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1 Introduction

The geometric shape is of major importance in object recognition. The field of
shape analysis gives a formal definition of the shape of an object, and provides
tools to compare these shapes. One way to represent objects mathematically
is to consider their contours as parametric curves or surfaces defined on some
compact domain Ω ⊆ Rn. Since the same shape may be outlined by different
parametric curves that are equivalent under composition by some diffeomor-
phism, one typically have to solve an optimization problem on the group of
orientation preserving diffeomorhpisms, Diff+(Ω), to compute shape distances.

In this article, we propose an algorithm for solving optimization problems
on Diff+(Ω) by composition of elementary diffeomorphisms. Using concepts
from deep learning, we restate the reparametrization problem such that it may
be solved by training a residual neural network. This approach admits an ef-
fective, unified framework for optimal reparametrization of both curves and
surfaces. We motivate the approach with results on infinite-dimensional Lie
groups of diffeomorphisms by describing global charts for certain diffeomor-
phism groups, thus implying universal approximation properties. Furthermore,
we establish a priori estimates for the composition of multiple diffeomorphisms.
These estimates are of independent interest beyond the applications considered
in the present paper. Finally, we provide an implementation of the algorithm
based on the PyTorch-framework [31] and test it for several reparametrization
problems. The source code for our implementation of the algoritms is available
at https://github.com/jorgenriseth/funcshape.git1

1.1 Related work

The methods proposed in this article were developed in the framework of
shape analysis, but have their foundations in optimal control and deep neural
networks. Our approach is a so-called learning-free method, which does not
attempt to draw conclusions to unseen instances based on features learned
from big data sets, but rather attempt to find an alignment between a single
pair of shapes. As such, the method is conceptually similar to that of a deep

image prior [38], where untrained deep convolutional networks are used for
image reconsunstruction tasks, such as denoising, based on a single image.

The neural network is structured to have inherently encoded some of the
important properties of diffeomorphisms, such as invertibility. To achieve this,
we base the network structure on residual neural networks [19], where each
layer is of the form x 7→ x + f(x). Here f : Rd → Rd depends on parameters,
e.g. for so-called dense layers f(x) := σ(Ax + b), where A is a d × d matrix,
b ∈ Rd and σ is a scalar nonlinearity applied componentwise.

1 This repository will be the subject of change following any feedback during the review
process. At the point of publication this url will be replaced by one pointing to a fixed
version.

https://github.com/jorgenriseth/funcshape.git
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Residual networks may further be related to approximations of diffeomor-
phisms, by interpreting them as flows of ordinary differential equations [16,
39,6]. Assuming the parameters to be time-dependent functions A(t) and b(t),
each layer may be interpreted as a forward Euler discretization of the non-
autonomous differential equation

ẋ(t) = f(x, t), x(0) = x, f(x, t) := σ(A(t)x + b(t)), (1.1)

x 7→ ψL, ψk = ψk−1 + hf(ψk−1, tk), k = 1, . . . , L, ψ0 = x,

where h is the step-size often taken to be equal to 1, and with tk = kh.
For f Lipschitz continuous in x, the Euler method is known to converge on
bounded time intervals to the solution of the differential equation as h→ 0. A
sufficient condition for the invertibility of the layer map is that hf is Lipschitz
continuous, with Lipschitz constant Lip(hf) < 1 (also called 1-Lipschitz). For
activation functions σ with bounded derivative, most layer types, e.g. dense
layers or convolutional layers, can be made 1-Lipschitz by appropriate scaling
[7]. See for example [5] for a concrete strategy for choosing such a scaling.

The necessity of invertible layers in neural networks is not restricted to
the ODE-interpretation of residual neural networks. For example, normalizing
flows are a class of machine learning models that may be used to artificially
generate data [37]. Given m independent observations of n random variables
one seeks an estimate of their underlying probability density ρ(x). The ap-
proximation of the probability density is achieved by mapping x to a new set
of variables y = ϕ−1(x) with known (for example normal) distribution µ(y).
Then

ρ(x) = Jy(x)µ(y(x)),

where Jy is the Jacobian of the map ϕ−1. The map ϕ−1 is built by means of
a gradient ascent flow increasing the log-likelihood of the sample data with
respect to its density.

While the evolution and growth of the field of deep learning have primarily
been driven by empirical results throughout the last decade, there are multiple
approximation theorems which provide a theoretical basis for the effectiveness
of neural networks. For example, consider the space of one-layer neural net-
works of the form

ψ : [0, 1]n → R, ψ(x) :=
N∑

j=1

αjσ(w
T
j x+ bj), (1.2)

with parameters αj , bj ∈ R, wj ∈ Rn, and some activation function σ : R → R.
In 1989, Cybenko [11] proved that such networks are dense in the space of
continuous functions with respect to the supremum norm as N → ∞, provided
that σ is continuous and satisfies

σ(t) →
{
1 t→ +∞,
0 t→ −∞.
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In [1], the authors provide a similar approximation result for diffeomor-
phisms isotopic to the identity, defined on a compact manifold Ω. They show
that such diffeomorphisms may be expressed as a finite composition of expo-
nential maps of vector fields that have been scaled by smooth functions, as
long as the vector fields belong to a bracket-generating family of functions. In
[2], this result is extended to more general maps on Ω.

1.2 Structure of the Article

The article is structured as follows: Section 2 provides background on shape
analysis and the definition of the proposed deep-learning approach. Section 3
gives universal approximation results and the theoretical basis for the deep
learning approach. Section 4 describes a priori estimates of the Ck-distance
between the identity diffeomorphism and the network ϕ, given in terms of el-
ementary diffeomorphisms. Section 5 provides details on how the proposed al-
gorithm is implemented. Section 6 shows the results of applying the algorithm
to test examples involving both parametric curves, surfaces and +nFinally,
section 7 discusses some of the choices made in this article and potential ideas
for further improvements of the algorithm.

2 Background and definition of the proposed numerical method

2.1 Shape space and shape metrics

Orientation-Preserving Diffeomorphisms

Consider the space of immersions from Ω = [0, 1] into euclidean space Rd,

P := Imm(Ω,Rd) =
{
c ∈ C∞(Ω,Rd) : c′(t) 6= 0, ∀t ∈ Ω

}
. (2.1)

To be able to identify two curves representing the same shape, consider the
set of orientation-preserving diffeomorphisms, which consists of monotonically
increasing functions from Ω onto itself,

Diff+(Ω) = {ϕ ∈ C∞(Ω,Ω) : ϕ(0) = 0, ϕ(1) = 1, ϕ′ > 0} . (2.2)

The group Diff+(Ω) is an infinite-dimensional Lie group. Section 3 provides
more details on this group. For now, we note that Diff+(Ω) has a canonical
right group action on P by composition,

P × Diff+(Ω) → P , (c, ϕ) 7→ c ◦ ϕ.

We shall refer to this as reparametrization of c by ϕ. With respect to the
reparametrization action, we can now describe shape spaces.
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Shape Space

Elements of shape space are interpreted as unparametrized curves. The shape
space is the set of Diff+(Ω)-orbits

S = P / Diff+(Ω).

Our goal is to obtain geometrically sound deformations between elements in
S and compute distances thereof, by means of a metric dS . Such a metric is
typically constructed by defining a reparametrization-invariant metric dP on
P . Due to reparametrization invariance (cf. [8]),

dS([c1], [c2]) = inf
ϕ∈Diff+(Ω)

dP (c1, c2 ◦ ϕ) (2.3)

defines a metric on S. Hence, to compute the distance between two shapes, we
need to solve an optimization problem. The algorithm presented in this article
aims to solve this problem.

The SRVT and Q-transform for Curves

One way to define a suitable distance function dP is by exploiting certain
transformations which transform familiar metrics to obtain reparametrization-
invariant (Riemannian) metrics. One such transformation is the square-root
velocity transform (SRVT) for curves, introduced in [35]. It is given by

R : P → C∞(Ω,Rd) \ {0}, c 7→ c′
√

|c′|
.

It is easy to see that R(c ◦ ϕ)(t) =
√

ϕ′(t) (R(c) ◦ ϕ)(t). Hence we can pull
back the L2-inner product on function spaces to obtain a reparametrization-
invariant distance:

dP(c1, c2) := ‖R(c1)−R(c2)‖L2(Ω,Rd) =

(∫

Ω

|R(c1)(t)−R(c2)(t)|2 dt
)1/2

.

The SRVT was generalized to curves on Lie groups and homogeneous spaces
[9]. Another transformation with similar properties as the SRVT, which allows
us to construct a different metric, is the so-called Q-transform [25,3]:

Q : P → C∞(Ω,Rd), c(·) 7→
√

|c′(·)|c(·). (2.4)

Surfaces embedded in 3D space

To extend the framework for computing shape distances to parametric surfaces
embedded in R3, we will assume for simplicity that the surfaces are defined on
the unit square Ω = [0, 1]2. The main differences between shapes of curves and
of surfaces pertain the group of diffeomorphisms. Further, we need analogues
to the SRVT and Q-transform.



6 Elena Celledoni et al.

Denote by fx, fy the partial derivatives of a parametric surface f and by

af(x) = |fx(x)× fy(x)|

the area scaling factor of the surface. Now the pre-shape space for surfaces is

P = {f ∈ C∞(Ω,R) : af (x) > 0 ∀x ∈ Ω} . (2.5)

The group of orientation-preserving diffeomorphisms consists of smooth in-
vertible maps from Ω onto itself such that the Jacobian determinant Jϕ is
positive,

Diff+(Ω) = {ϕ ∈ C∞(Ω,Ω) : Jϕ(x) > 0 ∀x ∈ Ω, ϕ(s) ∈ ∂Ω ∀s ∈ ∂Ω} .

Its tangent space TϕDiff+(Ω) at ϕ consists of smooth boundary-respecting
vector fields on Ω (see [26]).

