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Abstract

Teaching software security is complex and should involve practical exercises.
Practical exercises require software artifacts and projects that contain vul-
nerabilities. The vulnerabilities can be exploited to understand their impact
on how different sanitization methods can be bypassed and how they can
be mitigated. A frequent challenge is the creation of realistic projects that
contain such vulnerabilities. The projects can be created manually with a lot
of effort and can only be used once because exploiting the same vulnerabilities
repeatedly will not provide a learning effect. The goal of this thesis is to
provide a solution to automatically create such learning examples that are
realistic and provide permutations that can be used repeatedly for teaching.

As a solution to create learning examples automatically, we invented
Insecurity Refactoring. Insecurity Refactoring is a change to the internal
structure of a software to inject a vulnerability without changing the observ-
able behavior in a normal use case scenario. Creating realistic vulnerabilities
requires characterizing realistic vulnerabilities and identifying how they look
like. To solve this challenge, we have reviewed the source code from 150
vulnerabilities that occurred in open-source projects in the categories SQL
Injection, Cross Site Scripting and Buffer Overflow. From these vulnera-
bilities, we have categorized source code patterns of sources, sanitization,
context, sinks, and fixes. Those patterns characterize realistic vulnerabilities
and are used for Insecurity Refactoring. Additionally, the types of errors
from the developers resulting in a vulnerability have been reviewed. Those
point out the issues that should be taught to developers and mitigated in
the development phase.

Another challenge is creating learning examples that are difficult to detect
by static code analysis tools. Those learning examples can also be used to
teach developers what source code patterns should be avoided. The previously
reviewed vulnerabilities have been scanned with a set of selected commercial
and open-source static code analysis tools to identify patterns that produce
false positive and false negative results. This insight allows mitigating such
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2 Contents

difficult patterns in the development phase to improve the effect of static
code analysis. Additionally, these difficult patterns are used in the Insecurity
Refactoring approach to create learning examples that cannot be solved by
static code analysis tools.

Our method of Insecurity Refactoring has been formalized by using a new
defined Adversary Controlled Input Dataflow tree. The formalization allows
detecting Possible Injection Paths. Those paths can be transformed into
vulnerabilities. All the previously identified source code patterns are used
to inject different permutations of vulnerabilities. We developed a tool to
realize the formalized method. The tool was tested on open-source projects
to check if the approach can inject vulnerabilities. If an open-source project is
injectable it does not imply that it is less secure, instead it implies that static
code analysis approaches can analyze them to find injection possibilities. The
results have indicated that our approach can use 8.1% of the open-source
projects found on GitHub to create learning examples.

Projects transformed by our approach have been used as learning examples
in two experiments with different groups. The results have shown that the
Insecurity Refactoring method does not change the behavior of the program,
except when the vulnerability is exploited. Accordingly, the definition of
Insecurity Refactoring was confirmed. A survey of the attendees of the
experiments has revealed that the transformed projects can be used as
learning examples and that the examples are realistic.

Another aspect of this thesis is to improve static code analysis tools. All
the identified patterns have been combined to create two static code analysis
benchmark data sets. The data sets have been scanned by commercial static
code analysis tools. By calculating established static code analysis metrics,
the data sets can be used to identify problems of the tools like high false alarm
rate, low precision, low recall, etc. Additionally, we have provided a solution
to identify patterns that the tools do not cover. The generation process has
been discussed in an interview with experts from Software Assurance Metrics
And Tool Evaluation (SAMATE) at the National Institute of Standards
and Technology (NIST). They have approved that the generation process is
solid. The two generated data sets are being hosted as an official Software
Assurance Reference Dataset (SARD). This allows all developers of static
code analysis tools to test their tools and improve it based on our research.
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Chapter 1

Introduction

Software development is a complex process and you cannot totally prevent
the occurrence of security issues. There are forms of effective formal methods
to ensure correctness and some security properties but they are not efficient
as of today. Static code analyzer tools try to detect security issues in source
code. The results from Goseva-Popstojanova and Perhinschi [40] show that
the overall highest detection rate of known security vulnerabilities is 59%.
If developers have to fix possible vulnerabilities, they will require software
security skills to distinguish between an incorrect report (false positive) or
correct report (true positive). The false positive rate remains a problem
because developers have to manually review each report. Especially then,
the fixing process requires software security skills as well. Depending on the
software security skills, developers who try to fix vulnerabilities could create
new security issues or just hide the existing one from static code analyzer
tools. Accordingly, the involved review process by using static code analyzer
tools depends on the software security skills.

The security development life cycle involves software security in the
software development process. It includes different steps to prevent security
issues already in the development phase. One important aspect is that
all developers require security training to prevent security issues. It is
recommended to refresh the security skills by frequently participating in
training events [41]. Even the usage of static code analysis tools requires
software security knowledge to determine a vulnerability report is actually a
vulnerability. In addition, the static code analysis tools usually don’t provide
a solution. Accordingly, the developer also needs software security knowledge
to fix the reported vulnerability. A typical approach to teaching software
security is hands-on training/labs and it involves working with vulnerable
projects. By exploiting a vulnerability, one can learn the effect and impact

5



6 Introduction

of such vulnerabilities. Vulnerabilities can be patched by developers to learn
different prevention techniques. A common problem in this context is the
creation of these vulnerabilities for realistic learning exercises. Currently,
there exist many different projects like WebGoat [8], Juliet [3], et cetera.
These projects contain security vulnerabilities based on the most prevalent
security issues. The projects are created manually and the exercises can be
used only once. It is not useful for repetitive learning as recommended by the
software security development life cycle. Furthermore, other solutions exist
that automatically generate artificial vulnerabilities [74]. Current solutions
are either manually created or automatically created but on the artificial side.
The goal is to create vulnerabilities automatically based on vulnerabilities
from real software projects.

If developers require training frequently, the exercises should be different
each time. Some security vulnerabilities occur in unusual scenarios. For
example, the Common Vulnerabilities and Exposures (CVE) 2001-1471 did
have an OS injection issue via an invalid language file [2]. Developers have
to learn that such issues can occur from all kinds of sources. Having a simple
way of generating different exercises based on common security issues will
help to teach developers software security skills and raise awareness. The
different exercises should be as real as possible to teach how the vulnerabilities
occur in software projects.

The benign usage of Insecurity refactoring as learning examples is help-
ful. In contrast, automatic vulnerability injections can be used harmfully.
Accordingly, insecurity refactoring could be used harmfully. A recent attack
on the PHP git repository [17] tried to introduce a backdoor into PHP that
was falsely flagged as fixing typing errors. This might be a specially crafted
backdoor or might have been an automatically created backdoor. A possible
attack scenario by using insecurity refactoring is by automatically generating
code changes that will be sent to different git repositories. Because it is
an automatic approach, the amount of such requests can be very high. If
only a small percentage of the requests are accepted, it will be enough for
attackers to introduce harmful code changes. Another attack scenario is that
an attacker has a short amount of time accessing a code base. A manually
crafted backdoor would not be possible in a short time frame. In this case,
an automatic approach could be used to inject a backdoor in the code base.
It is important to know the limitations of insecurity refactoring, to assess
what attackers can do and what not.

As such attack attempts by using automated injected vulnerabilities
are critical, it is important to know if these injected vulnerabilities and
backdoors can be detected by modern tools. If the tools can detect all
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the injected vulnerabilities, such attack attempts will be solved by using
these tools. Nevertheless, tools that cannot detect such automated injected
vulnerabilities cannot prevent such attacks. Accordingly, these tools should
be improved that the impact of automated injected vulnerabilities is as low as
possible. Categorized source code patterns help to specify where the different
tools have problems. This helps the developers of such tools to improve their
tools based on those patterns.
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Chapter 2

Research Questions

The primary idea of this work is to create a novel approach called Insecurity
Refactoring. It uses static code analysis and refactoring approaches to
inject vulnerabilities in existing projects. We define Insecurity Refactoring
as follows: Insecurity refactoring is a change to the internal structure of
software to inject a vulnerability without changing the observable behavior
in a normal use case scenario. If the injected vulnerability is exploited, the
observable behavior will change. Accordingly, Insecurity Refactoring requires
maintaining the normal usage of the program. For example, if a number
field is used. The normal usage will be that numbers are inserted and the
program should still run as expected. In contrast, insecurity refactored
vulnerabilities behaves differently if the user inserts unexpected inputs (e.g.,
an apostrophe). The exploit scenario is intended as the goal is to inject
vulnerabilities. Nevertheless, the process tries to minimize the potential of a
crash, but it cannot ensure that it will not happen for unintended inputs.
The observable behavior means that the user does not see a difference in the
running program as long as numbers are inserted in the number field. In
the background, the insecurity refactored code might perform a bit different
because the code has been changed, but the output of the program will be
the same.

The goal is to use these injected vulnerabilities as learning examples.
This requires that the vulnerabilities are as realistic as possible. In addition,
it should be possible to inject vulnerabilities that are not detectable by static
code analysis tools. This can be used as more advanced learning examples
or can be used to teach developers what source code patterns are difficult
for static code analysis tools. Depending on what learning examples are
required, such patterns can be included or not.

As this thesis is based on vulnerabilities from open-source projects, we

9



10 Research Questions

had to decide what programming language and what vulnerabilities will be
reviewed. Based on the vulnerabilities we had access to, the focus relies on
vulnerabilities of the categories: SQL Injection, Cross Site Scripting and
Buffer Overflow. The following section describes the identified scientific
questions for Insecurity Refactoring.

2.1 Q1: What are source code patterns that can
classify existing security vulnerabilities?

Insecurity Refactoring should be as realistic as possible. Accordingly, to
create learning examples matching that requirement it is important to identify
how real vulnerabilities look like. Vulnerabilities are already classified by
Open Worldwide Application Security Project (OWASP) [10], Common
Weakness Enumeration (CWE) [9], et cetera. The generation process of
security vulnerabilities requires a more thorough analysis and classification
based on the source code.

Is it possible to identify and categorize source code patterns that are
found in source code from open-source projects related to injection related
CVE reports (SQL Injection, Cross Site Scripting and Buffer Overflow) in
PHP projects? The source code patterns are considered as a developer would
see them. Accordingly, common patterns like sources, sinks, and sanitization
patterns are identified and categorized. Are there any special patterns that
software developers have to know to prevent such vulnerabilities? What
insufficient sanitization methods can be found in CVE report related source
code?

2.2 Q2: What are the limitations and problems of
static code analysis tools?

Static code analysis tools have to be evaluated to find out why they do
not detect certain types of security issues. The motivation here is to create
vulnerabilities that cannot simply be detected by static code analysis tools.
Accordingly, the problems or limitations have to be identified. To clarify,
this work uses the terms problematic and difficult for static code analysis
tools. A problematic or difficult source code pattern means that static code
analysis tools cannot analyze it correctly. For example, a tool might not
track the data flow if a difficult source code pattern is reached. All of those
tools are different, a difficult source code pattern can be difficult for one tool
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but does not have to be difficult for all tools. Both patterns, problematic
and difficult are used, and there is no difference between the two.

Are there source code patterns that static code analysis tools are unable
to detect if it is contained in a vulnerability? Are there sanitization functions
that are found in real projects that the static code analysis tools do not
detect? Are there insufficient sanitization functions that are found in real
projects that the static code analysis tool detect as sufficient? Can detectable
security vulnerabilities be modified by an introduced difficult pattern that
prevents static code analysis tools from detecting it?

2.3 Q3: How can static code analysis and refactor-
ing approaches be used to inject vulnerabilities?

The main goal of this thesis is to create learning examples with an automated
approach. Accordingly, it is important to inject vulnerabilities that look like
a developer has written them accidentally.

The main question of this work is, how can Insecurity Refactoring be
implemented by using static code analysis and refactoring approaches? How
can source code be modified to create security vulnerabilities without mod-
ifying the normal usage behavior of the program? How can static code
analysis methods be used to modify source code? Can the previously identi-
fied patterns be used to create realistic vulnerabilities? Can the previously
identified problematic static code analysis patterns be inserted to the injected
vulnerabilities?

2.4 Q4: How can training materials derived by inse-
curity refactoring be used in training software
security?

A goal of this research is to improve learning methods for software developers.
The following questions are used to evaluate the Insecurity Refactoring
approach. Does the implemented Insecurity Refactoring comply with the
definition and is the external behavior in normal usage not changing? Are
the injected vulnerabilities exploitable? Can the injected vulnerabilities be
used to train software security skills? Are the injected vulnerabilities realistic,
or do they feel artificial like other automatic generated exercises?
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2.5 Q5: How can source code patterns be used to
create test suites to improve static code analysis
tools?

As insecurity refactoring can also be used harmfully, it is important to enable
modern tools to detect such vulnerabilities. How can source code patterns
created from newly discovered vulnerabilities be used to create a test suite for
SCA tools? Can the difficult source code patterns for SCA tools be included
in the test suite? How can the decision of a test case being vulnerable or safe
be solved, involving the different contexts and sanitization methods? Is such
a test suite based on the identified patterns useful to benchmark static code
analysis tools?



Chapter 3

Background

In this section, the relevant works that influenced and provide the background
for this work. This thesis is based on classifying vulnerabilities and static code
analysis models. Accordingly, the Common Weakness Enumeration (CWE)
[9] vulnerability classification and the basic static code analysis models are
the background.

3.1 Classification of vulnerabilities

The Common Weakness Enumeration (CWE) [9] combines common software
and hardware weakness types. They define weaknesses that include flaws,
faults, bugs and other errors that if left unaddressed could result in systems,
networks, or hardware being vulnerable to attacks. The goal of the classi-
fication is to define a common language for vulnerabilities. The common
language can be used to teach software developers to prevent these issues at
the development phase. The classification itself is split into many different
types (Class, Base, Variant, ...). The different categories have relationships to
each other. For example, the class category ’CWE-119:Improper Restriction
of Operations within the Bounds of Memory Buffer’ is the parent of the base
category ’CWE-120: Classical Buffer Overflow’. Additionally, a CWE top 25
is regularly published that contains the top vulnerabilities categories that
occurred in a recent time frame. The scoring is based on how many CVE
reports have been mapped to the CWE categories. For the scoring, only
CVE reports are used that are mapped to CWE categories by the National
Vulnerability Database (NVD). The methodology to calculate the scoring

13
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Rank ID Name NVD Count Avg CVSS Score
1 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 3788 5.8 46.82
2 CWE-787 Out-of-bounds Write 2225 8.31 46.17
3 CWE-20 Improper Input Validation 1910 7.35 33.47
4 CWE-125 Out-of-bounds Read 1578 7.13 26.5
5 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 1189 8.08 23.73
6 CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 901 8.98 20.69
7 CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 1467 6.01 19.16
8 CWE-416 Use After Free 918 8.26 18.87
9 CWE-352 Cross-Site Request Forgery (CSRF) 866 8.08 17.29
10 CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 767 8.52 16.44
11 CWE-190 Integer Overflow or Wraparound 846 7.7 15.81
12 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 792 7.27 13.67
13 CWE-476 NULL Pointer Dereference 529 6.83 8.35
14 CWE-287 Improper Authentication 412 8.05 8.17
15 CWE-434 Unrestricted Upload of File with Dangerous Type 346 8.5 7.38
16 CWE-732 Incorrect Permission Assignment for Critical Resource 426 6.99 6.95
17 CWE-94 Improper Control of Generation of Code (’Code Injection’) 295 8.74 6.53
18 CWE-522 Insufficiently Protected Credentials 283 7.92 5.49
19 CWE-611 Improper Restriction of XML External Entity Reference 277 7.88 5.33
20 CWE-798 Use of Hard-coded Credentials 234 8.76 5.19
21 CWE-502 Deserialization of Untrusted Data 217 8.93 4.93
22 CWE-269 Improper Privilege Management 278 7.36 4.87
23 CWE-400 Uncontrolled Resource Consumption 249 7.09 4.14
24 CWE-306 Missing Authentication for Critical Function 193 8.1 3.85
25 CWE-862 Missing Authorization 236 6.9 3.77

Table 3.1: CWE top 25 - 2020 [9].

requires a frequency of each CWE category cx [9]:

F = {count(cX ∈ NVD for each cX in NVD}

Fr(cx) =
count(cx ∈ NVD)−min(F )

max(F )−min(F )

It provides a frequency based on all other mapped CVE reports. The scoring
also includes the severity of each CVE report. The severity for each CWE
category cx is calculated as follows:

CV SSx = {CVSS scoring for each CVE report mapped to cx}

Sv(cx) =
average(CV SSx)−min(CV SSx)

max(CV SSx)−min(CV SSx)

A combination of the frequency and the severity allows calculating the final
scoring:

Score(cx) = Fr(cx) ∗ Sv(cx) ∗ 100

Table 3.1 shows the scoring that has been published in 2020. The time frame
has been the recent two years. Related to the contribution of this thesis,
the related categories CWE-79 Cross Site Scripting at rank 1, CWE-119
Buffer Overflow at rank 5 and CWE-89 SQL Injection at rank 6 are still top
scoring vulnerabilities. Each of these categories are also split into CWE sub
categories that represent the errors in more detail.

Another important classification of top security issues is from the Open
Web Application Security Project (OWASP) [15]. The focus relies on web
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Rank Name
1 Broken Access Control
2 Cryptographic Failures
3 Injection
4 Insecure Design
5 Security Misconfiguration
6 Vulnerable and Outdated Components
7 Identification and and Authentication Failures
8 Software and Data Integrity Failures
9 Security Logging and Monitoring Failures
10 Server-Side Request Forgery

Table 3.2: OWASP top 10 - 2021 [16].

applications to reduce the occurrence of potential vulnerability types. They
use a hybrid methodology to get data for the top 10 list. The three primary
sources of data are Human assisted Tooling (HaT), Tool assisted Human
(TaH) and raw tooling. Raw tooling and HaT are producing a lot of data
because the tools can find many vulnerabilities. Especially, vulnerabilities
with the same systematic that occur in multiple locations produce many
results. In contrast, TaH has a lower frequency because vulnerabilities that
are systematic will only occur once. The top ten use 8 ranks that are from
the hybrid methodology, and two ranks are determined by surveys. The
surveys are sent to companies asking what web security issues have occurred.
The initial top ten list is then published and can be reviewed by the public.
After a consensus is reached, the top ten list will be released. Table 3.2 shows
the OWASP top ten of 2021. Injection includes SQL Injection that was on
rank 1 in 2017 moved to rank 3 in 2021. Cross Site Scripting was at rank 7
and moved to rank 8 in a new category named Software and Data Integrity
Failures.

3.2 Static code analysis models

Static code analysis tools are often used to detect software vulnerabilities. For
this work, static code analysis models are used to find source code parts that
can be used to inject the vulnerability. The static code analysis model that
has been used is a combination of the Abstract Syntax Tree, Control Flow
Graph and the Program Dependence Graph. Accordingly, it is important to
understand the fundamental static code analysis models. The specific model
(Code Property Graph) that has been used is then explained in detail in
chapter 4. The common static code analysis approach is to create different
analysis models that will be used to find bugs, vulnerabilities, and code
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(a) Source code sample (b) Abstract Syntax Tree.

Figure 3.1: Source code and corresponding Abstract Syntax Tree [78].

quality issues. This section describes the basic models and one advanced
model which is the Code Property Graph that has been used in our thesis.

3.2.1 Abstract Syntax Tree

The basic static code analysis model is the Abstract Syntax Tree (AST). It is
an abstract tree representation of the source code. An Interior node represents
an operator, and the children represent the operands of the operator [76].
For an addition 2 + 3, the operator would be +, and the children in the AST
would be 2 and 3 of the operator. The AST is a simple syntax tree that does
some abstraction of the source code. For example, the echo statement and
<?= are both represented as an echo statement because both return output
to the client. The abstraction makes it easier to analyze the tree. Figure 3.1
shows for a source code sample the corresponding AST. The function call
sink has a function CALL node as operator and the operands of that are the
function name sink and an argument ARG. An AST has no specification
on how it is constructed. Depending on the implementation, the AST can
look thoroughly different. The example in figure 3.1b shows the AST for the
source code.

3.2.2 Control Flow Graph

The Control Flow Graph (CFG) is used by compilers and can also be used to
analyze source code [23]. The concept is that the source code is split into code
blocks. A code block is a list of statements that will be sequentially executed.
Accordingly, it has a one start statement and always ends in the same end
statement without the possibility that any instruction is skipped [30]. There
cannot be any decisions like if statements inside a code block. The code
blocks will be connected by directed edges to show in which order the code
blocks are executed. A backwards edge shows a loop in the source code. For
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(a) Control Flow Graph. (b) Program Dependence Graph.

Figure 3.2: Code representation of the program flow and the dependencies
[78].

example, an if statement is a split in the CFG. One edge is connected to
code block, if the if statement is true and another edge is connected to the
code block that is executed when the if statements returns false. The CFG
is defined as a directed graph G = (B,E) where B is the set of blocks and
E is the set of directed edges [23].

There are different construction mechanisms for a CFG. For example, it
can be generated from binary code [56] [34] [57]. Compilers usually create
a CFG based on the AST. Figure 3.2a shows the CFG for the source code
sample. A code block is represented by statements that are connected with
the label ϵ. Otherwise, it has either true or false as label based on the
decision outcome. That CFG is constructed by searching for all structured
control statements (if, while, ...) first and creating a preliminary Control
Flow Graph. As a next step, the unstructured control statements (goto,
break,...) are used to correct the preliminary Control Flow Graph.

3.2.3 Program Dependence Graph

Ferrante et al. [38] invented the Program Dependence Graph (PDG). The
basic concept of a PDG uses statements and predicates as nodes. The PDF
is a combination of the Data Dependence Graph and Control Dependence
Graph into one graph. The Data Dependence Graph shows for each statement
the dependency to other statements. Figure 3.3a shows a code sample where
statement S2 depends on the statement S1 because of the variable A that is
assigned to statement S1 and used in statement S2. The data dependencies
have to preserve the semantic of the program, the statements cannot be
reserved. The creation of the Data Dependency Graph can be solved by
solving the reaching definition [76]. For example, the CFG can be used to
solve the reaching definition problem.
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1 A = B * C (S1)
2 D = A * E + 1 (S2)

(a) Data dependency

1 if (A) then (S1)
2 B = C * D (S2)
3 endif

(b) Control dependency

Figure 3.3: Source code samples to show the data dependency and control
dependency [38].

The second part of the PDG is the Control Dependence Graph. If a
statement depends on the outcome of a predicate, an edge will be created
pointing from the predicate to the statement. Figure 3.3b shows a code
sample, where the statement S2 depends on the predicate S1. The edge has
a label, if the result of the predicate has to be true or false. The Control
Dependence Graph can be constructed by using the Control Flow Graph.
A post-dominator tree [76] can be calculated from the CFG. Then the tree
can be used to generate the Control Dependence Graph. A combination of
both graphs creates the Program Dependence Graph. The PDG was initially
used for program slicing [77]. Figure 3.3b shows the PDG that is used in the
Code Property Graph. This allows to easily analyze that the sink depends
on the statement where the variable y is being assigned and the predicate of
the if statement.
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Related Work

This section provides an overview of related work that has influenced this
work. Related work that had high influence on this thesis are described in
detail.

4.1 Classification of vulnerabilities

Vulnerabilities are classified in many ways. Early classifications were classi-
fying the vulnerabilities itself, e.g., [26, 46, 25]. A well-known classification
of vulnerabilities are the Common Weakness Enumeration (CWE) [9] and
OWASP top 10 [15]. There is research that defines taxonomies of vul-
nerabilities also based on mining open-source projects and other resources
[71, 71, 28, 73]. Those also have the same top categories like sinks, saniti-
zation, source, etc. Medeiros et al. [53] manual reviewed source to classify
sanitization methods. Li et al. [48] classified different vulnerabilities charac-
teristics.

Lerthathairat and Prompoon [47] classify source code into bad, ambiguous
and clean. The first step in their approach is to classify source code into
either being bad smell, ambiguous or clean code by using software metrics.
For each category, different specifications on the metrics are set to define if a
source code part is categorized as a corresponding category. For example, the
metric lines of code (NLOC) is a specification to check for the category long
method. The specification state that a function is either clean (x<=NLOC),
ambiguous (20<x<60) or bad smell (x>=60). For bad smell and ambiguous
source code, they use a fuzzy logic method to transform the source code into
a clean state. For the different bad smell categories, different refactoring
approaches for mitigation are listed. The fuzzy logic method is used to
refactor the project until the project is classified as clean code. Accordingly,
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Figure 4.1: Software security defect taxonomy. [43]

the fuzzy logic method tries to get each step closer to clean code metrics.
Hui et al. [43] developed a taxonomy of software security defects (SSD).

A software security defect is an error that usually a developer did at the
development stage. A SSD can create a software vulnerability. They reviewed
vulnerabilities and threat databases and interviewed practitioners in the
software security testing field to determine the taxonomy. Figure 4.1 shows the
taxonomy. The Induced causes are representing the error at the development
stage. The six sub categories represent what error has been made. For
example, if the developers forgot to add an input validation check on user
provided data. The Modification methods classify what an attack can do
with data entities. The Reverse use methods show how the SSD can be
detected with a testing strategy. Additionally, they mapped a top 10 list of
dangerous programming errors to the categories. They also published a case
study where they provide a SSD-based security testing methodology [44].

Shar and Tan [71] [72] also define a taxonomy for Cross Site Scripting and
SQL Injection vulnerabilities. Figure 4.2 shows the categories. There are only
two categories for sinks that actually represent the following vulnerability
types: Cross Site Scripting (HTML) and SQL Injection (SQL). There are
more specific categories for source and sanitization. The categories for sources
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are remotely (Client), from a Database or uninitialized variables (Uninit).
Sanitization function are split into official sanitization functions (sanitization)
that are provided by database driver or stem from the official programming
language. Another sanitization category is Encoding functions that encode
differently based on the function. Encryption and Numeric-conversion are
the sanitization functions that return a value which in normal certain stances
cannot create any issues. More problematic are the Replacement and Regex-
replacement functions because they depend on regular expression to determine
the sanitization functionality. In the Remaining category, all the remaining
sanitization functions are found. In their research, they use the taxonomy
to detect vulnerabilities with machine learning. The approach is to use the
Control Flow Graph (CFG) to create a Data Dependence Graph (DDG)
models to count the occurrence of each sink category. The models will be
explained later. The amount of each pattern is then used as input for machine
learning. They used their approach on open-source projects to collect data
that is used for evaluation. The results show positive results by having a
high true positive rate and a low false positive rate.

The authors saw a problem at the sanitization functions that can either
be sufficient or not. In [73], they continued their work by providing a hybrid
approach to solve that issue instead of a static approach. Their approach
starts with a static code analysis by using the Data Dependence Graph. If it
finds a critical function, it continues from there with dynamic testing. The
dynamic test uses a set T of critical inputs. That set is filled with critical
inputs which are extracted from cheat sheets that are used to bypass XSS
and SQLi sanitization functions. The dynamic part tests each critical input
t ∈ T to see if the outputs changes in a specific manner. Based on the
output, they define dynamic attributes as seen in table 4.1. They added
more attributes to their previous taxonomy, e.g., functions that return a
Boolean. The further approach uses the found patterns as attributes for
machine learning. It can resolve the issue of a sanitization function being
sufficient by using the dynamic approach. They used open-source machine
learning projects and they looked into the difference between supervised and
unsupervised machine learning algorithms for their approach.

Compared to our results, we did find categories that are based on the
source code. Our contributions are source code patterns from the view of a
developer instead of the view of the vulnerabilities. This helps developers to
understand what to mitigate in their source code. In addition, the manual
review allowed to extract special cases. Our taxonomy has in mind to be used
for code generation. Accordingly, it is source code pattern focused instead of
providing a broad vulnerability taxonomy.
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Attribute ID Attribute Name Description
Static attributes

1 Client The number of nodes that access data from HTTP request parameters
2 File The number of nodes that access data from files
3 Database The number of nodes that access data from database
4 Text-database Boolean value ’TRUE’ if there is any text-based accessed from database; ’FALSE’ otherwise
5 Other-database Boolean value ’TRUE’ if there is any data except text-based data accessed from database; ’FALSE’ otherwise
6 Session The number of nodes that access data from persistent data objects
7 Uninit The number of nodes that reference un-initialized program variable
8 SQLI-sanitization The number of nodes that apply standard sanitization functions for preventing SQLI issues
9 XSS-sanitization The number of nodes that apply standard sanitization functions for preventing XSS issues
10 Numeric-casting The number of nodes that type-cast data into a numeric type data
11 Numeric-type-check The number of nodes that perform numeric data type check
12 Encoding The number of nodes that encode data into a certain format
13 Un-taint The number of nodes that return predefined information or information not influenced by external users
14 Boolean The number of nodes which invoke functions that return Boolean value
15 Propagate The number of nodes that propagate partial or complete value of an input

Dynamic attributes
16 Numeric The number of nodes which invoke functions that return only numeric, mathematic, or dash characters
17 LimitLength The number of nodes that invoke string-length limiting functions
18 URL The number of nodes that invoke path-filtering functions
19 EventHandler The number of nodes that invoke event-handler filtering functions
20 HTMLTag The number of nodes that invoke HTML-tag filtering functions
21 Delimiter The number of nodes that invoke delimiter filtering functions
22 AlternateEncode The number of nodes that invoke alternate-character-encoding filtering functions

Target attribute
23 Vulnerable? Indicates a class label - Vulnerable or Not-Vulnerable

Table 4.1: Static-Dynamic Hybrid Attributes. [73]
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Sanitization
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Uninit

Persistent

Database

File

Client

Figure 4.2: Taxonomy that is used as machine learning attributes [72].
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4.2 Static code analysis evaluation

The research about how static code analysis tools perform regarding detection
rate, false positive rate, etc. is used to compare the tools, e.g., [80, 22, 58, 59].
Even the performance of penetration testing tools against static code analysis
tools are evaluated [24].

Goseva-Popstojanova and Perhinschi [40] evaluated three commercial
static code analysis tools. Foremost, they evaluated what static code analysis
tools are suitable for their research. They started with 22 static code
analysis tools and all projects got excluded that either: Have no support for
Java/C++, cannot detect security issues, cannot handle a large code base or
are distributed as software as a service. No open-source static code analysis
tools were used because they perform overall worse than commercial tools
[36]. Three commercial tools have passed the evaluation criteria. One tool
has been classified as program verification & property checking, the other
one falls into the category bug finding and the last one is aimed for security
review.

For the first evaluation, a data set from Juliet [3] has been used. The
Juliet test suite contains many vulnerabilities related to different CWE
categories. To get a data set where the results from each static code analysis
tool can be compared to each other, only CWE categories have been selected
that are officially supported by all the three static code analysis tools. Then,
they used a subset of test cases from the Juliet test suite that are related to
these CWE categories as a data set. All chosen data sets have been scanned
by all three tools and the following metrics have been calculated:

• Accuracy Acc = TN+TP
TN+FN+FP+TP

• Recall R = TP
FN+TP

• False alarm rate F = FP
TN+FP

• G-Score G = 2R(1−F )
R+1−F

The G-Score is a harmonic mean of Ri and 1− Fi that integrates the recall
Ri and false alarm rate Fi into one metric. The results show on the Juliet
sub data set that the tools have not performed very well. The authors even
stated that some tools are not even better than a random guess if a test
case is vulnerable or not [40]. For comparison of the tools, they plotted
Receiver Operator Characteristic (ROC) squares, where the x-axis was the
false alarm rate and the y-axis was recall. Each plot represents a CWE
category. They used the Friedman test to see if the tools had significant
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differences in the performance. One significant difference between the two
tools has been proven by the Friedman test.

As additional evaluation of the static code analysis tools, another evalua-
tion has been done on three open-source projects. Three open-source projects
with corresponding versions have been chosen that contain known vulnera-
bilities. Additionally, the version has been chosen where the vulnerabilities
have been fixed. The same evaluation metrics from previous evaluations have
been used. The results on the open-source project have shown that the static
code analysis tool has performed a lot worse as on the Juliet sub data set.

Previous evaluations on static code analysis tools evaluate how the tools
perform based on different data sets. In comparison, our contribution extracts
specific source code patterns that are problematic for static code analysis
tools. In addition, our research is based on vulnerabilities that occurred in
real life projects. This ensures that those extracted patterns are actually
code patterns that developers have written. Those patterns can be injected in
source code to either create false negative or false positive reports from static
code analysis tools. In addition, those patterns contribute that developers
can mitigate them or static code analysis tools can be improved to detect
them correctly.

4.3 Static code analysis models

There are many different static code analysis models. Many projects use
machine-learning and deep learning algorithms to detect vulnerabilities
[39, 32, 49, 79].

Nevertheless, Insecurity Refactoring requires a static code analysis model
that is based on source code. Evans and Larochelle [37] describe their model
to detect buffer overflows and format string vulnerabilities in C projects.
Another attempt uses type qualifier to detect format string vulnerabilities in
C projects [70]. Livshits and Lam [51] present their model that uses Java
byte code and vulnerabilities described in Process Query Language PQL as
input. A tainted object propagation uses a model to show how data can flow
through the byte code. That model is used to track if data from a critical
source will reach a critical sink. Their evaluation showed a low false alarm
rate and they found 29 vulnerabilities in nine large open-source projects.

Graph-based models are popular because a program flow can be rep-
resented in a graph. Different approaches exist that use graphs to detect
malware, e.g., [69, 33]. Hu et al. [42] present the Symantec Malware Index
Tree (SMIT) that is used to efficiently determine the distance between graphs.
They use it to determine the distance between graphs that represent malware
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and function calls in binaries. That approach allows detecting malware based
on the graph representation.

Those models are useful to detect security vulnerabilities. The goal of this
thesis is to inject vulnerabilities. Accordingly, another model is required that
allows to detect parts in the source code that can be insecurity refactored.
The next section describes the Code Property Graph that is used as input
for our model.

4.3.1 Code Property Graph

The approach of Insecurity Refactoring is based on the Code Property Graph
[78]. The Code Property Graph is a combination of the Abstract Syntax Tree
(AST), Control Flow Graph (CFG) and Program Dependence Graph (PDG).
A Property Graph [64] is a graph structure that adds properties to nodes
and edges. Yamaguchi et al. [78] define a Property Graph

G = (V,E, λ, µ)

as a directed, edge-labeled, attributed multi graph. The set of nodes V ,
E ⊆ (V × V ) is a set of directed edges, and λ : E → Σ defines the edge
labeling function using the alphabet Σ to each edge. µ : (V ∪ E)×K → S
assigns the properties to edges and nodes where K is the set of property keys
and S is the set of property values.

The Abstract Syntax Tree is defined as GA = (VA, EA, λA, µA). It rep-
resents the Abstract Syntax Tree in the graph structure. Accordingly, a
node vA ∈ VA in the AST represents source code. For example, an addition
in a program language can be a node. The operants of the addition are
also AST nodes that are connected to the addition as edges eA ∈ EA. The
corresponding code is added as a property value sA ∈ SA assigned to the
property key code. This allows to distinguish the different AST nodes. An
AST is an ordered tree. This requires adding the ordering as another property
to each AST node (vA ∈ VA).

The Control Flow Graph is defined as GC = (VC , EC , λC ,∅). A CFG
is a graph that does not require any additional properties to represent the
structure. The nodes VC are the same statements and predicates as from the
AST. The edge labels are defined as, λC = {True, False, ϵ} which represent
if a condition has to be true or false. Accordingly, a edge in the CFG connects
AST nodes together to represent how the program can flow through the code.

The Program Dependence Graph is defined as GP = (VP , EP , λP , µP ).
It uses the same nodes as the AST and CFG. The PDG adds edges that
represent control dependencies and data dependencies as known from the
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Figure 4.3: Code property graph from the source code sample. [78]

Program Dependence Graph. A control dependency defines what conditions
have to be True or False to get to that statement. The data dependency
defines where the variable value is assigned. This model allows tracking how
the data flows and what dependencies are required.

A Code Property Graph combines these three graphs into one graph with
the following definitions:

V = VA

E = EA ∪ EC ∪ EP

λ = λA ∪ λC ∪ λP

µ = µA ∪ µE

Figure 3.2 shows the CPG for the source code sample from figure 3.1a. The
AST Edges represent the Abstract Syntax Tree structure. The edges for the
CFG and PDG are added to the AST structure to get a large graph that
combines all representations. This allows to traverse the CPG in different
directions. For example, the AST part can be used to detect specific function
calls. Afterward, the function call can be used as a starting point for a
control flow analysis.

Analyzing the Code Property Graph is based on traversing the graph.
Yamaguchi et al. [78] define the traversal as a function T : P(V ) → P(V )
that maps a set of nodes to another set of nodes where P is the power set of
V . The traversal is according to the Code Property Graph G. The symbol ◦
is used to chain traversals together. A filter traversal is defined as:

Filterp(X) = {v ∈ X : p(v)}

This allows to filter a set of nodes X with the function p. The traversal from
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one node to another node can be achieved with the following functions:

OUTl(X) =
⋃
v∈X

{u : (v, u) ∈ E ∧ λ((v, u)) = l}

OUT k,s
l (X) =

⋃
v∈X

{u : (v, u) ∈ E ∧ λ((v, u)) = l ∧ µ((v, u), k) = s}

INl(X) =
⋃
u∈X

{v : (v, u) ∈ E ∧ λ((v, u)) = l}

INk,s
l (X) =

⋃
u∈X

{v : (v, u) ∈ E ∧ λ((v, u)) = l ∧ µ((v, u), k) = s}

Additionally, traversals can be aggregated with OR and AND:

OR(T1, ..., Tn)(X) = T1(X) ∪ ... ∪ TN (X)

AND(T1, ..., Tn)(X) = T1(X) ∩ ... ∩ TN (X)

These are main traversal functions that are supported by common graph
databases such as Neo4j [21] and InfiniteGraph [20]. Those definitions can
be used to traverse the CPG to find vulnerabilities. Yamaguchi et al. [78]
define a syntax-only vulnerability description S = (M0,M1) where M0 and
M1 are sets of Matchp(X) = Filterp ◦ TNodes(X) traversals. A Match
function checks if a corresponding match is found on the Abstract Syntax
Tree. This can be used to detect function calls, multiplications, etc. A
syntax-only vulnerability is found if it matches traversals that are all in M0

and it matches none that are in M1. If the syntax is checked only, it will
have a high false positive rate.

The Control Flow Graph can be included by the control-flow vulnerability
description that is defined as a 4-tuple (Ssrc, Send, Sdst, {(Si

cnd, ti)}i=1...N )
where:

Ssrc : set of Sources (syntax-only)
Send : set of End-statements (syntax-only)
Sdst : set of Destinations (syntax-only)
Scnd : list of syntax-only conditions and their outcomes

If a path from a source vsrc ∈ Ssrc to an end node vend ∈ Send exists that
does not reach a destination statement vdst ∈ Sdst in the path, a control-
flow vulnerability is found. Additionally, for all nodes that match Scnd, the
corresponding label ti must match. A control-flow vulnerability cannot be
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Vulnerability types Code representations
AST AST+PDG AST+CFG AST+CFG+PDG

Memory Disclosure ✓
Buffer Overflow (✓) ✓
Resource Leaks ✓ ✓
Design Errors
Null Pointer Dereference ✓
Missing Permission Checks ✓ ✓
Race Conditions
Integer Overflows ✓
Division by Zero ✓ ✓
Use After Free (✓) (✓)
Integer Type Issues ✓
Insecure Arguments ✓ ✓ ✓ ✓

Table 4.2: Vulnerability types and the possible code representations. [78]

detected if data is assigned to variables and the variable is then used in a
critical function.

The last vulnerability description is the taint-style vulnerability descrip-
tion. It is defined as a 3-tuple (Ssrc, Sdst, S

s
san) where the set Ssrc defines

attacker controlled sources, the set Sdst are sensitive sinks and the set Ss
san

defines sanitization functions. All these representations are syntax-only rep-
resentations (AST only). A taint-style vulnerability is found if there exists a
path in the Program Dependence Graph from a source ssrc ∈ Ssrc to a sink
sdst ∈ Sdst with the following two conditions. For each of Data Dependence
Graphs also exist at least one path in the Control Flow Graph. The path
does not pass a sanitization function ssan ∈ Ss

san. A taint-style vulnerability
can be used to describe Buffer Overflows, Code Injections and Permission
Checks, etc.

As evaluation, they decided to use the Code Property Graph on the Linux
kernel source code. The evaluation has been done in two steps. In the first
step, they have conducted a coverage analysis by reviewing vulnerabilities
that have been reported on the Linux kernel in 2012. They have reviewed
what types of vulnerabilities occurred and if they can be detected by the
Code Property Graph. Table 4.2 shows the 12 vulnerability types that have
been reviewed. Two of the reviewed vulnerabilities cannot be described in the
Code Property Graph because Design Errors require additional information
about the projects and Race conditions are difficult to be detected in a static
analysis. A combination of all code representations allows describing the ten
remaining vulnerability types. Other combinations can be used to detect
some vulnerability types.



Related Work 29

Taxonomy

Sinks

Targeting Client
Session Fixation

Cross Site Scripting

Targeting Server

Arbitrary File
Reads/Writes

Code Injection

Command Injection

SQL Injection

Sources

$_FILES

$_SERVER

$_REQUEST

$_COOKIE

$_POST

$_GET

Figure 4.4: Taxonomy that is used to detect vulnerabilities in PHP. [27].

In the second step, they have written different rules for the different
vulnerability types, including vulnerability types that did not occur in the
Linux kernel in 2012. They have done a code analysis of the Linux kernel
and have found 18 previously unknown vulnerabilities in the Linux kernel.

Backes et al. [27] used the Code Property Graph to detect vulnerabilities
in PHP. They have implemented the concept of Code Property Graph for
PHP by using PHP’s internal parser to generate the AST. Then the AST
has been used to generate the CFG and the PDG. They have extended the
Code Property Graph with a Call Graph. This is a graph that contains edges
from a function call to the corresponding function definition. All of these
models are put together in a graph database to get a Code Property Graph.
Figure 4.4 shows a taxonomy that has been used to detect the vulnerabilities
in PHP projects. Sources are the basic function provided by PHP that
obtains data from the user. The sinks are classified into either attacking
the client or the server. For each vulnerability type, the related functions
that fall into the category are listed. For each vulnerability, the different
sanitization functions are listed. For example, for SQL Injection, the function
mysql_real_escape_string is one of the sufficient sanitization functions.

To increase the performance, the traversal of the Code Property Graph
is split into two steps. The first step searches for all critical functions (sinks)
in the graph and stores the corresponding IDs. The second step is the
traversal of the Code Property Graph. A backwards taint analysis is done.
Accordingly, the traversal starts at the sink and goes backwards using the
PDG. If a sanitization function or a source is found, the traversal will stop. If
a sink has multiple sources that reach the same sink, each source will create
a different path. The paths represent the potential vulnerability and can be
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reviewed to check if it is actually a vulnerability.
They evaluated the implementation on open-source projects from GitHub

[19]. They searched for PHP projects that have at least 100 stars to ensure
that the projects are relevant. They obtained 1854 projects in which four of
these were projects that intentionally contained vulnerabilities. Accordingly,
1850 normal projects have been scanned. The reports of the normal projects
have been reviewed to see if they are false positive or true positive reports
and calculated the hit-rate h = TP

TP+FP . The results showed mixed hit rates.
For Arbitrary File Reads/Writes and Session Fixation the hit rate was very
low. For the other categories, the results show good hit rates (13.7% - 32%).
Additionally, they compare the ratio of sinks to all function calls found in
the projects compared to intentionally vulnerable projects. The ratio was
always higher on the intentionally vulnerable projects in comparison to the
normal projects.

