
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Lars Bonvik

Designing and comparing system
solutions for a Programmable Logic
Controller alternative for educational
use

Master’s thesis in Produktutvikling og Produksjon
Supervisor: Amund Skavhaug
December 2023

Lars Bonvik

Designing and comparing system
solutions for a Programmable Logic
Controller alternative for educational
use

Master’s thesis in Produktutvikling og Produksjon
Supervisor: Amund Skavhaug
December 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

This is the final product of my master’s degree in Engineering for Norwegian University of Science

and Technology in Trondheim. This is written for robotics and automation group in the course

TPK4960 - Robotics and Automation, Master’s thesis

I want to first thank Eskild Godli, which was a valuable partner for the preceding project assign-

ment written in the autumn semester in 2022. This Master’s thesis was delayed until autumn 2023

sue to some missed classes during the Covid-19 pandemic. I would also give a special thanks to

Amund Skavhaug for his guidance and support for this Master’s thesis. I would also thank all of

my friends and family which have supported me through all of these years.

- Lars Bonvik

i

Summary

This is a Master’s thesis written by Lars Bonvik in the autumn semester of 2023, and is a part of

the final semester of the master program for Mechanical Engineering at the Norwegian University

of Science and Technology, NTNU. This thesis studies how to use micro controllers to emulate the

functionalities of a Programmable Logic Controller for the Indexed Line factory, manufactured by

Fischertechnik. The thesis contains both software and hardware solutions, making this possible.

The work is based on Andreas Knudsen Sunds discoveries in his master’s thesis, for the need to

improve the assignments in the course TPK4128 Industrial Mechatronics. As well as a project

assignment written a year before, by Lars Bonvik and Eskild Godli.

The preceding project started with the research of how a Programmable Logic Controller work as

well as the workings of Fischertechniks mini-factory provided for the project.

It was researched and found open-source software that could make sure that with an added hard-

ware solution, could emulate a Programmable Logic Controller. The hardware solution was de-

veloped and researched through the thesis, and rapid prototypes on breadboards created to test the

researched solutions. With a satisfactory solution developed, a prototype Printed Circuit Board

(PCB) was designed and produced. The PCB acts as the communication layer between the Rasp-

berry Pi and the ”Fischertechnik Indexed Line with two Machining Stations 24V” provided by the

supervisor for use in exercises in Industrial Mechatronics.

The main focus of the Master’s thesis was to further develop solutions that were found in the project

thesis and directly compare these for use in a potential assignment. This lead to development of

a software for the Arduino Portenta Machine Control with OpenPLC, and Arduino MEGA in

addition to the working solution made for the Raspberry Pi. Two different software solutions

were tested for the project, OpenPLC and Arduino PLC IDE, where OpenPLC seems like the

best choice for a potential assignment. The best micro controller depends on what qualities that

are desired, but the Arduino Portenta Machine Control seems to be the best choice for use in an

assignment in Industrial Mechatronics.

ii

Sammendrag

Dette er en masteroppgave som er skrevet av Lars Bonvik i høst-semesteret i 2023, og er den del

av det siste semesteret p̊a studieprogrammet Produktutvikling og Produksjon p̊a Norges Teknisk-

naturvitenskaplige Universitet, NTNU. Denne oppgaven handler om hvordan man kan bruke mik-

rokontrollere og annen maskinvare til å emulere funksjonalitet av en Programmerbar Logisk Styr-

ingsenhet (PLS) for Indexed Line fabrikk som er laget av Fischertechnik. Oppgaven handler b̊ade

om programvare og maskinvare- løsninger som gjør dette mulig. Arbeidet er basert p̊a Andreas

Knudsen Sunds oppdagelser i sin egen masteroppgave, om at det er nødvendig å oppdatere øving-

sopplegget i TPK4128 Industriell Mekatronikk. Denne oppgaven fortsetter arbeidet som ble gjort

under prosjektoppgaven til Lars Bonvik og Eskild Godli.

Det forg̊aende prosjektet startet med å undersøke hvordan en PLS fungerer, i tillegg til gjøre seg

kjent med Fischertechniks mini-fabrikk som skulle bli brukt til prosjektet.

Det ble funnet open-source programvare som ville med litt skreddersydd maskinvare kunne fungere

til å emulere en PLS. Maskinvareløsningen ble utviklet of testet i løpet av oppgaven, og prototyper

ble lagd p̊a breadboards for å lage og teste løsninger. Med en tilfredstillende løsning ble ogs̊a

dette videreutviklet og satt sammen til et fungerende kretskort. Kretskortet fungerer som et

mellomledd for å omforme strømmen fra mikrokontrolleren og ”Fischertechnik Indexed Line with

two Machining Stations 24V” som ble utdelt sammen med oppgaven fra veileder.

Hovedfokuset for denne oppgaven var å videreutvikle løsningene fra prosjektoppgaven og sammen-

ligne disse for bruk i en potensiell øving i faget. Dette førte til programvare utvikling for OpenPLC

til bruk med Arduino Portenta Machine Control og Arduino MEGA, i tillegg til den allerede fung-

erende løsningen for Raspberry Pi. To forskjellige programvarer ble ogs̊a prøvd i prosjektet. Disse

to programvarene var OpenPLC og Arduino PLC IDE, hvor OpenPLC ser ut til å være det be-

ste valget for et potensielt øvingsopplegg. Den beste mikrokontrolleren varierer basert p̊a hvilke

kvaliteter man vektlegger, men Arduino Portenta Machine Control H7 ser ut til å være det beste

valget for en øving i Industriell Mekatronikk.

iii

Acronyms

I/O - Input and Output

LD - Ladder Diagram

OPC UA - Open Platform Communications Unified Architecture

OpenCV - Open Source Computer Vision Library

OS - Operating System

PLC - Programmable Logic Controller

ROS - Robot Operating System

RPi - Raspberry Pi

RT - Real Time

SFC - Sequential Function Chart

IDE - Integrated development environment

UI - User Interface

iv

Table of Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation and Project Description . 1

1.2 Previous Work . 2

1.3 Objective . 3

1.4 Structure of thesis . 3

2 Background theory 5

2.1 Programmable Logic Controller (PLC) . 5

2.1.1 Control systems and controllers . 5

2.1.2 The functions of PLCs . 6

2.1.3 The Hardware and Architecture of PLCs 7

2.1.4 PLC Inputs and Outputs . 8

2.1.5 PLC Manufacturers and Models . 9

2.2 Scheduling algorithm for Ubuntu Linux . 9

2.2.1 Real-time kernel for Linux . 10

2.3 Raspberry Pi . 10

2.4 Arduino UNO . 11

2.5 Arduino MEGA . 12

2.6 Arduino Pro . 13

2.7 OpenPLC . 13

2.8 Arduino PLC IDE . 14

3 First time setup of the devices 15

3.1 First time setup of the Arduino PMC . 15

3.1.1 License Activation with Product key . 17

3.2 Setup of real-time kernel on Raspberry Pi . 17

3.3 Installing OpenPLC runtime on the Raspberry Pi 22

v

4 Technical spesifications 24

4.1 The interface circuitry . 24

4.2 Specifications of the mini-factory . 27

4.3 PLC standards . 28

4.4 Running the factory with Arduino PMC . 29

5 Connecting the factory and the micro controllers 30

5.1 The softwares . 30

5.2 Arduino Portenta Machine Control H7 . 30

5.2.1 PMC Hardware . 30

5.3 Ardunio PMC with OpenPLC software . 31

5.3.1 Arduino PMC analog pins . 32

5.3.2 Analog input . 32

5.3.3 Analog output . 33

5.3.4 Software driver for the programmable I/O 33

5.4 Arduino PMC with Arduino PLC IDE . 36

5.5 Arduino MEGA with OpenPLC . 37

5.5.1 Testing the Ardunio MEGA . 37

5.5.2 Testing and fixing inputs . 38

5.6 Updating the circuit board . 38

5.6.1 Adding a pull-down resistor . 40

5.6.2 Changing the resistances . 41

5.7 Connecting micro-controller to the factory . 43

5.7.1 Connecting wires directly . 44

5.7.2 Hardware shields . 44

5.7.3 Hardware shield on Arduino PMC . 44

5.7.4 Hardware shield Arduino MEGA . 45

5.7.5 Hardware shield Arduino UNO . 46

6 Software and Simulation 47

6.1 Connecting to Raspberry Pi . 47

6.2 Programming and language . 48

vi

6.3 Programming in Arduino PLC IDE . 48

6.4 Programming in OpenPLC . 49

6.5 Raspberry PI specific changes; PCB . 50

6.6 Connecting Arduino PMC to OpenPLC . 50

6.7 Compiling and running code in Arduino PLC IDE 53

7 PLC code for the factory 54

7.1 Ladder Diagram code . 54

7.1.1 LD Code part 1 . 54

7.1.2 LD Code part 2 . 56

7.1.3 LD Code part 3 . 58

7.1.4 LD Code part 4 . 60

7.1.5 Discussing the Ladder Diagram Code . 61

7.2 SFC - Sequential Function Chart . 62

7.3 Arduino PLC IDE: SFC . 62

7.3.1 SFC section 1 . 63

7.3.2 SFC section 2 . 66

7.3.3 SFC section 3 . 68

7.3.4 Discussing the SFC code . 70

8 Discussion 72

8.1 Use of mini-factory in Industrial Mechatronics . 72

8.2 Raspberry PI . 72

8.2.1 RPi Advantages . 72

8.2.2 RPi Disadvantages . 73

8.3 Arduino PMC . 74

8.3.1 PMC Advantages . 74

8.3.2 PMC Disadvantages . 75

8.4 Arduino UNO . 76

8.4.1 UNO Advantages . 76

8.4.2 UNO Disadvantages . 77

8.5 Arduino MEGA . 77

vii

8.5.1 MEGA Advantages . 78

8.5.2 MEGA Disadvantages . 78

8.6 Using other devices . 79

8.7 Hardware choice . 80

8.8 PCB . 81

8.9 Software choice: OpenPLC vs Arduino PLC IDE 82

8.9.1 User Interface and programming . 82

8.9.2 Reliability . 83

8.9.3 Final verdict . 83

9 Conclusion 84

9.1 Further work and possible expansions . 84

9.1.1 PCB design . 84

9.1.2 Machine learning . 85

9.1.3 Robot arm and ROS2 . 85

9.1.4 Developing the UNO system . 85

Bibliography 86

Appendix 88

A PLC architecture from IEC 61131-2 89

B Eduroam Guide 90

C Milling, Drilling or not code Example 92

D Attachments 94

D.1 Attached files: . 94

D.2 Hardware: . 94

E Extended Raspberry Pi OpenPLC table 95

List of Figures

1 The Fischertechnik factory [2] . 2

viii

2 Example of relay control system . 5

3 Simple illustration of a PLC . 7

4 The general architecture of PLCs . 8

5 Architecture of PLC from IEC 61131 . 8

6 Siemens Simatic S7-1500 PLC . 9

7 Raspberry Pi . 11

8 Arduino UNO . 12

9 Arduino MEGA . 12

10 Arduino PMC . 13

11 IDE download . 15

12 IDE download . 16

13 Error message . 16

14 Modbus connection . 17

15 Fully preemptible . 21

16 The PLC architecture map . 25

17 Rapid interface circuit . 25

18 Old circuits . 26

19 Digital outputs for direct current table . 28

20 Arduino PMC . 31

21 The ladder logic lines for an analog input of Sensor5 32

22 The ladder logic lines for the analog outputs of the milling and drilling station . . 33

23 Init digital programmables . 34

24 IO setup OpenPLC . 35

25 Input updates . 36

26 Output updates . 37

27 The breadboard circuit used for testing the input circuit 39

28 Pulldown resistor . 40

29 PCBv5 Schematic . 43

30 HW shield PMC . 45

31 MEGA hardware shield . 45

ix

32 Factory from top . 48

33 Resource tree . 49

34 PLC code variables . 50

35 Complete LD code . 51

36 IO config Arduino PMC . 52

37 Simple test of Ladder Diagram. 54

38 Part 1 birdview . 55

39 Ladder logic part 1 . 55

40 LD2 section1 . 56

41 LD2 section2 . 56

42 Part 2 in birdview . 57

43 Ladder diagram part 2 . 57

44 Ladder diagram alternate layout . 57

45 LD2 section3 . 58

46 Part 3 of factory in birdview . 59

47 Ladder diagram part 3 . 59

48 LD2 section4 . 60

49 LD2 section5 . 60

50 The Factory in bird view, showing part 4. 61

51 The fourth part of the Ladder Diagram. 61

52 LD2 section6 . 61

53 SFC code part 1 . 63

54 SFC code part 2 . 64

55 Arduino IDE SFC section 1 . 65

56 Arduino IDE SFC step 0 . 65

57 SFC code part 3 . 66

58 SFC code part 4 . 66

59 Arduino IDE SFC section 2 . 67

60 Arduino IDE SFC step 1 . 68

61 Arduino IDE SFC step 2 . 68

x

62 SFC code part 5 . 69

63 SFC code part 6 . 69

64 Arduino IDE SFC section 3 . 70

65 Arduino IDE SFC step 3 . 70

66 Arduino IDE SFC step 4 . 71

67 RPi with PCB . 73

68 Arduino PMC connected . 75

69 I/O expander . 76

70 MEGA with PCB . 78

71 Unoriginal Arduino . 79

72 Updated PCB . 82

73 PCB CAD . 82

74 Typical interface/port diagram of a PLC-system (from IEC 61131-2)[13] 89

List of Tables

1 Datasheet mini-factory . 27

2 Comparison table . 80

xi

1 Introduction

1.1 Motivation and Project Description

The goal of this thesis is to make a system which can improve some of the learning material

in TPK4128 Industrial Mechatronics. Which is a course that teaches the students more about

Industry 4.0, and more specifically mechatronics for industrial production systems.

The description of the course follows:

”The course is on mechatronics for industrial production systems. This includes the implementa-

tion, use, and programming of single-board computers, PLC-based and other industrial computer

systems. Embedded- and real-time systems, industrial bus systems, interfacing, operating systems

and communication protocols for these. Use of C, Linux and TCP/IP on e.g. Raspberry Pi, Py-

thon, ROS, virtual machines, computer vision, OPC-UA and selected Industry 4.0 topics will be

taught and practiced. Furthermore, sensors, actuators, power supplies, motor drives, pneumatic

and hydraulic actuators, aspects of dependability for industrial computer systems, and develop-

ment methodologies.” [1]

The focus for this thesis is going to be making a system which can be used as a base for PLC

assignments. This would be helpful for students to understand and test out some of the PLC

functionalities in the curriculum. The work done for this thesis will mainly focus on making

systems which are able to run the Fischertechniks Indexed Line factory. A model of this factory

can be seen in Figure 1. In addition, there will be developed hardware which can be able to run

this factory using different micro controllers and other hardware.

In the preceding project thesis the task was to make the necessary equipment to be able to run

the factory using the Raspberry Pi and make it emulate a Programmable Logic Controller (PLC)

device using different hardware and software solutions. In this master thesis, the focus is going

to be developing different systems that will be able to successfully do the same tasks, and then

compare the solutions to the one developed in the project thesis. This will later provide the

system solutions necessary to develop a fundamental base for future assignments in the course.

The systems will also be compared to help decide what system solution would be most beneficial

for the course.

Due to the thesis being directly working on things that were developed in the preceding project

thesis, some of the parts are also taken from the project due to them still being highly relevant for

this thesis. However, these will be clearly marked before each chapter.

1

Figure 1: The Fischertechnik factory with two machining stations [2]

1.2 Previous Work

Use of the mini-factory from Fischertechnik in assignments has already been explored in the Mas-

ter’s thesis by Andreas Knudssen Sund [3]. In this project, it was investigated if there was a need

for new assignments in Industrial Mechatronics. It was also investigated if tasks regarding the

Fischertechnik mini-factory could be appropriate to replace the already existing assignments given

in the course.

In Sunds research [3], it was found that the assignments in the course were ready for an upgrade.

A thorough study has been done to see what the impact of introducing the mini-factory as an

assignment in Industrial Mechatronics would be. The conclusion of the study was that an assign-

ment relating to the mini-factory is most likely going to be beneficial for the learning experience

for the students. This would also benefit the students experience and perception of the selected

topics, hopefully making the curriculum more interesting to work with.

Sund was mainly investigating if this factory was appropriate to use in assignments with a PLC.

After getting promising results, it was decided that this project assignment will develop the con-

cepts further with a Raspberry Pi and OpenPLC, which makes the institute not dependant on 3rd

party manufacturers to complete the assignments made for the course. This would save a lot of

headaches regarding licensing and the process to buy PLCs. Some of the PLC vendors also have

expensive software systems, so finding a solution which is free or low-cost is beneficial.

The next project regarding this topic was written by the author of this thesis and Eskild Godli.

This assignment focused on developing parts to be able to use a Raspberry PI to run the factory,

while also developing the bare-bones for use in an actual assignment. The practical parts of the

assignment was developed, while also developing custom parts to be able to use the factory and

Raspberry PI reliably in an educational environment.

Another research paper that has been used regarding this project is the master’s thesis of Arnholm

and Henriksen from 2021 [4]. This paper was mainly focusing on the use of Raspberry Pi with a

2

5G hat. Using a Raspberry Pi for a mechatronic system with Linux requires a pre-emptive kernel.

Therefore, a guide from this paper was used to build such a kernel for the Raspberry Pi.

1.3 Objective

The main objective of this Master’s degree, is to research and compare different solutions for

running an embedded system with micro controllers. Ultimately using this information to update

and improve the assignments already used in TPK4128 Industrial Mechatronics, mainly by focusing

on PLC applications and programming. This will be achieved by testing different types of micro

controllers and hardware devices, to further compare them to the Raspberry PI. In addition,

hardware developed for the project assignment will be updated and used for this thesis. This

preceding project assignment was written by Lars Bonvik and Eskild Godli in 2022. All of the

work done regarding the Raspberry Pi comes from the preceding project thesis. This thesis has

mainly focused on using the different types of micro controllers from the manufacturer Arduino.

The following points will be the primary objectives for this master’s thesis:

• Running the Fischertechnic Indexed Line factory using different hardware solutions

• Make complete working prototypes with different kinds of single board computers

• Simplify the systems as much as possible

• Compare the different devices, to decide what is the best for a PLC assignment in Industrial

Mechatronics

The secondary objectives:

• Look at possible expansions for incorporating more parts of the curriculum.

• Develop some solutions to further develop the assignments in TPK4128 Industrial Mechat-

ronics

1.4 Structure of thesis

Section 2 introduces the theory and key software used in this thesis. It begins with the present-

ation of what a Programmable Logic Controller is, and continues with how it works. In addition

this chapter will present the different micro controllers and IDEs used in this thesis.

Section 3 presents how the Raspberry Pi used in this thesis is set up to work in the desired way.

In addition, it features how to set up the Arduino PMC with Arduino PLC IDE.

Section 4 details the functionality that is needed and desired to achieve the objectives set for

the thesis. Further it continues with the tests of the mini-factory, and the discoveries of how it

functions.

Section 5 goes through the development of the circuitry needed to run the mini-factory with the

Raspberry Pi.

3

Section 6 contains the softwares used to develop the prototype and goes through the development

of the circuitry and related software. It also contains the start of the simulation development for

the mini-factory.

Section 7 contains PLC code developed in the preceding project assignment and the current

Master’s thesis.

Section 8 is discussing the overall results and difficulties. Further works is also mentioned.

Section 9 contains the conclusion of the Master’s thesis.

Appendix A a figure showing a more advanced architecture representation of a PLC from the

PLC standard IEC 61131-2.

Appendix B a guide to connect to the Eduroam network with an Raspberry Pi.

Appendix C presents the test program written to control the machining stations of the mini-

factory.

Appendix D a listing of the attached files.

Appendix E is an overview of the different pins on the Raspberry Pi.

4

2 Background theory

This chapter includes the background theory needed to understand the work done in the rest of

this project thesis. Most of this is taken from the project assignment, because the information

is still highly relevant for this thesis. The specific sections that has been taken directly from the

preceding project assignment is:

• Section 2.1

• Section 2.2.1

• Section 2.3

• Section 2.7

The rest of the subsections in Section 2 has been written specifically for this thesis.

2.1 Programmable Logic Controller (PLC)

”A programmable logic controller (PLC) is a type of device extensively used for different automa-

tion applications within industrial processes and manufacturing” [5]. As it’s name implies, it is a

form of controller. This section will give an overview of controllers in general, as well as presenting

the function, hardware and architecture of PLCs.

2.1.1 Control systems and controllers

A controller or control system ”might be required to control a sequence of events, maintain some

variable constant, or follow some prescribed change” [5]. They are used to automate and streamline

tasks that were done manually by people, to drive cost down, and make a safer workplace by

automating hazardous tasks.

Figure 2: Example of a relay control system used in the Number Five Crossbar Switching System.
This unit is in the museum of communication in Seattle. [6]

A popular way to automate tasks before the time of the PLCs, were the use of relay systems. An

example of such a system can be seen in Figure 2.

5

Relays are magnetic switches that is switched on and off depending on the voltage of an input signal.

This was an ideal system to automate tasks requiring high precision and tight time constraints.

They excel at simple tasks, but are unable to do more complex tasks. However there are some

significant problems with relay switches. One of them is that tasks are hard to modify. A small

change in function might need a complete rewiring of the whole system. Due to all of these physical

connections, relay systems also requires a lot of space [5], [7], [8].

Microprocessor control systems are a much more modern alternative to the PLC system. Instead

of needing to hardwire the control system for each situation, it’s possible to simply reprogram the

microprocessor for the specific constraints and functions of a task. This type of control makes

the system a lot more flexible than relay switches. Microprocessors are also cheap and space

efficient compared to alternative solutions, which makes these systems a preferable way to automate

industrial tasks. This type of control also allows for feedback from the system it is connected to,

for example for maintenance purposes.

PLCs are a specific form of microprocessor controllers, made to standardise microcontroller systems

with simple and robust programming languages. Mainly for use in the industry. One of the

standardised languages used for PLCs are called Ladder Diagram, this language was developed

to be used by people who had originally wired relay systems. This way it was simple for the

programmers to adapt to PLC systems instead, since it is made to be similar to relay system

schematics.

In 1969 the first PLC was developed, and it has been the primary solution for industrial automation

since the 1970s. They have evolved from self-contained units with few digital I/O, to modular units

with the possibilities to expand the I/O. They are able to use analog I/O as well.

Since it is developed new programming languages specific for the PLC’s, the need for international

standardisation were large, because of the importance of the industrial applications they are used

for.

This have led to the creation of many standards, such as the most influential ones from the 90s

and early 2000s, IEC 1131 and IEC 61499 respectively. The IEC 1131 standard was later renamed

to IEC 61131, and got new extensions. This standard has now ten parts, but started with three

parts released in 1992 and 1993. The rest of the parts has been released sporadically since then.

Multiple parts were released in the year of 2000, and the newest part was released in 2019 [9], [5],

[10], [11], [12], [7].

2.1.2 The functions of PLCs

As said before, a PLC is a complete system with a microprocessor and I/O designed for use in the

industry. It uses simple languages, which makes them easy to program for engineers or operators

with little to no experience with programming. In figure Figure 3 it is added a simple illustration

of how a PLC functions. The PLC get some inputs from sensors, the program interprets them,

and some output signals are set to run some motors that for instance runs a conveyor belt.

6

Figure 3: Simple illustration of a PLC

The PLCs are developed for use in the industry. Some of the tasks they are developed for includes,

automating tasks for manufacturing, industrial processes, machining automated assembly and

packaging. These kinds of tasks are important to not be interrupted or stopped unexpectedly.

This scenario has the potential to create hazardous or dangerous situations, or the manufacturer

can lose significant monetary value. These are some of the reasons PLCs are built to complete

task in harsh environments, and are designed to run as long as possible without failure.

For some automation tasks the added robustness might not be necessary. For example a washing

machine for home use might only need a microprocessor controller without the added robustness

a PLC provides. Autopilots for airplanes needs more computational power than a PLC provides,

to solve complex mathematics and high speed operations. Therefore, a normal computer is more

beneficial to run autopilots. In the next subsection the hardware and architecture of the PLC will

be looked into [5], [11] [8].

2.1.3 The Hardware and Architecture of PLCs

The functional parts of a typical PLC is shown inside the box in Figure 4.

• Where the Processor part is the microprocessor(s) that does the arithmetic’s and the exe-

cution of the application program functions.

• TheProgram and data memory is storing the application program and the states/variables

the application program is using.

• Communications interface is providing a function to communicate with third-party devices

such as PLC’s from other manufacturers and computers.

• The Power supply is supplying the necessary power to the different parts of the PLC.

• The I/O interfaces, Input interface and Output interface, is interfacing with the input

and output devices respectively.

The I/O interfaces will be explored a bit further. Figure 5 (a) shows a similar architecture diagram

as Figure 4 from the IEC 61131-1 standard, and (b) shows one more advanced version from IEC

61131-2 standard. See chapter 6 Functional requirements in IEC 61131-2 standard for in-depth

specifications of the functional requirements of a PLC’s hardware and architecture [11], [13], [5],

[7], [8].

7

Figure 4: The general architecture of PLCs, [5]

(a) (b)

Figure 5: The architecture of PLC from IEC 61131, (a) shows a simple version from IEC 61131-1
[11]. And (b) shows an extended version from IEC 61131-2 [13]. In addition there is a larger

version of it in Appendix A.

2.1.4 PLC Inputs and Outputs

The input and output interfaces is as said, the part of the PLC that interfaces with input and

output devices. This is the part of PLCs that’s used for communication with external devices.

From this interface, the controlled devices receives and output signal from the controller, and the

controllers receives input signals from the external devices. There are different kinds of inputs and

8

outputs associated with a PLC.

A PLC can have both discrete/digital I/O and analog I/O. Discrete inputs can for example be

provided by push buttons or phototransistors. Analog inputs can be provided by for instance a

temperature sensor. The discrete outputs can then be LED’s or other lights with one intensity, or

conveyor belts that run in only one speed. Whilst a motor that need speed control, might use an

analog output from the PLC. One example is CNC machines with speed control for specific tools.

The processor part of the PLC is using low voltages for its operations. For such components, 3.3

volt to 5 volt is common as the source voltage. While the PLC can use many different voltages

depending on the I/O module, the most common for discrete signals is 24V. The processor cannot

give such voltages directly, or read them since that would break it.

That is why opto-isolators are commonly used for the inputs they read. There are three common

ways to make the low voltage signals from the processor to the correct output voltage. These

are relay-types, transistor-types and triacs. The relays and transistors work as switches that lets

through the correct electrical signal, while the triacs only work for AC current [8], [5].

In the IEC 61131-2 chapter 6 standard, there are specifications of how the I/O and other functions

are required to be compliant. For a specific output type there cannot be more than a given amount

leaking current in its off state as an example. These requirements are important for the PLCs to

behave predictably, and to be safe, robust, and have desired longevity in the environments they

are used.

2.1.5 PLC Manufacturers and Models

There are many different manufacturers of PLCs to choose from if such a unit is desired. They

all have their pros and cons, and usually requires proprietary environments for coding, uploading

the code, and communication between units. There are also open standards for communications

if there is a need for mixed environments. Modicon was the first manufacturer of PLCs, although

Siemens is one of the most popular manufacturers of PLCs today. See Figure 6 for an example of

a PLC from Siemens [5], [7], [8].

(a) (b) (c)

Figure 6: Three pictures were taken of a Siemens Simatic S7-1500 PLC

2.2 Scheduling algorithm for Ubuntu Linux

The normal scheduling algorithm used in the Ubuntu distribution of Linux is called Completely-

Fair-Scheduler (CFS). Most scheduling algorithms are giving scheduled processes a fixed time-slice.

9

CFS is however designed to evenly divide the CPU between all of the competing processes.

The scheduler does this by choosing the process with the lowest virtual runtime (vruntime). All

processes accumulates runtime while running and the process with the lowest vruntime is chosen

to run when a scheduling decision occurs. The time slots used for running each process is allocated

dynamically and is using a variable called sched latency to decide the allocated time frame for the

running process. This is usually in 48 milliseconds and is divided on n number currently scheduled

processes. Ensuring that all processes get to run fairly on the CPU after a certain amount of time

[14].

2.2.1 Real-time kernel for Linux

An operating system with a fully pre-emptible kernel is usually required to run certain mechatronic

systems. This type of kernel is used when there are specific constraints and to secure a certain

”worst time” possible when there are strict demands of the maximum allowed delay. Ubuntu Linux

which in this thesis doesn’t run on a fully pre-emptible kernel from the box, which means the OS

has to be patched to allow real-time capabilities. A detailed explanation on how to do this is given

in Section 3.2. According to Redhat.com [15], an RT kernel has the following advantages to an OS

with a regular kernel.

• Checks task-priority under load

• High priority tasks are given preference for CPU execution

• Maintains a low latency execution time

• Possible to check, measure and configure response time

A kernel preemption makes the kernel able to change between processes using the scheduling

algorithm, even if it already has another process running. This change makes the kernel able to

process higher-priority tasks by interrupting already running tasks, and finish them later.

With a fully pre-emptible kernel, there can be set a maximum delay for certain high-priority tasks.

This is due to the delay being independent on the complexity of the processes or tasks already

running. This is a desired quality when running systems with strict demands of the maximum

delay. Some examples are car production lines and pace makers.