The SRNF and Q-transform of Surfaces

The square root normal field (SRNF), defined in [20], is a generalization of the
SRVT to surfaces. It is defined by

N (f)(x) =
√

af (x)nf (x)

where nf (x) is the normal vector field on f . Applied to a reparametrized
surface, the transform satisfies the relation

N (f ◦ ϕ) =
√

Jϕ(N (f) ◦ ϕ).

Following the same derivation as was given for curves, we may now define a
reparametrization-invariant pre-shape distance by

dP(f1, f2) = ‖N (f1)−N (f2)‖L2(Ω,R3),

since the factor
√
Jϕ cancels the Jacobian determinant introduced by the

change of variables in the integral. While the SRNF shares some properties of
the SRVT, for example the translation invariance, it is not invertible. In [22],
the authors present several examples of surfaces that represent different shapes,
but have the same image under the SRNF. However, the SRNF framework has
shown some merit in practice as shown in [36] and the references therein.

Alternatively, we can use the Q-transform for surfaces, which was intro-
duced in [23]. The Q-transform for surfaces is defined by

Q(f)(x) =
√

af (x)f(x)

and satisfies the same property of reparametrization-invariance with respect
to the L2-norm.
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2.2 The optimization problem on the diffeomorphism group

The metric on shape space is induced by suitable metrics on the pre-shape
space. In the approaches sketched above, this metric is the geodesic distance
of a Riemannian metric arising as pullback of the L2-metric via one of the
transformations mentioned. To compute the metric on shape space one needs
to find the elements in the Diff+(Ω)-orbits which are closest to each other.
However, due to equivariance of the transformations, this can equivalently
be formulated as the following optimization problem for the L2-distance (ex-
ploiting that (C∞(Ω,Rd), L2) is a pre-Hilbert space and the set in which we
compute the distance is an open (but non-convex) subset of this space). As-
sume that f1, f2 ∈ P , and we want to compute dS([f1], [f2]). Let T be one
of the transforms discussed above and qi := T (fi), i = 1, 2. Then we need to
solve the following optimization problem:

ϕ∗ = arg infϕ∈Diff+(Ω)E(ϕ), E(ϕ) := ‖q1 −
√

ϕ′ (q2 ◦ ϕ)‖2L2 . (2.6)

Note that the optimization problem has been formulated as the squared L2-
distance. Solving this optimization problem, we can compute the metric dis-
tance on shape space if both q1 and q2 are contained in a convex subset of the
image of the transformation. While this is not always the case (for example, it
does not hold for a pair of curves which get mapped by the SRVT to elements
q1 and −q1), the assumption always holds locally for mappings which are not
too far apart. In any case, solving efficiently this optimization problem is cru-
cial in shape analysis and the main purpose of the present paper is to provide
tools from machine learning for its solution.

2.3 A Riemannian gradient descent method

A gradient descent approach to solve (2.6) is obtained by representing the
gradient of the functional E by means of an othonormal basis of TidDiff+(Ω).
Suppose fj ∈ TidDiff+(Ω), j = 1, 2 . . . is an orthonormal basis of TidDiff+(Ω)
with respect to an inner product 〈·, ·〉id on TidDiff+(Ω). Consider the left
multiplication Lϕ for some ϕ ∈ Diff+(Ω) mapping ψ 7→ ϕ◦ψ. We denote with
dLϕ : TidDiff+(Ω) → TϕDiff+(Ω) the corresponding derivative mapping at
the identity. The gradient of E with respect to 〈·, ·〉id is defined as the unique
vector field gradE on Diff+(Ω) satisfying

dE
∣
∣
ϕ
(wϕ) = 〈dL−1

ϕ (gradE(ϕ)), dL−1
ϕ wϕ〉id, ∀wϕ ∈ TϕDiff+(Ω).

We can formally represent gradE(ϕ) using the basis of TidDiff+(Ω), by

dL−1
ϕ (gradE(ϕ)) =

∞∑

j=1

λjfj , (2.7)

with λj = dE
∣
∣
ϕ
(dLϕ(fj)).
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In practice, the proposed gradient descent algorithm on Diff+(Ω) is ob-
tained by truncating (2.7) and projecting the gradient on the subspace of
TidDiff+(Ω) spanned by a finite number M of basis elements. This gives

dL−1
ϕ ĝradE(ϕ) =

M∑

j=1

λjfj,

and we obtain the following update rule for the gradient descent iteration:

ϕ(n+1) = ϕ(n) ◦
(

id− η dL−1
ϕ(n) ĝradE

(
ϕ(n)

))

, n = 0, 1, . . . ,

with ϕ0 = id, where η is a scalar parameter optimized to speed-up convergence
and to guarantee the invertibility of ϕ(n+1). Written in terms of the basis, the
gradient descent iteration becomes

ϕ(n+1) = ϕ(n) ◦



id− η

M∑

j=1

λnj fj



 , n = 0, 1, . . . , (2.8)

and {λnj }Mj=1 are coefficients determined at each iteration n. In [33], this update
rule was shown to be equivalent to an algorithm proposed for reparametriza-
tion of surfaces in [24] and to a similar algorithm created for curves in [35].

2.4 Main method: Deep learning of diffeomorphisms

It can be observed that after L iterations of the gradient descent algorithm
(2.8), the diffeomorphism ϕ(L) is the composition of L elementary diffeomor-
phisms defined as the identity plus a weighted sum of M basis functions.
This observation may be exploited to create a deep learning approach to the
reparametrization problem.

The goal is to find a minimizer of the loss function in (2.6). However,
instead of using the whole group Diff+(Ω), we fix some L,M ∈ N and restrict
ourselves to functions of the form

ϕ = ϕL ◦ · · · ◦ ϕ1, where ϕℓ := id +

M∑

n=1

wℓ
nfn, ℓ = 1, . . . , L, (2.9)

for a set of basis function {fj}Mj=1 ⊂ TidDiff+(Ω). Here {wℓ
j}Mj=1 are coefficients

to be found by the optimization algorithm.
The computational graph of the function ϕ in (2.9) has a very similar

structure to that of a deep residual network [19]. Both the input-values x0 and
output-values xL of the network are points in the domain Ω. The function
evaluation is defined by the recursive relation

ϕ(x0) = xL, xℓ+1 = ϕ(xℓ) = xℓ + Fwℓ(xℓ), ℓ = 0, ..., L− 1.
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By using a discrete analogue of (2.6) as the loss function, then the problem
of finding an optimal reparametrization between two curves — i.e. finding
the optimal coefficients {wℓ

j}Mj=1 — coincides with that of training a neural

network. To ensure that ϕ ∈ Diff+(Ω), we need to restrict the set of weights
to some subset W ⊂ RML. Further details on this restriction are given in
section 5.1.

The increased performance of the deep learning approach (2.9) can be seen
in figure 2.1, which compares the proposed method to the gradient descent
algorithm. This figure indicates that the deep learning approach converges
towards a significantly better solution than gradient descent. A preliminary
implementation of this approach and a proof of concept was presented in [33].
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Fig. 2.1 Comparison between the Riemannian gradient descent (GD) and the deep residual
network approach for reparametrization of curves. The GD approach used 6 basis functions,
whereas the network approach used 6 basis functions and 6 layers. (Top): A curve c2 (left)
and the same curve with a different parametrization c1 = c2 ◦ϕ (right). The goal is to recon-
struct ϕ. (Bottom left): The diffeomorphisms found by the different algorithms, compared
to the target diffeomorphism ϕ. The diffeomorphism found by the deep neural network ap-
proach is visually indistinguishable from the target. (Bottom right): Convergence plots for
the two algorithms, showing the error of the cost function (see section 5.4) as compared to
the iteration number of the optimization algorithm. The error is given relative to the initial
error.

3 Theoretical justification

This section provides the main theoretical motivation for the proposed deep
learning approach for optimization on Diff+(Ω). We shall first recall relevant
(infinite-dimensional) Lie group structures on diffeomorphism groups. Then
we show that finite compositions of diffeomorphisms of the type ϕℓ = id+fℓ,
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ℓ = 1, . . . , L with fℓ a 1-Lipschitz vector field can be used to describe the
whole group of diffeomorphisms of a cube Ω = [0, 1]d (Section 3.2). If Ω is,
more generally, a compact convex subset of Rd with dense interior (like a disk
Ω = {(x, y) ∈ R2 : x2 + y2 ≤ r2} in R2), analogous diffeomorphisms generate
the group of diffeomorphisms fixing the boundary of Ω (see Section 3.1). We
are mostly interested in the case of a cube [0, 1]d; in fact, only the unit interval
[0, 1] and square [0, 1]2 are used in the numerical calculations. As explained
in Section 2.4, eventually our methodology is implemented first restricting fℓ
to a finite-dimensional subspace of the Lie algebra of vector fields and then
constraining fℓ to be 1-Lipschitz, see Section 6 for details. This introduces
further approximations which we discuss briefly but do not analyze in detail
in the present work.

3.1 Diffeomorphisms fixing the boundary

Lie group structures on diffeomorphism groups of compact manifolds have
been studied in many works (see, e.g., [26,17,27,30]), including the case of
manifolds with boundary or corners. In this section, we consider a compact
convex subset Ω ⊆ Rd with dense interior (having in mind the main example
Ω = [0, 1]d). A map on Ω is smooth if it extends to a smooth map on an
open subset in Rd; we can therefore speak about the group Diff(Ω) of all
C∞-diffeomorphisms of Ω. Following [14], we consider the subgroup

Diff∂(Ω) := {φ ∈ Diff(Ω) : φ(k) = k, ∀k ∈ ∂Ω}

of all smooth diffeomorphisms fixing the topological boundary ∂Ω pointwise.
It has been shown in [14] that if we endow Diff∂(Ω) with the compact-open
C∞-topology, the group becomes a manifold modeled on the space

C∞
∂ (Ω,Rd) = {f ∈ C∞(Ω,Rd) : f(k) = 0, ∀k ∈ ∂Ω}.

