ← c + 1 � Pay for the label

else
Discard xt

end if
t ← t + 1

end while

A similar approach to the one proposed by Cesa-Bianchi et al. (2004) was investigated
by Dasgupta et al. (2005), who presented one of the first thresholding techniques for online
active learning. They suggested setting a threshold on the margin, with the idea of sampling
data points xt with a value of | p̂t | lower than a given threshold �. The threshold is initially set
at a high value and iteratively divided by two until enough misclassifications occur among
the queried points. The linear classifier is updated using the reflection concept [60] to give
more focus to recent data points. Sculley (2007) built on the works of Cesa-Bianchi and
Dasgupta to analyze the online active learning scenarios for real-time spam filtering. The
author compares two models, a perceptron and a support vector machine (SVM), and tries
three different instance selection criteria, the fixed thresholding approach by Dasgupta et al.
(2005), the Bernoulli-based approach by Cesa-Bianchi et al. (2004), and a newly developed
logistic margin sampling. The perceptron is updated as per Dasgupta et al. (2005), while the
SVM is retrained on all available labeled observations each time a new data point is added.
According to the logistic margin sampling strategy, the sampling decision is taken by drawing
a Bernoulli random variable Zt ∈ {0, 1} with a parameter given by

Pt = e−γ | p̂t | (4)

As in the traditional b-sampling approach introduced by Cesa-Bianchi et al. (2004), this
sampling strategy depends on the uncertainty, meant as the distance from the prediction
hyperplane. The main difference between the two strategies is the shape of the resulting
sampling distribution, which can be observed in Fig. 6.

The selective sampling perceptron approach has also been investigated by Lu et al. (2016),
who proposed an online passive-aggressive active learning variant of the algorithm. Similarly
to the b-sampling approach, at each time step t , a Bernoulli random variable Zt ∈ {0, 1} is
drawn to decide whether to query the label of the current data point xt or not. In this case,
the parameter of Zt is given by
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Fig. 6 Shape of the sampling distributions for b-sampling (a) and logistic sampling (b), for different values
of b and γ

Pt = δ

δ + | p̂t | (5)

where δ ≥ 1 is a smoothing parameter. Besides not allowing the smoothing parameter to
assume a value lower than 1, the sampling distribution is the same as the one governed by
the parameter in Eq. 3. The main difference lies in the passive-aggressive approach used
for updating the weight vector. Indeed, while the traditional perceptron update, shown in
Eq. 2, only uses misclassified examples to update the model, the passive-aggressive approach
updates the weight vector w ∈ Rd whenever the current loss �t (wt−1; (xt , yt )) is nonzero
(Crammer et al., 2006). The new parameter wt is found using

wt = wt−1 + τt ytxt (6)

where τt represents the step size, and can be computed according to three different policies

τt =
⎧

⎨

⎩

�t (wt−1; (xt , yt )) / ‖xt‖2

min
(

κ, �t (wt−1; (xt , yt )) / ‖xt‖2)

�t (wt−1; (xt , yt )) /
(‖xt‖2 + 1/2κ

)

(7)

where κ is a penalty cost parameter. Passive-aggressive algorithms are known for their aggres-
sive approach in updating the model, which is motivated by the fact that traditional perceptron
updates might waste data points that have been correctly classified but with low prediction
confidence.

A related issue to the update of the weight vector wt was emphasized by Bordes et
al. (2005), who noted that always picking the most misclassified example is a reasonable
sampling strategy only when the training examples are highly confident. When dealing with
noisy labels, this strategy could lead to the selection of misclassified examples or examples
lying on the wrong side of the optimal decision boundary. To address this, they suggested
a more conservative approach that selects examples for updating wt based on a minimax
gradient strategy.

In addition to confidence in the labels of the training examples, confidence in the model
itself must be considered when the sampling strategy is based solely on model predictions.
Hao et al. (2018b) pointed out that a margin-based sampling strategy may be suboptimal when
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the classifier is not precise, especially in the early rounds of active learning when the model
performance may be poor due to limited training feedback, leading to misleading sampling
decisions. This issue is also referred to as cold-start active learning (Houlsby et al., 2014; Yuan
et al., 2020; Jin et al., 2022). To address this, Hao et al. (2018b) propose considering second-
order information in addition to margin value when deciding whether or not to query the label
of a data point xt . In general, first-order online active learning strategies only consider the
margin value, while second-order methods also take into account the confidence associated
with it. To do this, they assume that the weight vector of the classifierw ∈ Rd is distributed
as

w ∼ N (μ, �) (8)

where the values μi and �i,i encode the model knowledge and confidence in the weight
vector for the i th feature wi . The covariance between the i th and j th features is captured by
the term �i, j . The smaller the variance associated with the coefficient wi , the more confident
the learner is about its mean value μi . The objective of the proposed method is to take into
account the confidence of the model when updating the model and making the sampling
decision. With regards to the model update, when the true label yt of xt is queried, the
Gaussian distribution in Eq. 8 is updated by minimizing an objective function based on the
Kullback–Leibler divergence (Joyce, 2011) to ensure the updated model is not too different
from the previous one. The sampling decision uses an additional parameter to the margin p̂t ,
which is defined as

ct = −η

2
(

1
νt

+ 1
γ

) (9)

where η, γ > 0 are two fixed hyper-parameters and νt represents the variance of the margin
related to the data point xt . The intuition is that, when the variance νt is high, the model has
not been sufficiently trained on instances similar to xt , and querying its label would lead to
a model improvement. Then, a soft margin-based approach is employed by computing

ρt = | p̂t | + ct (10)

If ρt ≤ 0, the label is always queried as the model is extremely uncertain about the margin.
Instead, when ρt > 0, the model is more confident, and the labeling decision is taken by
drawing a Bernoulli random variable of parameter

Pt = δ

δ + ρt
(11)

where δ > 0 is a smoothing parameter. Finally, Hao et al. (2018b) also introduced a cost-
sensitive variant of the loss function, for dealing with class-imbalanced applications. For
a comprehensive discussion on imbalanced data stream analysis, please see Aguiar et al.
(2023).

The cold-start issue related to the application of active learning to imbalanced datasets has
also been highlighted by Qin et al. (2021), who used extreme learning machines (Huang et
al., 2006) and extended the active learning framework initially proposed by Yu et al. (2015) to
the multiclass classification scenario. They highlighted the challenge of the lack of instances
for certain classes in imbalanced datasets, which can seriously impact the predictive ability
of the model for those classes. To address this issue, they propose a sampling strategy that
considers both diversity and uncertainty. The diversity is calculated by computing pairwise
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Manhattan distance between the unlabeled observations. The uncertainty of a data point xt
is computed by taking the difference between the largest two posterior probabilities as in

margin (xt ) = p (y = cb | xt ) − p (y = csb | xt ) (12)

where cb and csb are the classes with the highest posterior probabilities. This approach is
also referred to as best-versus-second-best margin and, as highlighted by Joshi et al. (2009),
is a good indicator of uncertainty when a large number of classes are present in the data. It
should be noted that the sampling strategy introduced by Qin et al. (2021) is not suited for
single-pass active learning as it requires computing similarity and uncertainty measures for
all the unlabeled observations in the current batch.

Another approach to deal with class imbalance in active learning was proposed by Fer-
dowsi et al. (2013), who used linear SVMs and a sampling strategy that switches between
multiple instance selection criteria online. This approach, however, is limited to a pool-based
setting and requires predicting an unsupervised evaluation score for all available unlabeled
instances. The impact of the last queried observations on the scores associated with the
unlabeled data points is evaluated, and a greedy approach is used to decide which instance
selection criterion to trust. SVMs have also been used by Ghassemi et al. (2016), who pro-
posed a differentially private approach to online active learning. The privacy concerns are
tackled both during the instance selection and the training phase, by randomizing the strategy
introduced by Tong and Koller (2002). The informativeness of a data point xt is measured
by its closeness to the current hyperplane wt as in

c(t) = exp (−d (xt ,wt )) ∈ [0, 1] (13)

where the distance function d (xt ,wt ) is defined as

d (xt ,wt ) � |〈wt , xt 〉|
‖wt‖ (14)

In the traditional framework, the label yt is queried if we have c(t) > �, where � is a pre-
defined threshold. It should be noted that c(t) > � is equivalent to d (xt ,wt ) ≤ log 1/�,
which means that the observation xt is in a sampling region of width 2 log 1/� around wt .
However, to avoid a deterministic decision process on the labeling and ensure privacy, some
randomness needs to be introduced. This can be done in two ways. First, the labeling decision
can be modeled as a Bernoulli random variable of parameter p if c(t) < � or (1 − p)
if c(t) ≥ �, where p < 1/2. Another approach is based on the exponential mechanism
introduced by McSherry and Talwar (2007). According to this strategy, the algorithm sets
a constant probability of labeling data points within a sampling region defined by α, and
a decaying probability for points outside of it. The selection strategy is represented by a
Bernoulli of parameter

q(t) =
{

e−αε/� d (xt ,wt ) ≤ α

e−d(xt ,wt )ε/� d (xt ,wt ) > α
(15)

where ε > 0 and � = (1 − α/M)M . The authors assumed all data points belonging to the
stream to be bounded in norm by M , ‖xt‖ ≤ M for t = 1, . . . , T . To tackle the privacy
concerns while training, the authors propose two mini-batch strategies, to avoid the problem
of slow convergence that may result from introducing noise according to the private stochastic
gradient descent scheme (Bassily et al., 2014; Song et al., 2013; Duchi et al., 2013).

Two different approaches have been proposed by Ma et al. (2016) and Shah and Manwani
(2020). Ma et al. (2016) proposed a query-while-learning strategy for decision tree classi-
fiers. They used entropy intervals extracted from the evidential likelihood to determine the
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dominant attributes, which are ordered based on the information gain ratio. When a new data
point xt is observed, its label is queried only if there does not exist a dominant attribute. This
will help to identify one and narrow the entropy interval. However, it should be noted that
the authors consider a query while learning framework that only partially relates to to online
active learning. Shah and Manwani (2020) investigated the online active learning problem
for reject option classifiers. Given the high cost that is sometimes associated with a misclas-
sification error, these models are given the option of not predicting anything, for example
when dealing with a highly ambiguous instance. A typical application of reject option clas-
sifiers is in the medical field, when making a diagnosis with ambiguous symptoms might
be particularly difficult. In this case, it could be more beneficial not to provide a prediction
but suggest further tests instead. They proposed an approach based on a non-convex double
ramp loss function �dr (Manwani et al., 2013), where the label of the current example xt is
queried only if it falls in the linear region of the loss given by | ft (xt )| ∈ [ρt − 1, ρt + 1],
which is the region where the parameter would be updated. Here, ρ refers to the bandwidth
parameter of the reject option classifier that determines the rejection region.

Fujii and Kashima (2016) investigated the problem of Bayesian online active learning.
They provided a general framework based on policy-adaptive submodularity to handle data
streams in an online setting. The authors distinguish between the stream setting, where the
labeling decision can be made within a given timeframe, and the secretary setting, introduced
in Sect. 2, where the labeling decision must be made immediately. The proposed framework
can be applied in a variety of active learning scenarios, such as active classification, active
clustering, and active feature selection. The framework is based on the concept of adap-
tive submodular maximization, which extends the idea of submodular maximization. A set
function is considered to be submodular if it satisfies the property of diminishing returns,
meaning that adding an element to a smaller set has a greater impact on the function value
than adding the same element to a larger set. Adaptive submodular maximization allows the
model to adapt to the changing distribution of data over time, by adjusting the set function to
reflect the current state of knowledge. This leads to more efficient use of available data and
improved performance.

So far, we discussed several single model approaches to active learning, which have
shown promising results in various applications. However, it is important to note that single
models have their limitations and can sometimes struggle to capture complex patterns and
diverse representations present in the data. To address these limitations, researchers have
proposed the use of ensembles or committees as an alternative (Krawczyk et al., 2017). An
ensemble or committee refers to a group of multiple models that collaborate to produce a
more robust and accurate prediction by combining their individual predictions. The models
in an ensemble or committee can be trained on different subsets of the data or with varying
hyperparameters, and the final prediction is typically made through either voting or weighted
averaging. Ensembles or committees can also be regarded as a collection of models that work
together to make a prediction, either by exchanging information or learning from one another.
Among this class of methods, a common sampling strategy is represented by disagreement-
based active learning. A framework to perform disagreement-based active learning in online
settings was recently introduced by Huang et al. (2022). They characterized the learner by
a hypothesis space H of Vapnik–Chervonenkis (VC) dimension d, which is composed of
all the classifiers currently under consideration, and a Tsybakov noise model (Mammen &
Tsybakov, 1999; Tsybakov, 2004). Each classifier h ∈ H is a measurable function mapping
the observation xt to binary output yt = {0, 1}. The disagreement among two classifiers is
given by d (h1, h2) = P [h1(x) �= h2(x)] and the disagreement region is defined as
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D (h1, h2) = {x ∈ X : h1(x) �= h2(x)} (16)

The online active learning strategy is represented by the policy π = ({vt } , {λt }), where
{vt }t≥1 is the map of the queried data points, and {λt }t≥1 is the sequence of prediction
rules. Over the time horizon T , the performance of the policy π is evaluated using the label
complexity and the regret. The label complexity measures the expected number of labels
queried, with respect to the stochastic process induced by π , and it is given by

E[Q(T )] = E

[ T
∑

t=1
1 [vt = 1]

]

(17)

The regret, on the other hand, represents the expected number of excess classification errors
with respect to h∗, and it is obtained as

E[R(T )] = E

⎡

⎣

∑

t≤T :vt=0
1 [λt �= yt ] − 1

[

h∗ (xt ) �= yt
]

⎤

⎦ (18)

The objective of the algorithm is to minimize the label complexity with a constraint on the
regret. At the first round, the initial version space is the entire hypothesis space H, while the
initial region of disagreement is the whole input space X . Then, at time step t , the learner
updates the version space Ht using the M collected labels, and computes a new region of
disagreement as

D (Ht ) = {x ∈ X : ∃h1, h2 ∈ Ht , h1(x) �= h2(x)} (19)

If xt ∈ D (Ht ), then the label of the current data point is queried, otherwise a prediction is
produced using an arbitrary classifier in Ht . At the end of the iteration t , the set Zt of M
collected labeled examples is used to estimate the empirical error εZt (h) of the classifiers in
H and identify the best currently available classifier. Then, the version space is updated by
removing all the suboptimal hypotheses whose empirical error exceeds the one obtained with
h∗
t by a threshold �Zt

(

h, h∗
t
)

. The threshold regulates the trade-off between reducing label
complexity by narrowing the region of disagreement and increasing the regret by eliminating
good classifiers.

The disagreement concept was also used by Desalvo et al. (2021), while proposing an
approach to online active learning for binary classification tasks based on surrogate losses.
The overall framework is similar to the disagreement-based one used by Huang et al. (2022),
with the main difference being the use of weak-labels to optimize the sampling strategy.
At each time step t , the learner observes the unlabeled data point xt and either decides to
request its label or assigns a pseudo-label ŷt . Then, the pseudo labels ŷt and the true labels yt
processed so far are used together to obtain an estimate of the empirical risk εSt (h), where
St is obtained by combining the collected labeled examples Zt with the pseudo-labeled ones
̂Zt . This represents an example of combining active learning and semi-supervised learning,
as highlighted in Sect. 2.3.

Loy et al. (2012) presented a Bayesian framework that leverages the principle of committee
consensus to balance exploration and exploitation in online active learning. The aim of
exploration is to discover new, previously unknown classes, while exploitation focuses on
refining the decision boundary for known classes. To address the issue of unknown classes,
the framework uses a Pitman-Yor Processes (PYP) prior model (Pitman & Yor, 1997) with
a Dirichlet process mixture model (DPMM). A DPMM is a non-parametric clustering and
classification model that models the data generating process using a mixture of probability
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distributions. Each data point is assigned to a cluster, which is associated with a probability
distribution over the classes. The number of clusters is modeled using a Dirichlet process,
which is a distribution over distributions that allows for an infinite number of clusters but
ensures that the number of actual clusters is always finite. At each time step t , the learner
samples two random hypotheses h1 and h2 from the model. Then, it computes the posterior
probability of the current class c corresponding to k, p (c = k | xt ), for each of the two
hypotheses. Finally, hi (xt ) = arg max p (c | xt ) is calculated for i = 1, 2. The label of
the current data point is queried in two cases: first, if h1 (xt ) �= h2 (xt ), meaning the two
hypotheses disagree, and second, if hi (xt ) = K + 1∀i , where K is the number of currently
known classes, meaning the current data point belongs to a new class.

The DPMM has also been used by Mohamad et al. (2020), who proposed a semi-supervised
strategy for performing active learning in online human activity recognition with sensory data.
To account for the possibility of dealing with different sensor network layouts, the authors
proposed pre-training a conditional restricted Boltzmann machine (Taylor & Hinton, 2009;
Taylor et al., 2006) and used it to extract generic features from the sensory input. The instance
selection strategy follows a Bayesian approach, in trying to minimize the uncertainty about
the model parameters. To assess the usefulness of labeling the data point xt , they measure
the discrepancy between the model uncertainty computed from the data observed until the
time step t and the expected risk associated with yt . This gives a hint of how the current label
would impact the current model uncertainty. A dynamically adaptive threshold � is finally
used to the determine whether the current expected risk is greater than the current risk.

A different kind of committee has been considered by Hao et al. (2018a). They proposed
a framework for minimizing the number of queries made by an online learner that is trying
to make the best possible forecast, given the advice received from a pool of experts. To
do so, they adapted the exponentially weighted average forecaster (EWAF) and the greedy
forecaster (GF) to the online active learning scenario. A comprehensive analysis of forecasters
to perform prediction with expert advice can be found in the book by Cesa-Bianchi and Lugosi
(2006). In general, at each time step t , the learner or forecaster has access to the predictions
for the data point xt made by the N experts, fi,t (xt ) : Rd → [0, 1] with i = 1, . . . , N .
Based on these predictions, it outputs its own prediction pt for the outcome yt . Then, if the
label is revealed, the predictions made by the forecaster and the experts are scored using a
nonnegative loss function �. The objective of the learner is to minimize the cumulative regret
over the time horizon T , which can be seen as the difference between its loss and the one
obtained with each expert i as in

Ri,T =
T
∑

t=1

(

� (pt , yt ) − �
(

fi,t (xt ) , yt
)) = ̂LT − Li,T (20)

The most simple approach to obtain a prediction pt from the learner is to compute a weighted
average of the experts predictions as in

pt =
∑N

i=1 ωi,t fi,t (xt )
∑N

i=1 ωi,t
(21)

where ωi,t ≥ 0 is the weight assigned at time t to the i th expert. With the EWAF, the weight
for the i th expert are obtained using

ωi,t = eηRi,t−1

∑N
i=1 eηRi,t−1

(22)
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where η is a positive decay factor and Ri,t−1 is the cumulative loss of expert i observed until
step t . The exponential decay factor η determines the weight given to the past losses, with
more recent losses having a higher weight and older losses having a lower weight. Instead,
the GF works by minimizing, at each time step, the largest possible increase of the potential
function for all the possible outcomes of yt . The potential function is the function that assigns
a potential value to each expert, which captures the quality of an expert advice based on its
past performance. Hao et al. (2018a) extended the EWAF and GF by proposing the active
EWAF (AEWAF) and active GF (AGF). The key idea is that, while the standard EWAF and
GF assume the availability of the true label yt after each prediction, in the online active
learning framework the loss � can only be measured a limited number of times. To factor this
in, a binary variable Zt ∈ {0, 1} is introduced to decide whether or not at round t the label
is requested. Consequently, the cumulative loss suffered by the i th expert on the instances
queried by the active forecaster is given by

̂Li,T =
T
∑

t=1
�
(

fi,t (xt ) , yt
) · Zt (23)

The sampling strategy is based on the determination of a confidence condition on the differ-
ence between the prediction pt of the fully supervised forecaster and the prediction p̂t made
by the active forecaster. For the active forecaster we have that p̂t = π[0,1]

(

pt
)

, where pt
depends on the chosen model. The AEWAF is based upon the observation that if we have

max
1≤i, j≤N

∣

∣ fi,t (xt ) − f j,t (xt )
∣

∣ ≤ δ (24)

then |pt − p̂t | ≤ δ, where δ is a tolerance threshold. This means that the prediction of
the forecaster is close to the one obtained in the fully supervised setting if the maximum
difference of advice between any two experts is not too large. This assumption might not
hold in the presence of noisy or bad experts and, to tackle this problem, the authors proposed
a robust variant of the AEWAF. The AGF uses instead a confidence condition based on the
fact that if

max
1≤i, j≤N

∣

∣ fi,t (xt ) − pt
∣

∣ ≤ δ (25)

then |pt − p̂t | ≤ δ. The general scheme for performing online active learning with expert
advice is reported in Algorithm 2.