2.3 Raspberry Pi

Raspberry Pi is a single-board computer originally made to encourage learning and data science in

schools and developing countries. It is built and developed by the british Raspberry Pi foundation

in cooperation with Broadcom. At the time of writing, the latest development, and the version

used in this project is the Raspberry Pi 4 Model B. This is currently available for everyone to buy,

and it exists with choices of 2GB, 4GB and 8GB RAM to name a few. The Raspberry Pi is using

a CPU with ARM architecture, and uses an open-source version of Debian Linux as an operating

system. For more information about the specifications of the Raspberry Pi see the official RPi

page [16]. A picture of a Raspberry Pi is added below in Figure 7.

10

There are a lot of reasons why Raspberry Pi was chosen over other single board computers. Mainly

it was due to accessibility and modularity. A Raspberry Pi is made as an educational tool with a lot

of ports and signaling capabilities. In addition, there is a lot of community support online, which

makes solving problems easier compared to computers with no online support. All of these reasons

makes it ideal for prototyping. Raspberry Pis are normally not implemented nor used in industrial

applications. One alternative to the Pi for this project, could be an industrial counterpart.

Figure 7: A picture of a Raspberry Pi 4 Model B

2.4 Arduino UNO

Arduino UNO is a micro controller that is made by the italian manufacturer Arduino for private

use. It is a single chip micro controller that features a proprietary IDE called Arduino IDE. The

UNO controller have been updated several times and been launched in several versions. The version

used in this project is the UNO Rev3. This generation features the ATmega 328p processor and

14 programmable ports, which can be used for private projects. In addition, it has 6 PWM ports

and 6 analog ports. The memory of this controller is 32 kB.

These controllers comes in many different configurations and versions. In addition, there is a lot

of additional hardware that has been developed for the controller, both from Arduino or other 3rd

party manufacturers such as Sparkfun. This includes for example wifi shields and I/O expanders,

just to name a few. The cheap price of the controller and the open-source layout makes it ideal

for prototyping. A picture of the Arduino Rev3 can be seen below in Figure 8.

11

Figure 8: A picture of the Arduino UNO used for the project

2.5 Arduino MEGA

Arduino also have other micro controllers available for the private market. One of which is called

Arduino MEGA. The one used in this project is called Arduino MEGA 2560. This micro controller

is quite similar to the Arduino UNO. Although this controller have a lot more configurable pins, as

well as higher memory speed. This device has a 256 kB flash memory, which means it has 8 times

more memory than the standard UNO. This is mainly due to the more powerful ATmega 2560

CPU used by the Arduino MEGA. In addition, the Arduino MEGA features 54 programmable

pins, which is a lot more than the UNO can provide. This makes it ideal as an alternative to the

UNO, if the UNO doesn’t provide enough programmable pins or lacks computing power. A picture

of the Arduino MEGA is provided below in Figure 10.

Figure 9: A picture of the Arduino MEGA used in the project

12

2.6 Arduino Pro

Arduino Pro is a series of Arduino devices featuring IoT-capabilities and is mainly designed for

professional applications. Even though the target customers are companies, the devices can also

be bought by private customers, due to it’s low cost compared to other PLCs available on the

market. The Pro units are specifically designed for industrial control, AI edge processing and

robotic applications.

This series of products have mainly two different models with smaller variations in each family.

The two model lines are called Arduino Portenta and Arduion OPTA respectively. Specifically the

Portenta Machine Control H7 is used in this Master’s thesis. This model features an interface with

wire plugs for fast connections, similar to PLCs from other manufacturers. The Portenta Machine

Control also features an Embedded real time clock (RTC) which is required for real time systems.

A picture of the Arduino Portenta can be seen in Figure 10. From this chapter and the rest of the

assignment, the Arduino Portenta Machine Control H7 is going to be referred to as the Arduino

PMC.

Figure 10: A picture of the Arduino PMC that’s used in the project

2.7 OpenPLC

For this project, OpenPLC was chosen as an operating software for the mini-factory. According to

the description on GitHub, it is an open-source Programmable Logic Controller (PLC) based on

easy to use software. This is provided as a low-cost industrial solution for automation and research

[17].

A benefit of OpenPLC is that the entire source code is provided and open-source. This also makes

the software ideal for industrial cyber security research. However, this isn’t relevant for this project.

One of the most important aspects of this project is to be able to provide a framework to learn

different types of PLC languages. OpenPLC follows the international IEC 61131-3 standard, which

is the official standard for PLC programming languages [12]. In addition, OpenPLC is both easy

to use and completely free. This makes the software highly relevant to use for this project.

13

2.8 Arduino PLC IDE

Arduino PLC IDE is an IDE developed for the Arduino PLC units. This includes the Arduino

Portenta Machine Control and the Arduino OPTA, which are two PLCs Arduino provides. The

software provides an IDE for programming in all of the 5 approved PLC languages defined by the

IEC 61131-3 [12] standard, similarly to 2.7. The program is free to download, but needs a license

activation to unlock all the capabilities in the program. This key is provided by Arduino and costs

16 € at the time of writing. The program also needs connection to a compatible device, this is

done by connecting a device to your PC, and download the necessary drivers installed with the

software. A guide on how to set this up is provided in Section 3.1.

According to their website a user is able to ”mix PLC programming with Arduino sketches within

the integrated sketch editor, and seamlessly share variables between the two environments” [18].

The program also provide different solutions for industrial communication, with the possibility to

manage CANOpen, Modbus RTU and Modbus TCP communication. The program also provides

integrated no-code fieldbus configurators.

14

3 First time setup of the devices

3.1 First time setup of the Arduino PMC

For the first startup of the Arduino PMC, the board needs to be connected to a computer using the

Micro-USB port located on the board. On newer models, this is a USB-C port. After connecting

it to your PC, the software drivers needs to be installed. There are several ways to do this, but the

method chosen in this project is using the Arduino PLC IDE. This guide is inspired by the guide

found on the Arduino website [19].

Step 1 is download the Arduino PLC IDE Tools and the Arduino PLC IDE from the official website.

These programs require an operative system of Windows 10 or newer, based on the x64 architecture.

On the time of writing, this is found at https://www.arduino.cc/en/software#arduino-plc-ide and is

pictured in Figure 11. The version of the program used in this project is 1.0.4.

Figure 11: IDE download

The Arduino PLC IDE Tools package features the required drivers, libraries and cores that is

needed for the program. The second executable installs the IDE itself.

The next step is to start the program, where a welcome screen will appear as seen in Figure 12.

To be able to code and install the drivers, a new project needs to be created. When pressing the

”New Project” button, a pop-up will appear. These text-boxes featuring a project name and a

path to the directory the project will be saved. A target device also needs to be selected, which is

the Arduino Portenta MC 1.0. After this, hit ”OK”.

15

https://www.arduino.cc/en/software#arduino-plc-ide

Figure 12: IDE download

After this step, a screen containing Arduino PMC configuration will appear. The drivers required

for the Arduino PMC is found under ”Other”. To install the drivers on the PLC, find the correct

COM-port, and press download.

• The device might show two serial ports. The usual one in most instances is the one with

the lowest number. The one with the highest serial number is usually the port for enabling

Modbus communication for the device. Take a note of this COM-port, as it will be needed

in a later stage

If the error box seen in Figure 13 appears, double tap the reset button on the Arduino PMC. The

LED will start flashing indicating that the device is ready to be flashed with the new firmware.

After this, just press the download button again.

Figure 13: Error message pop-up

After the runtime is up and running, set up the communication by going to On-line > Set up

communication. On the new appearing pop-up window, open the properties for the Modbus

protocol as seen in Figure 14.

Make sure the Modbus protocol is using the secondary port number that was written down earlier

and press OK. Press OK again to save the settings and connect the device using On-line > Connect.

16

Figure 14: The modbus connection ports

3.1.1 License Activation with Product key

The Arduino PMC is possible to buy with a pre-activated license. If a device is bought without

the activation key included, the following steps will tell how to get the key and activate it.

If the communication is successful, a status indicator will show up in the license section.

To buy the license key, go into the official Arduino website and buy the key. At the time of writing,

one license key costs 16€ to buy. To activate the license key, paste in the key into the blank space

on the Arduino PMC configuration page in the Arduino PLC IDE, and press the Activate button.

After the license is activated, the key is bound to the hardware ID on the device. A popup telling

the user to reboot the target device appears. When this message pops up, press the reset button on

the Arduino PMC twice. Once the license is activated and the drivers are installed, the device can

be connected. After successful communication, code can be uploaded from different computers.

Meaning the license activation is following the device, and not the first computer that the Arduino

PMC is connected to.

3.2 Setup of real-time kernel on Raspberry Pi

This section has been taken directly from the preceding project thesis due to still being highly

relevant for this thesis. Therefore, this guide on patching the kernel for Ubuntu Linux is added

here as well with none or minor changes.

A lot of mechatronic systems have strict requirements of the amount of delay allowed by the system.

To be able to work with such a system, a real time kernel is needed. Therefore, it was desired to

17

run the mini-factory with a real time operating system as well. This real time kernel have been

set up to work on Debian Linux for Raspberry Pis for this project. To do this, a guide inspired

from [4] were followed.

The first step to patch the Raspberry Pi kernel, is done by cross-compiling with a host computer.

To do this, the appropriate tools needs to be installed on the computer:

$ sudo apt-get install build-essential libgmp-dev libmpfr-dev

libmpc-dev libisl-dev libncurses5-dev bc git-core bison flex↪→

$ sudo apt install libelf-dev

$ sudo apt-get install libncurses-dev libssl-dev

After installing the necessary tools, the next step is to compile the native build for cross-compiling.

By typing the following line, Binutils is installed:

$ cd Downloads

$ wget https://ftp.gnu.org/gnu/binutils/binutils-2.35.tar.bz2

$ tar xf binutils-2.35.tar.bz2

$ cd binutils-2.35/

$./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--disable-nls↪→

After configuration, use the following commands to compile the program:

$ make -j4

$ sudo make install

The path needs to be exported after compilation. To do this, type the following commands:

$ export PATH=$PATH:/opt/aarch64/bin/

After exporting the path, build and install GCC with the following commands:

$ cd ..

$ wget https://ftp.gnu.org/gnu/gcc/gcc-8.4.0/gcc-8.4.0.tar.xz

$ tar xf gcc-8.4.0.tar.xz

$ cd gcc-8.4.0/

$./contrib/download_prerequisites

$./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--with-newlib --without-headers --disable-nls --disable-shared

--disable-threads --disable-libssp --disable-decimal-float

--disable-libquadmath --disable-libvtv --disable-libgomp

--disable-libatomic --enable-languages=c --disable-multilib

↪→

↪→

↪→

↪→

18

The next step is to compile GCC.

$ make -j4

$ sudo make install gcc

Due to the patching and installation of kernel is going to be done by cross-compilation, there is a

need to be sure that the compiler is installed on the host-computer. To download this, type the

following commands into the terminal:

$ sudo apt-get update

$ sudo apt-get install gcc-aarch64-linux-gnu

The tools required to build and install the patch onto the kernel, should now be downloaded and

ready. The kernel version used in this project is v5.15 with the corresponding patch RT49.

Continuing the process on the host-computer, make a new directory. The kernel and the corres-

ponding real-time patch needs to be downloaded next. It is possible to patch a non-corresponding

version of the kernel, but it’s no guarantee that it will work properly. To do this, type the following

lines in the terminal:

$ mkdir ˜/rpi-kernel

$ cd ˜/rpi-kernel

$ git clone https://github.com/raspberrypi/linux.git -b rpi-5.15.y

The patch used in this project is downloaded by typing the following lines in the terminal:

$ wget https://mirrors.edge.kernel.org/pub/linux/kernel

/projects/rt/5.15/older/patch-5.15.65-rt49.patch.gz↪→

If it’s desired to download another patch, the newest patches are found from https://mirrors.edge.

kernel.org/pub/linux/kernel/projects/rt/5.15/. To download this, just change the fields by replacing

”XX” and ”YY” with the newest version numbers patch-5.15.XX-rtYY.patch.gz.

$ wget https://mirrors.edge.kernel.org/pub/linux/kernel

/projects/rt/5.15/patch-5.15.XX-rtYY.patch.gz↪→

Applying the patch to the kernel is done by typing:

$ mkdir kernel-out

$ cd linux

$ gzip -cd ../patch-5.15.65-rt49.patch.gz | patch -p1 --verbose

19

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.15/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.15/

Before building the patch, the configuration has to be set up to allow real-time capabilities for the

kernel of the Raspberry Pi. To apply the default settings, type:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu-

bcm2711_defconfig

↪→

↪→

In addition to these settings there is a need to change the setting of CONFIG KVM to unlock

real-time capabilities. An explanation of why this is the case is discussed in the preceding project

assignment. This is done by the following commands:

$ cd ..

$ cd kernel-out

$ echo -e "CONFIG_EXPERT=y\nCONFIG_KVM=n" >> .config

$ cd ..

$ cd linux

After these lines are written in the terminal, it should now be possible to choose the real-time

kernel in the menuconfig. To open the menuconfig, type the following command:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu- menuconfig↪→

Enable ”FULLY-PREEMPTIBLE KERNEL (REAL-TIME)” in this menu. This is done by doing

the following steps:

1. General setup

2. Preemption model

3. Fully preemptible (Real time)

20

(a) (b)

(c)

Figure 15: Images of the menuconfig (a) shows General setup, and (b) shows the Preemption-
model and (c) fully pre-emptible kernel

Figure 15 shows what the menuconfig looks like on a PC.

After this step, the new rt-kernel needs to be built and compiled, this is done with the following

line:

$ make -j4 O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=aarch64-linux-gnu-↪→

When the compilation is finished, the next step is to zip the kernel. This is done by the following

lines in the terminal:

$ export INSTALL_MOD_PATH=˜/rpi-kernel/rt-kernel

$ export INSTALL_DTBS_PATH=˜/rpi-kernel/rt-kernel

$ make O=../kernel-out/ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

modules_install dtbs_install↪→

$ mkdir ../rt-kernel/boot

$ cp ../kernel-out/arch/arm64/boot/Image ../rt-kernel/boot/kernel8.img

$ cd $INSTALL_MOD_PATH

$ tar czf ../rt-kernel.tgz *

$ cd ..

The kernel should now be zipped inside ”rt-kernel.tgz”, which now needs to be sent to the Raspberry

Pi. This can be done either by using a USB-Stick or through SCP. Write the following line in the

terminal to send the file via SCP:

21

$ scp rt-kernel.tgz pi@<ipaddress>:/tmp

The last steps is done on the Raspberry Pi itself. To install the newly built kernel, the following

commands needs to be executed:

$ cd /tmp

$ tar xzf rt-kernel.tgz

$ cd boot

$ sudo cp -rd * /boot/

$ cd ../lib

$ sudo cp -dr * /lib/

$ cd ../overlays

$ sudo cp -dr * /boot/overlays

$ cd ../broadcom

$ sudo cp -dr bcm* /boot/

After the commands above are executed, the file ”/boot/config.txt” needs to be edited by append-

ing the line ”kernel=kernel8.img” at the end.

In order to apply the changes, and check if it installs successfully, the Raspberry Pi needs to be

rebooted. After rebooting is complete, the following command can be executed:

$ uname -a

If the installation is successful, the output should be along the lines of ”Linux raspberrypi 5.15.65-

rt49-v8+ 1 SMP PREEMPT RT Fri Dec 1 01:17:07 CET 2022 aarch 64GNU/Linux”.

3.3 Installing OpenPLC runtime on the Raspberry Pi

The first step to install the OpenPLC runtime on the Raspberry Pi, is to connect it to internet.

On a normal private network this can be done in the normal way, but on Eduroam it is a bit more

inconvenient process. It is possible to circumvent this by sharing WiFi with a cellphone, but it

is recommended to connect directly to Eduroam. A guide on how to connect to Eduroam for the

Raspberry Pi is provided in [20], and can be seen in Appendix B.

The Runtime for OpenPLC can be installed on different kinds of devices, and on OpenPLC web-

page there are guides on how to install each of them. Following the Linux version of the guide, the

Raspberry Pi specific options is the recommended way of installing it. This guide can be found

from [21]. In this thesis, it was installed exactly like this.

The easiest way to install the OpenPLC Runtime on a Raspberry Pi is to use git. This is usually

done by getting it directly from the official site. To ensure git is installed, write this in the terminal:

22

$ sudo apt-get install git

To install the runtime, write the following lines in the terminal after git is installed:

$ git clone https://github.com/thiagoralves/OpenPLC_v3.git

$ cd OpenPLC_v3

$./install.sh rpi

When it is done, the RPi needs to be rebooted, which can be done by typing this in the terminal:

$ reboot

The runtime is now installed, but it will not work quite yet. The RPi version is depending on the

WiringPi library. It can be downloaded from Github, where the latest version can be found on:

https://github.com/WiringPi/WiringPi/releases/

The -armhf.deb file should be used on 32-bit OS (Raspberry Pi 3 and under) and the -arm64.deb is

meant for 64-bit OS (Raspberry Pi 4 and up). Download the appropriate file for your architecture

on your Raspberry Pi. In this thesis, a Raspberry Pi 4B is used with a 64-bit OS, and therefore

the -arm64.deb is the one downloaded. Then install it with one of the two dpkg command:

$ dpkg -i wiringpi-[version]-armhf.deb

or

$ dpkg -i wiringpi-[version]-arm64.deb

The newest version during the installation, and what used in this thesis are 2.61-1, and the file

ended up in the Download folder. It can also be necessary to use the sudo command. The exact

commands used in the thesis are:

$ cd Downloads

$ sudo dpkg -i wiringpi-2.61-1-arm64.deb

Test that the WiringPi installation finished successfully with the command:

$ gpio -v

23

4 Technical spesifications

This chapter includes all of the technical specifications of the factory, and the means that were

taken to test these. This were mostly done in the preceding project thesis, but is still relevant

for the thesis since this information is used when updating the PCB. The following subsections

mentioned in the list below, has been either taken directly, or added with minor adjustments from

the project thesis. This includes sections:

• Section 4.1

• Section 4.2

• Section 4.3

4.1 The interface circuitry

The main purpose of this thesis is to look at different types of micro controllers to emulate a

Programmable Logic Controller (PLC) and run the Indexed Line factory. PLCs are usually used in

the industry to run production lines or other industrial sequential processes. PLCs are commonly

used due to high reliability, ease of programming and process fault diagnostics. In educational

purposes, it might be seen as unnecessary to get a PLC, mostly due to cost. Microcontrollers are

usually easier to attain, and doesn’t require manufacturer specific software. A microcontroller is

additionally more flexible than a PLC, and have the ability to be used for much more diverse tasks.

As described in Section 2.3, a Raspberry Pi was chosen for this project. To be able to emulate a

PLC, a fitting software needs to be used. The software used for this project was OpenPLC, which

is an open-source PLC software. This software is made as an affordable and accessible method to

learn PLC programming using the global IEC-61131-3 standard. The program is written in the

programming language ”C”, which makes it highly portable over multiple devices. The examples

of compatible operating systems that are given on their official site are Linux, Arduino, Windows

and Raspbian [17].

In Figure 16, the general architecture map for a PLC is shown. The micro controller is going to be

responsible for the modules shown with a green square. The modules marked by a red square is

going to be emulated by an interfacing circuit. This circuit is not necessary for the Arduino PMC,

since this device is capable of giving 24 volt signals from default. This interfacing circuit was made

in the preceding project thesis, and has been further improved in this thesis. The devices connected

to the PLC are marked with a blue square. The power for the system will be partially provided

from the micro controller. In addition, an external power supply will be connected directly to the

PCB.

24

Figure 16: The planned way to emulate the general architecture of PLCs. Based on Figure 4 from
[5].

The main purpose of the interface circuitry and the PCB, is to ensure that both the microcontroller

and mini-factory gets the required voltage to run the required modules. The voltage provided from

the IO ports on microcontrollers made for private use, are usually specified to be between 2.7 to 5

volts. The actuators, sensors and motors on the mini-factory requires 24 volts to run. Therefore it

is desired to make a circuit that will safely translate low voltage signals to higher voltage signals.

Meanwhile, it is important to translate back from 24 volts to 3.3 volts, to safely read the input

signals given from the sensors of the factory. If the input voltage to the Raspberry Pi is to high,

the power might ruin IO pins, or in the worst case, ruin the whole controller. A brief sketch of

how this might be done, is given in figure Figure 17.

Figure 17: Rapid sketch of how to turn on a 24V signal from 5 volts and lower voltages

The circuits that were developed during the preceding project assignment are shown in Figure 18.

There is one of the circuit seen in Figure 18a per input on the factory model. And one output

25

circuit seen in Figure 18b for each output on the factory.

The input circuit is made by 3 components, two resistors and an optocoupler. When the signal

from the sensors on the factory activates, power is sent through the optocoupler on the right side.

This will activate the gate on the left side pf the optocoupler, and 3.3 volt signal will pass through

to the micro controller.

The output circuit consists of two resistors, an optocoupler and a 2N7000 MOSFET transistor.

The signals from the micro controller is sent on the left side of the opto-coupler and opens the gate

on the right side. This allows a power with 24 volts go through the optocoupler and transistor,

sending a signal to the factory.

These circuits were developed to shield the micro controller from the 24 volt signals used by the

factory, making the micro controller read signal in it’s own voltage. If the reader is curious of how

these were developed, the full description is added in the project assignment.

(a)

(b)

Figure 18: The output and input circuit developed for the project assignment

26

4.2 Specifications of the mini-factory

In the datasheet, Table 1 was provided as an overview of the pins and functions of the factory.

Table 1: Overview of the pins given by the data sheet of the factory

Terminal/Pin Function Input/Output
1 Power supply actuators (+) 24V DC
2 Power supply sensors (+) 24V DC
3 Power supply (-) 0V (GND)
4 Power supply (-) 0V (GND)
5 Push-button slider 1 front I1
6 Push-button slider 1 rear I2
7 Push-button slider 2 front I3
8 Push-button slider 1 rear I4
9 Phototransistor slider1 I5
10 Phototransistor milling machine I6
11 Phototransistor loading station I7
12 Phototransistor drilling machine I8
13 Phototransistor conveyor belt swap I9
14
15 Motor slider 1 backward Q1
16 Motor slider 1 forward Q2
17 Motor slider 2 backward Q3
18 Motor slider 2 forward Q4
19 Motor conveyor belt feed Q5
20 Motor conveyor belt milling machine Q6
21 Motor milling machine Q7
22 Motor conveyor belt drilling machine Q8
23 Motor drilling machine Q9
24 Motor conveyor belt swap Q10

To check that everything on the mini-factory worked correctly, a powersupply with adjustable

voltage and electric current was connected into the power slots on a breadboard. The voltage was

adjusted to 24V and the current was set to 0.1 Amps. Two wires were then connected to pin 1

and 3. These were added to power up the actuators of the mini factory. When the actuators had

power, the motors could be tested. A new wire connected the powered slots on the breadboard,

to the input terminal 15. After observing that the motor was running, terminal 16-24 were tested

accordingly.

A similar method were used to test the remaining pins. The wires providing power were connected

to pin 2 and 4, to power up the sensors of the mini-factory. When the factory had power, a

multimeter were connected to pin 5 and ground. The button connected to pin 5 was pressed, and

a change in voltage could be observed. This indicated that the button was functional. The same

method were used for the remaining buttons, found on terminals 5-8. The phototransistors were

tested with the same setup as the buttons, although these sensors were activated by blocking the

light signal between the LED light source and phototransistor. A similar change in voltage was

observed, but opposite. Unlike the buttons, the phototransistors are normally open, and closes

when an object is blocking the signal between them.

When the signal circuit were tested, it was discovered that the motors where pulling a current

from their respective signal pins. The current they pulled was low, under 0.1 Ampere. This is still

a significant current when the assumption was that they only required pure voltage signals. An

27

investigation of how much current they should theoretically pull at maximum power started. On

Fischertechniks website of the mini-factory [2], it says that all the motors are XS DC motors. This

doesn’t give a lot of information that could be used, so further investigation were conducted.

In the last question in their technical FAQ [22], it was found that the motors pull a maximum of

0.265A at 9V. This give a maximum current draw at 24V of 0.0994A.

Figure 19: The Digital outputs for direct current table from section 6.4.6.1 in [13].

4.3 PLC standards

One of the surprises found when testing, was that the mini-factory drew more current from the

signal pins than first assumed. This assumption was mainly based on the existence of pin 1 in the

spec sheet provided in Table 1, which was thought to provide enough current to run the whole

factory.

To figure out if this could be a problem or not, an investigation of the output signal current of

PLC’s were started. On Siemens’s site [23] there was found that the output modules for SIMATIC

S7-1500 are capable of a minimum of 0.3A as their maximum current. There were other modules

that could give more, but it was the module that gave the lowest maximum that was interesting.

Since the modules can provide enough current to drive the motors, it seems to not be a problem.

Therefore, it was reasonable to adjust the resistors of the PCB circuit to provide a similar amount

of current through the output signals as well.

Since one of the goals of this project was to make a Raspberry Pi emulate a PLC, it were seen as

relevant to investigate the international standards of the workings of a PLC. This was done to see

exactly what functions needed to be replicated. In IEC-61131 part 2 [13], the hardware standards

is set. In this standard, the minimum required current for an output signal from a PLC was found.

28

The PLC standards for the power-signals are found in Figure 19. As can be seen from this table,

the smallest output type is 0.1A. Meaning that a PLC’s discrete output should always be able to

give that amount of current. In that case the mini-factory follows the PLC standard of the power

consumption, which explains why the motors needed additional current from the signal pins to

run.

4.4 Running the factory with Arduino PMC

Since the Arduino Portenta follows the international PLC standards, it is fit for running the factory

out of the box. One of the main problems with running the factory on micro controllers is the

challenge of getting the correct voltage to the factory, which is already mentioned in Section 4.1.

One of the huge benefits of using the Arduino PMC, is that the connections are able to provide

the necessary power at 24V to the motors, without the need of an extra hardware layer. This layer

is necessary for the rest of the different micro-controllers tested in this project.

When testing the factory first time with the Portenta Machine Control unit, the cables were put

directly from the connection slots on the PLC, to the slots on the factory. When the factory was

provided with power from the Arduino PMC, the LED sensors on the factory lighted up, just as

expected. The Arduino Portenta has LED’s on each of the connection slots to tell if they are active

or not. When the connection between the factory and PLC was established, the LED’s for the

input slots lighted up. This is due to the sensors being True by default and sending an on-signal

to the device.

The outputs didn’t establish connection the same way, and it was harder to tell if the pins actually

were connected to the factory. This was due to the LEDs not lighting up when the connection was

established. Therefore, the motors had to be tested using OpenPLC to set the engine output to

True. This would send a 24 volt signal to the motor, and the motor would start running. Under

activation, the LEDs would also light up, indicating that the signal is being transmitted correctly.

29

5 Connecting the factory and the micro controllers

In this master and preceding project assignment, several variations of micro controllers have been

used to power the factory-model. This lead to some adaptations based on how the software and

hardware interacts. This is going to be explained in further detail in this section.

5.1 The softwares

The Arduino PLC IDE is the proprietary software which is specifically made for the Arduino PMC

units. At the time of writing, this includes the Ardunio Portenta H7 and the Arduino OPTA. Using

the comparable software to the Arduinos has some benefits compared to open-source programs such

as OpenPLC. One of them is that the software works most of the time without changes in the

source code, which has been done to make OpenPLC work properly for this project.

One drawback however, is that Arduino PLC IDE is only available for Microsoft Windows and

compatible with only two devices. In comparison to Arduino PLC IDE, OpenPLC is compatible

with multiple Operating Systems. This includes MacOS and Linux.

OpenPLC is also compatible with several different types of micro-controllers, in addition to being

completely open-source. This means that if a certain micro-controller is not compatible yet, it is

possible to write software drivers to add the functionality to the program.

5.2 Arduino Portenta Machine Control H7

In this section, the Arduino Portenta Machine Control (PMC) H7 is going to be referred to as

the Arduino PMC.

5.2.1 PMC Hardware

The Arduino PMC features several usable I/O pins to connect to mechatronic systems.

• 8 digital input pins

• 8 digital output pins

• 11 programmable digital pins

• 3 analog input pins

• 3 analog output pins

As well as some power and ground ports to power up the necessary outputs. The Arduino PMC

is capable of providing 24v directly on the pins, therefore there is no need for an interface layer to

transform voltages for this PLC as already mentioned in Section 4.4. A schematic over all of the

connections on the Arduino PMC is provided below in Figure 20.

30

Figure 20: A schematic showing the functionality of each pin on the PMC. Picture is taken from
the official datasheet

Even though the Arduino PMC features a lot of pins, it wasn’t enough to directly run it from

start. As seen in Figure 74, the factory features 5 sensors and 4 buttons. This is not including the

input variables for the indication of milling and drilling. Anyway, that totals to 9 digital inputs

which of whom should be connected to the 8 digital pins the Arduino board. The solution to this

problem is better explained in Section 6, due to different methods being used for the two programs

used for the project.

The same problem came up on the digital outputs, the factory features as mentioned 4 conveyors,

4 pins for sliders and 2 pins for milling and drilling. This makes for a total of 10 outputs that

needs power from 8 output pins.

5.3 Ardunio PMC with OpenPLC software

One of the main benefits for connecting the Arduino PMC to the factory is the simplicity of it.

The factory is rated for a 24V voltage, which the Arduino Portenta is capable of delivering on each

pin. As stated in the previous section, one problem was that the Ardunio PMC did not have the

amount of pins necessary to work with the OpenPLC software. This problem needed to be solved

to properly use the Arduino PMC to run the factory. Therefore, different solutions is listed in the

table under this section, as well as some advantages and disadvantages with each solution.