This space is an infinite-dimensional locally convex space (with respect to the
compact-open C∞-topology) and its elements can be identified with vector
fields which vanish on the boundary. This structure turns the space Diff∂(Ω)
into an infinite-dimensional Lie group. Using a canonical identification yields
TidDiff∂(Ω) = C∞

∂ (Ω,Rd). Further, Diff∂(Ω) admits a global chart

κ : Diff∂(Ω) → C∞
∂ (Ω,Rd), φ 7→ φ− idΩ, (3.1)

which arises as a restriction of the map κ : C∞(Ω,Rd) → C∞(Ω,Rd), f 7→
f − idΩ. For vector fields f ∈ κ(Diff∂(Ω)), the inverse κ−1(f) = f + idΩ is in
Diff∂(Ω) and we can obtain all elements in Diff∂(Ω) in this way.

By the preceding, every diffeomorphism fixing the boundary can be ex-
pressed as a vector field (vanishing on the boundary) plus the identity. Thus,
one only needs to approximate vector fields and can ignore the non-linearity of
the infinite-dimensional manifold. However, there are two practical problems
for us to solve:
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1. Describe the image of the global chart κ.
2. Establish approximation results by sampling from a finite-dimensional sub-

space of the Lie algebra.

As the global chart is highly dependent on the geometry of Ω, there is no
easy comprehensive way to describe its image. However, it is easy to provide
sufficient conditions for a vector field to lie inside the image of κ.

Example 3.0.1. Let Ω = [a, b] be a compact interval. Then a vector field f in
C∞

∂ ([a, b],R) is in the image of κ if f ′(x) > −1 for all x ∈ [a, b] since then
id[a,b] +f will be monotonically increasing.

The situation is more complicated for higher-dimensional sets. We do not
have any global information concerning the set Ω then. However, there is a
convenient sufficient condition ensuring that a map is in Ω, which we describe
now.

Fix any norm on Rd to calculate Lipschitz constants for functions from
Ω ⊆ Rd to Rd, operator norms, and open balls Br(x) := {y ∈ Rd : ‖y−x‖ < r}
for x ∈ Rd and r > 0. Setting

‖f‖∞,op := max
x∈Ω

‖f ′(x)‖op (3.2)

for f ∈ C∞
∂ (Ω,Rd), we obtain a continuous seminorm on C∞

∂ (Ω,Rd). Hence

U1 := {f ∈ C∞
∂ (Ω,Rd) : Lip(f) < 1} = {f ∈ C∞

∂ (Ω,Rd) : ‖f‖∞,op < 1}

is an open 0-neighborhood in C∞
∂ (Ω,Rd).

Lemma 3.1. The map idΩ +f is an element of Diff∂(Ω) for all f ∈ U1. Thus

U1 ⊆ κ(Diff∂(Ω)) and it makes sense to consider κ−1(f) = idΩ +f .

Proof. To keep the notation short, we write κ−1(f) := f+idΩ, though strictly
speaking it makes only sense to use the inverse of the chart once the proof has
been concluded. Given f ∈ U1, the map κ−1(f) : Ω → Rd is injective, since
κ−1(f)(x) = κ−1(f)(y) with x 6= y in Ω would entail that

‖x− y‖ = ‖f(y)− f(x)‖ ≤ Lip(f)‖x− y‖ < ‖x− y‖,

contradiction. Since κ−1(f)(x) = x for each x ∈ ∂Ω, we have

κ−1(f)(∂Ω) = ∂Ω. (3.3)

Using the injectivity of κ−1(f), we obtain for the interior Ω◦ of Ω

κ−1(f)(Ω◦) ∩ ∂Ω = ∅. (3.4)

Since ‖f ′(x)‖op < 1, we have κ−1(f)′(x) = idRd +f ′(x) ∈ GL(Rd) for each
x ∈ Ω◦, whence κ−1(f)|Ω◦ is a local C∞-diffeomorphism at each x ∈ Ω◦ (by
the Inverse Function Theorem) and hence an open map.

Next, we pick an x0 in the interior Ω◦ of Ω. Then the distance

r := min{‖x0 − y‖ : y ∈ ∂Ω}
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is positive. Note that

Br(x0) := {y ∈ R
d : ‖x0 − y‖ < r} ⊆ Ω◦. (3.5)

In fact, since Br(x0) ∩ ∂Ω = ∅, the disjoint open sets Br(x0) ∩ Ω◦ 6= ∅ and
Q := Br(x0)∩(Rd\Ω) cover Br(x0). Since Br(x0) is connected, Q = ∅ follows.

There exists y0 ∈ ∂Ω such that ‖x0 − y0‖ = r. Since f(y0) = 0, we have

‖f(x0)‖ = ‖f(x0)− f(y0)‖ ≤ Lip(f)‖x0 − y0‖ < r.

Hence

‖κ−1(f)(x0)− x0‖ = ‖f(x0)‖ < r,

whence κ−1(f)(x0) ∈ Ω◦, by (3.5). Since x0 ∈ Ω◦ was arbitrary,

κ−1(f)(Ω◦) ⊆ Ω◦

is established. Now κ−1(f)(Ω) is compact and hence closed in Rd. Further-
more, since κ−1(f)(∂Ω) = ∂Ω, we deduce that

κ−1(f)(Ω◦) = κ−1(f)(Ω◦) ∩Ω◦ = κ−1(f)(Ω) ∩Ω◦

is closed in Ω◦. Since Ω◦ is connected and its non-empty subset κ−1(f)(Ω◦)
is both open and closed in Ω◦, we must have κ−1(f)(Ω◦) = Ω◦. Being
a bijective local C∞-diffeomorphism, the map κ−1(f)|Ω◦ : Ω◦ → Ω◦ is a
C∞-diffeomorphism. Since f |∂Ω = 0, we have κ−1(f)|∂Ω = id∂Ω, whence
κ−1(f)(Ω) = Ω. It only remains to show that κ−1(f) : Ω → Ω is a C∞-
diffeomorphism. By the preceding, κ−1(f) : Ω → Ω is a continuous bijective
self-map of the compact topological space Ω an hence a homeomorphism. Note
that κ−1(f)′(x) = idRd +f ′(x) ∈ GL(Rd) for all x ∈ Ω. If k ∈ N0 and κ−1(f)
is a Ck-diffeomorphism, then

(κ−1(f)−1)′(x) =
(
κ−1(f)′(κ−1(f)−1(x))

)−1

is a GL(Rd)-valued Ck-function of x ∈ Ω, entailing that κ−1(f)−1 is Ck+1.
Thus κ−1(f)−1 is smooth and thus κ−1(f) ∈ Diff∂(Ω).

Remark 3.2. The same reasoning may be used to show that, for each ℓ ∈ N,
the set {f ∈ Cℓ

∂(Ω,R
d) : Lip(f) < 1} is an open 0-neighborhood in Cℓ

∂(Ω,R
d)

and idΩ +f ∈ DiffCℓ

∂ (Ω) for all f in this 0-neighborhood.

The main disadvantage of the group Diff∂(Ω) in the applications we wish
to investigate is that its elements fix the boundary pointwise. Depending on
the application, this can be quite unnatural. Hence, we also consider the full
group of C∞-diffeomorphisms for the special case of a cube [0, 1]d ⊆ Rd.
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3.2 Diffeomorphisms of a cube

In this section, we exclusively consider the cube Ω := [0, 1]d. Then the group
Diff(Ω) of smooth diffeomorphisms is an infinite-dimensional Lie group (cf.
[26]). We shall follow the complementary approach of [13], where diffeomor-
phism groups of convex polytopes are discussed. Our goal is to generalize
Lemma 3.1 to the diffeomorphism group of a cube.

For the cube, the diffeomorphism group Diff(Ω) is an infinite-dimensional
Lie group modeled on the Fréchet space C∞

str(Ω,R
d) ⊆ C∞(Ω,Rd) of smooth

vector fields
f = (f1, . . . , fn) : Ω → R

d

which are tangent to the boundary in the sense that fj(x1, . . . , xd) = 0 when-
ever xj = 0 or xj = 1 (such vector fields are also called boundary respecting,
or stratified vector fields). For example, a smooth vector field f : [0, 1] → R is
tangent to the boundary if it vanishes at the vertices 0 and 1. A smooth vector
field f = (f1, f2) : [0, 1]

2 → R2 is tangent to the boundary if f1(x, y) vanishes
whenever x = 0 or x = 1, and f2(x, y) vanishes whenever y = 0 or y = 1. The
space of stratified vector fields is a closed vector subspace of C∞(Ω,Rd). As
in every Lie group, the connected component Diff(Ω)0 of the neutral element
idΩ is an open subgroup of Diff(Ω). We recall from [13]:

Lemma 3.3. Let Ω = [0, 1]d. Then κ : Diff(Ω)0 → C∞
str(Ω,R

d), φ 7→ φ− idΩ
has open image and is a chart of Diff(Ω), when considered as a map onto the

image. In particular, Diff∂(Ω) is a Lie subgroup of Diff(Ω).

Again, it is not straightforward to determine the image of the chart κ.
But we can extend the sufficient criterion encountered for boundary-fixing
diffeomorphisms. To this end, we consider the open subset

V1 = {f ∈ C∞
str(Ω,R

d) : Lip(f) < 1}.

We prove the following (see [13, Proposition 1.5] for a generalized version):

Proposition 3.4. For every f ∈ V1, the map f +idΩ is contained in Diff(Ω).
Hence V1 ⊆ κ(Diff(Ω)0).

Proof. The proof is by induction on d ∈ N. If d = 1, then C∞
str(Ω,R) =

C∞
∂ (Ω,R) and the assertion follows from Lemma 3.1. Now assume that d ≥ 2.