Our contribution regarding static code analysis models is the Adversary
Controlled Input Dataflow (ACID) tree. It uses the Code Property Graph
to create the tree. The ACID tree provides a model that allows to detect
vulnerabilities where the context of given input is relevant. For example, the
context of a cross site scripting vulnerability has a high impact if that is
exploitable. This makes the ACID tree precise in determining vulnerabilities
and parts to inject vulnerabilities via Insecurity Refactoring.

4.4 Bug injection

Refactoring methods have been used to improve the security of source
code. Thomas et al. [75] developed a tool that replaces database queries
with prepared statements to remove potential SQL Injection vulnerabilities.
Maruyama and Omori [52] present a security-aware refactoring tool. Research
about injection of vulnerabilities in source code exists. Our contribution is
to inject vulnerabilities using the Insecurity Refactoring definition. That
definition requires that the normal usage of the program is still maintained.
Other approaches try to minimize the impact on the normal usage by in-
serting triggers that only trigger on very specific inputs. In contrast, the
vulnerabilities injected with Insecurity Refactoring will create a vulnerability
that developers unintentionally create. For example, a sanitization function
is used that is insufficient for the given sink. This allows to exploit the vulner-
ability by using critical characters that are not filtered out by the sanitization
function. LAVA and EvilCoder that are described in the following sections.
Those tools are injecting vulnerabilities in Java and C code. Our injected
vulnerabilities are using source code patterns that have been extracted from
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existing vulnerabilities. The injected vulnerabilities from Insecurity Refac-
toring do not require an artificial specific input instead it requires bypassing
the sanitization functions as it happens in real vulnerabilities.

4.4.1 Large-scale Automated Vulnerability Addition LAVA

Dolan-Gavitt et al. [35] developed the Large-scale Automated Vulnerability
Addition (LAVA) tool. The tool uses a dynamic taint analysis-based technique
to automatically inject vulnerabilities in C projects. For the injection,
they use DUAs (Dead, Uncomplicated and Available Data). A DUA is
a user controlled input that does not change any control flows and is not
concatenated with other variables. A DUA is determined by the taint compute
number (TNC) and the liveness. The TNC is computed by all concatenations
that define the variable. For each concatenation, the TNC is iterated once.
Additionally, the TNC is iterated up for each run through a loop. The liveness
is calculated by counting in how many control flow decisions the variable
is used. Accordingly, the perfect DUA is not used in any concatenations
(uncomplicated) and will not be used in any control flow decisions (dead).

The next important part is the Attack Point (ATP). This is a code
location that can be transformed into a vulnerability. The focus relies on
Buffer Overflow and read/write out of bounds vulnerabilities. Corresponding
functions like memcpy() are an Attack Point.

The injection of the vulnerability is approached by searching for DUAs
that are near Attack Points. This allows to transform the Attack Point by
using the DUA variable. In this approach, it is not required that the variable
is used in the Attack Point. If the DUA is not in the context of the ATP,
new code is added that makes the DUA available (static or global variable).
In their concept of LAVA, a vulnerability should only be exploitable in a
narrow case and the vulnerability should not constantly occur. This makes
the injected vulnerabilities behave like non injected vulnerabilities. Their
approach to the narrow case is by adding checks that only occur on specific
bytes.

Figure 4.5 shows a code example that contains a DUA (variable b) and
an Attack Point (memcpy). The variable b is a DUA because it is not a
result from a concatenation and is not used in the if statement. The program
language comment shows how the tool would inject a vulnerability. It uses
the variable b and checks for a specific byte. If b equals to that byte value, it
will add itself to the variable d that will create a buffer overflow vulnerability.

The implementation of the framework uses four steps. Figure 4.6 shows
the implementation architecture of LAVA. The first step is instrumenting
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Figure 4.5: Code example of a LAVA injected vulnerability. [35]

Figure 4.6: Lava implementation architecture. [35]

the source code with taint queries. This allows to analyze at the dynamic
testing to check where the input will be stored and read. In the next step,
the program will be run with different inputs. Each byte in the input has a
unique ID. This allows to identify what specific bytes are stored and read.
In the third step, the DUA and ATP are searched. A DUA is found based
on threshold values for the TNC and liveness. Different vulnerabilities can
be injected based on the DUAs and Attack Points. In the last step, the
vulnerabilities are injected and the modified program is compiled to ensure
that the syntax is still correct.

They have done three different evaluations for their approach. The first
evaluation checks if open-source projects can be used to inject vulnerabilities.
Additionally, it shows how many vulnerabilities can be injected and a test
exploit shows if the vulnerabilities are exploitable. Four open-source projects
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have been used to inject vulnerabilities. The results indicate that many
vulnerabilities can be injected. They count each vulnerability as a different
vulnerability if the locations of the DUA and Attack Point are different
because the path in between can be different.

As second evaluation, they have checked the distribution and realism of
the vulnerabilities. A good distribution on the project means that detection
tools have to analyze all these parts to find all vulnerabilities. The bug
realism is calculated by using the code positions of the DUA and ATP, the
histogram of the positions and the trace between the DUA and ATP. For
example, if static or global variables have to be added to pass data to the
ATP, the sample would not be realistic. If the DUA and ATP are near
together, a sample has been defined as realistic.

As the last evaluation, a fuzzer and symbolic execution-based bug finder
(SES) have been used to see if they can detect the injected vulnerabilities.
They have used two different triggers for the vulnerabilities. The Knob-
and-trigger requires two different bytes to be a specific value to trigger the
vulnerability. The second trigger is Range, where a byte has to be in a
specific range to trigger the vulnerability. For Knob-and-trigger, only the
SES could find them. For Range, the SES performed very similar on range
because the specific byte is important to statically detect a vulnerability.
As expected, the fuzzer performs better on larger trigger ranges. A second
test data set with the name LAVA-M has been created. In this data set,
as many vulnerabilities as possible have been injected in four open-source
projects. The tools have been used again to scan the data set and both
tools did not perform very well. At least, the results from the two tools have
only overlapped a little. Accordingly, the LAVA data set is not tailored to a
specific finding strategy.

Hulin et al. [45] used the LAVA application to create challenges for a
capture the flag (CTF) event. Firstly, they had to improve the LAVA ap-
plication to actually be able to inject exploitable bugs. Two exploitable
vulnerability types, direct stack pointer corruption and controlled relative
memory writes have been implemented for the LAVA application. Addition-
ally, a domain-specific language has been implemented that describes the
injection patterns. The pass from a DUA to an ATP has been modified as
well. Instead of unique global variables, an array called Dataflow will be
used. Each element stores that array to be used for a DUA, ATP pair. The
magic value to trigger the vulnerability is still implemented for the injected
bugs to maintain the functionality on benign inputs.

For the CTF event, eight challenges have been prepared. Two applications
have been developed in C that have simple functionalities. These applications
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have been used to inject exploitable bugs with LAVA. Each challenge is a
copy of the initial application modified with the injected bug. Additionally,
non-exploitable bugs (chaff bugs) have been added by the LAVA tool because
the combination of the magic value and the Dataflow variable makes it
obvious where injected bugs are. The combination of exploitable and non-
exploitable bugs makes it a challenge to determine what bug is exploitable.
Four challenges have been created by using the LAVA tool. Additionally,
four challenges have been manually created.

The CTF event has been held for one week and four university security
clubs have attended. The clubs have been interviewed to evaluate the
usage of LAVA injected bugs as CTF challenges. For many participants,
the challenges have been too difficult. Especially for the students who are
relatively new to reverse-engineering. Additionally, the repetition of the same
projects has been stated positive and negative. The positive aspect is that it
made reverse-engineering easier because the attendees got familiar with the
code. In contrast, it makes the challenges repetitive and that gets boring.
Some attendees would have preferred only one project that contained all
the vulnerabilities. The reverse-engineering experienced students had no
problems with the reverse-engineering part, but had problems at developing
the exploits. Accordingly, they have seen the challenges as a good opportunity
to train exploit development. The magic value has been stated as negative. It
makes the challenges abstract and makes the finding of the vulnerabilities easy.
Some attendees were even able to identify patterns of the non-exploitable bugs
which allowed them to distinguish between exploitable and non-exploitable
bugs.

The magic value has been stated as a limitation that should be mitigated
for better bug injection. Additionally, the exploitable bugs have been tested
by the hosts of the CTF to ensure that they are actually exploitable. All of
them were exploitable, but the testing took a lot of time compared to the
automatic bug injection.

Compared to our contribution, LAVA injects vulnerabilities that trigger
on specific inputs. In addition, it changes the normal usage of the program by
using DUA. It minimizes the impact on normal usage but does not maintain
it like our approach. In the code example of figure 4.5, the LAVA injected
vulnerability will trigger if the user input is 0xdeadbeef. It will trigger a
buffer overflow by modifying the destination of memcpy. The authors make
no insurance that the variable value of 0xdeadbeef is not a valid input.
Accordingly, it may change the normal behavior of the program but they
reduce the likelihood by using DUAs. This makes the vulnerability like
a backdoor that only users can exploit that have knowledge about it. In
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Figure 4.7: Workflow of the EvilCoder application [61].

addition, the DUA is connected to an attack point. This connection is not
supposed to be in the code and can result in unintentional bugs that also
may change the external behavior. Furthermore, the injected trigger points
are easily detectable if someone reviews the source code. In contrast, our
approach uses source code patterns from real software projects and those are
not that prominent in a code review.

4.4.2 Bug injection by using the Code Property Graph

Pewny and Holz [61] developed the EvilCoder application. The main concept
is to find potentially vulnerable source code locations and modify them that a
vulnerability exists. Figure 4.7 shows the workflow of the project. The initial
source code is used to create the Code Property Graph. The creation of the
CPG is based on the island grammars Moonen [55] to parse the C source
code. The CPG does not support interprocedural analysis. Similar to Backes
et al. [27], a call graph is added to the CPG. Additionally, the parameters
are checked if they return data by using references or pointers. This creates
the Code Property Graph that is ready for interprocedural analysis. The
glibc library has been added to the Code Property Graph to resolve functions
from that library.

The potential vulnerable locations are found by a backwards data flow
analysis. It starts by searching for potential sinks. For each vulnerability
type, different sinks are searched. For example, the memcpy function is
a Buffer Overflow sink. The traversal starting from the sink is a tree-like
structure. The interprocedural analysis requires distinguishing between the
following five cases:
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1. Increment/Decrement
E.g., i++;
An increment or decrement of a variable requires continuing analyzing
the same variable.

2. Left-hand-side of arithmetic expression
E.g., a = b + (c * 2);
All the variables that are found on the right sight will be further
analyzed. In the example, it would be b and c.

3. Assigned as return-value of function-call
E.g., c = f(a, b) and int f(int x, int y){int r = x+y; return r;}
In this case, the data flow analysis continues at the return statement
with the variable r.

4. Assigned as argument in function call
E.g., strcpy(dst, src);
Functions that are resolved by the Code Property Graph will continue
at that parameter that will then end as another parameter. For external
functions, a "data-transfer" lookup-table is created.

5. Assigned as parameter of a function
E.g., f(int x){a=x;}
If the analysis is at the variable a, the next variable to track would
be variable x where it stems from the parameter of a function. Then
all function calls are searched up and the analysis continues at the
corresponding parameters.

All paths from a user controlled source (UCS) to a sensitive sink (Si) are
potentially vulnerable locations. They define user controlled source that is
project-specific if the data is from files, network, command line, standard
input streams or environment variables.

To find the security mechanism, the Control Flow Graph is searched for
security checks. Between each data flow node, the Control Flow Graph is
searched for control flow nodes. If a control flow node is a security check, it
will be determined by heuristics based on return and exit statements.

The instrumentation injects the bug by changing the security checks. First
of all, the instrumentation checks if the security mechanism is understood
correctly. If it is not understood correctly, the tool cannot transform the secu-
rity mechanism. If it is understood correctly, all applicable instrumentations
are listed and one is chosen randomly to inject the vulnerability.

The security checks can be replaced with the following instrumentations:



Related Work 37

libpng vsftpd wget busybox
Lines of code 40,004 20,046 137,234 265,887
User-controlled sources (UCS) 9 3 21 152
Sensitive sinks (Si) 98 13 453 573
Unique UCS-Si combinations 158 22 22 30
UCS-to-Si data-flow paths 22,516 786 1,882 2,905

Table 4.3: Results from automatic bug insertion [61].

• Remove the security check

• Surround the security check with another check that always fails

• Arithmetically influence the decision logic

• Move the security check into an unrelated path

• Swap the security check and the sink

• Use security antipatterns for integer overflow checks

For example, a length check (length > 512 ) can be replaced by arithmetically
influencing the decision logic (length/2 > 512 ).

The evaluation of the approach has been done on four open-source projects
libpng, wget, busybox and vsftpd. Table 4.3 shows the result from automatic
bug insertion on the open-source project. All the projects can be used to
inject bugs. As the unique UCS-Si combinations have different data flow
paths, numerous bugs can be injected. The injected bugs cannot ensure that
they are exploitable. The large amount of control flow checks might miss
additional security checks that prevent the exploit.

Pewny and Holz [61] have a similar approach in the iteration of the Code
Property Graph that is used in the Insecurity Refactoring approach. It also
does a backwards data flow analysis that results in a tree-like structure. That
is the nature of a backwards data flow analysis. In addition, function calls
require a straightforward approach. Accordingly, the backwards data flow
analysis approach is similar to our approach. The Insecurity Refactoring
approach creates the ACID tree. It includes the concatenations and excludes
nodes to allow a precise context analysis. As the approach from Pewny
and Holz [61] only considers security checks based on length checks, such a
context analysis is not required. The refactoring from Insecurity Refactoring
injects vulnerabilities that are exploitable based on the context, sanitization
function and sink [50] [65].
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4.5 Static code analysis test suites

Test suites for static code analysis tools are usually synthetic or based on
known vulnerabilities. The Juliet [29] test suite is a synthetic test suite that
contains 28,881 Java test cases and 64,099 C/C++ test cases. The test cases
cover many different CWE categories. The STONESOUP test suite [60] is a
combination of synthetic and open-source projects with seeded vulnerabilities
that are split into three phases. The first two phases contain small test cases
(synthetic) and the third phase contains vulnerabilities that are seeded in
source code.

4.5.1 PHP Test Suite

Stivalet and Fong [74] developed a tool to create a large test suite for static
application security testing (SAST). The tool is reusable and easy to use
without any prior knowledge. The design allows adding custom rules to
generate additional test cases. The initial design of the test cases is based
on the OWASP top ten 2013 [10]. Test cases with flaws are used to test the
tools for false negative reports. In contrast, test cases with correct code are
used to test for false positive reports.

Figure 4.8 shows the internal structure of the tool. Each test case uses
a selected input, filtering and sink template. The input template provides
untrusted data that can be manipulated by an attacker. The filtering template
does some filtering on the untrusted data. The filtering can be sufficient
or not that either result in safe or buggy code. The sink template contains
sensitive operations where untrusted data can trigger a vulnerability. To
introduce complexities, different complexities can be chosen for each test
case. A complexity can be either a condition, loops, functions, classes or
multiple files. Each template type can get a complexity. If a complexity is
chosen, the templates will be put inside these complexities. For example, a
loop is chosen for the sink, the sink template will be put inside a loop. The
templates are stored in XML files that contain different attributes and the
corresponding source code for each template.

Each test case is composed of the selected templates. Figure 4.9 shows a
sample from the PHP test suite. No complexity has been used in that sample.
User data is provided with the $_POST functions from the input template.
It is filtered with mysql_real_escape_string from the filtering template. As
sink template, a SQL query has been used. For each test case, a manifest.xml
file is generated that contains information about the test case. For example,
if a test case is safe or unsafe and a list of files from the test case.

Table 4.4 shows a summary of the generated test cases. It covers six
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Figure 4.8: The internal structure [74].

Figure 4.9: Sample generated vulnerable PHP test case [74].
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vulnerability categories containing 29,258 safe and 12,954 unsafe test cases.
Cross Site Scripting and SQL Injection have the most test cases. In total,
42,212 test cases have been generated based on the developed templates.
Our contribution is more precise in determining if a test case is vulnerable
by using decision trees. Their test suite has been reviewed and missing
parts have been added to our data set. Especially, the patterns that are
problematic for static code analysis tools are not found in their data set.
Accordingly, our generated test suites are more precise and an extension to
their test suite.

4.5.2 An explainable benchmark

Hao [11] provide a method to construct explainable benchmarks based on
vulnerabilities in projects. The goal is to have a representative benchmark
(reference to real-world settings), measurable (quantitatively measurable) and
explainable (explain the capabilities of the tested tool). The idea is to use the
initial source code containing the vulnerability. Then the vulnerability related
code will be extracted. Then the source, the sink and syntactic features that
are involved in the vulnerability will be identified. Based on those patterns,
different test cases can be generated. Figure 4.10 shows the construction
of the benchmark on open-source projects. The first step is to extract the
vulnerability related code. The extraction is function-based to maintain the
functionality of the extracted source code. At first, logging instructions are
added at the beginning of all functions found in the source code. Then a proof
of concept (PoC) is run to trigger the vulnerability and the corresponding
logging statements are stored. After the PoC, all statements will be removed
where corresponding function bodies have not been called. Accordingly, only
the functionality of the PoC will be maintained. The reduced source code is
the original test case.

An additional test case is the basic test case. Such a test case contains
only the corresponding source and sink of the original test case. The basic
test case is constructed by searching for the source and sink. The sink can
usually be identified by looking into the corresponding CVE report. The
source is found by using the rr debugger tool [18] to perform a backwards
taint analysis. The basic test case is then constructed by combining the
source and sink.

An explainable benchmark test suite requires finding out the reason for
false negative reports. The idea of the authors relies on features. Table 4.5
shows the features they have identified based on previous work ([63] [54]).
The features influence the control flow and the data flow part. The authors
assume that the static code analysis tools search for a sinks, source and then



Related Work 41

Vulnerability CWE Safe Unsafe Total
Insecure Direct
Object Reference

862 - Missing Au-
thorization 400 80 480

Injection 72 - OS Command
Injection 1,872 624 2,496

89 - SQL Injection 8,640 912 9,552
90 - LDAP Injec-
tion 1,728 2,112 3840

91 - XML Injec-
tion 4,784 1,264 6,048

95 - File Injection 1,296 336 1,632
98 - PHP Remote
File Inclusion 2,592 672 3,264

Sensitive Data Ex-
posure

311 - Missing En-
cryption of Sensi-
tive Data

2 2 4

327 - Use of a
Risky Crypto-
graphic Algorithm

3 5 8

Security Miscon-
figuration

209 - Informa-
tion Exposure
Through an Error
Message

5 3 8

URL Redirects
and Forwards

601 - URL
Redirection to
Untrusted Site

2,208 2,592 4,800

Cross Site Script-
ing

79 - Cross-Site
Scripting (XSS) 5,728 4,352 10,080

Total 29,258 12,954 42,212

Table 4.4: Summary of the generated test cases [74].
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Figure 4.10: Benchmark construction overview [11].

check if any connections between them exist. These connections are based
on the features. The test case variants are created based on these features.
A data flow analysis on the original test case is used to search for syntactic
features. For each syntactic feature that is found, a test case is generated
that does not contain the feature. For example, if a function pointer feature
is found, it will be replaced with a direct function call. Each test case variant
is checked for program equivalence. A proof of concept is run on the variant
and the resulting memory state is compared with the memory state from
the original test case by using the Clang’s AddressSanitizer [12]. If the same
error type and same stack trace is found, the test case variant will be added
to the benchmark.

The final test cases are counterexamples. These test cases do not contain
vulnerabilities. For each test case variant, a counterexample is created by
adding a secure source. If a control flow syntactic feature is found in the
variant, the control flow from the initial sample to the sink is blocked and
a flow from the secure source to the sink is added. If a data flow syntactic
feature is found, the secure source and initial source are mixed in the data
flow. The mixing ensures that the data from the initial source cannot reach
the sink. For the basic test case, a counterexamplebase is created by replacing
the source with a secure source.

These different test cases allow identifying what source, sinks and syntactic
features the tested tools support. The basic test case shows that the tool
supports the vulnerability. The counterexamplebase shows if the tool checks
for insecure data. The variant test cases can be used to check what syntactic
features the tool supports. This makes the benchmarks explainable and
measurable. The test cases are based on existing vulnerabilities which make
the benchmark representative.

The approach has similarity to our approach of creating a static code
analysis test suite. Those are also based on existing vulnerabilities and
they also used an extraction method to extract vulnerable source code.
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Syntactic Features Influence on SCA
Control Flow Data Flow

Function Pointer (FP) ✓
Function Call Chain (FCC) ✓ ✓
API Function Call (AFC) ✓

Data Structure (DS) ✓
Data Array (DA) ✓
Data Pointer (DP) ✓

Table 4.5: Syntactic/Semantic Features in C language [11].

Our contribution is that all the specific parts are described in a pattern
language. In combination with the defined vulnerability decision tree, almost
all permutation of those patterns can be used to create different test cases.
The test case generation has been evaluated by experts from SAMATE [5]
to ensure solid test cases.
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Chapter 5

Methodology

This section describes the methodology. The scientific questions are split into
five categories (Q1-Q5). To answer the corresponding questions, different
choices of methods were used. The following methodologies are mapped to
the corresponding scientific questions. For example, the choice of method
M2 is to answer the scientific question Q2. Figure 5.1 shows the relations
of the methodologies. The Insecurity Refactoring requires the pattern of
vulnerabilities and the patterns of source code patterns that are problematic
for SCA tools. Based on M1 and M2, the Insecurity Refactoring can be
implemented. In methodology M4, three different methodologies have been
used to evaluate the Insecurity Refactoring approach. In methodology M5,
two different static code analysis test suites have been created. An expert
interview has been used to evaluate the generation process of the test suites.

Figure 5.1: Overview of the methodologies.
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5.1 M1: Classification of source code patterns in
open-source projects

The classification of source code patterns is a qualitative research method
that identifies source code patterns and categorizes them based on manual
code analysis of existing vulnerabilities. Compared to prior work, this
methodology aims to classify the source code so that those patterns can be
transferred back into source code again. Previous work tried to classify the
vulnerabilities instead of the source code that resulted in a vulnerability.
In addition, the manual review also aims to identify pitfalls that software
developers can make that result in a vulnerability. Figure 5.2 shows the

Figure 5.2: Methodology to classify source code patterns.

steps to classify the source code patterns of existing vulnerabilities. The data
collection should be based on vulnerabilities that occurred in real projects.
Accordingly, the database CVE [1] has been chosen because it contains
almost all vulnerabilities that occurred in software projects. In addition, the
database contains the information on how such security issues occurred in
real projects. The analysis of source code patterns requires access to the
source code. Accordingly, the first step is to use a crawler to find all CVE
reports that are categorized into vulnerability types and have a relation
to open-source projects. Based on these findings, important vulnerability
types and programming languages are chosen as a data set. The data set
is obtained by a crawler tool that searches for free accessible source code,
that is related to CVE reports. The source code of the data set is manually
analyzed to identify different source code patterns. A manual analysis of
the given vulnerability is required because no modern static code analysis
tool can ensure a perfect detection rate. As a full source code review would
be almost impossible, the CVE report data is used to decrease the review
process only on vulnerability related source code. An automatic approach
will require to implement a similar procedure as static code analysis does.
Accordingly, an automatic approach would provide the same problems as
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static code analysis tools have to fight with. Especially source code patterns
that are difficult for static code analysis tools are interesting and will not be
found by an automatic approach.

After the source code from the vulnerabilities have been collected, the code
review phase identifies source code patterns. At first, the manual analysis
classifies the source code patterns found in the data set. The focus relies
on vulnerabilities that depend on malicious data reaching critical functions.
This allows to review the source code from a given source to a given sink.
Based on the data set, we decided to analyze SQL Injections, Cross Site
Scripting and Buffer Overflow vulnerabilities manually. For each sample, the
common known parts (source, sanitization, sink,...) of such vulnerabilities are
classified. The information about the source is provided by the CVE report.
Based on the vulnerability type, the corresponding sink can be identified.
Additionally, it is analyzed if on the path any important data flow paths were
involved. Important data flows are paths where data flows from one part
to another part. For example, an environment variable could be set in one
part and then that environment variable will be read in another part. Such
patterns are also tracked in the review phase. Suitable classifications based
on the analysis results are constructed. Again, in comparison to previous
work, the perspective is the software developer and the categories must be
able to transform back into source code. Besides the classification of the
vulnerability, the research also includes how the developers resolved the
issues. This requires analyzing the patch provided by the developers to fix
the vulnerability. A comparison to the Common Weakness Enumeration
(CWE)[9] shows if any classifications are missing as detailed as our results.

5.2 M2: Limitations and problems of static code
analysis tools

A mix of quantitative and qualitative study is used to find the limitations
and problems of static code analysis tools. Figure 5.3 shows the methodology
to extract the problematic source code patterns. In comparison to previous
static code analysis evaluations, the goal is to find source code patterns that
static code analysis tools cannot analyze correctly. Our previous work already
provided a database of vulnerable source code. The methodology is to scan
the previous database and the corresponding patched version to identify
which source code patterns static code analysis tools cannot detect. At first,
it requires selecting static code analysis tools that are used for identifying
the problematic source code patterns. For this methodology, commercial and
open-source static code analysis tools are chosen because they match the
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Figure 5.3: Methodology to extract problematic source code patterns.

criteria to (1) support PHP projects, (2) searches for security vulnerabilities,
(3) support data flow analysis and (4) are still maintained (last update < 1
year). Two open-source and three commercial tools are selected for this study
that match the criteria. The goal of this methodology is not to compare
the tools and the license for the commercial tools did not allow publishing
the names. Accordingly, the commercial static code analysis tools are called
Tool A, Tool B and Tool C. The goal is to find source code patterns that are
problematic for state-of-the-art static code analysis tools where anonymized
names are not a problem. Accordingly, five static code analysis tools are
selected.

A process consisting of four steps is used to find source code patterns that
are problematic for static code analysis tools. The steps are (1) selection,
(2) scanning, (3) identifying patterns, and (4) verification. The (1) selection
of a data set uses the same vulnerabilities from the previous data set. This
makes the review phase simpler because the vulnerabilities have already
been reviewed and the vulnerability location is known. Nevertheless, it only
contains the vulnerable source code. False positive reports from static code
analysis tools are a problem as well. Accordingly, we decided to also include
the patched source code of the vulnerabilities. The data set is split into
a vulnerable data set that contains source code including the vulnerability
and a fixed data set that contains the source code that is patched to fix the
vulnerability. Then the data sets are (2) scanned by the static code analysis
tools. The location of the vulnerabilities are known by the previous manual
code analysis. This allows to automatically identify false negative and false
positive results. The vulnerabilities and patched versions that provided such
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false reports are interesting to find out why they provide such false reports.
Accordingly, the next step (3) is required to identify what is the problematic
source code pattern. Manually reviewing the full project would not be
efficient and would take too much time. At first, the identifying pattern
step uses all false negative and false positive results and extracts a minimal
working example of the vulnerability. The minimal working example contains
only the source code that corresponds to the vulnerability. These minimal
working examples are scanned again to validate that the problematic patterns
are included. If the minimal working example did provide a false report from
a tool, the problematic pattern has been missing and the minimal working
examples has to be increased until it contains the problematic pattern again.
Then the minimal working examples are reviewed manually to find all source
code patterns that are used. The (4) verification step is required to verify
which of the found source code patterns are actually problematic because
the extracted patterns are just guesses based on the manual review. To
verify the patterns, a small source code sample is used that contains a basic
vulnerability and is detected correctly by the five static code analysis tools.
For each identified source code pattern, the sample is modified to contain the
problematic pattern. Accordingly, if a tool cannot identify the vulnerability
anymore, a problematic source code pattern has been identified that produces
false negative reports. In contrast, patterns that are problematic for false
positive reports the modified source code does not contain the vulnerability
anymore. For example, a sanitize function is used that filters all characters
except of numbers. Consequently, the last steps verify what source code
patterns are problematic for static code analysis tools.

5.3 M3: Insecurity Refactoring

The goal of Insecurity Refactoring is to inject vulnerabilities in projects.
The process for the implementation is shown in figure 5.4. Based on its

Figure 5.4: Implementation overview.
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definition, a process has been created and defined that uses static code analysis
approaches to identify possible injection paths that can be transformed into
a vulnerability. The programming language considered is PHP because most
of the identified patterns stem from PHP. Reviewing open-source static code
analysis projects showed that the Code Property Graph (Yamaguchi et al. [78]
[27]) supports PHP and can perform a data flow analysis that is required for
our approach. Accordingly, this approach uses the same static code analysis
model to detect possible injection paths as EvilCoder [61]. In comparison to
their work, our approach uses source code patterns that have been identified
and classified from our previous work. For the detection part, the previously
identified source code patterns have been extended with patterns from the
standard PHP documentation [62]. For example, all different SQL driver
libraries have been added as possible SQL Injection sinks.

The Insecurity Refactoring approach is based on our defined Adversary
Controlled Input Dataflow (ACID) tree. Creation rules define how an ACID
tree is created by using the Code Property Graph and a given sink as inputs.
The ACID tree is a tree structure where the sink is the root node and all
the leafs show possible inputs that can reach the sink. The ACID tree can
be used to find vulnerabilities or to find possible injection paths (PIPs) by
traversing from a leaf to the sink. A possible injection path means that a
leaf provides user input data and the sink is a critical function. Instead of a
vulnerability, there must be at least a sanitization function, a secure sink or
secure source involved. A secure sink means that it is not possible to perform
an attack on that sink. For example, a prepared statement is correctly used
by setting the parameter of a SQL prepared statement. Similarly, a secure
source means that the source only provides uncritical characters (e.g., only
numbers) that cannot be used to exploit a vulnerability. PIPs are used for
the Insecurity Refactoring process to transform a non-vulnerable source code
part into a vulnerable source code part. Transformation rules are defined
to inject a vulnerability without breaking the normal usage of the program.
Accordingly, the sanitization functions, secure sink and secure source are
replaced to be insecure. Insecure means that the function does not provide
sufficient protection against exploits. The definition if a sanitization function
is sufficient is based on the sanitization function, the context where the input
is located and the sink. For example, the context means that the user input is
put inside apostrophes. Based on the sanitization function and sink, it might
be sufficient to filter out all apostrophes. Accordingly, based on the context
and sink a insufficient sanitization function can be chosen. The difference
to the injection from LAVA [35] and EvilCoder is that those tools injected
vulnerabilities that can be triggered given a specific input. For example,



Methodology 51

an input requires being 0xdeadbeef to trigger the injected vulnerability. In
contrast, our approach does not require such specific inputs. Instead, it is
based on source code patterns that have been identified from the reviewed
vulnerabilities.

To represent all the previously defined source code patterns, a PL/V
pattern language has been defined that represents the source code patterns.
This is a context-free language, that allows to describe previously defined
source code patterns in a program independent language. Based on the
language, all the source code patterns can be defined and it allows checking
the ACID tree if such a pattern exists in the tree structure. The language
would even allow representing such input triggered vulnerabilities like LAVA
and EvilCoder implemented. The idea of Insecurity Refactoring is to create
learning examples. By just replacing sanitization methods with insufficient
methods, the variance of learning examples would be only mainly based
on the code base that will be used. Accordingly, we added the support
to insert data flow patterns. Those patterns allow inserting different data
flows, but each start and end point of the data would be the same. In other
words, a data flow pattern will not change the data flow instead it will just
flow different than before. Those data flow patterns are used to represent
the difficult source code patterns for static code analysis tools. LAVA also
changes data flow, but they use it to connect data flows that did not exist
before. Accordingly, if such a changed data flow is required, the normal usage
of the program may change. It might result in a crash of the program, even
if the vulnerability is not exploited.

All the modifications of Insecurity Refactoring are done on the ACID
tree. Such a modified ACID tree will not automatically result in source code.
In the last step, we implemented a transformation of the modified ACID tree
to the corresponding source code. All the nodes in the ACID tree store the
corresponding code location. For each modified part of the tree, the related
source code has to be replaced with the modification. The ACID tree is
based on the Code Property Graph which also includes the Abstract Syntax
Tree. The code modifications are translated into source code based on the
underlying Abstract Syntax Tree in combination with the PL/V pattern that
also can be translated into an Abstract Syntax Tree. Then the translated
source code will simply be replaced in the corresponding lines of code of the
source code.
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5.4 M4: Evaluation of Insecurity Refactoring

Figure 5.5 shows that the evaluation is split into two parts. The first part
evaluates if the Insecurity Refactoring definition holds on real projects. The
second part evaluates if Insecurity Refactoring can be used as learning
examples.

Figure 5.5: Evaluation of Insecurity Refactoring.

To see if our approach of Insecurity Refactoring works on actual projects,
a quantitative research on open-source projects is used. It will be checked on
how many open-source projects the Insecurity Refactoring process is possible.
An Insecurity Refactoring process is possible if the implemented tool finds
a possible injection path. Accordingly, open-source projects from GitHub
are crawled and scanned for possible injection paths. The results show for
how many projects it is possible to inject vulnerabilities by the previous
defined Insecurity Refactoring process. Just finding a possible injection path
does not show if the process breaks the normal usage of the program. The
evaluation should show if the Insecurity Refactoring did not break the normal
usage. This requires evaluating projects that have been modified by the
Insecurity Refactoring process. We decided to evaluate the normal usage
via two experiments that also will be used to evaluate the usage as learning
examples. If there are any complaints about the program not running as
usual, we know that the Insecurity Refactoring did break the normal usage
of the program.

Two experiments on different groups are used to evaluate the usage of
the program and if the insecurity refactored vulnerabilities can be used as
learning examples. For the experiment, four different open-source projects are
modified by the Insecurity Refactoring process. These projects are deployed
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to virtual machines. The small number of open-source projects is a result of
the setup of such a project taking a lot of time to get them running in the
first place. In addition, four projects require a large amount of time for the
experiment attendees to review all of them.

The first experiment uses the virtual machines in a CTF like event.
The participants have to find the vulnerabilities. They can choose the
method to find vulnerabilities on their own. They get points by submitting
a vulnerability report, a patch to fix the vulnerability and by providing a
working exploit for the discovered vulnerability. As the CTF event progresses,
different hints are provided. For example, a hint that a specific input is
potentially vulnerable. The Insecurity Refactoring process knows what source
(a leaf of the ACID tree) has been used for the vulnerability. Accordingly, such
hints can be provided easily to reduce the review process of the attendees.

In contrast, the second experiment is a guided exercise. The participants
of that group get access to the virtual machines and the modified source
code. They are guided to use static and dynamic analysis tools to find the
vulnerabilities. At the end of the experiment, the participants get a list of
all injected vulnerabilities to compare it to the results of the tools. The
idea is to provide learning examples where the participants can learn the
usage of static and dynamic tools. Accordingly, there has been inserted a
data flow pattern that is difficult to be detected by dynamic tools and there
have been added two vulnerabilities that are difficult to be detected by static
code analysis tools. As the attendees get a list of all injected vulnerabilities,
they can review the source to understand what source code patterns make
it difficult for the tools to detect them. In this case, the pattern that is
difficult for dynamic tools is a similar pattern to the pattern that LAVA and
EvilCoder uses. It requires a specific input to disable a sanitization method.
A dynamic tool would require to guess that input, that would require a fuzzy
methodology or to brute force it. In contrast, a static code analysis tools
does not require guessing the input as it can be read in the source code.

The virtual machines and the vulnerabilities are different for both experi-
ments. The usage of the virtual machines shows if the normal usage of the
program is still working. Any reports from the participants that something is
not working correctly would show that the Insecurity Refactoring definition
is not held. To evaluate the usage of learning examples, a survey is the
choice of method. A survey before the events checks the skill level of the
participants. The survey after the event verifies if the exercises created by
Insecurity Refactoring has been useful for the participants.

As the tools LAVA and EvilCoder are similar to the Insecurity Refactoring
approach, functional and experimental comparisons have been done. The
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functional comparison compares how they detect possibilities for injection,
how the vulnerabilities injected, and how realistic the injected vulnerabilities
are. The experimental comparison is more difficult because LAVA is for Java
projects and EvilCoder is for C projects. Accordingly, a comparison on the
same database is not possible. For the experimental comparison, only the
EvilCoder tool has been compared to our approach because LAVA uses a
dynamic approach that is very different than the static approach of EvilCoder
and Insecurity Refactoring. The evaluation on open-source projects from
EvilCoder is similar to our evaluation. For the comparison, the evaluation
of EvilCoder on open-source projects have been compared to our results of
the evaluation on open-source projects. Similar metrics have been calculated
and compared to each other.

5.5 M5: Benchmark static code analysis tools

Previous work provides different source code patterns represented in PL/V
language. In addition, the Insecurity Refactoring process also introduced the
functionality to create source code based on those patterns. The idea was to
create test suites that contain vulnerable source code based on our identified
patterns. Figure 5.6 shows the method that is used to create such test suites.
A review of state-of-the-art benchmark data sets show that for PHP, the

Figure 5.6: Test suite for static code analysis tools.

newest data set is the PHP Vulnerability Test Suite [74]. The review showed
that those test suites are also created by combining different source code
parts together. They used it in a more simple way that there are source
code snippets for sources, sanitization functions and sinks. Nevertheless,
a comparison of the patterns they use shows if the Insecurity Refactoring
framework misses any patterns. The missing patterns are added to have a
complete set of source code patterns as the static code analysis benchmark
set. All the obtained source code patterns except data flow patterns are used
to create the first test suite that contains all possible combinations of the
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patterns. For the data flow patterns, a second test suite is generated, where
one sample represents one data flow pattern. Per definition, our data flow
patterns do not change the data itself. Accordingly, it would just multiply
the number of test cases of the first test suite by the number of data flow
patterns.

The source code itself would be sufficient to create a test suite. Never-
theless, there is a problem that some sanitization functions are filtering only
specific characters. The previous implementation for Insecurity Refactoring
decided based on sanitization function, context and sink if the sanitization
function is sufficient or insufficient. We improved our previous definition if a
vulnerability is vulnerable. A decision tree has been introduced to determine
whether a test case is vulnerable or not. For this decision tree, it has been
defined what characters are filtered out by sanitization functions. Different
decision trees are defined for SQL Injection and Cross Site Scripting. Those
decision trees define based on the context and what characters are allowed if
a sample is vulnerable.

In addition, we improved the generation process that each sample contains
a docker file. This allows to easily verify if the generated samples are runnable
and check if a vulnerable sample is actually vulnerable. Based on the improved
decision tree, it even allows providing hints what characters can be used to
exploit the vulnerability. A docker file must be very specific, especially for
the SQL databases. Each database driver requires a running database in the
background. For each pattern, it is defined what is required in the docker
file. Based on those requirements, the docker files can be generated. Then
the Docker files have been used to verify whether the samples are actually
working or not.

The contribution of these samples aims to benchmark static code analysis
tools. As the commercial tools performed better in our previous work, we
decided to use only commercial static code analysis tools to scan all the
generated samples. To evaluate if these samples provide a solid benchmark
data set, the results from the static code analysis tools are used to calculate
already established static code analysis metrics. The metrics show if the
data set can be used to identify problems of the static code analysis tools.
An experts interview with benchmark experts from SAMATE has been used
to show whether the approach generating these samples is useful or not.
Especially, the decision tree is a central point of the generation process. The
expert interview has been done to point out issues of the generation process.
The feedback from the interview has been used to improve the test suites.
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Chapter 6

List of published papers

This section provides an overview of the published papers.

• Paper A: Source Code Patterns of SQL Injection Vulnerabili-
ties
Felix Schuckert, Basel Katt, Hanno Langweg
Conference: ARES 2017 - 12th International Conference on Availability,
Reliability and Security
Abstract: Many secure software development methods and tools are
well-known and understood. Still the same software security vulnera-
bilities keep occurring. To find out if new source code patterns evolved
or the same patterns are reoccurring, we investigate SQL Injections
in PHP open source projects. SQL Injections are well-known and a
core part of software security education. For each common part of
SQL Injections the source code patterns are analyzed. Examples are
pointed out showing that developers had software security in mind,
but nevertheless created vulnerabilities. Our main contribution is the
categorization of source code patterns.

• Paper B: Source Code Patterns of Buffer Overflow Vulnera-
bilities in Firefox
Felix Schuckert, Max Hildner, Hanno Langweg, Basel Katt
Conference: Proceedings of Sicherheit 2018
Abstract: We investigated 50 randomly selected buffer overflow vul-
nerabilities in Firefox. The source code of these vulnerabilities and
the corresponding patches were manually reviewed and patterns were
identified. Our main contribution are taxonomies of errors, sinks and
fixes seen from a developer’s point of view. The results are compared
to the CWE taxonomy with an emphasis on vulnerability details. Ad-
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ditionally, some ideas are presented on how the taxonomy could be
used to improve the software security education.

• Paper C: Source Code Patterns of Cross Site Scripting in
PHP Open Source Projects
Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg
Conference: Proceedings of the 11th Norwegian Information Security
Conference
Abstract: To get a better understanding of Cross Site Scripting vulner-
abilities, we investigated 50 randomly selected CVE reports which are
related to open source projects. The vulnerable and patched source
code was manually reviewed to find out what kind of source code pat-
terns were used. Source code pattern categories were found for sources,
concatenations, sinks, html context and fixes. Our resulting categories
are compared to categories from CWE. A source code sample which
might have led developers to believe that the data was already sanitized
is described in detail. For the different html context categories, the
necessary Cross Site Scripting prevention mechanisms are described.

• Paper D: Difficult XSS Code Patterns for Static Code Analysis
Tools
Felix Schuckert, Basel Katt, Hanno Langweg
Conference: 1st Model-Driven Simulation and Training Environment
for Cybersecurity
Abstract: We present source code patterns that are difficult for modern
static code analysis tools. Our study comprises 50 different open source
projects in both a vulnerable and a fixed version for XSS vulnerabilities
reported with CVE IDs over a period of seven years. We used three
commercial and two open source static code analysis tools. Based on
the reported vulnerabilities we discovered code patterns that appear
to be difficult to classify by static analysis. The re- sults show that
code analysis tools are helpful, but still have problems with specific
source code patterns. These patterns should be a focus in training for
developers.

• Paper E: Difficult SQLi Code Patterns for Static Code Analysis
Tools
Felix Schuckert, Basel Katt, Hanno Langweg
Conference: Norsk IKT-konferanse for forskning og utdanning. No. 3.
2020
Abstract: We compared vulnerable and fixed versions of the source code
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of 50 different PHP open source projects based on CVE reports for SQL
Injection vulnerabilities. We scanned the source code with commercial
and open source tools for static code analysis. Our results show that five
current state-of-the-art tools have issues correctly marking vulnerable
and safe code. We identify 25 code patterns that are not detected as
a vulnerability by at least one of the tools and 6 code patterns that
are mistakenly reported as a vulnerability that cannot be confirmed
by manual code inspection. Knowledge of the patterns could help
vendors of static code analysis tools, and software developers could be
instructed to avoid patterns that confuse automated tools.

• Paper F: Insecurity Refactoring
Felix Schuckert, Basel Katt, Hanno Langweg
Journal: Computer & Security, Volume 128, 2023
Received 30 April 2021, Revised: 21 December 2022, Accepted: 24
January 2023
Abstract:Insecurity Refactoring is a change to the internal structure
of software to inject a vulnerability without changing the observable
behavior in a normal use case scenario. An implementation of Insecurity
Refactoring is formally explained to inject vulnerabilities in source code
projects by using static code analysis. It creates learning examples
with source code patterns from known vulnerabilities.