• Using the analog pins

• Writing a software driver

31

5.3.1 Arduino PMC analog pins

The first and seemingly simplest solution were to use the available analog pins on the PMC. This

method allows the user to use the analog pins to emulate digital outputs, and program these to

act as a switch for the inputs and outputs. There are 3 available analog inputs and 4 digital

outputs on the Portenta H7 as previously seen in the schematic at Figure 20. This allows the user

to connect the remaining motors and sensor to the factory without any larger changes.

The software solution is different for the analog inputs and outputs, but basically the main goal

is to emulate digital pins using the analog pins. This can be done for both the input and output

directly into the ladder logic code.

The solutions vary based on if it’s an analog input or output, but the basic idea is to pass an integer

to the pin instead of a boolean value, which indicates 0 and 1 respectively (True and False). The

value that can be passed to the pin has a size of 16 bits. This means the passing integer must have

a value between 0 and 65535 and therefore, 216 different combinations. The idea is to pass a value

down to the pins, and make the pin switch state for a certain value. For example, the state can

pass a low value when the integer is less than 30 000, and pass a high value if the value exceeds

this number.

5.3.2 Analog input

The analog input, was the easiest to implement in this case. The last sensor (Sensor5) was

connected to the analog inputs. The code for this particular sensor is added in 21.

Figure 21: The ladder logic lines for an analog input of Sensor5

In the other parts of the code, contacts are used to read the digital input values from the factory.

This can however, not be used for an analog input, since these are passing an integer value instead

of a boolean value to the machine. Therefore, an ”LT-block” is added to the code. The LT block

is short for ”Less Than”, and it works by activating a signal if the input value is lower than a set

boundary value. In this case, this boundary is set to 20000. When the input value I Sensor5

is lower than this boundary, the signal from the power rails is allowed through the gate. Further

leading to the rest of the code activating, and the program running normally. The addresses for

the analog inputs are given as IWy, where ”y” is the pin number.

Due to the sensor constantly sending a beam of light, the sensor will normally pass a high value

to the input. This integer value will be lower when the diode on the sensor is blocked. Therefore,

the ”Less Than” block is ideal for this scenario.

32

Figure 22: The ladder logic lines for the analog outputs of the milling and drilling station

5.3.3 Analog output

The analog output is a bit trickier. For the digital outputs in other parts of the code, Set andReset

has been used. These functions are only available for boolean values, which means they can’t be

used for the analog outputs directly. Solutions to this problem however, can be implemented using

the programming environment in OpenPLC, similar to what was done with the analog inputs.

There are two motors that needs to be connected outside the programmable outputs of the Arduino

PLC. For structural reasons, the motors connecting the analog outputs were chosen to be the milling

and drilling station.

One problem of using the analog outputs to run the motors, is that the analog outputs on the

device are rated for a current between 0-10V, found in the datasheet [24]. This can not be solved

using software solutions, since this is implemented in the hardware of the device. This is another

reason the milling and drilling station were chosen for the analog outputs. Even if the maximum

current is rated for 10V, it will still run the motors on the factory. However, they will run slower

than they otherwise would have, using the full 24 volts rated for the system. Passing the full

24V to the motors via the analog outputs, would require an interfacing layer and a custom circuit

similar to the PCB made for the Raspberry Pi.

The solution in this case was to move the integer value through MOVE blocks as seen in Figure 22.

When activated, the Move block pass the value from the input box into the output variable.

The example above was written as a simple test. Although this hasn’t been implemented in the

main factory code, it can easily be implemented into the ladder diagram.

5.3.4 Software driver for the programmable I/O

Another solution to lack of I/O, is to use the remaining digital pins on the Arduino PMC. Al-

though these are programmable, per beginning of this Master’s thesis these software drivers are

not implemented into OpenPLC. Therefore there was a need to write drivers to be able to use

the programmable I/O. Only the code that has been highlighted in the figures are written for this

thesis. The code file is handed in with the thesis, but most of the code is written by other people

33

for OpenPLC.

The first thing that was done, was to look at the original driver for the Machine control. The

driver file for the Arduino Portenta H7 is found using the following path:

C:\Users\user\OpenPLC_Editor\editor\arduino\src\hal\machine_control.cpp

The digital and analog I/O pins are initialized first. Which means that the programmable I/O has

to be initialized before starting to use these. Luckily, all of the Arduino libraries are open-source.

Which means codes should be accessible online to see potential ways of initializing the program-

mable pins. After doing some research, the official Arduino library for the Portenta Machine

Control were found on GitHub. This contained all of the source code for the hardware drivers for

the PLC itself. After looking through the files, the setup files were found on the following url:

https://github.com/arduino-libraries/Arduino MachineControl/blob/master/src/Arduino MachineControl.

h

This file is a header files that listed the functions that were implemented for the different types of

pins. After looking at the OpenPLC code again, the realisation came that this library is directly

imported into OpenPLC. This makes the programming easier, since it is possible to just call the

functions. After looking at the official Arduino code. It was found that the the programmable pins

were callable with the following variable:

digital_programmables

After finding this, it was found that the pins could be initialized using the functions from the library

directly, and call them from the header file. This means that the initializing of the programmable

pins can be done with:

1. digital_programmables.init()

2. digital_programmables.setLatch()

The code written in the cpp file for this is added in Figure 23. This is also how the programmable

pins are initialized in the official Arduino libraries. If the pins fail to initialize, the print will write

the string, letting the user know they failed initializing.

Figure 23: Initializing the digital programmables

This is exactly the same process as how the other pins on the board are initialized in OpenPLC. The

first line is initializing the pins, while the second line sets the setLatch function. The setLatch

34

https://github.com/arduino-libraries/Arduino_MachineControl/blob/master/src/Arduino_MachineControl.h
https://github.com/arduino-libraries/Arduino_MachineControl/blob/master/src/Arduino_MachineControl.h

function sets the pins into retry mode during overcurrent, which shields the pins from getting

damaged by a possible spike in current. This function is used in Figure 24.

The next step, was to change the pins into a state which made them accessible for usage. This is

done with the following line.

digital_programmables.set(pinNumber, State)

This is exactly the same way that the digital pins are configured, except the programmable pins

can be selected to have two states: Input and Output. Another difference is the lack of the

setAll() function. On the programmable pins, this function is not written in the library. Therefore

there is a need to configure each pin individually. A picture of how these functions were written

is seen in Figure 24. These lines of code will initialize the digital programmables if the macros

NUM DISCRETE OUTPUT and NUM DISCRETE INPUT exceeds 8 bits.

Figure 24: Code initializing the programmable pins in OpenPLC

Another challenge was to find out what the address for the pins are. Instead of the pin number,

the pin needs to be called directly on the address. This address will also change depending if

outputs or inputs are going to be used. After doing some research and looking at the source code

of Arduino PLC IDE, it was found that the programmable pins were callable by accessing the

following addresses:

IO_READ_CH_PIN_XX

IO_WRITE_CH_PIN_XX

The addresses can be separated into three parts that changes based on the pins that are accessed.

The IO part is addressing the programmable I/O rails. The next part indicating READ and

WRITE is telling the pin if the pins are taking inputs or giving outputs, where READ indicates

35

an input and WRITE indicates an output. The last part, marked as ”XX” indicates the pin

number. Pin numbers are ranging from 0 - 11 on the programmable I/O rail. To use the pins,

there is a need to write the pin address into the I/O config and address it directly as seen in

Figure 36. It needs to be written into the form which is stated above.

To be able to address the pins directly like this, the device drivers for OpenPLC had to be changed

into the driver code. Trying to tell the Portenta H7 that it had more than 8 output pins crashed

the device, and the PMC needed to be reset. Making this functionality possible needed to be done

in the hardware driver in OpenPLC.

Therefore there was a need to program a handler for this exact scenario. How this is programmed

in the original script, the information is listed into an array, and sent to each individual pin using

a for-loop. The code that’s been added, sends the outputs to the programmable pins if the number

of outputs exceeds the length of the array. The same function is added for the input code.

Figure 25: This code updates the inputs for OpenPLC. Line 97 to 104 is newly written for this
thesis. The rest is un-edited driver code from OpenPLC.

These functions can be seen in Figure 25 for the input variables and Figure 26 for the output

variables. As can be read from the code, the device gets a bool input from the factory and read

them using the digital programmables set up for this task. From there it finds the pins that

is addressed as IX3.y and send the information further, where it will find the address of the pin

written in IO config. The same happens in output, where the pins will be addressed as QX3.y.

The huge benefit of doing it this way, is that with proper implementation and an update to the

OpenPLC program, it is now possible to use the programmable I/O pins on the Portenta Machine

Control. Which does not at the time, have official OpenPLC support.

5.4 Arduino PMC with Arduino PLC IDE

A benefit of using a proprietary program like the PLC IDE, is that all of the program is structured

and tailored around one specific unit. This means all of the settings and structures in the program

is already set for the device. On programs like OpenPLC, the settings usually have to be changed

36

Figure 26: This code updates the outputs for OpenPLC. Line 121 to 128 is newly written for this
thesis. The rest is un-edited driver code from OpenPLC.

to work for each specific device. This changes how the code is uploaded to the unit, in addition to

the structure of the code.

Another thing that was different in the Arduino PLC IDE is how the Portenta H7 is programmed.

In Arduino PLC IDE, each line is set from the start, forcing the user to follow the standards of

ladder logic. Where one of them is that the coils needs to be at the end of the code. OpenPLC

does not force anything and it is entirely up to the user how the code is written.

5.5 Arduino MEGA with OpenPLC

Another controller that was tested for this thesis was the Arduino MEGA. The reason this was

tested is that it has very similar structure, and uses the same software as the Arduino UNO.

Meaning that if the code is working on the Arduino MEGA, the code will also work most likely

for the UNO. The main benefit of using the Arduino MEGA over an Ardunio UNO, is the amount

of I/O available. The Arduino UNO doesn’t have enough I/O to run the entire factory, therefore

the MEGA works better for prototyping purposes.

5.5.1 Testing the Ardunio MEGA

To run the factory with the Arduino MEGA, the circuit board that were developed in the pro-

ject assignment needed to be utilized. This hardware was developed to work with several micro

controllers outside of the Raspberry PI. First, the outputs were tested. The Arduino MEGA was

capable to run the motors via outputs. This was expected due to the Arduino MEGA giving out

similar amounts of voltage on outputs as the Raspberry PI.

The inputs however, was a different case entirely. The wires on the circuit that were connected to

the input pins on the Arduino MEGA were tested. However, the optical sensors on the factory were

not sending the correct signals to the Arduino MEGA. At first, it was thought that the problem

37

was electrical noise. All electrical wires generate an electric field around the wire when powered

up. This is called impedance.

The reason this was thought to be a problem, was that the Arduino reacted even when the wire

going into the input wasn’t connected to anything. According to Prof. Amund Skavhaug, the

Arduino MEGA and UNO should be very robust against influence by impedance.

After this was found, a multimeter was used to measure the voltage of the circuit going into the

input of the Arduino. When the optical sensor was unblocked, the voltage of the signal was 1.2

volts. When the optical sensor were blocked, this value dropped down to 0.8 volts, making a

difference of 0.4 volts. Considering the digital pins for the Arduino was used, it seemed reasonable

to check the voltage needed to switch the states of the input pins. These values were found to be

less than 1.5v for the LOW-state and over 3.3 volts for the HIGH-state from the Arduino UNO

datasheet [25].

This means that the voltage that the Arduino takes from the circuit board makes the digital pins

go into a ”floating state”, meaning the I/O pin is hovering between an off and on state. This leads

to uncontrollable, random behaviour. To fix this, the circuit board needed to be updated.

5.5.2 Testing and fixing inputs

After doing a detailed search on the circuit that was made for this project, the problem was thought

to be that the resistors was too large. With the 240k resistance that are placed on the 24v side of

the board, there is just 0.01 mA going over the optocouplers. This might be the reason the inputs

behaves uncontrollable. This is later addressed and explained in Section 5.6.

5.6 Updating the circuit board

The reason the Arduino didn’t work properly, was due to the voltages being inconsistent. As stated

in Section 5.5, the LOW voltage was at 0.8v, while the HIGH voltage was at 1.2v. The Raspberry

PI worked fine with these voltages earlier, but the input pins on the Arduino MEGA were more

sensitive for the voltage.

The first thing that was done, was to make new input circuits using breadboards. This way, it is

easier to measure the voltages in the circuit to become more familiar with the circuit, as well as

making it easier to implement solutions without destroying or tampering with the existing circuit

board. A picture of this test-setup can be seen in Figure 27.

At first, the voltages on the high-current side of the circuit was measured. The circuit was coupled

up to the factory, sending the necessary power to be able to activate the sensors on the factory.

After this, the input channel on the circuit was connected to pin 9. Pin 9 is the terminal for optical

sensor number 2. This is the sensor right before the first corner of the factory.

At first glance, the measured voltages seemed fine. When the input channel opened, the voltage

sent in to the optocoupler was 24V, while the voltage was 1.1V when the the light sensor changed

state. This were values that were realistic for the application. Seemingly, there was nothing wrong

with the input circuit, other than the voltage on the low-voltage side being to low. This indicated

that the optocouplers didn’t fully open with the power provided.

38

Figure 27: The breadboard circuit used for testing the input circuit

39

This lead to two major changes in the circuit:

• Change the resistance on the high-voltage side

• Add a pull-down resistor to the low-voltage side

5.6.1 Adding a pull-down resistor

Optimally, when the optocouplers are not letting any power through the gates, the voltage should

read at 0V. This tells that the gate on the optocoupler is fully closed, and no current should be

able to go through the diode on the gate. At this point in time, the current reads 0.8 volts when

shut. This is not sufficient to make a clear border for the Arduino to switch the digital state of

the input pins. Ideally, the voltage should be 0 volts when the sensor is not activated. This effect

is accomplished with adding a pull-down resistor to the circuit.

According to EEPower, a pull down resistor is a resistor that pulls the pin down to logical low value

[26]. The resistor is a normal resistor, which is connected between the pin on the microcontroller,

and the ground. Similarly, a pull-up resistor is pulling the voltage up to a logical high value. This

however, means adding a resistor before the wire going into the micro-controller. A picture of a

pull down resistor is seen below in Figure 28.

Figure 28: A drawing of a pulldown resistor

Both are used to eliminate the floating state of the pins on an Arduino. Pull-up resistors are

implemented on the Arduino itself from the factory [25]. However, for this application, there is a

need to add pull-down resistors instead. These are not found natively on the Arduino, meaning

this has to be implemented in the circuit itself.

The next step is to choose the value of the resistor added to the circuit. According to EEPower,

this is limited by primarily by two factors [26].

• Power dissipation

40

• Pin voltage when the switch is open.

If the resistance value is too low, the current going through the pull-down resistor will be large,

heating up the micro-controller, and using unnecessary amounts of power when the optocoupler is

closed. This is due to the electric power being greater with a lower resistance.

The second dependency for the resistance value is decided by the pin voltage when the switch is

open. In this case, this is the 3.3 volts that is provided by the microcontroller. If the pull-down

resistance is too high, there is a possibility that the voltage is dragged down when the pin is open.

This means that there is a risk of getting into the infamous floating state. If the resistance is high

enough, it won’t even change state at all.

Typically, pull-up and pull-down resistors will have a value between 5-10k depending on different

factors. A 5k resistor was decided to be a good starting point. This resistance value gave 3.3 volt

on the high end, and 1.2 volt on the low end. This won’t be sufficient for the application due to the

pin going into the ”floating” state mentioned earlier. A higher value resistor will fix this problem.

After changing to a 10k resistor, the voltages switch between around 0 volt and 3.2 volt. Exactly

as intended.

5.6.2 Changing the resistances

The total resistance of the resistors on the high-voltage side of the circuit were measured, and it

was found that the total resistance equalled 118kΩ. This was the resistance found after calculating

the total resistance of the two resistances connected in series with 100kΩ+ 18kΩ.

Ohms law is the standard formula for calculating the relations between amperes, volt, and res-

istance. This formula was used to calculate the ampere of the power that opens the optocoupler

when the signal is activated. This equals to

U = R× I.

I = U [V]
R[Ω] =

24V
118000Ω = 0.0002A = 0.2mA

An electric current of 0.2 mA is not sufficient to open the optocouplers completely as seen in the

datasheet [27]. Therefore, it is likely that this is the reason the voltages on the low-voltage side of

the circuit isn’t distinct enough for the Arduino to read properly and the pins enter the floating

state that were seen in the project.

After this, some testing began. The old resistors were removed and replaced with one resistor.

The circuit would work the same without having two separate resistors, therefore one of them was

removed. At first, the double resistor setup were replaced by a single resistor with 47kΩ. Using

Ohm’s law, this equals to:

I = U [V]
R[Ω] =

24V
47000Ω = 0.0005A = 0.5mA

Even after this change, the voltage still indicated that the optocouplers didn’t fully open. Most

likely, the current is still not sufficient enough to open them properly, meaning there is a need to

try a new resistor with an even lower value. The next resistor that was implemented in the circuit

had a value of 18kΩ. This gives a current of 1.3mA, using the same method as described above.

After activating the sensor, the voltage was again measured on the low-voltage side of the circuit.

41

This equalled now to roughly 0 volts as a default, and 3.2 volts under activation of the sensor.

The output circuit developed in the project thesis was also looked at. The main reason for concern

was again, the low-voltage side of the circuit. The resistances in place is 220Ω. These paired with

the 5 volts provided by the Arduino will equal to roughly 23mA. Looking at the datasheet [27],

the optocoupler can handle up to 60mA on that pin. Therefore, it was decided that the existing

resistors would be sufficient.

These are the results that originally were desired for the circuit, and now the circuit works as

intended, also for the Arduino UNO and MEGA. This will now work for all micro-controllers

similar to Arduinos in terms of voltage and pins. Most likely, it would work on other micro

controllers as well. On the next page in Figure 29, a schematic of the final iteration of the circuit

board is added.

42

Figure 29: The schematic of the final PCB design

5.7 Connecting micro-controller to the factory

This system, as described earlier, is designed to become an assignment for Industrial Mechatronics.

One of the key factors that needs to then be implemented, is to make the system easy to use. The

learning outcome will not be great if the system is not designed with ease of use in mind. Therefore,

there’s added ribbon cables from the factory onto the micro controller. On the Raspberry Pi used

43

in the project thesis, the ribbon cables were directly connected to the I/O pins from the circuit

board onto the Raspberry Pi. There was also ribbon cables connecting the PCB to the factory.

5.7.1 Connecting wires directly

Using different micro controllers requires different ways of connecting them to the factory. The

easiest way for the developer, is just make users plugging the wires themselves between the factory

and device. This is however sub-optimal for the users of the devices. Plugging wires directly can be

troublesome for reliability. Wires can for example break internally, making them unusable. Another

problem is ensuring the users plug the wires correctly. If the main objective of assignments is to

learn students how to use PLC code, the system needs to be designed robustly to avoid potential

problems of the system.

5.7.2 Hardware shields

To make the system as user friendly as possible, it’s desired to make a hardware shield to use

over the different micro controllers. This way, the user can easily put on the shield as a hat, and

all the wires and connections are up and running using only a single cable. Due to the circuit

board already having a connection that correlate directly to the Raspberry Pi, there is no need

for another connection than a ribbon cable. But custom shields have to be made for the other

controllers.

In addition to the Raspberry Pi, there’s been used three other micro controllers for the project.

The Arduino UNO, Arduino Pro Portenta Machine Control and Arduino MEGA. These Arduino

devices would need custom shields to be easily connected to the factory. Preferably using a ribbon

cable like the Raspberry Pi.

5.7.3 Hardware shield on Arduino PMC

Since the Arduino PMC doesn’t need the circuit board to run the factory, connecting the PMC to

the factory should be easy to enough. The unit features proper connections for plugging the wires

into the device. Each I/O pin features a lock, which means that the user can be sure the wires are

properly connected to the device.

Therefore, making a hardware shield with male connections like a normal Arduino Shield is im-

possible. Either way, each cable has to be connected individually into the device. However, the

other ends can be connected to a common point. All of the lose ends of the factory wires are

connected to this common point using soldering. This should eliminate possible sources of error,

when this connection can be mounted using a ribbon cable. This shield should be robust enough

for the application, although it is sub-optimal compared to a normal hardware shield made for

other devices. Still, a hardware shield for the PMC was developed to increase the reliability of the

system. This hardware shield can be seen below in Figure 30 connected to the device.

44

Figure 30: The hardware shield made for the Arduino PMC

5.7.4 Hardware shield Arduino MEGA

The hardware shield on the Arduino MEGA is probably the easiest to make. Compared to the

Arduino UNO, the MEGA have all of the required I/O pins from factory. This means that the

shield will only be in one single part. Making it easy to make and implement onto the micro

controller. This could even become a two layer circuit board if desired. A fast prototype was made

at the end of the project to make testing easier for the device. This shield has female headers to

connect easily to the PCB, and male headers to fit onto the Arduino MEGA. Between these there

are wires soldered on to make the correct connections to each of the pins on the Arduino MEGA

and the PCB. This hardware shield can be seen in Figure 31 on both sides. The white wires in

Figure 31a indicates the inputs, the black ones is the outputs. The three wires that stand alone is

one red wire for 3.3 volts, one for 5 volts and the black one for ground.

(a) (b)

Figure 31: Both sides of the hardware shield made for the Arduino MEGA

45

5.7.5 Hardware shield Arduino UNO

The hardware shield for the Arduino UNO would be a bit different. Due to the UNO not having

enough I/O from start, it means that there’s a need for an I/O expander for this to work properly.

Although this can ideally be a part of the shield, it makes for more overlaps on the shields itself.

A shield like this would be similar to the one seen in Figure 31, although added hardware for an

I/O expander, that needs to be connected both to the Arduino UNO as well as the PCB.

46

6 Software and Simulation

The main purpose of this project, is to make a solid platform for students to learn about Program-

ming Logic Controllers. This includes the programming language used for these controllers. To

do this, there are two potential IDEs that can be used for code development. The two programs

are called OpenPLC and Arduino PLC IDE. Background theory for these softwares are written in

Section 2. Both of these IDEs need to be downloaded to PCs. In addition, there is some extra

software that needs to be downloaded on the Raspberry Pi. Both of the code developing softwares

are easy to download and specific steps to download them is mentioned in Section 3.1. Most of the

code that is developed on OpenPLC has been developed during the preceding project thesis. While

the code developed on Arduino PLC IDE is new for this specific thesis, the following subsections

in this chapter are taken directly from the preceding project thesis:

• Section 6.1

• Section 6.2

The rest of the sections in this chapter are newly written for this thesis.

6.1 Connecting to Raspberry Pi

To connect and control a Raspberry Pi, a webserver provided by OpenPLC was used. The guide

from the official OpenPLC site [28] was used to connect the server and the Raspberry Pi. The first

thing that needed to be done, was to connect the Raspberry Pi to Eduroam. A guide on how to do

this is provided in [20]. The guide is also provided in Appendix B. After successfully connecting

the Raspberry Pi to the Eduroam network, the IP-address of the Raspberry Pi needs to be found.

This can be done by typing the following line in the terminal:

$ ifconfig

The IP-address is found under Wlan0.

A downside with using this webserver based system, is that the IP address of the Raspberry Pi is

not static on the Eduroam network. There were multiple occasions where the IP-address changed

while running the program. One fix for this, is to get a static address for the Raspberry Pi. This

would be a stable fix on a private network. Unfortunately this is certainly not an option for a

public network like Eduroam, where admin rights for the network is needed. The easiest solution

by far is to simply check the IP address regularly.

To connect to the OpenPLC webserver, type in the IP-address on port 8080 in a browser. When

successfully connected, the code is sent to the microcontroller via the webserver. From there, the

different code files are sorted in a list and saved. OpenPLC saves the programs permanently, which

makes it easy to run different code files without the need of uploading the code every time.

47

6.2 Programming and language

The code for this project has been mainly written in two languages. As described in earlier chapters,

OpenPLC is using the IEC 61131-3 standard for PLC programming. Whichever of the 5 officially

approved languages there is a desire to use, the code is compiled down to a ST-file. This is an

abbreviation for Structured Text, and is a high-level programming language derived from Python.

It was decided to program the mini-factory in two different languages, Ladder Logic (LD) and

Sequential Function Chart (SFC). Each of the languages have different structures and capabilities,

but commonly, they are both widely used in the manufacturing industry. By programming in these

different languages, it’s also easier to decide what language to use in a later stage. Another option

for the project could be to make scripts in both Python or C. However, this was later deemed

irrelevant for the project due to the relevance of the industrial standard languages.

Since the programs in OpenPLC are compiled into an ST-file, it doesn’t matter which of the 6

standard approved languages is used. The ST-file is uploaded to the webserver based software

on the Raspberry Pi, as described in Section 6.1. From there, the program is compiled into the

programming language C, which is the programming language mainly used on Raspberry Pis and

other microcontrollers. To make the programming easier, the factory was divided into parts, as

can be seen in Figure 32.

Figure 32: The Factory in bird view, divided into four parts

6.3 Programming in Arduino PLC IDE

Despite supporting 5 PLC programming languages like OpenPLC, there’s some differences in both

User Interface (UI) and differences in ways to program. The differences in both of the programming

48

languages will be elaborated further down with an addition of the code that’s written in the Arduino

PLC IDE.

In Arduino PLC IDE the first thing that needs to be done is making a new project folder. In this

folder, it’s possible to add variables and have easy access for each file. These can also be written

in different languages. When creating a project, a ”main” file is generated. This file can be used

for writing Structured Text (ST) code. This is one of the standard languages for PLCs.

The project will be seen as a tree on the left side of the screen, with an overview of the different

contents as seen in Figure 33. Here is where the programs will appear. When making a program in

Arduino PLC IDE, a text box will appear, asking for name of the file and the language. When the

program is created, the UI will change depending on the program language selected. For example,

the Ladder Diagram UI appears with one line of the network, which includes a relay and a coil.

The SFC UI on the other hand, starts with an empty grid.

Figure 33: The resource tree from Arduino PLC IDE

6.4 Programming in OpenPLC

Running the factory with the code in OpenPLC was really straight forward. Minimal changes had

to be done for the Ladder Diagram code that were developed for the Raspberry Pi in the project

assignment. At first, the last line of the code were changed to account for an analog input, due to

the Arduino Portenta Machine Control H7 not having enough digital I/O to run the factory.

The variables set up to work with the factory on a Raspberry Pi can be seen in Figure 34. These

variables are unique for the PCB and can be used for any type of PLC code written. However, the

autogenerated delay block variables will differ depending on the specific code. The table shown in

Figure 34 is from the code that can be seen in Figure 35.

The variables needs to use these addresses with the Raspberry Pi, because of how the PCB was

designed. If it’s desired to rebuild the PCB with different locations, the documentation of the

pin addresses for the Raspberry Pi or other microcontrollers are added on OpenPLCs official site

[29]. A table of the different pin addresses and functions of the Raspberry Pi is also added in

Appendix E.

49

Figure 34: The PLC code variables

6.5 Raspberry PI specific changes; PCB

To make the factory work with the specific Raspberry Pi used in the project assignment, the

location variable for Q Slid2 F on row 14, needed changing from %QX0.2 to %QX1.2. The

corresponding pin of the Raspberry Pi used in the project was defective, therefore a jumper cable

was added between pin 16, and jumped to the only leftover pin.

Pin 16 was broken, and the jumper cable were connected to pin 40 on the old PCB. The factory

will not work with a Raspberry Pi if more than one of the output pins are broken. There’s a

total of 11 pins on the Raspberry PI, meaning 10 of these has to work to be able to use all the

functionality of the factory.

6.6 Connecting Arduino PMC to OpenPLC

In an earlier chapter Section 5.3.4, it was described how the programmable pins on the Arduino

PMC was unlocked, and able to be used together with OpenPLC. However, being able to use

this with the factory is a bit complicated. Therefore, this chapter is going to show a user how to

properly be able to unlock the functionality, by following the steps given in this subsection. This

guide is showing how to do this on a Windows computer, but an experienced user should be able

50

Figure 35: The complete Ladder Diagram

to the same steps in a different Operating Systems. This consists of mainly 3 steps.

• Update OpenPLC driver

• Addressing the programmable pins

• Configure the pins before compiling

Step 1 is to update the driver code into OpenPLC. This step is going to update the driver file

in OpenPLC for the Arduino PMC. This is done to ensure that the program understands the

addressing of the pins when configuring the pins in the program. If OpenPLC is installed regularly,

this file is going to be found at this path:

51

C:\Users\user\OpenPLC_Editor\editor\arduino\src\hal\machine_control.cpp

To ensure that the new file working as it should, the new file must have EXACTLY the same name

as the one it replaces. Therefore, if asked if the old file is going to be overwritten, choose yes.

Another disclaimer is if the program is updated, the file have to be overwritten again. When

updating OpenPLC, the newest version of the program is gotten directly from GitHub. The

current version (version 3) does not support the programmable pins on the device. Therefore, the

functionality will be lost again, when updating the program.

Step 2 is done in OpenPLC itself and concerns the pin addresses. This step is a bit more intricate

than step 1. The first thing that needs to be done is to decide what addresses that is going to be

used for the different functions on the factory. Due to the input sensors being addressed first on

the board, this sensor was chosen to be the first pin of the programmable pins.

These pins are addressable by either ”IX3.y” or ”QX3.y”. Since the programmable pins have more

capabilities than the regular ones, it is important to tell the device what capabilities that is desired

from each pin. ”I” in this case represents inputs, and outputs are represented by ”Q”. Where ”y”

is indicated to the pin number on the addressable pins, going from 0-7. In the case of this project,

”IX3.0” was assigned to I Sensor5. The ”QX3.3” and ”QX3.4” addresses were connected to the

milling and drilling machine on the factory.