Fix f ∈ V1. Arguing as in the proof of Lemma 3.1, we see that idΩ +f is
injective. Note that each (d − 1)-dimensional face F of Ω is diffeomorphic
to [0, 1]d−1 via a translation; for example, the upper face [0, 1] × {1} of the
square [0, 1]2 can be translated to [0, 1] × {0} ∼= [0, 1]. Hence (idΩ +f)(F ) =
(idF +f |F )(F ) = F by induction. As the boundary ∂Ω is the union of the
(d − 1)-dimensional faces, we deduce that (idΩ +f)(∂Ω) = ∂Ω. Thus (3.3)
holds. Next, we note that idΩ +f has invertible derivative f ′(x) at each x ∈ Ω◦,
whence it is an open map on the interior Ω◦. To see that (idΩ +f)(Ω) ⊆ Ω,
consider the projection prj onto the jth component for j ∈ {1, . . . , d}. By
compactness of Ω, the minimum mj := miny∈Ω(pr◦ (idΩ +f)(y)) exists. Since
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idΩ◦ +f |Ω◦ is an open map, the minimum cannot be attained on the interior of
the cube. Thusmj is attained on the boundary ∂Ω. As the boundary is mapped
to itself and does not contain points with negative coordinates, we conclude
that mj ≥ 0 for every j, whence xj + fj(x) ≥ 0 for each x = (x1, . . . , xd) ∈ Ω.
Considering the maximum instead, we conclude that also xj + fj(x) ≤ 1,
whence x + f(x) ∈ Ω for all x ∈ Ω. Thus idΩ +f maps the sets Ω and ∂Ω
into themselves, respectively. Arguing as in the proof of Lemma 3.1, we see
that (idΩ +f)(Ω◦) is both open and closed in the connected set Ω◦, whence
(idΩ +f)(Ω◦) = Ω◦. Then (idΩ +f)(Ω) = (idΩ +f)(Ω◦) ∪ (idΩ +f)(∂Ω) =
Ω◦ ∪ ∂Ω = Ω, showing that idΩ +f is surjective as a map to Ω and hence
bijective. The proof can now be completed as in the proof of Lemma 3.1, and
we deduce that idΩ +f ∈ Diff(Ω).

We have the following (strict) inclusions concerning the sets we are working
with

U1 V1

κ(Diff∂(Ω)) κ(Diff(Ω)0) C∞(Ω,Rd).

In practice, we work with vector fields to approximate diffeomorphisms.
As the algebra of vector fields is infinite dimensional, we have to replace it by
a finite-dimensional subspace. To increase the supply of diffeomorphisms we
can approximate, our method incorporates compositions of diffeomorphisms.
Since κ−1(U1) and κ−1(V1) are identity neighborhoods in the respective diffeo-
morphism groups, they generate the group,2 i.e. every diffeomorphism can be
written as a finite (but maybe arbitrarily long) composition of elements near
the identity. Passing to the intersection with a finite-dimensional subspace, the
generating property is lost, but compositions will nevertheless yield a much
broader spectrum of diffeomorphisms which can be reached.

Remark 3.5. These observations have been exploited in the boundaryless case
for example in [1]. Since Diff(Ω)0 is simple in this case, there are several
characterizations available for a subset of vector fields to generate a sufficiently
rich subgroup (see e.g. [1,2] for a treatment of flows in the framework of sub-
Riemannian geometry on manifolds without boundary). Note that it is not
clear how these techniques (e.g. sub-Riemannian geometry) can be generalized
to manifolds with boundary.

Since our method relies on compositions of multiple diffeomorphisms, the
next section provides insight and estimates into such compositions.

4 Estimates concerning multiple compositions

If we consider compositions φ := φL ◦ · · · ◦φ1 of diffeomorphisms φ1, . . . , φL ∈
Diff∂(Ω) for a large number L of factors, we’d like to be able to control the

2 We are referring to the connected component of the identity of the respective diffeomor-
phism group here.
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distance ‖φ− idΩ ‖Ck of the composite from the identity idΩ in terms of the
distances ‖φ1 − idΩ ‖Ck , . . . , ‖φL − idΩ ‖Ck (where the norms ‖ · ‖Ck are as
in (4.9)). We show that such an estimate is possible using a closed formula
which applies to all L. Let Ω be [0, 1]d, or a compact convex subset of Rd with
dense interior. For certain positive integers M0 ≤ M1 ≤ M2 ≤ · · · which can
be calculated recursively, we have:

Proposition 4.1. For all k ∈ N0 and all L ∈ N,

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ ‖Ck

≤ Mk e
k
∑

L
j=1 ‖fj‖Ck (‖f1‖Ck + · · ·+ ‖fL‖Ck) (4.1)

holds for all f1, . . . , fL ∈ Diff∂(Ω)− idΩ such that ‖f1‖Ck + · · ·+ ‖fL‖Ck ≤ 1.
Notably,

‖((idΩ +fL)◦· · ·◦(idΩ +f1))−idΩ ‖Ck ≤Mk e
k(‖f1‖Ck+· · ·+‖fL‖Ck). (4.2)

Here M0 := M1 := 1. For k ∈ N and j ∈ {1, . . . , k}, let Pk,j be the set of
all partitions P = {I1, . . . , Ij} of {1, . . . , k} into disjoint, non-empty subsets
I1, . . . , Ij of {1, . . . , k}. Then

Mk :=

k∑

j=2

∑

P∈Pk,j

M|I1| · · ·M|Ij| for k ≥ 2. (4.3)

If n1 ≥ n2 ≥ · · · ≥ nj ≥ 1 are integers with n1 + · · · + nj = k, write
P (n1, . . . , nj) ⊆ Pj for the set of all partitions of {1, . . . , k} into subsets
I1, . . . , Ij of cardinality |Ia| = na for a ∈ {1, . . . , j}. Then

Mk =

k∑

j=2

∑

n1+···+nj=k

|P (n1, . . . , nj)|Mn1 · · ·Mnj
,

using a summation over all (n1, . . . , nj) ∈ Nj with n1 ≥ n2 ≥ · · · ≥ nj and
n1 + · · ·+ nj = k.

For small k, the numbers Mk can easily be calculated by hand; their values
are as follows:

k 1 2 3 4 5 6 7 8 9 10
Mk 1 1 4 26 236 2752 39208 660032 12818912 282137824

The constants may not be optimal. Note that, for every k ≥ 3, the set
{1, . . . , k} admits k partitions into a singleton and a set with k − 1 elements.
Thus Mk ≥ kM1Mk−1 ≥Mk−1.

Remark 4.2. The numbers Mk for k ∈ N are well known in combinatorics; they
arise in a classical enumeration problem known as Schröder’s Fourth Problem
(cf. [32,34]). A longer list can be found in the on-line encyclopedia of integer
sequences (OEIS), sequence A000311.
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Remark 4.3. For m ∈ N, the assertions of Proposition 4.1 remain valid for
all k ∈ {0, 1, . . . ,m} if f1, . . . , fL ∈ DiffCm

∂ (Ω) − idΩ ⊆ Cm
∂ (Ω,Rd) (the proof

carries over).

In the following, V := κ(Diff∂(Ω)) = Diff∂(Ω) − idΩ, which is an open
0-neighborhood in C∞

∂ (Ω,Rd).

Remark 4.4. The proof will show that the condition ‖f1‖Ck + · · ·+‖fL‖Ck ≤ 1
in Proposition 4.1 is unnecessary for the validity of (4.1) in the cases k = 0
and k = 1. Actually,

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ ‖∞ ≤ ‖f1‖∞ + · · ·+ ‖fL‖∞ (4.4)

for all L ∈ N and f1, . . . , fL ∈ V . We shall also see that

Lip(((idΩ +fL)◦ · · · ◦ (idΩ +f1))− idΩ) (4.5)

≤(1 + Lip(f1)) · · · (1 + Lip(fL))− 1 (4.6)

≤eLip(f1)+···+Lip(fL) − 1 (4.7)

≤eLip(f1)+···+Lip(fL)(Lip(f1) + · · ·+ Lip(fL)) (4.8)

for all L ∈ N and f1, . . . , fL ∈ V .

Remark 4.5. In the special case Ω = [0, 1]d, the conclusion of Proposition 4.1
remains valid if Diff∂(Ω) is replaced with Diff(Ω)0 and vector fields vanishing
on the boundary are replaced with vector fields which are tangent to the
boundary. The same comment applies to Remarks 4.3 and 4.4.

The following notations and facts are useful for the proof of Proposition 4.1.

4.1. If (E, ‖·‖E) is a normed space, we write B
E

r (x) := {y ∈ E : ‖y−x‖E ≤ r}
for the closed ball of radius r > 0 around x ∈ E. If also (F, ‖ · ‖F ) is a normed
space, k ∈ N and β : Ek → F a continuous k-linear map, we define

‖β‖op := sup{‖β(x1, . . . , xk)‖F : x1, . . . , xk ∈ B
E

1 (0)}.

Then ‖β(x1, . . . , xk)‖F ≤ ‖β‖op‖x1‖E · · · ‖xk‖E for all x1, . . . , xk ∈ E. If Ω is
a compact topological space and g : Ω → (Lk(E,F ), ‖ · ‖op) a continuous map
to the space of continuous k-linear maps, we let

‖g‖∞,op := sup
x∈Ω

‖g(x)‖op ∈ [0,∞[ .