Insecurity Refactoring is achieved by creating an Adversary Controlled
Input Dataflow tree based on a Code Property Graph. The tree is used
to find possible injection paths. Transformation of the possible injection
paths allows to inject vulnerabilities. Insertion of data flow patterns
introduces different code patterns from related Common Vulnerabilities
and Exposures (CVE) reports. The approach is evaluated on 307
open source projects. Additionally, insecurity-refactored projects are
deployed in virtual machines to be used as learning examples. Different
static code analysis tools, dynamic tools and manual inspections are
used with modified projects to confirm the presence of vulnerabilities.

The results show that in 8.1% of the open source projects it is possible
to inject vulnerabilities. Different inspected code patterns from CVE
reports can be inserted using corresponding data flow patterns. Fur-
thermore the results reveal that the injected vulnerabilities are useful
for a small sample size of attendees (n=16). Insecurity Refactoring is
useful to automatically generate learning examples to improve software
security training. It uses real projects as base whereas the injected
vulnerabilities stem from real CVE reports. This makes the injected
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vulnerabilities unique and realistic.

• Paper G: Systematic Generation of XSS and SQLi Vulnera-
bilities in PHP as Test Cases for Static Code Analysis Felix
Schuckert, Basel Katt, Hanno Langweg
Conference: 2022 IEEE International Conference on Software Testing,
Verification and Validation Workshops
Abstract: Synthetic static code analysis test suites are important to
test the basic functionality of tools. We present a framework that uses
different source code patterns to generate Cross Site Scripting and SQL
Injection test cases. A decision tree is used to determine if the test
cases are vulnerable. The test cases are split into two test suites. The
first test suite contains 258,432 test cases that have influence on the
decision trees. The second test suite contains 20 vulnerable test cases
with different data flow patterns. The test cases are scanned with two
commercial static code analysis tools to show that they can be used to
benchmark and identify problems of static code analysis tools. Expert
interviews confirm that the decision tree is a solid way to determine
the vulnerable test cases and that the test suites are relevant.
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Contribution

This section describes the contribution of this work. The choice of methods for
each scientific question are already described. Figure 7.1 shows an overview

Figure 7.1: Contribution overview.

of what papers contributed to the research questions. The following section
describes what each paper contributes to the corresponding question in detail.
Additionally, any critics and thoughts for each paper are discussed.
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7.1 Source Code Patterns Classification of Vulnera-
bilities

Paper A, B and C have followed the same methodology M1 but with different
data sets. A crawler has been developed to retrieve the data sets. The crawler
looked up for CVE reports that are related to open source projects. The
results have indicated that most vulnerabilities are found for the programming
languages PHP and C/C++. These results directed the research into SQL
Injection in PHP (paper A), Buffer Overflow in C/C++ (paper B) and Cross
Site Scripting in PHP (paper C).

Paper A has focused on SQL Injection vulnerabilities in PHP open source
projects. The source code patterns have been classified into sources, concate-
nations, failed sanitizations, sinks and fixes. Compared to the classification
of Shar et al. [73], our categories are focused on the source code. For example,
their sinks are just categorized into SQL Injection and Cross Site Scripting.
Our results are sub categories for SQL Injection sinks.

It has shown that many of the vulnerabilities did not include any san-
itization methods. Some samples were just plain SQL Injection samples
as found in teaching examples. A special case has shown that developers
used the header function to redirect the user if unwanted inputs are found.
But they probably did not know that the source code will be executed after
the redirect. The official PHP API description misses a critical part and
only states in a comment that the exit function should be called after using
the redirect. The paper A has contributed a detailed classification of SQL
Injection vulnerabilities in PHP and how developers fixed the vulnerabilities.

Paper B has provided a classification of Buffer Overflow vulnerabilities
found in Firefox. Buffer Overflow vulnerabilities are still a vulnerability type
that occurs frequently. Buffer Overflow (CWE-119) is still in the fifth place
in the 2020 CWE Top 25 [9]. Firefox has been used as a data set because
they use the Bugzilla [31] platform to track bugs and vulnerabilities. For
the vulnerabilities, the developers have commented on how they fixed the
vulnerabilities. The classification has been created for type of error, sink
and how the vulnerabilities are patched. Additionally, the type of error has
been classified on what type of error the developers did. The results have
shown that the developers tried to prevent Buffer Overflow vulnerabilities.
Only a few samples (5/50) had no prevention attempts. Most vulnerabilities
occurred because of some Integer variable overflow. An overflowed variable in
a combination with size checks has provided unexpected results resulting in a
Buffer Overflow vulnerability. Furthermore, unexpected inputs like negative
numbers were problematic for size checks. Additionally, Firefox is written
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in the programming language C/C++. The programming language C/C++
allows assigning different variables types to each other. In combination
with size checks, this can be problematic. For example, six vulnerabilities
had an assignment of an Unsigned Integer to a Signed Integer. This is not
problematic as long as the first bit of the Unsigned Integer is zero. For a
large number, where the first bit is not zero, the assigned variable will have
a negative number. Again, in combination with a size check, this resulted in
Buffer Overflow vulnerabilities.

The sinks have been classified into critical functions, arrays, and pointers.
Nothing special has been found in the data set. The results show that most
had critical functions as sink and the least samples had pointers as sink.

The fixes of the developers have been classified. The results show that
the developers mainly resolved the issues based on the type of error they
did. For example, if an integer variable can overflow, they added checks to
prevent that overflow. In addition, the variable types have been changed to
the correct type. For example, an integer has been changed to an unsigned
integer to prevent the issues of assigning different data types.

One special case was interesting, where a list of entries was sanitized in
order. But a situation can occur that the ordering of the list not as expected.
The order result that the sanitization of some entries of the list was skipped
and resulted in a buffer overflow vulnerability.

Overall, the paper B provides an overview where the data set is narrow.
It only uses vulnerabilities of one project. The results cannot be considered
as a taxonomy of all buffer overflow vulnerabilities. The developers of Firefox
might have a higher skill level and better education than the developers of
random selected open source projects from GitHub [19].

Paper C has provided a detailed classification of Cross Site Scripting
vulnerabilities in PHP open source projects. Again, the results have shown
that many vulnerabilities did not include any sanitization methods. Another
contribution of that paper has shown that the different sanitization methods
depend heavily on the context of the user input. Depending on the context,
a sanitization might be sufficient to prevent a vulnerability or not. This
makes it difficult for software developers to know which sanitization methods
are sufficient. The results have shown that some sanitization functions do
not filter all critical characters by default. In paper C, we mentioned that
the default filter should filter all critical characters and developers should
make a conscious decision to allow critical characters. If so, developers don’t
have to know what special characters are filtered by specific sanitization
functions. Instead, by specifying what characters are passed, they know that
these special characters are allowed. The classifications have been mapped
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Vulnerability categories

XSS - Paper C (50)

Fixes (6)

Sinks (4)

HTML context (4)

Failed sanitizations (4)

Sources (3)

BFO - Paper B (50)

Fixes (8)

Sinks (3)

Errors (8)

SQLi - Paper A (50)

Fixes (5)

Failed sanitizations (4)

Sinks (3)

Concatenations (2)

Sources (4)

Figure 7.2: The amount of source code pattern categories identified from 150
vulnerabilities.

to known CWE categories. Not all of them have been mapped to CWE
categories. Some of our categories are more detailed. For example, CWE
has the html attribute img as CWE-82. We also found other html attributes
e.g., input, div that don’t have a CWE category. For other categories like
the sink, the perspective of a developer provides other categories than the
CWE categories. The CWE categories are more based on the vulnerability
itself and not the underlying source code.

The three papers A, B and C have provided a classification of three
different vulnerability types (SQL Injection, Cross Site Scripting and Buffer
Overflow). Figure 7.2 shows how many categories have been identified based
on the reviewed vulnerabilities. The categories from SQLi and XSS can be
unified into 5 sources, 2 concatenations, 6 sinks, 7 failed sanitization, 4 HTML
context and 11 fixes categories. Accordingly, the three papers classified the
source code from 150 vulnerabilities into 54 unique categories. The data set
of 150 entries has not been large enough to ensure a full classification of the
vulnerability types. Because it has been required to review the vulnerable
and fixed versions. The manual reviewing has required significant effort.
This limits the number of entries that can be reviewed. But the results from
papers D and F show that state-of-the-art static code analysis tools cannot
provide precise enough results to create a classification.
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7.2 Difficult source code patterns for static code
analysis tools

Paper D and E contribute to publish source code patterns that are problematic
for state-of-the-art static code analysis tools. The same data sets from paper
A and paper C have been used to find problematic source code patterns. The
commercial static code analysis tools are not named. We reference them here
as tool A, tool B and tool C. Those references are the same in the published
papers.

First of all, paper D has looked into Cross Site Scripting vulnerabilities.
The initial scan has shown that the commercial tools were able to detect over
50% of the vulnerabilities. Accordingly, the results have shown that over
half of the vulnerabilities that occurred could have been prevented if these
static code analysis tools had been used on the open-source projects. The
process of identifying the critical source code patterns and the evaluation
of them has revealed 23 source code patterns that are problematic to be
detected by modern static code analysis tools. The source code patterns
have been published in combination with paper D. The results have shown
that commercial static code analysis tools perform better than open source
static code analysis tools on the data set. For a stored cross site scripting
vulnerability, the critical user data is stored in the database and displayed on
the website later on. Figure 7.3 displays an overview of a stored Cross Site
Scripting sample. The relation between the select and insert makes it difficult
for static code analysis tools to correctly detect a vulnerability. For a correct
vulnerability detection, the relation between the insert/update SQL statement
and the select SQL statement has to be resolved. Additionally, there are two
possible places to prevent a stored Cross Site Scripting vulnerability. The
user input can be sanitized before it is placed in the database. In addition,
it can also be sanitized before the user data reaches the sink. It even might
be sanitized in both cases at the same time. Source code samples have been
created to represent the different scenarios. One tool (A) has been able to
detect all stored Cross Site Scripting samples correctly. The other tools (B,
C) will need improvements to correctly detect stored Cross Site Scripting
vulnerabilities. These samples have shown that even basic stored Cross Site
Scripting samples are problematic for some commercial static code analysis
tools.

Paper E has used the SQL Injection data set to find source code patterns
that are problematic for static code analysis tools. The initial scan has shown
that the commercial tools have a higher detection rate on the SQL Injection
sample than on the Cross Site Scripting samples from paper D. The overall
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Figure 7.3: Overview of a stored XSS vulnerability [66].

process has revealed 31 source code pattern that are difficult for static code
analysis tools. Many of these patterns are common PHP functionality, but
still are difficult to detect. For example, all dynamic programming language
features like dynamic function calls require additional steps for the static
code analysis tools. The tools have to parse the dynamic function name
that might even require additional data flow analysis to resolve the function
name itself. Additionally, the results have shown that regular expressions
are difficult for static code analysis tools. Sanitization based on regular
expressions is sufficient based on the regular expression itself. Accordingly,
the tools have to analyze the regular expression to determine if it is sufficient
to prevent any attacks. Again, the results have shown that the commercial
static code analysis tools perform better than the open source tools.

For both papers D and E, the corresponding samples that have been
scanned are published on GitHub [13]. This allows static code analysis
tool developers to improve their tools so that it can detect these difficult
source code patterns. Additionally, these pattern can be taught to software
developers. If developers teach these patterns and are using static code
analysis tools in their development process, they know what source code
patterns are critical. Such a critical source code pattern can either be
prevented at the development stage or the developers know that the tools will
not be able to track these patterns. The data set with 100 false positive and
100 false negative samples is still small. The identified source code pattern
will not represent all problematic source code patterns. Nevertheless, it has
revealed 54 source code patterns that are problematic for modern static
code analysis tools. From these patterns, 44 are false negative samples and
only 10 are false positive samples. The methodology has been focused on
detecting false negative samples. A false positive sample can only occur, if
the tools already detected the vulnerable sample correctly. Accordingly, if
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a vulnerable sample is not detected by a tool, the patched sample cannot
create a false positive report. To get more source code patterns that are
problematic regarding false positive results, another methodology should be
used.

7.3 Insecurity Refactoring

The main contribution is the Insecurity Refactoring part. Paper F has
provided a process on how to inject vulnerabilities in existing projects.
It has officially defined the Insecurity Refactoring as a term for injecting
vulnerabilities.

From previous work, a lot of different source code patterns have been iden-
tified. The PL/V pattern language has been developed that is programming
language independent. A pattern in PL/V is constructed by using different
language patterns. A language pattern itself stores the abstract syntax tree
representation for different programming languages. This decouples the
identified source code pattern from specific programming languages.

The injection of a vulnerability requires finding a source code part that
can be transformed into a vulnerability. In paper F, such a source code part is
called a Possible Injection Path (PIP). The Insecurity Refactoring definition
requires precise detection of PIPs. Paper F has introduced and has defined
the rules to create an Adversary Controlled Input Dataflow (ACID) tree that
is an ordered, rooted, directed, edge-labeled and attributed tree. It uses the
Code Property Graph [78] and specific pattern types that are described in
the PL/V language to create the ACID tree. The ACID tree is a new analysis
model that represents a backwards data flow analysis. Each node in the tree
represents if the children are a concatenation or excluding. This allows to
detect the context where the user input will be used by combining all the
concatenation of the tree structure. The ACID tree can be used to detect
vulnerabilities. Vulnerability definition for an ACID tree have been defined.
An evaluation on 307 open-source projects has shown that in 25 projects,
PIPs have been found. Additionally, vulnerabilities have been detected and
three CVE reports (CVE-2020-27163, CVE-2021-3318, CVE-2021-26716)
have been created based on the findings. The other vulnerabilities that have
been found were in non-critical parts (e.g., in a test file).

Figure 7.4 shows the process of Insecurity Refactoring. As described, the
ACID tree has been used to find PIPs. Rules have been defined to inject
vulnerabilities. It basically requires replacing all sanitization methods found
in a PIP with sanitization methods that are insufficient in that context. An
insufficient sanitization method can either be no sanitization or a sanitization
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Figure 7.4: Overview of Insecurity Refactoring process by using an ACID
tree. [67]

function that only filters specific characters but not all characters to prevent
an attack. This would have been enough to inject a vulnerability. To get
better learning examples, data flow patterns have been introduced. These
are patterns where data flows through without actually transforming the
data. Accordingly, they can be introduced without changing the behavior
of the program. The data flow patterns have been used to implement the
source code patterns which are problematic for static code analysis tools.
Additionally, the special cases that have been found in paper A and paper C
have been implemented as data flow patterns. The Insecurity Refactoring
framework containing all the source code pattern written in PL/V has been
published on GitHub [14]. This framework allows creating learning examples
automatically. The insecurity refactoring evaluation process on 307 open
source projects shows that it is possible to inject vulnerabilities in 35 of them.
Accordingly, the tool could inject vulnerabilities in 8.1% of the projects.
In addition, three vulnerabilities (CVE-2020-27163, CVE-2021-3318, CVE-
2021-26716) have been detected in commonly used projects. A functional
comparison with LAVA and EvilCoder shows that Insecurity Refactoring is
more precise, with the disadvantage that it can inject fewer vulnerabilities.
As our approach is based on the Insecurity Refactoring definition, it will
not change the observable behavior in a normal use case scenario. LAVA
and EvilCoder try to minimize that the changes to the normal use case
scenario by injecting vulnerabilities in parts that are not used that often.
But the goal of those tools was not maintaining the normal use case scenario.
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In combination with the specific inputs that are required, those injected
vulnerabilities provide a backdoor that has to be identified first. A security
scanner that scans for critical characters would not trigger such specific inputs.
Instead, a fuzzer or brute force tool would be able to detect such specific
inputs. Such a vulnerability that requires a specific input would definitely
not have been mistakenly written by developers. In contrast, the LAVA tools
can create connections between critical sinks and user provided inputs does
not ensure that the normal use case is ensured. The likelihood of changing
the normal use case is minimized by using user input that is not often used
in other parts of the program. As EvilCoder also uses the Code Property
Graph, an experimental comparison with Insecurity Refactoring shows that
EvilCoder finds more injection possibilities. In contrast, our approach allows
to inject combinations of different source code patterns based on the possible
injection path that has been found. For example, it allows to inject 5 different
sources, 10 different data flow patterns and 9 different sanitization functions
which result in 5 ∗ 10 ∗ 9 = 450 different permutations.

7.4 Usage as learning examples

The goal of Insecurity Refactoring has been to create learning examples.
Paper F has evaluated Insecurity Refactoring as learning examples by two
experiments with different groups. The initial survey has shown that one
group has been experienced in the field of information security and the other
group has been relatively new. The events using the modified projects have
shown that none injected vulnerabilities have created any problems in the
normal usage of the programs. The post survey has shown that almost
everyone had seen a skill increase at the event. Only two of the experienced
attendees have not seen any skill increase. The results show that Insecurity
Refactoring can be used to create learning examples.

The survey size (n=9+7=16) is critically small. Because of the pandemic
situation, we could not run the events locally. Accordingly, the events have
been run remotely. It has not been as easy to motivate and help the attendees
in a remote situation because you could not see if they encountered any
problems. In addition, the events have been optional for the attendees. This
lowered the attendees of the survey size. The evaluation has shown that
the insecurity refactored projects can be used in different learning exercises.
Additionally, the combination of different insufficient sanitization methods
and by adding data flow patterns has allowed to automatically create many
different permutations of learning examples. The results were positive and
have not revealed any problems with using the insecurity refactored projects
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as learning examples.

7.5 Test suite for static code analysis tools

Paper G combines the results from all previously published papers. The
different patterns from reviewed vulnerabilities combined with the critical
source code patterns for static code analysis tools provide interesting test
cases. Figure 7.5 shows the generation process of the test cases. The source,
sanitization, context, and sink pattern stem from previous papers (A, B, C).
The source code patterns that are difficult for static code analysis tools that
stem from papers D and E are included as data flow patterns. Decision trees
are introduced to decide if a test case is vulnerable or safe. The decision
trees are a solid way to use the filtered characters and check for the given
context and sink categories to decide if a test case is vulnerable. Six experts
from the Software Assurance Metrics And Tool Evaluation (SAMATE) [5]
at National Institute of Standards and Technology (NIST) [4] acknowledged
that the test cases are useful and that the decision tree is solid. Two resulting
test suites from paper G have been published at SAMATE as a Software
Assurance Reference Data (SARD) set [7] [6]. One test suite contains all the
different combinations of filtered characters, context, and sinks to cover all
the possibilities in the decision trees. The other test suite contains all the
difficult source code patterns for static code analysis tools. These test suites
help the developers of static code analysis tools to detect the difficult patterns.
Additionally, it can be used to make the tools more precise depending on the
different contexts.

Figure 7.5: Test case generation process. [68]



Chapter 8

Future Work

The thesis provides a solid method to inject vulnerabilities in PHP source
code. The current method only injects SQL Injection and Cross Site Scripting
vulnerabilities. Both of those vulnerability types are based on a data flow
from user input into a critical sink. Another question will be if the Insecu-
rity Refactoring process can be extended to support other vulnerabilities.
Especially for vulnerability types that don’t have a specific sink. For exam-
ple, can the Insecurity Refactoring process be extended to inject a Security
Misconfiguration or a Broken Access Control vulnerability? In addition, it
would also be interesting to increase the programming language support. The
PL/V language has been defined in a way that it is programming language
independent. Nevertheless, many patterns that stem from PHP are still
specific to the programming language. For example, htmlspecialchars is a
programming language-specific sanitization function. In the future, it might
be interesting to inject vulnerabilities in different programming languages.
Especially because some vulnerability categories like Buffer Overflow are not
possible in PHP.

Another interesting question would be if the source code patterns of the
vulnerabilities have changed. Newer vulnerabilities could be reviewed if the
developers have made the same mistakes as in our research. Reoccurring
patterns are interesting because those are probably parts that should be
taught to software developers. New patterns are also interesting to see
what has changed and those patterns could be extended to the Insecurity
Refactoring process.

The thesis evaluated that Insecurity Refactoring can be used as learning
examples. Nevertheless, it misses an evaluation on how effective it is. A com-
parative analysis to other commonly used learning examples would be helpful.
In addition, it could also be evaluated how useful Insecurity Refactoring is
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as repetitive learning examples. It allows to inject vulnerabilities in different
projects and it can inject different vulnerabilities based on the injected source
code patterns. It would be interesting to evaluate if the resulting learning
examples will be unique enough as repetitive learning examples. It would
also be interesting if it is possible to categorize the injected vulnerabilities
regarding difficulty levels. An idea would be based on the code base, the
ACID tree length and the injected patterns that a difficulty for the injected
vulnerability could be estimated. This would require a methodology to deter-
mine the difficulty. An evaluation could show if the determined difficulties
are useful and precise.

In the last few years, AI-based text generation like Chat Generative
Pre-trained Transformer (ChatGPT) have increased in popularity. It would
be interesting to see if a AI-based creation or injection of vulnerabilities
would be possible. It can be checked, if it is possible to inject a vulnerability
without breaking the functionality of the program. In addition, another
interesting question would be to compare such a methodology to Insecurity
Refactoring. Again, a comparative evaluation between those methods would
be interesting.
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Chapter 9

Source Code Patterns of SQL
Injection Vulnerabilities

9.1 Introduction

Looking into the OWASP [86] Top Ten shows that the same vulnerability
categories are occurring all the time. One of the top categories is still
Injection. A lot of research has been done on SQL injection. To discover
the reason why the same vulnerabilities are occurring, we investigated the
source code from open source projects. For the source code, similar methods
and operations are grouped up and are called source code patterns. Our
work shows which source code patterns occur in real life projects, to provide
a data set that can be compared to existing vulnerability data sets like
SAMATE SARD [91]. Another aspect will be using this data set to provide
exercises for software developers to learn or improve their software security
skills. Training developers with a data set based on existing vulnerabilities
helps developers to identify vulnerabilities beyond artificial samples. The
first question to be answered is: How does such source code patterns look
like? The next question is, are there any special cases that are not typical
for SQL injection vulnerabilities? Real source code samples are investigated
to get answers to these questions.

In this research we use a crawler to get source code from open source
projects.

Reviewed are entries that are listed in the Common Vulnerabilities and
Exposures (CVE) database, which belong to the Injection category and were
related to projects using PHP as programming language. We choose PHP
because it is still a popular programming language. Additionally, many
vulnerabilities in various categories are possible in PHP. We categorize the
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manual review results in source code patterns. This research provides an
overview of the kind of source code patterns that occurred within the last
six years of SQL injections.

This paper begins with an overview of related works in section 9.2.
The next section explains how the source code was obtained. Additionally,
the section explains the review method. The results from the crawler and
manual review are shown in section 9.4. The found source code patterns are
categorized. Some special cases are explained in detail with the corresponding
source code. The last two sections provide a discussion about the results and
suggestions for future work.

9.2 Previous and related work

Classifications of security vulnerabilities from the Open Web Application
Security Project (OWASP) [86] and Common Weakness Enumeration (CWE)
[84] already exist. The first classification research projects of security in
operating systems and programs did already occur in the 1970s. Abbott et al.
[92] introduced a taxonomy for security flaws in operating systems. Another
article from Bisbey and Hollingworth [94] did an error categorization. Both
research projects analysed security flaws in operating systems. At that time,
no security vulnerabilities like SQL injection existed. Another approach
from Seacord and Householder [100] classifies security flaws using properties
instead of a taxonomy. It assigns properties to source code parts and based
on these properties, security flaws are classified. Furthermore, a technique is
defined where these assigned properties can be matched to properties from
security flaws that have already been classified. Thus, successfully matched
properties can classified into known categories.

Research projects about general classification of source code patterns
exist. Lerthathairat and Prompoon [96] did research about the classification
of source code into bad code, clean code and ambiguous code. They use
metrics in source code like comments, the size of the function, et cetera. These
metrics will be analysed by using Fuzzy logic to determine which category
the source code belongs to. Bad and ambiguous code will be improved by
refactoring. A more security related work is from Hui et al. [95], where a
software security taxonomy for software security tests is used. They created
a security defects taxonomy based on top 10 software security errors from
authoritative vulnerability enumerations. Their taxonomy is categorized
into induced causes, modification methods and reverse use methods. They
advice that their taxonomy should be used as security test cases. Stivalet
and Fong [103] present a tool that allows to create short code examples
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including software vulnerabilities. They split up the source code parts into
input, filtering and sink. Permutations of these parts will create different
examples. All of the examples can be found in the testsuite 103 within the
Software Assurance Reference Dataset [91].

A related work more specific to SQL injection is from Shar and Tan [101].
They predict the probability of SQL injections or cross site scripting based
on sanitization patterns by using a data flow analysis for the prediction.
They classified sources, sanitization methods and sinks. The successive paper
from Shar et al. [102] did classify the sanitization methods more precisely.
This was archieved through a hybrid program analysis where dynamic and
static code analysis was combined in order to find SQL injection and cross
site scripting vulnerabilities. Both have similar categories as this research.
Nevertheless, the categories are not based on an existing source code data
set. A comparison of categories is discussed in section 9.5. Medeiros et al.
[99] explain the WAP tool. It uses static code analysis and machine learning
to detect vulnerabilities. They did a manual review of source code that was
detected by their tool in order to verify true positives. In the work their
categories for sanitization methods are presented.

The research also requires data sources which are used to classify the
source code patterns. Massacci and Nguyen [97] researched different data
sources for vulnerabilities, e.g. CVE, NVD, et cetera. They checked which
data sources were used by other research projects. The result showed that
some projects missed a large portion of vulnerabilities because they only
analysed Firefox. Wu et al. [104] use semantic templates that are created
from the CWE database [84]. These templates should help to understand
security vulnerabilities. The authors did an empirical study to prove that
these semantic templates have a positive impact on the time to completion
on finding the vulnerability.

9.3 Method

Figure 9.1 shows an overview of the method used to determine the source
code patterns. CVE Details [83] categorizes vulnerability types for each CVE
entry. The classification is based on matching keywords and searching for
CWE numbers. It is stated that these categories may not be reliable. These
faulty categorized CVE entries are detected in the manual review process
and are ignored to determine source code patterns. The functionality of the
crawler is described in section 9.3.1. Section 9.3.2 describes the manual review
method that creates source code patterns from the source code samples.
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Figure 9.1: Method to determine the source code patterns.
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9.3.1 Crawler

A manual review requires a selection of data. We developed a crawler
which provides source code samples from open source projects. We focus
on vulnerabilities that are tracked in the CVE [82] database. CVE entries
between 2010 and 2016 (seven years) are analysed by a crawler. For each
CVE, the corresponding entry from CVE Details [83] is retrieved. This entry
provides categories for each CVE report. 50,765 CVE entries are crawled
that have a CVE details entry. For each entry, we check if it contains any
GitHub [85] commit links. This provides the accessibility to the source
code. The corresponding commit patch also provides code changes which are
used to remove the vulnerability. Each commit is looked up to determine
programming languages based on file extensions of source code files.

9.3.2 Manual review

Each CVE report has a note entry. It usually describes which input fields or
variables can be used to exploit the SQL injection vulnerability. Just within
the scope these variables/fields are the tainted data sources. The crawler
presented in section 9.3.1 searches for CVE report with corresponding GitHub
commit links. If there is only one link, the GitHub repository revision prior
to the commit is checked out. This provides the source code for the manual
review. The tainted data source is looked up in the source code. Then, the
data flow analysis feature of PHPstorm [89] is used to see which parts of
the source are reached. If the data flow analysis fails, it will be processed
manually. The changes from the commit provide a direction whose path
is the right one from the source to the sink. Manual review is required to
point out the SQL injection vulnerabilities. The review process looks for
sources, sanitization methods, string concatenations and sinks [98]. Sources
are all kinds of input to the program. For example, this can be a simple
PHP parameter. Sanitization methods are all mechanisms that can be used
to prevent SQL injections, e.g., by casting a string variable to an integer.
String concatenation is investigated to find out what methods are typical
and if there are any special cases. Direct database accesses like execute()
functions are labeled as sinks. Additionally, we explore if the projects have
any encapsulation that might mislead developers, for example, developers
think these encapsulations already have a protection against SQL injection.
So they might think that SQL injections are not possible given a specific
encapsulation. Similarities in these patterns are identified and accordingly
categories are created accordingly. The categories mentioned in the related
work section are factored into the process.
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Categories from CVE details CVEs Github PHP Java C/C++ js Python Ruby
Denial Of Service 10,929 737 7 3 664 4 8 6

Execute Code 10,647 217 70 6 83 8 12 17
Overflow 6,594 302 3 1 280 0 5 1

Obtain Information 5,471 233 32 6 153 5 10 11
Cross Site Scripting 4,878 219 122 5 2 46 14 11
Memory corruption 3,419 52 0 0 49 0 0 0

Bypass a restriction or similar 2,609 96 24 4 51 1 6 2
Gain privileges 2,207 118 4 0 100 0 0 1
Sql Injection 1,732 71 53 3 2 2 0 5

Directory traversal 1,059 35 14 1 7 3 2 5
CSRF 1,046 33 25 2 0 6 1 3

File Inclusion 100 3 0 0 0 0 0 0
Http response splitting 74 4 0 0 0 0 0 0

Summary 50,765 2,120 354 31 1,391 75 58 62

Table 9.1: Software vulnerabilities in open source software grouped by
vulnerability type and programming language.

9.4 Results

The results from the manual review show different source code parts for
SQL injections in PHP. For sources, sinks, failed sanitization and fixes with
successful sanitization the corresponding methods are noted down. For each
category, the common methods are clarified in section 9.4.2.

9.4.1 Focus and selection

Figure 9.1 shows the results from the crawler. Only the languages with
multiple results are shown. Some CVE entries have multiple categories
at once, so these are looked up for each category multiple times. The
results show that overflow vulnerabilities are prevalent in C/C++. This is
unsuprising because C/C++ are memory unsafe programming languages. [93]
The most represented programming language for overflows are C and C++.
But C/C++ is missing other important categories like cross site scripting,
SQL injection and CSRF. For these categories, PHP is the best language for
researching source code patterns. All other languages do not provide enough
examples with exception of Javascript for the cross site scripting category.
Nevertheless, PHP provides more examples in this category. Accordingly,
the selected programming language is PHP. For the research of source code
patterns of other languages like Java, more resources are required.
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9.4.2 Source code patterns

The reviewing process did provide source code patterns. These patterns were
categorized for each interesting source code part. The classification consists
of the source, concatenation, sink, sanitization methods from the vulnerable
version. Additionally, categories for the fixes from the fixed source code
sample are presented.

Categories for sources

For the sources, the following sample categories are identified:

1. HTTP methods: HTTP methods provide data from a HTTP transfer.
In PHP, these methods are found in the standard PHP library. Sources
of this kind are commonly in SQL injection examples (e.g., $_GET[],
$_POST[], $_REQUEST[]).

2. HTTP wrapper methods: Some HTTP methods have wrappers
around them. Some project store the input in collections and the wrap-
per methods returns corresponding data. Such source code patterns
are classified in this category (e.g. getParam()).

3. Environment variables: Functions in this category provide data
from the environment. In this sample set, the function getenv() from
the standard PHP library was found.

4. Configurations: Some functions provide data from configuration files.
The function config_get() was found. It is a custom implementation
to get data out of a configuration file.

5. Custom functions: Custom functions are functions that are provided
by frameworks or other programming libraries. This category was
included because software developers often use third party sources (e.g.,
callback function parameters).

Categories for concatenations

The classification of the string categorizations contains two categories.

1. Primitive concatenation: Source code samples from this category are
using the functions provided by features of the programming language.
No functions provided by any libraries are used. Examples are the use
of variables inside string literals, the use of dot operator and the use of
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dot-equals operator (e.g., "FROM $var", "FROM" . $var, $from .=
$var).

2. Standard functions: In this sample were the functions implode()
and sprintf() fall into this category. For sprintf() function, the type
specifier has to be %s. Otherwise, the variable will be interpreted as
numerical. As seen in the PHP manual, [88] the inserted types would
only be double or integer, except for using the %s type specifier, which
interprets the type as string. Accordingly, the %s can lead to a SQL
injection.

Categories for sinks

The samples show different sinks. In larger projects, the access to the
database is usually encapsulated. Developers are using these encapsulations
in the development process. For the sink categories, these encapsulations are
treated separately. The following categories are created for the sinks:

1. Standard database drivers: This category covers the usage of the
standard database drivers without any encapsulation (e.g., mysqli.query(),
mysql_fetch_row()).

2. Self-implemented database connection: Such connections cover
cases like calling the correct database driver for the utilized database.
But connections in this category will not create SQL statements auto-
matically (e.g., Yii::app->db->createCommand(), g_db->Execute()).

3. Data-represented objects: Such objects are software patterns like
data access object (DAO) or object-relational mapping (ORM). The
tainted data will reach such objects. These objects create SQL state-
ments automatically using stored data (e.g., ORM->where(), $data-
>setOrder()).

Categories for fixes

An important part to prevent SQL injections is sanitization. Most reviewed
projects had no sanitization before the fix for the CVE entry was developed.
Fixes contain different methods to sanitize inputs. The following categories
are introduced for the occurring proper sanitization and proper database
access:

1. Standard sanitization methods: Methods that are provided by
the PHP standard library or the database driver libraries fall into this
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category (e.g., addslashes(),
mysqli_escape_string()).

2. Custom sanitization methods: These are methods that are devel-
oped by projects. They usually use methods like preg_replace() to
replace symbols that are dangerous.

3. Checks for valid input: This contains black-listing and white-listing
concepts. Projects in this category check if the input contains only
valid or any invalid symbols. The input will only reach the sink if the
check fits. A common method in this category is preg_match().

4. Fixed data types: For example, casting the input to an integer
variable. An integer variable cannot create a SQL injection. The fix
for the CVE-2015-4426 used the sprintf() function with the %F type
specifier. This also falls into the category of using fixed data types.

5. Parametrized code: Fixes that did use parametrized code for the
database access. This is a common construct for creating SQL queries.
It separates the data from the query. If this construct is used properly,
it prevents any SQL injections (e.g., mysqli->prepare()).

Categories for failed sanitization

The last classification contains failed sanitization methods from the vulnerable
source code samples. Here, sanitization methods were utilized but they still
allowed SQL injection attacks. The following categories were created for
failed sanitization methods:

1. Non-casted variable: Projects which had this type of sanitization
did expect a fixed data type. The variable was casted on the data type
and assigned to another variable. The developers did not use casted
variable for the SQL query. Instead, they used the variable which was
not casted to a fixed data type.

2. Unexpected control flow: This category covers sanitization that
should change the control flow of the program. However, the method
for such a control flow change was misinterpreted by the developers
(e.g., the redirect sample from section 9.4.4.).

3. Comparing different data types: Some source code samples com-
pared different data types. Based on the data types, different results
and interpretations are used (e.g., the comparing variable sample from
section 9.4.4).
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4. Incomplete sanitization: Some tainted data is not sanitized, but the
code block uses sanitization methods on other data. For instance, in
section 9.4.4 a sample is discussed where this kind of failed sanitization
happened because developers did not think more data would be in the
array. Also, some samples did check one parameter, but did not check
the other parameter for the SQL statement.

5. No sanitization: Before the fix was applied, most of the samples had
no sanitization methods in the data flow for the vulnerabilities. These
samples fall into this category.

9.4.3 Overview

An overview of found source code samples are shown in figure 9.2. Addi-
tionally, each classification states the quantity. It is important to note that
CVE-2016-7405 is just a report for an incorrect quote function from the
ADOdb [81] database class library. Accordingly, this source code sample does
not provide a source, concatenation or sink. The CVE-2011-4960 only states
that it allows attacks via unspecified vectors. For this source code sample,
the source is ignored. Some CVE reports point out multiple parameters that
can be used for an attack. If a report contains patterns that fall into different
categories, it is counted in each category.

9.4.4 Special cases

Our data set from the crawler has some source code samples with interesting
failed sanitization patterns. Some of these are the only occurrence of the
represented category. Nevertheless, they represent mistakes that developers
can do in the future. This section points out some of these cases and how
they are classified. Figure 9.3 shows an example of a redirect before a SQL
statement is executed. This sample falls into the category unexpected control
flow. Developers probably tought that PHP would be skipped after having
set the header location. As the PHP manual [87] gives a hint in a comment
to use exit; after using the header function, this will prevent that any code
afterwards will be run. The function popupnewsitem() contains the injectable
SQL query. Any attacks are still possible because once the function is called
a redirect happens nevertheless. Testing this source code shows that the
redirect occurs in browsers. This is a good example for a blind SQL injection.
For example, adding a SQL wait command will result in a delayed redirect.
This can be used to get a response with information based on different delay
times.
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SQL Injection

Failed Sanitization

• (32) No sanitization
• (15) Incom-

plete sanitization
• (1) Non-casted variable

• (1) Unexpected
control flow

• (1) Comparing
different data types

Fixes

• (21) Standard san-
itization methods

• (14) Fixed data types
• (10) Custom san-
itization methods

• (5) Checks
for valid input

• (4) Parametrized code

Sinks

• (41) Self-implemented
database connection

• (5) Data-
represented objects
• (3) Standard

database drivers

Concatenations
• (44) Primitive
concatenation

• (12) Standard functions

Sources

• (20) HTTP
wrapper methods

• (16) HTTP methods
• (9) Custom functions

• (1) Environ-
ment variables

• (1) Configurations

Figure 9.2: Taxonomy of Sql Injection vulnerabilities found in 50 CVE entries
related to open source projects.

1 public function popupnewsitem($id) {
2

3 if(!is_numeric($id)){header('Location: '.url('/'));}
4

5 $result = PopUpNewsData::popupnewsitem($id);
6 Template::Set('item', $result);
7 Template::Show('popupnews/popupnews_item.tpl');
8 }

Figure 9.3: Redirect before SQL statement from CVE-2013-3524.



94 Source Code Patterns of SQL Injection Vulnerabilities

1 function getUserName($userId) {
2 if($userId <= 0) return "Anonymous";
3 $query = "SELECT `user_name` FROM

`".MYSQL_DATABASE_PREFIX."users` WHERE `user_id` =
'".$userId."'";

4 $result = mysql_query($query);
5 $row = mysql_fetch_row($result);
6 return $row[0];
7 }

Figure 9.4: Comparing variables with different types from CVE-2015-1471.

Another interesting source code sample in figure 9.4 is from the Comparing
different data types category. The second line shows that the variable $userId
will be compared with an integer literal. For the comparison, PHP tries to
interpret a string variable as a float or integer value. As stated in the PHP
manual: “The value is given by the initial portion of the string. If the string
starts with valid numeric data, this will be the value used. Otherwise, the
value will be 0 (zero).“ [90] Accordingly, this sanitization of the user input
can be tricked by having numeric data at the beginning of the input. For
example, 10’ OR 1=1;# will be interpreted as the number 10. This example
will pass the sanitization and provides the user name of the first user in the
database.

The source code from CVE-2014-9089 is shown in figure 9.5. User input
will be assigned to an array using the explode() function. Line three is the
critical one. The developers assumed that the input length will only be two.
So they used a fixed size for sanitization. For example, if the exploit uses the
third parameter, the sanitization will not be used on that parameter. The
fix from the developers used the array_slice() function. This will slice all
entries in the array except for the first and the second entry. This ensures
that only two sanitized parameters reach the SQL query. Because the inputs
values are not checked completely, it falls into the incomplete sanitization
category.
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1 $t_sort_fields = explode( ',', $p_filter_arr['sort'] );
2 $t_dir_fields = explode( ',', $p_filter_arr['dir'] );
3 for( $i = 0;$i < 2;$i++ ) {
4 if( isset( $t_sort_fields[$i] ) ) {
5 $t_drop = false;
6 $t_sort = $t_sort_fields[$i];
7 if( strpos( $t_sort, 'custom_' ) === 0 ) {
8 if( false === custom_field_get_id_from_name(

utf8_substr( $t_sort, utf8_strlen( 'custom_' ) ) ) )
{

9 $t_drop = true;
10 }
11 } else {
12 if( !in_array( $t_sort, $t_fields ) ) {
13 $t_drop = true;
14 }
15 }
16 if( !in_array( $t_dir_fields[$i], array( "ASC", "DESC" ) )

) {
17 $t_drop = true;
18 }
19 if( $t_drop ) {
20 unset( $t_sort_fields[$i] );
21 unset( $t_dir_fields[$i] );
22 }
23 }
24 }

Figure 9.5: Sanitization on fixed numbers of inputs from CVE-2014-9089.
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9.5 Discussion

The results show different kinds of source code patterns that result in a
SQL injection vulnerability. The resulting categories allow to create different
source code permutations of SQL injections. Many source code parts from
relating CVE reports did not have any sanitization of the inputs. Many
developers probably require a better software security education to prevent
such issues. For example, the source code from CVE-2014-8351 looked like a
classical teaching example of a SQL vulnerability. All relevant parts of the
SQL injection (source, concatenation and sink) were not even in ten lines of
code. This shows that software security education is indispensable.

The special case with the redirect from figure 9.3 showed that knowledge
about the used API is very important. Developers have to know how the
API and programming language work. But in this special case, the API
description of the PHP manual [87] is not perfect either. The usage of the
exit() function was mentioned in the code example as a comment only. Maybe
this should be mentioned more clearly such that it keeps developers from
creating security issues or bugs in this context. At least in our reviewed code
sample, the developers did think about security and checked the input.

The work done in [101, 102] describes categories for sources, sanitization
and sinks. For the sources, they have Client which is the same category as
HTTP methods. They also mention sources from databases. Such source
code patterns were not found in our data set. However, this is a more com-
mon source for cross site scripting than for SQL injection. They also have
Persistent and Uninit as data sources which were not found in our data set.
Our new categories for sources are Environment variables, Configurations
and Custom functions. The focus of their work is on the sanitization meth-
ods. They did categorize these methods more deeply into the functionality.
For example, LimitLength are functions that limit the length of the input.
Encryption are a category where methods like sha1() are used. No source
code patterns with such sanitization methods are found in the data set. More
subcategories for Checks for valid input are found in Medeiros et al. [99].
They presented categories for black-listing, white-listing, replace string, et
cetera. Our results show that these kinds of sanitization methods are used in
open source projects. We added the categories for failed sanitization methods
which are a new perspective on the use of sanitization methods.
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9.6 Conclusions and future work

To minimize the occurrence of SQL injections, different source code patterns
have to be detected and avoided. We analysed the source code of 50 GitHub
projects which are correlated to CVE reports that mention SQL injection and
provide available source code fixes. The focus was on how the vulnerabilities
appeared in real projects. For each important part of the pattern, categories
were created based on the analysed source code. Compared to related work,
our results show what kind of software vulnerabilities appeared in open
source projects. We identified new categories not present in earlier work
and found existing categories to be less frequently used than expected. The
knowledge of source code patterns allows to create exercises with the same
patterns that can be used to teach developers software security skills. An
interesting point will be to create these exercises automatically. Existing
source code from projects can be used and transformed to create these
source code patterns. This will be an important research because malicious
developers might program such tools. This would reveal some limitations
and maybe risks that might occur by such tools in the future. Another part
will be using these categories to test static code analysis tools. Test static
analysis tools and investigate whether they detect all permutations.
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Chapter 10

Source Code Patterns of Buffer
Overflow Vulnerabilities in
Firefox

10.1 Introduction

The Common Weakness Enumeration (CWE) [109] top 25 show buffer over-
flow vulnerabilities (CWE-120) in third place. Buffer overflows have existed
for a long time. To discover the reason why buffer overflows still occur
in code, we investigated source code samples from the open source web
browser Firefox [111]. Different categories for buffer overflow vulnerabilities
already exist in CWE. These categories take a technical point of view; they
look at aspects such as which memory locations are involved. For exam-
ple, there are categories for accessing memory on the stack or on the heap.
Such categories do not help software developers to avoid buffer overflow
vulnerabilities. Developers have to know how vulnerabilities occur and what
kind of source code patterns are common for vulnerabilities. Additionally,
developers have to know how vulnerabilities can be mitigated. For example,
it is important to check inputs carefully and to not misuse memory-critical
functions as memcpy() that is listed as on of security development lifecycle
banned function calls from Microsoft [116]. To fill the gap in the current
categorization approaches and provide a structured body of knowledge for
software developers to mitigate buffer overflow vulnerabilities, we reviewed
50 source code samples of buffer overflow vulnerabilities in Firefox. In our
review, we considered which types of errors the developers made, which sinks
were involved in buffer overflow vulnerabilities and how developers patched
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the vulnerability. Categories were created based on the results from the
reviews. These results are compared to the categories from CWE to see the
difference from a developer’s point of view.