Step 3 is addressing the pins before compilation. The normal pin configuration of the device is

added into the program. Therefore, it’s important to tell the program what pins to configure. This

is done in the I/O config on OpenPLC. If done incorrectly, the program might crash or corrupt

the software on the Arduino PMC. Correct implementation should look like something seen in

Figure 36.

Figure 36: IO config for OpenPLC

52

6.7 Compiling and running code in Arduino PLC IDE

When the user is finished developing a program, the program needs to be compiled. This is done

by pressing a button, like most other programming IDE’s. However, running the program on the

PLC IDE is a bit different compared to OpenPLC. In OpenPLC, the code is compiled and sent to a

device via WiFi or a physical cable. After the code is sent, it’s downloaded to the micro-controller

and running the program as intended.

In Arduino PLC IDE it is possible to run programs at different speeds. When a program is chosen

to run on the PLC IDE, the program needs to be dragged to one of the stages under the Tasks

section. These are found in the resource tree on the left side of the screen as previously seen in

Figure 33. The task section features four different stages, with different features. The explanation

of these were found under task attachment in the official Arduino documentations [19].

• Init: Executes the code one time on initialization

• Fast: Runs the code in cycles of 10 ms default

• Slow: Runs the code in cycles of 100 ms

• Background: Loop that execute the program every 500 ms.

This organization of running programs makes it easier to switch the programs in the software.

It grants the ability to develop and run multiple programs simultaneously, without the need to

run other instances of the IDE. For example, the ”main” file can be used to test the individual

components without going in and out of the program to change the file. This is useful if a system

consists of several larger parts with their own separate sub-programs. An example of where this

can be useful is in a car washing machine or a full sized factory with robots.

53

7 PLC code for the factory

This chapter is going to discuss code that is developed for two of the PLC standard languages:

Ladder Diagram and SFC. The code has been developed using OpenPLC and Arduino PLC IDE.

In this chapter, the code developed for each program is compared. This is to show the difference

of implementation in the two programs as well as the experience of programming in the different

environments. The code developed in OpenPLC has not changed since the preceding project as-

signment, while the code developed in Arduino PLC IDE is newly written for this thesis. Therefore,

some of the subsections regarding the languages and code developed in OpenPLC is either taken

directly or had minor adjustments from the project assignment.

7.1 Ladder Diagram code

As mentioned in the theory part in Section 2.1.1, the Ladder Diagram language is made to be

similar to relay system schematics. That means the name of the different functions is inspired

from these systems. The bold lines at each end of the horizontal lines is called power-rails, and the

power is going down these vertical lines. The input signals such as I Sensor1 and I Btn S1 F

are called contacts. The output signals such as Q Conv1 are called coils. The program works by

running power from the left rail to the right one. The contacts will stop or let the power through

depending on its input signal. If the power runs through a coil, the output that the coil controls

will also be powered up. In addition, there are modifiers that will change how the contacts and

coils work, those will be described when encountered. An example of the LD code is given in

Figure 37.

7.1.1 LD Code part 1

First, some simple conceptual tests were done to see if the OpenPLC program would work as

intended. This were done in the preceding project assignment for this thesis. An example of this

can be seen in Figure 37. When the puck blocks the light at sensor 1, it sets the first conveyor

belt, indicated by S in the coil. This conveyor will be activated until the conveyor is reset, like a

latch catching a signal. It is reset again when seen by the second sensor, indicated by the R in

the coil. Sensors in a LD code have a slash symbol in them, which symbolizes that they have a

normally high value. This symbol indicates that the signal is negated. Buttons do not have this

symbol, because they normally have a low value.

Figure 37: Simple test of Ladder Diagram.

To evaluate the programming for the whole mini-factory, the first corner was programmed first.

Since the factory attributes are quite similar the whole way through, the rest of the program should

be simple to write when solving the first corner. The first part including the first corner is called

Part 1 in Figure 32, and can be seen in Figure 38. In Figure 39 the code for the first part can

be seen, and it starts similarly to the simple test seen in Figure 37. There is however, added two

54

delay blocks that activates when the signal at sensor 2 is blocked, and times the deactivation of

the conveyor belt. This is to ensure that the puck is in front of the slider before further actions

are taken.

The rail is also forked off, to start the slider and next conveyor belt at the same time. The delays

are in a pair of TOF (The off-delay timer) and TON (The on-delay timer). The TON is there

to hinder the power signal resetting to early. Using only the TON would not work, because if

the signal becomes low before the timer is over, the next parts would never be set properly. This

happens when the puck is moved away from the sensor before the delay is over. A TOF is used

to catch the signal for the TON.

Figure 38: The Factory in bird view, showing part 1.

Figure 39: The first part of the Ladder Diagram.

The slider starts to move forwards, and it continues to do so until the first button is pushed, which

is indicated by I Btn S1 F in the code. The forward movement of the slider is subsequently reset,

and sets Q Slid1 B, which makes the slider move backwards. This is done until the slider pushes

the second button, indicated by I Btn S1 B. The backwards movement is reset, and the slider

stops. The next conveyor belt is started while the slider is moving forwards. This was done to

prevent the puck crashing into the belt. Which happened sometimes if the conveyor belt wasn’t

already running.

Part 1 of the code written in Ladder Logic is quite similar in OpenPLC and Arduino PLC IDE. In

the first and second part of the code, there isn’t much difference between the code in Figure 39 and

Figure 40. Both the coils and the switches looks the same, and got the same functionality. Not

surprising considering both programs follows the official PLC standards as mentioned in Section 2.7

and Section 5.1. In section 1 and 2, the differences are mainly UI and structure of the code. Code

line numbers are featured in Arduino PLC IDE, and there are no possibility of crossing lines in

55

this program. The program also forces the user to place the contact at the front, and coil at the

end, as seen in the lines of Figure 40 and Figure 41.

Figure 40: The first section of the Ladder Diagram code in Arduino PLC IDE

In Figure 40 on line 1, there is a negated contact that activates on the light sensor number 1. This

again, activates the first conveyor belt of the factory. The second line features one contact, one

TON-timer and one TOF-timer plus 2 contacts, which subsequently resets conveyor belt 1 and

activates the first slider on the factory.

Figure 41: The second section of the Ladder Diagram code in Arduino PLC IDE

The second section in the LD code, is seen in Figure 41. This snippet of code is quite easy to

understand as well. Both line 3 and 4 features one contact and several coils. When the front

button of the first slider activates, slider 1 stops going forward. In addition, the slider starts going

backwards and the second conveyor belt on the indexed line starts operating.

7.1.2 LD Code part 2

The code for the second part can be seen in Figure 43. Additionally, the bird view of the factory

can be seen in Figure 42. This part includes the second conveyor belt and milling station. The

first interaction starts when sensor 3 detects the puck. In the contact, there is a modifier N, that

only detects a falling edge signal pulse. A falling edge is detected by a high value signal falling

down to a low value. A falling edge on the input was necessary due to the puck will stay in the

same location for a significant time and continuously reset the belt if the puck is supposed to be

milled. After the third sensor detects the puck, the code splits into two paths. The path chosen

depends on the sensor reading telling the code if it should be milled or not. It will always choose

56

only one of the paths, since one has normal I Mill and the other path negated I Mill. This line

will work in the same way as an or-gate. The paths converges at a later point, the negated path

just skips the milling part. In Figure 44 an alternate layout of the code can be seen. Although the

code does exactly the same, it illustrates better what is activated at what time. That is because

the coils is set and reset after the TOF delays. Since coils only need a pulse of a signal in that

case, the coils can be put in front of the delay as well.

Figure 42: The Factory in bird view, showing part 2

Figure 43: The second part of the Ladder Diagram.

Figure 44: The second part of the Ladder Diagram in an alternate layout.

On the path with I Mill, Q Conv2 is first reset and Q Mill is set. Next, there is a delay pair

that ensures a certain time for milling. The code will thereafter set Q Conv2 and reset Q Mill.

It is in this location the paths converges, and the next conveyor belt Q Conv3 is set.

In the alternate layout, the negated path only sets Q Conv3. Since Q Conv2 is never reset and

Q Mill is never set, the path can converge in front of the Q Conv2 set and Q Mill reset. The

variables will already be in these states. After Q Conv3 is set, there is a new delay pair that

waits long enough for the puck to settle on the third belt and subsequently resets Q Conv2.

57

There was not any intersection available for the Ladder Diagram code in Arduino PLC IDE.

Therefore, two programs were written. One of these programs had machining included, and one

didn’t have machining involved. Other methods were tried to get it to work, but this would required

an OR-gate, which were not found in the program. Adding more lines with the I Mill contact

were also tried, but the program did not work properly. In Figure 45 the third section of the code

can be seen. As can be seen on line 5, when I Sensor3 changes state, Q Conv2 gets reset and

Q Mill starts the milling procedure.

On line 6, the timer gets activated on the same sensor. Which means the timer starts as soon as

the sensor is activated. This times the execution of the milling machine, and sets Q Conv2 and

Q Conv3 when the milling machine is reset. The timers are set arbitrarily and the value of 3

seconds is chosen because the factory seemed to run smoothly with these values.

Figure 45: The third section of the Ladder Diagram code in Arduino PLC IDE

7.1.3 LD Code part 3

Part three is seen in Figure 46, with the corresponding code in Figure 47. This code is almost

identical to the code in Section 7.1.2. The section includes some extra modules, and the milling

station is replaced by a drilling station. The only difference with the not highlighted part in the

code is not setting the next conveyor belt, when it has either finished, or bypassed the drilling.

This is because the next actuator is a slider and not a conveyor belt. Meaning that the highlighted

part is similar to the slider part of Figure 39.

This section of the code starts by looking for a falling edge on sensor 4. When this is detected, the

code continues in one of the two paths. If the indicator I Drill has a high value, the puck will be

drilled in the drilling station. The TOF delay will be activated while the factory drills, before the

conveyor belt Q Conv3 is set and the drill is reset. This is the point where the paths converges.

The path with the deactivated drilling station does nothing until this point. Then, the delay is

long enough for the puck to be in front of the second slider, before it resets Q Conv3. Q Conv4

and Q Slid2 F is simultaneously set. The slider will then move forward until the front button

indicated by I Bt S2 F is pushed.

At this point Q Slid2 F will reset and Q Slid2 B set, Q Conv4 will also start running again.

Q Conv4 in the highlighted section could be removed, since it’s already set earlier in the code.

58

Figure 46: The Factory in bird view, showing part 3

Figure 47: The third part of the Ladder Diagram

The pushbutton I Btn S2 B is then pushed by the slider, and stops.

The same part of the code in Arduino PLC IDE is seen in Figure 48 and Figure 49. The fourth

section is quite similar to Figure 45 which were talked about in the preceding subsection. The

only two differences between these two sections are which sensor is changing state. In addition,

this part is activating the drilling machine, instead of the milling. Both of the timers are set to 4

seconds to ensure that the puck has settled in front of the second slider before activation.

Code line 9 and 10, can be seen in Figure 49. These lines are responsible for the section going from

the drilling machine and down to the fourth conveyor belt on the factory. This timer will as well

start counting when I Sensor4 is activated, and when the TON and TOF timer has finished, it

will activate Q Slid2 F which is the forward motion of the second slider. This will be activated

until the slider hits the button at the front of the slider, indicated at I Btn S2 F. When this

button is pushed down, the slider will reset the forward motion, and the backwards motion will be

started.

59

Figure 48: The fourth section of the Ladder Diagram code in Arduino PLC IDE

Figure 49: The fifth section of the Ladder Diagram code in Arduino PLC IDE

7.1.4 LD Code part 4

The last part of the code, shown in Figure 51 is controlling the fourth part of the factory. This

code controls the last section, which can be seen in Figure 50. The code is short, and its only

functionality is to stop the last conveyor belt Q Conv4 when sensor 4 detects the puck. A delay

was also added, since it was preferred that the puck travels a bit further than the last sensor.

The last section of the Arduino PLC IDE can be seen in Figure 52. Line 11 is responsible for

resetting the backwards motion of this slider. When I Btn S2 B changes state, the slider is reset.

When the puck activates I Sensor5, Q Conv4 is reset and the process is finished.

60

Figure 50: The Factory in bird view, showing part 4.

Figure 51: The fourth part of the Ladder Diagram.

Figure 52: The sixth section of the Ladder Diagram code in Arduino PLC IDE

7.1.5 Discussing the Ladder Diagram Code

The ladder diagram code in OpenPLC was developed in the preceding project assignment to this

thesis and is not optimal. It’s going to need major changes if it’s going to be proposed as a solution

of an assignment. The code developed in OpenPLC doesn’t follow standards of the Ladder Diagram

language either. This is due to the contacts not being at the end of the code lines. It was created in

parts, and functionalities were added along the development. The alternate version of the second

part seen in Figure 44, were created to easier describe its functionality. If it’s decided that the work

done in this thesis is going to be used for an assignment, developing new code in either program is

recommended.

There were some differences between making the ladder diagrams in Arduino PLC IDE than

OpenPLC. Other than the fact that the device needs to connect with ModBus on Arduino PLC

IDE, the program also forces the user to follow the standards of the language. On OpenPLC, the

program starts with a completely blank sheet.

This means that the user is able to drag items freely into the sheet when programming. In Arduino

PLC IDE however, the program features pre-programmed lines which needs to be used. In addition,

the program blocks the user from doing ”illegal” operations. This also leads to an inability to add

61

multiple coils to the same line. The program makes an intersection instead, and cover the coils on

multiple lines. For a complete rookie, it might be easier to program ladder logic in the Arduino

PLC IDE due to forcing the standards.

7.2 SFC - Sequential Function Chart

Another standard language used for PLC, is called SFC. In addition to the LD code, a code in

SFC has been made for this thesis. Like the Ladder logic code discussed in Section 7.1, the SFC

code from OpenPLC was also made in the preceding project assignment.

The SFC code starts with an initial statement. Action blocks are then built into the steps. These

blocks then activate some outputs, which can further be connected to motors etc. The action

blocks features different qualifiers that represents commands. These are in the form of different

letters, where each letter represent one command. These are bound to features like timing features,

set and reset.

Each step is divided by transition steps. These transitions are often connected to a sensor or other

types of input signals. This makes it easy to regulate how long a step is active. One of the main

differences between Ladder Logic and SFC, is the ability to jump in a sequence randomly. In

Ladder Logic, activating a sensor in the middle of the sequence will start a new sequence starting

where the activated sensor is located. SFC has to finish the whole sequence before the program

can be started again.

This type of language is commonly used in production lines, as well as other autonomous install-

ations like car washes. Full action blocks or programs can be connected to a Step. For example,

on a car wash program, ”wash” and ”dry” can be independent programs connected together with

steps and transitions. These smaller programs are usually called actions [30].

The variables set for this code, has the same addressing as the variables in the Ladder Logic code,

seen in Figure 34. Disclaimer, this is only a prototype code which could be streamlined if it was

going to be used as a solution in an exercise. However, it’s working correctly, and shows the basic

structure of a SFC code.

7.3 Arduino PLC IDE: SFC

When comparing Ladder Diagram for the two different IDEs used in this project, there are a

lot of similarities between the programs, making the gap between the different programs smaller.

Although for the SFC code, OpenPLC and Arduino PLC IDE are fundamentally different in how

the code is implemented.

When a SFC program is made in Arduino PLC IDE, the program will open a blank sheet. From

there, steps are going to be implemented into the program. However, Arduino PLC IDE has a

fundamentally different method of implementing the ”actions”. In OpenPLC, the SFC program

features a lot more steps than Arduino PLC, this is mainly because each action isn’t bound to one

step.

The main reason the SFC code will look different in the Arduino PLC IDE compared to OpenPLC,

is the lack of qualifiers available for the user. In the standard for the language, as well as in

62

OpenPLC, the user have many more possibilities regarding programming the blocks. The action

steps in Arduino PLC IDE are limited by only two qualifiers, ”P” and ”N”. The ”P” stands for

Pulse, and when using this qualifier the action will be activated twice. Once on activation, and

once on deactivation of the step. This is following the IEC standard according to CODESYS [31].

The ”N” qualifier however, stands for ”Non-stored”. Using this qualifier will make the code active

as long as the step is active.

Not being able to use the Set and Reset qualifiers in Arduino PLC IDE, means that the code is

looking fundamentally different. The actions in Arduino PLC IDE exists as ST code files. Each

action is bound to a little snippet of code in a separate Structured Text (ST) file. In OpenPLC,

the actions are represented as blocks which can be added directly onto the step. In the ST files

written for each steps, the variables are configured as booleans, mimicking the functionality of the

”Set” and ”Reset” commands used in the OpenPLC program.

7.3.1 SFC section 1

Figure 53: The first part of the SFC code

This section highlights the first part of the code, seen in Figure 53. As can be seen, the code

starts to run from the initial step. The initial step is called Step0 in this instance. On the first

transition between Step0 and Step1, an input variable has been set. These input boxes works

with normal boolean values. Since I Sensor1 is normally set to true, the program will continue

when this signal is set to a low value. This happens when the object on the conveyor breaks the

light signal, and the input signal on the transition is set to NOT False. To keep the code tidy

and easier to read, all of the input variables have been set as inputs to the transition steps on the

left side of the chart. This also sets checkpoints in the code, ensuring that the code won’t leap

63

Figure 54: The second part of the SFC code

ahead of the puck on the Indexed Line.

An action is connected to Step1. This action starts the conveyor as soon as the step is activated.

It has the qualifier S, which starts the belt when activated, and runs the belt until a specific reset

command is given. This command is given by the qualifier R, which can be seen connected to

Step2.

Due to the layout of the mini-factory, some timers needs to be added to ensure that the puck is in

the correct position before each action is proceeded. For this, a TON and TOF timer has been

used. Together, they start the timer when the light signal on I Sensor2 is blocked, and activate

again after 2.7 seconds. This seemed like an appropriate delay for the program. When the timer

runs out, Step2 activates, and the second conveyor is reset. How the TOF and TON timer works

together is described in Section 7.1.1.

Step3 to Step8 describes the slider mechanism. At Step3, the conveyor is set, and is reset again

when the push-button is pressed down by the slider. This will set the input signal to True, and

the program will continue further to Step4. As can be seen from Figure 54, Step5 starts the

conveyor. The conveyor is then reset when the light signal at I Sensor3 is blocked. This sensor

is located at the milling station. When the sensor at the milling station is activated, the belt is

reset, and the slider goes back to it’s original position in Step7 and Step8.

The next code that is going to be looked at is the SFC code that has been developed using Arduino

PLC IDE and compare it to the code written in OpenPLC. The first part of the code, consists of

Init and Step0, very similar to the code that is implemented in OpenPLC.

However, in the next figure, Figure 55 the code contained in the action is showed. Instead of binding

one action to each step like in OpenPLC, a complete code file written in ST is implemented into

64

Figure 55: The first section of the SFC code in Arduino PLC IDE

the step. The reason that this method was chosen, is that adding code to the transition did not

work. This problem required a different method to program compared to OpenPLC. The Arduino

PLC device would not run when conditions were added to the transitions.

Figure 56: The step in an ST file in Arduino PLC IDE

The code shown in Figure 56 is pretty straight forward. If I Sensor1 is activated, the belt starts

running. The belt will continue running until I Sensor2 is activated. This code is seen at line 1

through 4.

On line 7 to 17, the code is a bit more complex. Due to the mini-factory not having sensors in the

intersections, the de-activation of the conveyor belt needs to be delayed by a small margin. This

ensures that the puck is properly positioned on the conveyor belts before slider activation. This is

done by implementing the TOF and TON timer the same way as the project thesis for both the

LD and SFC code.

TOF0(IN:= NOT I_Sensor2, PT:= 900);

TON0(IN:= TOF0.Q, PT:= 700);

Another large difference between SFC and ST is the syntax. Instead of having a TON and TOF

timer like blocks, they are added as lines of code instead. They still work fundamentally the same.

The IN: channel in the function symbolises the activation point, and the PT: is the length of the

timer activation. TOF0.Q activates when TOF0 is finished running. Other than that, line 11 to

65

17 activates when the timer is out and stops conveyor 1, in addition to starting Conveyor 2. Slider

1 will also start going forward.

7.3.2 SFC section 2

Figure 57: The third part of the SFC code

Figure 58: The fourth part of the SFC code

It was desired to use an other code to decide if the machining stations should run. To implement

this in SFC, a division step was made. This can be seen in Figure 57. This division step is

corresponding to the OR command in boolean terms.

66

This section of the code, decides what path that should be taken based on a True or False

statement. This statement tells if the milling is going to be activated or not. If this statement is

False, NOT I milling is True, and the code jumps down to Step10 without executing the path

via Step9. If the object is going to be milled, I Milling is True and the milling starts. This step

has the N qualifier, which means that the conveyor will run as long as the step is active. The time

delay is currently set to 2.2 seconds.

In Step10 and Step11, conveyor 2 and 3 are set almost simultaneously. As seen from figure 58,

these will run until I Sensor4 is activated. This was done to ensure that conveyor 3 was running

when the puck came onto it. Step10 - 13 could have been shortened down to two steps, although

it was decided to use only one action per step, to minimize potential errors. The division step for

the drilling station is exactly the same as for the milling station with the same delay.

The second part of the code developed in Arduino PLC IDE consists of step 1 and 2, which is seen

in Figure 59. This part includes the code that controls the interaction of the milling machine and

drilling machine.

Figure 59: The second section of the SFC code in Arduino PLC IDE

The code in Step1 is seen in Figure 60. These lines are pretty straight forward and easy to

understand. The first IF statement checks if the front button of the slider is activated. On

activation, the forward motion of the slider is stopped, and the slider is going backwards until it

hits the button on the back of the track of the slider.

In the code for Step2 seen in Figure 61, the timing for going through the middle section of the mini-

factory is added. At line 1, the code starts checking if the light sensor 3 is activated. I Sensor3 is

the sensor which is set in front of the milling machine. On line 3, there is a boolean called I Mill

which indicate if the milling machine is going to be active or not. If I Mill is set to TRUE, the

motors will start the following sequence; Conveyor 2 stops, the milling machine starts spinning

and the timers are set for 3 seconds each. When the timer is finished, the milling machine stops

running and conveyor 2 starts again. After this code sequence is finished, conveyor belt number 3

starts running.

67

Figure 60: The step in an ST for Arduino PLC IDE

Figure 61: The second step in an ST for Arduino PLC IDE

7.3.3 SFC section 3

At Step15 in Figure 62, it was set that conveyor 3 should run for 1.5 seconds. This was done

with the L qualifier, which runs the action for a specified amount of time. Due to it being no

sensors at the end of conveyor 3, this was the easiest way to ensure that the puck has come onto

the slider-platform. At the same step, it was set that the slider was going to run after a delay of

2.2 seconds.

Step16 and Step17 moves the slider the same way as described in Section 7.3.1. Step18 sets

conveyor 4, and resets when the light signal in I Sensor5 is blocked. As can be seen in Figure 63,

the last two steps resets the slider the same way as described in Section 7.3.2. The final jump skips

to the initial step, the sequence is finished, and the factory is ready to start over again.

The third section of the Arduino PLC IDE code consists of Step3 and Step4, seen in Figure 64.

This part includes the drilling machine, the last slider as well as the ending mechanism for the

factory.

Step3 is comparable to the ST code block found in Step2 of the code. The action block code is

seen in Figure 65. However, this code takes care of the drilling machine on the factory instead of

the milling. Line 1 to line 12 is exactly the same as Step2, except the mill variables are replaced

by drill variables.

Line 12 to 23 represents conveyor 3 and 4, as well as the second slider on the factory. When the

68

Figure 62: The fifth part of the SFC code

Figure 63: The sixth part of the SFC code

drilling machine is finished running, conveyor 3 starts running again for 4 seconds. This is enough

time to let the item going around the factory go completely on the slider before execution. When

the time is over, slider 2 starts going forwards, and the last conveyor on the factory starts running.

Step4 in the consists of stopping conveyor 4 from running, as well as setting the rest of the

conveyors as false in case some of the other conveyors are still running, why this is the case is going

to be discussed in a later chapter.

69

Figure 64: The third section of the SFC code in Arduino PLC IDE

Figure 65: The step 3 in ST for Arduino PLC IDE

The if statement going between line 1 to 5 stops the slider going forward when the button in front

of the slider track on the factory is pressed. In addition, it will start the backward motion of the

slider, until it hits the button on the back of the track. Line 12 to 17 just deactivates all of the

conveyors when the last sensor on the factory is activated. If desired, a delay can be added to

make the item on the belt stop on the end of the belt. This would be added similarly as the timers

for the milling and the drilling machine.

7.3.4 Discussing the SFC code

One of the major surprises encountered when programming in SFC is the inability to use condi-

tionals on transitions. When running the code on the Arduino PMC, it also started to behave a

bit weird. It seemed like the code in the ST code files was not able to catch the signal from the

70

Figure 66: The step 4 in ST for Arduino PLC IDE

puck passing a sensor. These were later blocked with a finger, which seemed to work. This is most

likely a software problem. Either caused by the code written in SFC or the program itself. This

was not a problem that were seen in OpenPLC.

71

8 Discussion

8.1 Use of mini-factory in Industrial Mechatronics

Sund has in his master’s thesis [3] found that there is a desire to use the mini-factory to replace

existing assignments in Industrial Mechatronics. The thesis was discussing the options of using

actual PLCs to run the factory. Due to licensing issues and the issue of actually acquiring PLCs, it

was deemed an impracticable solution. However, his research stated that it was valuable experience

for the students taking the course.

The project assignment written by E. Godli and L. Bonvik in the preceding project thesis has

found that a Raspberry Pi have a lot of potential regarding educational content, and is a fine

replacement for a proper PLC unit. Especially with useful tools like proprietary hardware such

as the developed PCB as well as the open-source software of OpenPLC. The advantages of using

such a micro-controller is adaptability, and a micro controller can easily be repurposed for use in

different assignments.

This is also true for Arduino UNO and MEGA. These are really popular micro controllers and is

used for a multiple of open source projects all over the world. These controllers are also used in

assignments in multiple courses at NTNU, for example TPK4125 - Mechatronics and other similar

courses. These controllers would also work great for a potential assignment writing and running

code for the mini-factory.

8.2 Raspberry PI

The Raspberry PI has several advantages that makes the device ideal for use in an assignment in

Industrial Mechatronics. Although it also have some drawbacks not found in the comparable micro

controllers. These advantages and flaws are bound to the potential use of the device in assignments

in the course specifically. A list consisting of these points is seen in the next subchapter. A picture

of the Raspberry Pi with the PCB version from the project assignment connected to the factory

can be seen in Figure 67.

8.2.1 RPi Advantages

• The PCB is developed to work directly with the Raspberry PI

• Huge potential for using it in other assignments

One of the main advantages of using a Raspberry PI, is that the PCB from the project assignment

is developed to work with the Raspberry PI. When the project assignment started, the main goal

was to see if the RPi could be used to emulate a proper PLC. Therefore most of the work done in

the project assignment was done with this idea in mind. This is already described in Section 1.2.

When it was found that this was possible, the PCB was developed with this in mind. Although

with the later changes done to the PCB, there should not be anything that keeps it from working

just as good with different devices.

Another even greater advantage of using a Raspberry PI for a potential assignment is that it is

easy to convert for use in other assignments as well. As described in Section 2.2.1, there was a

72

Figure 67: The Raspberry Pi with the old PCB connected

need to install a custom Operating System on the device. This experience could also be valuable

as a potential assignment. Doing all of these steps is quite time consuming, however it can be

valuable for making students learning more about Operating Systems on micro controllers.

However, the Raspberry Pi isn’t just limited to this. Other potential assignments can be to write

a server and client system and make the micro controller interact with a PC over WiFi using IP

addressing. There are also some leftover pins on the PCB, these can be used to add some external

device in addition to the factory, for example a camera. The Raspberry Pi also has a lot of RAM

and computing power. These capabilities can be used to handle multiple devices.

8.2.2 RPi Disadvantages

• Expensive

• Need for external devices

• Can be cumbersome to use

• Only one software choice

However, even though the Raspberry PI comes with a lot of advantages. There are also some

drawbacks that needs to be discussed. One of them, is the price. As per 09.12 - 2023, one

Raspberry PI 4 model B with 4 GB of RAM costs 779 NOK at Komplett.no. This price does

however not include a power adapter. Therefore at the time of writing, one Raspberry PI with a

power adapter costs roughly 1000 NOK. This isn’t too bad, although according to Prof. Amund

Skavhaug, there is a desire to buy roughly 20 units. This totals to an initial cost of 20000 NOK. In

addition, one would also need to use money for PCBs. These were bought from PCBWay, and cost

2500 NOK for manufacturing, shipping and additional taxes. This price is the total amount for 25

units, making each PCB cost around 100 NOK a piece. However, this price was not including the

various parts that needs to be soldered on the PCB itself. This includes the resistors, opto-couplers

and the headers. This will add an additional cost to all of the devices utilizing the PCB boards.

73

For an experienced solderer, the PCB would take around an hour or two to complete. However,

it is possible to avoid this cost by giving the boards to students to solder as an assignment. To

summarize, the initial cost of using a Raspberry Pi for this assignment is estimated to be around

25000 NOK.

Another disadvantage of using the Raspberry Pi, is that the initial work required to start preparing

it for an assignment is much higher than the other mentioned devices. At first, a customized

Operating System is required, which in the case of the project assignment Section 1.2 is done with

the steps found in Section 2.2.1. If the goal is to only use the Raspberry PI to teach students how

to use the PLC standard languages, there is a lot of work required to make the RPis ”PLC-ready”.

In addition, to make the Raspberry Pi communicate via OpenPLC, there is a need to install

software on the Raspberry Pi itself. This can easily done by downloading it from a webbrowser or

from the terminal. However, to be able to do this, the user needs to be able to connect to a screen,

as well as connecting it to a mouse and keyboard. This isn’t a problem for one person, but when

talking about around 20 students, this might be a cumbersome process and a lot of devices needs

to be sorted. It is unreasonable to think every student have access to this.