4.2. Let E := Rd, endowed with a fixed norm ‖ · ‖, and Ω ⊆ E be a compact
convex subset with non-empty interior. For f ∈ C∞(Ω,E) and k ∈ N0, let
dkf : Ω × Ek → E be the continuous map such that, for all x ∈ Ω◦ and
y1, . . . , yk ∈ E,

dkf(x, y1, . . . , yk) := (Dyk
· · ·Dy1f)(x)

is the iterated directional derivative at x in the directions y1, . . . , yk. Re-
call that the topology on C∞

∂ (Ω,E) is initial with respect to the mappings
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C∞
∂ (Ω,E) → C(Ω × Ek, E), f 7→ dkf for k ∈ N0, using the topology of

compact convergence on spaces of continuous functions. Thus, the seminorms

f 7→ sup{‖dkf(z)‖E : z ∈ K}

define the locally convex vector topology on C∞
∂ (Ω,E), for k ∈ N0 and com-

pact subsets K ⊆ Ω × Ek. Abbreviate f (k)(x) := dkf(x, ·) ∈ Lk(E,E) for
k ∈ N and x ∈ Ω. Then

f 7→ ‖f (k)‖∞,op = sup{‖dkf(z)‖E : z ∈ Ω ×B
E

1 (0)
k}

is a continuous seminorm on C∞
∂ (Ω,E). Together with the supremum norm

‖ · ‖∞, the latter seminorms define the locally convex topological vector space
topology of C∞

∂ (Ω,E). In fact, for each k ∈ N and compact subsetK ⊆ Ω×Ek,

we have K ⊆ Ω ×B
E

r (0)
k for some r > 0, whence

sup{‖dkf(x, z)‖E : z ∈ K} ≤ rk‖f (k)‖∞,op.

Hence, the vector topology on C∞
∂ (Ω,E) is also defined by the sequence of

norms (‖ · ‖Ck)k∈N0 with ‖ · ‖C0 := ‖ · ‖∞ and

‖f‖Ck := max{‖f‖∞, ‖f (1)‖∞,op, . . . , ‖f (k)‖∞,op}. (4.9)

The following formula actually holds for locally convex spacesX , Y , and Z.

4.3. (Faá di Bruno’s Formula) Let X , Y , and Z be finite-dimensional real
vector spaces, U ⊆ X and V ⊆ Y be locally convex subsets with dense interior,
and k ∈ N. Let g : U → Y and f : V → Z be Ck-maps such that g(U) ⊆ V .
Then

dk(f ◦ g)(x, y1, . . . , yk) =
k∑

j=1

∑

P∈Pk,j

djf(d|I1|g(x, yI1), . . . , d
|Ij |g(x, yIj ))

for all x ∈ U and y1, . . . , yk ∈ E, where P = {I1, . . . , Ij} and

yJ := (yi1 , . . . , yiℓ)

for each subset J ⊆ {1, . . . , k} of the form J = {i1, . . . , iℓ} with i1 < · · · < iℓ
(see [15, Theorem 1.3.18 and Remark 1.4.15 (c)]; cf. also [10]).

4.4. We shall use the following fact: If L ∈ N and x1, . . . , xL ≥ 0, then

(1 + x1)(1 + x2) · · · (1 + xL) ≤ ex1+···+xL (4.10)

as ln((1 + x1) · · · (1 + xL)) =
∑L

j=1 ln(1 + xj) ≤ ∑L
j=1 xj . We shall also use

that

ex − 1 ≤ ex x for all x ≥ 0. (4.11)

In fact, ex − 1 = exp(x) − exp(0) = exp′(ξ)x for some ξ ∈ [0, x] by the Mean
Value Theorem, with exp′(ξ) = exp(ξ) ≤ exp(x) by monotonicity of exp.
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4.5. Let (E, ‖ · ‖) be a normed space and (L(E), ‖ · ‖op) be the corresponding
algebra of bounded operators. For all L ∈ N and α1, . . . , αL ∈ L(E), we
trivially have

‖(idE +αL) ◦ · · · ◦ (idE +α1)‖op ≤ (1 + ‖αL‖op) · · · (1 + ‖α1‖op). (4.12)

Moreover,

‖((idE +αL) ◦ · · · ◦ (idE +α1))− idE ‖op
≤ ((1 + ‖αL‖op) · · · (1 + ‖α1‖op))− 1 (4.13)

≤ e‖α1‖op+···+‖αL‖op − 1 (4.14)

≤ e‖α1‖op+···+‖αL‖op(‖α1‖op + · · ·+ ‖αL‖op). (4.15)

In fact,

β := (idE +α1) · · · (idE +αL)− idE =

m∑

j=1

∑

|I|=j

αi1 ◦ · · · ◦ αij ,

using subsets I = {i1, . . . , ij} ⊆ {1, . . . , L} with i1 < · · · < ij . Thus

‖β‖op ≤
L∑

j=1

∑

|I|=j

‖αi1‖op · · · ‖αij‖op = ((1 + ‖α1‖op) · · · (1 + ‖αL‖op))− 1,

establishing (4.13). Using (4.10) and (4.11), the inequalities (4.14) and (4.15)
follow.

Proof of Proposition 4.1. We first prove the assertion for k ∈ {0, 1}.
The case k = 0. For f, g ∈ V , let

f ∗ g := ((idΩ +f) ◦ (idΩ +g))− idΩ = g + f ◦ (idΩ +g).

Then f ∗ g ∈ V and

‖f ∗ g‖∞ ≤ ‖g‖∞ + ‖f‖∞.
Given f1, . . . , fL ∈ V , we define fL ∗ · · · ∗ f1 recursively as fL ∗ (fL−1 ∗ · · · ∗ f1)
and obtain

‖fL ∗ · · · ∗ f1‖∞ ≤ ‖f1‖∞ + · · ·+ ‖fL‖∞, (4.16)

by a straightforward induction. By induction on 2 ≤ L ∈ N, also

((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ = fL ∗ · · · ∗ f1,

as the left-hand side of the equation equals

(idΩ +fL)(idΩ +((idΩ +fL−1) ◦ · · · ◦ (idΩ +f1)− idΩ))− idΩ

= fL ∗ (((idΩ +fL−1) ◦ · · · ◦ (idΩ +f1))− idΩ)

= fL ∗ (fL−1 ∗ · · · ∗ f1).
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Hence (4.4) is a re-writing of (4.16). Notably, (4.1) holds for k = 0 with
M0 := 1.

The case k = 1. Abbreviate E := Rd. For f1, . . . , fL ∈ V , x0 ∈ Ω and xj :=
fj(xj−1) for j ∈ {1, . . . , L− 1}, we have

(((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ)
′(x0)

= ((idE +f ′
1(x0)) ◦ · · · ◦ (idE +f ′

L(xL−1))) − idE

with operator norm ≤ ((1+ ‖f ′
1(x0)‖op) · · · (1+ ‖f ′

L(xL−1)‖op))− 1, by (4.13).
Passing to the supremum in x0 ∈ Ω, we get

‖(fL ∗ · · · ∗ f1)′‖∞,op ≤ ((1 + ‖f ′
1‖∞,op) · · · (1 + ‖f ′

L‖∞,op))− 1,

which is bounded by ((1+ ‖f1‖C1) · · · (1+ ‖fL‖C1))− 1. Thus (4.6) holds, and
(4.7) as well as (4.8) follow using (4.10) and (4.11). As the latter number is
also an upper bound for ‖fL ∗ · · · ∗ f1‖∞, we deduce that

‖fL ∗ · · · ∗ f1‖C1 ≤ ((1 + ‖f1‖C1) · · · (1 + ‖fL‖C1))− 1

for all L ∈ N and f1, . . . , fL ∈ Ω. By (4.10) and (4.11), the right-hand side is
bounded by

e‖f1‖C1+···+‖fL‖
C1 − 1 ≤ e‖f1‖C1+···+‖fL‖

C1 (‖f1‖C1 + · · ·+ ‖fL‖C1),

for all L ∈ N and f1, . . . , fL ∈ V . Notably, (4.1) holds for k = 1 with M1 := 1.

For k ≥ 2, the proof is by induction. Details are postponed to Appendix A.

The upper bounds of proposition 4.1 are theoretical. It could therefore
be of interest to see how they relate to the practically achieved Ck-norms
of diffeomorphisms of the form used in section 6 and how these bounds are
affected by for example the number of compositions. For simplicity, we stick
to the one-dimensional case. In figure 4.1, the value

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ ‖Ck

(
∑L

ℓ ‖fℓ‖Ck

)

ek
∑

L
ℓ
‖fℓ‖Ck

(4.17)

is shown for lower-order derivatives with varying number of layers L and num-
ber of basis functions d per layer. For k = 1, 2 the estimates are relatively
good with values close to 60% and 15% of Mk respectively.

These estimates are largely dependent on the choice of basis functions, so
the results may look different for another set of basis functions than the ones
used here. Further details regarding how the values of figure 4.1 are computed
can be found in appendix B.
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Fig. 4.1 Practical estimates of the Ck bounding coefficient in equation (4.1) for k = 1, 2, 3
(left to right). (Top): Varying number of layers L. (Bottom): Varying number of basis func-
tions per layer M .

5 Implementation of the methods

This section describes the implementation of the approach outlined in section
2.4. We first consider the case of curves and then the case of surfaces. In both
cases, we need three parts: a discrete problem formulation, a choice of basis
functions, and a projection operator to ensure that the Lipschitz constant of
each layer is bounded by one.

5.1 Curves

Problem Formulation

Denote by W = {wℓ}Lℓ=1 ⊂ Rd a set of weight vectors wℓ, and use the notation

ϕ(x;W ) = ϕL(x;w
L) ◦ ... ◦ ϕ1(x;w

1) (5.1)

to highlight the dependency of ϕ on W , and ϕℓ on w
ℓ, respectively. Each of

the layers are defined as residual-blocks

ϕℓ(x,w
ℓ) = x+

M∑

n=1

wℓ
nfn(x)

with basis function fn as defined in (5.3). The goal is to find a set of vectors W
such that the function ϕ(·,W ) ∈ Diff+(Ω) minimizes the loss function (2.6).
To approximate the shape distance, take a collection X = {xk}Kk=1 ⊂ Ω of
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linearly spaced points, and compute the mean squared error (MSE) between
the q-maps evaluated at these points. In other words, the loss function is
approximated by the function

E(W ;X) =
1

K

K∑

k=1

|q(xk)−
√

ϕ′(xk;W )r(ϕ(xk ;W ))|2. (5.2)

This function should be optimized with respect to the weights W under the
constraints that ϕ(0,W ) = 0, ϕ(1,W ) = 1, and ϕ′(· : W ) > 0. The opti-
mization is handled by a BFGS-optimizer, with a projection step between the
weight updates to ensure that the layers are invertible.3 The projection step
is similar to the spectral normalization approach of [4], and entails a scaling
of the weight vectors such that the Lipschitz constants of each of the residual
maps x 7→∑M

n=1 w
ℓ
nfn(x) are bounded by one.