This paper begins with an overview of related work in section 10.2. The
following section explains how the source code was obtained as well as the
review method. The categories for buffer overflows are presented in sections
10.4, 10.5 and 10.6. The last two sections provide a discussion of the results
and suggestions for future work.

10.2 Previous and related work

SQL injection vulnerabilities in 50 source code samples from open source
projects were analysed by [119] using a similar method. The reviewed
programming language was PHP. Classifications of source code patterns exist.
Classifying source code into bad code, clean code and ambiguous code was
done by Lerthathairat and Prompoon [114]. Metrics in source code like
comments, the size of the function, et cetera. were analysed using fuzzy logic
to determine which category the source code belongs to. Bad and ambiguous
code are considered for refactoring. More security-related work is by Hui et al.
[112], using a software security taxonomy for software security tests. The
security defects taxonomy was created based on the top 10 software security
errors from authoritative vulnerability enumerations. It is categorized into
into induced causes, modification methods and reverse use methods. Hui et al.
[112] suggested to use their taxonomy as security test cases.

Massacci and Nguyen [115] investigated different data sources for vulner-
abilities, e.g. Common Vulnerabilities and Exposures (CVE) [108], National
Vulnerability Database (NVD) [117], et cetera. They checked which data
sources were used by other research projects. In their work, Firefox was
used as database for the analysis. Semantic templates were derived from
the existing CWE database and are supposed to help understand security
vulnerabilities by Wu et al. [122]. The authors did an empirical study to
prove that these semantic templates have a positive impact on the time until
a vulnerability is completely found.

The work by Bishop et al. [106] [105] presents a taxonomy of how buffer
overflow vulnerabilities occur, considering which preconditions are required to
exploit a vulnerability. These preconditions are not suited to teach software
developers to mitigate vulnerabilities. For example, taking into considera-
tion the category that the program can jump to a memory location in the
stack. This is relevant for exploiting the vulnerability, but it will not help
to understand what kind of mistakes were done in developing the source
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code. Kratkiewicz and Lippmann [113] used a taxonomy of buffer overflow
vulnerabilities to create a data set of 291 small C programs. The data set was
analysed with static and dynamic code analysis tools. The tools were then
evaluated regarding their detection rate, false positive rate, et ceterea. Ye
et al. [123] analysed 100 buffer overflow vulnerabilities and the corresponding
patches, using the data to evaluate static code analysis tools. The evalu-
ated tools were Fortify, Checkmarx and Splint. Shahriar and Haddad [120]
showed how to automatically patch buffer overflow vulnerabilities, including
a classification of different types of buffer overflow vulnerabilities. For each
of these categories, rules were offered to mitigate the vulnerability. The SEI
CERT coding standards [121] provide an overview on how to implement
memory-critical parts in C. The standards are presented as necessary to
ensure safety, reliability and security. Non-compliant and compliant code
examples help developers to better understand the coding standards.

10.3 Method

To create the source code pattern categories, selected data sets are needed for
the review process. We focus on vulnerabilities which are tracked in the CVE
database. We chose source code samples from Firefox because it has many
reported buffer overflow vulnerabilities - on average about 30 buffer overflow
vulnerabilities per year. Additionally, the Bugzilla [107] platform offers a
public discussion about the bug fixes, which helps to identify the relevant
source code pattern for the vulnerability. 187 CVE reports are connected
to buffer overflow vulnerabilities and Firefox in the time frame from 2010
to 2015 (six years). We choose 2015 as a cut-off to ensure we would have
access to a patch as well. We use 50 randomly selected CVE reports which
also provide a patch to fix the vulnerability. The patch is determined by a
CONFIRM flag in the CVE report which indicates the correct Bugzilla report.
The bug report contains a link to the patch which fixes the vulnerability.
Firefox patches are managed with a version control tool. For each of theses
patches, the hash value of the parent version is specified. That version is
used as a source code sample containing the buffer overflow vulnerability.

The vulnerable version was reviewed regarding the types of errors made
by developers and which sinks were used. A sink is the last instance where
unchecked user input can exploit a vulnerability. For example, the function
memcpy() is a common sink for buffer overflow vulnerabilities. In order to
see which errors were made and which sinks were used, a data flow analysis
was performed. This was done manually because within the bounds of our
project, we could not find a proper tool that was able to analyse such a huge
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project like Firefox. It is possible that types of errors appear several times
because a combinations of errors can also result in a vulnerability. The errors
were considered from a developer’s point of view. However, the sink is more
focused on which critical functions and source code parts are used. This
helps developers to recognize critical functions. The patch was used to see
how developers fixed the vulnerability. The review of the patch was used to
create categories for the fixes.

10.4 Types of errors

Figure 10.1 shows an overview of the categories for the types of errors found
in our data set. It has more than 50 assignments because one type of error
can lead to other types of errors which then result in a buffer overflow
vulnerability. The categories created for the data are the following:

1. Variable Overflow : Many instances of buffer overflows in our review
are correlated to integer overflows or underflows. These over-/under-
flowed variables are used to check the input size (Variable Overflow in
Check). Because of the wrong value, these checks pass inputs resulting
in a buffer overflow condition. This type of error can be represented
in a combination of the following CWE ids: The CWE-190 (Integer
Overflow or Wraparound) connected with the keyword CanProcede to
CWE-119 (Improper Restriction of Operations within the Bounds of a
Memory Buffer).

An overflowed or underflowed variable is used for allocating memory
(Variable Overflow Allocation). The allocated memory is smaller than
the input copied into it. This results in a buffer overflow. The related
CWE id is CWE-680, which states that a calculation result is used
to allocate memory and an integer overflow causes less memory to be
allocated. The allocation of an insufficient amount of memory in our
data set occurred in the following sub-patterns:

(a) Allocation too small : An integer overflow can either have a negative
result (signed int) or very small result (unsigned int). These integer
overflows occur because user data is included in a calculation. This
can be a simple addition to a static value or it can be methods
computing a length. As an example, the length of the user input
could be the sum of multiple user inputs. If memory is allocated
from an integer overflow result, the later usage of the memory will
result in a buffer overflow vulnerability.
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Figure 10.1: Taxonomy of errors developers introduced based on the data
set.
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(b) Existing buffer size check : Some data sets used already existing
buffers and checked if the buffer size had to be increased. An
integer overflow in such a check also results in a buffer that is too
small.

2. Unchecked : The review shows vulnerabilities where user input reaches
methods that are vulnerable for buffer overflows. Source code samples
without any checks fall into this category. The corresponding CWE
id (CWE-120) explains it as follows: "’The program copies an input
buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer
overflow."’ Accordingly, this is the classic buffer overflow where input is
not checked and then is able to reach critical functions like memcpy().

3. Unexpected Input : This category covers unexpected user inputs.
Usually, all of the error types could fall into this category, but it covers
inputs that the developers did not expect to occur. For example, the
parameter of a method is the size of a file. Accordingly, the parameter
must not be negative (Unexpected Input Negative). Another example
would be a parameter that has a minimum size, thus, falls into the
category Unexpected Input Minimum. Nevertheless, the parameter can
be outside of the expected range because of some other preconditions or
special inputs. For example, a specially crafted file would return a neg-
ative result as the content length. If a developer uses such premises for
memory-critical parts, a buffer overflow vulnerability could occur. One
sample also had expected a maximum input (Unexpected Input Maxi-
mum) of a value. This vulnerability was related to shaders programs
which are programs running on the graphics processor. Developers did
not think that the value of the input could be higher than the number
of existing shaders. CWE-229 (Improper Handling of Values) is best
suited to our Unexpected Input category because the inputs are not
handled properly. The CWE category covers multiple variants like
missing values or undefined values. It does not cover numerical values
which are too small, too high or in an unexpected range.

4. Mis-Matching Data Types: This category covers vulnerabilities
where values of different data types are assigned to each other which is
presented in CWE-681 (Incorrect Conversion between Numeric Types).
A common example is the assignment from unsigned int to signed int.
These assignments are also covered by CWE-119 (Signed to Unsigned
Conversion Error) and CWE-196 (Unsigned to Signed Conversion
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Error). This type of error occurred in our data set in combination
with Unexpected Calculation or just as a simple conversion with the
outcome of a buffer overflow vulnerability. Also, some samples contain
assignments of different variable lengths, for example, assignments
between 32 bit and 64 bit variables. C/C++ does allow the assignment
of variables with different data types. It will interpret the bits according
to the new variable type. For example, if a negative value is assigned
to an unsigned variable, the first bit will be interpreted as the highest
value bit. If such an interpretation is unwanted, subsequent checks
and the usage of the variable will be problematic. In our sample, this
results in buffer overflow vulnerabilities.

5. Missing Return Value Check : These are vulnerabilities where
developers do not check the return value. In our data set it was
common that the return value of a memory allocation function was
not checked. If the allocation is not possible, the allocation functions
returns an error code. If the return value is ignored, the pointer will
point to a random memory address. Using this pointer to access
memory will likely result in a buffer overflow vulnerability. Usually
such a situation only happens when the system or program is out of
memory. CWE-252 (Unchecked Return Value) is the related category
in the CWE list.

6. Invalid Index : These error types include the usage of an invalid
index for a loop. It is split into three subcategories. The first is the
Invalid Index Bound where the bound is invalid. This can happen
because of previous errors like an Unexpected Calculation. Samples
where such a bound is invalid and the index is used to access memory
are counted in this category. Another error is that developers did not
update the index correctly (Invalid Index Update) which also results in
a buffer overflow. One sample had an index initialized to an invalid
value (Invalid Index Initialization). The best fitting CWE category is
CWE-606 (Unchecked Input for Loop Condition) because the Invalid
Index category is related to loops.

7. Unexpected Calculation : This category covers source code samples
where unexpected results are obtained during calculation. All the
samples had a negative result. The developers did not expect the result
to be negative and the values were used in memory-unsafe functions.
Another example is assigning a negative result to an unsigned integer.
The unsigned integer will interpret the highest bit which is a 1 as
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a very large value because it was negative when it was represented
in a signed datatype. Such an example is represented in CWE ids
with the following: CWE-682 (Incorrect Calculation) connected with
the keyword CanFollow to CWE-681 (Incorrect Conversion between
Numeric Types).

8. Logical Errors: Two vulnerable samples showed developers made
logical errors. For example, not enough memory was allocated regardless
of the input and the following code did write into unintended memory
parts. Another sample had an issue where the length of a variable
was not updated correctly and that length was used in memory-critical
parts. Three samples showed buffer overflow conditions because they
had logical errors.

10.5 Sink categories

What kind of sinks were used in the data set are shown in figure 10.2. These
are classified into the following categories:

1. Critical Functions: Sinks of this category are memory-critical func-
tions. Common functions in C/C++ are memcpy() or memset(). These
functions are categorized into the subcategory transfer memory. Three
sinks of the data set used a string copy function (strcpy()) and one
sample used the scanf() function. These are functions which are also
found in the banned functions list for security development lifecycle
[116].

2. Array : Arrays in C/C++ are very similar to pointers. The memory
for an array is arranged such that all entries are next to each other.
If an array field is accessed using an invalid index, a buffer overflow
vulnerability exists. All data sets where the sinks are arrays fall into this
category. This can be split into write (CWE-787: Out-of-bounds write)
and read (CWE-125: Out-of-bounds read). Two samples performed
a read access with a static index. Both of them used the index zero,
which is typically used to get the first element of an array.

3. Pointer : The last category for sinks is the misuse of pointers. These
are sinks where pointers are used to access memory. This category
can be mapped to the CWE-468 (Incorrect Pointer Scaling) category.
This category can also be split into subcategories of read (CWE-125:
Out-of-bounds read) and write (CWE-787: Out-of-bounds write).
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Figure 10.2: Taxonomy of sinks based on the data set.

10.6 Fix categories

The results for the different fixes are categorized and seen in figure 10.3.
They are connected to the different problem types. Fixes are categorized as
follows:

1. Proper Input Check : Fixes for this category are input checks which
were completely missing (Unchecked). Also fixes which check inputs
that developers didn’t have in mind fall into this category (Unexpected
Input). The subcategories are for the different kinds of checks. For
example, negative values are a common input developers did not expect.
Also some vulnerabilities which have Variable Overflow in Check and
Variable Overflow Allocation as error categories were fixed by checking
if the input value was not too high. Also some fixes did just check if
a value was not too small. This is commonly a fix when developers
thought the input could not be that small. Black listing where specific
inputs are filtered out and white listing where only specific inputs are
allowed were found as fixes in the data set.

2. Check Overflow Underflow : Firefox has a checkedint class which
allows to check if an overflow or underflow occurred. Accordingly, fixes
used these classes instead of int variables and checked for over- and
underflow occurrences. Two fixes did check the input, i.e., if an integer
overflow occurred in the calculation before using it. This fixes problems
from the Variable Overflow in Check and Variable Overflow Allocation
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Figure 10.3: Taxonomy of fixes for the vulnerabilities based on the data set.

categories.

3. Check If Allocation Succeeds : Some vulnerabilities fall in the error
category Missing Return Value Check. In our data set, these missing
return value checks are related to allocating memory. As the name
already hints, fixes in this category check these return values and change
the control path accordingly.

4. Use Safe Function : Memory related functions provide a secure
function which requires an additional parameter. This parameter is
used to restrict the size which is used in the memory-critical function.
A common example is strcpy and strcpy_s. The additional parameter
is used to provide the size of the string. This prevents a vulnerability
where the source string has no null character or the size of the source
string is larger than the size of the destination string. Four fixes used
such functions to remove the vulnerability.

5. Fix Index : This category is related to the error type Invalid Index.
These errors were fixed by using valid indexes. One instance was fixed
by changing the data type so that the index was not invalid any more.
The fixes are split into the same subcategories as the error type. For
example, one index update fix was implemented by inserting a break
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statement.

6. Change to Matching Data Type : Three vulnerabilities were patched
by changing the data type. This fix is related to the Mis-Matching Data
Types error type category. Three of these kind of errors were patched
by changing the data type. The remaining samples were fixed by
correcting a previous error which then only resulted in a vulnerability
because of mis-matching data types. For example, an integer overflow
was fixed, which resulted in a negative result that was assigned to an
unsigned integer variable. As long as the value was positive, this did
not create a problem.

7. Fix Calculation Two samples were patched by fixing the calculation.
The calculation was adjusted accordingly such that the undesired results
will no longer occur.

8. Proper Allocation The last category of fixes are patches where the
allocations were fixed. For example, the allocation did not reserve
enough memory. If the allocation was changed such that it allocated
the right amount of memory, it falls into this category. Two samples
patched the vulnerability by correctly allocating memory.

10.7 Discussion

Firefox is a well-known open source product and the source code is reviewed
a lot. Accordingly, the vulnerabilities from Firefox usually had input checks
before potentially dangerous functions or memory accesses were used. The
vulnerabilities most often existed because an integer overflow or underflow
occurred. It is important to teach developers the right use of variables which
may overflow/underflow. Also the assignment of variables with different data
types in C/C++ is problematic and should be avoided. Nevertheless, if these
assignments are required, they should be used carefully.

The error types were related to existing CWE categories. CWE-888
contains software fault pattern clusters. The containing category CWE-
890 (SFP Primary Cluster: Memory Access) is related to buffer overflow
vulnerabilities. This category also has the following subcategories:

• CWE-970 SFP 2. Cluster: Faulty Buffer Access: covered

• CWE-971 SFP 2. Cluster: Faulty Pointer Use: did not occur in
data set
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• CWE-972 SFP 2. Cluster: Faulty String Expansion: did not occur
in data set

• CWE-973 SFP 2. Cluster: Improper NULL Termination: did not
occur in data set

• CWE-974 SFP 2. Cluster: Incorrect Buffer Length Computation:
covered

CWE-970 and CWE-974 are covered by our data set. Surprisingly, CWE-971
did not occur in our data set. This is due to the fact that this category has
only very specific CWE subcategories, for example, when using a null pointer
or using pointers to determine a length. Also CWE-972 and CWE-973 did
not occur in our data set. There was no vulnerability sample related to an
improper null termination of a String variable. Another related cluster is
CWE-969 (SFP Secondary Cluster: Faulty Memory Release) which covers
vulnerabilities where memory is released and still used later on. This includes
vulnerabilities like "’double free"’ or releasing memory which is not on the
heap. Unfortunately, our data set did not cover vulnerabilities which fit into
this cluster.

As already stated, Microsoft released a list of banned functions for the
security development lifecycle [116]. Most of our sinks that fall into the
category Critical Functions are found on the list. Our data set contained
the critical functions memmove() and memset(), which are not found in the
banned list because these functions are using a restricting length parameter.
Only four of samples using a banned function were fixed by using a safe
function. 17 of the sinks in our data set did use the function memcpy().
According to the list, the function memcpy_s() should be used which requires
an additional parameter defining the size of destination. None of the patches
used the function to fix the vulnerability. It is easy to tell developers to avoid
buffer overflow vulnerabilities, but there is a huge list of critical functions.
Developers have to know which functions are critical. Static code analysis
tools might be useful to find these functions. Nevertheless, in our data set
only half of the vulnerabilities use critical functions. Additionally, there are
many different permutations of buffer overflow vulnerabilities which makes
the mitigation for developers problematic.

Our results show that buffer overflow vulnerabilities are not simply avoided
by having a list of critical functions. Buffer overflow vulnerabilities occur in
many different permutations and in combination of errors. Accordingly they
are not easy to prevent by just learning simple vulnerabilities. Our results
provide an overview of source code patterns which are found in our data set.
These can be used to teach developers that all kinds of permutations of our
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categories can result in a buffer overflow vulnerabilities.

10.8 Conclusions and future work

To minimize the occurrence of buffer overflow vulnerabilities, different source
code patterns have to be detected and avoided. To gain a better under-
standing of how such patterns look like, we analysed 50 buffer overflow CVE
reports related to Firefox. We created categories for the types of errors
the developers made, what kind of sinks were used and how the developers
fixed the vulnerability. These categories were compared to existing CWE
categories. Some categories are not found as a direct CWE category. Like-
wise, our data set does not include all CWE categories. The focus of the
categories is seen from a developer’s point of view instead of a technical
representation of the vulnerability details. This helps to use the categories
to teach developers which source code patterns and errors are common for
buffer overflow vulnerabilities.

Our patterns could be used to create different learning exercises using
different permutations. An interesting point will be to create these exercises
automatically. The LAVA tool [110] injects buffer overflow vulnerabilities
in C code. It would be interesting to integrate our patterns into this tool.
This will be an important step because malicious developers might already
have developed such tools. It would reveal some limitations and maybe risks
which might occur by automatically creating vulnerabilities in the future.
Our earlier work [118] is a tool which injects SQL injection vulnerabilities in
Java source code using an abstract syntax tree. A similar approach might be
possible to inject buffer overflow vulnerabilities in C/C++ code. Another
avenue of research would be using these categories to benchmark static code
analysis tools. Data sets could be created using different permutations of our
categories. It will be interesting to see if all permutations are detected by
static code analysis tools as well as the false positives and the false negatives
rates of the tools.
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Chapter 11

Source Code Patterns of Cross
Site Scripting in PHP Open
Source Projects

11.1 Introduction

Cross Site Scripting (XSS) is on the fourth place in Common Weakness
Enumeration (CWE) top 25 2011 [126] and on the seventh place in Open
Wep Application Security Project (OWASP) top 10 2017 [127]. Accordingly,
Cross Site Scripting is still a common issue in web security. To discover
the reason why the same vulnerabilities are still occurring, we investigated
the vulnerable and patched source code from open source projects. Similar
methods, functions and operations are grouped together and are called source
code patterns. Our work shows which source code patterns occur in real life
projects, to provide a data set that can be compared to existing vulnerability
data sets like SAMATE SARD [131]. The questions to be answered are: How
do source code patterns from real projects look like? What main protection
mechanisms are required to prevent Cross Site Scripting attacks? Real source
code samples from open source projects are investigated to get answers to
these questions.

This paper begins with an overview of related work in section 11.2.
Section 11.3 explains how we got the source code sample and how the manual
review process looks like. The next section explains what Cross Site Scripting
categories from CWE [126] exist and how they fit into source code pattern
categories. In section 11.5 our taxonomy resulting from the manual review
process is explained. The sample from CVE-2012-5163 described in section
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11.6 is a sample where developers might thought that data is already sanitized.
In section 11.7 the results are discussed. The final section provides some
discussion about how our result can be used in the future.

11.2 Related Work

For SQL injection and Buffer Overflow vulnerabilities, we created the source
code patterns with the same method that was used by [146] and [145].
Research projects about general classification of source code patterns exist.
Lerthathairat and Prompoon [138] did research about the classification of
source code into bad code, clean code and ambiguous code. They use metrics
in source code like comments, the size of the function, et cetera. These
metrics were analysed by using Fuzzy logic to determine which category
the source code belongs to. Bad and ambiguous code were improved by
refactoring. A more security related work is from Hui et al. [137], they use
a software security taxonomy for software security tests. They created a
security defects taxonomy based on top 10 software security errors from
authoritative vulnerabilities enumerations. Their taxonomy is categorized
into induced causes, modification methods and reverse use methods. They
advise that their taxonomy should be used as security test cases. Stivalet
and Fong [147] present a tool that allows to create short code examples
including software vulnerabilities. They split up the source code parts into
input, filtering and sink. Permutations of these parts will create different
examples. All of the examples can be found in the Testsuite 103 within the
Software Assurance Reference Dataset [131].

The research also requires data sources, which are used to classify the
source code patterns. Massacci and Nguyen [140] researched different data
sources for vulnerabilities, e.g. Common Vulnerabilities and Exposures
(CVE), National Vulnerability Database (NVD), et cetera. They looked
into which data sources were used by other research projects. They also
used Firefox as a database for their analysis. Wu et al. [148] use semantic
templates created from the existing CWE database [126]. They should help
to understand security vulnerabilities. The authors did an empirical study
to prove that these semantic templates have a positive impact on the time
to completion on finding the vulnerability.

Louw and Venkatakrishnan [139] present a tool Blueprint can be used to
defend against Cross Site Scripting attacks. Different Cross Site Scripting
variants are explained and how they can be exploited. Another framework
from Gupta and Gupta [136] can be used to protect against XSS attacks
specialized on HTML 5 web pages. Another approach from Maurya [141]
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[142] shows how to prevent Cross Site Scripting vulnerabilities on the server
side. In their work different security levels require different sanitization
approaches. Nadji et al. [143] present different XSS attack scenarios and
also suggest on how to prevent these attacks using a combination of server
and client protection mechanisms. Another work from Gundy et al. [135]
uses a randomized approach to prevent against XSS attacks. As long as the
attackers cannot predict the randomization that approach should deny any
XSS exploits. In contrast we suggest using the correct standard prevention
methods based on the html context to prevent XSS attacks.

11.3 Method

For our research we decided to review vulnerabilities that were found in open
source projects. We focus on vulnerabilities that are tracked in the CVE
[124] database. CVE reports between 2010 and 2016 (seven years) are used
as data samples to ensure that developers had sufficient time to patch the
vulnerabilities. To get the vulnerable and patched source code related to
CVE reports the results from the source code crawler from [145] were used.
It checks CVE entries for related GitHub [125] patches and downloads the
vulnerable and patched source code. Table 11.1 shows how many source
code samples for different vulnerability types and programming languages
are found. We chose PHP as reviewed programming language because it
provides the most samples (122) related to Cross Site Scripting. Out of these
source code samples 50 CVE reports are randomly selected for a manual
review. 50 samples means 1% of all CVE entries related to XSS and 40% of
all CVE entries related to XSS and PHP.

Cross Site Scripting vulnerabilities are commonly split into three parts
(sources, sanitization and sinks). The sources are methods where data is
provided which can be manipulated by a user. Sinks are methods where such
data can be harmful. In a XSS vulnerability it will result in scripts that will
be executed on the victim’s browser. Sanitization methods transform user
provided data such that it will not be harmful, if it reaches sinks.

The manual reviews were done as follows. For each CVE report the note
entry was looked up. It usually describes which input fields or variables can be
used to exploit the vulnerability. Just within the scope these variables/fields
are the tainted data sources for the Cross Site Scripting vulnerabilities. If
no variable/field is mentioned the source code is manually backtracked from
the patched source code to find the sources. By doing a data flow analysis
from the sources relevant source code patterns are tracked. For example, it
will be noted if a sanitization method from a framework is used. For sources,
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Categories from CVE details CVEs Github PHP Java C/C++ js Python Ruby
Denial Of Service 10,929 737 7 3 664 4 8 6

Execute Code 10,647 217 70 6 83 8 12 17
Overflow 6,594 302 3 1 280 0 5 1

Obtain Information 5,471 233 32 6 153 5 10 11
Cross Site Scripting 4,878 219 122 5 2 46 14 11
Memory corruption 3,419 52 0 0 49 0 0 0

Bypass a restriction or similar 2,609 96 24 4 51 1 6 2
Gain privileges 2,207 118 4 0 100 0 0 1
SQL Injection 1,732 71 53 3 2 2 0 5

Directory traversal 1,059 35 14 1 7 3 2 5
CSRF 1,046 33 25 2 0 6 1 3

File Inclusion 100 3 0 0 0 0 0 0
Http response splitting 74 4 0 0 0 0 0 0

Summary 50,765 2,120 354 31 1,391 75 58 62

Table 11.1: Software vulnerabilities in open source software grouped by
vulnerability type and programming language.

insufficient sanitization, PHP sinks, HTML context and fixes a taxonomy is
created based on the review results.

11.4 CWE

Common Weakness Enumeration (CWE) [126] provides categories for software
vulnerabilities. CWE-79 is the basic enumeration for Cross Site Scripting.
It is distinguished between reflected XSS, stored XSS and dom-based XSS.
In a developer perspective these are different sources and sinks depending
on when the sanitization should happen. For example, if only sanitized
data should be stored in the database, the category can be seen as sink
category. On the contrary it can be seen as a source category, if sanitization
should only occur before the data is presented on the web page. The CWEs
81 to 87 are different variants of the base CWE-79. These can be seen
as different categories for failed sanitization methods and different HTML
contexts. The table 11.2 shows source code pattern categories of the different
CWE enumerations.
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CWE-81 Improper Neutralization of Script in an
Error Message Web Page

HTML context

CWE-82 Improper Neutralization of Script in At-
tributes of IMG Tags in a Web Page

HTML context

CWE-83 Improper Neutralization of Script in At-
tributes in a Web Page

HTML context

CWE-84 Improper Neutralization of Encoded URI
Schemes in a Web Page

HTML context

CWE-85 Doubled Character XSS Manipulations Failed sanitization
CWE-86 Improper Neutralization of Invalid Char-

acters in Identifiers in Web Pages
Failed sanitization

CWE-87 Improper Neutralization of Alternate XSS
Syntax

Failed sanitization

Table 11.2: CWE Cross Site Scripting variants mapped to categories.

11.5 Taxonomy of Source Code Patterns

In this section the different taxonomies resulting from the review process
are described in detail. The correlations to more or less corresponding CWE
categories are mentioned.

11.5.1 Sources

Figure 11.1 shows three categories for the sources. There are 51 sources
because CVE-2014-9270 is a stored and reflected Cross Site Scripting vul-
nerability. Accordingly, for each type a different source was found (database
source and user input source).

Figure 11.1: Taxonomy of sources based on the data set.
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HTTP Source

Sources which fall in the HTTP Source category are basic HTTP meth-
ods provided by PHP. No wrapper was used which might trick develop-
ers into thinking that the data might already be sanitized. Sources from
this category are related to reflected Cross Site Scripting vulnerabilities.
In our data set we found $_GET, $_REQUEST, $_POST, $_SERVER
and $_COOKIE. These are reserved variables from PHP [130]. $_FILES,
$_HTTP_RAW_POST_DATA would also fall into this category, but these
were not found in our data set.

Framework Source

PHP is commonly used with frameworks which provide features to create
web pages more conveniently. Methods that wrap around methods from the
HTTP Source category or methods provided from frameworks to get user
provided data fall into this category (e.g. gpc_get_string(), getParam()). All
our samples were internally using sources from the HTTP Source category.
Accordingly, vulnerabilities with sources from this category are also related
to reflected Cross Site Scripting. The extra category was created because
such methods might already sanitized the input.

Database Source

Stored Cross Site Scripting stores the malicious input in the database. That
input will be later on presented without any further sanitization on a web
page. For our research the methods where user data is returned from the
database is seen as a source. For example, in our data set we found functions
like db_fetch_row() and serendipity_db_query().

11.5.2 Insufficient Sanitization

There is a difference between sanitization methods and escaping methods.
Sanitization methods are removing suspicious character which is commonly
used to mitigate SQL injection vulnerabilities. In contrast escaping methods
are just escaping suspicious character that cannot be used to inject any
code. The resulting data from both methods will not be harmful anymore.
Escaping methods are more commonly used to protect against Cross Site
Scripting attacks because it will not remove characters that an user wants to
be displayed. We group both methods together and call them sanitization
methods which can either be sanitization methods or escaping methods. Most
of our vulnerable samples did not use any sanitization methods. Nevertheless,
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Figure 11.2: Taxonomy of insufficient sanitization methods based on the
data set.

some did use well known sanitization methods, but Cross Site Scripting
vulnerabilities still occurred. Figure 11.2 shows an overview of the categories
for insufficient sanitization methods.

No Sanitization

As the name already indicates, no sanitization method was used. Samples
where plain user input will reach a sink fall into this category.

Standard Sanitization

Developers actually used official sanitization methods like htmlspecialchars(),
but a Cross Site Scripting vulnerability still existed. Why was that saniti-
zation insufficient? Two of the three found samples, the sanitization was
insufficient because the HTML sink was from the category JavaScript Context.
If sinks are from that category, the sanitization has to be more specialized
because the context is already in Javascript. How to prevent XSS attacks in
such a context is described later on. The last sample did have a special con-
dition where the sanitization method is not used. That sample is described
in detail in section 11.6.

Custom Sanitization

Custom sanitization methods were also found in the data set. Two samples
did use wrapper methods which internally use methods from the Standard
Sanitization category. Accordingly, they should be protected against XSS
attacks, but the sinks are again from the JavaScript Context category.

One sample did implement a sanitization method using str_replace()
method. The implementation was insufficient and the patch did fix the
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Figure 11.3: Taxonomy of PHP sinks based on the data set.

vulnerability by using a sanitization method from the category Standard
Sanitization.

Encoding Function

One sample did use an encoding function. These functions are not supposed
to be used as a sanitization method. Nevertheless, as seen in the fixes
categories, some developers patched the vulnerabilities by using encoding
functions. This just prevents Cross Site Scripting vulnerability as long the
context is from the Plain HTML Context category and the correct HTML
encoding function is used.

11.5.3 PHP Sinks

The sink categories are split into PHP and HTML sinks. An overview of the
PHP sink categories is shown in figure 11.3. This sinks taxonomy is useful for
developers because these are the sinks where user input without sanitization
will be harmful.

Standard PHP Sink

This category covers standard output to the web page. Most of our data
samples did have sinks in the Standard PHP Sink category. It is split into
the first category PHP Function Sink where methods are used to output the
data. Common methods are echo() and print(). The other category PHP
Output Sink covers simple output in PHP files, where the <?...?> element is
used.

PHP Eval Function Sink

In our data set two samples did have an eval() function as sink. These CVE
reports were marked as Cross Site Scripting vulnerability. Actually these
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Figure 11.4: Taxonomy of HTML sinks based on the data set.

sinks also open up Direct Dynamic Code Evaluation vulnerabilities (CWE-95).
Nevertheless, it can also result in a Cross Site Scripting vulnerability.

Website Templates Sink

Some PHP frameworks provide template files, which can be used to write
PHP similar code with some extra features. In our data set two samples
are using tlp files from the Smarty framework [132]. If such a framework
template is used it falls into this category.

Framework Header Sink

One sample did have the sink in a header parameter. The PHP framework
used in that sample provides a function to set a header parameter. Accord-
ingly, this category was created for sinks which allow to modify the HTTP
header.

11.5.4 HTML Context

The PHP sinks categories are more focused on what functions are used to
print the data. HTML context rather focus on where the data is presented
in the web page. This taxonomy is more similar to the categories provided
by CWE. Figure 11.4 shows the categories found in our data set.
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Plain HTML Context

Outputs which get into a context of this category are in a simple plain HTML
part. No special condition like being in a Javascript context or being an
attribute. Standard sanitization methods are well suited for such a context.
Also the use of HTML encoding functions is enough as long the output is
inside the HTML body [129].

JavaScript Context

Sinks where the output will be in a Javascript context fall into this category.
Accordingly, sanitization must be more specialized. The OWASP XSS
prevention sheet [129] explains that simple encoding functions are not enough.
The output also should be quoted and sanitized to prevent any Cross Site
Scripting attacks [129]. It is important to know that inputs must be data
only. Otherwise, the prevention of Cross Site Scripting will be very difficult
and requires further restrictions. In our data set only data was used inside a
script tag. Another pitfall in this context is the method htmlspecialchars()
because it does not remove simple quotes without setting the ENT_QUOTES
parameter. If developers use simple quotes as escaping and do not set the
parameter, XSS attacks are still possible.

HTML Attribute Context

This is the same category as CWE-83. The output is inside a HTML attribute.
The CWE-82 is specialized version of being an image attribute. In our data
set only two samples actually were in a image attribute context. The input
has to be sanitized and quoted like in the JavaScript Context category.

HTML Header Context

One sample did have a sink from the category Framework Header Sink.
Accordingly, the context is a HTTP header and that sample falls into this
context category. To prevent any Cross Site Scripting attacks in a header,
sanitization methods from Standard Sanitization are required. Encoding
function will not be sufficient.

Sanitization in different contexts

As already mentioned, different HTML context require different sanitization
methods. The table 11.3 provides an overview of what sanitization methods
are sufficient enough to prevent any Cross Site Scripting attacks. Accordingly,
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HTML Context Encoding Sanitization Sanitization
& Escaping

Plain HTML Context prevent prevent prevent
HTML Attribute Context insufficient insufficient prevent

HTML Header Context insufficient prevent prevent
JavaScript Context insufficient insufficient prevent

Table 11.3: CWE Cross Site Scripting variants mapped to categories.

Figure 11.5: Taxonomy of fixes based on the data set.

it would be helpful to sanitize and escape any user input to be protected
against XSS attacks in all HTML contexts.

11.5.5 Fixes

An important part to prevent Cross Site Scripting is correct sanitization
of user input. Most reviewed projects had no sanitization before the patch
related to the CVE report was developed. The patches contain different fixes
to sanitize inputs. Figure 11.5 shows the taxonomy created for the fixes
which were used in our data set.

Standard Sanitization

Fixes of this category used the standard functions provided by PHP. No
combination of multiple sanitization methods or a sanitization method from
a framework is used.

In our sample, common methods were htmlentities(), htmlspecialchars(),
urlencode(), etc.
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Custom Sanitization

Some patches did fix the vulnerability by using a custom developed saniti-
zation method. Few used a combination of different sanitization methods
from the category Standard Sanitization as sanitization method. Also some
samples did fix the vulnerability by using a sanitization method which did
use replace methods like preg_replace().

Framework Sanitization

Three samples were using sanitization methods provided by a framework to
fix the vulnerability. Fixes that use a framework sanitization method falls
into this category. For example, the esc_html() function from WordPress
[133] fall into this category.

Fixed Data Types

One sample did use a fixed data type to prevent any Cross Site Scripting
vulnerabilities. An ID value was evaluated as an integer value. Accordingly,
a simple and elegant way of fixing the vulnerability.

White Listing

White listing is a common way to prevent any injection attacks. Just fixed
values are allowed and all other inputs will be ignored. Three of the samples
used white listing to fix the vulnerabilities.

Removed Functionality

Another category to fix a vulnerability is to remove that output. Even some
sample did remove some functionality which contained the vulnerability. At
least it fixed the vulnerability.

11.6 Special case: CVE-2012-5163

To get a better understanding of the manual review process, this section
provides an example of the CVE-2012-5163 report in the open source project
Osclass [128]. Looking into the report notes reveals that the id parameter
in enable_category can be used to inject arbitrary code. Accordingly, the
source is already known. Looking into the vulnerable source code reveals that
the function Params::getParam("id") is used which falls in the Framework
Source source category. The code snippet 11.6 shows the related source
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code. As seen on line 9 and 14 standard sanitization methods are used.
Consequently, it falls in the insufficient sanitization category Standard
Sanitization . Nevertheless, because $htmlencode is on default set to false,
the sanitization method is not used. The function will return the value
without any sanitization for the enable_category id. As this sample shows, a
developer might think that the getParam() function does already sanitize
the inputs but in specific conditions it does not.

The code snippet 11.7 shows a shortened version of the doModel() method,
which prints the not sanitized user input. Line 4 and 6 shows a little part
of the data flow that was tracked by the manual review. The final PHP
sink is found on line 7, where the output will be encoded by the function
json_encode and the sink is the echo function. Accordingly, as PHP sink was
found from the Standard PHP Sink category. The doModel() functions
creates a web page where the found echo result in a plain HTML context.
Therefore it falls into the Plain HTML Context category. The fix was
very simple by encapsulating the related getParam() call with a strip_tags()
functions. Thus the fix category is Standard Sanitization because it is a
function provided by PHP. The encoding function is supposed to be used for
a JSON context. Accordingly, this does not prevent any XSS attacks in a
HTML context.
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1 static function getParam($param, $htmlencode = false)
2 {
3 if ($param == "") return '' ;
4 if (!isset($_REQUEST[$param])) return '' ;
5

6 $value = $_REQUEST[$param];
7 if (!is_array($value)) {
8 if ($htmlencode) {
9 return htmlspecialchars(stripslashes($value),

ENT_QUOTES);
10 }
11 }
12

13 if(get_magic_quotes_gpc()) {
14 $value = strip_slashes_extended($value);
15 }
16

17 return ($value);
18 }

Figure 11.6: Params::getParams() function with insufficient sanitization from
CVE-2012-5163.

1 // root category
2 if( $aCategory['fk_i_parent_id'] == '' ) {
3 ...
4 $aUpdated[] = array('id' => $id) ;
5 ...
6 $result['affectedIds'] = $aUpdated ;
7 echo json_encode($result) ;
8 break ;
9 }

10 ...
11 break ;

Figure 11.7: A shortened version of the sink source code part from CVE-
2012-5163.
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11.7 Discussion

The results did show that Cross Site Scripting vulnerabilities have a high rate
of vulnerabilities where no sanitization is used. The vulnerable source code
for CVE-2013-0807, CVE-2014-8793 and CVE-2013-4880 reports have the
vulnerabilities including source and sink in one line of code. These results
show that Cross Site Scripting is not as present in developers’ minds as it
should be. For Cross Site Scripting the different HTML contexts are relevant
because as described in section 11.5.4 they require different sanitization
methods. Accordingly, the prevention mechanisms and context categories
have to fit to prevent any attacks.

The CWE sub categories for Cross Site Scripting are not very detailed.
As our results show many different categories exist. Especially the context
category JavaScript Context should exist because it requires more specialized
sanitization to prevent any XSS attacks. The method htmlspecialchars()
should probably also escape simple quotes as default because developers might
not read the documentation carefully enough to know that an additional
parameter is required to escape simple quotes. In a JavaScript Contextcontext
it opens up unnecessary XSS vulnerabilities.

11.8 Conclusion and Future Work

We analysed the source code of 50 GitHub projects which are correlated
to CVE reports mentioning Cross Site Scripting and available source code
patches. The results show different taxonomies for important source code
patterns. Relations to the existing CWE categories are created. Our taxon-
omy is more focused on the developers point of view. In combination with
our previous work [145], [146], three taxonomies for different vulnerabilities
categories are created. These taxonomies allow further research using the
taxonomy and the source code samples as a dataset. These categories can be
used to get a better understanding where Cross Site Scripting vulnerabilities
can occur. Especially, the HTML context taxonomy has a big influence on
what prevention mechanisms should be used.

The sample set was very small; more samples should be analysed for
the source code patterns and compared to our results. Another interesting
aspect would be to research source code patterns of XSS samples in the
programming language JavaScript. These patterns could also be compared to
our results. This taxonomy could be used to improve the teaching of software
security skills for developers. The knowledge of source code patterns can be
used to create exercises. An interesting point will be to create these exercises
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automatically similar to previous research projects [144] [134]. Existing
source code from projects can be used and transformed to create these source
code patterns. Another interesting point will be using these categories to
test static code analysis tools. These can be investigated whether they detect
all permutations. It will be interesting to see what combinations of the
categories are difficult to be detected from static code analysis tools.
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Chapter 12

Difficult XSS Code Patterns for
Static Code Analysis Tools

12.1 Introduction

Static code analysis tools exist for a long time now. Nevertheless, looking
into OWASP top 10 and CWE top 25 lists shows that the same vulnerability
types occur all the time. Are modern static code analysis tools sufficient
to detect recent vulnerabilities which occurred in recent years? Another
problem might be that the tools have too many false positive reports that
discourage developers from using them? Are there patterns that are not
detectable with state of the art static code analysis tools? False positives are
vulnerability reports that are actually no vulnerabilities. Accordingly, these
patterns should either not be mitigated by developers or should be taught to
developers that they know what are critical parts for manual security reviews.
Our goal of this study is to find problems and limitations of static code
analysis tools. Is it possible to create small source code samples which have
a high probability to create false positive or false negative reports? False
negatives are vulnerabilities that are not reported by the tool. We focus on
cross site scripting vulnerabilities because it is a widespread vulnerability.
Source code from open source projects is used to find false positives and
false negatives. These reports are then reviewed to find the corresponding
problematic source code patterns. These patterns are evaluated using the
initial static code analysis tools and two open source tools.
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12.2 Related Work

Many research projects exist that evaluate static code analysers. Goseva-
Popstojanova and Perhinschi [162] evaluated three commercial static code
analysis tools. They calculated a G-score that used the detection and the
false positive rate. This score was used to compare the different static code
analysis tools. They scanned the Juliet database [149] to evaluate different
permutations of security issues. They used three open source projects with
known vulnerabilities for their evaluation. These projects were chosen based
on CVE reports. The research showed that none of the tools detected all
security issues. They stated that relying only on static code analysis for
detecting security vulnerabilities will leave a large number of vulnerabilities
undiscovered (false negatives). Our research also uses open source projects
with known vulnerabilities. Instead of just scanning these projects to evaluate
the tools, we identified different source code patterns based on the source
code that are problematic for the tools.