Another drawback which were also discussed in the project thesis is that the Raspberry Pi needs

to be connected to a wireless network when the code is transferred. This is the only one of the

selected devices that runs PLC code via a Runtime. This means that the Raspberry Pi needs to

be connected to Eduroam, or a similar wireless network. A comprehensive guide on how to do this

is found in Appendix B. The problem of connecting the Raspberry Pi to the Eduroam network

is that the device is changing the IP address repeatedly. Therefore, the Raspberry Pi should be

connected to a screen even while developing and testing the PLC programs for the factory. This

was discussed in further detail in the preceding project assignment.

8.3 Arduino PMC

The next device to be considered for a possible assignment is the Ardunio H7 Portenta Machine

Control. This is by far the least versatile of the bunch, but this device is a real PLC. This is the

only device mentioned in this thesis that follows the PLC standards. Therefore, the Arduino PMC

has some unique capabilities that is going to be discussed below. In addition, a picture of the

Arduino PMC connected to the ribbon cable to the factory is added in Figure 68.

8.3.1 PMC Advantages

• Robust

• Easy to use

• Several software choices

• No need for the PCB layer

One of the greatest advantages with this device, is that it is easy to use. This unit with a proper

customized shield can be connected directly to the factory without any need of an additional layer.

This is possible to it delivering 24 volts straight from the outputs as discussed earlier in the thesis

74

Figure 68: The Arduino PMC connected to the factory

at Section 3.1. To connect to the factory, all that is needed is connecting the 24 wires directly

to the pins on the factory. Alternatively, make a shield that can do the connection with a simple

ribbon cable which is done in this thesis as seen in Figure 30. All these qualities makes the system

more reliable than the other devices. With less parts involved, there’s less potential to develop

problems in the future.

The Arduino PMC is also compatible with two different programming softwares, both OpenPLC

and Arduino PLC IDE. This ability is unique compared to the other devices. To run code on the

device, one simply needs to compile it on OpenPLC and transfer it directly to the device. The

PMC unit has a micro usb port which can be used, by simply connecting it to a PC.

8.3.2 PMC Disadvantages

• Expensive

• Currently some incompatibility with OpenPLC

• Small degree of versatility

If it’s decided to use OpenPLC for a potential coding project, there are some qualities that are

missing that makes the user unable to use all of the features this device provides. The most

notable one is the ability to use the programmable ports. In regard to the work done in this thesis,

driver code for using the programmable pins was developed. Further details of this was discussed

earlier and is found in Section 5.3.4. These ports needs to be available when using the Arduino

PMC together with the Indexed Line, to have enough I/O available. This functionality needs to be

unlocked using an updated driver, which is custom made. This process might be a bit cumbersome,

but it isn’t something students taking the course Industrial Mechatronics shouldn’t be capable of

doing. There is also provided a guide on how to use the Arduino PMC with the updated driver.

This is given in Section 6.6.

75

One of the major drawbacks of using Arduino PMC, is that they are expensive to purchase. One

unit costs a total of 3000 NOK if it’s desired to buy it directly from Arduino. In addition, the unit

that were used for experimentation in this thesis, had a power supply from Siemens attached to

it. The particular power supply costs around 1000 NOK according to the supervisor. This means

for each complete device, the estimated cost would be 80000 NOK for 20 units. This is over three

times the amount that would be needed to buy Raspberry Pis, which is the second most expensive

item on the list.

The last drawback is the functionality. This device is a highly specialized full function PLC unit.

Compared to the Raspberry Pi, this means there is no value in using the unit for non-PLC purposes.

A lot of the curriculum in Industrial Mechatronics is regarding wireless communication between

devices and Operating Systems. In addition, there are some coding exercises in the C programming

language. These things cannot be done on the Arduino PMC, due to it being a highly specialized

PLC device. It can neither be used to run other devices which are not running a 24 volt system.

This would require an interfacing layer similar to the one developed in the project thesis.

8.4 Arduino UNO

The next item to be discussed, is the Arduino UNO. Although the Arduino doesn’t have enough

hardware itself to run the factory, it’s possible to buy an I/O expander, which increases the number

of I/O pins on the Arduino UNO. This section will then describe the advantages and disadvantages

of using an Arduino UNO with such an expander. One expander that can be used is the Sparkfun

SX150 which were bought for the project, but not used. This I/O expander is seen in Figure 69.

Figure 69: The I/O expander that was purchased for thesis

8.4.1 UNO Advantages

• Cheap

• Can be used for more assignments

76

• A lot of internet support

The main advantage of using an Arduino UNO is that the device is cheap. One Arduino UNO from

the official Arduino store costs 24 euros per unit. This is much cheaper than the other controllers

mentioned in this thesis. This means that 20 units of Arduino UNOs would cost 480 euros. In the

local currency, this equals to roughly 5000 NOK with the exchange rates at 10.12-2023. This is

under half the price of the Arduino MEGA. However, more purchases are needed to be made. As

stated earlier, there is a need to use an I/O expander such as the SX150 seen in Figure 69. These

can be bought for 3 dollars a piece. Meaning there is an additional cost of 660 NOK for the I/O

expanders, again with the current exhange rates as per 10.12 - 2023. This does not include the cost

of the PCBs which totals to roughly 2500 NOK. This was calculated in Section 8.2. Therefore, the

total cost of using an Arduino UNO would be roughly 8000 NOK, which is still cheaper than the

equivalents mentioned in this thesis.

Another benefit of using Arduino UNOs is that they can be used for assignments in other courses.

Because of the controllers simplicity, the Arduino UNO is a popular choice for hobby electronics.

It’s also used in assignments in related courses of TPK4128 Industrial Mechatronics, for example

TPK4125 Mechatronics, which is the preceding course. This means that the Arduino UNOs can

be used over multiple courses, which makes it more viable to buy for an assignment in the course.

Another great benefit of using an Arduino UNO, is the huge amount of internet support which is

available for the device. If someone has any problem with the micro controller, then ”google” it.

Someone has most likely encountered the problem before, and posted a solution. This reduce the

pressure on student assistants and the professor when the regular students are doing assignments.

Most of their problems is going to have solutions online.

8.4.2 UNO Disadvantages

• Needs additional hardware

• Needs customized drivers

The major disadvantage of using an Arduino UNO for the assignment is the lack of I/O. This can

be changed by adding additional hardware in the form of I/O expanders as suggested in this thesis.

However this isn’t a perfect solution, this adds external hardware to the device. It also requires

a hardware shield that needs to be developed for the combination of the units. With additional

hardware, additional drivers on OpenPLC is needed. Neither OpenPLC or Arduino PLC IDE

currently supports Arduino UNO with I/O expanders, which means the drivers have to be written.

Therefore, there is still some development that needs to be done for this combination to be a viable

solution. With more parts, there is an increased amount of parts that can ultimately fail. This

means the reliability also can be compromised compared to the other units.

8.5 Arduino MEGA

The last micro controller that were tested, was the Arduino MEGA. The Arduino MEGA is

basically an Arduino UNO with an upgraded number of I/O ports. Other than this, it is as

barebone as a normal Arduino UNO and has all of the same functionalities with more I/O ports.

77

The advantages and drawbacks of running such a device is listed and discussed below in a similar

fashion as before. A picture of the developed system can be seen in Figure 70.

Figure 70: The Arduino MEGA with hardware shield connected to the PCB

8.5.1 MEGA Advantages

• Easy to use

• No need for external devices

• No custom drivers needed

• Can be used for more assignments

The first advantage of using an Arduino MEGA, is that it is simple to use and understand. There

is a lot of support online, and it runs OpenPLC perfectly without the need to customize specialised

drivers. Compared to the normal Arduino UNO, this has more than enough I/O ports to run the

whole factory. This eliminates the need of using complicated solutions as customized drivers, or

adding additional hardware to compensate for the lack of ports in any other way.

This also have the same capabilities and chipset as the original Arduino UNO. This means that

this device is also capable of being used in other assignments, even in other courses. Similarly to

what was described about the UNO in Section 8.4.1.

Similarly to the Arduino PMC, it is also easy to run code on the device. In OpenPLC, all of the

I/O configurations are available from the start, and the code compiles and uploads directly to the

device.

8.5.2 MEGA Disadvantages

• Expensive

• Can be cumbersome to connect without HW shield

78

Even though this seems like a better option compared to an Arduino UNO, the price is a major

flaw. One unit of the Arduino MEGA costs 42 euros on the official Arduino Store. 20 of these

units would cost roughly 9000 NOK with the exchange rate as per 10.12 - 2023. Making a for

a total amount of roughly 11500 NOK with the PCBs counted for. The price of the PCBs were

calculated in Section 8.4.1. The MEGA will then lay somewhere between the Raspberry PI and

Arduino UNO in price.

With a proper hardware shield for the device like the prototype made in this project, should be

able to connect directly to the PCB using a ribbon cable. Without such a shield, it can be a bit

cumbersome to connect the MEGA to the factory. The MEGA has a lot of I/O ports, so the

programming and deciding what pins to use can be tricky.

8.6 Using other devices

There is also an alternative to explore different devices for the mini-factory. As a test, a micro

controller using the ATMega 168 processor was tested to see if knock off Arduino products would

be able to run the factory. An example of a knock off device is seen in Figure 71. This should in

theory be able to run the factory, since it uses the same chipset as previous generation Arduino

UNOs. Unfortunately, OpenPLC doesn’t feature drivers for this chipset, since the drivers are

updated to the newest version of the device at each update. This means that new drivers had to

be written. It was decided that there was no desire to write drivers for outdated hardware.

Figure 71: Picture of the unoriginal Arduino tested for the project

However, this doesn’t mean it’s impossible to use other micro controllers than the ones listed.

There are several knock off Arduino UNOs that use the newer ATMega 328 chipset. These will

work like a normal Arduino UNO and should have no problem running code from OpenPLC. It

79

would also most likely work with the PCB that was made in this project. The input and output

voltages required has a great voltage span, so the PCB would most likely be compatible with a

large variety of different micro controllers.

8.7 Hardware choice

This brings us down to the first important question answered in this thesis:

Which micro-controller is the best choice for an assignment regarding PLC languages in Industrial

Mechatronics?

This subchapter will discuss each separate micro controller regarding use and capabilities. It will

also land a conclusion on which controller should be the best choice for use a potential assignment

in TPK4128 - Industrial Mechatronics.

All of the advantages and disadvantages from the preceding chapters has been summed up in

the following table seen in Table 2. This table includes some of the criterias, in addition to the

arguments that were mentioned in the previous subchapters.

Criteria Arduino PMC H7 Raspberry PI

Price 80000 NOK 25000 NOK

Work required for setup Not much OS patching and
connecting to internet

Easy to use Yes No, requires uploading code
to a runtime via internet

Extra features Not many outside the task A lot of extra features

Biggest flaw Expensive Complicated to use and set up

Criteria Arduino MEGA Arduino UNO

Price 11500 NOK 8000 NOK

Work required for setup Need to connect a lot of pins Make a hardware shield +
I/O expander

Easy to use Yes Yes, with custom hardware

Extra features Some extra features Some extra features

Biggest flaw Expensive considering features Lacks I/O

Table 2: Comparison table

From this table it can be seen that all of the micro controllers have their strength and weaknesses.

For example, the Arduino UNO is cheap to buy, Raspberry PI can be used for a multitude of

different functions. Ardunio MEGA is decent at everything, and Arduino PMC is the best at

doing the PLC emulation.

80

Choosing between these micro controllers can be tricky. Although the choice ultimately comes

down to what qualities are desired for the device. The goal of this exercise is to see what micro

controller could be the best at emulating a PLC for an assignment in the course TPK4128 Industrial

Mechatronics. After all things are considered, this controller should be the Arduino H7 Portenta

Machine Control (PMC). This unit already follows all of the standards set for modern PLCs. The

code is open source, and is currently compatible with two different software programs. The main

problem with this unit is pricing. However, compared to other PLC units from Siemens or other

manufacturers, it is much cheaper to buy. There is also no need to buy a subscription that is

needed to use the device. Which in total makes the unit much cheaper.

If there is a desire to make more assignments for the course, the Raspberry Pi can have great

educational value. Students taking the course can learn to patch the Operating System, solder the

PCB and learn how to connect to the Raspberry Pi via internet. All of these subjects are relevant

to the course.

The other micro controllers have their strengths and weaknesses, but if the Indexed Line assignment

is isolated from the rest of the assignments, the Arduino PMC is the best choice for the task. The

RPi is too cumbersome to use for this task only, the Arduino MEGA is expensive considering the

features that it currently offers, and the Arduino UNO needs more development to become a viable

solution. There is also no need to make PCBs to interface the Arduino PMC with the factory.

8.8 PCB

The PCB that were first sent in for the project thesis was a prototype, and it was mentioned in the

assignment that the PCB had room for improvement. With this Master thesis there was made a

new PCB with some of the updated changes that were mentioned in the preceding project thesis.

In addition, the input circuits were renewed to be able to work with the Arduino UNO and MEGA.

There still is some features that can be added to the PCB for future works, but it’s nothing major.

The PCB that is delivered with this thesis should be fit for use in an assignment. Down below in

Figure 72, this new updated PCB can be seen. In addition, a picture of the CAD model developed

in KiCad is seen in Figure 73.

81

Figure 72: Picture of the updated PCB

Figure 73: Picture of the updated PCB in KiCad

8.9 Software choice: OpenPLC vs Arduino PLC IDE

The second question that needs to be answered in this thesis, is what software to use for possible

PLC assignments. Assuming the micro controller of choice is the Arduino PMC, there are two

compatible softwares that can be used for an assignment. Therefore the difference of using the

User Interface (UI) and reliability of the programs is gonna determine which program should be

the preferred program for assignments.

8.9.1 User Interface and programming

As mentioned in Section 5.1, the programming in Arduino PLC IDE is a bit different than Open-

PLC. In the Ladder Diagram code, the user is forced to use predefined lines by the program. This

82

might make programming easier for a newbie, but there were some problems implementing things

that were easily implemented on OpenPLC. One example of this is code intersections. On Arduino

PLC IDE it was written two different scripts depending on the milling and drilling variable. This

would not be necessary on OpenPLC.

One thing that was better in Arduino PLC IDE however, is that it is possible to add several

program files in the same project. On OpenPLC each program will have a different file. On

Arduino PLC IDE all of the programs were set in the same folder, and it was easy to switch the

files if the user wants to run different programs. Arduino PLC IDE also allows the possibility of

running multiple files at a time. This can be handy if the mini-factory is connected to a larger

system of conveyors and other mechatronic systems.

8.9.2 Reliability

Arduino PLC IDE has some bugs that impaired the user experience. For example, when writing the

Ladder Diagram code, the timers didn’t want to update without restarting the program. Another

problem that were encountered on Arduino PLC IDE was that the program was crashing when

trying to compile the code or connect to the device. As mentioned in Section 7.3.1, the conditionals

didn’t work for the SFC code, meaning there were no natural interrupts in the program. It seemed

that the program were running faster than the Indexed Line when running, meaning the factory

couldn’t keep up. This compromised the sensor activation, and belts started suddenly running

before they were told to. Therefore, it was harder to develop a code that would work correctly.

8.9.3 Final verdict

All things considered, OpenPLC is the program that should be preferred for doing PLC assign-

ments. It’s easier to understand and work with compared to Arduino PLC IDE, and is compatible

with multiple controllers and Operating Systems. It also seems to be more reliable than the PLC

IDE program.

If the institute is able to overcome the cost of buying the required units of this device, the micro

controller chosen for such an assignment should be the Arduino PMC. It is easy to use and doesn’t

require specific hardware to interface the mini-factory. Otherwise there could be some value in

using the Raspberry Pi, although this would acquire work over multiple assignments. Still, it can

be a valuable learning experience for the students taking the course.

In the preceding project to this thesis, the system were shown to a group of students taking

TPK4125 Mechatronics. Although this was the system using an older version of the PCB and a

Raspberry Pi, the students showed interest in having something physical to play around with. This

can further enhance the interest in the course and the curriculum. There is no reason to believe

that the students would be less interested in using the system with a different hardware solution,

therefore multiple platforms can be considered for a possible assignment for the course.

These results were aligned with Sunds findings in his own master’s thesis, that students would

prefer education with practical elements. In addition, having the ability to apply the theory

learned in classes is valuable for the students for learning the curriculum.

83

9 Conclusion

All of the primary objectives from Section 1.3 has been met. Software drivers for the Arduino PMC

has been developed and a working system is developed for both the Arduino PMC and Arduino

MEGA. In addition, the PCB from the preceding project thesis has been updated to support

Arduino MEGA and UNO.

In addition, some extensions and quality of life improvements were implemented successfully. These

were not critical for the project, but will ease the process of turning this thesis into future exercises

for Industrial Mechatronics.

Choosing a micro controller that should be used for future assignments, is entirely dependant on

what qualities is wanted for the task. The Raspberry Pi fulfills all of the requirements envisioned

for the assignment. If there’s a need for a controller that can do it all, this is the best choice. The

PCB is easy to connect both to the factory and the Raspberry Pi. This should be an adequate

solution for use in an assignment.

However, if the mini-factory itself is isolated as an assignment, there are reasons to believe the

best choice is using Arduino PMC unit with OpenPLC. The Arduino PMC is a highly specialised

device, and is perfectly capable of running the mini-factory along with the PLC software. The

code is easy to load into the device, and there is no need for a middle layer that adds complexity.

Arduino PMC also follows all of the standards set for PLCs. There might be some value for the

students to see a real PLC in the assignment, since this is widely used in the industry.

OpenPLC is the easier and more reliable software platform for developing PLC code. It also fully

functions with the same micro controllers as Arduino PLC IDE. In addition OpenPLC provides

support for a lot of micro controllers which aren’t compatible with Arduino PLC IDE. More can also

be added in the future, since this is an open-source software that upgrades the software regularly

with several users of GitHub developing code for the program.

9.1 Further work and possible expansions

Some of these subchapters are still remaining from the preceding project assignment. But they

are still relevant if there is a desire to continue adding functionalities to the system, and therefore

it was decided relevant to add to this thesis. Section 9.1.4 is new for this thesis.

9.1.1 PCB design

The PCB was updated in this project thesis, but there still is some additions to the PCB that can be

considered. One of them is adding toggle switches to control the machining stations. This solution

can make them easier to control, compared to using separate software on the RPi. Understanding

the functionality is also easier with this solution. It can be implemented directly on the PCB, or

on a daughterboard. The reason for using toggle switches instead of dip switches, was mentioned

in the project assignment. The reason is that surface mount dip switch packets cannot withstand

continuous use for a long time.

There is also a possibility to create another design that uses surface mount components instead.

This can be a good solution if there is a need for many boards, since the PCBs can be designed to

84

be smaller. They can also be produced with the components already soldered on. This is a good

solution in the example of; if a professor needs 40 of the boards to use in their subject.

In addition, another connection point could be added to the PCB to directly connect Arduino to

the PCB, although this requires custom hardware shields.

9.1.2 Machine learning

Machine learning and camera vision are modules that can be added to the assembly as future

expansions. There are existing camera modules that can be added onto a Raspberry Pi, on which

OpenCV can be used to recognise different objects that travels on the conveyors. The machining

modules are already run by a separate program written in Python. This program can be replaced

with a program running image recognition to decide what operations should be done on the part.

For this task, it is possible to send different objects on the conveyors, and the program decides if

the part is going to be milled, drilled, both, or none, based on the shape, color or other distinct

characteristics.

9.1.3 Robot arm and ROS2

Another big part of the Industrial Robotics course is to learn the basics of ROS and robot con-

trol. There are also current assignments in the course related to these topics. ROS2 can also be

implemented in an assignment using the mini-factory. One way to do this is to implement a small

robot arm to put objects on the conveyor belts. This is a great opportunity to possibly automate

a currently manual operation.

9.1.4 Developing the UNO system

One option to further cut the cost of the assignments, is to add a proper support system for the

Arduino UNO or a similar knock off variant using the same chip. Unfortunately, there weren’t

enough time in the semester to implement the hardware solution required to run the Arduino UNO

properly for the task. If such a solution is desired, there’s multiple steps that should be taken for

making a properly functioning system. The first step would be to make a custom hardware shield

for the Arduino UNO and adding an I/O expander to this shield. The SparkFun SX150 should

be a solid option for the task due to loads of information and support about the expander being

available online. Other expanders should still be capable of doing the task. In addition, the

software drivers for the system needs to be written. There is currently no support for the Arduino

UNO with an I/O expander on OpenPLC.

85

Bibliography

[1] A. Skavhaug, Tpk4128 - industrial mechatronics, 2022. [Online]. Available: https://www.

ntnu.edu/studies/courses/TPK4128.

[2] F. GmbH, Indexed line with two machining stations 24v, 2022. [Online]. Available: https:

//www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-

two-machining-stations-24v.

[3] A. K. Sund, ‘Improving mechatronics education with design thinking’, 2022.

[4] A. C. Arnholm and M. N. Henriksen, ‘Combining industry 4.0 and 5g connectivity with

robots in digital production factories’, 2021.

[5] W. Bolton, Programmable logic controllers. Newnes, 2015.

[6] Wikipedia, File:originating register, number five crossbar switching system (museum of com-

munications, seattle).jpg, 2007. [Online]. Available: https : / / en . wikipedia . org /wiki / File :

Originating Register, Number Five Crossbar Switching System (Museum of Communications,

Seattle).jpg.

[7] M. G. Hudedmani, R. Umayal, S. K. Kabberalli and R. Hittalamani, ‘Programmable logic

controller (plc) in automation’, Advanced Journal of Graduate Research, vol. 2, no. 1, pp. 37–

45, 2017.

[8] E. R. Alphonsus and M. O. Abdullah, ‘A review on the applications of programmable logic

controllers (plcs)’, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1185–1205, 2016.

[9] G. Frey and L. Litz, ‘Formal methods in plc programming’, in Smc 2000 conference pro-

ceedings. 2000 ieee international conference on systems, man and cybernetics. ’cybernetics

evolving to systems, humans, organizations, and their complex interactions’ (cat. no.0, vol. 4,

2000, 2431–2436 vol.4. doi: 10.1109/ICSMC.2000.884356.

[10] Standard-Norge, Nek iec 61131-3:2013, 2013. [Online]. Available: https://www.standard.no/

no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454.

[11] IEC, ‘Programmable controllers – part 1: General information’, en, International Electro-

technical Commission, Geneva, CH, Standard IEC 61131-1:2003, 2003. [Online]. Available:

https://webstore.iec.ch/publication/4550.

[12] IEC, ‘Programmable controllers – part 3: Programming languages’, en, International Electro-

technical Commission, Geneva, CH, Standard IEC 61131-3:2013, 2013. [Online]. Available:

https://webstore.iec.ch/publication/31007.

[13] IEC, ‘Industrial-process measurement and control – programmable controllers – part 2:

Equipment requirements and tests’, en, International Electrotechnical Commission, Geneva,

CH, Standard IEC 61131-2:2017, 2017. [Online]. Available: https://webstore.iec.ch/publication/

31007.

[14] A.-D. R.H.Arpaci-Dusseau, Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books,

2023.

[15] Redhat.com, Working with the real-time kernel for red hat enterprise linux, 2022. [Online].

Available: https://www.redhat.com/sysadmin/real-time-kernel.

[16] Raspberry-Pi-foundation, Raspberrypi.com, 2022. [Online]. Available: https://www.raspberrypi.

com/.

86

https://www.ntnu.edu/studies/courses/TPK4128
https://www.ntnu.edu/studies/courses/TPK4128
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://doi.org/10.1109/ICSMC.2000.884356
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454
https://webstore.iec.ch/publication/4550
https://webstore.iec.ch/publication/31007
https://webstore.iec.ch/publication/31007
https://webstore.iec.ch/publication/31007
https://www.redhat.com/sysadmin/real-time-kernel
https://www.raspberrypi.com/
https://www.raspberrypi.com/

[17] thiagoralves, Tpk4128 - industrial mechatronics, 2022. [Online]. Available: https://github.

com/thiagoralves/OpenPLC v3.

[18] Arduino, Arduino plc ide. boost production and building automation with your own industry

4.0 control system, 2023. [Online]. Available: https://www.arduino.cc/pro/software-plc-ide.

[19] Arduino, Programming introduction with arduino plc ide, 2023. [Online]. Available: https:

//docs.arduino.cc/software/plc-ide/tutorials/plc-programming-introduction.

[20] A. Wordpress, Connecting raspberry pi to eduroam, 2016. [Online]. Available: https : / /

autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/.

[21] OpenPLC, 1.4 installing openplc runtime on linux, 2022. [Online]. Available: https://openplcproject.

com/docs/installing-openplc-runtime-on-linux-systems/.

[22] F. GmbH, Technical faq’s, 2022. [Online]. Available: https : //www.fischertechnik . de/en/

service/faq/technical-faqs.

[23] Simatic s7-1500 signal modules, 2022. [Online]. Available: https://new.siemens.com/global/

en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html.

[24] Arduino, Arduino® portenta machine control, 2023. [Online]. Available: https://docs.arduino.

cc/resources/datasheets/AKX00032-datasheet.pdf.

[25] Arduino, Arduino® uno r3, 2023. [Online]. Available: https://docs.arduino.cc/resources/

datasheets/A000066-datasheet.pdf.

[26] Resistor applications: Pull-up and pull-down resistor, 2023. [Online]. Available: https : / /

eepower.com/resistor-guide/resistor-applications/pull-up-resistor-pull-down-resistor/#.

[27] Vishay, Optocoupler, phototransistor output, high reliability, 2015. [Online]. Available: https:

//www.vishay.com/docs/83740/sfh617a.pdf.

[28] OpenPLC, Openplc runtime overview, 2022. [Online]. Available: https://openplcproject.com/

docs/2-1-openplc-runtime-overview/.

[29] OpenPLC, 2.4 physical addressing, 2022. [Online]. Available: https://openplcproject.com/

docs/2-4-physical-addressing/.

[30] S. B. Reddy, Instrumentation tools, 2022. [Online]. Available: https://instrumentationtools.

com/what-is-sequential-function-chart-sfc/.

[31] CODESYS, Qualifiers for actions in sfc, 2023. [Online]. Available: https://help.codesys.com/

api-content/2/codesys/3.5.14.0/en/ cds sfc action qualifier/#id1.

87

https://github.com/thiagoralves/OpenPLC_v3
https://github.com/thiagoralves/OpenPLC_v3
https://www.arduino.cc/pro/software-plc-ide
https://docs.arduino.cc/software/plc-ide/tutorials/plc-programming-introduction
https://docs.arduino.cc/software/plc-ide/tutorials/plc-programming-introduction
https://autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/
https://autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/
https://openplcproject.com/docs/installing-openplc-runtime-on-linux-systems/
https://openplcproject.com/docs/installing-openplc-runtime-on-linux-systems/
https://www.fischertechnik.de/en/service/faq/technical-faqs
https://www.fischertechnik.de/en/service/faq/technical-faqs
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html
https://docs.arduino.cc/resources/datasheets/AKX00032-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/AKX00032-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://eepower.com/resistor-guide/resistor-applications/pull-up-resistor-pull-down-resistor/#
https://eepower.com/resistor-guide/resistor-applications/pull-up-resistor-pull-down-resistor/#
https://www.vishay.com/docs/83740/sfh617a.pdf
https://www.vishay.com/docs/83740/sfh617a.pdf
https://openplcproject.com/docs/2-1-openplc-runtime-overview/
https://openplcproject.com/docs/2-1-openplc-runtime-overview/
https://openplcproject.com/docs/2-4-physical-addressing/
https://openplcproject.com/docs/2-4-physical-addressing/
https://instrumentationtools.com/what-is-sequential-function-chart-sfc/
https://instrumentationtools.com/what-is-sequential-function-chart-sfc/
https://help.codesys.com/api-content/2/codesys/3.5.14.0/en/_cds_sfc_action_qualifier/#id1
https://help.codesys.com/api-content/2/codesys/3.5.14.0/en/_cds_sfc_action_qualifier/#id1

Appendix

88

A PLC architecture from IEC 61131-2

Figure 74: Typical interface/port diagram of a PLC-system (from IEC 61131-2)[13]

89

B Eduroam Guide

This Guide is exactly the same as the one from [20], but is added to make it possible to recreate

our testing with only reading this document. It is tested to work on Eduroam at NTNU’s campus

Gløshugen as of December 2022.

First, we must add a few lines of text in the file /etc/wpa supplicant/wpa supplicant.conf (it must

be done with root permission):

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Then append the following lines (yes, change username and password to something appropriate)

network={

identity="username@ntnu.no"

password="password"

eap=PEAP

phase1="peaplabel=0"

phase2="auth=MSCHAPV2"

priority=999

disabled=0

ssid="eduroam"

scan_ssid=0

mode=0

auth_alg=OPEN

proto=RSN

pairwise=CCMP

key_mgmt=WPA-EAP

proactive_key_caching=1

}

Then hit < control > +x, then y and < enter > to save and exit.

Depending on your version of Pi and your Pi’s operating system you might or might not have a

connection now (check with ifconfig). If you do not, you should try to stop networking and start

wpa supplicant:

sudo service networking stop

sudo wpa_supplicant -i wlan0 -c

/etc/wpa_supplicant/wpa_supplicant.conf -B↪→

If you still don’t have a connection you should try to reboot

90

sudo reboot

Still no connection? Check that all of the special characters in /etc/wpa supplicant/wpa supplicant.conf

have been copied correctly, for example

''

is not the same as

"

Is Eduroam being stubborn? You can do as we did, search around a bit and try tweaking the

settings in /etc/wpa supplicant/wpa supplicant.conf until you win.