A similar framework, in conjunction with multiple kernel learning (MKL), has been
investigated by Chae and Hong (2021). They propose an active MKL (AMKL) algorithm
based on random feature approximation. In general, online MKL based on random feature
approximation is a method for online learning and prediction that combines multiple kernel
functions to improve the performance of a learning algorithm (Jin et al., 2010; Hoi et al.,
2013). In MKL, multiple kernel functions are used to capture different aspects of the data,
and the optimal combination of kernels is learned from the data. The online version of MKL
based on random feature approximation is designed to handle data that arrives sequentially,
and the learning algorithm is updated after each new data point. In kernel-based learning, the
target function f (x) is assumed to belong to a reproducing Hilbert kernel space (RKHS). In
the proposed AMKL the learner uses an ensemble of N kernel functions. At each time step t ,
two main steps are implemented. First, each kernel function f̂i,t (xt ) , with i = 1, . . . , n, is
optimized independently of the other kernel functions. This is referred to as local step. Then,
in the global step, the learner seeks the best function approximation ̂ft (xt ) by combining the
N kernel functions as in
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Algorithm 2 Online active learning with expert advice
Require: a data stream S, a loss function �, a time horizon T , a set of N experts, a tolerance threshold δ, a

sampling budget B.
t ← 1 � Timestamp
c ← 0 � Labeling cost
while c ≤ B, t ≤ T do

Observe an incoming data point xt ∈ S
Receive advide by experts

{

fi,t (xt ) : i = 1, . . . , N
}

Generate prediction pt for the label yt and set p̂t = π[0,1]
(

pt
)

Draw a Bernoulli random variable Zt of parameter Pt = b/ (b + | p̂t |)
if Equation 24 or 25 is satisfied then � Sampling decision

Discard xt
else

Ask for the true label yt
c ← c + 1 � Pay for the label

end if
t ← t + 1

end while

̂ft (xt ) =
N
∑

v̂i,t f̂i,t (xt ) (26)

where v̂i,t refers to the weight for the i th kernel function at round t . Similarly to the case with
expert advice, the weights are determined by minimizing the regret over the time horizon T ,
which is defined as the difference between the loss of the learner and the one obtained with
the best kernel function f ∗

i,t . To do so, the weights are computed based on the past losses �

as

ω̂i,t = exp

⎛

⎝−ηg
∑

τ∈At−1

�
(

f̂i,τ (xτ ) , yτ
)

⎞

⎠ (27)

where ηg > 0 is a tunable parameter and At−1 is an index of time stamps t indicating the
instances for which has label has been requested, thus permitting to measure the loss. Then,
the weights v̂i,t are obtained from ω̂i,t as follows

v̂i,t = ω̂i,t
∑N

i=1 ω̂i,t
(28)

Finally, the instance selection criterion is based on a confidence condition, denoted by with
δ > 0, on the similarity of the learned kernel function, which is a similar to the condition
used by Hao et al. (2018a) in the formulation of the AEWAF

max
1≤ j≤N

N
∑

i=1
v̂i,t�

(

̂fi,t (xt ) , ̂f j,t (xt )
) ≤ δ (29)

3.2 Drifting data stream classification approaches

Active learning strategies belonging to this category aim to tackle online classificationtasks in
time-varying data streams affected by distribution shifts. We can classify distribution shifts
into three main categories, depending on whether they concern the feature space x or the
output dimension y. A shift that only affects the input distribution p(x), and not the conditional
distribution p(y | x), is referred to as covariate shift (Zhou et al., 2021; Wu et al., 2021; Li et
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Fig. 7 Different types of drifts that can affect the data stream: abrupt drift (a), gradual drift (b), incremental drift
(c), recurring concepts (d). C1 and C2 indicate the two concepts that might characterize the data distribution

al., 2021) or virtual drift (Baier et al., 2021). In these circumstances, for two different time
steps, ti and ti+�, we have that pti (x) �= pti+�

(x) and pti (y | x) = pti+�
(y | x), meaning

that the underlying model is not being altered by phenomena like class swaps or coefficient
changes. Conversely, in the presence of a real concept drift (Baier et al., 2021; Suárez-Cetrulo
et al., 2023), the conditional distribution changes, and we have pti (y | x) �= pti+�

(y | x). In
this scenario, the predictive performance of the fitted model dramatically deteriorates, and
a model update or replacement becomes necessary. An example of this kind of distribution
shift can be identified in the changes of the consumer behaviors over time, or following a
major event as the COVID-19 pandemic (Zwanka & Buff, 2021). However, it should be
noted that virtual drifts and real concept drifts often occur together (Tsymbal et al., 2008),
leading to a situation where we have both pti (x) �= pti+�

(x) and pti (y | x) �= pti+�
(y | x)

(Lu et al., 2018). Lastly, we can incur in a label distribution shift (Wu et al., 2021) when the
shift only affects p(y), leading to pti (y) �= pti+�

(y). This situation can be observed in many
real-world scenarios where the target distribution changes over time. A typical example is the
prediction of diseases like influenza, whose distribution can dramatically change depending
on the season, or in the presence of sudden outbreaks.

Another key characteristic of distribution shifts is represented by the change rate, namely
how fast the new concept or distribution is introduced into the data stream. To this extent,
we can identify four kinds of drifts (Lu et al., 2018; Lima et al., 2022), which are illustrated
in Fig. 7. A sudden or abrupt drift is a drift that can be immediately detected from two
consecutive time steps, ti and ti+1. It refers to a sudden and clearly identifiable change in
the data distribution. An example of this would be a sudden change in the weather, which
would affect the behavior of customers at a retail store. The change is noticeable, and the
model needs to be updated immediately. A gradual drift exhibits a transition phase, where a
mixture or overlap between the two distributions pti and pti+�

exists. In this case, the change
is slower and more difficult to detect, making it challenging to update the model. An example
would be a change in consumer behavior over time, which is hard to detect but can have a
significant impact on a business. Another type of drift is the incremental drift, which has an
extremely low transition rate, which makes it very difficult to detect changes between the
data points observed in the transition period. This type of drift is often caused by changes
in the data generating process that happen gradually over time, in small steps rather than
all at once. An example would be changes in the types of products that are popular among
customers, which happen gradually and are hard to detect. Finally, a data stream can also be
affected by recurring concepts, which sequentially alternate over time. An example would
be a retail store where the same types of products are popular at different times of the year,
such as winter coats and summer dresses. The model needs to be able to detect and adapt to
these recurring concepts in order to maintain good performance.
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In online active learning for drifting data streams, some approaches address the presence
of concept drifts by combining active learning strategies with drift detectors (Zhang et al.,
2020a; Krawczyk et al., 2018). Drift detectors are algorithms that try to detect distribution
shifts and identify when the context is changing. They can be divided into three macro-
categories (Lu et al., 2018). The first group of methods is represented by the error-based drift
detectors, which try to detect online changes in the error rate of a base classifier. Among these,
one of the most commonly employed strategies is the drift detection method (DDM) proposed
by Gama et al. (2004). Another popular approach is the adaptive window (ADWIN) strategy
proposed by Bifet and Gavaldà (2007). The second class of drift detectors is called data
distribution-based drift detection, and the third class is represented by multiple hypothesis
testing strategies. While the first class contains the majority of the proposed approaches,
it assumes that we are able to observe the labels of all the incoming data points to assess
the error rate. Instead, the last two classes could be implemented even in an unsupervised
manner. An exhaustive overview on unsupervised drift detection methods has been proposed
by Gemaque et al. (2020). While the unsupervised nature of the data distribution-based and
multiple hypothesis testing strategies make them ideal for the active learning scenario, it
should be noted that real concept drifts can hardly be detected in a completely unsupervised
fashion. Indeed, in a circumstance when the input distribution p(x) remains unaltered while
the underlying model relating the input variables x to the label y changes, it would not be
possible to detect the change of concept without collecting labels. This is why Krawczyk et
al. (2018) propose to apply an error-based drift detector to the few labels collected during the
online active learning routine. To this extent, they use the ADWIN (Bifet & Gavaldà, 2007)
method to detect drifts and decide when the current model needs to be updated or replaced.
The proposed general framework for dealing with online active learning with drifting data
streams is reported in Algorithm 3.

Moreover, the authors proposed the use of a time-variable threshold to balance the budget
use over time. Their approach is based on the intuition that, when a new concept is introduced,
more labeling effort will be required to quickly collect representative observations belonging
to the new concept and replace the outdated model. This is obtained by adjusting a time-
variable threshold to balance the budget use over time. Given a threshold � on the uncertainty
of the classifier and a labeling rate adjustment r ∈ [0, 1], the threshold is reduced to � − r
when ADWIN raises a warning and to � − 2r when a real drift is detected. Thus, when
allocating the labeling budget, the key requirement is that the labeling rate employed when
a drift is detected should be strictly larger than the one used in static conditions. A similar
thresholding idea has also been used by Castellani et al. (2022), who proposed an active
learning strategy for non-stationary data streams in the presence of verification latency. They
used a piece-wise constant budget function, where the labeling rate α is increased to αhigh
when a drift is detected and, after a while, reduced to αlow . Finally, the labeling rate is restored
to its nominal value α. A visual representation of the labeling approach is shown in Fig. 8.
The length of the time segments where the labeling rate is altered depends on the desired
values for αhigh and αlow , constraining the overall labeling rate to be equal to α.

The authors also tackled the verification latency issue by considering the spatial informa-
tion of a queried point for which the label has not been made available yet by the oracle. In this
way, it is possible to avoid oversampling from regions where many close points have a high
utility, namely a low classification confidence. While assessing the utility of the incoming
data points the authors use real and pseudo-labels by propagating the information contained
in the already labeled observations, as suggested by Pham et al. (2022). The idea is to use
the spatial information of the queried labels by estimating the still missing labels with a
weighted majority vote of the label of its k-nearest neighbors labels, where the weight for
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Algorithm 3 Online active learning with drifting data streams
Require: a data stream S, a classifier�, a drift detector �, a sampling strategy ϒ , a labeling rate α, a sampling

budget B.
t ← 1 � Timestamp
c ← 0 � Labeling cost
while c ≤ B and t ≤ |S| do

Observe incoming data point xt ∈ S
if ϒ(xt ) = True then � Sampling decision

Ask for the true label yt
c ← c + 1 � Pay for the label
Update classifier � with the labeled example (xt , yt )
Update drift detector � with the labeled example (xt , yt )
if drift warning = True then

Start to train a new classifier �new
Increase labeling rate α

else
if drift detected = True then � A detection is always preceded by a warning

Replace C with Cnew
Further increase α

else
Return to initial labeling rate α

end if
end if
if Cnew exists then � Keeps being updated in the background until replacement

Update classifierCnew with the labeled example (xt , yt )
end if

end if
t ← t + 1

end while

Fig. 8 Piece-wise constant budget function introduced by Castellani et al. (2022). The sampling rate α is
increased to αhigh when a drift is detected (tdri f t ), then reduced to αlow between tr1 and tr2 , before being
restored to its nominal value

each nearest neighbor depends on the arrival time of the labels. The verification latency issue
in online active learning with drifting data streams was also extensively analyzed by Pham
et al. (2022). Consider the general case where at time t xi we draw an instance xi , and f ind
it interesting enough to send it to the oracle, which will send back the label yi only at time
t yi , where t yi > t xi . Before the requested label arrives, we might encounter another instance
similar to xi and ask again for its label, since the learner could not update its utility function or
threshold. Similarly, we might use outdated information when updating the policy in a future
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window. To tackle these issues, the authors propose a forgetting and simulating strategy to
avoid using soon-to-be outdated observations and prevent redundant labeling. The instance
selection is based upon the variable uncertainty strategy proposed by Zliobaite et al. (2014)
and the balanced incremental quantile filter by Kottke et al. (2015). If we denote the current
sliding window at time t xn as Wn = [

t xn − �, t xn
)

and use windows of fixed size �, we know
that the sliding window that would be used for training when the label yn related to xn arrives
will be given by Dn = [

t yn − �, t yn
)

. The forgetting step is then implemented by discarding
outdated labeled examples that are included in Wn but will not be included in Dn . If ai is a
Boolean variable indicating whether the i th observation has been labeled, the set of instances
selected to be forgotten is given by

On = [

(xi , yi ) ∀i < n : ai = 1 ∧ t xi , t yi ∈ Wn\Dn
]

. (30)

Similarly, there is a second set of observations, with time stamps D+
n = Dn\Wn = [

t xn , t yn
)

,
where there might be instances that have been queried but whose label is not currently
available. To avoid losing such information and redundantly asking for the label of similar
instances, the algorithm simulates incoming labels with a bagging approach by averaging
across multiple utility estimations. They also consider an alternative simulation approach
based on fuzzy labeling.

Similarly to Krawczyk et al. (2018), the ADWIN drift detector has also been used by
Zhang et al. (2020a) while proposing a method for dealing with online active learning in
environments characterized by concept drifts and class imbalance. The instance selection
criterion is based on the predictive uncertainty, which they estimate using the best-versus-
second-best margin value (Eq. 12), as they tackle a multi-class classification problem. An
initial pool of n observations is passively collected from the stream to initialize the active
learning strategy. Then, a threshold �i is estimated for each class as in

�i =
{

nm
ni L

n
ni L ≥ 1

m n
ni L < 1

(31)

where i = 1, . . . , L is the number of classes and m is a pre-defined constant used to control
the size of the threshold. The model is represented by an ensemble of N classifiers and,
when ADWIN detects a concept drift, the classifier with the higher error is replaced with a
newly trained one. Finally, the class imbalance issue is also taken into account in two ways,
during the training of the ensemble with the use of class-specific weights, and during the
active learning routine, by dynamically adjusting the threshold to select more observations
belonging to the minority class.

Recently, Cheng et al. (2023) presented another approach to combine online active learning
with drift detection. Their method involves segmenting the data stream S into fixed-length
chunks and then detecting drifts by comparing the distributions of adjacent chunks. After a
drift is detected, a multi-objective optimization problem is formulated in order to identify the
most relevant and diverse data points within the current batch. For a data point xt , relevance
is defined as its contribution to the new concept, and diversity as the Pearson correlation
coefficient with other instances in the same region. Instead, Martins et al. (2023) proposed
to sample the most uncertain data points from each chunk, using a meta-learning framework
to fine-tune the threshold used for each window. This allows to reduce the need for labels
while maintaining a steady adaptation to the new concepts.

Another window-based approach to perform active learning from data streams has been
proposed by Zhu et al. (2007). The authors developed an ensemble E by partitioning the data
stream S into chunks and then training each of the k models composing the ensemble E on
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Fig. 9 Ensemble-based active learning framework for data streams proposed by Zhu et al. (2007)

a different chunk of data. In this way, even if the previous observations become unavailable,
the models can be used when taking the sampling decision in order to take into account a
global uncertainty measure, which is a more robust approach than treating each chunk as a
static dataset. At time step t , the learner receives a data chunk St , which is used to build the
current classifier Ct . At this point, the ensemble is composed by Ct , together with the most
recent k − 1 classifiers, Ct−k+1, . . . ,Ct−1, trained on the labeled examples sampled from
the previously observed data chunks, Lt−k+1, . . . , Lt−1. At each iteration, the objective is to
predict the remaining unlabeled data points from the current chunk,Ut . The ensemble-based
active learning framework is depicted in Fig. 9. The instances selected to be queried are the
ones with the largest ensemble variance, and the predictions are obtained by combining the
predictions of the single classifiers using the weights ωt−k+1, . . . , ωt−1. Finally, a weight
updating rule is used to adapt to dynamic data streams.

Shan et al. (2019) and Zhang et al. (2018) developed online active learning strategies by
building upon the pairwise classifiers strategy introduced by Xu et al. (2016). The pairwise
strategy makes use of two models, a stable classifier Cs and a dynamic classifier Cd , and
divides the data stream into batches as in Zhu et al. (2007). The prediction for an incoming
data point xt is obtained with a weighted average of the predictions obtained from the two
classifiers as in

fE (xt ) = ωs fCs (xt ) + ωd fCd (xt ) (32)

where ωs and ωd are the weights associated with the stable and the dynamic classifier, respec-
tively. At time t, the stable classifier Cs is trained on the labeled portions of all the batches
processed so far, L1, . . . , Lt−1. Conversely, Cd is trained exclusively on Lt−1. The key idea
is that whenever the reactive classifier starts to outperform the stable classifier, the stable clas-
sifier is replaced by the reactive one, which is eventually reset. This replacement allows the
learner to adapt to the drift and focus on the most recent instances, forgetting the seemingly
obsolete data points. The main drawback of this approach is that it cannot effectively address
gradual drifts as the replacement with the classifier trained on the most recent observations
makes the learner forget about observations away from the current window. Hence, similarly
to the approach of Zhu et al. (2007), Shan et al. (2019) proposed an extension of this approach,
based on an ensemble of classifiers in trying to contemporarily address gradual drifts and
abrupt drifts. In their strategy, the stable classifier learns from all the labeled instances and
the reactive classifier is replaced by an ensemble of dynamic classifiers, trained on multilevel
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sliding windows to capture changes in the data stream at different time intervals. The instance
selection approach combines random sampling and uncertainty sampling, where the latter is
based on the margin value of the predictions obtained by the ensemble. It should be noted
that the prediction fE for the data point xt is obtained as a weighted combination of the
predictions obtained with the stable and dynamic classifiers as in

fE (xt ) = ωs fCs (xt ) +
D
∑

d=1
ωd fCd (xt ) (33)

The stable classifier has a constant weight ωs = 0.5 and plays a crucial role in trying to
learn the overall trend and direction of concept drift. Conversely, the dynamic classifiers
have gradually decaying weights, according to a damped sliding winding approach where
each weight is initialized at 1

D and then reduced according to its creation time

ωd =
{

ωd
(

1 − 1
D
)

d = 1, . . . , D − 1
1
D d = D (34)

The most recent classifiers are useful in detecting sudden concept drifts and have highest
weights while the old dynamic classifiers have lower weights and can help to identify gradual
drifts. The same pairwise strategy based on an ensemble composed by a stable classifier and
D dynamic classifiers was used by Zhang et al. (2022). They modified the original strategy by
introducing a reinforcement mechanism to adjust the weights ωd according to the prediction
performance and the class imbalance issue. The weights adjustment strategy is described by
Algorithm 4. It should be noted that this procedure is only implemented after the true label yt
has been revealed by the oracle. The damped class imbalance ratio (DCIR) value is obtained
by taking into account the number of observations for each class collected so far. This is
expected to be useful when dealing with imbalanced classes. With regards to the instance
selection criterion, the authors consider a hybrid strategy combining uncertainty sampling
and random sampling, since approaches solely based on uncertainty could ignore a concept
change that is not close to the boundary. Woźniak et al. (2023) recently proposed another
ensemble-based active learning strategy where the data points to be labeled are selected from
the current chunk using the budget labeling active learning strategy introduced by Zyblewski
et al. (2020). According to this approach, the learner selects both random and informative
data points, where the informativeness is determined using the support function threshold,
which in the case of binary classification problems can be interpreted as a distance from the
decision boundary.

Algorithm 4 Weight adjustment for dynamic classifiers
Require: a labeled observation (xt , yt ), number of classes K , number of dynamic classifiers D, current

weights ωd with d = 1, . . . , D, DCIR for each class DCIRκ for κ ∈ K .
if DCIR [yt ] < 1

K then � Check if it belongs to the minority class
for d in (1, D) do

if Cd (xt ) = yt then � Check if the prediction made by Cd is correct
ωd ← ωd

(

1 + 1
D

)

� Increase weight of classifierCd
else

ωd ← ωd
(

1 − 1
D

)

� Decrease weight of classifierCd
end if

end for
end if
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Fig. 10 Main steps of the growing Gaussian mixture model used by Mohamad et al. (2018)

Another way to perform online active learning in time-varying data streams is to use
clustering-based approaches. Halder et al. (2023) extended the framework based on stable and
dynamic classifiers by introducing a clustering step that aims to train the new stable classifier
Cs on the most informative and representative instances from each data block. Similarly,
Ienco et al. (2013) investigated a clustering-based approach in a batch-based scenario, where
only a fraction of the incoming block of observations can be labeled. They extend the pre-
clustering approach (Nguyen & Smeulders, 2004), which had been previously studied in the
pool-based scenario, to the stream-based case. The sampling strategy takes into account an
extra-cluster metric, to sort the clusters, and an intra-cluster one, to sort the observations
within each cluster. When a new batch arrives, observations are clustered, and clusters are
sorted based on the homogeneity of the clusters, which is measured taking into account the
number of (predicted) classes within each cluster. If a cluster is balanced in the number of
expected classes, it is regarded to as an uncertain cluster that covers a more difficult area
of the input space. Within each cluster, the certainty of an observations is determined by its
representativeness, namely the distance from the centroid, and the uncertainty, meant as the
maximum a posterior probability among all the predicted classes for xt . When the clusters
and observations are ranked, the learner starts to iteratively ask the observations label in an
alternate fashion. To sample the most representative data points from each batch, Zhang et
al. (2023) suggested the use of density-peak clustering and recognize the incomplete clusters
in the dynamic feature space through the altitude of these data points. This allows to query
the observations belonging to those regions in the following iterations.

Recently, Yin et al. (2023) proposed an adaptive data stream classificationmethod based on
microclustering. After initializing micro-clusters from the initial training data, they collected
new labels using a mixed strategy that combines random sampling with a class-weighted
margin score. Then, the micro-cluster learning model is dynamically updated to adapt to the
presence of concept drifts.

Another approach that tries to exploit the clustering nature of the incoming observations
has been proposed by Mohamad et al. (2018), with the use of bi-criteria active learning
algorithm that considers both density in the input space and label uncertainty. The density-
based criterion makes use of the growing Gaussian mixture model proposed (GGMM) by
Bouchachia and Vanaret (2014), which is used to find clusters in the data and estimate its
density. This model creates a new cluster when a new data point xt has a Mahalanobis distance
greater than a given closeness threshold from the nearest cluster, among the currently available
ones. A flowchart describing the main steps of the GGMM is depicted in Fig. 10.

A Bayesian logistic regression model is used for addressing the label uncertainty criterion
and the concept drift. As the classifier parameters wt are assumed to evolve over time, the
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model is incrementally updated using a discrepancy measure, which is computed as the
difference between the uncertainty of the model in xt before and after the true label yt is
added to the training set. The query strategy follows the b-sampling approach, in trying
to sample, with high probability, the observations that contribute the most to the current
error. The combination of density and uncertainty is also employed by Liu et al. (2021),
who proposed a cognitive dual query strategy for online active learning in the presence of
concept drifts and noise. The local density measure is used to obtain representative instances
and the uncertainty criterion aim to select data points where the classifier is less confident.
The cognitive aspect takes into account Ebbinghaus’s law of human memory (Ebbinghaus,
2013) to determine an optimal replacement policy. The proposed strategy tries to tackle both
gradual and abrupt drifts. The drift is generally considered as a change in the underlying
joint probability distribution from one time step t to another, namely pt (x, y) �= pt+1(x, y).
The local density of an observation xt is defined by the number of times that xt is the nearest
neighbor of other instances (Ienco et al., 2014). Since we are in an online framework, the
authors proposed to measure the local density using a sliding window model, referred to as
a cognition window. Based on the concept of memory strength, the model determines when
the current window is full and needs to be updated. Finally, the labeling decision is taken by
using two thresholds, one for the local density and one for the classifier uncertainty.

A different sliding window-based online active learning strategy is the one proposed by
Kurlej and Woźniak (2011). The authors proposed a sliding window approach based on a
nearest neighbors classifier. The reference set for the k-nearest neighbors model is a window,
and it is updated in two ways: in a first-in-first-out manner or using the examples selected
by the active learning strategy. Since the reference set is updated over time, this method can
effectively deal with concept drift and time-varying data streams. The sampling strategy is
also based on two criteria. The first one is similar to the margin-based approaches, an instance
is queried if it has a low distance from two observations belonging to different classes. The
second criterion, similar to the greedy sampling strategy, seeks observations that have a
large minimum distance from the observations in the current reference set. Both criteria are
implemented by setting a threshold on the distances.

A simpler approach for taking into account the time-varying aspect of evolving data stream
is to force the model to focus on the most recent observations. Along these lines, Chu et al.
(2011) propose a framework based on a Bayesian probit model and a time-decay variant.
Online Bayesian learning is used to maintain a posterior distribution of the weight vector
of a linear classifier over time wt , and the time-decay strategies are employed to tackle the
concept drift and give more importance to recent observations. They also propose an online
approximation technique that can handle weighted examples, which is based upon Minka
(2001). They tested different sampling strategies, built upon an online probit classifier. The
instance selection criteria are based on entropy, function-value, and random sampling.