Delaitre et al. [160] researched about effectiveness measurement from
static code analysis tools based on significance, ground truth and relevance
metrics. They used three different types of source code for their data set.
The production software type did not have any known security vulnerabilities.
Then they used source code related to CVE reports as their second type.
Their last type was small samples where small source code samples were
created specifically. They used these data sets to evaluate 14 static code
analysis tools and presented the results from four tools. The results showed
that the tools detect specific issues, but not a single tool detected all kinds
of issues. Our work has very similar results. None of our evaluated tools
could detect all vulnerabilities from our created data sets.

The research from Díaz and Bermejo [161] evaluated different open source
and commercial static code analysis tools. They focused on the detection rate
and the false positive rate. They used the SAMATE database to evaluate the
tools. From the SAMATE database they used the test suite 45 that contains
security vulnerabilities and the test suite 46 that has the vulnerabilities fixed.
For the evaluation the F-measure from Van Rijsbergen [165] was calculated.

Another article from AlBreiki and Mahmoud [158] evaluated three open
source tools. The tools have different approaches. One tool analyzes source
code (OWASP Yasca), the next one analyzes byte-code (FindBugs) and the
last one analyzes binary code (Microsoft Code Analysis Tool .NET). The eval-
uation test cases are based on top security issues from OWASP/CWE/SANS.
False positives were not included in the evaluation. Basso et al. [159] re-
searched about how software fault injection will affect static code analysis
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tools. They showed that software fault injection affects the detection rate
of the tested static code analysis tools. Primarily, it created false positive
reports and the existing vulnerabilities were not detected. Zhioua et al. [166]
evaluated four static code analysis tools. They described how security issues
and security properties are related to each other. Their focus is more on how
the tools detect vulnerabilities and what techniques the tools use. Khare
et al. [163] also evaluated static code analysis tools. Their approach was
based on large samples with more than 10 million lines of code. Their test
showed that less than 10% of vulnerabilities were detected. Even some simple
vulnerabilities were not detected.

12.3 Methodology

We use multiple static code analysis tools to find and evaluate problematic
source code patterns. Problematic patterns result in false negative and false
positive reports. This section provides background knowledge, explains what
commercial and open source static code analysis tools were chosen and how
the problematic patterns are examined.

12.3.1 Background

False negative (FN) reports mean that a tool did not report a vulnerability
that actually exists. To find source code patterns that create such false
negative reports, initial source code is required that contains such patterns.
In contrast false positive (FP) reports mean that a tool reports a vulnerability
that actually is no vulnerability. To find such patterns, source code is required
that might look like there is a vulnerability, but one can be sure that the
program is secure.

12.3.2 Selected static code analysis tools and data set

We selected three commercial static code analysis tools. These tools are
called Tool A, Tool B and Tool C. Our licences do not allow to publish the
name of the tools. Our primary goal is not to evaluate the tools against each
other. Instead we want to identify source code patterns that are problematic
for state of the art static code analysis tools. All of these tools support data
flow analysis and use it for their analysis. The tools were all up to date when
the scans were started in September 2018.

For the evaluation of specific patterns two open source static code analysis
tools (Exakat [152] and Sonarcloud [157]) were added. To find relevant open
source static code analysis tools a collection of open source static code analysis
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Figure 12.1: XSS Vulnerability analysis process.

tools [150] was reviewed. First of all, all tools that do not scan for security
issues or are not maintained anymore (last update > 1 year) were filtered
out. The remaining tools were checked, if they can detect cross site scripting
vulnerabilities. Only Exakat and Sonarcloud were found to be suitable for
the validation.

We used the CVE data set from the work [164]. These samples are source
code from open source projects that are related to CVE reports from 2010
until 2016 (seven years) focusing on cross site scripting vulnerabilities. Those
reports are old enough to provide the static code analysis tool developers
enough time to adapt their algorithms. We use the corresponding vulnerable
and fixed versions. The data set contains 50 vulnerable and 50 fixed samples.

12.3.3 Vulnerability analysis

The vulnerability analysis process is shown in figure 12.1. The commercial
tools are used to scan the related source code. Because of previous inves-
tigation we already know where the corresponding sinks are located. This
information is used to automatically check if the vulnerability is not found
(false negative) or if the fixed version still is reported as a vulnerability (false
positive). Because our previous work was a manual review, the false positive
and false negative reports are checked if these are really false positive or false
negative reports. After that check all interesting samples are identified and
manually reviewed to find the problematic source code patterns.

The manual review is done by checking the data flow from the source
to the corresponding sink. A source is a function or method where data is
provided by a user. Such data can be potentially dangerous if it reaches critical
functions. Such critical functions are called sinks. It is reviewed for code
patterns which might be problematic for static code analysis tools. Because
each of the reviewed samples are either a false positive or a false negative
report, there must be something in the data flow which might interrupt the
data flow algorithm or confuses the static code analysis algorithm. Based on
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the review results a minimal working example (MWE) data set is created
that contains simple source code samples that imitate the vulnerabilities.
The corresponding sink is noted down for further scans. To ensure that the
samples are still vulnerable, exploits are written that result in a cross site
scripting vulnerability.

The next step is to check if problematic source code patterns are found.
The simple samples are scanned again by the three commercial static code
analysis tools. Again the results can be automatically checked because the
corresponding sinks are known. All simple samples that created false positive
and false negative reports are then designated as problematic patterns for
static code analysis tools. These samples are in the FN pattern and FP
pattern data set. The results from the scans and the identified problematic
patterns are presented in this article.

Because these samples can contain multiple source code patterns at once,
further scans are required to validate which of these patterns are problematic.
For each source code pattern a specific sample is created that just contains
that pattern. These samples are scanned by the commercial and open source
tools again to evaluate which of these patterns are problematic.

12.4 Static code analysis results

As described in the previous chapter, our data set for the first scan contains
source code of 50 vulnerable and 50 fixed projects. For this work that data
set is labeled as "CVE data set" because it is the source code related to CVE
reports. Accordingly, each tool scanned 100 projects. For our work only
false positive and false negative reports are important. Figure 12.2 shows
how many false positive and false negative reports the three tools issued
on the CVE data set. It shows that tool C has a lot more false positive
reports but it has the lowest false negative reports. This is an issue static
code analysis tools have, if they want to detect more vulnerabilities this
usually also means more false positive reports. Accordingly, tool C is more
noisy than tools A and B. Investigating the false reports of tool C shows
that common sanitization methods like htmlspecialchars() are reported as
a possible cross site scripting vulnerability. Tool C rates reports with such
sanitization functions not as critical as without such functions. Nevertheless,
if such functions are used in the correct context, they are sufficient to prevent
cross site scripting attacks. Depending on the context it also might not be
sufficient. The tools have to check the context of the sink to successfully
decide if it is a vulnerability or not. In the CVE data set we assume all of the
fixed samples use sufficient sanitization methods for their context. Table 12.1
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Figure 12.2: False positive and false negatives reports on the CVE data set.

Table 12.1: Overview of metrics for the commercial tools.

Metric Tool A Tool B Tool C
Number of projects 50 50 50
True Positive 26 19 27
False Negative 24 31 23
Number of fixed 50 50 50
True Negative 46 49 32
False Positive 4 1 18
Accuracy 72% 68% 59%
Recall 52% 38% 54%
False Alarm Prob. 8% 2% 36%
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shows the computed metrics of the results. As stated, tool C has a higher
probability of a false alarm (false report). If we look into these metrics the
recall rate indicates how many of the existing vulnerabilities will be reported.
Only one tool is below 50%. Nevertheless, there are still vulnerabilities that
are not detected by the other tools as well. Also the accuracy metric results
are in a good range. The accuracy shows how accurate the reports are related
to be a true positive or true negative report. These metrics are interesting
to see, but for a comparison our data set does not contain enough samples.
From the vulnerable CVE samples there were 35 samples that got from at
least one tool a false negative report. In the fixed CVE samples, 18 samples
produced a false positive report from at least one tool.

12.5 Minimal working example data set

We reviewed the source code of the false positive and false negative reports
from the CVE data set. We created a data set that imitates the source
code with minimal required lines of code. Some samples of the CVE data
set contained the same relevant source code patterns. We only created one
sample if the same source code patterns were found because the minimal
working examples would be the same. In this work that data set is called
minimal working example "MWE data set". The data set contains 25 false
negative samples and 12 false positive samples. Accordingly, 13 vulnerable
samples from the CVE data set and 6 out of the fixed samples from the
CVE data set were duplicates. A reason for this was that, some CVE reports
are from the same open source project but different versions and they used
similar code parts. Table 12.2 shows results of the scan on the samples where
the expected outcome should be a false negative report. Five samples did
not create a false negative report because the count of false negative reports
were zero. Accordingly, the relevant source code patterns were not examined
for these 5 samples. Nevertheless, 20 samples created a false negative report.
Table 12.3 shows the results of the scan of the samples where the expected
outcome should be false positive reports. Ten out of twelve samples provoked
false positive reports. The resulting source code patterns for false positive
and false negative reports are presented in section 12.7.
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Table 12.2: Scan results from false negative MWE data set with 25 samples.

CVE related Patterns Tool A Tool B Tool C Count of FN Type
CVE-2015-7777 $_SERVER ! FN ! 1 reflected

CVE-2014-3544

Inheritance DB Implementation
Class variable assignment by string

SQL DAO
List assignment - list()

FN FN FN 3 stored

CVE-2015-1347 - ! ! ! 0 reflected

CVE-2011-2938 Unc. function call - call_user_func_array
Unserialize FN FN FN 3 stored

CVE-2015-1562 - ! ! ! 0 reflected

CVE-2012-2331
Foreach on super global variable

Scope global
Return value by reference

! FN ! 1 reflected

CVE-2012-5608 Sink print_r FN FN ! 2 reflected
CVE-2013-7275 Template XML file FN FN FN 3 reflected
CVE-2014-3774 - ! ! ! 0 reflected

CVE-2014-4954 DB wrapper
List assignment - list() FN FN FN 3 stored

CVE-2014-9270 SQL DAO ! FN ! 1 stored
CVE-2015-5076 - ! ! ! 0 reflected
CVE-2011-3358 Unc. function call - call_user_func_array FN FN FN 3 reflected

CVE-2012-5339 DB Source
Unc. function call - string ! FN FN 2 stored

CVE-2011-4814 Conditional sanitization - disabled ! FN ! 1 reflected
CVE-2013-1937 Input valid type check FN FN ! 2 reflected
CVE-2012-2129 Keyword global FN FN ! 2 reflected
CVE-2012-4395 Template output buffering FN FN FN 3 reflected
CVE-2014-9219 Input valid type check FN FN ! 2 reflected
CVE-2015-7348 Replacement ! FN ! 1 reflected
CVE-2014-9271 Sink - header FN FN FN 3 stored
CVE-2013-0807 - ! ! ! 0 reflected
CVE-2014-9281 Stripslashes ! FN ! 1 reflected

CVE-2014-9269 $_COOKIE
Stripslashes ! FN ! 1 reflected

CVE-2012-5163 Conditional sanitization - disabled FN FN ! 2 reflected
Summary (FN) 12 20 10

Table 12.3: Scan results from false positive MWE data set with 12 samples.

CVE related Patterns Tool A Tool B Tool C Count of FP Type
CVE-2013-0201 Standard - specialchars ! ! FP 1 reflected
CVE-2011-4814 Custom - preg_replace FP ! FP 2 reflected
CVE-2014-8352 Custom - reset if not valid ! FP FP 2 reflected
CVE-2013-0275 Standard - specialchars ! ! FP 1 reflected

CVE-2014-9571 Standard - specialchars
Custom - preg_replace ! ! FP 1 reflected

CVE-2015-5356 Standard - htmlentities ! ! FP 1 reflected
CVE-2012-5163 Library - HTMLPurifier ! ! FP 1 reflected
CVE-2011-2938 - ! ! ! 0 stored
CVE-2014-9269 - ! ! ! 0 reflected
CVE-2014-2570 Standard - htmlentities ! ! FP 1 reflected
CVE-2013-4880 Standard - specialchars ! ! FP 1 reflected
CVE-2011-3371 Standard - specialchars ! ! FP 1 reflected
Summary (FN) 1 1 10
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12.6 Stored Cross Site Scripting

Cross site scripting vulnerabilities are categorized into reflected and stored.
Static code analysis tool can simply find reflected cross site scripting vul-
nerability by doing a data flow analysis and see if tainted data will reach a
possible sink. Tainted data is data can be manipulated by the user/attacker.
Stored cross site scripting is a bit more difficult to be successfully detected.

Figure 12.3 shows an overview of stored cross site scripting. It is split into
two main parts. The insert part (1,2,3) uses a common source like $_GET.
Then a SQL statement will be created that will store the tainted data in the
database. In another source code location a database source exists. These
are functions that allow getting data from a database. A SQL statement will
get the tainted data out of the database. Then it will be shown on a webpage.
If no sanitization is used, a stored cross site scripting vulnerability would
exist. As seen in figure 12.3, sanitization can be done in two different steps,
(2) and (6). Either before inserting tainted data it can be sanitized (2) or it
can be sanitized before the data will be displayed on the webpage (6). Static
code analysis tools have to know the relation between the SQL statements
(3) and (5) to successfully detect stored cross site scripting vulnerabilities
without any false reports.

Samples were created to check if the tools can detect the different scenarios.
Table 12.4 shows the result of the scans on the samples. The two open source
tools were tested as well. Tool B and the open source tools did not even
detect the simple stored cross site scripting sample, and consequently they
will not report any vulnerabilities in the fixed versions. Tool A detects all
samples correctly. Accordingly, it knows the relations between the INSERT
and SELECT SQL statements. Tool C does at least detect the sample where
the sanitization happens before the data reaches a sink. To detect stored

Figure 12.3: Overview of an stored XSS vulnerability.



144 Difficult XSS Code Patterns for Static Code Analysis Tools

Table 12.4: Scan results on the different stored and reflected XSS samples.

False negative pattern Tool A Tool B Tool C Exakat Sonarcloud
Reflected XSS sample ! ! ! ! !

Stored XSS vulnerable ! FN ! FN FN
Stored XSS sanitization insert (2) ! ! FP ! !

Stored XSS sanitization view (6) ! ! ! ! !

cross site scripting, the tools have to define database functions as a possible
sources for tainted data. To reduce false positive reports, the relation between
the SQL statements are important.

12.7 Difficult source code patterns

The review process required to look for suspected source code patterns which
might be problematic for static code analysis tools. This section describes
what suspected source code patterns were used to create the MWE data set.
Only patterns are presented which are related to samples which created false
positive or false negative reports.

12.7.1 Sources

Three sources were considered to be problematic for static code analysis
tools.

$_SERVER

The super global variable $_SERVER is a special variable that contains
some entries that are just controllable by the server. Nevertheless, it
also has some entries which can be modified by the users. In our data
$_SERVER[’PHP_SELF’] was used. This can be easily modified by insert-
ing the payload in the url.

Foreach on super global variable

Most samples used super global variables by directly accessing the required
key. For example, $_GET[’id’] is a commonly seen source. One sample did
not access them directly instead it used a foreach loop to access all keys with
the corresponding values.
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$_COOKIE

One sample in our data set had the cookies as source. It uses the super
global variable $_COOKIE.

12.7.2 Stored XSS Sources

As already described in section 12.6 stored cross site scripting vulnerabilities
have two different sources. This section focus on the database sources and
what source code patterns occurred in the data set.

Inheritance DB Implementation

One sample used an inheritance database implementation. That implemen-
tation does execute the query depending on the inherited database.

SQL DAO

Two samples used a database access object (DAO). Such an object stores
the relevant information as class variables. It provides a function to create a
SQL statement using the class variables as parameters.

DB wrapper

One sample used an database wrapper object. It wrapped the database object
which is used to access the database. The wrapped object is depending on the
configuration of the project. Different databases require different database
objects. This samples used a switch case based on a String variable to choose
the database implementation. The database wrapper is defined as a global
variable.

12.7.3 Data flow

The main focus of this research is about source code patterns that might
interrupt or confuse the data flow analysis. Nowadays the sources and sinks
are well known. Accordingly, not many specific source or sinks are identified
as problematic source code patterns. It is getting difficult for static code
analysis tools to follow all kinds of data flows that are possible. This section
will describe different source code patterns that cause problems for our
evaluated static code analysis tools.
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Unconventionally function call

The programming language PHP offers a lot of different features. One
feature is to call functions in a unconventional way using other functions.
Such functions allow to call a function that might not be known at the
implementation time. In our CVE data set, multiple function call via the
function call_user_func_array were found. Calling a function using a string
variable was found in our data set as well. (E.g. $functionName($param1,
$param2))

Global variables

Global variables are very common in programming language. Also PHP
allows to define global variables. This happens either by simply defining a
variable in a PHP file without being inside a scope like a function or class.
Another possibility is by defining a variable using the global keyword. This
can be used inside a scope and is still a global variable.

Return value by reference

In the programming language C it is common to use function parameters to
return values. This requires a copy by reference parameter. PHP also allows
to pass a reference as a parameter. In our data set one samples used such
copy by reference to pass the tainted data.

List assignment

Another language concept from PHP allows to assign values from a list to
variables. This can either be used by using [ ] brackets or using the list()
function.

Singleton

Another well known source code pattern is the singleton. This is a class
where only one instance is allowed to exists. This is usually archived by
defining the constructor of a class private. A static method has to be added
which return the single instance of the class. This allows similar to a global
variable to assign and access data from anywhere.

Class variable assignment by string

Similar to a function call, using a String allows PHP to assign class variables
to determine which class variable should be used. For example, if you want
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to assign the class variable with the name foo you can use following code:
1 $varName = 'foo';
2 $this->$varName = 'value';

Unserialize

A serialization framework is already included in PHP. Before PHP 7.1 the
function unserilize() was very dangerous to use. Since PHP 7.1, it does only
allow to unserialize an array or boolean [154]. Nevertheless, this function
can be used to assign tainted values to an array.

12.7.4 Failed sanitization

Another way of provoking false negative report is by having functions that
look like sanitization functions, but are insufficient or simply disabled by a
conditional variable. The patterns we found in our samples are described in
this section.

Conditional sanitization - disabled

Three samples had sanitization methods which were disabled by a conditional
variable.

Input valid type check

Three samples had a method to check, if the input is a valid type. In our
sample it was checked, if the input is an array. This does not prevent any
cross site scripting issues.

Replacement

One sample used str_replace for replacing some characters in the tainted
string. This can also let the static code analysis tools think, that the input
is sanitized.

Stripslashes

Two samples used the stripslashes function. This is insufficient depending
on the context where the tainted data will be shown.
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12.7.5 Sink

Two sinks were found which created a false negative report. One is the
header function. Since PHP version 5.1.2, this is not considered as a sink
anymore. Since then it was exploitable by inserting new line characters to do
a header injection attack. Accordingly, this sink will not be relevant anymore
as long up to date PHP is used. The other sink in the data set was the
function print_r this is a function which prints data well formated. This is
a exploitable sink for cross site scripting attacks.

12.7.6 Template

Modern web pages are commonly developed by using frameworks which are
using templates. Different template implementations were found in our data
set.

Template output buffering

Templates can be archived by using the output buffering feature. This allows
to write the outputs from the template into a buffer. That buffer can be
printed later on. This can result in a cross site scripting vulnerability.

Template XML file

Two samples used a XML file for the templates. A template file can be used
to define multiple output pages. Each entry is put into a CDATA field. The
PHP functions simplexml_load_file and xpath are used to get the related
CDATA field. Then the eval function is used. This allows the templates
to use variables like it was a normal PHP file. This also opens up more
dangerous attacks as cross site scripting. But this is not the focus of this
work.

12.7.7 Sanitization methods

Some false positive reports were found. This section will describe what
patterns were found that sanitized the tainted input sufficient, but the static
code analysis tools reported a vulnerability.

Standard

There are some standard sanitization methods which can be used to sanitize
the tainted input. These are just sufficient enough, if the context of the
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sink fits to the sanitization method. In our data set 7 samples used the
htmlspecialchars and two samples used the htmlentities function.

Library - HTMLPurifier

One sample used the HTMLPurifier [153] library to defend any cross site
scripting attacks. This prevents any attacks, but it is very difficult for static
code analysis tools to know that such a library will sanitize against cross site
scripting attacks.

Custom - preg_replace

One sample sanitized the input using the preg_replace function. This allows
to successfully prevent any cross site scripting attacks. For example, all
characters instead of numerics will be replaced with a whitespace. This
prevents any cross site scripting attacks depending on the context. Static
code analysis tools have to analyze the regular expression to validate, if the
sanitization is sufficient.

Custom - reset if not valid

A simple solution to prevent against any attacks is to only allow numbers as
inputs. This can be archived by casting a variable to integer. In one sample,
the solution was to use the is_numeric function from PHP to check, if the
input is numeric. If it is not numeric, the input will be reset to an empty
string. Static code analysis tool have to check the condition and see that only
numbers will be passed. This is another difficulty for static code analysis
tools.

12.7.8 Validation

The different patterns were identified. Without further scans there would be
no validation which of these patterns are really problematic. Specific samples
were created which contain only one problematic pattern. The corresponding
samples can be found in a GitHub repository [156]. To validate that the
sink and source we used in our samples are known by the tools a simple XSS
sample was created. It uses $_GET as source and echo as sink. Table 12.4
shows that each tool detected the simple reflected XSS vulnerability.

Table 12.5 shows the result for the patterns which expected to create false
positive reports. The two open source static code analysis tools were added
to the validation. Two samples were problematic for each of the five static
code analysis tools. Of 25 patterns, one (Input valid type check - string)
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Table 12.5: Scan results on the different false negative patterns.

False negative pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FN PHP Test suite
Class variable assignment by string FN ! FN FN FN 4 -
SQL DAO FN FN ! FN FN 4 -
Inheritance DB Implementation FN FN ! FN FN 4 -
DB wrapper FN FN FN FN FN 5 -
Conditional sanitization - disabled ! FN ! FN FN 3 !

Input valid type check - array ! FN ! FN ! 2 -
Input valid type check - string ! ! ! ! ! 0 -
Replacement ! FN ! ! FN 2 -
Stripslashes ! FN ! ! FN 2 -
Keyword global ! ! ! FN FN 2 -
Scope global ! ! ! FN FN 2 -
List assignment - brackets ! ! ! FN FN 2 -
List assignment - list() ! ! ! FN FN 3 -
Return value by reference ! FN ! FN FN 3 -
Singleton FN ! FN FN FN 4 -
Sink print_r FN ! ! ! ! 1 -
$_COOKIE ! FN ! ! ! 1 -
Foreach on super global variable ! ! ! FN FN 2 -
$_SERVER ! FN ! FN FN 3 -
Template output buffering FN ! ! FN FN 3 -
Template XML file FN FN FN FN FN 5 -
Unc. function call - call_user_func_array ! FN FN FN FN 4 -
Unc. function call - call_user_func ! FN FN FN FN 4 -
Unc. function call - string ! FN FN FN FN 4 -
Unserialize FN FN ! FN FN 4 !
Summary (FN) 9 15 7 20 21

did not result in any false negative reports. Accordingly, that pattern is not
problematic for state of the art static code analysis tools. Six patterns were
not problematic for the commercial tools. There are three patterns (SQL
DAO, Inheritance DB Implementation, DB wrapper) related to a database
source. As previous seen, the three tools Tool B, Exakat and Sonarcloud did
not even detect samples with a simple database source. These tools cannot
detect the more specific samples. The specified samples even tricked Tool
A which performed best at the simple samples. Only Tool C detects two of
these samples. This might be because they simply define database methods
as possible sources without even checking if it is user provided data.

We looked up if our source code samples are already defined in the
Common Weakness Enumeration [151] (CWE) data-base. For Cross Site
Scripting there are no different patterns defined as CWE cases. We also
looked up if our samples are present in the PHP Vulnerability Test Suite
[155] from NIST. Table 12.5 shows that two of our samples were found in
the test suite.

The false positive patterns were only five samples. Table 12.6 shows the
scan results. The sample using the HTMLPurifier library did not create
any false positive reports. It may either be that the tools saw the library as
a sanitization method or the data flow was interrupted by the library. As
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Table 12.6: Scan results on the different false positive patterns.

False positive pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FP
Standard - htmlentities ! ! FP ! ! 1
Library - HTMLPurifier ! ! ! ! ! 0
Standard - specialchars ! ! FP ! ! 1
Custom - preg_replace ! ! FP FP ! 2
Custom - reset if not valid ! FP FP FP ! 3
Summary (FP) 0 1 4 2 0

already stated tool C reports cross site scripting vulnerabilities at a lower
risk even when sanitize functions are correctly used. The Custom - reset if
not valid sample also reported a false positive in tool B. Our samples were
not able to produce a false positive report for tool A.

If a combination of the different reports is used, only the two problematic
patterns (DB wrapper, Template XML file) would not be detected. On the
other hand, that would also increase the false positive rate.

12.8 Discussion

Our results show that two commercial tools in our data set had an above
50% recall rate. Accordingly, if all projects related to the data set would
have used one of the two tools it could have prevented at least 50% of
the vulnerabilities. The tools are useful for software developers to get an
idea where a vulnerability might be. Nevertheless, one cannot be sure that
scanned source code is free of vulnerabilities, even if the tools did not report
any vulnerabilities. Each tool has advantages and disadvantages, and all of
them have problems with specific source code patterns. Some patterns were
difficult for all of our tested tools. We cannot specify special patterns that
could be declared as problematic for static code analysis tools because of
technical reasons. All of the tools have specific patterns that are problematic
for them. Also the open source tools did not perform better on the source
code patterns. The static code analysis tools also allow some configurations
for specific projects. For example, custom sanitization methods can be
declared. This can help in some of our patterns, but most of our patterns
are more based on programming language features like specific if conditions.

Some patterns are not the best practice in programming. For example,
using a return value by reference. Modern tools should detect such cod-
ing variants. Nevertheless, developers could prevent such unconventional
programming methods to make the static code analysis tools results more
precise. On the contrary, the use of templates is very common and useful.
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Tools have to be able to scan templates as well. In our data set there was one
sample which used tpl files for templates. That sample was ignored because
these templates use a custom language. Nevertheless, the samples using
an output buffer that uses normal PHP files for the templates should be
detected by all tools. The XML sample is bit more difficult because it uses a
different file format and an eval function is used. Altogether developers can
mitigate some patterns, but the static code analysis tools still can improve
their algorithms.

Our researched patterns can be used as teaching examples. These are
very interesting because these patterns are not detected by all static code
analysis tools. Future work could research if today’s learning examples cover
such patterns. For example, do today’s capture the flag events use such
patterns or do they just use vulnerabilities that can be easily detected by
static code analysis tools? Teaching the vulnerabilities that can be detected
by tools is useful for basic understanding. Problematic patterns should be
taught as advanced skill set. Our results show that focus on stored cross site
scripting would be beneficial. Only one Tool A reported correctly the simple
stored XSS samples and still had problems with our stored XSS source code
patterns. Stored XSS is still difficult for state of the art static code analysis
tools because of the required relation between the SQL statements.

Our data set is not very large, we used 50 samples with a vulnerable
and patched version. The data set is not sufficient to compare tools against
each other. It was sufficient to find some source code patterns which are
problematic for static code analysis tools. Further research using a data
set with other CVE reports might reveal more problematic patterns. Our
patterns are also very specific to the static code analysis tools we used. For
example, the print_r function which created a false negative report on tool A
is probably just a missing sink in the analyzing part. It could be researched
why these patterns are problematic for static code analysis tools. This would
require access to the algorithm of the static code analysis tools or at least a
documentation about how the algorithms work. We do not have access to
such documentation. Our test was a black box test of static code analysis
tools.

Our results do not reveal a lot of problematic patterns for false positive
reports. One reason might be that tools have to detect a vulnerability
correctly in the vulnerable sample. If they do not detect the vulnerability in
the vulnerable version, it cannot create a false positive report in the patched
version. This reduces the samples we could use for the review process.
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12.9 Conclusion

Our goal was to find patterns that are problematic for static code analysis
tools. The analysis of the source code from open source projects related to
CVE reports revealed 19 source code patterns which led to false negative
reports. The commercial tools provided better results than the open source
tools. Nevertheless, the commercial tools also had problems with our iden-
tified patterns. Some can be mitigated by the software developers of the
scanned projects. Others should be correctly detected by the static code
analysis tools. The patterns can be used to improve static code analysis
tools. For example, the patterns can be used as a test suite like the "PHP
Vulnerability Test Suite" from SARD [155]. Overall, our results show that
there are still a lot of source code patterns that are problematic for static
code analysis tools. Developers who use static code analysis should know
that there still might be undetectable vulnerabilities in their projects. Ac-
cordingly, developers should get taught those problematic patterns. Training
of developers could be targeted to identifying and avoiding especially those
patterns that are hard to flag by static analysis.
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Chapter 13

Difficult SQLi Code Patterns
for Static Code Analysis Tools

13.1 Introduction

Static code analysis tools are commonly used to find vulnerabilities in the
development phase of a software project. These tools can be part of continuous
integration to report potential security vulnerabilities before those reach
a release version. Developers have to review these reports if those reports
are actual vulnerabilities. If a reported vulnerability turns out not to be
one, the report will produce unnecessary workload. Additionally, if a static
code analysis tool does not report an actual vulnerability, vulnerabilities
will have a high chance to be included in the release version of the product.
Recent research [180] shows that there are source code patterns that are still
difficult for static code analysis tools. It is important to identify such difficult
patterns to mitigate them in the development phase or improve static code
analysis tools to correctly handle them. If such difficult patterns are not
known and these patterns are used, software may be developed and deployed
with undetected vulnerabilities.

Our contribution is to answer the following research questions regarding
SQL injection (SQLi) vulnerabilities:

1. What are difficult source code patterns for static code analysis tools?

2. Is it possible to create simple vulnerability examples with these patterns
that are still difficult for static code analysis tools?

We define a difficult source code pattern as a vulnerability pattern that static
analysis tools can not identify correctly. This means that either the tools

155



156 Difficult SQLi Code Patterns for Static Code Analysis Tools

will report it as a vulnerability but it is not (false positive), or they do not
report it as a vulnerability but it is (false negative). The term difficult does
not represent a metric that includes different difficulties.

Section 13.2 points out related work. Background and methodology is
described in section 13.3. The static code analysis scan results from the
initial open source projects are described in section 13.4.1. The following
section 13.4.2 shows the results of scanning the minimal working examples.
Sections 13.5 and 13.6 describe the identified patterns in detail. To see if
the patterns are difficult for static code analysis tools a verification is done
in section 13.7. In section 13.8 we discuss why identifying such patterns is
important and what static code analysis tools and developers can do to deal
with such difficult patterns.

13.2 Related Work

Many research projects have evaluated static code analysis tools. Goseva-
Popstojanova and Perhinschi [172] evaluated three commercial static code
analysis tools. The Juliet database [177] and three open source projects
related to Common Vulnerabilities and Exposures (CVE) reports were used to
evaluate different permutations of security vulnerabilities. The results show
that the tools had high false negative rates and none of the tools detected
all vulnerabilities. Our approach also uses source code from open source
projects related to CVE reports. Our objective is not to compare the tools
with each other, but to instead find difficult source code patterns. Delaitre
et al. [169] has similar results. They used as a data set source code from
production software that they assumed had no vulnerabilities. Their results
show that no tool detected all samples correctly. The data set is similar
to ours with both complete open source projects related to CVE reports
and specifically created samples. Díaz and Bermejo [170] also evaluated
open source and commercial static code analysis tools. They used the test
suite 45 and suite 46 from SAMATE [178] database as data sets. For the
evaluation, they calculated and compared the F-measure [181] from each
tool. AlBreiki and Mahmoud [167] evaluated three open source tools. They
evaluated tools with different approaches. OWASP Yasca analyzed source
code, FindBugs analyzed byte-code and Microsoft Code Analysis Tool .NET
analyzed binary code. They used test cases based on top security issues from
OWASP, CWE and SANS. Zhioua et al. [182] evaluated four static code
analysis tools based on how they detect vulnerabilities and what techniques
are used. They described how security issues and security properties are
related to each other. Another approach from Khare et al. [173] evaluated
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static code analysis tools on large samples with more than 10 million lines
of code. The results showed that less than 10% of the vulnerabilities were
reported.

Also, software fault injection has an effect on static code analysis tools
[168]. Software fault injection actually affects the detection rate of the tested
static code analysis tools. Primarily, it leads to false positive reports and
existing vulnerabilities were not detected.

There is related work about identifying false positive source code patterns.
Reynolds et al. [176] do a more similar approach as ours. They use extract
the patterns by manual reviewing them. As test base they are using artificial
vulnerabilities from the Juliet framework. Koc et al. [174] are using the
previous data set to a classifier to identify problematic patterns. Overall the
focus relies on identifying false positive reports. Our results are more focused
on patterns that result in false negative reports and our data set is based on
open source projects related to CVE reports.

13.3 Methodology

We use multiple static code analysis tools to find and evaluate problematic
source code patterns. Problematic patterns result in false negative and false
positive reports. This section provides background knowledge, explains the
chosen commercial and open source static code analysis tools and how the
problematic patterns are examined.

13.3.1 Background

A report from a static code analysis tool can either be true positive (TP),
true negative (TN), false positive (FP) or false negative (FN). True positive
and true negative reports mean the report is correct and it reported a
vulnerability (positive) or it does not contain a vulnerability (negative),
respectively. Problematic reports are false negative and false positive reports.
A false negative report means that the tool did not report the vulnerability,
but a vulnerability actually exists. To find difficult source code patterns that
create false negative reports a data set is required that contains vulnerabilities.
In contrast, a false positive report means that the tool reported a vulnerability
which actually does not exist. To find patterns that create false positive
reports a data set is required that does not contain a vulnerability.
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13.3.2 Selected tools

It is not the goal to compare different static code analysis tools to each other.
Instead, we want to find source code patterns that are difficult for static
code analysis tools. First of all, three commercial static code analysis tools
were used. Our licence agreement does not allow to publish the names of
the tools. In this work the commercial tools are named Tool A, Tool B and
Tool C. All of the tools are state-of-the-art that perform tainted data flow
analysis. We focus on static code analysis and in case a tool provides more
functionalities we only use the static analysis parts of the tools. Additionally,
for the verification phase, two open source tools are used. We evaluated a
collection of open source static code analysis tools [171], and selected Exakat
(www.exakat.io) and Sonarcloud (https://sonarcloud.io), which are tools for
finding security vulnerabilities in PHP and are still maintained (last update
< 1 year ago). This approach does not review the internal details and the
method that the tools are using in their analysis. As the commercial tools
do not allow to examine how they work in detail, the open source tools are
also seen as a black box. The goal is to find source code patterns that are
difficult for static code analysis tools and reproduce them. On each pattern
we describe in detail what problems the static code analysis tools have which
prevented them from correctly analyzing the vulnerabilities.

13.3.3 Data set

The source code patterns should be as realistic as possible. We used a
crawler to get source code of open source projects related to CVE reports
(www.cve.mitre.org). It uses the categories from CVEDetails (www.cvedetails.com)
to filter all CVE reports related to SQL Injection vulnerabilities. These re-
ports are checked for having a confirmation link to a patch on GitHub
(www.github.com). The patch itself is checked if it contains any PHP files.
CVE reports from 2010 until 2016 were crawled. This ensures that the
developers had enough time to patch the vulnerabilities and report the
confirmation link to the CVE report. Additionally, all of the samples were
manually reviewed to pin point the actually vulnerability. This also takes
time and effort to ensure that the correct vulnerability was manually reviewed.
Based on that filter criteria we randomly chose 50 CVE reports related to
SQL Injection and PHP. We had to limit the number of CVEs considered
for this work to be feasible by the researcher at this stage. Expanding the
analysis beyond these 50 CVEs can be done in the future. The randomly
chosen CVEs are shown in table 13.5 (appendix). For each CVE report,
the developers provided a patch to fix the vulnerability. The source code
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Figure 13.1: Vulnerability analysis process.

of the patch is used to create a data set that does not contain the reported
vulnerability. This data set are used to find difficult source code patterns
that potentially create false positive reports. In contrast, the revision of the
source code samples before the patch were used to find source code patterns
that might create false negative reports. Both data sets together are further
called CVE data set. This data set, after being expanded with recent and
more CVEs, can be used as a benchmark for studying and analysing difficult
source code patterns.

13.3.4 Vulnerability analysis

Figure 13.1 shows the vulnerability analysis process. The process consists of
4 steps, which are (1) selection, (2) scanning, (3) identifying patterns, and
(4) verification. As described previously, the CVE data set is split into a
data set containing a reported SQL Injection and a data set that patched
the vulnerability. All samples are scanned by the commercial static code
analysis tools. If a tool does not find the vulnerability, a false negative is
identified. In contrast, if a tool reports a vulnerability in the patched version,
a false positive is identified. For each false negative and false positive reports,
minimal working examples (MWE) were created as follows. First, a basic
manual review of the initial source code from the CVE data set was done.
This review process is simply tracking the data flow from the related source
to the related sink. The identified data flow is then recreated to contain
only the related source code. The related source code form the minimal
working examples (cf. Figure 13.1). It can be noted that the goal of creating
minimal working examples is to reduce the manual review effort, as its size
is much smaller than the actual sample. This MWE data set is scanned by
commercial tools again to check, if the problematic patterns are included
or not. If a MWE sample is still creating a false negative or false positive
reports, the minimal working example is reviewed to identify source code
patterns. For each pattern, a sample is created. These samples are created
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using a PHP file containing a simple SQL injection vulnerability. That file is
modified to contain the source code pattern. If the pattern requires multiple
files, additional files were added. This creates the next data set named FN
pattern data set, which contains patterns that cause false negative reports,
and FP pattern data set that cause false positive reports.

The final step in the analysis process is to verify which patterns are
actually difficult. To do so, each of the FN/FP pattern data set entries are
scanned again. This time the open source tools were used to check if these
tools are performing similar to commercial tools. If the sample containing
the pattern still creates a false positive or false negative report, a difficult
source pattern is identified and confirmed.

13.4 Data set results

As we mentioned before, one of the contributions of the work is the creation
of an initial data sets that can be used in the future as a benchmark for
difficult source code patterns analysis. Although the data set is limited to
50 randomly chosen CVEs, but this work can be expanded in the future to
include more comprehensive and actual material. In this section, we will
explain the resulted CVE data sets as well as the minimal working example
data set.

13.4.1 CVE data set results

In order to enable reproducibility of the results of this work, we list in table
13.5 50 vulnerable and 50 patched projects from the randomly chosen CVE.
Figure 13.2a shows the false negatives and false positives that result from
each tool. Even with that few samples (100) it shows a main problem of
static code analysis tools. The main problem of static code analysis tools are
finding the right balance between false negative and false positive rate. If
you want to reduce the false positive rate, it will increase the false negative
rate. Table 13.2b shows an overview of the results and the resulting static
code analysis metrics. The accuracy is almost identical on all of the tools.
The metrics also show that tool A and C are very similar in all aspects. Tool
B is not as good in finding the vulnerability (recall), but it has a very low
false alarm probability. Accordingly, if tool B reports a vulnerability, the
chance is very high that a vulnerability actually exists. Nevertheless, it did
not detect over 50% of the vulnerabilities.
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(a) FN and FP statistic. (b) Metrics.

Figure 13.2: Results from the CVE data set.

13.4.2 Minimal working example data set

The minimal working examples were created based on the previous false
negative and false positive reports. The minimal working data set can be
found on GitHub [179]. Some of the initial data sets result in the same
minimal working examples. This happened because some CVE entries were
from the same open source project with different versions. In these samples
the used source code was the same, so we only created one minimal working
example. The minimal working example samples were scanned again to see if
the important parts were found. Table 13.1 shows the results of the minimal
working examples that should result in a false negative report from at least
one tool. In two samples, all tools detected the vulnerability. Accordingly,
we were not able to construct a minimal working example for these samples.
Similar to the initial scans, Tool B has the most false negative reports. Tool
C performs very well in this data set with only one false negative report.
We reviewed the results manually to find the reason for the different results
between the CVE data set and MWE data set. Tool C reports a SQL
injection vulnerability if a string variable is concatenated that is used in a
database sink. If no source is found, it still reports a potential SQL injection
with a lower priority.

The results for the false positive data set is seen in table 13.2. Tool A
and Tool C are reporting more false positives. The minimal working example
(CVE-2011-4960) did not include the relevant source code patterns to create
a false positive report because all tools correctly reported a true negative.
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CVE related Patterns Tool A Tool B Tool C Count of FN
CVE-2011-4960 ReflectionClass FN FN ! 2

CVE-2012-0973

Get parameter function
Singleton

Func_get_args
Function - sprintf

! FN ! 1

CVE-2012-2762 - ! ! ! 0
CVE-2012-3470 Inerhit query construction ! FN ! 1
CVE-2012-3471 Eventmanager ! FN ! 1
CVE-2012-5162
CVE-2013-3527
CVE-2015-4628
CVE-2016-9020
CVE-2016-9087
CVE-2016-9183
CVE-2016-7453
CVE-2016-9242
CVE-2016-9272
CVE-2016-9282

Get parameter function
Database access object FN FN ! 2

CVE-2013-2559 Database - static method
Eventmanager ! FN ! 1

CVE-2013-3081 Environment variable ! FN ! 1
CVE-2013-3524 - ! ! ! 0
CVE-2013-4789 Get parameter function ! FN ! 1
CVE-2014-1608
CVE-2014-1609 SOAP ! FN ! 1

CVE-2014-5017
CVE-2016-7400

Sub class get method
Singleton - set

Singleton - classes
! FN ! 1

CVE-2014-9089 Sanitize only limited elements
Explode - implode ! FN ! 1

CVE-2014-9464 Singleton
__get __set ! FN ! 1

CVE-2014-9528
CVE-2014-9573

Get parameter function
Complex query construction ! FN ! 1

CVE-2015-4426 Stored class
Json decode FN FN ! 2

CVE-2016-2555 Database - global variable
Sanitize function not initialized FN FN ! 2

CVE-2016-5703
Database - global array

Imported variable
Imported sink

! FN FN 2

Summary (FN) 4 16 1

Table 13.1: Scan results from false negative MWE data set with 18 samples.
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CVE related Patterns Tool A Tool B Tool C Count of FP
CVE-2011-4802 Preg_match - check for number FP FP FP 3
CVE-2011-4960 - ! ! ! 0

CVE-2012-2762 Function - strreplace
Sanitize if function exists FP ! FP 2

CVE-2013-2559 Sanitize if function exists FP ! FP 2
CVE-2013-4789 White listing FP ! FP 2
CVE-2014-3773
CVE-2012-5162
CVE-2011-4341
CVE-2012-0973
CVE-2015-1471
CVE-2013-4879
CVE-2014-8351

Function - quote FP ! FP 2

CVE-2015-2679 Function - htmlentities FP ! FP 2
CVE-2016-7780 Sanitize function - global db variable FP ! ! 1
Summary (FP) 7 1 6

Table 13.2: Scan results from false positive MWE data set.

13.5 False negative source code patterns

The minimal working examples commonly contained multiple source code
patterns. All the used source code patterns were reviewed and based on
that pattern a sample was created containing the pattern only. The source
code for each pattern can also be found on GitHub [179]. The patterns
are categorized into source, concatenation, sink, sanitization and data flow.
Figure 13.3 shows the categories and how they are found in a typical SQL
injection vulnerability. The data flow (DF) patterns are in between other
patterns. The different source code patterns are described in this section.