91

C Milling, Drilling or not code Example

This is the the code we used to control the mill and drill. It is written fast to make it possible

to choose which states is desired without having to re run the program each time. This can be

written more efficiently, but that was not the purpose of this code. It should just work, which it

does.

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

mill = 3

drill = 5

GPIO.setup(mill, GPIO.OUT)

GPIO.setup(drill, GPIO.OUT)

m = ''

d = ''

cont = ''

while True:

while True:

m = input('Type y for milling and n for not milling: ')

if m == 'y':

break

elif m == 'n':

break

while True:

d = input('Type y for dilling and n for not dilling: ')

if d == 'y':

break

elif d == 'n':

break

if m == 'y':

GPIO.output(mill, GPIO.HIGH)

print('m->high')

else:

GPIO.output(mill, GPIO.LOW)

print('m->low')

if d == 'y':

GPIO.output(drill, GPIO.HIGH)

92

print('d->high')

else:

GPIO.output(drill, GPIO.LOW)

print('d->low')

while True:

cont = input('Type y for continue and n for quiting: ')

if cont == 'y':

break

elif cont == 'n':

break

if cont == 'n':

break

93

D Attachments

D.1 Attached files:

• ArduinoPLCIDE PMC.zip - Arduino PLC IDE project files

• Factory run ArduinoMEGA.mp4 - Video of the factory running with the Arduino MEGA

• Factory run ArduinoPMC.mp4 - Video of the factory running with the Arduino PMC

• machine control.cpp - The custom hardware driver for the Arduino PMC in OpenPLC

• OpenPLC Arduino MEGA LD.zip - Ladder diagram in OpenPLC with the addresses for the

MEGA

• OpenPLC Arduino PMC LD.zip - Ladder diagram in OpenPLC with the addresses for the

Arduino PMC

• OpenPLC SFC code.zip - SFC code in OpenPLC, written with RPi addresses

• PCB with opto master.zip - The PCB files

D.2 Hardware:

The mini-factory with the prototype.

94

E Extended Raspberry Pi OpenPLC table

95

P
in

N
am

e
O
p
en
P
L
C

ad
d
re
ss

P
C
B

fu
n
ct
io
n
a
li
ty

P
C
B

fu
n
ct
io
n
a
li
ty

O
p
en
P
L
C

a
d
d
re
ss

N
a
m
e

P
in

1
3.
3V

D
C

P
ow

er
-

3
.3
V

5
V

-
5V

D
C

P
ow

er
2

3
G
P
IO

02
(S
D
A
1,

I2
C
)

%
IX

0.
0
*

M
il
li
n
g?
!!

5
V

-
5V

D
C

P
ow

er
4

5
G
P
IO

03
(S
D
L
1,

I2
C
)

%
IX

0.
1
*

D
ri
ll
in
g
?!
!

G
N
D
1

G
ro
u
n
d

6
7

G
P
IO

04
(G

P
C
L
K
0)

%
IX

0.
2

B
tn

S
1
fr
o
n
t

S
li
d
er
1
fo
rw

%
Q
X
0
.0

G
P
IO

14
(T

X
D
0,

U
A
R
T
)

8
9

G
ro
u
n
d

-
G
N
D
1

S
li
d
er
1
b
a
ck

%
Q
X
0.
1

G
P
IO

15
(R

X
D
0,

U
A
R
T
)

10
11

G
P
IO

17
%
IX

0
.3

B
tn

S
1
re
ar

P
in
1
2
p
as
s
th
ro
u
gh

%
Q
W

0
G
P
IO

18
(P

W
M
0)

1
2

13
G
P
IO

27
%
IX

0.
4

B
tn

S
2
fr
o
n
t

G
N
D
1

-
G
ro
u
n
d

1
4

15
G
P
IO

22
%
IX

0
.5

B
tn

S
2
re
ar

S
li
d
er
2
fo
rw

%
Q
X
0
.2

G
P
IO

23
16

17
3.
3V

D
C

P
ow

er
-

3.
3V

S
li
d
er
2
b
a
ck

%
Q
X
0.
3

G
P
IO

24
1
8

19
G
P
IO

10
(S
P
10

M
O
S
I)

%
IX

0.
6

S
en
so
r2

co
n
v
1

G
N
D
1

-
G
ro
u
n
d

20
21

G
P
IO

09
(S
P
10

M
IS
O
)

%
IX

0.
7

S
en
so
r3

co
n
v
2

C
on

v
1

%
Q
X
0
.4

G
P
IO

25
22

23
G
P
IO

11
(S
P
10

C
L
K
)

%
IX

1
.0

S
en
so
r1

S
ta
rt

C
on

v
2

%
Q
X
0.
5

G
P
IO

08
(S
P
I0

C
E
0
N
)

2
4

25
G
ro
u
n
d

-
G
N
D
1

M
il
l

%
Q
X
0
.6

G
P
IO

07
(S
P
I0

C
E
1
N
)

26
27

G
P
IO

00
(S
D
A
0,

I2
C
)

-
P
in
2
7
p
a
ss

th
ro
u
g
h

P
in
2
8
p
as
s
th
ro
u
gh

-
G
P
IO

07
(S
D
L
0,

I2
C
)

28
29

G
P
IO

05
%
IX

1.
1

S
en
so
r4

co
n
v
3

G
N
D
1

-
G
ro
u
n
d

3
0

31
G
P
IO

06
%
IX

1
.2

S
en
so
r5

co
n
v
4

C
on

v
3

%
Q
X
0.
7

G
P
IO

12
(P

W
M
0)

32
33

G
P
IO

13
(P

W
M
1)

%
IX

1
.3

I
M
il
l

G
N
D
1

-
G
ro
u
n
d

3
4

35
G
P
IO

19
%
IX

1
.4

I
D
ri
ll

D
ri
ll

%
Q
X
1.
0

G
P
IO

16
36

37
G
P
IO

26
%
IX

1.
5

P
in
37

p
as
s
th
ro
u
g
h

C
on

v
4

%
Q
X
1
.1

G
P
IO

20
38

39
G
ro
u
n
d

-5
G
N
D
1

P
in
4
0
p
as
s
th
ro
u
gh

%
Q
X
1.
2

G
P
IO

21
4
0

96

Department of Mechanical and Industrial
engineering

TPK4560 - Project assignment robotics and automation

Combining Mechatronics and Opensource
software to create a Programmable Logic
Controller alternative for educational use

Authors:

Lars Bonvik

Eskild Godli

Supervisor:

Amund Skavhaug

December, 2022

Preface

Doing this project thesis has been an interesting and fun experience, where we have been able to

use a lot of the information learnt in different classes of the year. Due to COVID-19, Industrial

Mechatronics was not as good as it should have been, and it’s been little doubt that the current

assignments in the class could be improved. Applying theory in a project environment is a re-

warding experience, and the ability to contribute, making mechatronics more interesting for future

students is meaningful for us.

We would like to extend a special thanks to the following people:

• Amund Skavhaug, our supervisor for support and guidance before and during the project.

His inputs have been invaluable for the progress and finalization of the project.

• H̊avard Vestad for his guidance on the risk assessment used to get access to the mechatronics

lab.

• Lars Tingelstad for his guidance on the simulation topic.

We also would like to thank our classmates writing project thesis along side us. Planning social

events and discussing relevant and irrelevant topics around the project assignment keeping the

spirits high.

i

Summary

This is a project thesis written by Lars Bonvik and Eskild Godli in the autumn semester of 2022,

and is a part of the penultimate semester of the master program for Mechanical Engineering at

the Norwegian University of Science and Technology, NTNU. This thesis studies how to use a

Raspberry Pi microcontroller to emulate a Programmable Logic Controller. The thesis contains

both software and hardware solutions, making this possible. The work is based on Andreas Knudsen

Sunds discoveries in his master’s thesis, for the need to improve the assignments in the course

TPK4128 Industrial Mechatronics.

The project started with the research of how a Programmable Logic Controller work as well as the

workings of Fischertechniks mini-factory used for the project.

It was researched and found open-source software that could make sure that with an added hard-

ware solution, could emulate a Programmable Logic Controller. The hardware solution was de-

veloped and researched through the thesis, and rapid prototypes on breadboards created to test the

researched solutions. With a satisfactory solution developed, a prototype Printed Circuit Board

(PCB) was designed and produced. The PCB acts as the communication layer between the Rasp-

berry Pi and the ”Fischertechnik Indexed Line with two Machining Stations 24V” provided by the

supervisor for use in exercises in Industrial Mechatronics.

ii

Acronyms

BJT - Bipolar Junction Transistor

I/O - Input and Output

LD - Ladder Diagram

MOSFET - The metal–oxide–semiconductor field-effect transistor

NPN - Negative, Positive, Negative

OPC UA - Open Platform Communications Unified Architecture

OpenCV - Open Source Computer Vision Library

OS - Operating System

PLC - Programmable Logic Controller

PNP - Positive, Negative, Positive

ROS - Robot Operating System

RPi - Raspberry Pi

RT - Real Time

SFC - Sequential Function Chart

iii

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation and Project Description . 1

1.2 Previous Work . 1

1.3 Objective . 2

1.4 Structure of thesis . 2

2 Background theory 4

2.1 Programmable Logic Controller (PLC) . 4

2.1.1 Control systems and controllers . 4

2.1.2 The functions of PLCs . 5

2.1.3 The Hardware and Architecture of PLCs 6

2.1.4 PLC Inputs and Outputs . 7

2.1.5 PLC Manufacturers and Models . 8

2.2 Real-time kernel for linux . 8

2.3 Raspberry Pi . 9

2.4 OpenPLC . 9

2.5 OPCUA . 9

2.6 MultiSim . 10

2.7 Visual Components . 10

3 The setup of the Raspberry Pi 11

3.1 Setup of real-time kernel on Raspberry Pi . 11

3.2 Installing OpenPLC runtime on the Raspberry Pi 15

4 Technical spesifications 17

4.1 The interface circuitry . 17

4.2 Specifications of the mini-factory . 18

4.3 PLC standards . 20

iv

4.4 Testing with other microcontrollers . 21

5 Circuitry 22

5.1 Push-pull circuit version 1 . 22

5.2 Push-Pull version 1 evaluation . 23

5.3 IO signal circuit . 23

5.4 IO signal circuit evaluation . 24

5.5 Push-pull version 2 . 24

5.6 Push-Pull version 2 evaluation . 25

5.7 MOSFET circuit . 25

5.8 MOSFET circuit evaluation . 26

5.9 Sensor circuits . 26

5.10 Sensor circuit with optocoupler . 27

5.11 Sensor circuits evaluation . 27

5.12 Breadboard circuit . 27

5.13 PCB circuit . 28

5.14 PCB version 1 . 30

5.15 PCB version 1 soldering . 32

5.16 PCB version 2 . 33

5.17 PCB version 3 - Final version . 33

5.18 OpenPLC . 34

6 Software and Simulation 36

6.1 Connecting to Raspberry Pi . 36

6.2 Programming and language . 36

6.3 Ladder Diagram Code . 37

6.3.1 LD Code part 1 . 38

6.3.2 LD Code part 2 . 41

6.3.3 LD Code part 3 . 42

6.3.4 LD Code part 4 . 43

6.3.5 Discussing the Ladder Diagram Code . 43

6.4 SFC . 44

v

6.4.1 SFC code part 1 and 2 . 44

6.4.2 SFC code part 3 and 4 . 46

6.4.3 SFC code part 5 and 6 . 47

6.5 Simulation . 48

6.5.1 Modelling . 48

6.6 Connecting to VC . 49

6.6.1 Possible solutions . 49

6.6.2 Implement FreeOPC . 50

6.6.3 Implement OPCUA into OpenPLC . 50

6.6.4 TCP/IP addressing . 51

6.7 PCB design software . 51

7 Discussion 52

7.1 Use of mini-factory in Industrial Mechatronics . 52

7.2 The hardware . 52

7.3 PCB . 53

7.4 Multisim . 53

7.5 CONFIG KVM . 53

7.6 The final results . 54

7.7 Further work and possible expansions . 54

7.7.1 Simulation . 54

7.7.2 PCB design . 54

7.7.3 Machine learning . 55

7.7.4 Robot arm and ROS2 . 55

8 Conclusion 56

Bibliography 57

Appendix 59

A PLC architecture from IEC 61131-2 60

B Eduroam Guide 61

vi

C Milling, Drilling or not code Example 63

D Attachments 65

D.1 Attached files: . 65

D.2 Hardware: . 65

E Extended Raspberry Pi OpenPLC table 66

List of Figures

1 The Fischertechnik factory [2] . 1

2 Example of relay control system . 4

3 Simple illustration of a PLC . 5

4 The general architecture of PLCs . 6

5 Architecture of PLC from IEC 61131 . 7

6 Siemens Simatic S7-1500 PLC . 8

7 Fully preemptible . 14

8 The PLC architecture map . 17

9 Rapid interface circuit . 18

10 Digital outputs for direct current table . 20

11 Circuit for 2.7-5.5V signals . 22

12 IO signal activation . 24

13 Push-pull circuit version 2 . 25

14 MOSFET circuit with octocoupler . 26

15 Neatly connected breadboard . 27

16 The final Breadboard . 28

17 PCBv1 Schematic . 31

18 PCBv1 images . 32

19 PCBv1 soldered images . 33

20 PCBv3 images . 34

21 RPi Pin1 Location . 35

22 Factory from top . 37

vii

23 PLC code variables . 38

24 Complete LD code . 39

25 Simple test of Ladder Diagram. 39

26 Part 1 birdview . 40

27 Ladder logic part 1 . 40

28 Part 2 in birdview . 41

29 Ladder diagram part 2 . 41

30 Ladder diagram alternate layout . 42

31 Part 3 of factory in birdview . 42

32 Ladder diagram part 3 . 42

33 The Factory in bird view, showing part 4. 43

34 The fourth part of the Ladder Diagram. 43

35 SFC code part 1 . 45

36 SFC code part 2 . 45

37 SFC code part 3 . 46

38 SFC code part 4 . 46

39 SFC code part 5 . 47

40 SFC code part 6 . 48

41 Factory model in Visual Components . 49

42 Connection OpenPLC to Visual Components . 51

43 Typical interface/port diagram of a PLC-system (from IEC 61131-2)[13] 60

List of Tables

1 Datasheet mini-factory . 19

2 Required specifications . 22

3 Comparison MOSFET vs BJT . 26

4 Overview of the layout on the RBPi . 34

viii

1 Introduction

1.1 Motivation and Project Description

The goal of this project is to make the learning material more concrete and realistic for students

taking the class TPK4128 Industrial Mechatronics. A course that teaches the students more about

Industry 4.0, and more specifically mechatronics for industrial production systems. The course

description from NTNU’s website:

”The course is on mechatronics for industrial production systems. This includes the implementa-

tion, use, and programming of single-board computers, PLC-based and other industrial computer

systems. Embedded- and real-time systems, industrial bus systems, interfacing, operating systems

and communication protocols for these. Use of C, Linux and TCP/IP on e.g. Raspberry Pi, Py-

thon, ROS, virtual machines, computer vision, OPC-UA and selected Industry 4.0 topics will be

taught and practiced. Furthermore, sensors, actuators, power supplies, motor drives, pneumatic

and hydraulic actuators, aspects of dependability for industrial computer systems, and develop-

ment methodologies. The students will get practical skills through extensive, weekly laboratory

exercises with a focus on practical programming.” [1]

The goal for this project is to make the necessary equipment to improve assignments, making them

more interesting and relevant. The part of the task given in this project is to run a ”mini-factory”

using a Raspberry Pi, which task will be to emulate a PLC (Programmable Logic Controller). This

is due to supervisor having troubles acquiring PLCs. The project should also be able to be used

as stand-alone, in addition to being expandable with future projects.

Figure 1: The Fischertechnik factory with two machining stations [2]

1.2 Previous Work

Use of the mini-factory from Fischertechnik in assignments has already been explored in the Mas-

ter’s thesis by Andreas Knudssen Sund [3]. In this project, it was investigated if there was a need

1

for new assignments in Industrial Mechatronics. It was also investigated if tasks regarding the

Fischertechnik mini-factory could be appropriate to replace the already existing assignments given

in the course.

In Sunds research [3], it was found that the assignments in the course were ready for an upgrade.

A thorough study has been done to see what the impact of introducing the mini-factory as an

assignment in Industrial Mechatronics would be. The conclusion of the study was that an assign-

ment relating to the mini-factory is probably going to be beneficial for the students learning. This

would also benefit the students experience and perception of the selected topics.

Sund was mainly investigating if this factory was appropriate to use in assignments with a PLC.

After getting promising results, it was decided that this project assignment will develop the con-

cepts further with a Raspberry Pi and OpenPLC, which makes the institute not dependant on 3rd

party manufacturers to complete the assignments made for the course. This would save a lot of

headaches regarding licensing and the process to buy PLCs.

Another research paper that has been used regarding this project is the master’s thesis of Arnholm

and Henriksen from 2021 [4]. This paper was mainly focusing on the use of Raspberry Pi with a

5G hat. Using a Raspberry Pi for a mechatronic system with Linux requires a pre-emptive kernel.

Therefore, a guide from this paper was used to build such a kernel for the Raspberry Pi.

1.3 Objective

The main objective of this project assignment, is to improve the assignments already used in TPK

4128 Industrial Mechatronics. In this project thesis it is confined to improving the assignment

about PLC programming. This will be achieved by using a Raspberry Pi as a PLC to control the

mini-factory. The different objectives that were set for this project to achieve this was:

• Make a Raspberry Pi emulate PLC hardware

• Make a Raspberry Pi emulate PLC software

• Make a complete working prototype

• Simplify the system enough to be made into a relevant assignment

The secondary objectives:

• Make a simulation of the mini-factory

• Make the solution expandable

• Make it possible to use other microcontrollers

1.4 Structure of thesis

Section 2 introduces the theory and key software used in this thesis. It begins with the present-

ation of what a Programmable Logic Controller is, and continues with how it works.

2

Section 3 presents how the Raspberry Pi used in this thesis is set up to work in the desired way.

Section 4 details the functionality that is needed and desired to achieve the objectives set for

the thesis. Further it continues with the tests of the mini-factory, and the discoveries of how it

functions.

Section 5 goes through the development of the circuitry needed to run the mini-factory with the

Raspberry Pi.

Section 6 contains the softwares used to develop the prototype and goes through the development

of the PLC code used in it. It also contains the start of the simulation development for the

mini-factory.

Section 7 is discussing the overall results and difficulties. Further works is also mentioned.

Section 8 contains the conclusion of the project thesis.

Appendix A a figure showing a more advanced architecture representation of a PLC from the

PLC standard IEC 61131-2.

Appendix B a guide to connect to the Eduroam network with an Raspberry Pi.

Appendix C presents the test program written to control the machining stations of the mini-

factory.

Appendix D a listing of the attached files.

Appendix E is an extended version of Table 4.

3

2 Background theory

This chapter includes the background theory needed to understand the work done in the rest of

this project thesis.

2.1 Programmable Logic Controller (PLC)

”A programmable logic controller (PLC) is a type of device extensively used for different automa-

tion applications within industrial processes and manufacturing” [5]. As it’s name implies, it is a

form of controller. This section will give an overview of controllers in general, as well as presenting

the function, hardware and architecture of PLCs.

2.1.1 Control systems and controllers

A controller or control system ”might be required to control a sequence of events, maintain some

variable constant, or follow some prescribed change” [5]. They are used to automate and streamline

tasks that were done manually by people, to drive cost down, and make a safer workplace by

automating hazardous tasks.

Figure 2: Example of a relay control system used in the Number Five Crossbar Switching System.
This unit is in the museum of communication in Seattle. [6]

A popular way to automate tasks before the time of the PLCs, were the use of relay systems. An

example of such a system can be seen in Figure 2.

Relays are magnetic switches that is switched on and off depending on the voltage of an input signal.

This was an ideal system to automate tasks requiring high precision and tight time constraints.

They excel at simple tasks, but are unable to do more complex tasks. However there are some

significant problems with relay switches. One of them is that tasks are hard to modify. A small

change in function might need a complete rewiring of the whole system. Due to all of these physical

connections, relay systems also requires a lot of space. [5], [7], [8]

Microprocessor control systems are a much more modern alternative. Instead of needing to hard-

wire the control system for each situation, it’s possible to simply reprogram the microprocessor

for the specific constraints and functions of a task. This type of control makes the system a lot

4

more flexible than relay switches. Microprocessors are also cheap and space efficient compared to

alternative solutions, which makes these systems a preferable way to automate industrial tasks.

PLCs are a specific form of microprocessor controllers, made to standardise microcontroller systems

with simple and robust programming languages. Mainly for use in the industry. One of the

standardised languages used for PLCs are called Ladder Diagram, this language was developed

to be used by people who had originally wired relay systems. This way it was simple for the

programmers to adapt to PLC systems instead, since it is made to be similar to relay system

schematics.

In 1969 the first PLC was developed, and it has been the primary solution for industrial automation

since the 1970s. They have evolved from self-contained units with few digital I/O, to modular units

with the possibilities to expand the I/O. They are able to use analog I/O as well.

Since it is developed new programming languages specific for the PLC’s, the need for international

standardisation were large, because of the importance of the industrial applications they are used

for.

This have led to the creation of many standards, such as the most influential ones from the 90s

and early 2000s, IEC 1131 and IEC 61499 respectively. The IEC 1131 standard was later renamed

to IEC 61131, and got new extensions. This standard has now ten parts, but started with three

parts released in 1992 and 1993. The rest of the parts has been released sporadically since then.

Multiple parts were released in the year of 2000, and the newest part was released in 2019. [9], [5],

[10], [11], [12], [7].

2.1.2 The functions of PLCs

As said before, a PLC is a complete system with a microprocessor and I/O designed for use in the

industry. It uses simple languages, which makes them easy to program for engineers with little to

no experience with programming. In figure Figure 3 it is added a simple illustration of how a PLC

functions. The PLC get some inputs from sensors, the program interprets them, and some output

signals are set to run some motors that for instance runs a conveyor belt.

Figure 3: Simple illustration of a PLC

The PLCs are developed for use in the industry. Some of the tasks they are developed for includes,

automating tasks for manufacturing, industrial processes, machining automated assembly and

packaging. These kinds of tasks are important to not be interrupted or stopped unexpectedly.

This scenario has the potential to create hazardous or dangerous situations, or the manufacturer

5

can lose significant monetary value. These are some of the reasons PLCs are built to complete

task in harsh environments, and are designed to run as long as possible without failure.

For some automation tasks the added robustness might not be necessary. For example a washing

machine for home use might only need a microprocessor controller without the added robustness

a PLC provides. Autopilots for airplanes needs more computational power than a PLC provides,

to solve complex mathematics and high speed operations. Therefore, a normal computer is more

beneficial to run autopilots. In the next subsection the hardware and architecture of the PLC will

be looked into. [5], [11] [8].

2.1.3 The Hardware and Architecture of PLCs

The functional parts of a typical PLC is shown inside the box in Figure 4.

• Where the Processor part is the microprocessor(s) that does the arithmetic’s and the exe-

cution of the application program functions.

• TheProgram and data memory is storing the application program and the states/variables

the application program is using.

• Communications interface is providing a function to communicate with third-party devices

such as PLC’s from other manufacturers and computers.

• The Power supply is supplying the necessary power to the different parts of the PLC.

• The I/O interfaces, Input interface and Output interface, is interfacing with the input

and output devices respectively.

The I/O interfaces will be explored a bit further. Figure 5 (a) shows a similar architecture diagram

as Figure 4 from the IEC 61131-1 standard, and (b) shows one more advanced version from IEC

61131-2 standard. See chapter 6 Functional requirements in IEC 61131-2 standard for in-depth

specifications of the functional requirements of a PLC’s hardware and architecture. [11], [13], [5],

[7], [8]

Figure 4: The general architecture of PLCs, [5]

6

(a) (b)

Figure 5: The architecture of PLC from IEC 61131, (a) shows a simple version from IEC 61131-1
[11]. And (b) shows an extended version from IEC 61131-2 [13]. In addition there is a larger

version of it in Appendix A.

2.1.4 PLC Inputs and Outputs

The input and output interfaces is as said, the part of the PLC that interfaces with input and

output devices. This is the part that PLCs use for communication with the external devices. From

this interface, the controlled devices gets output signal, and the controlling devices gets input

signals. There are different kinds of inputs and outputs associated with a PLC.

A PLC can have both discrete/digital I/O and analog I/O. Discrete inputs can either be provided

by push buttons or phototransistors to name a few. Analog inputs can be provided by for instance

a temperature sensor. The discrete outputs can then be LED’s or other lights with one intensity,

or motors that run in only one speed, such as a conveyor belt. Whilst a motor that need speed

control, might use an analog output from the PLC. One example is CNC machines with speed

control for specific tools.

The processor part of the PLC is using low voltages for it’s operations. For such components, 3.3

volt to 5 volt is common as the source voltage. While the PLC can use many different voltages

depending on the I/O module, the most common for discrete signals is 24V. The processor cannot

give such voltages directly, or read them since that would break it.

That is why opto-isolators are commonly used for the inputs they read. There are three common

ways to make the low voltage signals from the processor to the correct output voltage. These

are relay-types, transistor-types and triacs. The relays and transistors work as switches that lets

through the correct electrical signal, while the triacs only work for AC current. [8], [5].

7

In the IEC 61131-2 chapter 6 standard, there are specifications of how the I/O and other functions

are required to be compliant. For a specific output type there cannot be more than a given amount

leaking current in its off state as an example. These requirements are important for the PLCs to

behave predictably, and to be safe, robust, and have desired longevity in the environments they

are used.

2.1.5 PLC Manufacturers and Models

There are many different manufacturers of PLCs to choose from if such a unit is desired. They

all have their pros and cons, and usually requires proprietary environments for coding, uploading

the code, and communication between units. There are also open standards for communications

if there is a need for mixed environments. Modicon was the first manufacturer of PLCs, although

Siemens is one of the most popular manufacturers of PLCs today. See Figure 6 for an example of

a PLC from Siemens. [5], [7], [8]

(a) (b) (c)

Figure 6: Three pictures we took of a Siemens Simatic S7-1500 PLC.

2.2 Real-time kernel for linux

An operating system with a fully preemptible kernel is usually required to run certain mechatronic

systems. This type of kernel is used when there are specific constraints and to secure a certain

”worst time” possible when there are strict demands of the maximum allowed delay. Linux doesn’t

run on a fully preemptible kernel from the box, which means the OS has to be patched to allow

real-time capabilities. A detailed explanation on how to do this is given in Section 3.1. According

to [14], an RT kernel has the following advantages to an OS with a regular kernel.

• Checks task-priority under load

• High priority tasks are given preference for CPU execution

• Maintains a low latency execution time

• Possible to check, measure and configure response time

A kernel preemption makes the kernel able to change between processes, even if it already has

a process running. This makes the kernel able to process higher-priority tasks by interrupting

already running task, and finish them later. With a fully preemptible kernel, there can be set

a maximum delay for certain high-priority tasks. This is due to the delay being independent on

8

the complexity of the processes or tasks already running. This is a desired quality when running

systems with strict demands of the maximum delay. Some examples are car production lines and

pace makers.

2.3 Raspberry Pi

Raspberry Pi is a single-board computer originally made to encourage learning and data science in

schools and developing countries. It is built and developed by the british Raspberry Pi foundation

in cooperation with Broadcom. At the time of writing, the latest development, and the version

used in this project is the Raspberry Pi 4 Model B. This is currently available for everyone to buy,

and it exists with choices of 2GB, 4GB and 8GB RAM to name a few. The Raspberry Pi is using

a CPU with ARM architecture, and uses an open-source version of Debian Linux as an operating

system. For more information about the specifications of the Raspberry Pi see [15].

There are a lot of reasons why Raspberry Pi was chosen over other single board computers. Mainly

it was due to accessibility and modularity. A Raspberry Pi is made as an educational tool with a lot

of ports and signaling capabilities. In addition, there is a lot of community support online, which

makes solving problems easier compared to computers with no online support. All of these reasons

makes it ideal for prototyping. Raspberry Pis are normally not implemented nor used in industrial

applications. One alternative to the PI for this project, could be an industrial counterpart.

2.4 OpenPLC

For this project, OpenPLC was chosen as an operating software for the mini-factory. According to

the description on GitHub, it is an open-source Programmable Logic Controller (PLC) based on

easy to use software. This is provided as a low-cost industrial solution for automation and research

[16].

Another benefit of OpenPLC is that the entire source code is provided. This also makes it ideal

for industrial cyber security research. However, this isn’t relevant for this project. One of the most

important aspects of this project is to be able to provide a framework to learn different types of

PLC languages. OpenPLC follows the international IEC 61131-3 standard, which is the official

standard for PLC programming languages [12]. In addition, OpenPLC is both easy to use and

completely free. This makes the software optimal to use for this project.

2.5 OPCUA

OPC United Architecture (UA) was launched in 2008 and is an independent platform that integ-

rates all of the features from OPC Classic into one extensive framework. This model is mainly used

as a common language for communication between interfaces provided by different manufacturers.

This includes robots, operating systems or different hardware platforms. The extension works as

a server-client feature and enables communication between multiple Field-busses.

9

2.6 MultiSim

MultiSim is an online and free simulation program provided by National Instruments. With this

program it’s possible to build and simulate circuits.

2.7 Visual Components

Visual Components is a developer and provider of manufacturing simulation software and solutions

[17]. It was started in 1999 to provide a solution to make simulation technology and manufacturing

design more accessible for companies of all sizes. Some of the functions that Visual Components

provides are machine builders and system integrators.