3.3 Evolving fuzzy systems approaches

An alternative way to take into account the time-varying nature of evolving data streams is the
use of evolving fuzzy systems (EFS) (Lughofer, 2011), which are soft computing techniques
that can efficiently deal with novelty and knowledge expansion. EFS are self-developing,
self-learning fuzzy rule-based or neuro-fuzzy systems that self-adapt both their parameters
and their structure on-the-fly. They try to mimic human-like reasoning by modeling it with a
dynamically developing fuzzy rule-based structure and implementing it utilizing data streams
using a formal learning process. The basic rule structure of a fuzzy model is given by
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Fig. 11 Learning modules of an EFS (Ge & Zeng, 2020)

Rulei : if (x1 is Xi1) and . . . and (xn is Xin)
then (yi = ai0 + ai1x1 + · · · + ainxn)

(35)

where Rule i with i = 1, 2, . . . , R is one of several fuzzy rules in the current rule base;
x j ( j = 1, 2, . . . , n) are input variables; yi denotes the output of the i th fuzzy rule; Xi j denotes
the j th prototype (focal point) of the i th fuzzy rule; ai j denotes the j th parameter of the i th
fuzzy rule. For a more thorough discussion on EFS and their use in online learning, please see
(Lughofer, 2017, 2011; Ge & Zeng, 2020; Gu et al., 2022). The main components of an EFS
are shown in Fig. 11. The two key components of an EFS are the structure evolving scheme,
which contains the rule generation and simplification modules, and the parameters updating
scheme. The rule generation module defines when a new rule needs to be added to the current
model. The rule merging and pruning steps simplify the models by removing redundant rules
and combining two rules when their similarity is larger than a given threshold. The parameter
updating modules are used to keep track of the model evolution. These learning modules are
used to update the EFS every time a new labeled example (xt , yt ) is made available.

The first single-pass active learning approach based on the use of evolving classification
models has been proposed by Lughofer (2012). The proposed algorithm is based on two key
concepts, conflict and ignorance. The former is related to an incoming data point lying close
to the boundary between any two classes; the latter considers the distance of the incoming
observation from the currently labeled training set, in the feature space. This suggests that
the data point falls within a region that has not been thoroughly explored by the learner. Later
on, Lughofer and Pratama (2018) also proposed the first online active learning approach for
evolving regression models. Similarly to their previous work (Lughofer, 2012), the authors
consider the ignorance about the input space in the instance selection criterion. Moreover,
they also consider the uncertainty in the model outputs and in the model parameters. The
predictive uncertainty is assessed in terms of confidence intervals using locally adaptive
error bars. The error bars are inspired by Škrjanc (2009) and the authors propose a new
merging approach for dealing with the case of overlapping fuzzy rules. The uncertainty in
the model parameters is instead evaluated using the A-optimality criterion, which will be
discussed in Sect. 3.4 together with other alphabetic optimality criteria. Instead of leveraging
the uncertainty about the output, Pratama et al. (2015) set a dynamic threshold based on the
variable uncertainty strategy introduced by Zliobaite et al. (2014) while trying to address the
what-to-learn question in the training of a recurrent fuzzy classifier. The key idea is that the
model is iteratively retrained using data points that fall within rules with low support, which
were formed using the smallest amount of observations. Recently, Lughofer and Škrjanc
(2023) proposed an online active learning strategy for fuzzy models based on three criteria.

• D-optimality in the consequent space to reduce parameter uncertainty, as in Cacciarelli
et al. (2022b).
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• Overlap degree in the antecedent space to reduce the number of data points lying in the
overlap regions of two different rules.

• Novelty content in the antecedent space, indicating the required knowledge expansion
through rule evolution.

A different kind of threshold, based on the spherical potential theory, has been suggested by
Subramanian et al. (2014), with the proposal of a meta-cognitive component that evaluates the
novelty content of incoming data points. This is done using a knowledge measure represented
by the spherical potential, which has been thoroughly investigated in kernel-based approaches
(Hoffmann, 2007). The spherical potential is used to set a threshold and decide whether to
add a new rule to capture the knowledge in the current sample. It should be noted that the
authors also used a threshold based on the prediction error, which could not be used with
scarcity of labels. The prediction error is assessed using the hinge loss error function (Suresh
et al., 2008; Zhang, 2004).

Fuzzy models have also been used to solve computer vision tasks. Weigl et al. (2016)
analyze the visual inspection quality control case, which is also considered by Rožanec et al.
(2022). They assess the usefulness of the images in a single-pass manner, but the instances
that are selected to be queried are accumulated in a buffer, which is later on assigned to an
oracle for labeling. Choosing the size of the buffer represents a trade-off problem between
timely updating the classifier and requiring continuous interventions from a human annotator.
The active learning strategy works by setting a threshold on the certainty of the model with
regards to the incoming data points. The authors take into account two model classes, a
random forest classifier and an evolving fuzzy classifier. When using random forest, certainty
is computed using the best-versus-second-best margin score. Instead, when using evolving
fuzzy classifiers, the sample selection criterion takes into account the conflict and ignorance
concepts as in Lughofer (2012).

Finally, Cernuda et al. (2014) combine the use of fuzzy models with a sampling approach
inspired by the multivariate statistical process control literature. Indeed, using a latent struc-
ture model, they propose a query strategy based on the Hotelling T 2 and the squared prediction
error (SPE) statistics, which have been extensively used in anomaly detection problems (Cac-
ciarelli & Kulahci, 2022; Gajjar et al., 2018; Vanhatalo & Kulahci, 2016; Vanhatalo et al.,
2017). Ge (2014) used these statistics for pool-based active learning in conjunction with
a principal component regression model. The key idea is to use the Hotelling T 2 and the
SPE statistics to measure the distance between the currently labeled training set and a new
unlabeled data point. A high value in one of the two statistics would most likely suggest that
the new observation is violating the current model, and thus its inclusion in the training set
could bring some valuable information. Similarly, Cernuda et al. (2014) use the Hotelling
T 2 and the SPE statistics with a partial least squares model. Then, when a new observation
is added to the training set, they retrain a TS fuzzy model using a sliding window approach.

3.4 Experimental design and bandit approaches

Optimal experimental design (Karlin & Studden, 1966) is a research fieldthat is closely related
to active learning. It deals with the design of experiments that allow for efficient estimation
of model parameters or improved prediction performance while minimizing the number of
required labeled examples, also referred to as the number of runs N . Many optimality criteria
have been developed in thriving to strike a balance between efficient use of resources and
ensuring good performance of the model. The traditional framework of optimal experimental
designs focuses on linear regression models of the form
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y = Xβ + ε (36)

where, given d input variables, y is a N ×1 vector of response variables, X is a N ×d model
matrix, β is a d × 1 vector of regression coefficients, and ε is a N × 1 vector representing
the noise, with covariance matrix σ 2I. If the matrix X�X is of full rank, an ordinary least
square (OLS) estimator for β can be obtained using

̂β =
(

X�X
)−1

X�y (37)

In general, design optimality criteria leverage the information contained in the moment
matrix, which is defined as M = X�X/N . The matrix X�X plays a crucial role in the
estimation of the model coefficients β, and it is important to perceive information about the
design geometry. Indeed, with Gaussian noise characterized by ε ∼ N (

0, σ 2I
)

, we know
that

̂β | X ∼ N
(

β,
(

X�X
)−1

σ 2
)

(38)

and we can define a 100(1 − α)% confidence ellipsoid related to the solutions of β using

(b−̂β)�
(

X�X
)

(b−̂β)

ds2 ≤ Fα,d,N−d (39)

where s2 represents the residual mean square, Fα,d,N−d is the 100(1 − α) percentile derived
from the Fisher distribution, and b indicates all the possible vectors that could be the true
model parameter β. The ellipsoid can also be expressed as (b −̂β)�

(

X�X
)

(b −̂β) ≤ C ,
where C = ds2Fα,d,N−d . The volume of this ellipsoid is inversely proportional to the square
root of the determinant of X�X, and the length of its axes is proportional to 1/λi , where λi
represents the i th eigenvalue ofX�X, with i = 1, . . . , d . The so-called alphabetic optimality
criteria pursuit efficient designs by exploiting these properties (Kiefer, 1959). The most
commonly employed optimality criteria for good parameter estimation are A-, D- and E-
optimality:

• A-optimality. This criterion pursues good model parameter estimation by minimizing the
sum of the variances of the regression coefficients.Knowing that the coefficientsvariances
appear on the diagonal of the matrix

(

X�X
)−1, it can be shown that an A-optimal design

is given by a design D∗ that satisfies minD tr[M(D)]−1 = tr
[

M (D∗)
]−1.

• D-optimality. This criterion takes into account both the variance and covariance of the
regression coefficients, directly minimizing the total volume of the confidence ellip-
soid (Myers et al., 2016). A D-optimal design is given by a design D∗ that satisfies
maxD |M(D)| = |M (D∗)| (John & Draper, 1975).

• E-optimality. This strategy tries to shrink the ellipsoid by minimizing the maximum
eigenvalue of the covariance matrix.

The geometrical intuition behind these criteria is illustrated, in the two-dimensional case,
in Fig. 12.

Finally, there are also optimality criteria that focus on developing models with good
predictive properties. Within this class, G-optimality represents a criterion that is used to
seek protection against the worst-case prediction variance in a region of interest R. This is
achieved by solving

min
D

[

max
x∈R v(x)

]

(40)
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Fig. 12 Confidence ellipsoid around the model parameters and optimality criteria: A-optimality (a) shrinks
the hyperrectangular enclosing the confidence ellipsoid (Asprey & Macchietto, 2002; Galvanin, 2010), D-
optimality (b) aim to shrink the total volume of the ellipsoid, and E-optimality (c) tries to reduce the length
of the longest axis (Jamieson, 2018)

where v(x) represents the scaled prediction variance of the current model in the data point
x, which can be computed as

v(x) = Nx(m)T
(

X�X
)−1

x(m) (41)

where x(m) represents the data point where the variance is being estimated, expanded to the
model form. It should be noted that G-optimality can be highly influenced by anomalous
observations, as it protects against the highest possible variance over all the region R. This
issue can be tackled by using I- orV-optimality, which estimate the overall prediction variance
over R by integrating or averaging, respectively. For a more extensive discussion on optimal
designs, please see Montgomery (2012) or Myers et al. (2016).

The use of optimality criteria has proven to be highly beneficial in offline experimental
design, allowing practitioners to pre-determine the location of each design point with ease.
However, these methods require modification to be applied in a stream-based scenario where
data points arrive sequentially. A common approach for obtaining a near-optimal design with
streaming observational data is represented by thresholding. Riquelme (2017) proposed a
thresholding algorithm for online active linear regression, which is related to the A-optimality
criterion. Their approach uses a norm-thresholding algorithm, where only observations with
large, scaled norms are selected. The design is augmented with the observations x whose
norm exceeds a threshold � given by

P(‖x‖ ≥ �) = α (42)

where α is the ratio of observations we are willing to label out of the incoming data stream.
Another approach related to the A-optimality criterion was proposed by Fontaine et al. (2021),
who studied online optimal design under heteroskedasticity assumptions, with the objective
of optimally allocating the total labeling budget between covariates in order to balance the
variance of each estimated coefficient. Cacciarelli et al. (2022b) further extended the thresh-
olding approach introduced by Riquelme (2017) by proposing a conditional D-optimality
(CDO) algorithm. The terms conditional refers to the fact the design is marginally opti-
mal, given an initial set of labeled observations to be augmented. The main steps of the
CDO approach are reported in Algorithm 5. The authors exploited the connection between
D-optimality and prediction variance previously highlighted by Myers et al. (2016). The
sampling strategy selects observations by setting a threshold � given by
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P

(

x�
t

(

X�X
)−1

xt ≥ �

)

= α (43)

where X is the current set of labeled observations and xt is the data point that is currently
under evaluation. The threshold is estimated using kernel density estimation (KDE) on a set
of j unlabeled observations, which are taken passively from the data stream without querying
any label. This provides an initial set of data, referred to as warm-up set, that can be used to
estimate the covariance matrix and the threshold.

Algorithm 5 Online active learning using CDO
Require: an initial random design X, a data stream S, a warm-up length j , a sampling rate α, a budget B
t ← 1 � Timestamp
c ← 0 � Labeling cost
Set W = ∅ � Warm-up set to estimate � and �

while t ≤ j do
Observe incoming data point xt ∈ S
Select xt : W = W ∪ xt
t ← t + 1

end while
Estimate the covariance matrix � of W and perform eigendecomposition � = U�U�
Whiten the initial design by computing Z = �−1/2U�X
Whiten the warm-up observations by computing V = �−1/2U�W
Estimate � using KDE on V with the desired sampling rate α using Equation 43 with Z and V
while c ≤ B and t ≤ |S| do

Observe incoming data point xt ∈ S
Whiten xt by computing zt = �−1/2U�xt
if z�t (Z�Z)−1zt ≥ � then

Ask for the label yi and augment the labeled dataset: Z ← Z ∪ zt
c ← c + 1 � Pay for the label
Update threshold � to measure the prediction variance of the enlarged design

else
Discard xt

end if
t ← t + 1

end while

Cacciarelli et al. (2023) also investigated how the presence of outliers affect the performance
of online active linear regression strategies. They showed how the design optimality-based
sampling strategies might be attracted to outliers, whose inclusion in the design eventually
degrades the predictive performance of the model. This issue can be tackled by bounding the
search area of the learner with two thresholds, as in

P

(

�1 ≤ x�
t

(

X�X
)−1

xt ≤ �2

)

= α (44)

where the choice of �2 represents a trade-off between seeking protection against outliers and
exploring uncertain regions of the input space.

The norm-thresholding approach was also extended by Riquelme et al. (2017a) to the
case where the learner tries to estimate uniformly well a set of models, given a shared
budget. This scenario is similar to a multi-armed bandit (MAB) problem where the learner
wants to estimate the mean of a finite set of arms by setting a budget on the number of
allowed pulls (Ruan et al., 2020; Audibert & Munos, 2010; Jamieson & Nowak, 2014;
Soare et al., 2013). The authors propose a trace upper confidence bound (UCB) algorithm to
simultaneously estimate the difficulty of each model and allocate the shared labeling budget
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proportionally to these estimates. UCB is a common algorithm used in MAB problems to
balance exploration and exploitation (Carpentier et al., 2015; Garivier & Moulines, 2008),
which takes into account the predicted mean value and the predicted standard deviation,
weighted by an adjustable parameter (Thompson et al., 2022). This allows to balance the
exploitation of data points with a high predicted value and the exploration of areas with high
uncertainty.

In general, MAB problems can be seen as a special case of sequential experimental design,
where the goal is to sequentially choose experiments to perform with the aim of maximizing
some outcome. The typical framework of a MAB problem can be regarded as an optimization
problem where the learner must identify the option or arm with the highest reward, among a
set of available arms characterized by different reward distributions. Both MAB and active
learning paradigms involve a sequential decision-making process where the learner aims to
maximize a reward or improve model accuracy by selecting an arm to pull or a data point to
label, respectively, and receiving feedback (in the form of a reward or label request) for each
selection. There are two main approaches to tackle MAB problems:

• Regret minimization. This approach is coherent with the objective of maximizing the
cumulative reward observed over many trials. In this case, the learner must balance
exploration, namely trying out different arms to learn more about the reward distributions,
with exploitation, i.e., using current knowledge to choose the most promising arm. These
kinds of algorithms strike a balance between learning a good model and obtaining high
rewards. A few examples might be treatment design, online advertising and recommender
systems.

• Pure exploration. In this case, we are interested in finding the most promising arm, with a
certain confidenceor given a fixed budget on the number of pulls. To do so, the objective is
to learn a good model while minimizing the number of measurements or labels required.
This scenario is suggested in circumstances where, due to safety constraints, we are not
given complete freedom to change the variable levels and we are mostly interested in
understanding the underlying model governing the system. Possible examples include
drug discovery or soft sensor development (Fortuna et al., 2007; Shi & Xiong, 2018;
Chan et al., 2018; Tang et al., 2018).

The pure exploration approach is particularly useful when coupled with the study of linear
bandits, which are a type of contextual bandit algorithms that assume a linear relationship
between the features of the context and the expected reward of each arm. In this type of
problem, when an arm x ∈ X is pulled, the learner observes a reward r(x) that depends on
an unknown parameter θ∗ ∈ Rd according to the linear model

r(x) = x�θ∗ + ε (45)

where ε is a zero-mean i.i.d. noise. This is similar to active linear regression in that, in
both cases, the learner aims to select the most informative data points to learn about the
underlying model or system (Audibert & Munos, 2010; Jamieson & Nowak, 2014). Soare et
al. (2014), investigated this problem, in the offline setting, using the G-optimality criterion
and a newly proposed XY-allocation algorithm. Jedra and Proutiere (2020) proposed a fixed-
confidence algorithm for the same problem, while Azizi et al. (2022) analyzed the fixed-
budget case, extending the framework to the case where the underlying model is represented
by a generalized linear model (Filippi et al., 2010). An interesting variant of this problem
is presented in the study of transductive experimental designs. A transductive design is a
problem where we can pull arms from a set X ∈ Rd , with the objective of identifying the
best arm or improve the predictions over a separate set of observations Z ∈ Rd , which is
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given, in an unlabeled form, beforehand. A practical example of this case is when we are
trying to infer the user preferences over a set of products, but we can only do that by pulling
arms from a limited set of free trials. Alternatively, we might be interested in estimating the
efficacy of a drug over a certain population, while doing experiments on a population with
different characteristics. This problem has been tackled with an active learning approach by
Yu et al. (2006), with the idea of exploiting unlabeled data points in Z while evaluating the
informativeness of the data points in X . The transductive case of sequential experimental
design has been explored by Fiez et al. (2019), but instead of performing active learning, they
were interested in inferring the best reward over Z, only pulling the arms in X . Finally, this
has been extended to the online scenario by Camilleri et al. (2021), balancing the trade-off
between time complexity and label complexity, namely between the number of unlabeled
observations spanned and the number of labels queried in order to stop the learning procedure
and declare the best-arm.

In addition to MAB, reinforcement learning-based approaches can also be applied to
active learning in order to optimize a decision-making policy that balances the exploration
of uncertain data with the exploitation of information learned from previous observations.
This can be particularly useful in applications where the goal is to maximize the expected
cumulative reward over time, such as in robotics or game playing. Compared to MAB,
reinforcement learning-based approaches offer a more general and flexible framework for
active learning, allowing for a wider range of problem formulations and feedback signals
(Menard et al., 2021; Fang et al., 2017; Rudovic et al., 2019). One approach to combining
active learning and reinforcement learning is through modeling the sampling routine as a
contextual-bandit problem, as proposed by Wassermann et al. (2019). In this approach, the
rewards are based on the usefulness of the query behavior of the learner. The key intuition
behind the use of reinforcement learning in online active learning is that the learner gets
feedback after the requested label, based on how useful the request actually was. In contrast
to the traditional active learning view, where most of the effort is dedicated to the instance
selection phase, the learner is penalized ex-post for querying useless instances. The learner
gets a positive reward ρ+ if it asks for the label when it would have otherwise predicted the
wrong class, and a negative reward ρ− when querying was unnecessary as the model would
have predicted the right label. The contextual bandit problem is implemented by building an
ensemble of different models, with each expert suggesting whether to query or not based on
whether its prediction certainty exceeds a threshold �. The models are assigned a decision
power based on how past suggestions were rewarded and how coherent they were with the
other experts’ suggestions. When an observation is sent to the oracle for labeling, the reward
is computed, and the objective function of the learner is to maximize the total reward over a
time horizon T .

Another reinforcement learning-based approach has been proposed by Woodward and
Finn (2017). They considered the case where at each time step t the learner needs to decide
whether to predict the label of the unlabeled data point xt or pay to request its label yt .
The reinforcement learning framework is used to find an optimal policy π∗ (st ) that takes
into account the cost of asking for a label and the cost of making an incorrect prediction,
where st represents the state that is given in input at the timet to a policy π (st ) that outputs
the suggested action at . The authors approximate the action-value function using a long
short-term memory (LSTM) neural network with a linear output layer. The optimal policy is
determined by maximizing the long-term reward, after assigning a reward to a label request
Rreq , a correct prediction Rcorr , and an incorrect prediction Rinc. It should be noted that
Rcorr and Rinc should be negative rewards, as they are associated with costly actions.
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4 Evaluation strategies

The use of active learning approaches is becoming increasingly common in machine learning,
allowing models to be trained more efficiently by selecting the most informative examples
for labeling. To evaluate the performance of these approaches, it is typical to compare them
to a passive random sampling strategy by generating learning curves that plot the model
performance (e.g., accuracy, F1 score, or root mean square error) on a holdout test set over
the number of labeled examples used for training. Learning curves are a useful tool for
comparing the asymptotic performance of different strategies and their sample efficiency,
with the slope of the curve reflecting the rate at which the model performance improves with
additional labeled examples. A steeper slope indicates a more sample-efficientstrategy. When
multiple sampling strategies are being compared, a visual inspection of the learning curves
may not be sufficient, and more rigorous statistical tests may be necessary. Reyes et al. (2018)
recommend the use of non-parametric statistical tests to analyze the effectiveness of active
learning strategies for classification tasks. The sign test (Steel, 1959) or the Wilkinson signed-
ranks test (Wilcoxon, 1945) can be used to compare two strategies, while the Friedman test
(Friedman, 1940), the Friedman aligned-ranks test (Hodges & Lehmann, 1962), the Friedman
test with Iman-Davenport correction (Iman & Davenport, 1980), or the Quade test (Quade,
1979) can be used when evaluating more than two strategies. These statistical tests can provide
insight into whether the difference in performance between the active learning and passive
random sampling strategies is statistically significant.

Algorithm 6 Prequential evaluation for online active learning
Require: an initial model w0, a data stream S, a budget B, an active learning strategy Q.
t ← 1 � Timestamp
P ← ∅ � Storing predictions
while c ≤ B and i ≤ |S| do

Observe the data point xt ∈ S
Predict the label ŷt and store it: P ← P ∪ ŷt
if Q(xt ) = True then � Sampling decision

Ask for the true label yt and update the model
c ← c + 1 � Pay for the label

else
Discard xt

end if
t ← t + 1

end while

Overall, the use of learning curves and statistical tests can provide valuable insights into
the effectiveness and efficiency of different active learning strategies. By understanding the
statistical significance of differences in performance between these strategies, researchers
can make informed decisions about which approaches are more effective for a particular
task or dataset. Furthermore, the choice of the evaluation scheme is crucial when assessing
the performance of active learning approaches. If we use an evaluation scheme based on a
holdout test set, at each learning step t the performance of the model is assessed using the
same test set. This can be a reasonable approach if we are dealing with a stationary data
stream, which does not evolve over time. Under these assumptions, using the same test set
we might be able to better assess the prediction improvement as more labeled examples
are included in the design. However, this approach might not be ideal when dealing with
drifting data streams. In these circumstances, a prequential evaluation scheme can be more
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Table 1 Evaluation strategies

Evaluation strategy Works

Holdout test set Desalvo et al. (2021), Wassermann et al. (2019), Rožanec et al. (2022),
Narr et al. (2016), Ferdowsi et al. (2013), Bordes et al. (2005), Suzuki et
al. (2021), Ghassemi et al. (2016), Qin et al. (2021), Woodward and Finn
(2017), Riquelme et al. (2017b), Cacciarelli et al. (2022b), Cacciarelli et
al. (2023), Manjah et al. (2023)

Prequential/test-then-train Zhang et al. (2022), Pham et al. (2022), Castellani et al. (2022), Chu et al.
(2011), Zhang et al. (2018), Krawczyk et al. (2018), Xu et al. (2016),
Mohamad et al. (2020), Weigl et al. (2016), Ienco et al. (2013), Zhang et
al. (2020a)

useful to monitor the evolution of the prediction error over time (Suárez-Cetrulo et al., 2021;
Cerqueira et al., 2020; Tieppo et al., 2022; Cacciarelli & Boresta, 2021). In online learning,
prequential evaluation is also referred to as test-then-train approach, and it involves using
each incoming instance first to measure the prediction error, and then to be included in the
training set (Suárez-Cetrulo et al., 2023). The main steps of the test-then-train approach are
reported in Algorithm 6. The key idea is that at each time step t , we first test the model by
making a prediction, then we decide whether to query the true labels and finally we update
our model.