13.5.1 Sources

This section describes the source code patterns that are a source. All of the
following patterns have some special parts that makes it difficult for static
code analysis to detect it as a source:

• Sub class get method
This source code pattern uses inheritance. The super class implements

Figure 13.3: Overview of source code pattern categories.
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a method that uses the method_exist() to check if the sub class im-
plemented a get-method. If the getter method is implemented, it will
be called using call-method-by-string. Call-method-by-string is an
unconventional way of calling a method. Static code analysis tools have
to parse the corresponding string that might also require additional
data flow analysis. In our results only tool B was able to correctly
parse the string to the corresponding method.

• Get parameter function
A common found pattern in our data set was using wrapper methods
for getting user data. It simply defines a method that uses common
PHP (e.g. $_GET ) methods to get user data. This pattern includes
a sanitization method which is not used by default. Tools have to
check, if the sanitization method is enabled or not to correctly detect
a vulnerability. The commercial tools were able to correctly detect a
SQL vulnerability including this pattern.

• SOAP
PHP allows to implement a Simple Object Access Protocol (SOAP).
This pattern uses the SOAPServer class to implement a SOAP service.
Parameters passed to that service are user data and potential dangerous.
The problem for static code analysis tools relies on how such a service
will be implemented in PHP. The SOAPServer class uses the setClass
method to register a class name defined by a string. The tools have
to backtrack the string value to actually know the class name of the
provided SOAP service. If they have correctly backtracked the string
value, the tools can mark all method parameters of the class as possible
sources.

• Import
A very simple source code pattern (Imported variable) uses an additional
PHP file which is imported by the require_once function. The imported
file simply uses the $_GET method to get user data and stores it in
a PHP variable. This pattern requires that includes from other PHP
files are parsed correctly. The commercial tools have no problem with
includes from other PHP files.
Another variant of that is the Stored class pattern. It is a bit more
complex because the included file defines a class that stores tainted
data in a class variable. Later on tainted data is retrieved by another
get method that uses the class variable. Again the commercial tools
have no problem tracking that tainted data is stored in class variables.
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13.5.2 Insufficient sanitization

The false negative patterns are based on source code that contains a SQL
Injection vulnerability. Accordingly, the user input was not sanitized cor-
rectly. We found the following two patterns that were containing insufficient
sanitization methods:

• Sanitize only limited elements
In this pattern user data is provided as an array. The data is iterated
and sanitized by a white listing check. Only user data that is in the
white list is allowed. The special part of this pattern is that only a
limited amount of values are sanitized. In our data set only the first
two elements of the array were sanitized. The tools have to check, if
all elements in a array are checked. This requires the tool to keep
track on how large an array might be. For example, if the array can
only be the size of two elements, checking only the first two elements
would be sufficient. This pattern sounds artificial, but our CVE data
set actually had such a code pattern where only the first two elements
were sanitized.

• Sanitize function not initialized
This pattern uses a global string variable which defines the sanitization
methods. This allows developers to decide which sanitization method
will be used. A default method is already defined which only returns
the provided string without any sanitization. The sanitization method
is called using dynamic method invocation [175]. Again, this requires
the static code analysis tools to parse the corresponding string to see
what method is called. If the variable is defined global, it makes it even
more difficult. It requires to correctly parse the PHP project. The
global variable might be defined multiple times and the correct variable
can only be tracked by parsing all the includes of different files. None
of our tested tools were able to correctly detect this pattern.

13.5.3 Concatenation

Patterns in this category are describing how the SQL query is build. It
describes the concatenation between the user input and the SQL query. We
found following patterns:

• Complex query construction
In this pattern the SQL query is constructed using multiple functions.
It uses a class to store the query relevant data. The concatenation of
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the SQL query is a concatenation of multiple method return values.
Each of these method is a construction part of the query. For example,
one method creates the WHERE clause of the query. The tainted data
is stored in class variables. This requires the static code analysis tools
to correctly track the tainted data in multiple method calls. Commonly,
it includes also other functions from PHP. For example, the implode
functions was found a lot of times to combine multiple parameters into
one query. If only one part is incorrectly analyzed, the vulnerability is
not detected.

• Function - sprintf
This pattern uses the function sprintf to construct a SQL query in a
c-like fashion. It allows to define a string with different specifiers which
will be replaced by parameters. This is a common way to concatenate a
string with variables. Static code analysis tools have to add the sprintf
functions and correctly parse the variables to the correct positions in
the string value. It also requires the tools to determine between a
string replacement or just a fixed value replacement. For example, if
only a number is inserted using the sprintf function, the tainted data
is not tainted anymore. Accordingly, the sprintf function could also
be used as a sanitization function. In our pattern, we used the string
replacement which does not prevent any vulnerabilities.

13.5.4 Sink

Sinks are critical functions, if user input reaches it without any sanitization
in between. Patterns of this category are different implementations for a
SQL Injection sink.

• Database access object
This was a very common source code pattern in our data set. A database
access object (DAO) is a simple PHP class that stores the query relevant
data as object variables. The DAO is able to construct the SQL query
string using object methods. Similar to the the concatenation pattern
(Complex query construction), the SQL query construction requires to
track multiple method calls and tainted data stored in class variables.
The main difference is that this pattern also stores the database object
as a class variable. Calling corresponding functions on the DAO objects
will construct the SQL query and also perform the query on the database.
It then just returns the resulting data.
A special case of this pattern is the (Inerhit query construction) pattern.
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It also uses a database access object, but relevant implementations are
defined by inherited classes. The tools have to know what sub class is
used to decide, if a vulnerability exists or not.

• Database object storage
In our CVE data set we found different ways of storing a database
object. The connection to the database itself is usually only established
once. Then the corresponding object is stored in different ways. It
either is stored in a global array (Database - global array). This requires
that the static code analysis tools are correctly tracking global arrays
and what data is stored. Or it is stored in a global variable (Database -
global variable). Another pattern was using static methods to connect
to an database and to statically get the corresponding database object
(Database - static method).

13.5.5 Data flow

The data flow is a relevant part of SQL Injection vulnerabilities. The data
passes different source code pattern between the source and sink. These
patterns are based on SQL Injection vulnerabilities, but data flow source
code patterns are also relevant for other vulnerability types.

• Eventmanager
An Eventmanager is used to create a system based on events. The
implementation uses the static class methods add and run. The method
add allows to add callbacks to specific events. If the run method is
used, a specific event is run and all related callbacks are called. The
callbacks are stored in static class variables. Static code analysis tools
have to track all callbacks that are stored in the Eventmanager class.
Programs written using an Eventmanager are completely different than
a objective oriented programming style. It is much more difficult to
parse all the possibilities of what kind of events occur and it might
even be unpredictable. Our pattern sample uses predefined events that
always end up in a vulnerability.

• PHP pass through functions
There are multiple PHP functions that returns data from a parameter
(pass through). Static code analysis tools have to define these functions
as passing through tainted data. In our data set we found following
functions explode, implode and json_decode. None of these functions are
changing the data in a way that it prevents a SQL injection vulnerability.
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Accordingly, the tools should define these function as pass through
functions.

• Dynamic PHP functionality
PHP provides a lot of language features. It has functionality that allows
to dynamically call functions and methods. Our data set showed the
usage of func_get_args function. This function allows to get function
parameters without defining them at the function definition. This
makes it very difficult for static code analysis tools to correctly track
the parameters. The parameters are returned as an array.
Also our data set showed the definition of __get and __set class
methods. These methods are called when a class variable is accessed
that is not defined in the class definition. In the set method the class
variable name and the value are passed as parameters. The get method
only has the class variable name as parameter. Our implementation
just stores the value for the corresponding class variable name and
returns the corresponding value on the get method. Nevertheless, the
implementation might differ and static code analysis tools have to ana-
lyze the methods. If the methods are analyzed then all corresponding
class variable accesses without a class variable definition have to be
tracked to correctly analyze the program. Our pattern sample is very
simple to see if static code analysis tools are analyzing the dynamic
get and set methods.
Another dynamic feature of PHP is setting and getting environment
variables (Environment variable). It provides the function putenv to
set an environment variable. The parameter type is string. The string
itself requires to be in a specific format ("Varname=Value") to actually
set an environment variable. The corresponding function getenv is
used to get the value of an environment variable. The parameter of
the function is a string that defines the variable name. Static code
analysis tools have to analyze and backtrack the corresponding strings
to correctly analyze this pattern.

• Plugin support
This a very complex source code pattern. It actually might be more a
architecture, but it is commonly found in our CVE data set. It uses
a plugin structure that allows to easily add more modules. In our
sample for each plugin a controller and view class has to be imple-
mented. These implementations are sub classes from template classes.
These implementations have to be in a subdirectory in a fixed plugin
structure. The source code pattern parses the plugin folder for valid
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plugin implementations. A valid plugin implementation can then be
accessed as it would be normal PHP web page. For this access a router
class is implemented which routes to the correct plugin. The usage of
plugins as a developer is convenient. It allows to split the programs in
different modules. In contrast, static code analysis tools have problems
analyzing plugin supported programs. First of all the programs has
to be analyzed to see that the program itself has plugin support. The
analyze also has to find out what files are included from a plugin.
Because plugin support is usually not fixed to a specific number of
plugins, the loading off such plugins is dynamic. Loaded plugins are
stored in class variables and corresponding PHP files are loaded.

• Singleton
The simple singleton sample is just implementing the common known
singleton pattern. Singleton is a source code pattern that allows to
access only one instance of an object. The singleton itself has a get
method to access the $_GET parameter. Because a singleton can
be accessed from everywhere, the static code analysis tools have to
track all possible ways of calling the singleton. Our sample is just a
procedural calling of the singleton.
Our CVE data set also showed that the singleton pattern was used
with different implementations. The Singleton - classes pattern allows
to get class objects by a name. The name itself is a string variable that
requires the static code analysis tools to actually analyze the string
variable to know what class object is returned.
Another pattern (Singleton - set) returns one instance of an object.
The object itself is not predefined. Initial a corresponding set method
has to be used to set the singleton object. Afterwards the singleton
object can be accessed from everywhere.
The ReflectionClass pattern is not a singleton per definition. It uses a
static class implementation to create new class objects. Accordingly,
you can access the class from everywhere, but you will always get a
new object. It uses a combination of the PHP functions func_get_args
and array_shift to get the class name and parameters provided as a
function parameter. The new instance of the class is created using the
ReflectionClass from PHP standard library. The class name itself is
again a string parameter that has to be analyzed by the static code
analysis tools to get the corresponding class of the returned object.
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13.6 False positive source code patterns

Source code patterns in this category are patterns that developers used to fix
the reported vulnerabilities. The described source code patterns are sufficient
to prevent SQL injections, but still static code analysis tools are reporting a
vulnerability.

• Official sanitization
Database driver usually provide a sanitization function to sanitize
tainted data. We used the quote function provided by the PDO class
from PHP. The initial CVE data set also contained old source code
samples that used functions like mysql_real_escape_string. These
functions are not supported anymore and the PHP documentation
provides the quote as an alternative. Accordingly, we added the quotes
function as pattern. This function should be added to a static code
analysis tool as a sanitization method. As described in next section,
this sanitization method is correctly detected by all the tested static
code analysis tools.
Another pattern uses the htmlentities function. This is not a specific
function to prevent SQL injection vulnerabilities. This source code
pattern just uses the htmlentities function to sanitize the user data. But
it requires that the SQL query itself adds quotes around the sanitized
data to ensure that a SQL injection is not possible. Accordingly,
static code analysis tools have to analyze the query to see, if the
sanitization with htmlentities is sufficient or not. This is a problem of
many sanitization method, that they are sufficient enough in a specific
context. Some of them are sufficient enough for a specific vulnerability
type and some of the sanitization methods like the htmlentities is only
sufficient enough based on the SQL query statement.

• Custom Sanitization
The CVE data set revealed multiple custom sanitization implementa-
tions. The function preg_match can be used to check a string value
based on a regular expression (regex). The regular expression is an
important part because based on that expression a SQL injection can
be prevented or still might be insufficient. Static code analysis tools
have to analyze the regular expression to see, if the sanitization method
is sufficient. This pattern uses a regular expression that checks, if the
string value only contains numbers. Accordingly, this is sufficient to
prevent any SQL injection attacks.
Another pattern we found, uses the str_replace function to replace
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any dangerous characters. The initial sample replaced all apostrophes
and the SQL query itself puts the user data inside apostrophes. This
time the static code analysis tools have to the analyze of the regular
expression and the SQL statement to determine, if the sanitization
method is sufficient or not.

• White listing
White listing is a common way to mitigate any attack. Only fixed
inputs are allowed. These fixed inputs should be chosen that they are
not creating any attack possibilities. The implementation of white
listing can differ. Our implementation based on the CVE data set an
array is defined that contains all the allowed inputs. The isset function
is used to check if the user data is contained in the white list array.
Accordingly, static code analysis tools have to analyze the content of
the white list array to see what inputs are possible. The creation of
the array might be complex. A static code analysis tools also has to
check all the possible inputs, if any of these inputs might still result in
a vulnerability.

• Dynamic defined sanitization functions
Many of the CVE data set source code samples are from frameworks.
They allow to define what kind of database is used. Also some of them
allow to define what sanitization method will be used. The Sanitize
function - global db variable pattern uses a wrapper method for the
escapeString function. The wrapper function is implemented as a static
class function. The implementation itself uses a global defined variable
for accessing the database connection object. This object provides the
relevant sanitization method (escapeString). This global variable is
defined in the initialization process. This makes it very difficult for
static code analysis tools because they have to analyze what sanitization
function is defined in the initialization process. Based on what function
is used, it also may require to analyze the SQL query to see, if it is
sufficient.
The Sanitize if function exists pattern uses a wrapper function for
the quote function. The wrapper function uses the function_exists
function to check, if the sanitize function actually exists. In our
sample the function exists because it checks for a standard php library.
Nevertheless, if an older PHP version is used, it might not exist. This
makes the pattern also PHP version dependent. The static code analysis
tools also have to know what PHP version is used.
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13.7 Verification

The difficult source code patterns were scanned again to verify what patterns
are actually difficult. A simple sample was used which contains a simple
SQL injection vulnerability. For each of the previous described patterns the
simple sample was modified to contain the pattern. The evaluation also used
the open source static code analysis tools. The created source code patterns
can be found on GitHub [179].

Table 13.3 shows the result for the false negative patterns. Two identified
source code patterns were not creating a false negative report. Accordingly,
these two patterns (Imported sink, Database - wrapper) are not difficult for
state of the art static code analysis tools. The open source tools already
have problem with simple patterns like Get parameter function, Imported
variable, Stored class and Singleton. The different singleton implementations
makes it difficult even for the commercial tools. Interestingly, the open
source tools detected some of the singleton implementations correctly. The
ReflectionClass pattern was difficult for all of the tested tools. That pattern
includes different dynamic PHP features and the combination of creating a
class object based on a string value. Accordingly, it includes many already
difficult sub patterns. Also the Plugin supportis a pattern that includes
different PHP features together to create a plugin support. None of the tools
were able to detect them.

Table 13.4 shows the result for source code patterns related to false
positive reports. The Function - quote pattern was not difficult for any of
the tested tools. As already state the initial CVE data set also contained
old source code using outdated sanitization methods. These methods were
actually creating false positive reports because the static code analysis tools
did not have them in their list of sanitization functions. It also shows that all
of the tested static code analysis tools are checking for sanitization methods.
The results show that the tools are very different on detecting sanitization
approaches. Some of them are even considering custom sanitization attempts
and other tools just ignore them.
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False negative pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FN
Source

Sub class get method FN ! FN FN FN 4
Get parameter function ! ! ! FN FN 2
SOAP ! FN FN FN FN 4
Imported variable ! ! ! FN FN 2
Stored class ! ! ! FN FN 2

Insufficient sanitization
Sanitize only limited elements ! FN ! FN ! 2
Sanitize function not initialized FN FN FN FN FN 5

Concatenation
Complex query construction ! FN ! FN ! 2
Function - sprintf ! FN ! FN ! 2

Sink
Database access object FN FN ! FN ! 3
Database - global array ! ! ! ! FN 1
Database - global variable ! ! ! ! FN 1
Database - static method ! FN ! FN FN 3
Inerhit query construction ! FN ! FN FN 3
Database - wrapper ! ! ! ! ! 0
Imported sink ! ! ! ! ! 0

Data flow (DF)
Eventmanager FN FN FN ! FN 4
Explode - implode ! FN ! FN ! 2
Func_get_args ! FN FN FN FN 4
__get __set ! ! FN FN ! 2
Json decode FN FN ! FN FN 4
Plugin support ! FN FN FN FN 4
Environment variable FN FN ! ! FN 3
Singleton ! ! ! FN FN 2
Singleton - classes ! FN FN ! FN 3
Singleton - set FN ! ! ! FN 2
ReflectionClass FN FN FN FN FN 5
Summary (FN) 7 15 9 19 18

Table 13.3: Scan results for different false negative patterns.
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False positive pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FP
Sanitization

Preg_match - check for number ! FP FP FP FP 4
Function - quote ! ! ! ! ! 0
Sanitize if function exists FP ! FP ! FP 3
Sanitize function - global db variable FP ! ! ! ! 1
Function - htmlentities FP ! FP ! ! 2
Function - strreplace FP ! FP ! ! 2
White listing ! FP FP FP FP 4
Summary (FP) 4 2 5 2 3

Table 13.4: Scan results for different false positive patterns.

13.8 Discussion

The evaluation shows that almost all of the identified patterns are difficult
for at least one static code analysis tool. Some of these patterns are just
common programming functionality provided by PHP. Such functionality
should not be difficult for modern static code analysis tools. Most patterns
are related to SQL injection vulnerabilities, except the patterns in the data
flow category. These are patterns transferring user data from one point to
another. These patterns are interfering the data flow algorithm from the
static code analysis tool. Accordingly, these patterns are not difficult just for
SQL injection vulnerabilities, instead they are difficult for all vulnerability
types that require user input reaching critical functions. The developers of
the static code analysis tools should be able to improve their algorithms to
get fewer false negative and false positive reports. Nevertheless, some of the
patterns are not that easy to be detected correctly, especially if the patterns
contain dynamic language features of PHP. If developers use such a feature
they should only use it if it is necessary. As our results show as more of such
dynamic features are included, the more false negative reports occur. Also
if regular expressions are involved, the tools have to parse the expression.
Based on the expression, the sanitization might be sufficient or not. Usually
the expression is also related to the SQL query. Our presented patterns can
be prevented in the development phase. These patterns can be replaced
by code patterns that can be easily detected by static code analysis tools.
For example, using the str_replace function for replacing critical characters
can be replaced by using common known sanitization methods provided by
the database library. Static code analysis tools know that these sanitization
methods are sufficient to prevent any SQL injection attacks. Accordingly,
the tool is then not reporting a false negative report.

This work required different manual review steps. The source code of the
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different open source projects were initially scanned by the tools. The results
had to be reviewed manually to find all the false negative and false positive
reports. Because of the manual review process the data set was limited. 50
false negative samples and 50 false positive samples were used to find the
previously described difficult source code patterns. Some of the samples
were even from the same open source project. Because of the small data set,
we can be sure that there are still more difficult source code patterns for
static code analysis tools. The different tools also could not be compared
to each other because of the small data set. The results show a tendency
that commercial tools outperform open source tools. Especially that the
difficult source code patterns were identified specifically based on the false
negative/false positive reports from the commercial tools. There were a lot
more difficult patterns for false negative reports found than for false positive
results. The reason for this is that we only reviewed reports based on the
patched versions. If a tool did not report the vulnerability in the vulnerable
version, the modifications of the patch will not create a false positive report.
Finding a solution for the manual review steps would allow to research for
difficult source code patterns on a broad scale.

The CVE data set itself does only include reports until end of 2016.
The reason is that the manual reviewing of the source code pattern takes a
significant amount of time. The resulting patterns are all updated to the up
to date PHP version with corresponding functions. The tested static code
analysis tools are all state of the art and the pattern are still difficult for
them. A newer CVE data set might introduce even more difficult source
code patterns. Nevertheless, our results show that the patterns we created
are still difficult.

13.9 Conclusion

The goal to find difficult source code patterns was successfully achieved. The
review of 50 open source projects containing vulnerable and patched versions
revealed 25 difficult source code patterns for false negative reports and 6
difficult source code patterns for false positive reports. The verification shows
that modifying simple vulnerabilities with these patterns are still difficult for
static code analysis tools. The dynamic language features of PHP are nice
for programmers, but for static code analysis tools they are very difficult.
The results show that most identified patterns are data flow patterns. Many
patterns should be detected by modern static code analysis tools and their
developers should improve the algorithms based on our results. Nevertheless,
some patterns can also already be mitigated during the development phase.
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Developers should know what patterns are difficult for static code analysis
tools. Our patterns can be used as learning examples for teaching higher
level of software security.
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Table 13.5: CVE data set.

CVE Github link FN (A) FN (B) FN (C) FP (A) FP (B) FP (C)
CVE-2016-9283 https://github.com/exponentcms/exponent-cms/commit/559792be727f4e731bfcb3935f5beec7749e9ce9
CVE-2016-9282 https://github.com/exponentcms/exponent-cms/commit/e83721a5b9fcc88e1141a8fb29c3d1bd522257c1 x x x
CVE-2016-9272 https://github.com/exponentcms/exponent-cms/commit/fffb2038de4c603931b785a4c3ec69cfd06181ba x x x
CVE-2016-9242 https://github.com/exponentcms/exponent-cms/commit/6172f67620ac13fc2f4e9d650c61937d48e9ecb9 x x x
CVE-2016-9183 https://github.com/exponentcms/exponent-cms/commit/3b3557e9f6ba193a4c23c8ce5498fa285dddf3f3 x x x
CVE-2016-9134 https://github.com/exponentcms/exponent-cms/commit/45a7a62797e64e8abbae35d4859097c26f1874b1
CVE-2016-9087 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db x x x
CVE-2016-9020 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db x x x
CVE-2016-7788 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db
CVE-2016-7781 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db
CVE-2016-7780 https://github.com/exponentcms/exponent-cms/commit/a8efd9ca71fc9b8b843ad0910d435d237482ee31 x
CVE-2016-7453 https://github.com/exponentcms/exponent-cms/commit/c1092f167cc6c78dc8bf9bf149946c5219413df3 x x
CVE-2016-7405 https://github.com/ADOdb/ADOdb/commit/bd9eca9f40220f9918ec3cc7ae9ef422b3e448b8
CVE-2016-7400 https://github.com/exponentcms/exponent-cms/commit/e916702a91a6342bbab483a2be2ba2f11dca3aa3 x
CVE-2016-5703 https://github.com/phpmyadmin/phpmyadmin/commit/ef6c66dca1b0cb0a1a482477938cfc859d2baee3 x x
CVE-2016-2555 https://github.com/atutor/ATutor/commit/945a9dca01def8536516088da30fe6a4b7e9fa85 x x x
CVE-2015-5078 https://github.com/LimeSurvey/LimeSurvey/commit/65d717415a271242b9a30a5330d4eabac1c1a837
CVE-2015-4628 https://github.com/LimeSurvey/LimeSurvey/commit/b09edc0dbd18d8459ade4c7c941e562c16564f9e x x x
CVE-2015-4426 https://github.com/pimcore/pimcore/commit/1c6692e8287deed7f3356b6a1e2e9b7fe4e858dd x x x
CVE-2015-2679 https://github.com/semplon/GeniXCMS/commit/698245488343396185b1b49e7482ee5b25541815 x x x
CVE-2015-1471 https://github.com/delta/pragyan/commit/c93bc100ec93fc78940fbdca9b6b009101858309 x x
CVE-2014-9573 https://github.com/mantisbt/mantisbt/commit/69c2d28d x x
CVE-2014-9528 https://github.com/humhub/humhub/commit/febb89ab823d0bd6246c6cf460addabb6d7a01d4 x x x
CVE-2014-9464 https://github.com/microweber/microweber/commit/4ee09f9dda35cd1b15daa351f335c2a4a0538d29 x x x
CVE-2014-9096 https://github.com/Pligg/pligg-cms/commit/efb967b944375cd3ea3cd84c80d86d339dbe030e
CVE-2014-9089 https://github.com/mantisbt/mantisbt/commit/b0021673ab23249244119bde3c7fcecd4daa4e7f x
CVE-2014-8351 https://github.com/LaboCNIL/CookieViz/commit/489b6050f6c53fe7b24c4bed3eeb9c25543960e2 x
CVE-2014-5017 https://github.com/LimeSurvey/LimeSurvey/commit/9938bcd1df8ea27052557c722a67b00c0e7d6cb6 x x x
CVE-2014-3773 https://github.com/nilsteampassnet/TeamPass/commit/7715512f2bd5659cc69e063a1c513c19e384340f x x
CVE-2014-1609 https://github.com/mantisbt/mantisbt/commit/7efe0175f0853e18ebfacedfd2374c4179028b3f x x
CVE-2014-1608 https://github.com/mantisbt/mantisbt/commit/00b4c17088fa56594d85fe46b6c6057bb3421102 x
CVE-2014-1401 https://github.com/auracms/AuraCMS/commit/790f66ffbc4f23a6e13636fc79d0aa1a7d81e747
CVE-2014-10033 https://github.com/gburton/oscommerce2/commit/e4d90eccd7d9072ebe78da4c38fb048bfe31c902
CVE-2013-4879 https://github.com/bigtreecms/BigTree-CMS/commit/c5f27bf66a7f35bd3daeb5f693f3e2493f51b1f3 x
CVE-2013-4789 https://github.com/Cotonti/Cotonti/commit/45eec046391afabb676b62b9201da0cd530360b4 x x x
CVE-2013-3527 https://github.com/vanillaforums/Garden/commit/83078591bc4d263e77d2a2ca283100997755290d x x x
CVE-2013-3524 https://github.com/DavidJClark/phpVMS-PopUpNews/commit/efaffa04ef87db1722d69ac7bfc07be71ce2dccf x x x
CVE-2013-3081 https://github.com/JojoCMS/Jojo-CMS/commit/972757c4500d94b4b1306bf092e678add3a987d8 x x x
CVE-2013-2559 https://github.com/symphonycms/symphony-2/commit/6c8aa4e9c810994f7632837487426867ce50f468 x x x
CVE-2012-5162 https://github.com/osclass/OSClass/commit/ff7ef8a97301aaaf6a97fe46c2c27981a86b4e2f x x x
CVE-2012-3471 https://github.com/ushahidi/Ushahidi_Web/commit/3f14fa0 x x
CVE-2012-3470 https://github.com/ushahidi/Ushahidi_Web/commit/3301e48 x x
CVE-2012-3469 https://github.com/ushahidi/Ushahidi_Web/commit/e0e2b66
CVE-2012-3468 https://github.com/ushahidi/Ushahidi_Web/commit/fdb48d1
CVE-2012-2762 https://github.com/s9y/Serendipity/commit/87153991d06bc18fe4af05f97810487c4a340a92 x x x
CVE-2012-0973 https://github.com/osclass/OSClass/commit/ff7ef8a97301aaaf6a97fe46c2c27981a86b4e2f x x x x
CVE-2011-4960 https://github.com/silverstripe/sapphire/commit/fef7c32 x x
CVE-2011-4959 https://github.com/silverstripe/sapphire/commit/73cca09
CVE-2011-4802 https://github.com/Dolibarr/dolibarr/commit/c539155d6ac2f5b6ea75b87a16f298c0090e535a x x
CVE-2011-4341 https://github.com/symphonycms/symphony-2/commit/476e4926e2773588eab10dd3036f27e1411521b5 x x

22 28 20 9 2 11



Chapter 14

Insecurity Refactoring:
Automated Injection of
Vulnerabilities in Source Code

14.1 Introduction

Automating the injection of vulnerabilities into a codebase can yield valuable
knowledge for two cases: How easy is it for an attacker to quickly add
vulnerabilities in a short period of time? This is a scenario that could be
observed in attacks on PHP Git repositories where a backdoor was inserted
[202]. A second case is training of software developers for inspections by
the help of complex code samples. Oftentimes, training samples containing
vulnerabilities are manually created [190]. This requires a significant effort
and usually leads to small applications built around few vulnerabilities.
Software inspections in the field, however, deals with large and complex
applications where vulnerabilities are not easy to spot. Using existing
applications with known vulnerabilities is insufficient for training situations,
because learners are able to find the vulnerabilities documented in publicly
available databases. Hence, automatically generated vulnerabilities have been
proposed, e.g., by [209] and [185]. Those automatically generated samples
are artificial and can be used to benchmark tools for static code analysis.

Our approach is to automatically create learning examples by modifying
existing large projects. To achieve that, we use vulnerability patterns to
inject vulnerabilities into open source projects. The use of existing projects
ensures that the context of a vulnerability is as real as possible. We created
source code patterns by examining vulnerabilities and corresponding fixes in
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source code spanning a period of multiple years [205, 207]. The source code
originated from real applications for which vulnerabilities had been reported
with an assigned CVE-ID (CVE: Common Vulnerabilities and Exposures).
Our contribution answers the following questions:

• Are static code analysis and refactoring valid approaches to inject
vulnerabilities in existing projects?

• How can source code patterns from recent vulnerabilities be represented
within the injected vulnerabilities?

• Are the insecurity refactored applications useful for teaching software
security?

Insecurity Refactoring is a change to the internal structure of software to
inject a vulnerability without changing the observable behavior in a normal
use case scenario. We proposed a technique to conduct insecurity refactoring
using static code analysis methods. An Adversary Controlled Input Dataflow
(ACID) tree is constructed to find possible injection paths. These possible
injection paths are then transformed into vulnerabilities using patterns from
known vulnerabilities. The implementation is evaluated on open source
projects to find possible injection paths and inject vulnerabilities.

Section 14.2 provides an overview of work related to Insecurity Refactoring
and describes the definition of the Code Property Graph. Section 14.3 defines
and formulates the methods and concepts proposed in our methodology.
Section 14.4 formulates the tree construction mechanism that is used for the
Insecurity Refactoring process. The definitions of Insecurity Refactoring are
described in section 14.5. Section 14.6 describes the source code pattern
language PL/V and how vulnerabilities are injected. Followed by section 14.7,
in which the approach is evaluated on open source projects from GitHub. In
this context the usefulness of the methodology in software security training is
evaluated by an experiment involved two groups with different skill levels. The
final section 14.8 points out problems and concerns of Insecurity Refactoring.

14.2 Background

Thomas et al. [210] developed a tool that replaces database queries with
prepared statements to remove potential SQL Injection vulnerabilities. They
present a prepared statement replacement algorithm (PSR-Algorithm) that
separates the SQL query string from any input strings. They evaluated their
tool on IT security training projects like WebGoat and 94% of their refactored
prepared statements prevented SQL Injection attacks. Maruyama and Omori
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[197] present a security-aware refactoring tool. Normal refactoring approaches
can create unintended security issues. The focus relies on accessibility of
class variables. Refactoring approaches can change the accessibility without
changing the external behavior that might result in a security issue. Their tool
actually checks for such security issues and provides refactoring approaches
that do not create such issues.

Dolan-Gavitt et al. [189] created a tool named Large-scale Automated
Vulnerability Addition (LAVA) that uses dynamic taint analysis to find
locations to inject vulnerabilities in C/C++ projects. The dynamic approach
makes the data flow analysis easier. The injected vulnerabilities themselves
are artificial. Nevertheless, injecting vulnerabilities in real projects provides
a more realistic scenario than manually creating a small project that contains
a vulnerability. Also a LAVA-M data set was released that contains many
injected vulnerabilities in C-projects. That data set is commonly used to
evaluate modern fuzzers [195] [203].

Pewny and Holz [200] developed the EvilCoder tool similar to LAVA that
injects bugs in C-projects. Similar to this work, the Code Property Graph
is used to find potential injection locations. The focus relies on memory
critical functions and corresponding security checks. These security checks
are replaced by insufficient checks to create vulnerabilities. An evaluation
on four open source projects shows the potential to conduct injections at
many different locations. However, they cannot ensure that an injected
vulnerability is exploitable.

Our approach uses the Code Property Graph defined by Yamaguchi
et al. [211]. The Code Property Graph combines an Abstract Syntax Tree,
Control Flow Graph and Program Dependence Graph into a single graph.
They use the graph to find vulnerabilities in C/C++ projects. Backes et al.
[184] extended the Code Property Graph to support PHP. We use this PHP
graph to create the Adversary Controlled Input Dataflow tree. Alhuzali
et al. [183] also used the Code Property Graph to find vulnerabilities in
PHP projects. They added support to automatically create exploits for the
discovered vulnerabilities. The results show that the Code Property Graph
is very useful to discover vulnerabilities in C/C++ and PHP.

The usage of insecurity refactoring to create learning example seems
promising. Schreuders et al. [204] developed the Security Scenario Generator
(SecGen) that allows to create multiple virtual machines containing different
vulnerabilities. The vulnerabilities are defined by modules. Based on the
module description, vulnerabilities can be nested and hints can be placed. A
survey that has been used to evaluate the usage of such generated virtual ma-
chines is helpful as learning examples. Yamin and Katt [213] [212] developed
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a similar framework to automatically create full cyber security ranges that
setup multiple virtual machines. The focus relies on creating a large num-
ber of virtual machines and the cyber security ranges are used for different
scenarios like attacker/defence CTF events. Based on the scenario different
vulnerabilities are injected to the machines via ssh. For example, injected
vulnerabilities can be weak passwords, misconfigurations, components with
known vulnerabilities, etc. Chapman et al. [187] designed the PicoCTF tool
and hosted a capture the flag (CTF) event where approximately 2,000 teams
participated. The approach was game based. The tasks can either be viewed
in computer game style including a story or in a classical text view. A survey
has been used to evaluate the approach. The results show that the approach
is useful and many other CTF events have used the PicoCTF tool. Burket
et al. [186] explain the automatic problem generation (APG) for PicoCTF.
The APG allows to generate CTF tasks that differ for each attending team.
A templated autogen problem uses a fixed template and multiple inputs (e.g.
flag) to generate the CTF task. This allows to detect key sharing between
teams but does not prevent sharing the method to solve the task between
teams. In contrast, challenges that are automatically generated without a
fixed template have problems with consistent difficulties, bug prevention,
scalability and deployment. Another PicoCTF event has been held using
a templated autogen to reveal that key-sharing actually exists and can be
detected by the approach.

14.2.1 Code Property Graph

This section explains the definitions introduced by Yamaguchi et al. [211] of
the Code Property Graph (CPG) and traversal functions.

Definition 1. A Code Property Graph G = (V,E, λ, µ) is a directed, edge-
labeled and attributed multigraph. V is the set of nodes, E ⊆ (V × V ) is
the set of directed edges. The labels of these edges are defined by λ : E → Σ
where alphabet Σ represents all edge names. Properties for edges and nodes
are assigned by µ : (V ∪ E)×K → S. K is a set of property keys and S is
the set of property values.

The Code Property Graph is based on the Abstract Syntax Tree (AST).
The Abstract Syntax Tree is defined as follows:

GA = (VA, EA, λA, µA) (14.1)

The Abstract Syntax Tree has one kind of edge labels (parent_of ), which is
defined in the set λA. The set µA contains property assignments for every
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node of the Abstract Syntax Tree. For example, the name of a variable is
stored as a property and the value is the variable name.

The Control Flow Graph is defined as follows:

GC = (VC , EC , λC ,∅) (14.2)

The nodes VC ⊆ VA are statements of the programming language. For
example, an assignment is a statement. Edges EC represent the possible
control flow from a statement to another statement. For the edges, only one
kind of label (flows_to) exists that is defined in λC . No properties are stored
for the Control Flow Graph.

The Program Dependence Graph defines where variables are used and
resolves function calls. The definition for the Program Dependence Graph is
as follows:

GP = (VP , EP , λP , µP ) (14.3)

The nodes VP ⊆ VA are the same nodes as of the Abstract Syntax Tree.
Edges EP either represent function calls or variable usage. Function calls
have the edge label calls. The variable usages have the label reaches that
point from the variable definitions to the statements where the variables
are used. These edge labels are defined in λP . For the reaches edges the
property µP defines the variable name of the variable definition.

Definition 2. A traversal is defined as a function τ : P(V ) → P(V ) that
maps a set of nodes to another set of nodes according to a Code Property
Graph G, where P(V ) is the power set of V .

The following function definition allows to iterate over an edge:

OUTl(X) =
⋃
v∈X

{u : (v, u) ∈ E ∧ λ((v, u)) = l} (14.4)

OUT k,s
l (X) =

⋃
v∈X

{u : (v, u) ∈ E ∧ λ((v, u)) = l

∧ µ((v, u), k) = s} (14.5)

INl(X) =
⋃
u∈X

{v : (v, u) ∈ E ∧ λ((v, u)) = l} (14.6)

INk,s
l (X) =

⋃
u∈X

{v : (v, u) ∈ E ∧ λ((v, u)) = l

∧ µ((v, u), k) = s} (14.7)

where X ⊆ V is a set of nodes. OUT and IN return all reachable nodes
with the label l and property with key k and value s. The OUT function
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follows the direction of the edge and the IN function is a backward iteration
of the edge.

We use following functions:

Filterp(X) = {v ∈ X : p(v)} (14.8)
Matchp(X) = Filterp ◦ TNodes(X) (14.9)
Types(X) = TypeNode ◦ Filterps ◦ TNodes (14.10)
Stmt(X) = Statement(X) (14.11)

The Filter function returns all nodes of the set X that match the Boolean
predicate p(v). TNodes is defined as a reusable traversal from the root of the
Abstract Syntax Tree to all nodes. The Matchp uses the TNodes function
to traverse all Abstract Syntax Tree nodes and only returns the nodes that
match the filter function. The Types function iterates the children of the
Abstract Syntax Tree starting from node x ∈ X searching for nodes of the
type s. The Statement(X) functions iterates the parents nodes until it
reaches a statement node. This is important to get the statement where
a specific node x ∈ X is used. We use the short name Stmt instead of
Statement.

14.3 Methodology

The goal of Insecurity Refactoring is to inject vulnerabilities with different
source code patterns into existing projects. This approach is based on static
code analysis concepts. Figure 14.1 shows the process to inject vulnerabilities.
The Code Property Graph [211] is used as an initial analysis model. Rules
defined in the next section are applied to traverse the Code Property Graph
to create the Adversary Controlled Input Dataflow (ACID) tree. The ACID
tree is a tree representation of a backward data flow analysis. In the tree,
a path from a leaf to the root represents data flow from a source to a sink.
It is used as another analysis model to find Possible Injection Paths (PIP)
or vulnerabilities. A vulnerability is basically a path (leaf to root) in the
tree that does not contain any sanitization functions. In contrast, a PIP
does contain a sanitization function. A PIP can be transformed to fit a
vulnerability definition. For example, a sanitization method can be refactored
into an insufficient sanitization method. To define insufficient sanitization
methods, the context of the input data is analyzed using the context rules.
The modifications are based on source code patterns. These patterns are
defined in the PL/V pattern language that is described in section 14.6.1.
Additional source code patterns can be injected by using the data flow
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Figure 14.1: Overview of the Insecurity Refactoring process by using an
ACID tree.

patterns to add some diversification. The ACID tree uses a tree structure
based on nodes from the Abstract Syntax Tree. The Abstract Syntax Tree
is an abstract representation of the source code. Refactoring is applied to
the Abstract Syntax Tree to create a modified Abstract Syntax Tree. In
the last step, the modified Abstract Syntax Tree is used to generate the
insecurity-refactored source code.

14.3.1 Adversary Controlled Input Dataflow Tree

The first step for Insecurity Refactoring is to find PIPs. A PIP is a set of
source code statements that can be refactored to inject a vulnerability. This
approach focuses on vulnerabilities that have tainted data controlled by an
adversary flowing from a source to a sink. Examples of vulnerabilities for this
type are Cross Site Scripting (CWE-79), SQL Injection (CWE-89), Buffer
Overflow (CWE-119), etc. Our approach uses a modified backward taint
analysis. A normal taint analysis stops and removes any data that reaches
sanitization methods. The modified taint analysis does not remove such data,
instead it further tracks the data. This allows, in the refactoring step, to
remove or modify the sanitization method to inject a vulnerability.

Data flow analysis can either be done forward (from source to sink) or
backward (from sink to source). We use a backward data flow analysis using
a Code Property Graph and follow specified rules to create an Adversary
Controlled Input Dataflow tree. The idea is to use a backward data flow
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analysis following each path of data that flows into the initial sink. These
paths are represented in a tree, where the root is the sink of a vulnerability.
Each leaf represents data that can reach the sink. Accordingly, a leaf
represents a source. An advantage of creating a tree using backward data
flow analysis is that the ACID tree allows analyzing all data concatenations
that reach a sink. Every leaf represents possible input to reach the sink, but
it doesn’t necessarily mean that all of the leaves are concatenations.

Definition 3. An Adversary Controlled Input Dataflow (ACID) tree

TAC = (VAC , EAC , λAC , µAC) (14.12)

is an ordered, rooted, directed, edge-labeled and attributed out-tree [188].
The nodes of the tree are defined in the set VAC ⊆ VA. Accordingly, the tree
is based on Abstract Syntax Tree nodes and each node can be used to access
the corresponding abstract syntax sub tree GA from the Code Property
Graph. The directed edges are defined as the set EAC ⊆ (VAC × VAC). The
edge label function λAC : E → ΣAC uses the alphabet ΣAC to represent
all edge names. The properties for the nodes are defined by the function
µAC : VAC ×KAC → SAC . The set KAC defines the keys and the set SAC

defines the values. All attributes from the initial Abstract Syntax Tree nodes
are found in the ACID tree nodes. Because the tree is ordered, similar to the
Code Property Graph, we add an attribute with the key childN that stores
the child position as a value.

The root node of an ACID tree is defined by:

rootAC = root(VAC , EAC) (14.13)
= u ∈ VAC : ∄(•, u) ∈ EAC

It returns the node, to which there are no directed edges pointing.
Additionally, to get all leaf nodes of an ACID tree, we define the

following function:

LAC = L(VAC , EAC) (14.14)
= {v ∈ VAC : ∄(v, •) ∈ EAC}

It returns all nodes that do not have an edge pointing to other nodes.
The children of a node v can be retrieved with the following definition:

C(v) = {u : (v, u) ∈ EAC} (14.15)

It returns a completely ordered set. The order is defined by the children
positions in the tree.
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Also, the parent of a node u can be retrieved with the following function:

p(u) = v ∈ VAC where (v, u) ∈ EAC (14.16)

The function

Path(l) = ⟨l⟩⌢Path(p(l)) (14.17)

defines a sequence of nodes starting from the leaf node l going upwards until
reaching the root node rootAC of the ACID tree.

The siblings of a node can be retrieved with the following functions:

Sib(v) ={u : p(v) = p(u)|u ̸= v} (14.18)
Bef(v) ={u : p(v) = p(u)|µ(u, childN) < µ(v, childN)} (14.19)
Aft(v) ={u : p(v) = p(u)|µ(u, childN) > µ(v, childN)} (14.20)

This allows to get all siblings (Sib), the siblings before (Bef), or the siblings
after (Aft) a node v.

The edge labels are used to specify the data type that flows from one
node to another. The data types are defined in the alphabet ΣAC =
{String,Numeric, Array, Unknown}. The properties for the nodes are
defined in τ . We use the properties to define the different splits in the ACID
tree. A split in the ACID tree means that either data from all sub trees will
reach the sink, or only one sub tree at a time can reach the sink. The link
property defines the link between children. The values are from the alphabet
τ = {∧,⊕}. Excluding is defined by the symbol ⊕. It means that either
one of the sub trees will reach the sink. A concatenation is defined by the
symbol ∧. It indicates that a concatenation of the children will reach the
sink. We use the cap symbol, since every child has to add its input to the
concatenation. For excluding, we assume that both paths are reachable in
certain instances. Control statements decide which sub trees will reach the
sink, i.e., they check code reachability.