Basis Functions

The tangent space of the diffeomorphism group on an interval consists of
smooth functions that vanish on the boundary of the interval. A simple finite-
dimensional basis which satisfies this relation is a truncated Fourier sine series.
However, the algorithm seems to perform better when the derivatives of the
basis functions have similar magnitudes, and we scale the basis functions such
that their derivatives are bounded by one. Therefore, we choose the basis of
functions

fn(x) =
sin(nπx)

nπ
, n = 1, ...,M (5.3)

for M ∈ N.

Projection Operator

To ensure the invertibility of each layer ϕℓ, we impose that the Lipschitz
constant of each of the residual maps is smaller than one. For this purpose,
denote by Wε the feasible set of the weight vectors. To define this set explicitly,
consider the upper estimate of the Lipschitz constants given by the inequalities

∣
∣
∣
∣
∣

(
M∑

n=1

wnfn(x)

)

−
(

M∑

n=1

wnfn(y)

)∣
∣
∣
∣
∣
≤
(

M∑

n=1

|wn|Ln

)

︸ ︷︷ ︸

:=L

|x− y|, (5.4)

where Ln is the Lipschitz constant for the basis function fn. For our choice of
basis functions, we have that Ln = supx∈Ω |f ′

n(x)| = 1 for all n = 1, ...,M .

3 This approach has performed well for the experiments in this article, but we have found
limited theory on the convergence of BFGS with a projection step. A large scale application
of the reparametrization algorithm might gain from changing to a constrained optimization
routine, or to another projected quasi-Newton algorithm with a better theoretical founda-
tion.
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Thus L =
∑M

n=1 |wn|Ln = ‖w‖1. To ensure that the layers are diffeomor-
phisms, we require that L is strictly smaller than one. To achieve this, we
define the feasible set

Wε =
{
w ∈ R

M : ‖w‖1 ≤ 1− ε
}

(5.5)

for some small ε. If the optimization algorithm makes a weight update which
causes a violation of these constraints, then it needs to be projected onto the
feasible set. We define this projection using a simple scaling of the vector,
defined by

π : RM → Wε, π(w) =
1− ε

max{1− ε, ‖w‖1}
w. (5.6)

5.2 Surfaces

Problem Formulation

The problem formulation for reparametrization of surfaces is analogous to the
case for curves, with the natural extensions to two dimensions. We approximate
the continuous loss function by

E(W ;X) =
1

K2

K∑

i,j=1

|q(xi,j)−
√

Jϕ(xi,j ;W )r (ϕ(xi,j ;W ))|2, (5.7)

where X = {xi,j , i, j = 1, ...,K} ⊂ Ω(⊂ R2), and ϕ as in (5.1). The loss func-
tion should be optimized with respect to the weights W under the constraints
Jϕ(· :W ) > 0 and ϕ(∂M ;W ) = ∂M .

Basis Functions

The tangent space of the diffeomorphism group on Ω = [0, 1]2 consists of
smooth vector fields tangential to the boundary ∂Ω. We construct a basis for
this space componentwise, as a tensor product basis of Fourier sine series in
one direction and a full Fourier basis in the other. This choice was inspired
by the approach adopted in [24]. In the first component, these functions are
given by the three families of functions,

ξk(x, y) =
sin(πkx)

πk
, (5.8a)

ηk,l(x, y) =
sin(πkx) cos(2πly)

πkl
, (5.8b)

φk,l(x, y) =
sin(πkx) sin(2πly)

πkl
, (5.8c)

with corresponding basis functions ξ̃k(x, y) = ξk(y, x), η̃k,l(x, y) = ηk,l(y, x)

and φ̃k,l(x, y) = φk,l(y, x) for the second component. A few example basis
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vector fields are shown in figure 5.1. The basis is truncated such that the
coefficients k, l = 1, ..., N for some fixed value of N ∈ N. The total number of
basis functions is therefore M = 2(2N2 +N). In other words, the number of
basis functions per layer in the network increases quadratically with N .
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Fig. 5.1 Four examples of basis elemets of Tid(Diff+(Ω)), as described in 5.2. The basis
fields are constructed componentwise as products of trigonometric functions and point either
purely in the x- or y-direction.

Projection Operator

Similarly as in section 5.1, the invertibility of each layer ϕℓ is ensured by
bounding the Lipschitz constants of the residual maps by one. The projection
operator is analogous to the one-dimensional case, and is based on the approx-
imation (5.4). However, the Lipschitz constant Ln of each of the basis vector
fields is no longer simply equal to 1. Instead, we make use of the following
approximation:

Ln = sup
x∈Ω

‖Dfn(x)‖2 ≤ sup
x∈Ω

‖Dfn(x)‖F , n = 1, ...,M,

where Dfn denotes the Jacobian matrix of fn, the symbol ‖ · ‖2 denotes the
spectral norm, and ‖ · ‖F the Frobenius norm. According to this estimate,
the Lipschitz constants for each of the three types of basis vector fields are
bounded by

Lξ
k = 1, Lη

k,l =

√
k2 + 2l2

kl
, Lφ

k,l =

√
k2 + 2l2

kl
, (5.9)

and are found by taking the Frobenius norm of the Jacobian matrices of the
basis functions in (5.8). Similar constants exist for the corresponding vector
fields in the y-direction. Adopting the notations from the one-dimensional case,
we define

π : RM → Wε, π(w) =
1− ε

max
{

1− ε,
(
∑M

n=1|wn|Ln

)}w, (5.10)

which maps infeasible weight vectors to the feasible set.
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5.3 Shape Interpolation

An interesting application of the reparametrization algorithm is to create real-
istic transitions between different shapes. The shape distance dS corresponds
to the length of some geodesic between the two parametric shape representa-
tions in the pre-shape space P . Each of the points along this geodesic corre-
sponds to a parametric representation of some intermediate shape, providing
a natural transformation between the original curves or surfaces.

In the specific case of reparametrization of curves using the SRVT, we may
compute a geodesic between their shapes. Assume for any τ ∈ (0, 1) that the
curve τR(c1)(x) + (1− τ)R(c2)(x) 6= 0, ∀x ∈ Ω. Then the map

τ 7→ R−1(τR(c1) + (1− τ)R(c2)) (5.11)

with

R−1(q)(x) =

∫ x

0

q(ξ)|q(ξ)| dξ (5.12)

defines a geodesic between the two curves c1 and c2.

The surface transforms, however, are not invertible. Therefore, we adopt
an alternative approach which seems to work well in many cases. Define the
map

γ : P × P × [0, 1] → C∞(Ω,Rn), γ(f1, f2, τ) = τf1 + (1− τ)f2.

Note that for f1, f2 ∈ P , the map τ 7→ γ(f1, f2, τ) defines a convex linear
combination of two elements in C∞(Ω,Rn) connecting the two surfaces. How-
ever, when applied directly to the parametrized curves without performing
the reparametrization, the corresponding path of this interpolation in shape-
space is typically far from length-minimizing. To improve upon this shape
transformation, we start by reparametrizing one of the shapes by finding
ϕ∗ ∈ argminϕ+∈Diff(Ω) dP([f1], [f2◦ϕ]) and then apply the shape interpolation
according to

τ 7→ γ(f1, f2 ◦ ϕ∗, τ). (5.13)

Figure 5.2 illustrates how the different interpolation approaches compare
to each other both in pre-shape space and in shape space. Figure 5.3 shows
the different approaches applied to curves and figure 6.4 presents an example
of the approach (5.13) applied to images. Applied directly to the parametrized
curves as in the left panel of fig. 5.3, the intermediate curves of the transition
between the two shapes does not follow what we intuitively consider a shortest
path between the curves. Instead of only changing the parts of the curves which
differs between the two shapes, the entire curve is moved in the intermediate
steps. This is in contrast to both the middle- and the right panel of fig. 5.3
where the upper half-circle is stationary, and only the lower half of the circle
is moving between the shapes.
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Fig. 5.2 Different interpolation methods between two shapes and how these curves relate to
different shape representations. The dashed red curve corresponds to the direct linear inter-
polation between the two original parametric shapes. The solid green curve corresponds to a
geodesic, whereas the dotted blue line represents a linear interpolation after reparametriza-
tion given in (5.13).
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Fig. 5.3 Comparison of the methods described in section 5.3 for interpolation between a
half-circle and a circle. (Left) Direct linear interpolation, corresponding to the dashed red
curve in 5.3. (Middle) Linear interpolation after reparametrization, corresponding to the
dotted blue curve. (Right) Geodesic, corresponding to the solid green curve.