An in-depth analysis and discussion between the use of a holdout test set and the prequen-
tial evaluation scheme for streaming data has been provided by Gama et al. (2009, 2013),
who suggested the use of a prequential evaluation scheme with forgetting mechanisms. For
scenarios with imbalanced data streams, a specialized prequential variant of the area under
the curve metric has been proposed by Brzezinski and Stefanowski (2015, 2017). From an
implementation perspective, Bifet et al. (2010) developed an open source software suite called
MOA for data stream mining, which includes both the holdout and prequential strategies.
This framework has found widespread application in the evaluation of online active learning
strategies, as evidenced by the studies conducted by Liu et al. (2021), Shan et al. (2019),
Weigl et al. (2016), Zhang et al. (2020a), Alabdulrahman et al. (2016).

In Table 1, we categorize the studies based on the experimental protocols they employed to
evaluate the sampling strategies. The table exclusively includes approaches where the evalu-
ation strategy was explicitly defined. In most cases, when assessing active learning methods
in the context of drifting data streams, a prequential approach is favored. Conversely, for
scenarios where the methods are ill-suited to handle concept drifts, holdout test sets tend
to be the preferred choice. In approaches not featured in the table, the evaluation strategies
exhibited some variations or lacked explicit specification. For instance, in the work by Fujii
and Kashima (2016), their evaluation strategy involved training models on the queried data
and subsequently testing them with the entire dataset. This approach differs from the conven-
tional test-then-train paradigm since, in this case, models are tested on data they encountered
during training, at least in part. Another example is found in Zhu et al. (2007), who utilized a
window-based approach, assessing prediction accuracy across all observations in the current
batch. On a different note, Hao et al. (2018a) employed the per-round regret metric, which
quantifies the loss difference between the forecaster and the best expert at each iteration of
the active learning process. In some instances, none of the previously mentioned methods
were employed, as the analysis took a more theoretical perspective. This is exemplified by
the works of Dasgupta et al. (2005), Chae and Hong (2021), Huang et al. (2022). Lastly,
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Fig. 13 Low-cost active spam filtering (Sculley, 2007)

bandit algorithms employed a distinct evaluation approach, often aiming to identify the most
promising arm with a fixed confidenceor budget. In the fixed confidencesetting, performance
typically hinges on comparing label complexity to problem dimensionality or the number
of arms pulled, as observed in Fiez et al. (2019). Alternatively, regret or error metrics were
evaluated against the required number of trials, as demonstrated in the studies by Riquelme
et al. (2017a), Sudarsanam and Ravindran (2018), Fontaine et al. (2021).

5 Real-world applications and challenges

5.1 Applications

Online active learning has been recognized as a powerful technique in scenarios where data
is arriving at a high velocity, labeling data is expensive, and it is infeasible to store all the
unlabeled data before making a decision about which observations to query to update the
model. In particular, these techniques have proven particularly useful in dynamic and ever-
evolving environments, where models need to adapt to new data in real-time, by selectively
querying the most informative instances. One of the first real-world applications of online
active learning has been presented by Sculley (2007), who investigated the scenario of low-
cost active spam filtering (Fig. 13) where a filter is updated online by selecting the most
informative emails in real time. Another application of online active learning in the field
of IT has been recently presented by Zhang et al. (2020a). They analyzed the scenario of
network protocol identification and proposed a method (presented in Sect. 3.2) to select the
most representative instances on the fly and adapt the model to dynamic data distributions.

Computer vision is another interesting area where online active learning can be applied.
Deep learning models require a large amount of annotated data, making manual annotation
of thousands of images one of the most challenging aspects of model development. However,
it is important to note that the most effective deep active learning methods proposed so far are
not easily adaptable to a stream-based setting. Many of these methods involve clustering or
measuring pairwise similarity among image embeddings (Sener & Savarese, 2017; Agarwal
et al., 2020; Ash et al., 2019; Citovsky et al., 2021; Prabhu et al., 2020), which cannot be
easily done in a single-pass manner. As a result, most online applications of active learning
in computer vision rely on the use of traditional models with uncertainty-based sampling.
Narr et al. (2016) analyze the stream-based active learning problem for the classification of
3D objects. They used a mondrian forest classifier (Lakshminarayanan et al., 2014), which is
an efficient alternative of random forest for the online learning scenario, and selected images
with high classification uncertainty to be labeled. Rožanec et al. (2022) used online active
learning to reduce the data labeling effort while performing vision-based process monitoring.
Initially, features are extracted from the images using a pre-trained ResNet-18 model (He et
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al., 2015) and then, using the mutual information criterion (Kraskov et al., 2004), only
√
n

features (Hua et al., 2005) are retained to fit an online classifier, where n is the total number of
observations in the training set. The authors combine a simple active learning strategy based
on model uncertainty with five streaming classification algorithms, including Hoeffding tree
(Hulten et al., 2001), Hoeffding adaptive tree (Bifet & Gavaldà, 2009), stochastic gradient
tree (Gouk et al., 2019), streaming logistic regression, and streaming k-nearest neighbors.
Recently, Saran et al. (2023) proposed a novel approach to streaming active learning with
deep neural networks. Given a neural network with f with parameters θ , last-layer parameters
θL , and the cross-entropy function �, they compute the gradient representation of the data
point xt , which is given by

g(xt ) = ∂

∂θL
� ( f (xt ; θ), ŷt ) (46)

where ŷt = argmax f (xt ; θ). Then, the data points to be included in the batch for training
the model are chosen by using a probability pt proportional to the contribution of the current
example to the covariance matrix of the examples collected so far, as in

pt ∝ det
(

̂�t + g(xt )g(xt )�
)

(47)

where ̂�t is the covariance matrix of the data points that have been selected to be included
int he current batch, up to the time step t .

Online active learning has also been explored for object detection tasks. Manjah et al.
(2023) proposed a stream-based active distillation (SBAD) framework by combining the
concepts of active learning and self-supervision as described in Sect. 2.3. The SBAD frame-
work enables the deployment of scalable deep-learning models as it does not rely on human
annotators and takes into account the imperfection of the oracle when distilling knowledge
from a large teacher model to a lightweight student. Indeed, the authors suggest setting a
threshold on the confidence of the images and only querying images with high confidence
in trying to avoid confirmation bias. The threshold is determined using a warm-up phase,
similarly to the approach proposed by Cacciarelli et al. (2022b) presented in Algorithm 5.
The SBAD pipeline for model development and evaluation is reported in Fig. 14.

The problem of performing active learning for object detection with streaming data has
also been explored by Beck et al. (2023). In the case of a camera placed on an autonomous
vehicle, the collected data encompasses various scenarios, including clear weather, foggy
conditions, and rainy weather, all of which require the model to perform effectively. However,
the frequency of these scenarios can vary significantly. In situations where one scenario is
prevalent, a passive sampling strategy could tend to sample very few examples from the most
rare slices. Instead, the proposed streamline approach by attempts to smartly allocate the
budget to obtain more observations from the slices where the model is under-performing.
The case of autonomous cars was also considered by Yan et al. (2023), who used a diversity-
based online active learning strategy to reduce false alarm rate and learn unseen faults.

Another interesting industrial application has been recently presented by Ghiasi et al.
(2023). They proposed a deployable framework that combines a thermodynamics-based
compressor model and a Gaussian Process-based surrogate model with an online active
learning module. The objective of the study was to minimize the power absorbed by the
machine during the boil off process of centrifugal compressor. In the proposed framework,
the simulator, the surrogate model, and the optimizer interact in real time to determine the
new experimental points.
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Fig. 14 SBAD framework (Manjah et al., 2023): sampling, fine-tuning and evaluation. The sampling is per-
formed in a single-pass manner via thresholding

5.2 Challenges

When applying online active learning strategies to real-world problems, there are several
potential issues to consider, including:

• Algorithm scalability. Online active learning algorithms need to be efficient and scalable
to handle large datasets and high-velocity data streams. As the amount of data grows, the
computational demands of active learning can become prohibitive, making it difficult to
deploy in practice. The time required to make the sampling decision needs to be lower
than the feed rate of the process being analyzed. If the algorithm is too slow, it may
require a buffer, which reduces the benefits of online active learning.

• Labeling quality. Most online active learning strategies rely heavily on the quality of
labeled data, which can be challenging to ensure in real-world scenarios. Human annota-
tors may make errors, introduce biases, or interpret labeling instructions differently. For
this reason, in real-life situations, it may be necessary to consider oracle imperfections
like in the knowledge distillation case (Baykal et al., 2022). Another difficult aspect
related to labeling quality is the delay or latency, which has been described in Sect. 2.2.3.

• Data drift. In real-world settings, data distributions may shift over time, making it chal-
lenging for models to adapt and continue providing accurate predictions. Changes in the
data distribution may also affect the quality of the labeled data, as the criteria for selecting
informative instances may become less effective. Methods from Sects. 3.2 and 3.3 should
be used when dynamic and ever-changing behaviors are expected.

• Model interpretability. Besides simply asking for the most informative instances from
a modeling perspective, it might be useful to provide additional information on why a
particular instance is beneficial for improving the performance of the current model. In
fields like healthcare and manufacturing this might help practitioners to improve their
understanding of the underlying problem.
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• Evaluation. When developing active learning methods from a research perspective, the
different query strategies are evaluated assuming the ground-truth labels to be available
for a held-out test set, or for the data stream being analyzed. However, in real life, the
key motivation behind active learning is label scarcity and thus it might be difficult to
thoroughly assess the effectiveness of the deployed sampling strategy.

• Human-computer interaction. In the context of active learning for data streams, the
synergy between human labelers and computer systems plays a pivotal role in the labeling
process. While the majority of online active learning methods focus on querying the most
informative data points in real-time, we can distinguish between two distinct labeling
scenarios:

1. Real-time annotation. In most of the presented works, it is assumed that labels are
immediately available when a data point is queried from the stream. This immediate
access to true labels enables an optimized active learning routine, as the model can
be promptly updated and can recommend exploration of new regions based on up-
to-date information. However, this approach poses some implementation challenges
that need to be addressed with the use of advanced data annotation tools (Feuz &
Cook, 2013).

2. Postponed annotation. There are cases where we must allow for a delay between
data querying and labeling. For instance, methods that consider verification latency
(Castellani et al., 2022; Pham et al., 2022) take into account the possibility of delayed
labels. This is particularly relevant in situations where a physical quality inspection
or medical treatment must occur before the label is revealed. Another example is in
the training of deep neural networks, where real-time sampling from a data stream
is necessary due to memory constraints (Manjah et al., 2023), but the labeling and
model update phase may occur when a batch is collected, following a batch-mode
active learning strategy (Ren et al., 2022).

6 Summary and future directions

This survey outlines the challenge of conducting active learning with data streams and inves-
tigates different approaches for selecting the most informative data points in real-time.

Table 2 provides a summary of the relevant state-of-the-art approaches, highlighting their
main properties and settings. Our examination reveals that existing research has predomi-
nantly concentrated on creating online classification models, which can operate with both
stationary and drifting data streams. However, there has been comparatively limited effort
devoted to online active linear regression or dedicated to constructing online regression mod-
els in general.

We believe that there are several promising directions for future research in this field.
First, we recommend further investigation into online active learning strategies specifically
designed for regression models. Given the limited work in this area, there is a need for
more advanced methods that can be applied to nonlinear models, beyond linear models
or linear bandits. For example, there has been a recent spark of interest toward the use
of Bayesian optimization for active learning in nonlinear regression problems (Mohamadi
& Amindavar, 2020; Riis et al., 2022). Additionally, model-agnostic methods that can be
applied to a variety of regression models could be valuable as they would provide a more
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general solution to the problem. Second, we believe that there is potential for research into
single-pass online sampling strategies for dynamic data streams. Ensemble models and batch-
based approaches have been the dominant methods in online classification, but some of their
assumptions or requirements may not hold in many real-world applications. For instance, in
some applications, data may arrive in a continuous stream, and it may not be possible to divide
it into batches due to time or memory constraints. In such cases, single-pass online sampling
strategies that do not require the use or update of multiple models would be more practical.
Moreover, it could be beneficial to develop online active learning strategies that are able
to tackle all the types of distribution shifts introduced in Sect. 3.2. Finally, the combination
of reinforcement learning and active learning in pool-based scenarios is an area of ongoing
research. We believe that the study of online reinforcement learning to optimize sampling
strategies could provide valuable insights into how to best perform active learning in dynamic
environments.

7 Conclusion

The field of online active learning with data streams is a rapidly evolving and highly relevant
area of research in machine learning. The ability to effectively learn from data streams in
real-time is becoming increasingly important, as the amount of data generated by modern
applications continues to grow at an exponential rate. However, obtaining annotated data
to train complex prediction and decision-making models presents a major roadblock. This
hinders the proper integration of artificial intelligence models with real-world applications
such as healthcare, autonomous driving and industrial production. Our survey provides a
comprehensive overview of the current state of the art in this field and highlights the chal-
lenges and opportunities that researchers face when developing methods for online active
learning. We reviewed a wide range of strategies for selecting the most informative data
points in online active learning, including methods based on uncertainty sampling, diver-
sity sampling, query by committee, and reinforcement learning, among others. Our analysis
has shown that these strategies have been applied in a variety of contexts, including online
classification, online regression, and online semi-supervised learning. We hope that this sur-
vey will inspire further research in the field of online active learning with data streams and
encourage the development of new and advanced methods for handling this type of data.
In particular, we believe that there is significant potential for the development of model-
agnostic and single-pass online active learning strategies that can be applied in practical
settings.
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a b s t r a c t

The proliferation of automated data collection schemes and the advances in sensorics are increasing the
amount of data we are able to monitor in real-time. However, given the high annotation costs and the
time required by quality inspections, data is often available in an unlabeled form. This is fostering the
use of active learning for the development of soft sensors and predictive models. In production, instead
of performing random inspections to obtain product information, labels are collected by evaluating the
information content of the unlabeled data. Several query strategy frameworks for regression have been
proposed in the literature but most of the focus has been dedicated to the static pool-based scenario. In
this work, we propose a new strategy for the stream-based scenario, where instances are sequentially
offered to the learner, which must instantaneously decide whether to perform the quality check to
obtain the label or discard the instance. The approach is inspired by the optimal experimental design
theory and the iterative aspect of the decision-making process is tackled by setting a threshold on the
informativeness of the unlabeled data points. The proposed approach is evaluated using numerical
simulations and the Tennessee Eastman Process simulator. The results confirm that selecting the
examples suggested by the proposed algorithm allows for a faster reduction in the prediction error.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The term big data seems to be ubiquitous in many fields of
application, and industrial production is no different. However, in
production, this can be somewhat misleading as it often refers to
process data that is obtained through automated data collection
schemes with minimal manual interference. Product-related data
is usually scarcer particularly in high-volume manufacturing due
to costs of inspection. This creates an imbalance in the amount of
available data that can at times be quite substantial. Yet in many
cases, predictive modeling relating process variables to product
characteristics is sought after. Therefore, it will be beneficial
to guide the data collection schemes for product characteristics
through a real-time sampling methodology. In current production
environments, sampling of the product characteristics is often
performed at regular time intervals or at random. However, this
approach can be ineffective as the informativeness of the obser-
vations at the time of sampling is not taken into account. This
problem is reinforcing the interest of researchers and practition-
ers in active learning. Active learning-based sampling schemes
use an instance selection criterion to strategically select data
points that allow a faster reduction of the generalization error [1].

∗ Corresponding author at: Department of Applied Mathematics and
Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark.

E-mail address: dcac@dtu.dk (D. Cacciarelli).

Over the last decades, many active learning approaches have
been proposed, but most of the focus has been dedicated to
the pool-based scenario [2]. Pool-based active learning refers to
a circumstance in which a large amount of unlabeled data is
collected all at once and made available to the learner, which can
then select offline the data points to be labeled with a greedy
approach [3].

In real-time applications for high-volume production, where
samples are processed at a fast pace, evaluating all the available
instances before making a choice might not be realistic. In these
cases, the learner might only have a short time frame to make
the sampling decision. Indeed, if a sample is not selected for the
quality check, it might get lost in the downstream process and no
longer be traceable. This is particularly relevant in high-volume
production, where tracing individual parts is a challenge. Also, in
a chemical process, we might not be able to measure the level
of the variable of interest once a component undergoes a specific
treatment. In these contexts, a much more sensible scenario is
represented by stream-based active learning, which is sometimes
referred to as selective sampling [4]. Stream-based active learning
investigates a scenario where instances are processed one at a
time and the learner has to determine immediately whether to
keep the instance and query its label or discard it. The task is very
similar to the one described by a notorious statistical riddle, the
secretary problem [5], where an observer sequentially interviews

https://doi.org/10.1016/j.knosys.2022.109664
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a certain number of applicants and, after each interview, a deci-
sion must be made on whether the applicant is hired or not. An
exhaustive survey about stream-based active learning has been
proposed by Lughofer [6], who classified existing online active
learning methods by taking into account the data processing
functionality, the model class (regression or classification), and
many other relevant properties. The survey reveals how stream-
based active learning methods have been mostly developed in
the classification field. Regression models, on the other hand, are
extremely useful in the development of soft sensors for hard-to-
measure process variables or in quality control problems where
a product’s characteristic is measured on a continuous scale. That
is why active learning in conjunction with regression models is
capturing the interest of many researchers [7–10].

In this paper, we focus on the use of linear regression models.
These models are well suited for stream-based active learning as
they can easily be trained on a small number of observations,
being composed of a small number of parameters. This property
is also very useful if we want to efficiently retrain the model
each time the design is augmented by including an additional
observation [11]. Moreover, despite recent advances in terms of
interpretability for deep learning models, linear regression mod-
els are still amongst the most easily interpretable models. Indeed,
their parameters offer a straightforward quantitative contribution
of each specific feature, and their input features are directly
derived from the empirical observations [12]. Besides the direct
interpretation that comes from the signs and magnitudes of the
coefficients, linear models can also be used to construct confi-
dence intervals on the parameter estimates and variable selection
can also be easily incorporated into such models [13]. Recently,
additional variable selection methods for linear regression models
have been suggested by Zhang et al. [14]. Being able to offer a
robust feature importance analysis is particularly important in in-
dustrial problems, where practitioners and engineers might need
to timely intervene in specific parts or components of the process
to ensure safety and operational efficiency. The simplicity of these
models and the low number of parameters that require tuning is
also beneficial to foster their adoption and use in applications.
Finally, linear regression models allow us to build on the optimal
experimental design theory and leverage the criteria that are
typically used to design highly efficient experiments. Despite the
focus of this paper being dedicated to linear models, nonlinear
models proved to be extremely useful in a wide variety of appli-
cations. In particular, deep learning models are very effective in
dealing with complex high-dimensional data to perform tasks like
image recognition, shape extraction, and pose recovery [15–19].

In this work, we propose a novel strategy to perform stream-
based active learning with linear models. Given the impossi-
bility to rank observations in real-time, we provide an algo-
rithm that only uses unlabeled data to set a threshold on the
informativeness of data points. Unlabeled data is also exploited
in a semi-supervised manner to increase the predictive perfor-
mance [20]. We show how the proposed approach outperforms
random sampling and state-of-the-art methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we define some basic concepts and discuss related works
focusing on active learning for regression. Section 3 introduces
the proposed sampling strategy. In Section 4 we test our approach
using numerical simulations; the Tennessee Eastman Process data
is also used to evaluate its performance on a typical industrial
process. Finally, Section 5 provides some conclusions.

2. Preliminaries

The active learning problem is defined by an imbalance be-
tween the availability of process variables x ∈ Rp and the

corresponding labels y ∈ R. In many circumstances, industrial
processes are characterized by the presence of easy-to-measure
process variables, which are collected through automated collec-
tion schemes, and hard-to-measure variables, whose values are
difficult to track during routine operations. Large plants, measure-
ment delays, and environments hostile to the survival of mea-
suring devices are all situations where hard-to-measure process
variables are commonly encountered [21]. Similar situations can
be addressed by utilizing soft sensors based on predictive models
to forecast the true values of hard-to-measure variables. For mod-
eling purposes, we assume that the true underlying relationship
between the process variables and the product information or
hard-to-measure variable can be expressed with a linear model
of the form

y = Xβ+ ϵ (1)

where

y =

⎡⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎣
x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
...

xn1 xn2 · · · xnp

⎤⎥⎥⎥⎥⎦ ,

β =

⎡⎢⎢⎢⎢⎣
β1

β2
...

βp

⎤⎥⎥⎥⎥⎦ , and ϵ =

⎡⎢⎢⎢⎢⎣
ϵ1

ϵ2
...

ϵn

⎤⎥⎥⎥⎥⎦
y is a n×1 vector of response variables, X is a n×p model matrix,
β is a p × 1 vector of regression coefficients, and ϵ is a n × 1
vector representing the noise, with covariance matrix σ 2I. Here n
represents the total number of observations and p the number of
process variables (as well as the number of parameters in a model
with main effects only and no intercept). If the predictors and
the response are not centered, an intercept term may be added
to the model. In that case, the size of the model matrix becomes
n×(p+1), and β a (p+1)×1 vector. When k ≥ p observations are
available to the learner, we can obtain a least squares estimator
for β using

β̂ =
(
XTX

)−1 XTy (2)

such that the fitted linear regression model will be given by ŷ =

Xβ̂ and its residuals by e = y− ŷ. A key distinction between the
experimental design approach and stream-based active learning
concerns the assumption we make about the randomness of the
process variables. In design of experiments, the x vectors are
assumed to be fixed while in this case we assume that X is
composed by random vectors, as the individual observations are
sampled from a process subject to random variation and we are
not able to set the precise location of the incoming data points.
However, conditional on the observed X variables, (x1, . . . , xp),
Eq. (2) still applies. It should be noted that the coefficients β̂
determined using Eq. (2) may not be stable if the data matrix X is
affected by multicollinearity. To deal with this issue and achieve
robust results, a solution might be to use a ridge estimate for the
coefficients, β̂ridge =

(
XTX− λI

)−1 XTy. An alternative approach
to tackle multicollinearity is to perform a pre-whitening of X to
remove the dependencies between the components.