14.3.2 Code example

Figure 14.2 shows a code example that is used to describe the process of
Insecurity Refactoring. On line 7, the getParam() function is used to request
the page number from the user. The page number is checked for being
numeric (line 14) and sanitized using the intval (line 15) function. Hence,
no Cross Site Scripting attacks are possible.
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1 <?php
2 function getParam($param){
3 return $_GET[$param];
4 }
5

6 function page($debug, $name){
7 $page=getParam('page');
8

9

10

11

12

13

14 if(is_numeric($page)){
15 $out = $name . intval($page);
16 $out = "<a href='www.url.com/" . $out . "'> link </a>";
17 }
18 else {
19 $out = "Unknown page";
20 }
21

22 echo $out;
23 }
24 ?>

Figure 14.2: Code example shows proper sanitization (line 14 and 15) to
prevent Cross Site Scripting.
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14.4 ACID Tree Construction

The ACID tree is constructed by traversing the Code Property Graph. An
ACID tree is created for each potential sink. The traversal requires a stack
stackcall that is used to correctly resolve function calls. The stack stackcall
stores the function calls that are resolved by the traversal. The traversal
is based on different node types. The main traversal in the Code Property
Graph is over the VP nodes from the program dependence graph. We define
the following node categories that are used by the Abstract Syntax Tree GA

and the program dependence graph GP :

Vassign = {v ∈ VP |v ∈ VA (14.21)
|µA((v, u), type) = assignment}

Vparam = {v ∈ VP |v ∈ VA (14.22)
|µA((v, u), type) = parameter}

Edges (EP ) point from a variable definition to statements (VP ) where the
defined variable is used. Because the traversal is backwards, the definitions
are traversed. A definition can either be an assignment (v ∈ Vassign) or it
can be a function parameter (v ∈ Vparam).

For the Control Flow Graph, the following node categories are important:

Vfunction = {v ∈ VC |v ∈ VA (14.23)
|µA((v, u), type) = function}

The traversal also traverses concatenations, variables, function calls and
coding constructs. We define the following sets to represent these node
categories:

Vexp = {v ∈ VA that represent all expression} (14.24)
Vvar = {v ∈ Vexpr|µA(v, type) = variable} (14.25)
Vcon = {v ∈ Vexpr|µA(v, type) = concatenation} (14.26)
Vcall = {v ∈ Vexpr|µA(v, type) = call} (14.27)
Vcode = {v ∈ Vexpr|v is a coding construct} (14.28)

The set Vexp contains all expressions. An expression always has a return value.
The traversal distinguishes expressions between variables Vvar, concatenations
Vcon, function calls Vcall and coding constructs Vcode. For simplicity, all differ-
ent concatenations that exist are unified by having the type concatenation.
Coding constructs are different constructs that depend on the programming
language. For example, in our implementation, the array attribute access is
included. In the Abstract Syntax Tree, it is represented by a dimension node.
The traversal is based on the different categories. For each powerset P of a
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(a) Source code.

22:Variable($out) [link : ⊕]

16:Statement

...
→ Vassign

19:Statement

...
→ Vassign

→ Backtrace() → Backtrace()

(b) ACID tree.

Figure 14.3: Rules example of Backtrace() using the program dependence
graph.

category, the corresponding function is used to traverse the Code Property
Graph. The following function

Pos : VA → N (14.29)
Pos(v) = p ∈ N|µ(v, childnum) = p

allows getting a position of parameter. The position n can be used to get an
expression of a function call with the following function:

CallExp(V, n) = OUT childnum,n
parent_of (V ) (14.30)

These functions are used in the ACID tree construction to correctly resolve
function calls.

The following function defines backward traversal for the Code Property
Graph:

Backtrace : P(Vvar) → P(Vassign ∪ Vparam) (14.31)

Backtrace(V ) =
⋃
v∈V

{INvariable,v
reaches (Stmt({v}))}

It uses the variable as input and returns the corresponding nodes where the
variables are defined. It uses the Stmt function to get the statement where
the variable v is used. The statement is used to get possible definitions of
the variable v. The results can be assignments or parameters. Figure 14.3
shows how the Backtrace() function is used from the variable $out. In the
ACID tree, these statements are added as children and the ⊕ defines that
the children are mutually excluding. Accordingly, only one of the sub trees
can reach the sink. For the variable, possible definitions are on line 19 and
line 16.

Based on the resulting statement type, the graph is traversed differently.
If the statement is an assignment (Vassign), the following traversal rules apply
to resolve assignments:

Assign : P(Vassign) → P(Vexp) (14.32)

Assign(V ) = OUT childnum,1
parent_of (V )
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(a) Source code.

15:Variable($out)

15:Assign

15:Concatenation ($name . intval($page))

...
→ Vcon

→ Expassign()

→ V arassign()

(b) ACID tree.

Figure 14.4: Rules example of an assignment.

(a) Source code.

15: Concatenation [ link : ∧ ]

15: Call (intval($page))

...
→ Vcall

15: Variable ($name)

...
→ Vvar

→ Concat() → Concat()

(b) ACID tree.

Figure 14.5: Rules example of a concatenation.

The Abstract Syntax Tree GA is an ordered tree and the attribute childnum
is used to define the order. The child number one is the expression that
will be assigned. Because the ACID tree is constructed by a backward data
flow analysis, the defined variable is added to the ACID tree first, then
the assignment statement is added that is followed by the expression from
Assign(). The defined variable is given by the OUT function using the child
number zero.

Figure 14.4 shows how the rules are applied to line 15. Variable $out
is added first, it is followed by the assignment node (v ∈ Vassign) which is
followed by the expression.

The following rules apply to resolve concatenations:

Concat : P(Vcon) → P(Vexp) (14.33)
Concat(V ) = OUTparent_of (V )

The function Concat allows to get the concatenated elements. Concatenations
in the Abstract Syntax Tree use the children as operands. Accordingly, these
are the elements that are concatenated and are provided by the OUT function.

Figure 14.5 shows how the Concat function is applied to the top expression
that is assigned to the variable $out. The dot symbol is the standard method
for string concatenation in PHP. A concatenation means that all inputs reach
the sink in a concatenated form. Accordingly, the ∧ symbol is added to the
concatenation.

A function call has to be resolved to see if the function passes data from
the input (parameter) to the output (return). The Code Property Graph
already resolves function calls in GC by the edges with the label calls. The
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(a) Source code.

07: Call (getParam)

02: Function Definition [link : ⊕]

03: return

03: Dimension ($_GET[$param])

...
→ Vmisc

→ Typereturn()

→ Typereturn()

→ OUTcalls()

(b) ACID
tree.

Figure 14.6: Rules example of a function call.

following rules apply to resolve function calls:

CallReturn : P(Vcall) → P(Vexp) (14.34)

CallReturn(V ) =
⋃
v∈V

{Typereturn(OUTcalls({v}))}

↪→ Side-effect: add call to stack stackcall

The OUTcalls returns the function definitions found in the control property
graph. Because the traversal is a backward data flow analysis, further analysis
has to continue on the output of the function (return statements). The
Typereturn function finds all return statements inside a function definition.
A combination of both functions Call and Typereturn is used in CallReturn
to resolve function calls for the ACID tree. The resolving function call is put
on the stack stackcall to correctly resolve parameter expressions.

Figure 14.6 shows how the CallReturn function is applied to the source
code example. The function call getParam is passed to the CallReturn
function. It uses the edges EC from the Control Flow Graph to find the
corresponding function definition of the call on line 2. The Typereturn
function is used to find all possible return statements (line 3) of the function
definition. If more than one return statement is found, multiple returns are
added as mutually excluding (⊕).

For each of these coding constructs, different approaches are required to
correctly continue the traversal. The following definitions resolve coding
constructs:

Code : P(Vcode) → P(Vexp) (14.35)
Code(V ) =⋃
v∈V

⋃
p∈Pcode

{ASTNodein(p, v), if Matchp(v)}

Because different code constructs require different approaches to get the
correct input, we use the PL/V pattern language described in section 14.6.1.
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(a) Source
code.

6:Parameter($name) (link : ⊕)

Call (...)173: Call (page($debug, "news"))

173: String ("news")

Stop traversal

→ Literal ∈ Vexp

→ ParamExp()

→ FindCalls() → FindCalls()

(b) ACID tree.

Figure 14.7: Rules example of reaching a parameter with an empty call stack.

The set Pcode contains all implemented code construct patterns. The Match
function is used to check if the Abstract Syntax Tree node v equals the
pattern p. The ASTNode function returns the corresponding input nodes of
the Abstract Syntax Tree.

As previously stated, the Backtrace function also returns parameters.
Depending on whether a function call is currently resolved or not (stackcall =
∅), the backward data flow analysis has to traverse differently and is defined
as follows:

Param : P(Vparam) → P(Vexp) (14.36)

Param(V ) =
⋃
v∈V

{
FindCalls({v}), if stackcall = ∅
BackToCall(Pos(v)), otherwise

It is a simple function that decides if the FindCalls or BackToCall is
used to traverse parameters Vparam. If the stack stackcall is not empty, the
function BackToCall : N → Vexp jumps back to the initial function call
found on top of the stack stackcall. The traversal is continued from the
corresponding expression based on the parameter position.

If stackcall is empty, the following rules are applied to find all calls:

FindCalls : P(Vparam) → P(Vexp) (14.37)

FindCalls(V ) =
⋃
v∈V

{CallExp(INcalls({v}), Pos(v))}

The FindCalls function returns all function calls of the function from
the parameter. It uses the function Pos(p) to return the position of the
parameter in the function definition. The CallExp function is required to
continue the backward data flow analysis from the correct parameter of the
function calls.

Figure 14.7 shows how a parameter is resolved when the stack is empty.
The sample.php is from the code example and one call of function page
is found in the news.php file on line 173. Additional function calls are
added as mutually excluding (⊕) children. The ParamExp function uses
the parameter position to get back the correct expression of the function call.
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In the example, the parameter is in the second position. Accordingly, the
second expression in the function call is returned that is the string literal
"news". Because a literal is not found in any of the categories except of Vexp,
the traversal stops here.

Some function calls can be resolved by the control property graph. Other
functions that pass data from a parameter to the return value are not resolved
by the control property graph. For example, the intval function will not be
resolved by the control property graph. To solve that problem, we define
the pair Vpass = (F, δ). The set F contains all functions that return data
from parameters. The mapping from input to output is defined by the set
δ ⊆ (F × N0). The output of a passthrough function is always the return
value. Inputs are parameters that are referenced by the parameter position
by a natural number N0. If the CallReturn is unable to resolve the call, the
following function will resolve passthrough functions:

Passthrough : P(Vcall) → P(Vexp) (14.38)

Passthrough(V ) =
⋃
v∈V

{CallExp({v}, n)|(v, n) ∈ δ}

The function returns the corresponding expression based on the parameter
position n.

14.4.1 Control functions

If we look into the code sample in figure 14.2, the security relevant function
is_numeric will not be traversed. This is a sanitization function call that
changes the control flow without changing any data in the data flow. Ac-
cordingly, another step is required to find security relevant function calls
that change the control flow. Such functions can occur in the traversal of
the Backtrace : P(Vvar) → P(Vassign ∪Vparam) function. For each result, the
following functions allow to find control statements

Ctrl(vardef , varuse) = (14.39)⋃
path∈Paths(vardef ,varuse)

{
⋃

v∈path

{Filterif ({v}) ◦Matchvardef ({v})}}

where the function Paths returns all possible paths in the Control Flow
Graph GC from variable definition vdef to variable usage vuse. The Filterif (c)
filters only statements that are actually if statements. Additionally, the
Matchvaruse(c) checks if the initial variable is used inside the if statement.
Overall, the Ctrl function returns all if statements where the variable vardef
is used. In the ACID tree, the control functions are added in between the
variable usage and variable definition. The if statements themselves are also
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(a) Source code.

15:Variable($page)

14:Condition(isNumeric)

07:Variable($page)

...
→ Vvar

→ Ctrl(07 : $page, 14 : $page)

→ Ctrl(07 : $page, 14 : $page)

(b) ACID tree.

Figure 14.8: Rules example of finding condition checks.

parsed to correctly handle all conditions that are used. A union in the if
statement is a mutually excluding split (⊕) in the ACID tree because only
one of the conditions has to be true. For a complement, both conditions
are added in serial to the ACID tree because both of the conditions have to
be true. Figure 14.8 shows how the is_numeric is found by the condition
check. The Backtrace function returns from the variable $page on line 15
the assignment on line 7. The is_numeric uses the variable $page and is
found in an if statement. Accordingly, it will be added to the ACID tree.

14.4.2 Data flow type

The construction of the ACID tree requires labeling the edges (λAC) cor-
responding to the flowing data type. The flowing data type can only be
determined by a forward analysis. Accordingly, the labels are set after the
initial ACID tree is constructed. The labels are defined by iterating the
nodes of the paths (Path(l)) from all leaves of the ACID tree. If a node
defines a data type change, the data type changes. For example, the intval()
function changes the data type to numeric. In contrast, a string concatena-
tion changes the data type to string. All nodes that do not change a data
type will preserve the previous data type.

14.4.3 ACID tree example

Figure 14.9 shows the full ACID tree for the initial code example shown
in figure 14.2. All leaves are data that can reach the sink. For each node
the corresponding line number is added. An edge label represents the data
type that flows between the nodes. A simple guide to read an ACID tree
is to choose a leaf and go upwards until you reach the root. If you reach
a concatenation, the symbol ∧ is shown. It means that the data from the
other sub trees of that ∧ node are also included by a concatenation to the
sink. In contrast, the ⊕ means that only either one of the sub trees reaches
the sink. In that case, the other sub trees can be ignored.
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In the example, either the "Unknown page" string or the _GET variable
are concatenated (∧) with the $name parameter and the two string values
will reach the echo function. The parameter can be different based on what
function call is used. In the example, the parameter has the string value
"news". The condition functions isNumeric and intval prevent any Cross
Site Scripting attacks.

22: Echo

22: Variable($out) [ link : ⊕ ]

⊕

16: Variable($out)

16: Assign

16: Concatenation [ link : ∧ ]

∧

16: String("’>link </a>")16: Variable($out)

15: Variable($out)

15: Assign

15: Concatenation [ link : ∧ ]

∧

15: Call intval()

15: Variable($page)

14: Condition(isNumeric)

07: Variable($page)

07: assign

07: Call (param)

03: return

03: Dimension

03: Variable(_GET)

Array(String)

String

String

String

String

String

Numeric

Numeric

15: Variable(name)

06: Parameter($name) (link : ⊕)

⊕

Call (...)173: Call (page())

173: String("news")

String

String String

String

String Numeric

String

String

String

16: String("<a href=’www.url.com/")
String

String String

String

String

19: Variable($out)

19: Assign

19: String("Unknown page")

String

String

String String

String

Figure 14.9: ACID tree of the code example from figure 14.2.

14.5 Insecurity Refactoring

Refactoring is defined as a change made to the internal structure of software
to make it easier to understand and less expensive to modify without changing
its observable behavior [191] [198] [199]. Insecurity refactoring uses a similar
approach and we define it as: Insecurity refactoring is a change to the
internal structure of software to inject a vulnerability without changing the
observable behavior in a normal use case scenario. If the injected vulnerability
is exploited, the observable behavior will change. Accordingly, insecurity
refactoring requires to maintain the normal use of the program. The following
rules define insecurity refactoring by transforming a PIP into a vulnerability.

14.5.1 Vulnerability Description

Vulnerabilities can be described in different ways. For example, Martin et al.
[196] used the Program Query Language to describe vulnerabilities. Our
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focus is on vulnerabilities that rely on data flow from a source to a sink. We
define a vulnerability based on three sets Vsrc, Vdst, and Vsan. The sources
Vsrc are patterns for retrieval of tainted data. In the code example the
$_ GET global array in line 3 is included in the source pattern set (Vsrc)
because it provides user-controlled data. The echo function in line 22 is a
sink contained in the sinks set Vdst.

The ACID tree is based on a backward data flow analysis with a sink
and an amount of inputs (sources). The inputs are represented by the leaves
of the ACID tree.

Definition 4. A data flow path dfplAC = (TAC , l) is defined as a pair
containing the ACID tree and a chosen leaf.

The data flow path represents data that flows from the chosen leaf l into
the sink rAC .

The sanitization functions are defined by the set Vsan. Sanitization
functions from Vsan depend on the context and the vulnerability type. The
following function Suff allows to check if a sanitization function vsan is
sufficient with respect to the data flow path dfplAC :

Suff (vsan, dfp
l
AC) = (14.40)

True, ∃c : ((vsan, rootAC), c) ∈ S

and c ∈ Context(dfplAC)

False, otherwise

where

S ⊆((Vsan × Vdst)× Cctx)

The set Cctx contains all possible context types. The set S defines for each
sanitization function vsan and sink vdst what context c is required. The
function Context() returns a set of all active contexts for the data flow
path. The details of the function are described in section 14.6.2. It returns
all contexts that are found in the data flow path dfplAC . Accordingly, the
function Suff () checks if the sanitization function is sufficient based on the
vulnerability type.

Definition 5. The set V ulnAC contains vulnerabilities. A vulnerability
vulnl

AC is a data flow path dfplAC with the following properties:

rootAC ∈ Vdst (14.41)
l ∈ Vsrc (14.42)

∄v ∈ Path(l) : v ∈ Vsan ∧ Suff (v, dfplAC) (14.43)
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A vulnerability exists if tainted data from a leaf l (source) reaches the
root rootAC (sink) without passing any sanitization function from set Vsan.
For each vulnerability type, the source, sanitization functions and sinks are
defined. The different sanitization functions defined in Vsan are sufficient to
prevent a vulnerability depending on the vulnerability type. For example,
a sanitization function to prevent SQL Injection is usually not sufficient
to prevent XSS attacks. The code example is not vulnerable because two
sufficient sanitization methods for XSS are used.

14.5.2 Possible Injection Path

A possible injection path (PIP) is a data flow path in the source code that
can be transformed into a vulnerability. The sets of sources and sinks are
extended by additional sources and sinks that are usually secure to use. We
define the set of PIP sources as Psrc ⊇ Vsrc and the set of PIP sinks as
Pdst ⊇ Vdst. As an example, a secure source would be a function that only
returns an integer value from the user. A secure sink could, e.g., be a bind
query function from a parameterized SQL query.

Definition 6. The set PipAC contains possible injection paths. A possible
injection path piplAC is a data flow path dfplAC with the following properties:

rootAC ∈ Pdst (14.44)
l ∈ Psrc (14.45)

∃v ∈ Path(l) : v ∈ Vsan ∧ Suff (v, dfplAC) (14.46)
∨l /∈ Vsrc ∨ rootAC /∈ Vdst (14.47)

The PIP definition is similar to a vulnerability definition. A PIP exists if
data from a leaf node l ∈ Psrc (source) reaches the root node rootAC ∈ Pdst

(sink). At least one sanitization function (p ∈ Vsan) in the path (Path(l))
has to be found or at least one secure source (l /∈ Vsrc) or secure sink
(rootAC /∈ Vdst) has to be found. These requirements ensure that a PIP is
not already a vulnerability. The nodes of the path from l to rootAC are
contained in Path(l) and represent the data flow. That path will be used to
transform the vulnerability with different source code patterns.

The code example is by definition a PIP. The path from _GET variable
leaf l ∈ Psrc reaches the root node that represents the sink echo (rootAC ∈
Pdst). As requirements, the sanitization functions intval() and isNumeric()
are found. The next section explains the required code changes to perform
insecurity refactoring.
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14.5.3 Injecting a vulnerability

The transformation of a PIP into a vulnerability uses the following transfor-
mation sets:

Tsrc ⊆(Psrc × Vsrc) (14.48)
Tdst ⊆(Pdst × Vdst) (14.49)
Tsan ⊆(Vsan × Vsan) (14.50)

For the source transformation set Tsrc, secure source functions psrc ∈ Psrc

are mapped to insecure functions vsrc ∈ Vsrc. In the same manner, secure
sinks pdst ∈ Pdst are mapped to insecure sinks vsrc ∈ Vsrc. The sanitization
functions are mapped to each other and depending on the Suff function
that can be used to make the sanitization functions insufficient resulting
in vulnerabilities. The sets Tsrc, Tdst and Tsan only map functions that
can be replaced with each other without breaking the insecurity refactoring
definition.

The possible injection path piplAC can be transformed into a vulnerability
vulnl

AC , if the following condition check holds:

Check : piplAC → Boolean (14.51)

Check(piplAC) =
∧

v∈Path(l)


Chsrc(v), if v = l

Chdst(v), if v = rootAC

Chsan(v), if v ∈ Vsan

True, otherwise

where

Chsrc(l) =l ∈ Vsrc ∨ ∃(l, l′) ∈ Tsrc

Chdst(r) =r ∈ Vdst ∨ ∃(r, r′) ∈ Tdst

Chsan(v) =¬Suff (v, piplAC)

∨ ∃(v, v′) ∈ Tsan ∧ ¬Suff (v′, piplAC)

The PIP condition check checks that for all (
∧

) nodes if it is a sufficient
sanitization, secure sink or secure source that there exists an insecure repre-
sentation. That ensures that the PIP can be transformed into a vulnerability.
If this condition check returns False for a PIP piplAC , it means that addi-
tional transformations in the transformations set are required to inject a
vulnerability.

The transformation of a PIP into a vulnerability requires to modify the
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ACID tree. The replacement function is defined as follows:

Replacev
′

v (TAC) =T ′
AC (14.52)

=(V ′
AC , E

′
AC , λ

′
AC , µ

′
AC)

where

V ′
AC =VAC \ {v} ∪ {v′}

E′
AC =EAC \ {(v, u)} ∪ {(v′, u)}

\ {(w, v)} ∪ {(w, v′)}
(v, u) ∈EAC

(w, v) ∈EAC

The Replace function replaces a node v in an ACID tree TAC with the node
v′. It requires to connect the old edges that point to and from v to the
replaced node v′.

Definition 7. A possible injection path piplAC that passes the condition
check can be transformed into a vulnerability vulnl

AC with the following
function:

Tf : PipAC →V ulnAC (14.53)

Tf(piplAC) =(G′
AC , l

′)

l′ =Tfsrc(l)

G′
AC =(Replace

Tfsrc(l)
l ◦Replace

Tfdst(rootAC)
rootAC

⃝
v∈Path(l)

ReplaceTfsan(v)
v )(GAC)

where

Tfdst(r) =

{
r, if r ∈ Vdst

r′ : (r, r′) ∈ Tdst, otherwise

Tfsrc(l) =

{
l, if l ∈ Vsrc

l′ : (l, l′) ∈ Tsrc, otherwise

Tfsan(v) =
v, if v /∈ Vsan

v, if ¬Suff (v, piplAC)

v′ : (v, v′) ∈ Tsan∧ ¬Suff (v′, piplAC), otherwise

The ring operator (◦) represent that all those functions have to be pro-
cessed to transform a PIP into a vulnerability. In words, the transformation
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is done by replacing a secure sink (l /∈ Vdst) by an insecure sink (l ∈ Vdst).
In the same manner, a secure source is replaced by an insecure source. Addi-
tionally, all the sanitization functions in the path from source to sink have
to be replaced by insufficient sanitization methods. In the code example, the
functions isNumeric and intval (∈ Vsan) have to be replaced by insufficient
sanitization methods (/∈ Vsan).

14.6 Implementation

This section describes the implemented PL/V pattern language that is used to
detect and inject source code patterns to transform a PIP into a vulnerability.

14.6.1 The PL/V pattern language

Source code patterns are described in the PL/V language. PL/V is a context-
free language that can be described in BNF as shown in figure 14.10.

A Pattern consists of multiple code lines. If it is only a single code line, it
can be an expression or a statement. Multiple code lines represent a statement
list in which each line must be a statement. A code line has an identifier id
and a parameter list PrmList. The identifier represents a language pattern.
Language patterns are used to decouple the source code patterns from
specific programming languages. For example, the pattern <=> (%in,%out)
represents an assignment. It uses the symbol = as an identifier. Accordingly,
a language pattern exists for the id =. The language patterns contain the
information on how the Abstract Syntax Tree representation of a specific
language pattern looks like. This allows to generate the Abstract Syntax
Tree of the language patterns.

The parameter list can contain other patterns, literals, variables and
any nodes. The variables input (%in) and output (%out ) are special case
variables that can be used to chain source code patterns. Additionally, this
allows to get input or output nodes of source code patterns by using the
ASTNodex function.

In the example, the input is the expression that represents the value of
the assignment. The output is the variable that will be assigned to.

Source code patterns can contain < any > parameters with optional
("?") and multiple suffixes. An "any" parameter means that the parameter
can be anything. The optional suffix ("?") specifies that the parameter does
not have to exist. The "multiple" suffix ("...") specifies that any number of
parameters can occur, but at least one parameter has to exist. A combination
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<Pattern> ::= <CodeLines>
<CodeLines> ::= <CodeLine> "\n" <CodeLines>

| <CodeLine>
<CodeLine> ::= "<" <id> ">" <PrmList> ")"
<PrmList> ::= <Param> "," <PrmList>

| <Param>
<Param> ::= <Pattern>

| "%var" | "%in" | "%out"
| literal
| <Any>

<Any> ::= "<any>" | "<any>..." | "<any>?"
| "<any>?..."

Figure 14.10: BNF of PL/V language.

means that any number of parameters can occur including none. Literals are
fixed values that are used in the corresponding pattern.

All patterns must contain a input %in and output %out variable except
of a source and sink pattern. A pattern representing a source has only the
fixed output variable. In contrast, a pattern of a sink only has the fixed
input variable. Other variables can be used inside the pattern. For example,
if a pattern requires accessing a specific key of an array, the key can be set
as a variable %var and be used in further patterns.

The following example stems from our patterns [193]. It defines the
sanitization pattern representing htmlspecialchars:

< call > (htmlspecialchars,%in,< any > ())

The pattern uses the call language pattern. The call pattern requires a literal
(htmlspecialchars) to define the function name in the Abstract Syntax Tree.
The %in defines the input parameter. The htmlspecialchars function has an
optional parameter that is represented as < any >. The output is the return
value of the function.

For ACID tree construction, different source code patterns are required.
For example, concatenations and the coding constructs are represented in
the PL/V language. To find source code patterns it is required to have an
equal check for each pattern. The following function allows to check if a part
of the Abstract Syntax Tree from the Code Property Graph matches the
pattern:
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Matchp(v) = (14.54)
False, if ¬Typep(v)
True, if p = ∅∧
pi,vi∈Cpat(p,v)

Matchpi(vi), otherwise

The Typep(v) function checks if the type of the Abstract Syntax Tree
node v equals the type of pattern node p. The Cpat(p, v) function returns
pairs of the children from the AST node v and pattern node p. Matchp(v)
checks recursively if the pattern node type is the same as the node type
from the Abstract Syntax Tree. Parameter v represents the root node of the
Abstract Syntax Tree that is checked and p is the root node of the pattern
Abstract Syntax Tree. For simplicity, the any nodes are not specified in the
Matchp function. It simply checks based on the suffixes if the corresponding
parameters exist or not.

The different variable nodes (%in,%out,%var) are used to represent
important nodes. They are defined in the PL/V language. The following
function allows to get the corresponding node in the Abstract Syntax Tree
GA based on the variable node x:

ASTNodex(p, v) = (14.55)v, if p = x⋃
pi,vi∈Cpat(p,v)

ASTNodex(pi, vi), otherwise

It is a recursive function that searches for the same position in the Abstract
Syntax Tree of the Code Property Graph starting from node v as in the sub
tree of the pattern starting from node p.

14.6.2 Context analysis

The ACID tree is an analysis model that is used to evaluate the context. For
each data flow path dfplAC the context can be specified. A context c can
be identified by what is concatenated before the input (pre) and what is
concatenated after the input (post). Instead of formalizing the context check,
we define for each context (c ∈ C) the function IsContextc(pre, post). The
inputs pre and post are both string values. The function returns a boolean
value and uses different checks to specify if the context c exists for the inputs.

We define the following function to get a set of all contexts for a data
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flow path dfplAC :

Context(dfplAC) = (14.56)
{c ∈ Cctx and IsContextc(Uppre(l), Uppost(l))}

It uses the recursive functions Uppre(l) and Uppost to get the string values
that the input is concatenated with. These functions are defined as follows:

Uppre(v) =


⋃

c∈Bef(v)

Down(p(c)), if p(v) = ∧

Uppre(p(c)), otherwise
(14.57)

Uppost(v) =


⋃

c∈Aft(v)

Down(p(c)), if p(v) = ∧

Uppost(p(c)), otherwise
(14.58)

Up is a recursive function that iterates from the leaf upwards to the root node.
If the parent of node v is a concatenation (∧), data will be concatenated
to the input data. Accordingly, that concatenated data is the context of
the input data. Based on pre or post context, the corresponding siblings
before or after of the input nodes are analyzed using the Down function. In
the initial code example, on line 15 there is a concatenation of the variable
$name and the variable $page. The variable $page is the input from the
user and the variable $name is the context that is concatenated.

The function

Down(v) =



String(v) if Typestring(v)⋃
c∈C(v)

Down(c), if v = ∧

Down(First(v)), if v = ⊕
Down(C(v)), otherwise

(14.59)

is a recursive function that iterates the tree downwards. If a concatenation
is found, the recursive function of the children nodes will be united. A
problem may occur if an excluding node ⊕ is reached. In the example on
line 6, the children from Parameter($name) are excluding. The downwards
recursive function has to decide which mutually excluding child will be used
for the context analysis. Different approaches can be used. Either one child
is selected and used for the context analysis or all children are checked to
see if they result in a similar context. We decided to use the context of the
first child. It is a simple heuristic under the assumption that the context
will not differ from other sub trees. Even if the context is different based
on the different sub trees, at least one sub tree has the analyzed context.
Accordingly, the approach can only ensure the chosen case will be exploitable.
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The context analysis of the ACID tree sample in figure 14.9 shows
that the user-provided data is concatenated with the String news and <a
href=’www.url.com/ as pre context. The post context is the String ’ >link
</a>. Accordingly, the output on the web page will be:
<a href=’www.url.com/news[input]’ >link </a>.

In the code example, there is a potential Cross Site Scripting sink. Ac-
cordingly the Cross Site Scripting relevant context checks are required. In
the example, the context check for HTML attribute context and inside
apostrophes context will return true.

14.6.3 Insert data flow pattern

A main goal of insecurity refactoring is to create learning examples. Previous
research [205] [206] showed that many interesting source code patterns are
data flow source code patterns. The path Path(l) defines the nodes from a
source to a sink. It also represents the data flow of the PIP. Depending on
what kind of learning example should be created, different data flow patterns
are interesting. For example, some data flow patterns are difficult to detect
by static code analysis tools [207]. If the learning examples should be more
focused on Capture the flag (CTF) events, data flow patterns can be added
that, for example, teach specific techniques like dynamic function calls. Also
data flow patterns can be used to make the vulnerability difficult to detect
by dynamic analysis tools (e.g. fuzzers).

Definition 8. The transformation of data flow patterns is defined as a tuple:

Tdf = (D,M,µR) (14.60)

The set D defines all data flow patterns. The set M ⊆ (D ×D) defines the
patterns that can be replaced with other data flow patterns. The function
µR : D → R defines what requirements r ∈ R are required for the inserted
data flow pattern d ∈ D. The set R contains all requirements. A requirement
r ∈ R is a combination of a context c ∈ Cctx and a boolean that defines if
the context must exist or must not exist. If all requirements for a data flow
pattern are fulfilled, the data flow pattern can be injected without breaking
the insecurity refactoring definition.

Usually the patterns that used to be replace with interesting data flow
patterns are simple like an assignment. Interesting patterns represent dif-
ferent difficulties of the vulnerabilities. The requirements r ∈ R have to be
fulfilled to transform the source code maintaining the insecurity refactoring
requirements. For example, one data flow pattern will redirect to the main
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1 <def_func>(sanitize, <param_list_1>(<$>(a)),
<stmtlist>(<return>(<$>(a))))

2 <=>(<$>(func), <s>(sanitize))
3 <=>(%out, <call_v>(func, %in))

Figure 14.11: Function call by string described in the PL/V language.

page if the tainted variable is not an integer. The pattern does not contain
an exit statement and the source code later on is still executed (Pattern
found in CVE-2013-3524). This pattern requires that the initial PIP contains
a restriction to integer only variables. The requirement ensures that the
program will still run as normal as long as only integer values are inserted.
But it will change its external behavior as soon as attackers insert unintended
values like a string. The patterns are searched in the path Path(l) using the
Matchp(n) function.

14.6.4 Source code modification example

All the code modifications are based on the transformation sets (Tsrc, Tdst,
Tsan and Tdf ). Each element of the sets can define different variables that
are required to perform a code modification. The modifications are done
on the Abstract Syntax Tree (GA). The variables of the PL/V language
represent sub trees of GA. Figure 14.12a shows the code example and figure
14.12b shows the insecurity-refactored source code. Applying the rules to
inject a vulnerability requires to replace the intval function and is_numeric
with an insufficient sanitization pattern p ∈ Tsan. The source and sink do
not require any modifications. As described previously, data flow patterns
allow to introduce different source code patterns. In the example, the as-
signment (<=> (%out,%in)) pattern on line 7 is used to introduce a data
flow pattern. For that assignment the output %out is the AST sub tree
that represents the variable page. For the input %in the correspding AST
sub tree represents the expression that is assigned to the variable. In that
case, it is the function call getParam. Figure 14.11 shows the inserted data
flow pattern. This pattern is difficult for static code analysis tools [207].
The insecurity-refactored source of the PIP is shown in figure 14.12b. On
line 14, the sanitization function is_numeric is replaced by the insufficient
sanitization function is_string. On line 15, the sanitization function intval
is replaced by the htmlspecialchars sanitization function. The sanitization
function is insufficient for the inside apostrophes context. It would require
an inside quotes context to be sufficient. A potential Cross Site Scripting
attack could inject a onclick parameter with Javascript payload. Lines 7 to
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12 show the source code pattern that is difficult for static code analysis tools.
It represents a dynamic function call using a string value.

All the modifications to inject a vulnerability are done by modifying
the Abstract Syntax Tree. The next step is to revert the modified Abstract
Syntax Tree back into actual source code. A simple program was written
that generates PHP source code based on the Abstract Syntax Tree. An
Abstract Syntax Tree uses some kind of abstraction to unify functions with
the same functionality. For example, <?= and echo are both represented
by an echo function call. The current approach checks the Abstract Syntax
Tree to determine what lines of code are modified. Only the modified lines
are replaced by the generated PHP source code and other lines of the files
are maintained. This diminishes the chance that an abstraction breaks the
source code.

The injection of vulnerabilities is semi-automated. For each PIP, the tool
shows the critical sanitization functions that have to be replaced. The tool
provides a list of sanitization functions that are insufficient for the corre-
sponding context. In addition, patterns can be selected to be injected. After
selecting the injected patterns, the tool checks if all sanitization functions
will be replaced with insufficient sanitization functions. If all of them are
selected, the vulnerability will be injected. For a fully automated approach,
the patterns could be selected randomly.
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1 <?php
2 function getParam($param){
3 return $_GET[$param];
4 }
5

6 function page($debug,
$name){

7 $page=getParam('page');
8

9

10

11

12

13

14 if(is_numeric($page)){
15 $out = $name .

intval($page);
16 $out = "<a

href='www.url.com/"
. $out . "'> link
</a>";

17 }
18 else {
19 $out = "Unknown

page";
20 }
21

22 echo $out;
23 }
24 ?>

(a) The original code example.

1 <?php
2 function getParam($param){
3 return $_GET[$param];
4 }
5

6 function page($debug, $name){
7 function sanitize($a)
8 {
9 return $a;

10 }
11 $func = "sanitize";
12 $page =

$func(getParam("page"));
13

14 if(is_string($page)){
15 $out = ($name .

htmlspecialchars($page));
16 $out = "<a

href='www.url.com/" .
$out . "'> link </a>";

17 }
18 else {
19 $out = "Unknown page";
20 }
21

22 echo $out;
23 }
24 ?>

(b) Insecurity-refactored code example.

Figure 14.12: Insecurity refactoring using a data flow pattern that is difficult
for static code analysis tools (function call by string).
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14.7 Evaluation

The evaluation explores whether the Insecurity Refactoring approach is
applicable to real projects. Additionally, it is important to see if the insecurity-
refactored projects break the Insecurity Refactoring definitions. The main
condition is that the projects can still be executed for normal use. Also the
usage as learning example is evaluated.

14.7.1 Open source projects

We developed a tool to perform insecurity refactoring on PHP projects [193].
First of all, we want to see if insecurity refactoring can be used to inject
vulnerabilities in open source projects. This requires to define the set of
sources, sinks, etc. Table 14.1 shows how many entries are in each set.
We retrieved the sets by reviewing the PHP documentation [201]. Each
sanitization function from Vsan that passes through data is also found in the
passthrough data set (Vpass). The other passthrough functions are mainly
functions to manipulate string values. The SQLi sinks contain different
functions because each database has different PHP drivers. We added all
functions from SQL database drivers we found in the PHP documentation.
Only 9 sources are in our data set that are mainly functionality from PHP
like the global array _GET. Eval and unserialize are different vulnerability
types. Each of them is represented as a sink for their category.

A crawler tool was written that crawls GitHub [192] for projects that
contain PHP source code. The corresponding source code is then checked
for PIPs. Table 14.2 shows the results. 307 open source projects were
scanned. In 25 of these projects PIPs were found. Accordingly, the tool could
inject vulnerabilities in 8.1% of the projects. It also shows that most of the
PIPs are related to Cross Site Scripting. Not many projects contained PIPs
related to textiteval or textitunserialize. We also found several vulnerabilities.
Those reports were reviewed: 55 true vulnerabilities and 68 false positive
reports. Most of the vulnerabilities were found in installation and testing

Type Sources (Psrc) Sanitization (Vsan) Passthrough (Vpass) Sinks (Pdst)
All 9 98 164 •
XSS • • • 9
SQLi • • • 77
Eval • • • 1

Unserialize • • • 1

Table 14.1: Possible injection path data set.
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PIP True Positive (Vuln) False Positive (Vuln)
XSS 221 16 57
SQLi 98 37 10
Eval 1 0 1

Unserialize 3 2 0
323 55 68

Table 14.2: Possible injection paths found in 25 open source projects out of
307 scanned projects.

files or were deliberate vulnerabilities. Three vulnerabilities were potentially
dangerous vulnerabilities in commonly used projects. These vulnerabilities
were reported by us to developers and they confirmed and patched the
vulnerabilities (CVE-2020-27163, CVE-2021-3318, CVE-2021-26716). The
vulnerability reports also included 68 false positive reports. In these cases
pre-conditions prevent an exploitation. These pre-conditions were outside the
ACID tree and could not be detected. The false positive vulnerability reports
show that not all sanitization approaches can be detected. Nevertheless,
PIPs that are used for insecurity refactoring have to contain a detected
sanitization function to inject a vulnerability. This decreases the possibility
that an injected vulnerability is not exploitable. One problem for Cross Site
Scripting exists if the Content-Type is set to a secure type (e.g. plain/text).
The ACID tree does not contain the Content-Type. If a PIP is found in a
file that sets a secure Content-Type, the injected vulnerability will not be
exploitable. If no sanitization function is found, but a special sanitization
function exists, it will not be selected as as PIP. Accordingly, those false
positive reports do not impact the possibility for insecurity refactoring.

The results demonstrate that the concept of insecurity refactoring works
on open source projects. By increasing the data set of sources and sinks, the
chances of finding PIPs can be increased. Adding support for object-oriented
data flows to the initial Code Property Graph will increase the findings.

14.7.2 Learning examples

Initial evaluation shows that PIPs are found in open source projects. The
next step is to see if the refactoring itself works without breaking the func-
tionality of the projects. Additionally, it is important to check if the injected
vulnerabilities can actually be used to teach software security. For the evalu-
ation, two exercises were arranged for two different groups. The exercises
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Figure 14.13: Pre-Survey CTF event to check the skill level. (n=11)

are projects [194] that were insecurity-refactored to contain different vulner-
abilities. The groups and the corresponding exercises are described in the
following sections.

Surveys were used for evaluation of the experiment. At the beginning, a
pre-survey was provided to get information about the skill level of attendees.
The exercise itself was a bit different for each group. Both used insecurity-
refactored projects. For both groups the insecurity-refactored projects were
hosted in virtual machines. This allowed to check if the insecurity refactor-
ing actually maintained the external behavior of the programs. After the
experiment, a post-survey was provided to see if the exercises were perceived
as difficult or realistic and if attendees experienced a skill increase.

Experienced group

The first group was a mix of people with different backgrounds. All of them
were training for an upcoming cyber security challenge. Figure 14.13 shows
the skill level in different categories. The skill level in programming is overall
very high. Also the web security skills are towards medium high rating. The
experience with different hacking tools is seen as medium and the experience
with static code analysis is low. This group has already experience with
capture the flag events from attending other training events. Further, the
group is described as the experienced group ("Exp.").

Based on the experience of the group, the idea for this exercise was
to provide the attendees with the insecurity-refactored projects in virtual
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Project Type Input parameter DF Pattern Insuff. San. special G1 G2 G3 G4
phpBB SQLi user.php (style) hint ✓ ✓ ✓ ✓
phpBB SQLi memberlist.php (g) redirect [man.]
phpBB SQLi posting.php (t) backdoor int cast [dyn.]

emonCMS XSS compare.php (feedA) Class storage [sca] htmlspecialchars ✓ ✓ ✓
emonCMS SQLi admin_controller.php (perPage) htmlspecialchars ✓

phpRedisAdmin XSS view.php (page) backdoor expl/imp. [dyn/sca] .git dir ✓ ✓

Adminer XSS table.inc.php (table) function call by string [sca]

Table 14.3: Insecurity-refactored projects for the experienced group (Exp.).

machines like in a CTF event. The attendees were supposed to use their own
strategies for detecting vulnerabilities. Attendees had access to the virtual
machines that also allowed them to access the source code of the projects.

Table 14.3 shows an overview of the insecurity-refactored projects. The
following four projects were used for insecurity refactoring: phpBB, Emon-
CMS, phpRedisAdmin and Adminer. Overall we injected four SQL Injection
vulnerabilities and three Cross Site Scripting vulnerabilities spread over the
four projects. The phpBB project uses self defined functions for getting user
data. We have added a project specific pattern that represents that functions.
Without that pattern the Insecurity Refactoring tool would not be possible
to detect PIPs in phpBB. Accordingly, the phpBB did not add any PIPs to
the initial evaluation based on scanning open source projects. The project
specific pattern can be found on GitHub but is disabled at default. Data
flow patterns were added, of which three are difficult for static code analysis
tools and two difficult for dynamic testing tools. One pattern also used the
function call by string pattern described earlier. One vulnerability was a
plain SQL Injection without any sanitization methods and two vulnerabilities
used an insufficient sanitization method for the vulnerability or context. The
goal was to create vulnerabilities with different difficulty levels. Additional
difficulties can be achieved by adding data flow patterns. Table 14.3 shows
these patterns and the corresponding difficulties for different approaches
are listed. The difficulties vary for the different approaches to discover a
vulnerability. Static code analysis tools (sca), dynamic testing tools (dyn)
and manual inspections (man) have different difficulty levels. For example, a
dynamic tool has problems to detect backdoors that require specific inputs to
bypass sanitization. In contrast, static code analysis tools usually have more
problems detecting different dynamic programming approaches or specific
source code patterns [207] [208].