10

3 The setup of the Raspberry Pi

3.1 Setup of real-time kernel on Raspberry Pi

A lot of mechatronic systems have strict requirements of the amount of delay allowed by the system.

To be able to work with such a system, a real time kernel is needed. Therefore, it was desired to

run the mini-factory with a real time operating system as well. This real time kernel have been

set up to work on Debian Linux for Raspberry Pis for this project. To do this, a guide inspired

from [4] were followed.

The first step to patch the Raspberry Pi kernel, is done by cross-compiling with a host computer.

To do this, the appropriate tools needs to be installed on the computer:

$ sudo apt-get install build-essential libgmp-dev libmpfr-dev

libmpc-dev libisl-dev libncurses5-dev bc git-core bison flex↪→

$ sudo apt install libelf-dev

$ sudo apt-get install libncurses-dev libssl-dev

After installing the necessary tools, the next step is to compile the native build for cross-compiling.

By typing the following line, Binutils is installed:

$ cd Downloads

$ wget https://ftp.gnu.org/gnu/binutils/binutils-2.35.tar.bz2

$ tar xf binutils-2.35.tar.bz2

$ cd binutils-2.35/

$./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--disable-nls↪→

After configuration, use the following commands to compile the program:

$ make -j4

$ sudo make install

The path needs to be exported after compilation. To do this, type the following commands:

$ export PATH=$PATH:/opt/aarch64/bin/

After exporting the path, build and install GCC with the following commands:

$ cd ..

$ wget https://ftp.gnu.org/gnu/gcc/gcc-8.4.0/gcc-8.4.0.tar.xz

11

$ tar xf gcc-8.4.0.tar.xz

$ cd gcc-8.4.0/

$./contrib/download_prerequisites

$./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--with-newlib --without-headers --disable-nls --disable-shared

--disable-threads --disable-libssp --disable-decimal-float

--disable-libquadmath --disable-libvtv --disable-libgomp

--disable-libatomic --enable-languages=c --disable-multilib

↪→

↪→

↪→

↪→

The next step is to compile GCC.

$ make -j4

$ sudo make install gcc

Due to the patching and installation of kernel is going to be done by cross-compilation, there is a

need to be sure that the compiler is installed on the host-computer. To download this, type the

following commands into the terminal:

$ sudo apt-get update

$ sudo apt-get install gcc-aarch64-linux-gnu

The tools required to build and install the patch onto the kernel, should now be downloaded and

ready. The kernel version used in this project is v5.15 with the corresponding patch RT49.

Continuing the process on the host-computer, make a new directory. The kernel and the corres-

ponding real-time patch needs to be downloaded next. It is possible to patch a non-corresponding

version of the kernel, but it’s no guarantee that it will work properly. To do this, type the following

lines in the terminal:

$ mkdir ˜/rpi-kernel

$ cd ˜/rpi-kernel

$ git clone https://github.com/raspberrypi/linux.git -b rpi-5.15.y

The patch used in this project is downloaded by typing the following lines in the terminal:

$ wget https://mirrors.edge.kernel.org/pub/linux/kernel

/projects/rt/5.15/older/patch-5.15.65-rt49.patch.gz↪→

If it’s desired to download another patch, the newest patches are found from https://mirrors.edge.

kernel.org/pub/linux/kernel/projects/rt/5.15/. To download this, just change the fields by replacing

”XX” and ”YY” with the newest version numbers patch-5.15.XX-rtYY.patch.gz.

12

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.15/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.15/

$ wget https://mirrors.edge.kernel.org/pub/linux/kernel

/projects/rt/5.15/patch-5.15.XX-rtYY.patch.gz↪→

Applying the patch to the kernel is done by typing:

$ mkdir kernel-out

$ cd linux

$ gzip -cd ../patch-5.15.65-rt49.patch.gz | patch -p1 --verbose

Before building the patch, the configuration has to be set up to allow real-time capabilities for the

kernel of the Raspberry Pi. To apply the default settings, type:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu-

bcm2711_defconfig

↪→

↪→

In addition to these settings there is a need to change the setting of CONFIG KVM to unlock

real-time capabilities. An explanation of why this is the case is discussed in Section 7.5. This is

done by the following commands:

$ cd ..

$ cd kernel-out

$ echo -e "CONFIG_EXPERT=y\nCONFIG_KVM=n" >> .config

$ cd ..

$ cd linux

After these lines are written in the terminal, it should now be possible to choose the real-time

kernel in the menuconfig. To open the menuconfig, type the following command:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu- menuconfig↪→

Enable ”FULLY-PREEMPTIBLE KERNEL (REAL-TIME)” in this menu. This is done by doing

the following steps:

1. General setup

2. Preemption model

3. Fully preemptible (Real time)

13

(a) (b)

(c)

Figure 7: Images of the menuconfig (a) shows General setup, and (b) shows the Preemption-model
and (c) fully pre-emptible kernel

Figure 7 shows what the menuconfig looks like on a PC.

After this step, the new rt-kernel needs to be built and compiled, this is done with the following

line:

$ make -j4 O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=aarch64-linux-gnu-↪→

When the compilation is finished, the next step is to zip the kernel. This is done by the following

lines in the terminal:

$ export INSTALL_MOD_PATH=˜/rpi-kernel/rt-kernel

$ export INSTALL_DTBS_PATH=˜/rpi-kernel/rt-kernel

$ make O=../kernel-out/ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

modules_install dtbs_install↪→

$ mkdir ../rt-kernel/boot

$ cp ../kernel-out/arch/arm64/boot/Image ../rt-kernel/boot/kernel8.img

$ cd $INSTALL_MOD_PATH

$ tar czf ../rt-kernel.tgz *

$ cd ..

The kernel should now be zipped inside ”rt-kernel.tgz”, which now needs to be sent to the Raspberry

Pi. This can be done either by using a USB-Stick or through SCP. Write the following line in the

terminal to send the file via SCP:

14

$ scp rt-kernel.tgz pi@<ipaddress>:/tmp

The last steps is done on the Raspberry Pi itself. To install the newly built kernel, the following

commands needs to be executed:

$ cd /tmp

$ tar xzf rt-kernel.tgz

$ cd boot

$ sudo cp -rd * /boot/

$ cd ../lib

$ sudo cp -dr * /lib/

$ cd ../overlays

$ sudo cp -dr * /boot/overlays

$ cd ../broadcom

$ sudo cp -dr bcm* /boot/

After the commands above are executed, the file ”/boot/config.txt” needs to be edited by append-

ing the line ”kernel=kernel8.img” at the end.

In order to apply the changes, and check if it installs successfully, the Raspberry Pi needs to be

rebooted. After rebooting is complete, the following command can be executed:

$ uname -a

If the installation is successful, the output should be along the lines of ”Linux raspberrypi 5.15.65-

rt49-v8+ 1 SMP PREEMPT RT Fri Dec 1 01:17:07 CET 2022 aarch 64GNU/Linux”.

3.2 Installing OpenPLC runtime on the Raspberry Pi

The first step to install the OpenPLC runtime on the Raspberry Pi, is to connect it to internet.

On a normal private network this can be done in the normal way, but on Eduroam it is a bit more

inconvenient process. It is possible to circumvent this by sharing WiFi with a cellphone, but it

is recommended to connect directly to Eduroam. A guide on how to connect to Eduroam for the

Raspberry Pi is provided in [18], and can be seen in Appendix B.

The Runtime for OpenPLC can be installed on different kinds of devices, and on OpenPLC web-

page there are guides on how to install each of them. Following the Linux version of the guide, the

Raspberry Pi specific options is the recommended way of installing it. This guide can be found

from [19]. In this thesis, it was installed exactly like this.

The easiest way to install the OpenPLC Runtime on a Raspberry Pi is to use git. This is usually

done by getting it directly from the official site. To ensure git is installed, write this in the terminal:

15

$ sudo apt-get install git

To install the runtime, write the following lines in the terminal after git is installed:

$ git clone https://github.com/thiagoralves/OpenPLC_v3.git

$ cd OpenPLC_v3

$./install.sh rpi

When it is done, the RPi needs to be rebooted, which can be done by typing this in the terminal:

$ reboot

The runtime is now installed, but it will not work quite yet. The RPi version is depending on the

WiringPi library. It can be downloaded from Github, where the latest version can be found on:

https://github.com/WiringPi/WiringPi/releases/

The -armhf.deb file should be used on 32-bit OS (Raspberry Pi 3 and under) and the -arm64.deb is

meant for 64-bit OS (Raspberry Pi 4 and up). Download the appropriate file for your architecture

on your Raspberry Pi. In this thesis, a Raspberry Pi 4B is used with a 64-bit OS, and therefore

the -arm64.deb is the one downloaded. Then install it with one of the two dpkg command:

$ dpkg -i wiringpi-[version]-armhf.deb

or

$ dpkg -i wiringpi-[version]-arm64.deb

The newest version during the installation, and what used in this thesis are 2.61-1, and the file

ended up in the Download folder. It can also be necessary to use the sudo command. The exact

commands used in the thesis are:

$ cd Downloads

$ sudo dpkg -i wiringpi-2.61-1-arm64.deb

Test that the WiringPi installation finished successfully with the command:

$ gpio -v

16

4 Technical spesifications

4.1 The interface circuitry

The main purpose of this project is to use a microcontroller to emulate a Programmable Logic

Controller (PLC). PLCs are usually used in the industry to run production lines or other indus-

trial sequential processes. PLCs are commonly used due to high reliability, ease of programming

and process fault diagnostics. In educational purposes, it might be seen as unnecessary to get a

PLC, mostly due to cost. Microcontrollers are also usually1 easier to attain, and doesn’t require

manufacturer specific software. A microcontroller is a lot more flexible than a PLC, and have the

ability to be used for much more diverse tasks.

As described in Section 2.3, a Raspberry Pi was chosen for this project. To be able to emulate a

PLC, a fitting software needs to be used. The software used for this project was OpenPLC, which

is an open-source PLC software. This software is made as an affordable and accessible method to

learn PLC programming using the global IEC-61131-3 standard. The program is written in the

programming language ”C”, which makes it highly portable over multiple devices. The examples

of compatible operating systems that are given on their official site are Linux, Arduino, Windows

and Raspbian [16].

In Figure 8, the general architecture map for a PLC is shown. The Raspberry Pi is going to be

responsible for the modules shown with a green square. The modules marked by a red square is

going to be emulated by an interfacing circuit. These will be developed as a part of the project.

The devices connected to the PLC are marked with a blue square. The power for the system

will be partially provided from the Raspberry Pi. In addition, an external power supply will be

connected.

Figure 8: The planned way to emulate the general architecture of PLCs. Based on Figure 4 from
[5].

The main purpose of the interface circuitry, is to ensure that both the microcontroller and mini-

factory gets the required voltage to run the modules. The voltage provided from the IO ports

1This project thesis was written under a semi-conductor crisis, microcontrollers like Raspberry Pi are not easy
to get at the time of writing

17

on microcontrollers made for private use, are usually specified to be between 2.7 to 5 volts. The

actuators, sensors and motors on the mini-factory requires 24 volts to run. Therefore it is desired

to make a circuit that will safely translate low voltage signals to higher voltage signals. Meanwhile,

it is important to translate back from 24 volts to 3.3 volts, to safely read the input signals given

from the sensors of the factory. If the input voltage to the Raspberry Pi is to high, the power

might ruin IO pins, or in the worst case, ruin the whole controller. A brief sketch of how this might

be done, is given in figure Figure 9.

Figure 9: Rapid sketch of how to turn on a 24V signal from 5 volts and lower voltages

4.2 Specifications of the mini-factory

In the datasheet, Table 1 was provided as an overview of the pins and functions of the factory.

18

Table 1: Overview of the pins given by the data sheet of the factory

Terminal/Pin Function Input/Output
1 Power supply actuators (+) 24V DC
2 Power supply sensors (+) 24V DC
3 Power supply (-) 0V (GND)
4 Power supply (-) 0V (GND)
5 Push-button slider 1 front I1
6 Push-button slider 1 rear I2
7 Push-button slider 2 front I3
8 Push-button slider 1 rear I4
9 Phototransistor slider1 I5
10 Phototransistor milling machine I6
11 Phototransistor loading station I7
12 Phototransistor drilling machine I8
13 Phototransistor conveyor belt swap I9
14
15 Motor slider 1 backward Q1
16 Motor slider 1 forward Q2
17 Motor slider 2 backward Q3
18 Motor slider 2 forward Q4
19 Motor conveyor belt feed Q5
20 Motor conveyor belt milling machine Q6
21 Motor milling machine Q7
22 Motor conveyor belt drilling machine Q8
23 Motor drilling machine Q9
24 Motor conveyor belt swap Q10

To check that everything on the mini-factory worked correctly, a powersupply with adjustable

voltage and electric current was connected into the power slots on a breadboard. The voltage was

adjusted to 24V and the current was set to 0.1 Amps. Two wires were then connected to pin 1

and 3. These were added to power up the actuators of the mini factory. When the actuators had

power, the motors could be tested. A new wire connected the powered slots on the breadboard,

to the input terminal 15. After observing that the motor was running, terminal 16-24 were tested

accordingly.

A similar method were used to test the remaining pins. The wires providing power were connected

to pin 2 and 4, to power up the sensors of the mini-factory. When the factory had power, a

multimeter were connected to pin 5 and ground. The button connected to pin 5 was pressed, and

a change in voltage could be observed. This indicated that the button was functional. The same

method were used for the remaining buttons, found on terminals 5-8. The phototransistors were

tested with the same setup as the buttons, although these sensors were activated by blocking the

light signal between the LED light source and phototransistor. A similar change in voltage was

observed, but opposite. Unlike the buttons, the phototransistors are normally open, and closes

when an object is blocking the signal between them.

When the signal circuit in Section 5.3 were tested, it was discovered that the motors where pulling

a current from their respective signal pins. The current they pulled was low, under 0.1 Ampere.

This is still a significant current when the assumption was that they only required pure voltage

signals. An investigation of how much current they should theoretically pull at maximum power

started. On Fischertechniks website of the mini-factory [2], it says that all the motors are XS DC

motors. This doesn’t give a lot of information that could be used, so further investigation were

19

conducted. In the last question in their technical FAQ [20], it was found that the motors pull a

maximum of 0.265A at 9V. This give a maximum current draw at 24V of 0.0994A.

Figure 10: The Digital outputs for direct current table from section 6.4.6.1 in [13].

4.3 PLC standards

One of the surprises found when testing, was that the mini-factory drew more current from the

signal pins than first assumed. This assumption was mainly based on the existence of pin 1 in the

spec sheet provided in Table 1, which was thought to provide enough current to run the whole

factory.

To figure out if this could be a problem or not, an investigation of the output signal current of

PLC’s were started. On Siemens’s site [21] there was found that the output modules for SIMATIC

S7-1500 are capable of a minimum of 0.3A as their maximum current. There were other modules

that could give more, but it was the module that gave the lowest maximum that was interesting.

Since the modules can provide enough current to drive the motors, it seems to not be a problem.

Therefore, it was reasonable to adjust the resistors of the PCB circuit to provide a similar amount

of current through the output signals as well.

Since one of the goals of this project was to make a Raspberry Pi emulate a PLC, it were seen as

relevant to investigate the international standards of the workings of a PLC. This was done to see

exactly what functions needed to be replicated. In IEC-61131 part 2 [13], the hardware standards

is set. In this standard, the minimum required current for an output signal from a PLC was found.

The PLC standards for the power-signals are found in Figure 10. As can be seen from this table,

the smallest output type is 0.1A. Meaning that a PLC’s discrete output should always be able to

give that amount of current. In that case the mini-factory follows the PLC standard of the power

20

consumption, which explains why the motors needed additional current from the signal pins to

run.

4.4 Testing with other microcontrollers

The circuits created to run the mini-factory with the Raspberry Pi in Section 5, were also tested

with Arduinos. During the development of the Ladder Diagram code of the first corner presented

in Section 6.3.1, it was tested with an Arduino UNO in addition to the Raspberry Pi. This was

done to test that it would work with other controllers. It worked fine, but the UNO does not have

enough pins to run the whole factory. When the whole Ladder Diagram code was developed, it

was tested with an Arduino Mega. Since the Mega has a lot more pins, it had enough to run the

whole factory and is a good alternative to the Raspberry Pi.

21

5 Circuitry

To run the factory at all, the circuit must make the factory work at an input signal with a voltage

of 3.3 volt. This is the voltage of the signal the Raspberry Pi chosen for this project can provide.

However, it is desired to be able to run the factory on microcontrollers from different manufacturers.

In addition, it would be beneficial to also have the ability to run the factory from a PC, which

provides 10 volts. To be able to run on different types of controllers, the span of the output signal

must be between 2.7V - 10V. To future proof the concept, it’s also desired to make the signals

run on even lower voltages. The reasons for this, is in case of a fall in voltage, or similar. Other

microcontrollers in the future could also have a lower voltage on output signals than normal today.

Allowing higher voltages could also be beneficial for the project. Therefore, it was decided that

the interface circuit should be able to work for all voltages between 1V - 12V.

Table 2: Different aspects of the design graded based on importance. The numbers range from
5-1 where 5 is considered most important.

Description Must have Should have Grade
Flexible voltage 3.3V 1.5V - 12V 5
User friendly Marked pins2 Plug and play 4
Simulation opportunity No Yes 2
Control from micro controllers Raspberry Pi All 3

??Kanskje legge inn et avsnitt ang̊aende kommentar over

5.1 Push-pull circuit version 1

One obstacle in this project was to get the correct voltage on the power supplied for the electric

motors. The motors on the mini-factory is rated for 24V. It is desirable to run the voltage to the

motor as close to the specification as possible. Running a voltage to low can lead to burn out, and

permanently damage the motor.

The Raspberry Pi used for this project is only capable of delivering a maximum of 5v direct current.

This is not high enough for the desired application. Therefore there is a need to design a circuit

that can run the 24V DC motor from an output signal provided by the Raspberry Pi. The circuit

that was designed for the application is provided in Figure 11.

Figure 11: The circuit required to run the motors on 24v from a signal from 2.7 - 5.5V

2Meaning there will be documentation of what the pins does.

22

This circuit is using Bipolar Junction Transistors (BJT) as switches. The circuit works by sending

a voltage into the BJT, making it activate and pass electrons. BJTs are however vulnerable to

high currents, which means there’s a need for resistors to limit the current. The circuit provided

in Figure 11 have two transistors, one PNP and one NPN. More accurately it’s the BC337 PNP

and BC557 NPN transistor. The maximum current rated for the BC557 is 100mAmps. When

running a signal on a voltage of 5.5V, the signal had a current of 96 mAmps. This means 5.5V is

the maximum voltage which is still under the allowed current of the BJT.

One of the biggest hazards in a circuit like this, is the voltage of the input signal. If the voltage

of the input signal is to low, the BJT will open partially, or not open at all. This will happen

when the output voltage at the end of the circuit is lower than the required 24V. After testing the

circuit, both on MultiSim and breadboards, it would seem like 2.5 volt is the lowest signal that

gives the desired output voltage in this circuit. Atleast with the resistors and transistors that were

chosen.

5.2 Push-Pull version 1 evaluation

This circuit ran the factory on a Raspberry Pi well, but there were some minor inconveniences

that made the circuit sub-optimal for the application. At the time, it seemed like the mini-factory

ran purely on signals. Based on the assumption that the factory could be run purely on signals

from the Rasperry PI, the circuit ran a current that was outside the transistors specifications. The

BJTs used in this circuit was rated for a maximum of 100mA. According to MultiSim, the current

running through the circuitry was 90mA at 5.5V. To fix these problems, a different solution or a

big update of the circuit was necessary.

5.3 IO signal circuit

The next step in the process, was making a circuit to run the mini-factory purely on signals.

According to the spec sheet in Table 1, there is a separate power supply channel at pin 1 for the

actuators. Therefore, it seemed like motor controllers was already a part of the circuitry of the

factory. Based on this, it was made an assumption that there was no need to run current through

the circuit to provide power to the electric motors.

A circuit was designed in MultiSim to take care of the signalling to the factory. This circuit used

the 2N3904 transistor. This is a NPN silicon BJT that opens for voltages between 0V - 1V. A

picture of this circuit is provided in Figure 12.

23

Figure 12: Circuit made to have IO activation for all voltages between 0V-1V

The resistors of the circuit were selected to decrease the current in the circuit as much as possible.

After trying the circuit inMultiSim, it was found that a relation of 5:1 was reasonable for the desired

output current. This relation decides the voltage needed to open or close the BJT. Resistances of

240k Ω and 43k Ω (Ohm) were chosen for convenience and accessibility.

5.4 IO signal circuit evaluation

Theoretically, this circuit was a good option for the project, due to the assumption that the factory

could be run purely from signals. The circuit ran a voltage of 24V steadily and with a running

current of around 1µA with the transistors fully opened.

This proved however, to be insufficient current to run the motors on the slider properly. After

testing the factory further, as explained in Section 4.2. It became evident that the factory can’t

run on output signals alone. The signal couldn’t provide the current required to start the motors,

even with smaller resistors. Therefore, another solution was required to run the factory.

5.5 Push-pull version 2

The third iteration of the circuitry was a heavily upgraded version of the first push-pull circuit

in Section 5.1. After finding that the motors on the factory can’t be run with a signal alone, it

became evident that there was a need to run current with the output signals. Since the first circuit

ran the motors properly, it was natural to use this as a baseline for the new circuit.

The transistors chosen in Section 5.1 were adequate for the application, so these were unchanged.

The resistors were however heavily modified. More effort were done to calculate some fitting

resistors for the project. It were found in Section 4.2 that the motors were drawing some current

from the circuit, but not much. Therefore a threshold of 5-10mA were deemed acceptable for the

project. In addition, a 5k Ω resistor were added in MultiSim, to imitate the internal resistance of

the factory.

24

Figure 13: The second iteration of the push-pull circuit.

5.6 Push-Pull version 2 evaluation

The push-pull version 2 circuit worked properly for the application. The downside however, is that

the circuit is hard to read from the circuit diagram, and is really complex for the application. This

type of circuit is also typically used for amplifiers in audio, and not for transistors as switches,

which is intended for the mini-factory. The regulation of current and activation voltage depends

on the relationship between the resistors in the circuit. This makes current and activation voltage

inconvenient to adjust.

5.7 MOSFET circuit

Due to safety and less complexity, it was decided that using an optocoupler with a MOSFET

might be a better solution. MOSFET is preferred for this type of application, mostly due to being

opened by voltage and not current. There is less current loss over a MOSFET than a BJT, which

ultimately makes the MOSFET more suited for switches.

An optocoupler was applied to the circuit to isolate the Raspberry Pi from the 24V part of the

circuit. This would act as a surge protector for the Raspberry Pi, in addition to protecting the

controller from a short-circuit. To show how this was implemented, a circuit diagram is given in

Figure 14. The spesific MOSFET chosen for this circuit is the TN0604N3-G MOSFET transistor,

and the optocoupler chosen is the 140817144300 Optocoupler Phototransistor.

25

Figure 14: Circuit using a MOSFET with an octocoupler

5.8 MOSFET circuit evaluation

Table 3 is a table where the drawn current between the BJT- and MOSFET-circuits has been

compared. This was tested using a variable powersupply, with a current and voltage display. The

drawn current was observed when supplying voltage to the different actuators. In addition, another

variable power supply was set up to provide current to the actuators of the factory. This was via

pin 1 as stated in Table 1. As can be seen by Table 3, the loss in current is lower in the MOSFET

than the BJT, as expected. Another advantage of the MOSFET circuit compared to the BJT, is

less complexity. With the fewer resistors of the MOSFET circuit, it is also simpler to adjust the

current than its BJT counterpart.

Table 3: Comparison between the MOSFET circuit and the Push-Pull configuration

MOSFET-circuit BJT-circuit
Conveyor 30-34 mA 37-40 mA
Mill 37-42 mA 49-55 mA
Drill 49-55 mA 57-60 mA
Slider 39-42 mA 47-50 mA

5.9 Sensor circuits

The sensors of the factory is powered the same way as the actuators. A power supply pin is added

to supply 24V power to the sensors of the factory. In addition, there is a separate pin for each of

the sensors. These can be used to read the input values from the sensors, and later interpreted

by the Raspberry Pi. Buttons are also powered by this pin. In total, there are 4 buttons and 5

phototransistors.

Since the sensors are powered by 24V, the input signals from these will have the same voltage. A

simple voltage divider was made for each sensor to ensure that the voltage going into the Raspberry

Pi was no higher than 3.3 volts. The resistors used, have a resistance of 39k and 240k Ω respectively.

Figure 15 shows nine voltage dividers connected to a breadboard.

26

Figure 15: One of the breadboard parts neatly connected up before connected to the factory and
the Raspberry Pi

5.10 Sensor circuit with optocoupler

For the same reasons as in Section 5.7, optocouplers were used in this circuit as well. The voltage

divider is used the same way as in Section 5.9. It lowers the voltage to both the anode pin on the

optocoupler, as well as the cathode connected to the 24V sides. These ground the LED within,

and can be opened and closed the same way as the voltage divider. In the same fashion as the

input pins on the Raspberry Pi.

The Rasberry Pis 3.3V source can further be connected to the collector of the optocoupler, and

the sensor pin to the emitter. In this way the Raspberry Pi will only read its own safe signals

controlled by the optocoupler.

5.11 Sensor circuits evaluation

The simple sensor circuit with a voltage divider is a simple, yet effective solution that worked

well during the testing. However, there is a possibility that the Raspberry Pi could be connected

incorrectly, and get power with a high voltage into the input pin. This will inevitably ruin the pin,

therefore a protection for the pin is necessary. This is solved by adding a optocoupler, as described

in Section 5.10.

An additional benefit of using an optocoupler is that the sensor circuit is more flexible, and can

be connected to any microcontroller no matter the voltage being used. This is due to the inputs

that reads the signals on the microcontroller is independent of the voltage used.

Buckconverters were also explored as an alternative to optocouplers, but the ones that were avail-

able were all adjustable, which were not desired for the project. They are also expensive and

unnecessarily complex compared to optocouplers.

5.12 Breadboard circuit

Most of the prototyping was done using breadboards. These are easily accessible and easy to

modify. They were also used for testing that the circuits made in MultiSim. When the breadboard

27

setup was able to run the factory properly, it was decided not to change the main layout seen in

Figure 16. It was rather used to test out PLC code. However, later circuits were tested using a

second breadboard.

Figure 16: The final Breadboard layout connected to the factory, with the cables connecting it to
the RPi disconnected.

One of the drawbacks of using breadboards however, is the reliability. Wires were falling out,

and the connections were bad. Other problems were that the exposed parts of the resistors and

transistors occasionally touched, and caused a short circuit. Due to having 24 pins on the factory, a

lot of wires were needed to connect the corresponding pins of the microcontroller and mini- factory.

As can be seen in Figure 16, all of the wires meant it was easy to lose track of what the wires were

connected to. Even though the wires were labelled properly, connecting wires to the wrong pin

happened frequently.

Especially if the mini-factory is going to be used in a setting as an exercise, it is extremely in-

convenient to use breadboards as the main circuit. It’s not easy to connect properly. In addition,

unstable connection can lead to a lot of troubleshooting that students doing the exercise would

waste a lot of time doing.

5.13 PCB circuit

One of the main goals of this project assignment was to make a PCB to interlink the Rasberry PI

and the mini-factory. There are several benefits a PCB will provide over a conventional circuit or

a breadboard. Some of them are:

• Reliability

• Easy to make more duplicates without complex or expensive equipment

• Easy to connect/disconnect to RPI and/or mini-factory

The objective of developing a PCB, is for the PCB to be used by students in the course Industrial

Mechatronics over several years without problems. This desire makes it really important that the

28

PCB works as a reliable connection between the Raspberry Pi and the mini-factory. The goal of the

task associated with the mini-factory, is for the students to learn PLC programming. Therefore,

wasting the students time with an unreliable interlinking layer is not desired. With a breadboard,

common problems are wires falling out of slots, bad connections and wire breaks. These are all

problems that are non-existent with the use of a PCB.

Another desired feature of the PCB, is the ease of connecting the Raspberry Pi and mini-factory.

When working with breadboards, a lot of problems occurred when assembling and disassembling

the connecting layer. This was usually done to use the Raspberry Pi or mini-factory separately.

Inconveniences of using breadboards has already been described in Section 5.12.

Therefore, a 40-pin- and a 26-pin-connector was added to the PCB. This way the Raspberry Pi and

mini-factory could be connected using flat cables. These can only be slid on, and makes connecting

the assembly a lot easier. Advantages of this setup, is making the mini-factory easier to use, as

well as increasing the overall reliability of the assembly.

The mini-factory didn’t require all of the available gpio pins on the circuit board. Therefore it

was included a way to use the remaining, available pins from the Raspberry Pi. The last gpio pins

were re-routed into a separate connection where they later could be used, if desired.

It was decided that the PCB should be quite large. There were multiple reasons for this, but the

main reason was that the PCB should be able to be constructed with relatively simple tools in a

simple lab, to ease the manufacturing of these in the future. The parts needed to make the PCB

work was ordered separately, including transistors, resistors etc. Therefore it was seen as beneficial

to make the PCB somewhat large, to make it easier to solder the parts onto it.

To future proof the PCB design, the decision to add two extra input variables controlled from

separate code on the Raspberry Pi was made. This solution makes controlling the machining

stations from external devices easier. This adds the possibility to make code which will choose if

a part should be machined or not.