We assume a small, labeled training set is initially avail-
able and can be used to fit the first regression model, as is
common practice in active learning applications [22–24]. The
number of observations provided to the learner usually corre-
sponds to a modest fraction (e.g., 5%) of the total number of
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instances available [25,26]. After the first model has been built,
the learner is granted a certain operational budget b to augment
the design matrix by including additional observations. Some
approaches focus on this problem in a pool-based context, in
which the total number of observations n is represented by a
closed and static set U and the label of a specific data point can al-
ways be queried. Among these approaches, query-by-committee
(QBC) [22] suggests building an ensemble of regression models
trained on bootstrap replica of the original training set. Once
the ensemble, or committee, has been built, the variance of the
predictions made by the committee members is computed for
each unlabeled observation x ∈ U . This metric, also referred
to as ambiguity, is used to rank the instances belonging to the
unlabeled set U by prioritizing the data points with the highest
variance. Expected model change maximization (EMCM) [26] is
another noteworthy study that focuses on the observations that
impact the most the current model’s parameters. The model
change is defined as the difference between the current model
parameters and the parameters obtained after fitting the model
on the augmented design, including the unlabeled observation
x ∈ U that is currently under evaluation. Because the learner
does not have access to the true label for that data point, it
estimates it using the mean prediction of a bootstrap ensemble, as
the one employed by QBC. Another offline approach, inspired by
statistical process control, combines the Hotelling T 2 statistic and
the squared prediction error of a principal component regression
(PCR) model to obtain a sampling evaluation index [23].

Besides the fact that all these methods focus on the pool-based
scenario, it should be noted that the approaches that use ensem-
bles may not be well suited for the online scenario, given the
higher computational cost associated with training and updating
the models.

Optimal experimental theory is another field of research that
is intrinsically related to active learning [27,28]. Optimal designs
aim to reduce the cost of experimentation by proposing design
matrices that allow a robust parameter estimation with the min-
imum number of runs. The most commonly employed optimality
criteria are D-optimality [29] and A-optimality. Important prop-
erties of a design can be derived from the moment matrix, or
information matrix, which is defined as

M =
XTX
N

(3)

where N represents the total number of runs. The moment matrix
specifies the distribution of points in space and can be used to
describe the design geometry. In a 2k factorial design, where
variables are expressed in coded units (−1, +1), the moment
matrix is equal to the identity matrix Ik, as the columns of the
design are orthogonal. In an orthogonal design, all the parameters
can be estimated independently of one another [30]. D-optimal
designs try to pursue such property by focusing on good model
parameter estimation. Inverting the moment matrix we obtain
the scaled dispersion matrix given by

M−1
= N

(
XTX

)−1
(4)

This matrix contains the variances and covariances of the esti-
mated coefficients of the regression model, scaled by N/σ 2 [28].
Indeed, if the k observations used to estimate β̂ are i.i.d. and
ϵ ∼ N(0, σ 2I), we have

β̂k|X ∼ N

(
β,

(
XTX

)−1
Σ2

)
(5)

It can be demonstrated how by increasing the determinant of
M, the variances and covariances of the model coefficients are
reduced, leading to a better estimation of β. A D-optimal design is

attained by maximizing the determinant of the moment matrix.
Formally, we are seeking the design D∗ that satisfies

max
D

|M (D) | = |M
(
D*)

| (6)

A-optimality is another important optimality criterion that
tries to achieve good parameter estimation by minimizing the
sum of the individual variances of the coefficients. This is achieved
by the design D∗ that satisfies

min
D

tr [M (D)]−1
= tr

[
M
(
D*)]−1

(7)

as the variances of the coefficients can be found on the diagonal
of the scaled dispersion matrix multiplied by σ 2/N . It should
be noted that A-optimality does not consider the covariances
between coefficients.

Recently, the concept of A-optimality has been extended to
stream-based active learning [31,32]. That is, the approach has
been extended outside the design of experiments framework,
assuming X is composed of random vectors and the observations
are sequentially drawn. Riquelme et al. [32] show how to set a
threshold to perform online active learning for linear regression
models by minimizing the sum of the individual variances of β̂.
They state that, in order to achieve A-optimality and minimize
the trace of the inversed scaled dispersion matrix, the eigenvalues
of the moment matrix should be as balanced as possible. This
is because the eigenvalues of XTX represent the trace of XTX,
which is also given by the sum of the norm of the observations.
For this reason, they propose a norm-thresholding algorithm that
pursues A-optimality by selecting observations with large, scaled
norm. The scaling step can be ignored when whitening is used to
remove dependencies. Finally, the design is augmented with the
observations x whose norm exceeds a threshold Γ given by

PD (∥x∥ ≥ Γ ) = α (8)

where α is the ratio of observations we are willing to label out
of the incoming data stream. This value is strongly dependent on
the budget b and the sampling rate used to collect the data.

Another noteworthy approach focusing on stream-based ac-
tive learning for regression tasks has been suggested by Lughofer
and Pratama [33]. In this paper, the authors propose a single-
pass selection criterion that takes into account ignorance about
the input space, uncertainty in predictive model outputs, and
uncertainty in model parameters. The main difference with our
approach is that Lughofer and Pratama focus on the use of Takagi–
Sugeno (TS) fuzzy models [34], combining adaptive error bars
for the model output and A-optimality for the variances of the
estimated parameters. Conversely, our method relies on statistical
linear regression and tries to combine the exploration of lesser-
known input space regions with accurate parameter estimates by
employing the idea of D-optimality.

3. Proposed approach

In this work, we try to improve the approach proposed by
Riquelme et al. [32] by moving from A-optimality to D-optimality.
We believe that taking into account the covariance between the
estimates of the model coefficients might be particularly advan-
tageous with large datasets and models, where many factors
might be active and influence the response. To adapt the D-
optimality criterion to stream-based active learning, we start
from the connection between D-optimality and prediction vari-
ance (PV) highlighted by Myers et al. [28]. The PV at a point
x(m) is the variance of the predictor ŷ(x(m)), which corresponds
to Var(x(m)Tβ̂), and is given by

PV (x) = σ 2x(m)T (XTX
)−1 x(m) (9)
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where x(m) represents the data point where the variance is being
estimated, expanded to the model form. We can also express the
variance in a scale-free form using the scaled prediction variance
(SPV), which is computed as

SPV (x) = Nx(m)T (XTX
)−1 x(m) (10)

It should be noted that the SPV is a quadratic form of the
inverse moment matrix M−1, as it can also be written as x(m)TM−1

x(m). Since SPV considers the total number of runs N , it can be
used to assess the quality of a design on a per observation basis.
In the online scenario, we are not interested in comparing designs
of different sizes but rather we investigate the individual con-
tributions of incoming data points to the current design. In this
circumstance, we can discard N and use the unscaled prediction
variance (UPV), which is calculated as

UPV (x) = x(m)T (XTX
)−1 x(m) (11)

As anticipated in Section 2, we are already given an initial
random design that contains some labeled examples, which is
being used to fit an initial model. Then, we are interested in
augmenting our design by iteratively selecting observations from
a continuous stream. Pursuing D-optimality, we aim at collecting
observations that allow us to maximize the determinant of the
moment matrix M. If we consider that the current design is
composed by k observations, we can decompose the numerator
of the moment matrix (Eq. (3)) before the design is augmented
by including the (k+ 1)th observation as

XT
kXk = XT

k+1Xk+1 − xk+1xTk+1 (12)

we can then express the determinant of XT
kXk as the product

of the determinant of the numerator of the augmented moment
matrix and a second term as in

|XT
kXk| = |XT

k+1Xk+1 − xk+1xTk+1|

= |XT
k+1Xk+1||1− xTk+1

(
XT

k+1Xk+1
)−1 xk+1| (13)

It should be noted that the second term of the above equation
is a scalar, irrespective of the number of variables p and the
number of observations k. From there, we can observe that

|XT
k+1Xk+1|

|XT
kXk|

=
1

1− xTk+1

(
XT

k+1Xk+1
)−1 xk+1

(14)

From the properties of the hat matrix, which is generally
defined as H = X

(
XTX

)−1 XT, we know that 0 ≤ hjj ≤ 1 is true for
each element hjj of H [35]. It follows that xTk+1

(
XT

k+1Xk+1
)−1 xk+1

≤ 1. Hence, we can conclude that the determinant of the new,
enlarged, training set is maximized by seeking observations x
that maximize xTk+1

(
XT

k+1Xk+1
)−1 xk+1. That is, we will only select

points that maximize the UPV. This may be explained by the
fact that a data point for which we have a large prediction
variance represents a less known region of the input space, and
the regression model will highly benefit from its inclusion in the
design. From Myers et al. [28] we have that maximizing xTk+1(
XT

k+1Xk+1
)−1 xk+1 is equivalent to maximizing xTk+1

(
XT

kXk
)−1

xk+1, which is the UPV using the fitted model before the new
point has been added to the training set.

Finally, following the norm-thresholding approach, we can set
an upper control limit on new observations as

PD

(
xTk+1

(
XT

kXk
)−1 xk+1 ≥ Γ

)
= α (15)

In practice, as suggested by Riquelme et al. [32], when we
start to observe the data points coming from the process, we
allocate a first initial set of points to estimate the distribution

of xTk+1

(
XT

kXk
)−1 xk+1. In this work, we used kernel density es-

timation (KDE) with a Gaussian kernel. The initial set is also
used to estimate the sample covariance matrix Σ. By performing
an eigenvalue decomposition we can then express Σ as UΛUT,
where U is an orthogonal matrix, whose ith column corresponds
to the ith eigenvector of Σ, and Λ is a diagonal matrix with the
eigenvalues of Σ on the diagonal. The incoming observations x
can then be whitened using

z = Λ−1/2UTx (16)

Before the whitening step, data can be centered and scaled
using the sample mean and variances obtained from the initial
set. In industrial contexts, when a lot of unlabeled process data is
available in the form of a historical database, this step can also be
performed offline. In this case, by fitting a principal component
analysis (PCA) model to the large unlabeled dataset and using it
to transform the incoming observations, we could improve the
predictive performance using a semi-supervised PCR as suggested
by Frumosu and Kulahci [20]. The use of semi-supervised classifi-
cation models has also received some attention in active-learning
problems [36–38]. Indeed, semi-supervised learning and active
learning are both techniques that deal with scarcity of labels.
However, they do so in two different ways. With semi-supervised
learning, we try to get the most out of the currently available
unlabeled data, whereas with active learning we try to acquire
new data in the most effective way.

Algorithm 1 describes the complete stream-based active learn-
ing procedure with the proposed approach, which might also be
referred to as conditional D-optimality (CDO).

An alternative representation of the CDO active learning rou-
tine is reported in the flowcharts in Figs. 1 and 2. The first
flowchart depicts the warm-up phase, which is represented by
the steps from 1 to 10 of Algorithm 1. The warm-up set is
very important for the algorithm and serves two main purposes.
First, it allows to estimate the covariance matrix of the data,
which is later used for whitening the incoming observations.
Secondly, it provides a set of unlabeled observations that can be
leveraged to estimate the distribution of the UPV. The primary
purpose of the whitening step is to address the multicollinearity
issue in linear regression modeling, which can be aggravated
when dealing with real-world data. The whitening step also en-
sures comparability with the norm-thresholding approach. In-
deed, the norm-thresholding method without whitening would
require computing a weighted norm to deal with dependencies
between the components.

The second flowchart represents the instance selection phase,
the core of the active learning strategy. At this stage, we compute
the UPV for the new observation sampled from the stream and
we compare it to a pre-defined threshold. If the UPV computed
at this point exceeds Γ , we query its label and include the labeled
example in the training set. After the inclusion of the new point,
a new threshold is estimated. The threshold is found by applying
Eq. (15) to the whitened warm-up set V. That is, Xk is substituted
by Z, the currently labeled training set after whitening, and xk+1
is given by each unlabeled data point belonging to V. By doing so,
we obtain a one-dimensional array that has the same cardinality
as the number of observations in V. These statistics are then
used to approximate the distribution of the UPV using KDE and
determine the α-upper percentile.

4. Experiments

In the experiments, we compare the proposed method to the
norm-thresholding approach and random sampling. The methods
are tested using numerical simulations and data from a chemical
process simulator. All the approaches start from the same labeled
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training set and then they iteratively augment the design until
the budget constraint b is met. The performance of the models
is expressed, in predictive terms, by the root mean squared error
(RMSE) of the predictions on a separate test set of n observations

RMSE =

√ n∑
i=1

(
ŷi − yi

)2
n

(17)

4.1. Numerical simulations

To analyze the validity of the proposed method in the stream-
based scenario, multiple datasets were created, each with a dif-
ferent dimensionality in terms of the number of process variables
p. Within each dataset, incoming observations x are distributed
according to a joint multivariate normal distribution Np (0, Σ0),
where Σ0 is given by σ 2I, with σ 2

= 1. We ran 50 simulations
for each number of p and, for each simulation run, the true
coefficients are generated as β ∼ U (−5, 5). It should be noted
that β has the same dimensionality as x. This means that, using a
first order model, a coefficient for each process variable needs to
be estimated. The noise is given by ϵ ∼ N(0, 1). For each scenario,
an initial random design X is assumed available to the learner.
We selected p + 2 number of observations for the initial design,
as k ≥ p observations are needed to uniquely estimate β̂.

The learning curves reported in Figs. 3 and 4 show the dif-
ference between the RMSE obtained with the two active learn-
ing strategies, using random sampling as the baseline. For each
learning step, the percentage RMSE difference reported in the
plots is obtained by computing (RMSEActive Learning−RMSERandom)/
RMSERandom*100. This allows us to display a scale-free perfor-
mance metric while comparing the different scenarios. The plots
reporting the learning curves with the absolute RMSE values are
included in the appendix.

The methods are tested using b = 50 and with different
levels for the α shown in Eq. (8), and 15. In the case of random
sampling, α represents the probability of selecting an incoming
observation. That is, each time a new sample arrives, a number
s ∼ U(0, 1) is generated and the data point is only selected if

s ≥ 1 − α. The warm-up length w was set to 500 observations
and it is being used by all the methods to estimate the covariance
matrix, which is used for whitening the observations in a semi-
supervised fashion. Moreover, it ensures comparability between
the three strategies by setting the same starting points for the
data streams. The models have been fitted without the intercept
term as both process variables and outcome are centered.

Fig. 3 shows the performance when using an α equal to 10%.
The x-axis reports the learning steps, which correspond to the
inclusion of an additional observation to the training set. Indeed,
when the design is augmented, the model is updated and new
predictions are obtained for the same separate test set. It should
be noted that the RMSE obtained in the first learning step is the
same for the three methods, as all the models start from the same
random design. It can be seen how the performance of the two
active learning methods converges to the one obtained through
random sampling as the number of labeled examples in the train-
ing set increases. Instead, when the number of labeled examples
is lower, active learning proves to be particularly convenient.
However, the proposed approach dominates the other strategies
in all the scenarios. Furthermore, it should be noted how the
norm-thresholding algorithm seems to worsen when more and
more parameters need to be estimated. Instead, CDO consistently
provides enhanced predictive performances. We believe this may
be due to the fact that, by imposing a threshold on the norm,
A-optimality seeks only points that are far from the design’s
center, without ensuring a distance between the data points that
have already been collected. CDO, on the other hand, emphasizes
points that correspond to a poor prediction, which is more likely
associated with a design area that the learner has not thoroughly
explored. As a result, we are less prone to acquire the labels
of data points in locations where we have already collected a
significant number of observations.

It should be noted that in real-time applications the improve-
ment offered by active learning is not as large as the one that can
be obtained in offline scenarios, where we can deterministically
maximize the desired optimality criterion over a closed set of
observations. Moreover, by setting α = 10% we are not being too
demanding in terms of selecting observations with large norms
for the A-optimality or high prediction variances for CDO. In Fig. 4,
we try to widen the gap with the random strategy by lowering α,
in this case up to 0.01. By raising the threshold, we can be more
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Fig. 1. Flowchart of the warm-up phase of the stream-based active learning procedure.

demanding in terms of the desirability of the selected instances.
The only drawback is that the algorithms will need to span
more observations to achieve the desired size for the augmented
design and meet the budget constraint. We believe this may not
represent an issue since data is nowadays collected at very high
sampling rates. However, in the final decision concerning the
level of α, practitioners will need to make a trade-off between the
desired prediction improvement and the time required to select
the new labeled examples.

Fig. 4 reports the learning curves obtained using a smaller
α. As expected, the enhancement obtained using the proposed
strategy is increased with respect to the passive random sam-
pling. However, it is worth noting that the improvement is more
evident when the number of parameters is smaller, as the gain
obtained in the high-dimensional cases was already significant
with α = 10%.

Finally, we analyze the computational time required by the
two active learning strategies. To this extent, we introduce a
measure called average decision time, which quantifies the time
required to decide whether to query the label of an unlabeled
observation or discard it. The results obtained on the numer-
ical simulations, for different number of process variables, are

Table 1
Average decision times (ms) for the two active learning methods (50 variables).
Strategy 10 variables 20 variables 50 variables 100 variables

CDO 0.00494 0.00527 0.00568 0.00690
Norm-thresholding 0.00635 0.00642 0.00673 0.00716

reported in Table 1. Both active learning strategies are highly
efficient and do not require a high computational time. According
to the CDO strategy, at each iteration we are simply computing
the UPV for the new data point, as in step 15 of Algorithm
1, which requires less time than computing the norm of the
new observation. It should be noted that the average decision
time is lower because the inverse of the whitened moment ma-
trix,

(
ZTZ

)−1
, does not need to be computed at each iteration.

However, it must be updated when the design is augmented by
including an additional labeled observation. Updating and invert-
ing the whitened moment matrix takes, on average, 0.31375 ms
(ms).

From an operational point of view, the average decision time
is a highly relevant metric and it is closely related to the specific
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Fig. 2. Flowchart of the instance selection phase of the stream-based active learning procedure.

Fig. 3. Percentage difference in RMSE between random sampling and the active learning methods, using α = 10% (50 simulations).

sampling frequency of the process. Indeed, to allow for a timely
instance selection, the decision time should be strictly lower than
the expiry date of the unlabeled data point, which is given by the
time window where it is possible to query its label.

4.2. Tennessee Eastman Process

The Tennessee Eastman Process (TEP) is a commonly used
benchmark in industrial and chemical engineering research and
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Fig. 4. Percentage difference in RMSE between random sampling and the active learning methods, using α = 1% (50 simulations).

Fig. 5. The TEP piping and instrumentation diagram [39].

it has been thoroughly investigated in terms of process dynamics
and control [40–44]. Recently, it has been also used to validate
active learning or soft sensor modeling approaches [45–49]. It
was initially published in 1993 [50] but since then it has been
further developed and improved. For this study, we used a re-
cently released MATLAB simulator to generate the data [39,51].
We generated 50 datasets with the process running in normal

operating conditions, using a sampling rate of approximately
1 min. Fig. 5 depicts the TEP flowchart, which shows how the
process is primarily composed of a reactor, a product condenser
and separator, a stripper, and a compressor.

The TEP, like many other industrial processes, includes some
easy-to-measure process variables whose real value can eas-
ily be monitored online, and some hard-to-measure variables,

8
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Table 2
Variables of the TEP used as predictors in the regression models.
Number Process variable Code Number Process variable Code

1 A feed XMEAS1 9 Product separator temperature XMEAS11
2 D feed XMEAS2 10 Product separator pressure XMEAS13
3 E feed XMEAS3 11 Product separator underflow XMEAS14
4 A and C feed XMEAS4 12 Stripper pressure XMEAS16
5 Recycle flow XMEAS5 13 Stripper temperature XMEAS18
6 Reactor feed rate XMEAS6 14 Separator steam flow XMEAS19
7 Reactor temperature XMEAS9 15 Reactor cooling water outlet temperature XMEAS21
8 Purge rate XMEAS10 16 Separator cooling water outlet temperature XMEAS22

Fig. 6. Percentage difference in RMSE between random sampling and the active learning methods, using α = 10% (50 simulations).

which are difficult to track during routine operations. Data-driven
soft sensors are often developed to predict the latter in real-
time. However, training regression models frequently necessi-
tates a large number of labeled examples, and conducting quality
inspections on chemical products may be costly and time-
consuming. For this reason, optimizing the sampling strategy
using active learning is highly desirable.

The 16 process variables shown in Table 2 are often used
as predictors for the hard-to-measure process variables when
testing active learning or soft sensor modeling approaches on the
TEP. In most cases, the response variable is one of the composition
measurements, such as the purge or product streams [45,47,48].
In this work, we selected two purge streams (Stream 9 A and
Stream 9E) and two product streams (Stream 11D and Stream
11E) as the response to be predicted using the easy-to-measure
variables.

As in the case of the numerical simulations, 50 datasets have
been generated, and the average RMSE results are presented in
the learning curve plots in Figs. 6 and 7. Most of the experimental
parameters correspond to the ones used in the numerical study.
The number of observations allocated to the first training set is

equal to p+2, which in this case corresponds to 18. The warm-up
length w is equal to 500 and the budget b is set to 50. The main
difference from the models used in Section 4.1 is that, in this case,
all the models include the intercept term.

We can see in Fig. 6 how the results obtained in Section 4.1
are still valid with data coming from a realistic industrial pro-
cess simulator. Indeed, both the random and norm-thresholding
approaches are outperformed by the proposed strategy. With
regards to the level of α, the behavior observed in the numerical
study does not seem to be altered and, as the threshold is raised,
the performance gap between random sampling and active learn-
ing strategies widens. The plots of the learning curves with the
absolute RMSE values are included in the appendix.

The plots in Fig. 8 show the residuals related to the first
composition measurements analyzed, stream A of the purge. For
illustrative purposes, the residuals refer to a smaller test set, com-
posed of 100 observations. The first plot (a) shows the residuals
obtained with the first random design, which is common to all
the compared approaches. The remaining plots (b–d) illustrate
the residuals obtained after five learning steps with each strategy.
In general, we can see how the predictive performance improves

9
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Fig. 7. Percentage difference in RMSE between random sampling and the active learning methods, using α = 1% (50 simulations).

Fig. 8. Residuals of the Stream 9 A predictions: with the initial training set (a) and after augmenting the design with 5 additional labeled examples with the different
methods (b–d) (one simulation with α = 1%).
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Fig. 9. Residuals of the Stream 11D predictions: with the initial training set (a) and after augmenting the design with 10 additional labeled examples with the
different methods (b–d) (one simulation with α = 1%).

when more observations are included in the design. However, the
predictions obtained with the proposed strategy are significantly
better than the ones obtained with random sampling and norm-
thresholding. Indeed, it should be noted how the RMSE obtained
with the fifth model using CDO is 55 percent lower than the
RMSE obtained with random sampling, and 23 percent lower than
the RMSE obtained with the alternative active learning scheme.
Finally, the improvement of CDO from the initial RMSE is higher
than 65 percent.