Attendees were grouped into four teams who worked together to find
the vulnerabilities deployed in the virtual machines. The groups had to
provide a report to score points. The report had to contain how the students
discovered the vulnerability, how the vulnerability can be exploited and
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Figure 14.14: Pre-Survey student exercise event to check the skill level.
(n=24)

how the vulnerability can be patched. Having a report about discovery,
exploitation and patching allowed us to analyze how the teams solved the
tasks. The event ran for 24 hours. In the first hours, the groups had to
discover the vulnerabilities without any further help. After the initial 10
hours, hints about the vulnerabilities were released. For example, "Some
users reported that changing the style of phpBB is buggy." In this case
the injected vulnerability used the style parameter in user.php for a SQL
Injection vulnerability.

Beginners group

A second evaluation as a learning example was done with a group of students.
The students were relatively new to software security. Figure 14.14 shows
their initial skill levels. It shows that the programming skills are higher than
the web security skills. This kind of skill level was expected because the
students study computer science and the exercise was done for a software
security class. The group will be described as beginners group ("Beg.").

Because the group was not experienced with using any static code analysis
or dynamic testing tools, the exercise itself had to be different. Table 14.4
shows the insecurity-refactored projects that were used in this exercise. Only
phpBB and EmonCMS were used to injected different vulnerabilities. This
time four SQL Injection and two Cross Site Scripting vulnerabilities were
injected in the projects. All of them contained different data flow patterns
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Project Type Input parameter DF Pattern Insuff. San. special
phpBB SQLi user.php (style) Parameter list
phpBB SQLi memberlist.php (g) backdoor int cast [dyn.] Parameter list
phpBB SQLi posting.php (p) redirect [man.] Parameter list

emonCMS XSS compare.php (feedA) Deactivated default san. [sca] Parameter list
emonCMS SQLi admin_controller.php (perPage) function call by string [sca] Parameter list
emonCMS XSS dailyhistogram.php (kwhd) comparing different types [man] Parameter list

Table 14.4: Insecurity-refactored projects for the beginner group ("Beg.").

to again make it difficult for static code analysis tools or dynamic testing
tools. Except for the very simple SQLi vulnerability in phpBB, no other
vulnerabilities are the same as in the data set for the experienced group. Some
inputs are the same, but different data flow patterns make them different
from each other.

Because the students were not familiar with using static code analysis
and dynamic tools, they got tutorials on how to use such tools. Also the
students were provided with a static code analysis tool and a dynamic tool
that they could use. For the exercise, the students had to scan the provided
source code with the static code analysis tool. As the next step, they had to
scan the insecurity-refactored projects with the provided dynamic tool. The
students got the insecurity-refactored projects deployed in virtual machines
and they separately got the corresponding source code. As the last step
the students were provided with a list of the vulnerable parameters. This
allowed them to check the tools’ results and they could manually inspect the
remaining undetected vulnerabilities. For each of the steps, the students had
to report if it is possible to exploit the discovered vulnerabilities. No patching
of the vulnerabilities was required. The time frame for this experiment was
four weeks.

Results

First of all, the insecurity-refactored projects with different patterns were
deployed in virtual machines. No strange behavior of the projects was
reported. Accordingly, the insecurity-refactored projects performed normally
as long as no vulnerability was exploited. One problem in the experienced
group was revealed that at some point attendees found out that the latest
version on GitHub had been used as the base for insecurity refactoring. Then
they started to use the diff command on the insecurity-refactored projects to
find further vulnerabilities. Table 14.3 shows for each group (G1-G4) what
vulnerabilities have been reported. Three of seven vulnerabilities were not
reported at all. A problem in the beginner group was that it was forced
to do the exercise from home. Therefore, they could not be guided well to
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Figure 14.15: Survey results on the difficulty of tasks. (Discovery, Exploita-
tion and Patching) (n=16)

use the given tools and had to rely on the provided tutorials. This was a
hurdle that many of the beginners could not overcome and not all of them
finished. It was not mandatory to finish the exercise and only 7 of the initial
24 attendees actually finished the exercise.

In the post-survey, attendees were asked how difficult the tasks had
been for them. Figure 14.15 shows the results combining the difficulty of
discovery, exploitation and patching. For the beginners group the question
about patching did not exist because they did not patch the vulnerabilities
in their exercise. Overall, the results are towards medium difficulty with
being a bit more towards the difficult side. For an exercise, the medium
difficulty is optimal. It does not overwhelm learners and is not too easy to
solve. Experienced attendees point out that they were a bit overwhelmed by
the large projects. Additionally, they pointed out that the tasks were not
isolated like in other CTF events. No such complaints were voiced in the
beginners group, probably because they got a list of vulnerable parameters.
The patching by the experienced group was described as more on the easy
side. The reason is that most teams used the master version on GitHub as a
patch solution. That is a correct solution, but does not require any skills to
patch the vulnerability.

Figure 14.16 shows the results of the questions on how real the tasks were
considering bug bounty or code inspections tasks in real life. The results of
both groups are shown in the diagram. It indicates that the exercise was
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Figure 14.16: Post-survey results about how similar the exercise is to real
penetration testing/bug bounty scenarios. (n=16)

close to a real life example. Only two attendees answered that closeness to
reality was low.

Attendees were asked how they think their software security skills im-
proved by that event. The results are shown in figure 14.17. First of all, two
members of the experienced group did not see any skill increase by the event.
The other 14 attendees answered that they experienced a skill increase in
software security skills by the event.

14.7.3 Comparative analysis

Previous approaches have used similar procedures to inject vulnerabilities.
Table 14.5 shows an overview of methods to inject vulnerabilities from both
LAVA and EvilCoder as well as Insecurity Refactoring.

Functional comparison

LAVA uses a dynamic taint analysis to detect DUAs (Dead, Uncomplicated
and Available Data). In words, a DUA is a user-controlled input that does not
change any control flows and is not concatenated with other variables. Then
they search for attack points (ATP) which are near DUAs. An ATP is a sink
that can be transformed to create a vulnerability. The vulnerability injection
transforms the ATP by adding a conditional usage of the corresponding
DUA.
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Figure 14.17: Post-survey results if attendees experienced a skill increase
from the exercise. (n=16)

Method LAVA EvilCoder Insecurity Refactoring
Language C/C++ C/C++ PHP

Detection DUA (dynamic)
Code Property Graph

1. backward
2. forward (CFG)

ACID Tree
Context of input

Injection Use DUA in sink Invalidate security mechanisms
or use security anti patterns

1. Ins. sanitization function
2. Add data flow pattern

Realismn Synthetic Artificial Patterns stem from CVEs

Table 14.5: Comparing methods of LAVA, EvilCoder and Insecurity Refac-
toring.
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Compared to our course of action, the dynamic approach requires a
running setup of the program. First of all, that makes the scanning effort more
difficult. Nevertheless, the detection should be more precise. Additionally,
the authors state that the injected vulnerabilities are synthetic, therefore only
exploitable if specific inputs are provided. The condition allows the program
to run as intended as long as the specific input is not provided. Therefore,
they state that it makes the vulnerabilities more realistic. Nevertheless, the
injected vulnerability patterns do not stem from real vulnerabilities.

The EvilCoder approach uses a Code Property Graph. The detection of
potential injection locations is done in two steps. In the first step, for all
potential sinks a backwards taint analysis on the Code Property Graph is
started to find sources. In the second step, for each potential path from a
sink to a source, a forward analysis (source to sink) on the Control Flow
Graph is started. In the forward analysis, it is searched for security checks
that influence the control flow based on data from the tainted variable. These
security checks are transformed to inject the vulnerability. It can either
be injected by invalidating the security checks or by the use of a security
anti-pattern. A security check is invalidated by transforming the conditions
to always being true or false. A security anti-pattern transforms the sink to
use patterns that are always critical. For example, a printf("%s", buf) is
replaced by printf(buf).

Compared to our approach, the injected vulnerabilities are artificial. The
approach does not ensure the normal behavior of the program afterwards. The
injected vulnerability might be triggered all the time. Their approach uses a
concept to remove security checks. Many C/C++ vulnerabilities are related
to memory bugs that make length checks critical. Our approach can replace
security checks and functions that transform data (e.g. htmlspecialchars()).
The approach to add anti-patterns is similar to our approach of replacing
secure sinks with insecure sinks.

Overall, our approach is focused towards PHP and corresponding typical
vulnerabilities. As PHP is typically used in web-based applications, the
vulnerabilities heavily depend on the context. The ACID tree is another
analysis model on top of the Code Property Graph that allows to analyze the
context of given user input. This gives us the opportunity to be more specific
whether a sanitization function is sufficient or not. The other approaches
do not consider the context. LAVA tries to minimize that problem by using
variables that are not concatenated with other variables. EvilCoder instead
invalidates the whole security check independent of the context. In contrast,
our approach is precise, which has the disadvantage of not finding as many
potential injection paths. But it maintains the normal usage of the program.
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Our approach provides a PL/V pattern language that allows to describe
the critical patterns. Additionally, our patterns stem from existing CVEs
to maintain patterns of realistic vulnerabilities. By definition all injected
vulnerabilities are artificial, including our approach. Insecurity Refactoring
injects patterns that stem from CVE reports in existing projects to keep the
vulnerabilities as realistic as possible. In addition, the data flow patterns can
be used to introduce difficulties based on the pattern.

Experimental comparison

The EvilCoder approach to find PIPs is similar to our approach. An exper-
iment with the same programs as input is not possible because EvilCoder
uses C and our approach uses PHP as input. Nevertheless, we compare their
results from scanning open source projects to our results from scanning open
source projects in detail. Table 14.6 shows the results that EvilCoder got
on four open source projects and that we achieved for the same number
of projects. The results include a special pattern for the custom phpBB
function to retrieve user data. Without that pattern, Insecurity Refactoring
cannot find a PIP. The results without the pattern are shown in brackets.
First of all, the results show that Insecurity Refactoring finds a lot more
sources and sinks compared to EvilCoder. A reason for that is that PHP
web vulnerabilities have a different kind of sinks and sources. For example,
for XSS every function that prints text on a web page will be a possible
sink. This includes functions that just print static text. A unique source-sink
stands for at least one data flow path between a specific source and sink. The
Insecurity Refactoring flags an ACID tree that contains at least one path
from source to sink as a PIP. It does not count each leave as an additional
PIP. In contrast, source-sink paths count all possible paths that are found
between sources and sinks. First of all, the results show that EvilCoder finds
more unique source-sinks per given sources and sinks compared to Insecurity
Refactoring. Compared to the lines of code, the unique source-sink pairs
found are in a similar range. For the source-sink paths, EvilCoder finds
more paths. The different code base and vulnerabilities might explain that.
Nevertheless, an implementation difference here is that EvilCoder tracks each
control flow path that can be taken. The ACID tree combines such control
flow paths. Another path (split in the ACID tree) would only be created
when an if statement contains a union that then will be represented as an
excluding (⊕) split.

As a next step, the vulnerability injection can be evaluated. EvilCoder
ships only two kinds of instrumentation on the GitHub project. They state
that it can be extended to create more variations. Here is a gap between
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EvilCoder
libpng vsftpd wget busybox

Lines of code 40,004 20,046 137,234 265,887
Sources 9 3 21 152
Sinks 98 13 453 573

Unique Source-Sink 158 22 22 30
Source-Sink paths 22,516 786 1,882 2,905

Insecurity Refactoring
Adminer EmonCMS phpBB phpRedisAdmin

Lines of code 27,606 26,383 289,800 2,022
Sources 752 138 552 (223) 210
Sinks 1,386 3,417 3,795 (3,795) 478

Unique Source-Sink 39 13 188 (0) 25
Source-Sink paths (PIPs) 65 14 292 (0) 30

Table 14.6: Comparing results of EvilCoder and Insecurity Refactoring.

their approach and ours. Our approach evaluates if a sanitization function
is sufficient for a given context. EvilCoder only provides the possibility to
replace an if statement with an instrumentation. Our approach allows more
variations for a given PIP (source-sink). For example, for a given PIP it
is allowed to replace a source with 5 other sources, 10 different data flow
patterns can be inserted, and 9 different sanitization functions would be
insufficient. This allows to inject a vulnerability in 5 ∗ 10 ∗ 9 = 450 different
permutations. This is an advantage of our approach over the EvilCoder
approach. Small patterns can be defined and those patterns can be combined
to inject vulnerabilities.

Nevertheless, the comparison between two tools that work with different
vulnerabilities and on source code in different programming languages cannot
be compared empirically. Our experiment shows that EvilCoder provides
more possibilities to inject vulnerabilities that use different data flow paths. In
contrast, the Insecurity Refactoring approach allows to inject many different
permutations of a vulnerability.

14.8 Discussion

Insecurity refactoring is a novel method that injects vulnerabilities in projects
based on source code patterns gathered from vulnerabilities in CVE reports.
It shows that PIPs can be found and transformed into vulnerabilities. Also
some patterns can be added that make detection by static code analysis
tools difficult. One ethical question is if developing and publishing such
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a tool might be more harmful than useful. The main idea is to actually
use insecurity refactoring to create learning examples. The tool could also
be used maliciously to inject vulnerabilities in projects that are actually
deployed in productive systems. For example, a malicious Git software
could use insecurity refactoring to inject vulnerabilities before it pushes code
changes to the Git server. Such an attack scenario requires that the Git
server does not review pull requests. Another scenario might be that the
Git client that pulls the source code is malicious. The client could perform
insecurity refactoring on each pull request. This is a possible attack scenario
but requires to add the malicious Git client on the server in the first place.
We see such attack scenarios as more artificial than actually relevant in
practice.

As learning examples, a defined difficulty of the vulnerabilities would be
beneficial. Our evaluation shows that most of the attendees reported skill
increase attending an event that used vulnerabilities generated by insecurity
refactoring. Some form of difficulty rating for the different patterns would
be useful. For now we can only predict the difficulty based on how large the
initial project source code is and whether we added some special patterns.
The results of the evaluation show that some attendees would like to have
hints as to where vulnerabilities are. Accordingly, the scenario of the exercise
itself is also important. Insecurity refactoring allows to inject vulnerabilities
in real projects to get vulnerability examples as real as possible. Nevertheless,
the exercises in which the insecurity-refactored projects are used may be
very different. The results show in two different scenarios that the insecurity-
refactored projects can be used as learning examples.

The difficulty varies based on what kind of learning example the insecurity-
refactored source code is used for. If it is used to teach the use of static code
analysis tools, a vulnerability without a special difficult static code analysis
pattern is not difficult. But it might be difficult if the vulnerability has to
be found manually. In the end, the difficulty of the insecurity-refactored
vulnerabilities heavily depends on the task.

Our evaluation on open source projects showed a problem in finding
control functions using the Ctrl function. This is a classical NP-hard problem
because all possible paths from one statement to another statement have
to be created and each of these paths has to be checked if it contains any
sanitization check methods. Most of the time, possible paths are short and the
query runs fast. Nevertheless, some projects contain so many possible paths
(high complexity) that the query run time increases to an inconveniently
long period (>2 minutes) on modern hardware. As a solution we scanned
in two steps. The first step ignores any control function checks. If the first
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step finds a PIP or vulnerability, a second analysis is done using the control
function checks.

Another problem is that the control property graph does not support
object-oriented data flow. Method calls from objects are resolved correctly,
but data that is stored in object variables is not tracked. This decreases the
chance to find PIPs. Especially for SQLi, many database drivers are stored
in objects (db wrapper) or the queries are constructed using data-represented
objects [205].

The evaluation shows positive results for a small survey size (n = 9+7 =
16). The results of the evaluation as a code inspection task shows that the
small test group had skill improvements. The small survey size cannot be
used to statistically proof that the insecurity refactored projects are always
beneficial as learning examples. At least for that small test group it showed
skill improvements. Future work should use larger test groups (n > 100) to
statistically verify the initial results of the small sample size. However, the
usefulness of software security exercises not only depends on the vulnerability
itself. The results show that insecurity-refactored vulnerabilities are usable
for software security exercises. One problem of such exercises is the time
it takes to create vulnerabilities in a real scenario. The results show that
insecurity refactoring can inject vulnerabilities with different patterns into
existing projects. Accordingly, the scenario where vulnerabilities appear is as
real as possible. Overall, the concept of insecurity refactoring works on open
source projects without violating the definition of insecurity refactoring (not
changing the external behavior in normal usage).

14.9 Conclusion

Our approach for insecurity refactoring shows that vulnerabilities can be
injected into open source projects by using static code analysis approaches.
The ACID tree is introduced as an analysis model for finding PIPs and
vulnerabilities. Finding locations of PIPs has the same limitations as finding
vulnerabilities in the first place. A precise approach was used to mitigate any
false positive results where injected vulnerabilities would have a high chance
of not being exploitable. A false positive PIP might break the normal use of
the project, hence breaking the insecurity refactoring definition. The PIP can
be simple. The injected vulnerability can be made difficult by adding data
flow patterns. These patterns can be so difficult that the ACID tree approach
cannot detect them anymore. Accordingly, the injection of vulnerabilities
can be a lot easier than the detection of the injected vulnerabilities. If any
useful attack scenarios of insecurity refactoring are found, the automated
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detection of these vulnerabilities will be more difficult.
The focus of insecurity refactoring is to inject vulnerabilities with different

source code patterns. The PL/V pattern language allows to define the source
code patterns in an independent language. To extend the tool to support
other programming languages only the language patterns have to be rewritten
and the Code Property Graph has to be created for that language. A first
evaluation shows on a small sample size that insecurity refactoring can be
used to teach software security skills. Compared to other approaches our
focus relies on to create vulnerabilities realistic as possible. The approach
shows that the concept works with different source code patterns. The
different patterns also allow to create many permutations of vulnerabilities.
This enables repeatedly using insecurity refactoring to teach software security
skills.
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Chapter 15

Systematic Generation of XSS
and SQLi Vulnerabilities in
PHP as Test Cases for Static
Code Analysis

15.1 Introduction

Static code analysis tools are a good approach to find software vulnerabilities
early in the development phase. False positive (FP) and false negative (FN)
reports are problematic. A false negative report will probably pass the
vulnerability to a productive system where the vulnerability can be harmful.
In contrast, false positive reports take time of developers to review them. If
the false positive reports are too many developers might overlook true positive
reports. The research about soundness of static code analysis tools tries
to make the tools more precise and meaningful (e.g. [227], [236]). "Sound
means every finding is correct. The tool need not produce a finding for every
site; that is completeness." [216]

We provide a tool that can generate synthetic test cases. Synthetic test
cases are usually small test cases that contain only the vulnerability. In
contrast, a not synthetic test case would be by using source code from an open
source project that contains a known vulnerability. The generated synthetic
test cases use the combination of source, sanitization, context and sink to
decide if the test cases are vulnerable or not vulnerable. The combination of
all the different parts allow to identify the problems of static code analysis
tools. This makes the generated test cases relevant to test static code analysis

227
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tools.

15.1.1 Related Work

Anand [220] provides an overview of automated test case generation based
on the tested source code. It is split into different types of automated
test case generations. The different types look into different parts like the
inputs/outputs of a program or the internal structure. The type program-
based test case generation uses symbolic execution to define testing inputs
that reach specific symbolic execution paths. It is used to generate test
data to improve code coverage and expose software bugs (e.g. [222]). The
model-based test case generation sees the software to be tested as a black box.
At first it defines abstract test suites. For each tested software a concrete
test suite has to be built based on the abstract test suite. The data-centric
test case generation uses a list of inputs and the corresponding expected
outputs to test the software. This allows to automate the testing process.
The combinatorial interaction testing (CIT) has different inputs and for each
input there is a list of possible inputs. A combination of these inputs is
then used to test the software. Nie and Leung [228] provide a survey of CIT.
The search-based test generation searches for good test cases. The goal is to
maximize the achievement of test goals and to minimize the testing cost. A
search based optimization algorithm guided by a fitness function is used to
find good test cases. For example, Harman and McMinn [226] used structural
testing goals to achieve a search-based test case generation. Our approach
can be classified as a data-centric test case generation. The resulting source
code can be seen as multiple inputs where each pattern is an input. All the
combinations of patterns result in different test cases for static code analysis
tools.

Test suites that are used to evaluate static code analysis tools are usually
synthetic. The Juliet [221] test suite has been generated by the NSA Center
for Assured Software. The Java test suite contains 28,881 test cases under
112 different CWEs. The C/C++ test suite contains 64,099 test cases under
118 different CWEs. A relatively new C# test suite contains 28,942 test
cases under 105 different CWEs. Each test case targets only one flaw, but
some test cases also contain multiple flaws. Common additional flaws are
hardcoded passwords or unreachable code.

The STONESOUP test suite [223] is split into three phases. The first
and second phases contain small test cases. The third phase contains large
test cases with injection vulnerabilities. 16 open source projects are used as
a base and different vulnerabilities are injected. Specific inputs trigger the
vulnerabilities. The test suite of phase three contains 4,582 test cases in C
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and 3,188 test cases in Java. There is more research about automatically
injecting vulnerabilities in source code (e.g [224], [229] [234]).

Hao [219] constructed a test suite based on known vulnerabilities in
open source projects. The projects are reduced to only contain the original
vulnerability. That vulnerability is transformed into a base vulnerability that
only contains the sink and source. The base vulnerability allows to check
if the static code analysis tools can detect it. Features are added to the
base vulnerability to create variants of the vulnerability. The concept of a
base vulnerability and features allows to verify what features the static code
analysis tool can support.

Stivalet and Fong [235] developed a tool to generate many synthetic test
cases in PHP. The current test suite contains 42,212 test cases with different
CWE categories. Our approach is similar and our test suite is an addition
to the existing PHP test suite. A similar approach is used and extended by
decision trees and additional patterns (context, dataflow). This makes our
SQL injection and XSS test cases more detailed than the test cases in these
categories by Stivalet and Fong [235].

15.2 Methodology

Our methodology is to generate test suites for static code analysis tools. The
generation process is based on source code patterns that are described in
section 15.3. The resulting test suites are scanned with two commercial static
code analysis tools. Static code analysis metrics are calculated based on the
results. Additionally, the results are analyzed in to pin point problems of the
static code analysis tools. The static code analysis tools are seen as black
boxes because commercial tools do not provide access to the source code.
The results show if the test suites are usable as a benchmark for static code
analysis tools. Finally, expert interviews are used to evaluate if the test suite
generation is useful or if it has any flaws.

15.3 Test case generation

We have developed a framework [214] that can either inject vulnerabilities
in a PHP project or can generate test cases. This section describes how the
test cases are generated.
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15.3.1 Design of Test Cases

The design of the test cases is similar to test cases by Stivalet and Fong
[235] that have been used to create the PHP Vulnerability Test Suite. A
combination of different source code parts is used to generate a test case.
Based on the combination, it either is a vulnerable test case or it is not
vulnerable. A vulnerable test case means that the source code contains a
vulnerability. The vulnerability might not be exploitable, but the likelihood
of being exploitable is high. A not vulnerable test case means there is no
possibility to inject critical characters. Accordingly, the test case cannot be
exploited. The decision of being a vulnerable or not vulnerable test case
will be explained in this section. We have the focus on Cross Site Scripting
(XSS) and SQL injection (SQLi) and extend the PHP Vulnerability test
Suite. For both vulnerability categories (XSS and SQLI) the test cases from
our framework cover all the test cases of the PHP Vulnerability Test Suite
in these categories. It extends these test cases by adding more sanitization
methods and by distinguishing between the context and the sink.

15.3.2 Internal Structure

The internal structure to generate the test cases is based on five pattern
types:

• Source patterns provide user data. Depending on the source, the user
provided data is filtered (e.g. only pass integer value) or the source
provides unfiltered data.

• Sanitization patterns are functions that filter or encode characters.
This category includes functions that transform data (e.g hash function,
string manipulations). Some patterns do not filter any characters.

• Dataflow patterns are a list of code statements that pass data from
an input to an output without transforming the data. For example, a
combination of functions explode and implode can be used to transform
data into an array and back to the original form. A simple assignment
is also a dataflow pattern.

• Context patterns describe the context of the user input that will be
passed to the sink: For example, if the user input is put inside quotes
or apostrophes. A context pattern is always bound to a specific sink
pattern category. For example, an SQL statement is dynamically
constructed by using user input. This context pattern can only be used
for sink patterns that are from the SQL injection category.
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Figure 15.1: Overview of generating the test cases.

• Sink patterns are functions where sensitive operations are executed. If
unfiltered user data reaches such functions, it will be a vulnerability.

Figure 15.1 shows the internal structure to generate the test cases. For
each test case a source, sanitization, dataflow, context and sink pattern
is selected. The generation chains the patterns together and generates an
Abstract Syntax Tree that is used to generate the final source code. A
decision tree is used to decide if a test case is vulnerable or not vulnerable
(safe).

15.3.3 Pattern for test case generation

The patterns are stored in JSON files. Table 15.1 shows the main attributes
of the patterns. The type defines the programming construct that is required
for the input, output and the pattern itself. The data attribute describes the
data types that can be used as input and the resulting output data type. For
example, a pattern (data (input): Numeric, data (output): String) requires
a numeric input and the output has the data type String that contains the
input.

The source code representation of each pattern is stored in the PL/V
language. The PL/V is a context free language that represents an Abstract
Syntax Tree in text form. For example, figure 15.2 shows the PL/V pattern

<=> (%output,< s > (Hello))

that represents an assignment (<=>) with the string value (< s >) Hello.
The operand is written like < operand > and the operators are listed inside
brackets. The symbol % is used for variables. The Special variables %input
and %output are used to chain the patterns together. For each pattern the
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Table 15.1: Attribute descriptions of the patterns.

Key Description Pattern
name A unique name for the pattern all
type The type of the pattern

(Expression or Statement)
all

type (input) The type of the input pattern
(Expression, Statement, Variable)

all except source

type (output) The type of the output pattern
(Expression, Statement, Variable)

all except sink

data (input) Data types that can be used as
input
(Array, String, Numeric, Any)

all except source

data (output) Data types that can be used as
output
(Array, String, Numeric, Any)

all except sink

Filtering Characters that are filtered or es-
caped

Source, Sanitization

Escapes Characters that can be used to es-
cape critical characters

Sink

Init A list of statements that are re-
quired for the initialization. De-
fined in PL/V language.

all

Code The code of the pattern described
in PL/V language

all
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1 # %output: <$>(varA)
2 <=>(%output,

<s>(Hello))

(a) PL/V

Assign

String

Hello

Variable

varA

(b) AST
1 $varA = "Hello";

(c) Source Code

Figure 15.2: The generation process from PL/V to source code.

Abstract Syntax Tree is generated and then put together into one Abstract
Syntax Tree. The test case generation uses variables in between each pattern
to pass the variable to the corresponding input and output.

15.3.4 Vulnerability Decision

Each test case can either be vulnerable or not vulnerable. A vulnerability is
defined as: "Weakness in an information system, system security procedures,
internal controls, or implementation that could be exploited or triggered by
a threat source." [215] Our approach uses decision trees that are based on
what characters are filtered/escaped, the context and the given sink.

The escapable decision is based on what enclosure is used in the context
pattern. For example, if the enclosure uses the apostrophe character, it
will be checked if the test case filters apostrophe characters. If the sink
allows escaping, it will be checked if apostrophe characters are escaped with
the corresponding escape character. If the character is properly escaped or
filtered, the test case will not be vulnerable.

The special chars decision checks if any special characters are not filtered
or properly escaped. Special characters in this case are all characters (includ-
ing white spaces) that are not alphabetic or numeric. If user input reaches
the decision special chars, it is a critical part. Accordingly, only uncritical
characters are allowed.

Figure 15.3 shows the decision tree for a SQL injection test case. A SQL
statement only has either the context of being inside an enclosure or being a
plain SQL statement. Accordingly, it simply checks in the plain context if
any special characters are allowed. For example, if a SQL statement checks
for a personal identification number (PIN), no enclosure will be required
because the PIN is numeric. If the input can only be numeric, the test case
will not be vulnerable. If special characters are allowed, it could be exploited.
In contrast, if an enclosure is used like the apostrophe character, it would be
sufficient to filter out any apostrophe characters. If the apostrophe is not
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SQLi

Context

Enclosure (e.g. ’ ")Plain

EscapableSpecial chars

VulnerableNot vulnerable

Yes
NoYes

No

Figure 15.3: Decision tree vulnerable/safe for SQL injection.

filtered out, the enclosure can be escaped that is not intended by a developer.
Figure 15.4 shows the decision tree for a Cross Site Scripting test case.

For Cross Site Scripting the context and enclosure can be nested. The context
is split into plain, HTML Attribute and Javascript. In a plain context, an
enclosure does not prevent any injection approaches. Accordingly, it will
be checked if any special characters are allowed. Inside Javascript context,
the decision is the same as for SQLi test cases. Based on an enclosure or
not it will be checked for escapable or special chars. The HTML Attribute
context is a bit different. Some attributes like onclick or href are critical
because they can be used to execute Javascript code. Accordingly, if such a
JS critical attribute is the context, it will be checked for special chars. If it is
no JS critical attribute, it will be checked if the attribute uses an enclosure
or not. Accordingly, for non JS critical attributes the vulnerability decision
is the same as for SQL injections.

15.3.5 Code generation

Each code sample uses a source, a sanitization, a dataflow, a context and a
sink pattern to generate the source code. Figure 15.5 shows a generated test
case. At the beginning, the database object $db is initialized. The source
uses a PHP function that filters critical characters. The sanitization pattern
is a data type cast to integer. The dataflow pattern stores the data in an
environment variable and reads the stored data from it. The context is a
plain SQL statement (Context: plain). The sink is a critical SQL function
to run the SQL statement. For testing, output statements are added. The
test case is not vulnerable because the sanitization pattern filters pass only
numeric inputs.
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+

XSS

Context

HTML AttributePlain Javascript

JS Critical

Enclosure

Requires Specials Critical Enclosure

Special Chars Escapable

Vulnerable Not vulnerable

No Yes

Yes

No

Plain HTML Javascript

Yes
NoYes

No

Figure 15.4: Decision tree vulnerable/safe for Cross Site Scripting.
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Figure 15.5: Generated Test Case (Not vulnerable)
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15.3.6 Tool usage

The tool uses command line instructions to generate the different test suites.
The following command has been used to generate the soundness test suite:
$ sh run_insec.sh -genFiles
-generate_samples [target_directory]
-onlyPattern dataflow:assignment
-split_by source

The commands genFiles and generate_samples define that a test suite will
be generated in the target directory. The onlyPattern parameter defines that
only the assignment pattern from the dataflow pattern category is used. The
split_by defines which pattern is used to split the test cases into directories.
For the data flow test suite the following command has been used:
$ sh run_insec.sh -genFiles
-generate_samples [target directory]
-onlyPattern sanitize:nosanitization
-onlyPattern context:xss_plain
-onlyPattern sink:echo_func
-onlyPattern source:_GET
-split_by source

It restricts each test case to be a cross site scripting vulnerability without
any sanitizations. The only permutations are found in the dataflow patterns.

15.4 Evaluation

It is not within the scope of this paper to evaluate static code analysis
tools. For the evaluation, we use two commercial static code analysis tools
to see if the generated test suite is useful. These tools were selected after
an evaluation of open source and commercial static code analysis tools that
support PHP, detect XSS and SQLi and are up to date. Nevertheless, it is
not important to evaluate the tools instead the evaluation should check, if the
test suites can be used as benchmark and to identify problems of static code
analysis tools. Additionally, an expert interview with SAMATE explains the
usefulness and why synthetic test cases can be critical to evaluate static code
analysis tools.

15.4.1 Generated Test Cases

Table 15.2 shows the patterns that are used to generate the test suites. The
patterns stem from previous work [230, 231] on how vulnerabilities occurred
in open source projects. Even some patterns stem from evaluating static
code analysis tools [232] [233]. Additionally, the PHP documentation [217]
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Table 15.2: Patterns that are used to generate the test suites.

Pattern Count
Source 22
Sanitization 117
Dataflow 20
Context (Total) 10

Context (XSS) 7
Context (SQLi) 3

Sink (Total) 23
Sink (XSS) 9
Sink (SQLi) 14

has been reviewed to cover the different SQL database implementations and
basic PHP functionality. The sanitization patterns contain functions that
do not filter characters. For example, the strtoupper function is used to
convert a variable to upper case. Also encryption functions are added as
sanitization functions because they filter critical characters. As final step,
patterns related to Cross Site Scripting and SQL injection from Stivalet and
Fong [235] have been added to the patterns.

We decided to generate a soundness test suite and a dataflow test suite.
The soundness test suite contains all possible mutations between source,
sanitization, context and sink patterns. All of these permutations are relevant
because the outcome of being vulnerable or not is based on these patterns.
The dataflow pattern has no influence on being vulnerable or not. The
soundness test suite uses only an assignment as dataflow pattern. Table 15.3
shows how many test cases have been generated. Not all permutations of the
patterns are possible because of different constrains. For example, the input
and output data type of the patterns have to match. That leaves 258,432
permutations of the patterns.

The second test suite is the dataflow test suite. Each test case is a
simple Cross Site Scripting vulnerability that just uses different dataflow
patterns. All test cases are vulnerable. The test case that uses an assignment
as dataflow pattern can be used as evaluation. If the tool detects that test
case, the tested static code analysis tool will be able to detect the base test
case. Then, if the tool does not detect other test cases in the test suite, the
dataflow pattern will be problematic for the tool.
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Table 15.3: Test Suite to check proper sanitization (Dataflow pat-
tern:assignment).

Test Cases Count
XSS - Vuln. 23499
XSS - Safe 131481

XSS - Total 154980
SQLi - Vuln 20187
SQLi - Safe 83265

SQLi - Total 103452
Vuln 43686
Not Vuln. 214746

Total Test Cases 258432

15.4.2 Static code analysis tools

This sections uses the scan results to show that the test suites can be used
to find out what the problems of the static code analysis tools are. We used
two commercial static code analysis tools to see if the generated test suites
are useful to evaluate static code analysis tools. For the soundness test suite,
the following metrics have been calculated:

• Precision: P = TP
TP+FP

• Accuracy: Acc = TN+TP
TN+FN+FP+TP

• Recall: R = TP
FN+TP

• False alarm rate: F = FP
TN+FP

• G-Score: G = 2R(1−F )
R+1−F

Different metrics can be used to compare static code analysis tools. We
decided to use the G-Score as a metric because it makes the results comparable
in a single metric. The G-Score is a harmonic mean of Ri and 1− Fi that
integrates the recall Ri and false alarm rate Fi into one metric [225]. Higher
values are better.

Table 15.4 shows the scan results on the soundness test suite. Based on
these results, Tool A performs better on the soundness test suite. Overall,
the tools do not perform well on the soundness test suite.

Our first step to pin point the problems was to check, if the tool do
consider the context of each test case. The results are analyzed if the tools
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Table 15.4: Scan result on the soundness test suite.

Metric Tool A Tool B
False Positive (FP) 55969 7401
False Negative (FN) 30079 41880
True Positive (TP) 13607 1806
True Negative (TN) 158777 207345
Precision 19.6% 19.7%
Accuracy 66.7% 80.9%
Recall 31.2% 4.1%
False alarm rate 26.1% 3.5%
G-Score 43.8% 7.9%

Table 15.5: Scan result on the soundness test (plain context).

Metric Tool A Tool B
False Positive (FP) 4157 (-92.6%) 434 (-94.1%)
False Negative (FN) 9137 (-69.6%) 12860 (-69.3%)
True Positive (TP) 11803 (-13.3%) 1711 (-5.3%)
True Negative (TN) 31527 (-80.1%) 41619 (-79.9%)
Precision 74.0% (+54.4) 79.8% (+60.1)
Accuracy 76.5% (+9.8) 76.5% (-4.4)
Recall 56.4% (+25.2) 11.7% (+7.6)
False alarm rate 11.7% (-14.4) 1.0% (-2.5)
G-Score 68.8% (+25) 21.0% (+13.1)

have any different reports if only the context is changed. Based on the results,
both tools do not consider the context for XSS or SQLi test cases. Table
15.5 shows the metrics calculated on the test cases with plain context. Plain
context means that there is no enclosure. Accordingly, sanitization is not
sufficient if it prevents only escaping the enclosure. The metrics show that
the tools do perform better without different context.

Additionally, the test suite can be used to see if the tools do not know any
sinks (unknown sinks) or sources (unknown sources). To find missing
sinks or source, all vulnerable test cases are checked if the tools reported a
vulnerability. If all test cases for a specific sink or source do not have any
vulnerable report, the tool does not know that sink or source. There is a
possibility that the tool considered that source or sink as safe to use. Black
box testing does not allow to distinguish if the tools sees the source/sinks as
safe or unknown. Nevertheless, the test cases are vulnerable and the tools



Systematic Generation of PHP Test Cases 241

should not ignore the corresponding sources or sinks.
Missing sufficient sanitization is a check, to see if the tool misses

any sanitization functions that are sufficient all the time. For example, if
user input is cast to an integer, the test case will always be not vulnerable.
These missing sanitization functions are found by searching for sanitization
functions where all resulting test cases are not vulnerable. If a tool reports
any test case as vulnerable, the tool will miss the sanitization functions.

A tool can have fixed results for specific sanitization functions. All
sanitization functions that are found in vulnerable and not vulnerable test case
are checked for fixed sanitization. It will be checked, if the tool always reports
vulnerable or not vulnerable based on a specific sanitization functions. It is
important to filter out all test cases that contain unknown sinks or unknown
sources beforehand. All the finding can either be that the tool always reports
the same vulnerability or it does not report a vulnerability. If no vulnerability
is reported (fixed sanitization, the tool assumes incorrectly the sanitization
functions is always sufficient or the tool cannot continue the data flow analysis
from that sanitization function. If the tool always reports a vulnerability for
a sanitization function, the tool does not recognize the sanitization function
as sufficient in any case (Missing potential sanitization).

Table 15.6 shows the results split for XSS and SQLi test cases. It shows
that tool A has many missing sufficient sanitization functions. Additionally,
it shows that tool A has different results on XSS and SQLi test cases. Tool B
instead has similar problems on XSS and SQLi test cases. Only one unknown
source is different. A look into the results show that for that specific source
a different vulnerability type is reported (display sensitive data) that is
not mapped to XSS. Tool B also has many missing potential sanitizations.
Overall, both tools have problems with missing sanitization functions that
result in false positive reports.

The dataflow test suite has been scanned as well. Because the test suite
contains only vulnerable test cases, only false negative and true positive
reports can occur. Accordingly, the only useful metric is the recall that
calculates how many dataflow patterns are supported. Table 15.7 shows the
scan results. Tool A supported one more dataflow pattern than Tool B.

15.4.3 Expert interviews

As final evaluation six experts from the Software Assurance Metrics And
Tool Evaluation (SAMATE) [218] team have been interviewed about the test
suites and the generation process. At first the experts got a presentation
about the generation process and a detailed explanation of the decision trees.
After the presentation the experts have been interviewed together in an
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Table 15.6: Checks on to find missing/problematic patterns.

Checks Tool A Tool B
Unknown sources (XSS) 6 15
Unknown sources (SQLi) 4 14
Unknown sinks (XSS) 3 1
Unknown sinks (SQLi) 7 3
Missing sufficient sanitization (XSS) 30 26
Missing sufficient sanitization (SQLi) 68 26
Fixed sanitization - report (XSS) 3 0
Fixed sanitization - report (SQLi) 2 0
Missing potential sanitization (XSS) 10 39
Missing potential sanitization (SQLi) 11 39

Table 15.7: Scan result on the data flow Test Suite.

Metric Tool A Tool B
False Negative (FN) 12 13
True Positive (TP) 8 7
Dataflow detection (Recall) 40% 35%

online meeting. The interview includes two open ended questions where the
experts were free to give their feedback. The first question is related to the
distinction between vulnerable and not vulnerable test cases, and the other
is related to usefulness of our approach to creating a test suit. The interview
was with all experts at the same time, but each expert contributed to each
of the questions asked. In the following we will discuss the feedback for each
question.

The first question was: How do you decide between a vulnerable and not
vulnerable test case?
The response from the experts was that the decision for a test case is difficult.
It is easy to prove that a test case is vulnerable by providing a working exploit.
In contrast, it is hard to prove that a test case is not vulnerable. That is the
reason why the definition uses weakness to define a vulnerability. A weakness
does not mean that it is exploitable. Instead, it is a weak programming
construct that might result in an exploitable vulnerability. One expert stated
that a good approach to define if a test case is vulnerable or not is to run
multiple tools that have been proven to be good. The results can be used to
decide if a test case is potentially vulnerable. But it does not ensure that the
result is correct. Another expert mentioned that especially sound static code
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analysis tools try to solve the issue to distinguishing between false positive
and true positive findings.

The second question was: Are such precise test cases useful as test suite?
One of the experts answered that a large quantity of different test cases is
good because it can reveal special cases. The expert mentioned that some
static code analysis tools show unpredictable results that are based on the
implementation. There can be intended or unintended limitations in the
implementation that only trigger on very specific test cases. Additionally,
many static code analysis tools use heuristics to decide if a finding is either a
false positive or true positive. This can be problematic for synthetic test cases
because based on the heuristic a vulnerable test case might not be reported.
The heuristics tend to filter out findings on very small code bases because
the probability that the vulnerability is artificial is high. The response to the
decision tree was positive. The experts did not see any issues that invalidates
the approach to use the decision trees to determine between a vulnerable
and not vulnerable test case.

To summarize, the response from the experts was positive. The decision
tree is a solid way to decide if a test case is vulnerable or not. As they
mentioned, the decision for not vulnerable test cases is almost impossible.
The experts did not see any issues in the generation process and the decision
trees. Accordingly, the decision tree can be used to determine if a test case is
vulnerable. The large size of detailed test cases can help to find problems of
static code analysis tools. Additionally, the combination of context, sink and
filtering to decide if a test case is vulnerable makes it especially interesting
for sound static code analysis tools.

15.5 Discussion

We present an approach to decide if a test case is vulnerable or not. A not
vulnerable test case cannot be ensured. With the decision tree the likelihood
of being vulnerable is very low. Writing an exploit with only numbers and/or
alphabetic characters is usually not possible. Such exploits require that the
sink does some strange encoding or other functionalities. In contrast, all the
test cases that are vulnerable are indeed critical. If such a sample was found
in a real project, it would likely be a vulnerability.

Overall the test cases are synthetic. This has advantages and disadvan-
tages. For evaluating static code analysis tools it lets identify where the
problem of the tools are similar to the work by Hao [219] - for example, if a
vulnerable test case is detected by a tool. Additionally, when another test
case with just one different pattern is not detected, that pattern is identified
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as a problematic pattern for the tool. The heuristics can be problematic
for synthetic test cases. A solution would be to add the test cases in larger
projects such that heuristics see the vulnerabilities as unintended.

15.6 Conclusion

Our approach provides a generation process for test cases. Compared to
the work from Stivalet and Fong [235], our test cases are an extension of
additional patterns. Many different patterns have been used to create a
large test suite containing 258,432 test cases that can be used to test the
soundness of static code analysis tools and identify problematic patterns. A
combination of filtered characters, context and sink allows to decide if a test
case is vulnerable or not. The decision tree is a solid way to decide if a test
case is vulnerable. Nevertheless, a not vulnerable test case cannot ensure that
the test case still might contain a vulnerability. But the likelihood of such a
case is very low. The dataflow test suite in contrast is a small test suite, but
is important especially for static code analysis tools developers. They can
see where problems in the implementation are and what functionality has to
be added.
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