5.4 Notes on Implementation

Since the structure of the diffeomorphisms that we are searching for is similar
to that of a residual neural network, the weight optimization is analogous to
the process of training a neural network. This is typically done by an iterative
line search method such as gradient descent rather than Newton’s method or
other Quasi-Newton algorithms. However, since we are dealing with a deter-
ministic problem, we have chosen to use the BFGS-algorithm (see e.g. [29]).
The network is implemented using the PyTorch machine learning framework
in Python[31] which takes care of the computation of gradients and updates
the weight vectors. By building our algorithms upon the PyTorch-framework,
the algorithms easily achieve high performance, scalability and extensibility.
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6 Numerical Experiments

6.1 Curves

We start by comparing two different parametric curves representing the same
shape. A simple way to find two such curves is by first selecting a curve c,
and reparametrize the curve with some diffeomorphism ϕ. By applying the
reparametrization algorithm to the curves c1 = c ◦ ϕ and c2 = c, we expect to
recover a diffeomorphism ψ ≈ ϕ such that the distance dP(c1, c2 ◦ ψ) ≈ 0. As
a first example, consider the parametric curve and diffeomorphism given by

c(t) = [cos(2πt), sin(4πt)],

ϕ(t) =
log(20t+ 1)

2 log(21)
+

1 + tanh(20(t− 0.5))

4 tanh(10)
.

(6.1)

The curves c and c◦ϕ are shown in figure 6.1. The dots along the curves rep-
resent linearly spaced points on the domain Ω = [0, 1] for the curve parameter
t. Figure 6.1 presents the results of applying the reparametrization algorithm
to these curves using a network with L = 10 layers and M = 10 basis functions
per layer. The resulting reparametrization ψ is visually indistinguishable from
the true diffeomorphism ϕ, and the components of the reparametrized curve
c ◦ ψ exactly match the components of the components of c ◦ ϕ.
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Fig. 6.1 (Left) The curve c to be reparametrized on top, and the target curve c ◦ϕ below,
defined in (6.1). (Middle) The component functions of the two curves c◦ϕ (dotted blue) and
c (solid orange) before, and after reparametrization. (Top right) The true reparametrization
ϕ (dotted black) compared to the reparametrization ψ found by the algorithm. (Bottom
right): The value of the loss function plotted against the iteration number of the weight
updates, given relative to the initial error. Each iteration corresponds to one iteration of the
BFGS algorithm including line-search.
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6.2 Surfaces

Similarly as in section 6.1, the performance of the reparametrization algorithm
is investigated by comparing surfaces representing the same shape. The results
are presented in figures 6.2, 6.3. The coloring on the surfaces represents the
local area scaling factor af for the given surface. Once again, the algorithm
does indeed find a diffeomorphism ψ ≈ ϕ. Moreover, based on figure 6.6, the
convergence behavior of the reparametrization algorithm under an increasing
number of basis functions and network layers is similar to the behavior already
observed for curves.

The previous examples are using artificial surfaces defined by explicit para-
metric functions. In most practical applications, however, objects are repre-
sented by discrete observations. For example, images are typically stored as
matrices representing image intensities. Such data must be transformed to
parametrized surfaces before reparametrization. For this purpose, we made
use of a function4 from the PyTorch library which implements a bicubic con-
volution algorithm, [21]. Since we are working with three-dimensional surfaces,
it seems natural to represent single-channel images by their graphs.

The fact that the optimal reparametrization is unknown when compar-
ing surfaces representing different shapes, implies that it is difficult to prop-
erly verify the correctness of the algorithm. However, the shape interpolation
method of section 5.3 provides a good alternative to validate the results; an
optimal reparametrization of one surface relative to the other, should pro-
vide a smoother interpolation between the two. Figure 6.4 illustrates the in-
terpolation between two images before and after reparametrization. Before
reparametrization, the intermediate images clearly show elements from each
of the images simultaneously, as one fades away and the other is revealed. Af-
ter reparametrization the interpolation represents a smoother transition, with
one of the surfaces being “warped” into the other.

4 torch.nn.functional.grid_sample

https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
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Fig. 6.2 First example of reparametrization of a surface when compared to another para-
metric surface representing the same shape. The colors on the surfaces represent the area
scaling factor of the parametrization. The target surface f ◦ ϕ (a) have been created by
reparametrizing the subject surface f (b) by some prescribed diffeomorphism ϕ (d). Af-
ter applying the reparametrization algorithm to compare the two surfaces, the resulting
reparametrization is shown in (e) and the reparametrized surface shown in (c).

Fig. 6.3 Second example of reparametrization of two surfaces representing the same shape
such as in figure 6.2, this time including an immersion and a more complex diffeomorphism
involving both rotations and stretching.

6.3 Comparing Network Sizes

Figure 6.5 presents the results of the reparametrization algorithm for a varying
number of layers and basis functions per layer in the network. The results
represent the value of the loss function (5.2) after reparametrization for the
curves from the example in figure 6.1. It seems that by keeping the number of
layers low while increasing the number of basis functions, or vice versa, results
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Fig. 6.4 Linear interpolation between two images from the MNIST digits dataset, before
and after reparametrization of the surfaces. The first row corresponds to direct linear in-
terpolation between the graphs, whereas the second row corresponds to linear interpolation
after reparametrization as given in (5.13).

in a relatively poor match between the functions. A combination of network
depth and width is required to reduce the error to the smallest values.

Figure 6.6 presents similar results based on the reparametrization of the
surfaces in figure 6.2. Note that N represents the “largest frequency” of the
basis functions, and not the number of basis functions. This number is much
higher as pointed out in section 5.2. In other words, a deep network will be
able to achieve similar performance as a wide network, using much fewer co-
efficients.
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Fig. 6.5 Final error after reparametrization of the curves in figure 6.1, for varying number
of layers L and basis functions per layer M .
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Fig. 6.6 Final error after reparametrization of the surfaces in figure 6.2 for varying number
of layers L and the “largest frequency” N of the basis functions The number of basis functions
per layer M is in this case related to the frequency by M = 2(2N2 +N).

7 Discussion

Based on fig. 6.5 there seems to be a lower limit for how close to the opti-
mal reparametrization one can get using this approach, as opposed to what
one would expect based on the universal approximation properties presented
in section 3. The main reason behind this behavior seems to be the stopping
criteria for the BFGS-optimizer. There are three criteria playing a role in the
stopping behaviour: The termination tolerance on the gradient norm, the ter-
mination tolerance on the change of function value, or the maximal number
of iterations in the optimizer. By significantly lowering the termination toler-
ances and increasing the maximal number of iterations, it is possible to further
reduce the errors for the larger networks. This reduction, however, comes at a
high computational cost relative to small improvements to the registration.

Due to the relationship of the algorithm with the gradient-descent algo-
rithm, we have chosen to keep the structure and activation/basis functions
from the original problem, rather than doing an extensive investigation into
alternative network structures. Because of the constraints of the diffeomor-
phism group, it does take some effort to switch network structures and acti-
vation functions we have considered this to be out of the scope of this article.
However, it is most certainly an interesting topic for future research.

One important difference between a typical deep learning problem and
the algorithm presented here, is that since we are registering a single pair of
shapes, overfitting is desirable in our case — at least under the assumption
that the shapes are without noise. This assumption is justified since the noise
from the original data will usually be handled by the method one uses to create
a parametric curve/surface. This is typically done by interpolation or other
regression methods with the possibility to add a regularizer or other prepro-
cessing steps to reduce noise. An example is the bicubic interpolation method
used for the MNIST-images in fig. 6.4. For future research, however, it would
be interesting if one could incorporate the construction of the parametriza-
tion from a point collection into the network structure itself. In such a case,
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overfitting would indeed pose a problem, and typical regularization techniques
would need to be applied.

8 Conclusion

In this paper we proposed a method for the solution of optimization prob-
lems on the group of diffeomorphisms. The method is inspired by deep neural
networks and implemented in PyTorch. An analysis of the universal approxi-
mation properties and a priori estimates of the norms of the obtained approx-
imations are presented. A number of numerical results illustrate the merit of
the proposed approach in applications of shape analysis.

A Proof of Proposition 4.1

In this appendix, we provide the details postponed in the proof of Proposition 4.1. Let us
recall the statement for the reader’s convenience:

A.1 (Statement of Proposition 4.1). For all k ∈ N0 and all L ∈ N,

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1)) − idΩ ‖Ck

≤ Mk e
k
∑L

j=1 ‖fj‖Ck (‖f1‖Ck + · · ·+ ‖fL‖Ck )

holds for all f1, . . . , fL ∈ Diff∂(Ω) − idΩ such that ‖f1‖Ck + · · ·+ ‖fL‖Ck ≤ 1.

Recall that in Section 4 we have already established the statement for all L ∈ N and
k ∈ {0, 1}. Thus all we need to prove is the statement for all k ≥ 2.

Proof of Proposition 4.1 in the case k ≥ 2. The proof is by induction. Assume that k ≥ 2
and assume that the asserted estimates already hold for k − 1 in place of k. For f, g ∈ V ,
applying Faá di Bruno’s formula to the first term in f ∗ g = (idΩ +f) ◦ (idΩ +g)− idΩ, we

get for all x ∈ Ω and y1, . . . , yk ∈ B
E
1 (0)

dk(f ∗ g)(x, y1, . . . , yk)

=
k

∑

j=2

∑

P∈Pk,j

djf(h(x), d|I1|h(x, yI1 ), . . . , d
|Ij |h(x, yIj )) (A.1)

+(idE +f ′(x))(dkg(x, y1, . . . , yk)), (A.2)

with h := idΩ +g. The norm of the summand in (A.2) is bounded by

(1 + ‖f ′‖∞,op)‖g
(k)‖∞,op ≤ e‖f‖Ck ‖g‖Ck ; (A.3)

this is ≤Mk e
k(‖f‖

Ck+‖g‖
Ck )‖g‖Ck . The norm of a summand in (A.1) is

≤ ‖f(j)‖∞,op‖h
(|I1|)‖∞,op · · · ‖h(|Ij |)‖∞,op ≤ ‖f‖Ck‖h(|I1|)‖∞,op · · · ‖h(|Ij |)‖∞,op.

For a ∈ {1, . . . , j}, possible cases are that |Ia| = 1; then

‖h(|Ia|)‖∞,op = ‖ idE +g′‖∞,op ≤ 1 + ‖g′‖∞,op ≤ e‖g‖Ck = e|Ia| ‖g‖Ck .