It should be noted how a simple linear regression model fitted
on a small training set can achieve compelling prediction results
when the labeled examples are appropriately selected. This is true
even when testing our approach on data from the TEP, which is
characterized by highly nonlinear relationships.

Fig. 9 shows the predictions obtained for stream D of the
product. In this case, to offer an additional view, we compared
the models obtained after 10 learning steps. It can be seen how
the behavior of the different schemes follows the same trend
observed in Fig. 8. Indeed, after 10 iterations, the RMSE obtained
with CDO is 18 percent lower than the one obtained by norm-
thresholding and 30 percent lower than the one obtained with
random sampling. From the initial design, the RMSE is reduced
by more than 60 percent with CDO.

5. Conclusion

In many industrial processes and real-life applications, data is
often abundant only in an unlabeled form. Moreover, the pro-
hibitive cost required by quality inspections and the time re-
quired by manual annotation makes it unfeasible to label each
data point with its quality characteristic. In these cases, active
learning can significantly improve the predictive performance of
regression models by smartly selecting the instances to include

in the training set. In situations where many observations are
sequentially processed, it is necessary to provide a real-time
sampling strategy for selecting the most informative instances.
In this paper, we propose an optimal strategy for performing
stream-based active learning with linear regression models. Two
case studies, one using numerical simulations and the other one
using the TEP, show that the proposed approach offers improved
predictive performance and reduces the prediction error faster.
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Appendix

The plots in Figs. 10–13 report the learning curves showing
the RMSE values, without using random sampling as baseline.
The plots begin from the third learning step to better show the
differences between the curves. As all the models start from the
same random design, the RMSE obtained in the first learning step
is the same for the three methods as it is shown in Figs. 3, 4 and
6, 7.
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Fig. 10. Learning curves of different methods on numerical simulations with α = 10% (50 simulations).

Fig. 11. Learning curves of different methods on numerical simulations with α = 1% (50 simulations).
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Fig. 12. Learning curves of different methods on TEP data with α = 10% (50 simulations).

Fig. 13. Learning curves of different methods on TEP data with α = 1% (50 simulations).
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Abstract
In many industrial applications, obtaining labeled observations is not straight-
forward as it often requires the intervention of human experts or the use of
expensive testing equipment. In these circumstances, active learning can be
highly beneficial in suggesting the most informative data points to be used when
fitting a model. Reducing the number of observations needed for model devel-
opment alleviates both the computational burden required for training and the
operational expenses related to labeling. Online active learning, in particular, is
useful in high-volume production processes where the decision about the acqui-
sition of the label for a data point needs to be taken within an extremely short
time frame. However, despite the recent efforts to develop online active learning
strategies, the behavior of these methods in the presence of outliers has not been
thoroughly examined. In this work, we investigate the performance of online
active linear regression in contaminated data streams. Our study shows that the
currently available query strategies are prone to sample outliers, whose inclusion
in the training set eventually degrades the predictive performance of the models.
To address this issue, we propose a solution that bounds the search area of a con-
ditional D-optimal algorithm and uses a robust estimator. Our approach strikes
a balance between exploring unseen regions of the input space and protecting
against outliers. Through numerical simulations, we show that the proposed
method is effective in improving the performance of online active learning in the
presence of outliers, thus expanding the potential applications of this powerful
tool.

KEYWORDS
active learning, data stream, optimal experimental design, outliers, robust regression,
unlabeled data

1 INTRODUCTION

Predictivemodels often need to be trained on a large amount of labeled data before being deployed. However, in industrial
applications data is often abundant only in an unlabeled form. Active learning strategies provide a solution to this problem

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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F IGURE 1 General online active learning flowchart.

by prioritizing the labeling of the most useful instances for building the model, thus accelerating the convergence of
its learning curve.1 Active learning problems can be classified into three macro-scenarios.2 The first and most studied
scenario is the pool-based scenario, where the learner can select the most useful instances to be labeled by maximizing an
evaluation criterion over a closed set of observations. The second scenario is referred to as membership query synthesis,
and it allows the learner to query the labels of synthetically generated instances rather than those sampled from the process
distribution. Finally, the third scenario is online, or stream-based, active learning.3 In this case, the unlabeled observations
are drawn sequentially by the learner, which must immediately decide whether to keep the instance and query its label
or discard it. While many researchers have been working on active learning in the recent years, the pool-based scenario
has received the most attention.4,5
Although online active learning has become more popular in the last few years,6–10 the majority of the methods have

been developed for classification tasks.11 An interesting approach to online active learning for fuzzy regressionmodels has
been proposed by Lughofer.12 Other researchers tried to adapt the optimality criteria of the experimental design theory to
the online active linear regression framework.13–16 Linear regression models are still very useful in industrial applications
as they can be efficiently trained on a small number of observations. They are able to offer a straightforward interpretation,
along with the possibility of constructing confidence intervals on the parameter estimates.17,18 They can also be easily
coupled with variable selection and robust estimation methods. Furthermore, whereas many pool-based active learning
approaches employ ensemble methods or complex models, linear models can support online active learning due to the
decreased computational cost associated with model training and updating.
Figure 1 depicts a general online active learning flowchart. The main difference among the query strategies lies in how

they assess the usefulness of an unlabeled instance when the learner samples it from the data stream. Another important
aspect is the assumptions on the input distribution. Indeed, despite the increased interest in the online active linear regres-
sion framework, the performance of the sampling strategies in the presence of outliers has not been thoroughly explored.
The few works we are aware of that analyze this issue, are related to the pool-based scenario. Deldossi et al.19 highlighted
how sampling methods based on D-optimality are affected by outliers and high leverage points. Zhao et al.20 focused on
robust active representations based on the𝓁2,𝑝-normconstraints for selecting highly representative data. Finally,He et al.21
emphasized the problem of being prone to sample outliers while proposing a semi-supervised active learning strategy for
multivariate time series classification, using uncertainty and local density.
In this paper, we study the problem of learning from contaminated data streams with limited sampling resources. We

first investigate the effects of outliers on the sampling decisionsmade by state-of-the-art online active learning approaches
for linear regression, and successively propose a solution for this issue. It should be noted that the presence of outliers con-
sidered in this work cannot be tackled using traditional anomaly detection methods. Indeed, most unsupervised anomaly
detection strategies rely on the assumption that a large training set free from outliers, usually referred to as phase I data
in the statistical process control literature, is available beforehand.22–25 However, this assumption is violated in many
practical applications,26 especially in label-scarce scenarios where few to no labels are available before the beginning of
the active learning routine. The proposed strategy for online active learning utilizes a double-threshold approach to limit
the search area of a conditional D-optimality (CDO) algorithm. By using two thresholds, the strategy aims to identify
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informative data points while excluding outliers. In cases of highly contaminated environments, robust estimators based
on the Huber and Tukey bisquare loss are employed.
The remainder of this paper is organized as follows. In Section 2, we introduce the terminology and describe the sam-

pling strategies that are used as the baseline in our analysis. Section 3 offers a review on the use of robust estimators and
introduces ways of modifying the CDO algorithm. In Section 4, we test our approach using numerical simulations in four
scenarios, using different contamination ratios. Section 5 offers a discussion on the results obtained. Finally, Section 6
provides some conclusions.

2 BACKGROUND AND RELATEDWORK

The labeled observations that are collected from the contaminated data stream are used to fit a linear model of the form

𝐲 = 𝐗𝛃 + 𝛆 (1)

where 𝐲 is an 𝑛 × 1 vector of response variables, 𝐗 is an 𝑛 × 𝑝 model matrix, 𝛃 is a 𝑝 × 1 vector of regression coefficients,
and 𝛆 is an 𝑛 × 1 vector representing the zero-mean Gaussian noise. Here, 𝑛 represents the total number of observations
and 𝑝 the number of variables. Before starting the active learning routine and the collection of additional labels, it is
commonly assumed to have at our disposal an initial set of labeled observations.5,27,28 This set is used to obtain an initial
estimate �̂� for the coefficients 𝛃. Using an ordinary least squares (OLS) estimator, we have that �̂� = (𝐗T𝐗)−1 𝐗T𝐲. Then,
the fitted linear regression model is �̂� = 𝐗�̂�, and the residuals are obtained as 𝐞 = 𝐲 − �̂�. When the variables are highly
correlated, a pre-whitening might be performed to avoid an ill-conditioned problem when computing (𝐗T𝐗)−1. It should
be noted that the matrix 𝐗T𝐗 is important to obtain information about the design geometry. In particular, for a design
composed of 𝑛 runs, the moment matrix, 𝐌 = 𝐗T𝐗∕𝑛, plays a central role in the definition of optimal experimental
designs. The two most commonly employed optimality criteria, which have been adapted for the online active learning
scenario, are A-optimality and D-optimality. An A-optimal design is achieved by minimizing the trace of the inverse of
the moment matrix 𝐌. It can be shown how this corresponds to minimizing the individual variances of the estimated
coefficients. This approach has been adapted for the online active linear regression framework by Riquelme et al.14 They
proposed a norm-thresholding algorithm that only selects observations 𝐱with large, scaled normby estimating a threshold
Γ as

PD (‖𝐱‖ ≥ Γ) = 𝛼 (2)

where 𝛼 is the ratio of observations we are willing to label out of the incoming data stream. The probability distribution
of the norms can be approximated using kernel density estimation (KDE) on a set of unlabeled observations 𝐂, which
can be regarded as a warm-up or calibration set and can either be retrieved from historical data or by observing the data
stream for a while. Using this thresholding approach, we would be sampling, with high probability, observations that help
achieve A-optimality. Given 𝑛 statistics, (𝑠1, … , 𝑠𝑛), KDE can be used to estimate the shape of an unknown distribution 𝑓
using

𝑓 (𝑠) =
1

𝑛

𝑛∑
𝑖=1

1

ℎ
𝐾
( 𝑠 − 𝑠𝑖

ℎ

)
(3)

where the bandwidth ℎ is a positive number that is used to control the amount of smoothing, and the kernel𝐾 is a smooth
function such that 𝐾(𝑠) ≥ 0, ∫ 𝐾(𝑠)𝑑𝑠 = 1, ∫ 𝑠𝐾(𝑠)𝑑𝑠 = 0 and 𝜎2𝐾 ≡ ∫ 𝑠2𝐾(𝑠)𝑑𝑠 > 0. In this paper, the Gaussian (Normal)
kernel, 𝐾 (𝑠) = (2 𝜋)−1∕2 𝑒−𝑠

2∕2 is used.
D-optimality is another fundamental criterion,29 which takes both the variances and covariances of the model coeffi-

cients into account by maximizing the determinant of the moment matrix𝐌. As in the case of A-optimality, D-optimality
has been adapted to the online active learning scenario with the proposal of a CDO algorithm.16 CDO suggests setting a
threshold Γ by using

PD

(
𝐱T
𝑙+1

(
𝐗T
𝑙
𝐗𝑙

)−1
𝐱𝑙+1 ≥ Γ

)
= 𝛼 (4)
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4 CACCIARELLI et al.

where 𝐗𝑙 is the model matrix with the 𝑙 labeled observations currently available and 𝐱𝑙+1 is the unlabeled data point that
is under evaluation. It can be shown that by selecting observations that maximize 𝐱T

𝑙+1
(𝐗T

𝑙
𝐗𝑙)

−1𝐱𝑙+1, we are at the same
time seekingD-optimality and labeling observationswith a large unscaled prediction variance (UPV),30 which is generally
defined as

UPV (𝐱) = 𝐱(𝑚)T
(
𝐗T𝐗

)−1
𝐱(𝑚) (5)

where 𝐱(𝑚) represents the data point where the UPV is being estimated, expanded to the model form (e.g., if polynomial
features are added to themodel). To estimate the threshold Γ, we use KDE after computing the UPV of all the observations
in 𝐂. The CDO intuition is coherent with the idea that a point for which we have a large UPV value represents a less
explored region of the input space and will help, with high probability, attaining D-optimality, conditional on the already
collected observations. The equivalence between sampling data points with high UPV and D-optimality is demonstrated
in our previous work.16
Given these preliminaries, we now propose methods that are robust to the presence of outliers in the data stream.

3 METHODS

When training a linear regression model on a dataset corrupted by the presence of outliers, a simple yet effective solution
is to resort to the use of robust estimators. An extensive overview of robust regression has been provided by Fox and
Weisberg.31 In general, robust estimation methods attempt to estimate the coefficients �̂� by minimizing a particular loss
function given by

 =

𝑛∑
𝑖=1

𝜌 (𝑒𝑖) =

𝑛∑
𝑖=1

𝜌
(
𝑦𝑖 − 𝐱𝑖�̂�

)
(6)

where 𝜌 is a function that regulates the contribution of each residual to the loss, and 𝑒𝑖 is the residual for the 𝑖th observation
(𝐱𝑖, 𝑦𝑖). The function 𝜌 is nonnegative, equal to zero when the argument is zero, symmetrical and monotone in |𝑒|. In the
case of an OLS estimator, the loss is given by

𝜌𝐿𝑆 = 𝑒2 (7)

It can be seen how the objective function minimized by an OLS estimator is equally affected by all the observations
for which we measure the residuals. Instead, robust estimators try to reduce the impact of observation with very large
residuals on the estimation of �̂�. One of the most popular robust loss functions is the Huber loss,32 which is defined as

𝜌𝐻 =

{
𝑒2 𝑓𝑜𝑟 |𝑒| ≤ 𝑘

2𝑘 |𝑒| − 𝑘2 𝑓𝑜𝑟 |𝑒| > 𝑘
(8)

where 𝑘 is a tuning parameter, which is usually set to 1.345𝜎 to achieve 95% efficiency when the errors are normally
distributed, while keeping a good protection against outliers.31 It can be seen how the contribution of each observation is
reduced based on the magnitude of the corresponding residual. However, despite being much more robust than the OLS
estimator, the Huber loss is still proportional to the magnitude of the residuals even when the absolute errors are larger
than 𝑘. Conversely, the Tukey bisquare loss function33 sets a threshold for the residuals, above which the value of the
residuals does not influence the loss.
The Tukey loss function is given by

𝜌𝑇 =

⎧⎪⎨⎪⎩
𝑘2

6

{
1 −

[
1 −

(
𝑒

𝑘

)2]3}
for |𝑒| ≤ 𝑘

𝑘2

6
for |𝑒| > 𝑘

(9)
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CACCIARELLI et al. 5

ALGORITHM 1 Bounded CDO

Input: data stream 𝐒; initial random design 𝐗; warm-up length𝑚; budget 𝐵
Output: an augmented design 𝐙
1: Set 𝐂 = ∅ // calibration set to estimate 𝚺, Γ1, Γ2
2: 𝑖 ← 1, 𝑏 ← 0 // 𝑏 represents the currently used budget
3: while 𝑖 ≤ 𝑚 do
4: Observe the 𝑖th data point 𝐱𝑖 ∈ 𝐒

5: Select 𝐱𝑖 ∶ 𝐂 = 𝐂 ∪ 𝐱𝑖

6: 𝑖 ← 𝑖 + 1

7: end while
8: Estimate the covariance matrix 𝚺 from 𝐂 and perform eigendecomposition 𝚺 = 𝐔𝚲𝐔T

9: Whiten the initial design by computing 𝐙 = 𝚲−1∕2 𝐔T𝐗

10: Whiten the calibration set by computing 𝐕 = 𝚲−1∕2 𝐔T𝐂

11: Estimate Γ1, Γ2 by estimating the UPV of the model trained on 𝐙 on the points in 𝐕
12: while 𝑏 ≤ 𝐵 and 𝑖 ≤ |𝐒| do
13: Observe the 𝑖th data point 𝐱𝑖 ∈ 𝐒

14: Whiten 𝐱𝑖 by computing 𝐳𝑖 = 𝚲−1∕2 𝐔T𝐱𝑖

15: if Γ1 ≤ 𝐳T
𝑖
(𝐙T𝐙)−1𝐳𝑖 ≤ Γ2 then

16: Ask for the label 𝑦𝑖 and augment the labeled dataset 𝐙 = 𝐙 ∪ 𝐳𝑖

17: 𝑏 ← 𝑏 + 1

18: Update thresholds Γ1, Γ2 using the augmented design
19: else
20: Discard 𝐱𝑖
21: 𝑖 ← 𝑖 + 1

22: end if
23: end while
24: return 𝐙

where the value of the tuning constant 𝑘 is usually set up to 4.685𝜎.31 Besides using aHuber or Tukey loss to obtain a robust
estimator, we consider the possibility of filtering out outliers while selecting the most informative observations from the
data stream. To this extent, we propose an adaptation of the CDO algorithm, where instead of estimating a threshold, we
define a bounded area of interest for the unscaled prediction variance of an observation as

PD

(
Γ1 ≤ 𝐱T

𝑙+1

(
𝐗T
𝑙
𝐗𝑙

)−1
𝐱𝑙+1 ≤ Γ2

)
= 𝛼 (10)

This approach is hereinafter referred to as bounded CDO. The idea is coherent with the method proposed by Hoaglin
and Welsch.34,35 of considering as potential outliers observations for which 𝐱T

𝑖
(𝐗T𝐗)−1𝐱𝑖 ≥ 2𝑝∕𝑛 is verified. The filtering

approach suggested by Hoaglin andWelsch is also used by Deldossi et al.,19 in the offline scenario. Here, instead of opting
for a fixed value for Γ2, we use KDE with a Gaussian kernel to estimate Γ1 and Γ2. The upper limit Γ2 is selected by deter-
mining a cut-off value 𝑐, which is related to the amount of protection against outliers that we would like to achieve. This
value is a tuning constant similar to the 𝑘 used by robust estimators and, when possible, should be selected by exploiting
previous knowledge of the process. Given the cut-off value 𝑐 and the sampling rate 𝛼, Γ2 is given by the 100(1 − 𝑐)% per-
centile, and Γ1 by the 100(1 − 𝑐 − 𝛼)% percentile. As anticipated in Section 2, the threshold estimation is based on a set of
unlabeled data, which is also used to estimate the covariance matrix 𝚺 and whitening the observations to remove depen-
dencies and facilitate the estimation of �̂�. At this stage, semi-supervised methods might also be considered to perform
tasks like feature extraction and exploit all the information available in the unlabeled data.21,36–39
Algorithm 1 provides a detailed explanation of how to implement the bounded CDO strategy for online active learn-

ing in a fixed-budget setting. The strategy involves collecting new labels and incorporating them into the design until a
specified budget constraint 𝐵 is reached. In some cases, it might be beneficial to anticipate the stop of the active learning
routine if the marginal improvement of the model is no longer significant.40 Previous studies have proposed various stop-
ping criteria to enhance the efficiency of data collection schemes based on active learning.41–45 Appendix A explores how
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6 CACCIARELLI et al.

some of these approaches could be adapted to the regression framework. From a computational standpoint, the update
of �̂� is done by means of a complete retraining each time a new labeled example is added to the design. However, if the
data matrix becomes considerably large and the time required for model updates increases, one may opt to update the
model and estimate new thresholds when a batch of new observations is collected, aligning with the principles of batch-
mode active learning.46 Additionally, incremental and recursive updating techniques can also be considered for improving
computational efficiency.
The estimation of the UPV can be modified by taking into account the weight matrix obtained from the robust

estimators. The weighted UPV (UPV𝑤) is estimated as follows

UPV𝑤 (𝐱) = 𝐱(𝑚)T
(
𝐗T𝐖𝐗

)−1
𝐱(𝑚) (11)

where 𝐖 represents the weight matrix used to downweigh the influence of outliers in the estimation of the regression
parameters.31 Each element of the weight matrix𝐖 is a positive number that determines the weight given to each obser-
vation in the regression analysis. Larger weights correspond to observations with less outlier-like behavior, while smaller
weights correspond to observations with more outlier-like behavior. The weight matrix 𝐖 is a diagonal matrix, where
each diagonal element corresponds to the weight assigned to a particular observation. In the case of an OLS estimator, we
have𝐖 = 𝐈𝑘, as the weight given to each observation is not sensitive to the residual. In other words, 𝑤𝐿𝑆(𝑒) = 1, regard-
less of the specific residual observed. With a Huber estimator, 𝑤𝐻(𝑒) = 1 if |𝑒| ≤ 𝑘 and 𝑤𝐻(𝑒) = 𝑘∕|𝑒| if |𝑒| > 𝑘. Finally,
with a Tukey model, 𝑤𝑇 (𝑒) = 0 if |𝑒| > 𝑘 and to 𝑤𝑇 (𝑒) = [1 − (𝑒∕𝑘)

2
]2 if |𝑒| ≤ 𝑘. Then, to select the most informative

observations while seeking protection against outliers, instead of estimating a single threshold, we define a bounded area
of interest for the unscaled prediction variance of an observation as follows

PD

(
Γ1 ≤ 𝐱T

𝑙+1

(
𝐗T
𝑙
𝐖𝐗𝑙

)−1
𝐱𝑙+1 ≤ Γ2

)
= 𝛼 (12)

4 EXPERIMENTS

In the experiments, we evaluate the performance of the active learning strategies in four scenarios, according to the
percentage of outliers affecting the data stream. We compare the bounded CDO strategy, coupled with OLS and robust
estimators, to the norm-thresholding approach, standard CDO, and random sampling. When using random sampling,
each time a new sample arrives, a number 𝑟 ∼ 𝑈(0, 1) is generated and the data point is only selected if 𝑟 ≥ 1 − 𝛼, where
𝛼 represents the labeling or sampling rate. The sampling strategies based on the use of robust estimators select the most
informative data points using the standard UPV, as in Equation (10). The results obtained with the weighted prediction
variance, UPV𝑤, were very similar and are included in the Appendix B for completeness. All the approaches receive as
input the same random design and then they iteratively collect labeled observations until the budget constraint 𝐵 is met.
The number of observations contained in the initial design is equal to 𝑝 + 2, where 𝑝 is the number of process variables.
We analyzed both the case of the initial design being outliers-free and contaminated. The results assuming the presence
of outliers also in the initial design are included in the Appendix C. For each simulated scenario, the 𝑖th observation for
the process variables, here considered a row vector, is generated according to a joint multivariate normal distribution

𝐱𝑖 ∼ 𝑝 (𝟎, 𝚺0) (13)

where 𝚺0 is given by 𝜎2𝐱𝐈. The corresponding response is obtained using

𝑦𝑖 = 𝐱𝑖 𝛃 + 𝜀𝑖, where 𝜀𝑖 ∼ 
(
0, 𝜎2𝜀

)
(14)

For normal data points, we used 𝜎𝐱 = 𝜎𝜀 = 1 for both input and output variables, and, for simulating outliers, we set
𝜎𝐱 = 𝜎𝜀 = 3.Moreover, for each of the true coefficients of the underlyingmodel,we assumed𝛽 ∼ 𝑈(−5, 5) for normal data
points and 𝛽 ∼ 𝑈(10, 15) for outliers. As in Deldossi et al.,19 the outliers are introduced in the data stream in the form of
isolated covariate and concept shifts. That is, an anomalous data point is a point for which we have both a larger variation
in the input space, and a different relationship with the corresponding response variable. In the simulated scenarios,
outliers are randomly distributed in the data stream according to a pre-defined percentage describing the contamination
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CACCIARELLI et al. 7

F IGURE 2 Comparing query strategies in the absence of outliers: results from 1000 simulations. Plots (B) and (D) offer a closer view of
the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the simulations.

level of the environment. The performance of the models is expressed, in predictive terms, by the root mean squared error
(RMSE) of the predictions on a separate test set, only composed of normal observations. This is coherent with the objective
of trying to understand the true underlying relationship between predictors and response, and not the erroneous one that
could be derived from the outliers.
The effectiveness of the proposed approach is evaluated by comparing the learning curves reporting the average RMSE

values for each learning step, which are obtained using 1000 simulations for each scenario. A learning step indicates
the acquisition of a new labeled observation and its inclusion in the training set. Hence, at each step, we are comparing
models that are trained using the same number of labeled examples. We set the number of process variables equal to
20, the budget constraint 𝐵 equal to 50, and the warm-up length 𝑚 to 500. The warm-up length indicates the number of
unlabeled observations that are used to estimate the covariance matrix 𝚺 that is used for pre-whitening the observations.
With regards to the sampling rate, we used 𝛼 = 5% for all the sampling strategies, and 𝑐 = 5% for the protection cut-off
value used by the bounded CDO algorithm. We selected 5% as it is a commonly employed value, especially when no
previous specific knowledge is available.
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8 CACCIARELLI et al.

F IGURE 3 Comparing query strategies with 0.275% outliers (1000 simulations). Plots (B) and (D) offer a closer view of the two best
strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the simulations.

4.1 No outliers

We first evaluated the query strategies to assess their performance in the absence of outliers. Consistently with the findings
reported in our previous work,16 our results in Figure 2 indicate that the standard CDO algorithm performs best when
there are no outliers in the data stream. The use of robust estimators does not provide any added value in this scenario.
Both the Huber and Tukey estimators are unable to outperform the bounded CDO strategy with the OLS model, which
in turn is only marginally worse than the standard CDO. In Figure 2, plots (A) and (B) represent the strategies that rely
on the OLS models, while plots (C) and (D) show the strategies that use robust models, with the bounded CDO based on
OLS included for comparison.

4.2 0.275% outliers

The second scenario depicts a circumstance where only amodest fraction of the data stream is represented by outliers. We
can see from the plot (A) of Figure 3 how the performance of the norm-thresholding and theCDOalgorithm is dramatically
worsened, as they are both prone to sample outliers. The random strategy seems to be a better option and the bounded
CDO strategy offers the best results. In the plots (C) and (D) of the same figure, we can see the comparison with the
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CACCIARELLI et al. 9

F IGURE 4 Comparing query strategies with 1% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.

results obtained from the robust estimators. In this scenario, using a robust estimator does not seem to offer a significant
improvement over the bounded CDO strategy based on OLS. Indeed, the learning curves obtained with the bounded
strategy employing the OLS estimator and the Huber estimator are very similar.

4.3 1% outliers

The third scenario reports a worse situation, where the process is affected by a large number of outliers, that is, 1% of
the total number of observations. The results in Figure 4 are similar to the ones from the previous scenario, with the
exception that now the gap between bounded CDO and random sampling is much wider. This should be due to the fact
that uniformly sampling observations with 𝛼 = 5% would most certainly lead to the inclusion of a greater number of
outliers in the training set.
As per the robust estimators shown in the plots (C) and (D) of Figure 4, it is possible to see how the use of robust

estimators now offers an evident value-added, also when compared to the OLS-based bounded CDO. While the learning
curves are more or less overlapping in the first five learning steps, the models fitted using the Huber and Tukey losses are
yielding a lower prediction error in the remaining steps.
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10 CACCIARELLI et al.

F IGURE 5 Comparing query strategies with 5% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view on the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.

4.4 5% outliers

The final scenario simulates a pathological case, where 5% of the observations from the data stream are outliers. The
results from the third scenario are exacerbated here. In the case of the OLS estimators, the bounded CDO is still the best
strategy, being the only one with a descending learning curve (plots (A) and (B) of Figure 5). Instead, from the plots (C)
and (D) of Figure 5 we can see how the robust estimators are able to improve the results obtained with the bounded CDO
strategy. In this circumstance, there is not a clear distinction between the Huber and the Tukey models.

5 DISCUSSION

The experiments presented in this study aimed to evaluate the performance of different active learning strategies in the
presence of outliers in a data stream. The results showed that the standard CDO algorithm performed best in the absence
of outliers, while the bounded CDO strategy coupledwith OLS and robust estimators provided better results when outliers
were present. In scenarios where an initial training set free from outliers is available and only amodest fraction of the data
stream is represented by outliers, the bounded CDO strategy employing an OLS estimator seems to be the better option.
Conversely, in the case of a larger contamination level, sampling strategies based on robust estimators yield the best results.
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CACCIARELLI et al. 11

When using robust estimators, for our datasets we did not find solid evidence that using a weighted prediction variance
is an advantage. Another interesting observation is that, in the presence of outliers, the standard OLS methods (random,
norm-thresholding, and CDO) never converge to the results obtained with the robust query strategies. This is because
they tend to accumulate outliers in the training set, which degrade the predictive performance as themodel is not allowed
to forget old or redundant data. The findings from this study have important consequences for practical applications of
active learning strategies, especially in contexts where the data stream is contaminated by outliers. The results suggest
that the choice of the active learning strategy should depend on the level of contamination of the data stream. When
the data stream is free from outliers, the standard CDO is a good strategy. However, even when a modest fraction of the
observations is corrupted, bounding the search area of the active learning algorithm or using robust estimators might be
necessary. Overall, this study provides valuable insights into the performance of active learning strategies in the presence
of outliers and can inform the development of more effective approaches for real-world applications. However, it is worth
noting that the simulations were based on specific assumptions about the data generation process and may not fully
capture the complexity of real-world data streams. Further research is needed to validate these findings on real-world
datasets and to investigate the generalizability of the proposed approach.

6 CONCLUSIONS

In many real-world problems, data is only available in an unlabeled form, and acquiring the labels is often an expensive
and time-consuming task. In these circumstances, active learning is able to reduce the computational burden required
to achieve compelling predictive performance by selecting the most informative data points to query. In this paper, we
analyze the online active learning framework when the data stream is corrupted by the presence of outliers. In general,
we show how the presence of outliers dramatically worsens the performance of the currently proposed methods for active
linear regression. To tackle this issue, we propose a modification of the CDO algorithm that filters the outliers, while
still focusing on the most promising observations based on the concepts of D-optimality and prediction variance. The
analysis shows how this solution is sufficient to make the CDO strategy robust to a modest presence of outliers. When the
percentage of outliers in the data stream is higher, the best results are obtained by coupling the bounded CDO strategy
with a robust estimator. In general, the proposed approaches can effectively solve the problem of outliers contaminating
the data stream, without adding computational complexity compared to the original CDO strategy.
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APPENDIX A: STOPPING CRITERION
In real-world applications of active learning, if we do not have an explicit operational budget on the number of experiments
that can be run, it can be challenging to determine when to stop collecting new labels due to the unavailability of the true
learning curves. To address this problem, it is beneficial to approximate the learning curve using proxy measures. In this
study, we investigate the use of two proxy measures. Firstly, we propose monitoring the slope of the stabilization score,
drawing inspiration from the stabilizing predictions47 and validation set agreement48 methods employed in classification.
In the regression framework,we calculate the stabilization of predictions by averaging the sumof squares of the differences
between the predictions of the 𝑤 most recent pairs of models. Similarly to Bloodgood and Vijay-Shanker,47 we utilize a
window size of 3 (𝑤 = 3). The values being compared are the predicted values of the calibration set 𝐂, obtained through
successive models. As the examples in 𝐂 are not used in the annotation process, this curve is solely influenced by the
impact of selected and labeled examples on training new models. Essentially, this curve monitors when the predictions
from models trained with newly included observations start producing highly similar results. The stopping rule can then
be determined through visual inspection of the curve, by setting a tolerance for the sum of squares not improving or

F IGURE 6 Approximating the learning curve: random sampling with no outliers (1000 simulations). The left axis reports the RMSE
value for the curves related to the test error and the LOO-CV. The right axis shows the average sum of squares related to the stabilization score.
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14 CACCIARELLI et al.

approaching zero, or by applying a hypothesis testing procedure. Another performance-based metric we consider is the
leave-one-out cross-validation (LOO-CV) score obtained by the model on the currently available labeled observations.
While this technique relies on ground-truth labels and may appear advantageous, it may not be the optimal choice if
the collected training set is biased or does not accurately represent the real data distribution.49 On the other hand, the
stabilization score, despite not relying on real labels, could be more reliable if the calibration set 𝐂 follows the population
distribution. Figure 6 demonstrates the effectiveness of the two proposed methods in approximating the true test error
curve, offering valuable insights for determining when to halt the active learning routine.

F IGURE 7 Comparing UPV and UPV𝑤 in the scenario with 0.275% outliers (1000 simulations).
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CACCIARELLI et al. 15

APPENDIX B: WEIGHTED PREDICTION VARIANCE
In this section,we examine the impact of switching from the standardUPV to itsweighted version on the learning curves of
the robust bounded CDO strategies.While it may seem reasonable to use aweighted prediction variance from a theoretical
standpoint, we found little compelling evidence that it improves performance even with the use of robust estimators
(Figures 7–9). In fact, we observed that using the UPV𝑤 actually worsens results when the initial design is free from
outliers. This could be because the robust models mistakenly identify some observations as outliers, resulting in𝐖 ≠ 𝐈𝑘.

F IGURE 8 Comparing UPV and UPV𝑤 in the scenario with 1% outliers (1000 simulations).
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16 CACCIARELLI et al.

F IGURE 9 Comparing UPV and UPV𝑤 in the scenario with 5% outliers (1000 simulations).
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CACCIARELLI et al. 17

APPENDIX C: PRESENCE OF OUTLIERS IN THE INITIAL DESIGN
In Figures 10–12, we investigate the impact of removing the assumption that the initial design is free from outliers on
the sampling strategies. Despite the small size of the initial design when 𝑝 = 20, we observed several notable behaviors.
One of the most noticeable differences is that the learning curves start with higher errors, as there are outliers forcibly
included in the data. However, over time, the learning curves of the robust strategies are able to converge to satisfactory
predictive performance as they canminimize the impact of these observations on themodel training. In contrast, the OLS-
based bounded CDO performs significantly worse in this scenario. This is because estimating the cutoff value Γ2 using a
contaminated set does not provide adequate protection against the inclusion of outliers in the design.

F IGURE 10 Comparing query strategies with 0.275% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.
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18 CACCIARELLI et al.

F IGURE 11 Comparing query strategies with 1% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.
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CACCIARELLI et al. 19

F IGURE 1 2 Comparing query strategies with 5% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.
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Abstract—In the era of big data, companies are increasingly
driven to amass vast amounts of data, particularly in process
industries where advanced sensor technologies are prevalent.
However, obtaining accurate labels or product information
through quality inspections can be prohibitively expensive. Active
learning emerges as a promising approach to optimize data
sampling by prioritizing the most informative data points. Nev-
ertheless, active learning strategies heavily rely on predictive
models that are iteratively updated. Aligning with the principles
of data-centric AI, this study highlights the detrimental effects
of passively incorporating all available process variables into
a predictive model for guiding data collection. Specifically, in
real-time sampling strategies based on online active learning,
the inclusion of irrelevant features significantly hampers the
efficiency of the learning process.

Index Terms—Data-centric AI, active learning, unlabeled data,
data streams, feature selection, design of experiments.

I. INTRODUCTION

The ubiquity of big data extends to industrial production,

where automated data collection schemes based on pervasive

sensors often lead to a flood of process data. Many industries

tend to collect vast amounts of data, frequently overlooking its

relevance for modeling and predictive objectives. In contrast,

product-related data, especially in high-volume manufacturing

settings, is usually scarce due to the costs involved with quality

inspections. This dichotomy can introduce complexities in cre-

ating predictive models that link process variables to product

features. Hence, active learning, due to its ability to propose

the most informative data points for labeling, is increasingly

embraced as it promotes a data-efficient methodology for

model training and deployment [1]. In high-volume, fast-

paced production, it is not always feasible to evaluate all

available instances prior to decision-making. Stream-based

active learning, where data arrives in a stream and the learner

must promptly decide whether to keep, label, or discard each

instance, proves valuable in such scenarios [2]–[5]. Despite the

significant research on active learning for classification tasks,

regression models, which are fundamental for developing soft

sensors or addressing quality control issues where a product

characteristic is measured on a continuous scale, have received

less attention [6]. This paper explores the application of the

stream-based active learning framework for linear regression

Corresponding author: Davide Cacciarelli (dcac@dtu.dk).

models, with an emphasis on scenarios involving the presence

of irrelevant features in the data. Considering the relevance

of data, from its initial collection to eventual use, enhances

our understanding of the underlying process and contributes to

the broader discourse on better big data practices in industrial

environments.

II. STREAM-BASED ACTIVE LEARNING

By maintaining a representative subset of the data, active

learning alleviates the computational demands that come with

large datasets, employing a range of query strategies to accom-

plish this. These strategies either aim to enhance the model

by selecting data points where the model shows uncertainty

[7]–[10], or they work to secure a diverse and representative

subset within the feature space [11]–[13]. It should be noted

that in the data-centric AI paradigm, the concept of data

representativity emerges as a critical aspect that transcends

computational efficiency. It takes on an even more significant

role, acting as a countermeasure against biases and promoting

fairness during the development and deployment of AI systems

[14].
In the stream-based active learning framework for linear

regression, also referred to as online active linear regression

[15], observations arrive in a sequential manner, often in

real-time, necessitating instantaneous decisions about their

relevance. The labeled data acquired from the stream are used

to fit a linear model, described by y = Xβ + ε, where y
is the response variable vector, X is the model matrix, β is

the vector of regression coefficients, and ε is the error vector.

According to the norm-thresholding approach introduced by

Riquelme et al. [16], when a new unlabeled data point x is

observed, the learner asks for its label only if its norm exceeds

a threshold Γ, defined by

P (‖x‖ ≥ Γ) = α (1)

where α is the percentage of observations we are willing

to label out of the incoming data stream. This value should

be set taking into account the budget B and the sampling

rate of the sensors placed along the process. The conditional

D-optimality (CDO) approach [17], [18] further extends the

norm-thresholding strategy by imposing a threshold Γ on the

prediction variance as in
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Fig. 1. Stream-based active learning for regression in the fixed-budget setting.

P
(
x�
k+1

(
X�

k Xk

)−1
xk+1 ≥ Γ

)
= α (2)

where Xk is the model matrix including the k labeled obser-

vations collected to this point. This approach is inspired by

the connection between D-optimality and prediction variance

[19] and tries to combine accurate parameter estimation with

the exploration of lesser known input space regions.

Fig. 1 illustrates the generic stream-based active learning

flowchart for linear regression. In this setup, observations are

evaluated on the fly to determine their inclusion in model

updates. In the fixed-budget formulation of active learning,

sampling continues until a predefined budget constraint on the

number of data points that can be queried is met.

III. FEATURE SELECTION

In situations where data is being collected from high-

dimensional sources in real-time, the relevance of features

becomes particularly critical as the data may contain numerous

irrelevant features. These features can pose serious challenges

to the efficiency of stream-based active learning strategies,

as they can not only negatively impact the performance of

predictive models but also significantly inflate the data storage

requirements. In light of these considerations, our approach

integrates feature selection techniques into the stream-based

active learning process. This allows for a more refined un-

derstanding of the data structure, enhancing the predictive

power of the model and making the sampling process more

efficient. Indeed, the adoption of appropriate feature selection

techniques in the context of active learning can alleviate the

curse of dimensionality and significantly improve the quality

of data sampling, making the best out of a limited labeling

budget [20]–[22]. Feature selection can broadly be divided into

three main categories: information-theoretical methods, sparse

methods, and statistical methods [23]. Within the realm of

information-theoretical methods [24], mutual information (MI)

is a commonly used technique. The MI score between two

random variables measures the information gained about one

variable through observing the other. For a pair of continuous

variables (X,Y ), defined over X ×Y , the MI is calculated as

I(X;Y ) =

∫
Y

∫
X
PX,Y (x, y) log

(
PX,Y (x, y)

PX(x)PY (y)

)
dxdy

(3)

where PX,Y is the joint probability density function of X and

Y , and PX(x) and PY (y) are the marginal probability density

functions of X and Y , respectively. Among the sparse meth-

ods, the least absolute shrinkage and selection operator (Lasso)

[25] has been widely adopted. Lasso achieves regularization

and variable selection by limiting the sum of the absolute

values of the model parameters. Considering the linear model

y = Xβ+ε introduced in Section II, the optimization problem

set by Lasso can be formulated as

min
β

{
1

2n
‖y −Xβ‖22 + λ‖β‖1

}
(4)

where n is the number of observations and λ is a non-

negative tuning parameter controlling the level of shrinkage.

This method facilitates the selection of important features by

pushing the coefficients of irrelevant ones toward zero. Sparse

methods find extensive use in chemometrics, particularly when

the number of predictors p greatly exceeds n, as enforcing

sparsity promotes model interpretability and mitigates overfit-

ting to the training data [26]

Finally, statistical methods can be used to assess the signif-

icance of features based on various statistical tests. F-tests are

commonly employed in regression analysis for this purpose.

One of the simplest approaches is to perform univariate tests

to evaluate the effect of each regressor.

IV. APPROACH

The main objective of this work is to evaluate the per-

formance of online active linear regression methods when

many irrelevant measurements are taken from the process.

To do so, we combine the CDO stream-based active learning

244



strategy with three different feature selection methods. In this

framework, the learner observes a full measurement vector of

p process variables at each time step. After deciding whether

to query this vector, the learner acquires the corresponding

label, updating both the regression model and the feature

scores. These feature scores are used to select the M most

relevant features, thereby reducing the number of parameters

to be estimated. Alg. 1 presents the modified version of

the CDO algorithm that incorporates feature selection. The

key modification in the proposed algorithm, compared to the

original CDO algorithm, is the inclusion of feature scoring in

addition to observing the data point and deciding whether to

request its label. It should be noted that this algorithm pro-

vides the general framework to implement CDO with feature

selection. The step where the M features are retained from

the measurement vector and the data matrix varies according

to the specific feature selection strategy chosen.

The threshold Γ is estimated using kernel density estimation

on am unlabeled warm-up set that is collected by observing the

process for a while without querying any label. The threshold

is then iteratively refined in order to represent the most recent

model. For more details related to the threshold estimation and

the computational time required to update it, please refer to

[17].

Algorithm 1 CDO with Feature Selection

Require: Initial training set (X,y) and model β̂; data stream

S; sampling rate α; budget B; threshold Γ; initialized

feature score function F and maximum number of features

M .

i ← 1 � Timestamp

c ← 0 � Labeling cost

while c ≤ B and i ≤ |S| do
Observe the ith data point xi ∈ S
Retain top M features from xi and X
Predict response ŷ = xβ̂

if x�
i

(
X�X

)−1
xi ≥ Γ then

Ask for the true label yi
Update training set (X,y) = (X,y) ∪ (xi, yi)
Update model β̂
Update feature score function F
Update threshold Γ
c ← c+ 1 � Pay for the label

else
Discard xi

end if
i ← i+ 1

end while

In this work, model updates entail a complete retraining

process, where a new estimation of the regression coefficients,

β̂, is obtained from scratch using the augmented training set.

Alternatively, incremental training approaches that update the

model gradually by incorporating new data points in small

batches or one at a time could be considered [27].

V. APPLICATION

In our experiments, we explore the performance of the

stream-based active learning strategies in three scenarios. In

each scenario, the data is generated from a linear model

where only 5 features impact the response, but 10, 20, and 30

irrelevant features are added to the data stream, respectively.

This simulates real-world situations where numerous sensors

are employed to collect process variables, but only a few of

them have a real effect on the response. We assume that each

measurement of the p process variables follows a multivariate

Normal distribution

xi ∼ Np (0,Σ) (5)

where Σ is the covariance matrix, given by σ2
xI. The corre-

sponding response is obtained using

yi = xiβ + εi, where εi ∼ N (
0, σ2

ε

)
(6)

We compare the performance of the CDO strategy with the

norm-thresholding approach and random sampling. Our pri-

mary objective is to demonstrate the performance degradation

experienced by traditional methods when irrelevant feature

measurements are included in the data stream. Additionally,

we investigate the effectiveness of three feature selection meth-

ods (information-theoretic, sparse, and statistical) in enhancing

the identification of truly relevant features, within the CDO

framework. For the Lasso estimator, the parameter λ is found

with a five-fold cross-validation procedure. For the MI and

F-test feature selection strategies, we retained the five top

features, assuming to know the number of process variables

truly affecting the y. Random sampling is implemented by

drawing a random number r ∼ U(0, 1) at each iteration, and

each incoming data point is selected if r ≥ 1− α. Moreover,

we included the performance obtained with CDO using the

optimal subset of features, assuming a perfect knowledge

about the irrelevant features.

The learning curves for the three case studies are reported in

Fig. 2. As expected, the gap between the performance obtained

using the optimal subset and the sampling strategies gets larger

as the number of irrelevant features increases. We can see

how across the three case studies the best performance is

obtained by combining CDO with Lasso. Using univariate F-

tests does not offer significant advantages during the learning

process. Finally, using the MI score in the feature selection

process dramatically deteriorates the model. Figs. 3,4, and 5

can be used to get some insights on the behaviors of these

feature selectors. As expected, the Lasso estimator is able to

identify immediately the five relevant features by shrinking

the coefficients of the irrelevant features to zero. Using F-

tests we are able to locate the relevant features. However,

there is a significant delay in identifying the proper features.

Finally, while the MI heatmaps seem to highlight the relevant

features, we can see a clear smearing effect that leads to

including irrelevant features, at the expense of the relevant

ones, especially at the beginning of the process. We believe
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Fig. 2. Learning curves of the different Active Learning strategies (average from 500 simulation runs). Subplots (a), (b), and (c) show the cases with 10, 20,
and 30 irrelevant features, respectively.

Fig. 3. Scores obtained with the different feature selection methods during the Active Learning routine for the case with 10 irrelevant features (average from
500 simulation runs). Subplot (a) shows the squared regression coefficients obtained with Lasso. Subplot (b) shows the feature importance scores obtained by
performing univariate F-tests. Subplot (c) shows the Mutual Information scores.

this is due to the fact that in this case the MI scores are not

reliable when only a few number of observations have been

collected.