If |Ia| ≥ 2, then

‖h(|Ia|)‖∞,op = ‖g(|Ia|)‖∞,op ≤ ‖g‖Ck ≤ e‖g‖Ck ≤ e|Ia| ‖g‖Ck .
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As
e|I1| ‖g‖Ck · · · e|Ij | ‖g‖Ck = ek‖g‖Ck ≤M|I1| · · ·M|Ij |

ek(‖f‖Ck+‖g‖
Ck ),

we get we get

‖(f ∗ g)(k)‖∞,op ≤





k
∑

j=2

∑

P∈Pk,j

M|I1| · · ·M|Ij |



 ‖f‖Ck e
k(‖f‖

Ck+‖g‖
Ck )

+Mk e
k(‖f‖

Ck+‖g‖
Ck )‖g‖Ck

≤ Mk e
k(‖f‖

Ck+‖g‖
Ck )(‖f‖Ck + ‖g‖Ck ).

Thus ‖f ∗ g‖Ck ≤ Mk e
k(‖f‖

Ck+‖g‖
Ck )(‖f‖Ck + ‖g‖Ck ), whence (4.1) holds for L = 2. If

we are given f1, . . . , fL ∈ V with L ≥ 3 and

‖f1‖Ck + · · ·+ ‖fL‖Ck ≤ 1, (A.4)

let f := fL and g := fL−1 ∗ · · · ∗ f1. Using (A.3) and the inductive hypothesis (the case of
L− 1 factors), we see that the right-hand side of (A.3) is less or equal

e‖f1‖Ck ‖g‖Ck ≤ e‖fL‖
CkMk e

k(‖fL−1‖Ck+···+‖f1‖Ck )(‖fL−1‖Ck + · · ·+ ‖f1‖Ck )

≤ Mk e
k
∑L

j=1 ‖fj‖Ck (‖fL−1‖Ck + · · ·+ ‖f1‖Ck ).

With h := idΩ +g = (idΩ +fL−1) ◦ · · · ◦ (idΩ +f1), the norm of a summand in (A.1) is
bounded by

‖fL‖Ck‖h(|I1|)‖∞,op · · · ‖h(|Ij |)‖∞,op.

For a ∈ {1, . . . , j}, possible cases are that |Ia| = 1; then

‖h(|Ia|)‖∞,op = ‖((idΩ +fL−1) ◦ · · · ◦ (idΩ +f1))
′‖∞,op

≤ (1 + ‖fL−1‖∞,op) · · · (1 + ‖f1‖∞,op)

≤ (1 + ‖fL−1‖Ck ) · · · (1 + ‖f1‖Ck ) ≤ e|Ia|(‖fL−1‖Ck+···+‖f1‖Ck )

≤ M|Ia|e
|Ia|(‖f1‖Ck+···+‖fL‖

Ck ).

If |Ia| ≥ 2, then

‖h(|Ia|)‖∞,op = ‖g(|Ia|)‖∞,op ≤ ‖g‖
C|Ia|

≤ M|Ia| e
|Ia|(‖fL−1‖Ck+···+‖f1‖Ck )(‖fL−1‖Ck + · · ·+ ‖f1‖Ck )

≤ M|Ia| e
|Ia|(‖f1‖Ck+···+‖fL‖

Ck ),

using (A.4) for the final estimate. As

e|I1|(‖f1‖Ck+···+‖fL‖
Ck ) · · · e|Ij |(‖f1‖Ck+···+‖fL‖

Ck ) = ek(‖f1‖Ck+···+‖fL‖
Ck ),

we get

‖(fL ∗ · · · ∗ f1)
(k)‖∞,op

≤





k
∑

j=2

∑

P∈Pk,j

M|I1| · · ·M|Ij |



 ‖f1‖Cke
k(‖f1‖Ck+···+‖fL‖

Ck )

+Mk e
k(‖f1‖Ck+···+‖fL‖

Ck )(‖f2‖Ck + · · ·+ ‖fL‖Ck )

≤ Mk e
k
∑L

j=1 ‖fj‖Ck (‖f1‖Ck + · · ·+ ‖fL‖Ck ),

whence ‖fL ∗ · · · ∗ f1‖Ck ≤Mk e
k
∑L

j=1 ‖fj‖Ck (‖f1‖Ck + · · ·+ ‖fL‖Ck ). This completes the
proof.
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Remark A.1. Proposition 4.1 was inspired by a recent result from the theory of evolution
equations on infinite-dimensional Lie groups (regularity theory). Consider a Lie group G
modeled on a locally convex space E, with neutral element e. Let TG be the tangent bundle,
g := TeG and G × TG → TG, (g, v) 7→ g.v := TLg(v) be the natural left action of G on
TG, which uses the tangent map TLg of the left translation Lg : G → G, x 7→ gx. The Lie
group G is called C0-regular if, for each continuous path γ : [0, 1] → g, there exists a C1-map
η : [0, 1] → G with η(0) = e and

η′(t) = η(t).γ(t) for all t ∈ [0, 1];

and moreover the time 1-map C([0, 1], g) → G, γ 7→ η(1) is smooth (endowing the domain
with the topology of uniform convergence); see [12,28]. As shown by Hanusch [18], every
C0-regular Lie group is locally µ-convex in the sense of [14]. Thus, for each open identity
neighborhood U ⊆ G and C∞-diffeomorphism φ : U → V ⊆ E with φ(e) = 0, and each
continuous seminorm q : E → [0,∞[, there exists a continuous seminorm p : E → [0,∞[ such
that

gL · · · g2g1 ∈ U

and
q(φ(gL · · · g1)) ≤ p(φ(gL)) + · · ·+ p(φ(g1))

for all L ∈ N and g1, . . . , gL ∈ U such that p(φ(gL))+· · ·+p(φ(g1)) ≤ 1. As shown in [14], the
Lie group Diff∂(Ω) is C0-regular. Applying the preceding fact to the C∞-diffeomorphism
κ : idΩ +V → V , g 7→ g − idΩ and the seminorm q := ‖ · ‖Ck with a fixed k ∈ N0, we infer
the existence of a continuous seminorm p on C∞

∂
(Ω,Rd) such that

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1)) − idΩ ‖Ck ≤ p(f1) + · · ·+ p(fL)

for all L ∈ N and f1, . . . , fL ∈ V with p(f1) + · · · + p(fL) ≤ 1. We may assume that p is
a multiple r‖ · ‖Cℓ of ‖ · ‖Cℓ for some ℓ ≥ k, as these seminorms define the topology on
C∞

∂
(Ω,Rd). The point of Proposition 4.1 is that we can always choose ℓ = k, and that it

provides an explicit choice for the constant r > 0.

Previously, µ-regularity has been discussed in quantitative form only for Banach-Lie groups,
where estimates for the Baker-Campbell-Hausdorff multiplication ∗ on the Banach-Lie alge-
bra g enable norms ‖x1 ∗ · · · ∗ xm‖ of products of elements x1, . . . , xm ∈ g to be estimated
(see [12]).

B Practical upper bounds for C
k-norm

This appendix describes the methods that were used for the values in figure 4.1. The goal
is to estimate how the practically achieved Ck-norms compare to the theoretical results of
proposition 4.1. For simplicity, we stick to the one-dimensional case. Since both sides of the
inequality 4.1 relies on the chosen vector fields fℓ, we start by reorganizing the inequality
according to

‖((idΩ +fL) ◦ · · · ◦ (idΩ +f1))− idΩ ‖Ck
(

∑L
ℓ ‖fℓ‖Ck

)

ek
∑

L
ℓ

‖fℓ‖Ck

≤Mk. (B.1)

Estimating C
k-norms

Let X = {xi}Ni=1 ∈ Ω be a collection of points tightly distributed throughout the do-

main Ω. Then we estimate the Ck-norm of a function f ∈ Ω by ‖f‖Ck = ‖Dkf‖op,∞ =
maxx∈Ω ‖Dkf(x)‖op ≈ maxxi∈X ‖Dkf(xi)‖op In the one-dimensional case, this reduces to

max
xi∈X

∣

∣

∣

∣

∂kf

∂xk
(xi)

∣

∣

∣

∣

(B.2)

where X is typically chosen as an equidistant grid of points X = {i/N | i = 0, ...,N }.
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Choosing vector fields

Consider vector fields of the form

fℓ(x) =
M
∑

j=1

wℓ,jϕj(x), (B.3)

for basis functions as given in (5.3) and some weight vector wℓ ∈ RM . Since different weight
vectors might yield different results for the relative norm estimates, we use two different
strategies for initializing the weight vectors:

1. Deterministic vector of ones: wℓ,j = 1, j = 1, ...,M, ℓ = 1, ..., L, and
2. Normal random sampling: wℓ,j ∼ N (µ = 0, σ2 = 1).

The values of (B.2) presented in figure 4.1 are chosen as the largest attained value from
strategy one and 500 runs of strategy 2.

Ensuring the assumptions hold

The weight vectors cannot be chosen freely, but are assumed to adhere to a unit norm-sum
constraint. To ensure that this condition holds, we will typically start out with an initial
set of weight vectors, which will be scaled onto the feasible set. Let W = {wℓ}

L
ℓ=1 be a

collection of weight vectors, from which we create a set of vector fields fℓ, ℓ = 1, ..., L.
Moreover, assume that for this set of vector fields

L
∑

ℓ=1

‖fℓ‖Ck > 1. (B.4)

The scaling will be performed in a way that is similar to the methods of section 5.1; Find a
scalar α ∈ (0, 1] such that α

∑L
ℓ=1 ‖fℓ‖Ck ≤ 1, i.e.

α = min

{

1,
1

∑L
ℓ=1 ‖fℓ‖Ck

}

.

and then choose W̃ = {αwℓ}
L
ℓ=1.
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