VI. CONCLUSION

This paper has highlighted the implications of including

irrelevant variables in the learning process, and established the

benefits of combining feature selection techniques with active

learning. Existing stream-based active learning techniques for

regression, including the norm-thresholding and the CDO

methods, showed decreased efficiency and effectiveness when

a large number of irrelevant features were included in the data

stream. The learning curves, which illustrate the evolution

of model error over time, clearly showcased an increased

prediction error when the proportion of irrelevant features

in the data was high. This result reinforces the idea that

the mindless incorporation of all available variables can be

detrimental to the learning process, supporting the data-centric

AI philosophy that emphasizes the relevance and quality of

data, rather than sheer quantity.

This study considered three feature selection methods:

an information-theoretical approach based on MI, a sparse

method employing the Lasso technique, and a statistical

method using F-tests. In the experiments, we showed how the

use of a Lasso estimator offered a more efficient and stream-

lined learning process. Particularly, this method helped to alle-

viate the issue of the curse of dimensionality while improving

the quality of data sampling. In doing so, we underscored

the power of feature selection in harnessing the potential of

a limited labeling budget, contributing to the broader goal
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Fig. 4. Scores obtained with the different feature selection methods during the Active Learning routine for the case with 20 irrelevant features (average from
500 simulation runs). Subplot (a) shows the squared regression coefficients obtained with Lasso. Subplot (b) shows the feature importance scores obtained by
performing univariate F-tests. Subplot (c) shows the Mutual Information scores.

Fig. 5. Scores obtained with the different feature selection methods during the Active Learning routine for the case with 30 irrelevant features (average from
500 simulation runs). Subplot (a) shows the squared regression coefficients obtained with Lasso. Subplot (b) shows the feature importance scores obtained by
performing univariate F-tests. Subplot (c) shows the Mutual Information scores.

of optimizing the use of big data in industrial contexts and

increasing the knowledge about the underlying process. It is

also important to note that the specific feature selection method

used should ideally be tailored to the given context and the

nature of the data. In this case, we limited the experimental

setup to the case where the collected process variables are not

correlated. While the Lasso method proves highly effective

in this study, it might not be suitable for situations where

features are highly correlated [28]. Specifically, if a block of

process variables exhibits strong correlation, the application

of Lasso might result in the random selection of a single

variable within that block. Rotari and Kulahci [28] recently

proposed a variable selection wrapper for random forests to

reliably estimate feature importance scores in the presence of

correlations. Random forests are easily interpretable models

that can offer straightforward feature importance scores using

metrics such as the Gini index [29]. Moreover, dimension-

ality reduction methods like principal component analysis or

autoencoders could prove beneficial [30], [31] in extracting

salient features from the process variables. However, in the

case of p independent process variables, using dimensionality

reduction techniques could be counterproductive, as it could

hinder the isolation of the irrelevant features. This suggests

that the choice of the feature selection method should carefully

take into account the particular traits of the data and the

specific needs of the task we are dealing with. Moreover, prior

knowledge about the process or offline screening experiments

should be leveraged to inform the feature selection procedure,
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whenever possible.

In summary, this study has shown that combining active

learning and feature selection can result in enhanced effi-

ciency and accuracy for modeling regression data streams.

Future research could explore more complex or hybrid feature

selection methods, as well as investigate the use of these

methods with different types of learning models, beyond

linear ones. Additionally, evaluating the effectiveness of this

approach on real-world datasets from diverse industries would

provide valuable insights. Ultimately, this work aimed to

inspire further exploration and innovation in the field of data-

centric AI, fostering smarter, more efficient, and responsible

data utilization practices.
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Abstract

This paper proposes a scalable technique for de-
veloping lightweight yet powerful models for object
detection in videos using self-training with knowl-
edge distillation. This approach involves training
a compact student model using pseudo-labels gen-
erated by a computationally complex but generic
teacher model, which can help to reduce the need for
massive amounts of data and computational power.
However, model-based annotations in large-scale
applications may propagate errors or biases. To
address these issues, our paper introduces Stream-
Based Active Distillation (SBAD) to endow pre-
trained students with effective and efficient fine-
tuning methods that are robust to teacher imper-
fections. The proposed pipeline: (i) adapts a pre-
trained student model to a specific use case, based
on a set of frames whose pseudo-labels are predicted
by the teacher, and (ii) selects on-the-fly, along a
streamed video, the images that should be consid-
ered to fine-tune the student model. Various selection
strategies are compared, demonstrating: 1) the ef-
fectiveness of implementing distillation with pseudo-
labels, and 2) the importance of selecting images
for which the pre-trained student detects with a high
confidence.

1. Introduction
Deep Neural Networks (DNNs) are effective for ob-
ject detection in images, but their predictive power
comes at a high cost. The training of highly per-
formant DNNs is based on high-performance cloud
servers with a large-scale data set. This requires (i)

a large workforce to prepare the data set or imple-
mentation of training (ii) as well as a significant in-
vestment in time and money. These data, time, and
hardware costs create a barrier for most practition-
ers in terms of transition from theory to practice [5].
Furthermore, a single investment in resources to cre-
ate large general-purpose models, regardless of their
size, is no longer sufficient. Without retraining, these
models cannot be robust with respect to the stochas-
tic and ever-evolving environments. In the exam-
ple of Closed-Circuit Television (CCTV) monitoring
traffic on the city scale, there is no data set large
enough to cover all aspects of every urban land-
scape [35]. Therefore, a scalable, efficient, and re-
current retraining is necessary to reduce costs and
avoid under-performing systems.

Knowledge Distillation (KD) is a promising tech-
nique that enables the creation of lightweight but
powerful models. The process assumes that for the
same data set, large models (that is, teachers) have
higher knowledge capacity than smaller models (that
is, students). The teacher, typically a pre-trained
or very large generic model (e.g., YOLOv8x61),
can transfer its knowledge (i.e., pattern recognition
mechanisms) to students without significant model
degradation. However, recourse to other models
for labeling could lead to confirmation bias, a phe-
nomenon that refers to noise accumulation when the
model is trained using incorrect predictions for semi-
supervised or unsupervised learning [2]. Further-
more, an immediate rebound effect of the scheme is

1There is no official paper available for this deep learn-
ing model. For the latest information, please visit the offi-
cial repository: https://github.com/ultralytics/
ultralytics.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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the multiplication, on scale, of the number of mod-
els to be trained. The inference costs could become
significant. Additionally, if the teacher model runs
on a cloud-based platform, there may be additional
costs associated with its usage, such as hourly us-
age fees or data transfer costs. This could be miti-
gated by using Active Learning (AL), which aims to
identify the most informative examples for labeling.
The importance of sampling has been first formu-
lated in [4] as the problem of developing KD meth-
ods that are query-efficient and robust to labeling in-
accuracies due to teacher imperfection (i.e., confir-
mation bias). The method developed in [4] was de-
signed for a pool-based setting, which represents an
offline scenario where a pool of unlabeled data points
is made available to the learner. We claim that, in
many real-world applications, a large number of un-
labeled samples arrive in a streaming manner, mak-
ing it impossible to maintain all of the data in a
candidate pool. To the best of our knowledge, there
is no framework supporting the development of AL
methods that are query-efficient and robust to label-
ing inaccuracies in stream-based settings. The con-
tributions of this paper are the following:

1. Formulate Stream-Based Active Distillation
(SBAD) as the problem of developing AL meth-
ods that are both query-efficient and robust to
labeling inaccuracies in stream-based settings.

2. Demonstrate the benefits of the proposed
scheme for large-scale video-based object de-
tections on a public dataset [26].

3. Establish simple but effective baselines to train
a YOLOv8n student from a YOLOv8x6 teacher.

4. A code to reproduce the experiences and the
framework available at https://github.
com/manjahdani/SBAD/.

2. Related Work
2.1. Knowledge Distillation

KD is a method that involves training a smaller
model to imitate the performance of a larger model.
The main objectives of this technique are to prevent
a decrease in the model’s performance when it oper-
ates on a data set that is distributed differently than
the source domain, referred to as Unsupervised Do-
main Adaptation (UDA), and to produce lightweight
models suitable for the storage and computational ca-
pacities of miniaturized devices, referred to as Model

Compression (MC) applications. In this study, we
use a technique called Self-training with knowledge
distillation, which was introduced by [6]. This tech-
nique trains a student model using pseudo-labels
generated by a teacher model, which is beneficial
when the labeled data is limited but we have access
to a large sample of unlabeled data. Furthermore, the
aforementioned distillation scheme does not need a
direct access to the teacher. Yet, it may also propa-
gate errors or biases.

In addition, we will discuss two additional tech-
niques of interest in the following paragraphs: online
distillation and context-aware distillation.

Online Distillation. This approach involves train-
ing a smaller student model to mimic the output of a
larger teacher model on a per-example basis. In [13],
the authors designed an online knowledge distillation
scheme to perform real-time human segmentation in
sports videos. Experiments show the ability of the
model to adapt to contextual variations. Online dis-
tillation is also employed in [24] to adapt a low-cost
semantic segmentation model to a target video where
the data distribution is not necessarily stationary.

Context-aware Distillation. The works in [19,28]
attempt to exploit the contextual characteristics of the
scene to develop effective KD. They directly worked
on the distillation scheme to develop more special-
ized students. For example, [19] added a temporal
dimension such that the student learns the variations
in the intermediate features of the teacher over time,
taking into account the redundancies of the frames
within a CCTV stream.

2.2. Active Learning

AL is a sampling approach that selects the most
informative data points to minimize the number of
labels required for model training [33]. AL can be di-
vided into three macro scenarios: synthesis of mem-
bership queries, pooled AL, and streamed AL [7].
The majority of approaches in deep AL have focused
on the pool-based scenario, where the learner selects
the most useful data points from a closed set of un-
labeled observations. The stream-based AL scenario
for object detectors has not been investigated. More-
over, AL assumes the availability of a perfect oracle,
where the true label of a data point is revealed when
queried. However, this assumption does not hold in
a KD framework, where the pseudo-labels provided
by the teacher may be incorrect.
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Active Learning for Image Classification. AL
strategies for pool-based classification can be cate-
gorized into uncertainty-based or diversity-based ap-
proaches [36]. Uncertainty-based strategies estimate
model uncertainty using techniques such as Monte
Carlo dropout [18] or ensemble networks [23], while
entropy and margin-based sampling strategies are
also widely employed [29]. Task-agnostic methods,
such as Learn loss [38], use a loss prediction module
to estimate data points that are likely to be wrongly
predicted. Among diversity-based strategies, Core-
set [32] is one of the most popular, using a K-center
Greedy algorithm to locate a set of representative
data points. Cluster-Margin [14] combines uncer-
tainty and diversity, while DRMRS [16] takes into
account the margin and diversity. BADGE [3] bal-
ances uncertainty and diversity using a k−MEANS++
seeding algorithm on gradients obtained from the last
layer of the network. CDAL [1] replaces the Eu-
clidean distance with the pairwise contextual diver-
sity in the greedy K-center algorithm used in the
Core-set. CLUE [25] performs uncertainty-weighted
clustering to identify target instances that are uncer-
tain according to the model and diverse in feature
space. VAAL [34] uses a Variational Autoencoder
(VAE) to map instances into a latent space, which is
then fed into a discriminator that learns to differenti-
ate between labeled data and unlabeled samples.

Active Learning for Object Detection. AL ap-
proaches to object detection can be classified into
black-box and white-box methods [30]. Black-box
methods do not depend on the underlying network
architecture and use informativeness scores, such
as the confidence obtained from the softmax layer,
while white-box methods are dependent on the ar-
chitecture of the underlying network. The Minmax
approach, which selects the least confident images
among the unlabeled pool, is a popular black-box
method [30]. Ensemble methods have also been used
for object detection-oriented AL [17, 31]. Query
strategies based on localization tightness and stabil-
ity [21], mixture density networks [12], and a uni-
fied box regression and classification metric [39]
have also been proposed. MIAL [40] is a multiin-
stance framework that filters out noisy instances to
bridge the gap between instance-level and image-
level uncertainty. PPAL [37] is a two-stage algo-
rithm that includes difficulty-calibrated uncertainty
sampling and category-conditioned matching simi-
larity. [20] proposed to cluster the unlabeled obser-
vations into groups based on the frequency domain

values and to use different sampling rates for each
group.

2.3. Challenges of Stream-based Active Distil-
lation

The importance of sampling has been first formu-
lated in [4] as the problem of developing KD meth-
ods that are both query-efficient and robust to la-
beling inaccuracies due to the imperfection of the
teacher (i.e., confirmation bias). Their methods pro-
vide a theoretical guarantee that the scheme leads
to queries where the teacher provides the correct la-
bels. However, this approach has been developed in
a pool-based setting where the student has access to
the entire information pool. In contrast, in stream-
based scenarios, techniques such as diversity-based
strategies, clustering, or pairwise distance matrices
may not be feasible, especially in contexts where the
spatio-temporal correlation among the data is signif-
icant. Another aspect is that, due to the complexity
of the student model, uncertainty techniques relying
on Monte Carlo dropout or Learn loss modules may
not be viable options.

3. Problem Statement

Let θgeneralstudent define a compact general pre-trained
model learning the distribution D of a data stream
X . We assume a spatio-temporal correlation among
the data. The student is equipped with SELECT
(It), a rule that determines whether an image It
should be selected to fine-tune the student model, us-
ing the pseudo-label predicted by a universal but im-
perfect model θgeneralteacher . The objective is to train a
high-performing student by querying the minimum
number of teacher pseudo-labels. In this work, the
pseudo-labels consist of bounding boxes generated
by θgeneralteacher for each selected image. We assume
a large-scale setting (e.g., city-scale deployment of
CCTV, monitoring of large construction sites) and
affordable hardware. Therefore, the selected frames
and their associated pseudo-labels, which constitute
the training set L, must not exceed a maximum train-
ing frame budget per student B, i.e., |L| ≤ B. Fur-
thermore, efficient SELECT strategies are necessary
to ensure the scalability of our stream-based active
distillation (SBAD). Indeed, if a selection rule takes
longer than the frame rate to make a decision, a
temporary buffer will be required to store recently
seen images until the decision is made. This would
increase the system resource requirements for data
storage and processing, which is not scalable.
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Algorithm 1 SBAD Framework

Require: a pre-trained student model θgeneralstudent , a
general purpose teacher model θgeneralteacher , a training
frame budget B and a SELECT strategy.

Ensure: B ≥ 1
L ← ∅ ▷ Selected frames and their pseudo-labels
t← 0 ▷ Timestamp
while |L| ≤ B do

Observe current frame It
if SELECT(It) is TRUE then
{bpli }t ← θteacher(It) ▷ Pseudo-labels
L ← L ∪ (It, {bpli }t)

end if
t← t+ 1

end while
return update(θgeneralstudent , L)

Figure 1 provides a visual illustration of the
SBAD framework. During the sampling phase, the
SELECT rule is used to identify the most informa-
tive samples. The selected frames are then pseudo-
labeled by the teacher model and used to fine-tune
the student models. Once the fine-tuning is complete,
specialized models could be optionally evaluate us-
ing a test-set with ground truth T := {Itest,bgt}.
Note that this step is not necessary for SBAD, but in
real-life scenarios, it could be seen as a sanity check
if you have access to a test-set.

4. Methodology

In the context of stream-based active learning,
single-pass evaluation of data points is often ad-
dressed by applying a threshold to certain informa-
tiveness scores [8–11, 15, 27]. However, this ap-
proach has not been tested in online active distilla-
tion tasks for object detection. In this paper, we in-
vestigate the effectiveness of thresholding algorithms
based on the confidence of the base student model
θgeneralstudent for the SBAD framework. At round t, when
the student model θgeneralstudent observes an image It,
n ≥ 0 objects are detected, which are defined by the
bounding boxes bit and confidence scores cit. Ac-
cording to [30], a unique confidence score C(It) can
be obtained for It using:

C(It) := max
i

cit

This means that the confidence of each image is
approximated by the highest confidence score among

the objects detected in that image. Using this confi-
dence metric, we can then apply a threshold ∆ to the
confidence scores of the incoming frames. The gen-
eral structure of the top confidence threshold sam-
pling scheme is presented in Algorithm 1. To esti-
mate the threshold ∆ for selecting the most informa-
tive frames, we introduce a warm-up phase where the
student model θgeneralstudent observes the incoming frames
for a period of length w without querying any im-
age and without storing anything other than a sin-
gle scalar representing the confidence scores C(It)
at the image level, where t = 1, ..., w. At the end of
the warm-up phase, the student model estimates an
(1 − α)-upper percentile on the distribution of con-
fidence scores, where α represents the desired sam-
pling rate. In other words, the threshold ∆ is chosen
so that:

IP(C(It) ≥ ∆) = α,

and the frames to pseudo-label and fine-tune θgeneralstudent

correspond to a ratio of α frames out of the total num-
ber of frames.

While in traditional AL, the focus is on query-
ing images that the student model is least confident
about, this approach may not be optimal for stream-
based object-detection KD scenarios. The least con-
fident images often correspond to very hard exam-
ples that may not be informative enough for the stu-
dent model in the early rounds of AL when it has not
been fine-tuned for the specific scene. Additionally,
selecting images with high uncertainty for pseudo-
labeling may lead to confirmation bias as the pseudo-
labels may not align with the ground truth due to the
imperfection of the teacher model θgeneralteacher as an or-
acle. This is why, in our work, we propose to let
the student model θgeneralstudent query the most confident
frames. Ideally, by doing so, the student will sam-
ple informative examples that the teacher model can
accurately pseudo-label. These examples will con-
tribute best to the student’s fine-tuning while avoid-
ing frames that are too uncertain to be used in the
initial stages AL.

5. Experiments
5.1. Experimental Settings

Dataset. We evaluated the effectiveness of the
SBAD approach using the Watch and Learn Time-
lapse (WALT) data set [26], which comprises 122

2We tested two out of twelve cameras and produced extra an-
notations to evaluate our techniques. Detailed information about
this process and the dataset are available in our GitHub repository.
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Figure 1. SBAD pipeline: sampling, fine-tuning and evaluation.

cameras that capture an urban environment. This
data set offers a diverse range of spatial and temporal
settings, with varying viewpoints and lighting condi-
tions, including both day and night settings. By test-
ing our approach on this realistic data set, we assess
its performance in real-world scenarios.

Distillation implementation. In line with the prin-
ciples of data distillation proposed by [6], we em-
ploy a large and complex teacher model, YOLOv8x6
(261.1 GFLOPs), to generate pseudo-labels. These
labels are then used to train several smaller student
models, YOLOv8n (8.7 GFLOPs), with less archi-
tectural complexity. Both networks are initially pre-
trained on the COCO dataset [22]. The student mod-
els are re-trained for 100 epochs with a batch size of
16 and a learning rate (LR) of 0.01. The learning rate
is adjusted for each epoch with a change factor (LF)
of 0.01 using Equation 1. The budget of the SBAD
framework is determined by the number of pseudo-
labels used for fine-tuning, which ranges from 25 to
250 in our experiments.

LR =

(
1 − LR

epochs

)
× ( 1 − LF ) + LF (1)

Methods. Due to the lack of prior research on the
SBAD problem in object detection, there are no base-
lines to compare with. To explore the effective-
ness of the confidence-based thresholding algorithm,
we used different baselines. First, a naive N -First
approach has been implemented, where the student
models are fine-tuned by simply taking the first N
images observed from each camera. A second base-
line is given by a random sampling approach, where
a number s ∼ U(0, 1) is generated for each incom-
ing frame, which is queried only if s ≥ 1 − α. A
third baseline is given by a more active learning-
oriented least confidence approach, where similarly
to the case of the highest confidence, we impose a
threshold on the confidence score at the image level.
The main difference is that the threshold ∆ is es-
timated by taking the α-lower percentile from the
warm-up setW .

In our experiments, both α-lower and α-higher
methods used α = 10%. However, it is important
to note that this choice was influenced by the frame
rate and the length of the data stream recorded for
each week. Although smaller values of α may yield
better performance, they would need to span a longer
data stream as we become more selective in terms
of selecting only the most confident frames. There-
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Figure 2. Learning curves obtained on the first two cam-
eras of WALT. Results show that increasing the number of
frames used for fine-tuning improves the student model’s
performance, approaching that of the teacher model with
250 frames. However, using only a small number of frames
may lead to overfitting and poor performance on balanced
evaluation sets. Top confidence thresholding is more effec-
tive than least confidence-based methods for stream-based
active learning, highlighting the importance of avoiding
highly uncertain images during fine-tuning.

fore, the choice of α should be based on a balance be-
tween performance and the length of the data stream
required to select the desired number of frames.

5.2. Experimental Results

Figures 2. and 3. shows the learning curves
obtained using stream-based active learning tech-
niques on the WALT dataset. Our analysis can be
approached from two perspectives. Firstly, from a
knowledge distillation standpoint, we observe how
the student model’s performance improves as we
use more frames for fine-tuning. In particular, we
found that the mAP50-95 score approaches that of
the teacher model when 250 pseudo-labeled frames
are used. However, we also noticed that the stu-
dent’s performance deteriorates significantly when
only a small number of frames are used for fine-
tuning, which could be attributed to overfitting due
to the limited number of images presented to the net-
work. In addition, if the model is fine-tuned on im-
ages biased towards a specific time of day, such as
only night or day, it may perform poorly on the bal-
anced test set used for evaluation. Furthermore, as
depicted in Figure 4, choosing highly uncertain im-
ages for pseudo-labeling may lead to incorrect labels
due to the teacher’s own bad prediction.

From an active learning perspective, the perfor-
mance achieved with the top confidence threshold al-
gorithm is significantly better than that obtained us-
ing the least confidence-based method. This high-
lights the importance of fine-tuning the model with
highly certain images, especially when the model has
not yet been specialized for the scene.

5.3. Limitations

The present work has three limitations. Firstly, the
maximum budget is limited to 250 due to the frame
rate and length of the data stream. Second, our ap-
proach was only evaluated on the WALT data set, and
its generalizability to other data sets remains to be
investigated. Third, the reduced number of heuris-
tics may limit the effectiveness of the approach, and
further exploration of different methods or combina-
tions of methods could be a fruitful research direc-
tion. Additionally, exploring other deep neural net-
work architectures, such as Transformers or Mask-
RCNN, could also enhance the approach.

6. Conclusion
This paper proposes SBAD to bridge the gap be-

tween large-scale and affordable deep learning mod-
els while adapting to changing environments. This
framework enables the scalable deployment of deep
learning models under tight budget constraints.

The framework evaluates the informativeness of
each frame, accounting for teacher imperfections in
a KD scheme. Experiments demonstrate that tra-
ditional AL strategies may not be optimal for KD.
Future research could explore alternative sampling
strategies and distillation mechanisms to improve
performance.
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Figure 3. Weekly analysis on the first two cameras of WALT.
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Figure 4. Two difficult examples (one for each camera) that lead to confirmation bias: when the student requests highly
uncertain images based on its predictions (in yellow), wrong pseudo labels are revealed (in red).
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