In the thesis, a simple Python program was written to control the mill and drill. This is possible

by using the RPi.GPIO library. An example of how to implement such a code is given below:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

pin = 3 #The pin number one wish to use

GPIO.setup(pin, GPIO.OUT)

The Pin value can then be set to ”HIGH” with the code line:

GPIO.output(pin, GPIO.HIGH)

And back Low again with:

GPIO.output(pin, GPIO.LOW)

The python script that were used to control the machining stations is added in Appendix C.

29

5.14 PCB version 1

The design of the PCB is optimized for use as an interlinking layer between a Raspberry Pi 4,

and the specific mini-factory used in this thesis. However, it is still possible to use other micro

controllers as a master, and connect it to other PLC controlled systems using 24V. In that case, it

will not be as easy as just plugging in the 40 pin and 26 pin connectors. The connectors on other

controllers and other PLC controlled systems might not have the same layout or number of pins as

the RPI and mini-factory. In that case adapter cables, or single wires would be needed to connect

the correct pins.

Even if this version of the PCB is called version 1, there were another PCB in the design process

before this one. It was designed with the same circuitry as the breadboards. PCB version 1 was

developed through a design process. This version is the first complete design that was made.

The most crucial change, was adding the footprint used for the pins connecting the PCB to other

devices, such as the Raspberry Pi.

For the output signals on this PCB, the MOSFET circuit from Section 5.7 was chosen. The reasons

for this choice are based on the discussions in Section 5.7 and Section 5.8. In the schematics given

in Figure 17, there is one MOSFET circuit per output. This makes for 10 circuits in total. The

MOSFET circuit can be seen in the middle left column of the schematic.

The input signals sensor circuit with optocouplers described in section Section 5.10, were chosen

based on the reasons described in section Section 5.11. In the schematics given in Figure 17, there

is one sensor circuit for per input, 9 in total. They can be seen in the middle right column of the

schematic.

The connector to the left is the one that will be connected to the Raspberry Pi, and the one to

the right in the picture will be connected to the factory. The extra control pins are connected to

a dip switch package, in contrary to connecting them from the RPi directly back into I Mill and

I Drill. The control pins are indicated by Milling?!! and Drilling?!! in the figure.

This reroute is made, to be able to control the machining stations independently with switches

instead of a code written on the Raspberry Pi. This is meant for testing, and not for general use.

This is because a surface mount switch packet is not a good fit for letting students switch it back

and fourth, as the soldering could be weakened and the packet can lose contact or even fall off. In

the schematic, the switch is in the left column, between the RPi connector and the connector for

the leftover pins. Lastly, in the bottom right corner the barrel jack is located. This is the primary

power source providing 24V power for both the PCB and the mini-factory.

Instead of drawing lines between the pins that are electrically connected on the schematic, labels

are used. This is to make the schematic more readable, as over forty lines crossing each other is

not easy to follow. Places that are electrically connected have the same labels on the schematic,

and on the physical PCB there are traces connecting them.

30

Figure 17: The schematic of the PCB version 1 design.

The physical PCB design is mainly designed to be functional, and easy to understand by obser-

vation. The only major design choice made here, is separating the 24V and low voltage sides.

31

Optocouplers are used as the separating layer in this case. This is both to make the PCB design

easier to understand, as well as making sure that the RPi or other microcontroller connected won’t

get 24 volts directly on the input pins.

The traces for sources and grounds that are routed to several locations are also thicker than the

rest. This is done to ensure that the resistance is low enough to not heat up the traces and

potentially break under high current. The produced PCBs of this design can be seen in Figure 18.

The PCBs were ordered from PCBWay [22].

(a) (b)

Figure 18: Images of the PCBv1 designed. (a) shows the front, and (b) shows the back of the PCB

5.15 PCB version 1 soldering

Soldering the components on to the PCB is a relatively straight forward process. The only hazard

is ensuring that the correct resistors is soldered to the correct place, and optocouplers in the right

orientation. There were some faults in the design, such as the footprint for the switches being

to small. This can however be bypassed by soldering contact between the pads turning on and

off the software control of the machining stations. Doing this makes the machining stations only

controllable with software.

An additional wire has to be soldered on as a jumper cable between two pins on the 40 pin

connector, however this is intentional, since this reroutes the defective pin on the RPi used for the

project. This is also mentioned in Section 6.3. With a fully functional RPi, the jumper cable is

not necessary to add. This can be seen in Figure 19.

The soldered PCB at this stage produces unsatisfactory results. This is because it isn’t functional.

The sensor readings is unstable and the outputs do nothing. An investigation of the PCB were

conducted, and it was found that there were missing traces. The 24V input traces to the drain-pin

of the transistors are missing. The signal trace for the gate of the second transistor is also missing.

This was solved by soldering extra wires on the back of the PCB, and was done to make sure this

version of the PCB would work for the project.

In this stage, they still did not work as intended. This came from the resistor values being to large.

In the simulations, the signal on the gate is pulled down to zero through a 200k resistor when the

optocoupler is closed. In real life the voltage was at 8-10V and the transistors were partially open.

The problem got fixed by simply lowering the resistor value, and a 4.7k is used on the PCB in

32

Figure 19.

The same problem occurred for the sensor circuit. The values of the voltage divider gave the

desired voltage for the RPi to read the signal. But it was too high, restricting the current, such

that the phototransistor in the optocoupler didn’t fully turn on. This makes the signals from the

optocoupler unstable. This was fixed by lowering the values, but retaining the same ratio of the

resistors. In Figure 19 the values of 100k and 18k resistors are used.

(a) (b)

Figure 19: Images of the PCBv1 with the components soldered on. (a) shows the front, and (b)
shows the back of the PCB.

5.16 PCB version 2

The second version of the PCB is updated with corrections of the direct faults that were made in

the first iteration. These were mainly seen after soldering the components on and testing the PCB.

In addition, a quality of life improvement were made as well. The footprint of the dip-switches were

changed to be big enough to solder the switch package on directly. The most significant change

done to the PCB adding traces missing from the first iteration. The schematic were unchanged

from the first design.

5.17 PCB version 3 - Final version

Version 3 of the PCB is the last and final iteration of the PCB designed for this project. The

resistor values were changed compared to iteration 2, and tested in advance to be sure they would

work for the circuit. The footprint of the transistors were also changed to a wider form. This

change was implemented to ease the process of soldering the transistors onto the PCB. The traces

around the transistors also had to be modified when changing the footprint.

The silkscreen on the PCB was also modified, such as the functionality of the leftover pins, as well

as the resistor values. The other components were unique, and therefore it was seen as unnecessary

to add their type to the silkscreen. The ability to see what kinds of resistors goes where, is helpful

during soldering. Some renders of the third PCB design is added in Figure 20b.

33

(a) (b)

(c)

Figure 20: Images of the PCBv3 that was designed by the 3D viewer in KiCad. (a) Shows the front,
(b) shows the back, and (c) shows an isometric view of the PCB with the soldered components

5.18 OpenPLC

The physical layout of the pins with their corresponding functionality is indicated by the coloured

dots in the middle of Table 4. Figure 21 shows where pin 1 is located on the board itself. See

the extended table in Appendix E for an overview of the official functionalities of the pins on the

Raspberry Pi.

Table 4: An overview of the RPi pin layout with the OpenPLC address corresponding to that pin,
as well as the default functionality on the PCB that were designed in this thesis. * indicates that
these pins does not function with OpenPLC across different RPis from our tests.

Pin OpenPLC address PCB functionality PCB functionality OpenPLC address Pin

1 - 3.3V 5V - 2
3 %IX0.0 * Milling?!! 5V - 4
5 %IX0.1 * Drilling?!! GND1 6
7 %IX0.2 Btn S1 front Slider1 forw %QX0.0 8
9 - GND1 Slider1 back %QX0.1 10
11 %IX0.3 Btn S1 rear Pin12 pass through %QW0 12
13 %IX0.4 Btn S2 front GND1 - 14
15 %IX0.5 Btn S2 rear Slider2 forw %QX0.2 16
17 - 3.3V Slider2 back %QX0.3 18
19 %IX0.6 Sensor2 conv1 GND1 - 20
21 %IX0.7 Sensor3 conv2 Conv1 %QX0.4 22
23 %IX1.0 Sensor1 Start Conv2 %QX0.5 24
25 - GND1 Mill %QX0.6 26
27 - Pin27 pass through Pin28 pass through - 28
29 %IX1.1 Sensor4 conv3 GND1 - 30
31 %IX1.2 Sensor5 conv4 Conv3 %QX0.7 32
33 %IX1.3 I Mill GND1 - 34
35 %IX1.4 I Drill Drill %QX1.0 36
37 %IX1.5 Pin37 pass through Conv4 %QX1.1 38
39 - GND1 Pin40 pass through %QX1.2 40

34

Figure 21: The physical location of Pin1 on the Raspberry Pi. When looking on the RPI in this
orientation, Pin1 is located at the bottom left, as the red square indicates.

35

6 Software and Simulation

The main purpose of this project, is to make a solid platform for students to learn about Pro-

gramming Logic Controllers, and the programming language used for these controllers. To do

this, OpenPLC were chosen. Background theory for this software is written in Section 2.4. This

software needs to be downloaded to the PC. There is also additional software that needs to be

downloaded to the Raspberry Pi. Downloading the IDE program on PC is straight forward and is

done by downloading it from the official site [23].

6.1 Connecting to Raspberry Pi

To connect and control an external micro controller, a webserver provided by OpenPLC was used.

The guide from the official OpenPLC site [24] was used to connect the server and the Raspberry

Pi. The first thing that needed to be done, was to connect the Raspberry Pi to Eduroam. A guide

on how to do this is provided in [18]. The guide is also provided in Appendix B. After successfully

connecting the Raspberry Pi to the Eduroam network, the IP-address of the Raspberry Pi needs

to be found. This can be done by typing the following line in the terminal:

$ ifconfig

The IP-address is found under Wlan0.

A downside with using this webserver based system, is that the IP address of the Raspberry Pi is

not static on the Eduroam network. There were multiple occasions where the IP-address changed

while running the program. One fix for this, is to get a static address for the Raspberry Pi. This

would be a stable fix on a private network. Unfortunately this is certainly not an option for a

public network like Eduroam, where admin rights for the network is needed. The easiest solution

by far is to simply check the IP address regularly.

To connect to the OpenPLC webserver, type in the IP-address on port 8080 in a browser. When

successfully connected, the code is sent to the microcontroller via the webserver. From there, the

different code files are sorted in a list and saved. OpenPLC saves the programs permanently, which

makes it easy to run different code files without the need of uploading the code every time.

6.2 Programming and language

The code for this project has been mainly written in two languages. As described in earlier chapters,

OpenPLC is using the IEC 61131-3 standard for PLC programming. Whichever of the 5 officially

approved languages there is a desire to use, the code is compiled down to a ST-file. This is an

abbreviation for Structured Text, and is a high-level programming language derived from Python.

It was decided to program the mini-factory in two different languages, Ladder Logic (LD) and

Sequential Function Chart (SFC). Each of the languages have different structures and capabilities,

but commonly, they are both widely used in the manufacturing industry. By programming in these

different languages, it’s also easier to decide what language to use in a later stage. Another option

for the project could be to make scripts in both Python or C. However, this was later deemed

36

irrelevant for the project due to the relevance of the industrial standard languages.

Since the programs in OpenPLC are compiled into an ST-file, it doesn’t matter which of the 6

standard approved languages is used. The ST-file is uploaded to the webserver based software

on the Raspberry Pi, as described in Section 6.1. From there, the program is compiled into the

programming language C, which is the programming language mainly used on Raspberry Pis and

other microcontrollers. To make the programming easier, the factory was divided into parts, as

can be seen in Figure 22.

Figure 22: The Factory in bird view, divided into four parts

6.3 Ladder Diagram Code

The variables set up to work with the factory on a Raspberry Pi can be seen in Figure 23. These

variables are unique for the PCB and can be used for any type of PLC code written. However, the

autogenerated delay block variables will differ depending on the specific code, the table shown in

Figure 23 is from the code that can be seen in Figure 24.

The variables needs to use these addresses with the Raspberry Pi, because of how the PCB was

designed. The variables is the same as was shown in Table 4. If it’s desired to rebuild the PCB

with different locations, the documentation of the pin addresses for the Raspberry Pi or other

microcontrollers are added on OpenPLCs official site [25]. A table of the different pin addresses

and functions of the Raspberry Pi is also added in Table 4.

To make the factory work with the specific Raspberry Pi used in the project, the location variable

for Q Slid2 F on row 14, needed changing from %QX0.2 to %QX1.2. This change was necessary,

because the corresponding pin on the used Raspberry Pi was defective.

37

Figure 23: The PLC code variables

To make this change possible, the PCB was modified by adding a jumper cable between the broken

pin (in this case pin 16) and the only leftover output pin, pin 40. If a Raspberry Pi has more than

one of the eleven output pins broken, it will not be able to run all the functions on the mini-factory.

As mentioned in the theory part in Section 2.1.1, the Ladder Diagram language is made to be

similar to relay system schematics. That means the name of the different functions is inspired

from these. The end sides on the LD code are called power-rails. The input signals such as

I Sensor1 and I Btn S1 F are called contacts. The output signals such as Q Conv1 are called

coils. The program works by running power from the left rail to the right one. The contacts will

stop or let the power through depending on its input signal. If power runs through a coil, the

output that the coil controls will also be powered up. In addition, there are modifiers that will

change how the contacts and coils work, those will be described when encountered.

6.3.1 LD Code part 1

First, some simple conceptual tests were done to see if the OpenPLC program would work as

intended. An example of this can be seen in Figure 25. When the puck blocks the light at sensor

1, it sets the first conveyor belt, indicated by S in the coil. This conveyor will be activated until

the conveyor is reset, like a latch catching a signal. It is reset again when seen by the second

38

Figure 24: The complete Ladder Diagram

sensor, indicated by the R in the coil. Sensors in a LD code have a slash symbol in them, which

symbolizes that they have a normally high value. This symbol indicates that the signal is negated.

Buttons do not have this symbol, because they have normally low value.

Figure 25: Simple test of Ladder Diagram.

To evaluate the programming for the whole mini-factory, the first corner was programmed first.

Since the factory attributes are quite similar the whole way through, the rest of the program should

39

be simple to write when solving the first corner. The first part including the first corner is called

Part 1 in Figure 22, and can be seen in Figure 26. In Figure 27 the code for the first part can be

seen, and it starts similarly to the simple test Figure 25. There is however, added two delay blocks

that activates when the signal at sensor 2 is blocked, and times the deactivation of the conveyor

belt. This is to ensure that the puck is in front of the slider before further actions are taken.

The rail is also forked off, to start the slider and next conveyor belt at the same time. The delays

are in a pair of TOF (The off-delay timer) and TON (The on-delay timer). The TON is there

to hinder the power signal resetting to early. Using only the TON would not work, because if

the signal becomes low before the timer is over, the next parts would never be set properly. This

happens when the puck is moved away from the sensor before the delay is over. A TOF is used

to catch the signal for the TON.

Figure 26: The Factory in bird view, showing part 1.

Figure 27: The first part of the Ladder Diagram.

The slider starts to move forwards, and it continues to do so until it the first button is pushed,

which is indicated by I Btn S1 F in the code. The forward movement of the slider is subsequently

reset, and sets Q Slid1 B which makes the slider move backwards. This is done until the slider

pushes the second button, indicated by I Btn S1 B. The backwards movement is reset, and the

slider stops. The next conveyor belt is started while the slider is moving forwards. This was done

to prevent the puck crashing into the belt. Which happened sometimes if the conveyor belt wasn’t

already running.

40

6.3.2 LD Code part 2

The code for the second part can be seen in Figure 29. Additionally, the bird view of the factory

can be seen in Figure 28. This part includes the second conveyor belt and milling station. The first

interaction starts when sensor 3 detects the puck. In the contact there is a modifier N, that only

detects a falling edge signal pulse. A falling edge is detected by a high value signal falling down to

a low value. This was necessary because the puck will stay in the same location for a significant

time and continuously reset the belt if the puck is supposed to be milled. After the third sensor

detects the puck, the code splits into two paths. The path chosen depends on the sensor reading

telling the code if it should be milled or not. It will always choose only one of the paths, since

one has normal I Mill and the other path negated I Mill. The paths converges at a later point,

the negated path just skips the milling part. In Figure 30 an alternate layout of the code can be

seen. Although the code does exactly the same, it illustrates better what happens when. That is

because the coils is set and reset after the TOF delays. Since coils only need a pulse of a signal in

that case, the coils can be put in front of the delay as well.

Figure 28: The Factory in bird view, showing part 2

Figure 29: The second part of the Ladder Diagram.

On the path with I Mill, Q Conv2 is first reset and Q Mill is set. Next, there is a delay pair

that ensures a certain time for milling. The code will thereafter set Q Conv2 and reset Q Mill.

It is in this location the paths converges, and the next conveyor belt Q Conv3 is set.

In the alternate layout, the negated path only sets Q Conv3. Since Q Conv2 is never reset and

Q Mill is never set, the path can converge in front of Q Conv2 set and Q Mill reset. Because

they will already be in these states. After Q Conv3 is set, there is a new delay pair that waits

long enough for the puck to settle on the third belt and subsequently resets Q Conv2.

41

Figure 30: The second part of the Ladder Diagram in an alternate layout.

6.3.3 LD Code part 3

Part three is seen in Figure 31, with the corresponding code in Figure 32. This code is almost

identical to the code Section 6.3.2. The section includes some extra modules, and the milling

station is replaced by a drilling station. The only difference with the not highlighted part in the

code is not setting the next conveyor belt, when it has either finished, or bypassed the drilling.

This is because the next actuator is a slider and not a conveyor belt. Meaning that the highlighted

part is similar to the slider part of Figure 27.

Figure 31: The Factory in bird view, showing part 3

Figure 32: The third part of the Ladder Diagram

This section of the code starts by looking for a falling edge on sensor 4. When this is detected, the

code continues in one of the two paths. If the indicator I Drill has a high value, the puck will be

drilled in the drilling station. The TOF delay will be activated while the factory drills, before the

42

conveyor belt Q Conv3 is set and the drill is reset. This is the point where the paths converges,

and the path with the deactivated drilling station does nothing up until this point. Then, the

delay is long enough for the puck to be in front of the second slider, before it resets Q Conv3.

Q Conv4 and Q Slid2 F is simultaneously set. The slider will then move forward until the front

button indicated by I Bt S2 F is pushed.

At this point Q Slid2 F will reset and Q Slid2 B set, Q Conv4 will also be set again. Q Conv4

in the highlighted section could be removed, since it’s already set earlier in the code. The push-

button I Btn S2 B is then pushed by the slider, and stops.

6.3.4 LD Code part 4

The last part of the code, shown in Figure 34 is controlling the fourth part of the factory. This

code controls the last section, which can be seen in Figure 33. The code is short, and its only

functionality is to stop the last conveyor belt Q Conv4 when sensor 4 detects the puck. A delay

was also added, since it was preferred that the puck travels a bit further than the last sensor.

Figure 33: The Factory in bird view, showing part 4.

Figure 34: The fourth part of the Ladder Diagram.

6.3.5 Discussing the Ladder Diagram Code

The ladder diagram code is not the prettiest nor the most readable code written, neither is it

the most optimal. However that was not the point of its development either, the point was to

create a code that works, which it does. In this sense it is perfect. It was created in parts, and

functionalities were added along the development. The alternate version of the second part seen in

Figure 30, were created to easier describe its functionality. To use the code as a proposed solution,

the whole code should be streamlined, but for prototyping it works as intended.

43

6.4 SFC

Another standard language used for PLC, is called SFC. In addition to the LD code, a code in

SFC has been made for the project. Like the Ladder logic code discussed in Section 6.3, the SFC

code was made in OpenPLC as well.

The code starts with an initial statement. Action blocks are then built in several steps. The action

blocks features different qualifiers that represents commands. These are written as letters. Some

examples are timing features, set and reset.

Each step is divided by transition steps. These transitions are often connected to a sensor or other

types of input signals. This makes it easy to regulate how long a step is active. One of the main

differences between Ladder Logic and SFC, is the ability to jump in a sequence randomly. In

Ladder Logic, activating a sensor in the middle of the sequence will start a new sequence starting

where the sensor is located. Compared to SFC, which has to finish the whole sequence before

starting all over again.

This type of language is commonly used in production lines, as well as other autonomous install-

ations like car washes. Full action blocks or programs can be connected to a Step. For example,

on a car wash program, ”wash” and ”dry” can be independent programs connected together with

steps and transitions. These smaller programs are usually called actions [26].

The variables set for this code, has the same addressing as the variables in the Ladder Logic code,

seen in Figure 23. Disclaimer, this is only a prototype code which could be streamlined if it was

going to be used as a solution in an exercise. However, it’s working correctly, and shows the basic

structure of a SFC code.

6.4.1 SFC code part 1 and 2

This section highlights the first part of the code, seen in Figure 35. As can be seen, the code

starts to run from the initial step. The initial step is called Step0 in this instance. On the first

transition between Step0 and Step1, an input variable has been set. These input boxes works

with normal boolean values. Since I Sensor1 is normally set to true, the program will continue

when this signal is set to a low value. This happens when the object on the conveyor breaks the

light signal, and the input signal on the transition is set to NOT False. To keep the code tidy

and easier to read, all of the input variables have been set as inputs to the transition steps on the

left side of the chart.

On Step1, an action is connected to the step. This action starts the conveyor as soon as the step

is activated. It has the qualifier S, which starts the belt when activated, and runs the belt until

a specific reset command is given. This command is given by the qualifier R, which can be seen

connected to Step2.

Due to the layout of the mini-factory, some timers needs to be added to ensure that the puck is in

the correct position before each action is proceeded. For this, a TON and TOF timer has been

used. Together, they start the timer when the light signal on I Sensor2 is blocked, and activate

again after 2.7 seconds. This seemed like an appropriate delay for the program. When the timer

runs out, Step2 activates, and the second conveyor is reset. How the TOF and TON timer works

together is described in Section 6.3.1.

44

Figure 35: The first part of the SFC code

Figure 36: The second part of the SFC code

Step3 to Step8 describes the slider mechanism. At Step3, the conveyor is set, and is reset again

when the pushbutton is pressed down by the slider. This will set the input signal to True, and the

45

program will continue further to Step4. As can be seen from figure 36, Step5 starts the conveyor.

The conveyor is then reset when the light signal at I Sensor3 is blocked. This sensor is located

at the milling station. When the sensor at the milling station is activated, the belt is reset, and

the slider goes back to it’s original position in Step7 and Step8.

6.4.2 SFC code part 3 and 4

Figure 37: The third part of the SFC code

Figure 38: The fourth part of the SFC code

It was desired to use an other code to decide if the machining stations should run. To implement

46

this in SFC, a division step was made. This can be seen in Figure 37. This division step is

corresponding to the OR command in boolean terms.

This section of the code, decides what path that should be taken based on a True or False

statement. This statement tells if the milling is going to be activated or not. If this statement is

False, NOT I milling is True, and the code jumps down to Step10 without executing the path

via Step9. If the object is going to be milled, I Milling is True and the milling starts. This step

has the N qualifier, which means that the conveyor will run as long as the step is active. The time

delay is currently set to 2.2 seconds.

In Step10 and Step11, conveyor 2 and 3 are set almost simultaneously. As seen from figure 38,

these will run until I Sensor4 is activated. This was done to ensure that conveyor 3 was running

when the puck came onto it. Step10 - 13 could have been shortened down to two steps, although

it was decided to use only one action per step, to minimize potential errors. The division step for

the drilling station is exactly the same as for the milling station with the same delay.

6.4.3 SFC code part 5 and 6

Figure 39: The fifth part of the SFC code

At Step15 in Figure 39, it was set that conveyor 3 should run for 1.5 seconds. This was done

with the L qualifier, which runs the action for a specified amount of time. Due to it being no

sensors at the end of conveyor 3, this was the easiest way to ensure that the puck has come onto

the slider-platform. At the same step, it was set that the slider was going to run after a delay of

2.2 seconds.

Step16 and Step17 moves the slider the same way as described in Section 6.4.1. Step18 sets

conveyor 4, and resets when the light signal in I Sensor5 is blocked. As can be seen in Figure 40,

47

Figure 40: The sixth part of the SFC code

the last two steps resets the slider the same way as described in Section 6.4.2. The final jump skips

to the initial step, the sequence is finished, and the factory is ready to start over again.

6.5 Simulation

In addition to running the project on the mini-factory, there was also a desire to simulate it. This

way the students taking TPK4128 should be able to run the code developed by the students on a

simulation before running the actual factory. Due to limited amounts of factories and Raspberry

Pis, this will streamline the process of coding and logistics. The software chosen for this task was

Visual Components, mainly due to accessibility and capability. As per 2022,MTP has an agreement

with Visual Components, which makes the software available for students taking certain classes.

The version that were used for this project was Visual Components Premium 4.5.

6.5.1 Modelling

The modelling starts with setting conveyor belts into the working environment, in roughly the

same shape as the factory. These are quite easy to connect due to the PnP tool, which makes the

parts snap on easily to each other. To simulate the phototransistors, similarly functioning sensors

are found in the menus and added onto the conveyors.

On the mini-factory, there are stations which machines the parts on the belt itself. These kind of

stations cannot be found on Visual Components, so a different solution is needed. To overcome

this, two Doosan robot arms are added to the factory. The robot arms are chosen due to their size.

These robot arms performs a simple pick and place operation to move the boxes from the belt,

to each separate machining station. These are programmed using the internal programming tools

and functions. The same operation is used in reverse, to pick up the boxes from the machining

stations back onto the belt. It is not necessary to choose 6-axis robotic arms, since 4 axes are

48

sufficient for the operation.

One of the main features of the mini-factory are the sliders located at the corners. The sliders go on

tracks that is unable to stop them if they are going too far off. Therefore, there needs to be a way

to stop the sliders before they go off the tracks. The way this has been solved by Fischertechnik

is adding push-buttons at both ends of the tracks.

These sliders doesn’t seem to have any counterpart on Visual Components. There are some sliders,

but they stop by themselves without pressing push buttons. For the model to work like the

real factory, a different solution for these have to be made. Therefore, a visual model has been

made instead to show how the configuration of the mini-factory could look like in real life. Time

constraints and connection issues described in the subsequent sections are also reasons for this

simulation to not be explored further in this project thesis. An image of the model is provided in

Figure 41.

Figure 41: The mini-factory modelled in Visual Components

6.6 Connecting to VC

There are mainly two ways to run code in Visual Components, one is with a Python script inserted

directly into the program. The second option is making a connection from an external program

to run the simulation. Visual Components allows a connection in the form of OPCUA explained

further in Section 2.5.

A problem that was encountered in this project, is that OpenPLC doesn’t support OPCUA yet.

This made some difficulties connecting to the virtual factory, and running PLC code on the sim-

ulation. To avoid this problem, more ways of connecting were investigated. One of the methods

investigated, was the use of ModBus. Modbus is supported by OpenPLC and is often used to

connect and import code to controllers without I/O. The problem using Modbus, is that it’s not

supported by Visual Components, therefore this solution can’t be used directly to run the factory.

6.6.1 Possible solutions

There are multiple solutions that can be applied to run the factory with the desired code. First,

there is a need to set some ground rules about what is wanted out of the simulation, and the

49

solution making this possible.

• Must be able to use code-files provided by OpenPLC

• Easy and user-friendly to connect and run the code

• Free and ideally Open-Source software

• As few layers as possible

This is the demands that the solution have to fulfill, in order to be considered a viable solution for

the set requirements in the objectives set in the project.

6.6.2 Implement FreeOPC

One of the first solutions that comes to mind, is using FreeOPC to make a connection between

OpenPLC and Visual Components. FreeOPC is an open-source GitHub library, mainly used for

creating servers and clients in Python. Using this requires writing both a server and a client. The

client will receive information from a Modbus from the OpenPLC Runtime, the server will further

send the information to Visual Components using OPCUA.

The problems of this solution is complexity, in addition to adding an extra communication layer

between the programs.

6.6.3 Implement OPCUA into OpenPLC

Another solution to this problem, is if OPCUA gets integrated into OpenPLC. OPCUA is explained

in Section 2.5. According to ”thiagoralvez” which is one of the main contributors to OpenPLC, an

attempt has been made to implement this in 2022. This was however not implemented correctly,

and therefore never added to the main OpenPLC repository on GitHub [27].

This doesn’t mean there will never be an OPCUA expansion on OpenPLC, just that it’s yet

to be implemented into the program. Since OpenPLC is an Open-Source project, it’s possible to

contribute and make the expansion. This is very time-consuming and requires a lot of programming.

The benefit of this solution is that it contributes positively to an interesting Open-Source project,

in addition to being helpful for many people in the future. A variation of this would also be

the easiest solution to use of the ones stated. Figure 42 is an illustration of how this connection

would work. OpenPLC act as a master to send signals to Visual Components. Visual Components

will further send replies back to the computer using OPCUA. This way of communication is not

implemented in Visual Components, therefore there is a need to implement FreeOPC to give the

replies back to the master.

OPCUA is already in use for other assignments in Industrial Mechatronics. Therefore it will

prove beneficial for the course if this gets implemented in the near future. This will make other

assignments regarding the mini-factory possible.

50

Figure 42: Connection OpenPLC to Visual Components using FreeOPC

6.6.4 TCP/IP addressing

Another solution to the problem, is possibly the use of TCP/IP and direct addressing. Every device

with an internet connection has their own IP-address on the connected network. It’s possible to

connect directly to these devices using the direct addressing.

6.7 PCB design software

For the printed circuit boards designed in this thesis, the Open Source program KiCAD is used.

It is chosen due to being a free program, with all the functionality needed to design PCBs. It can

be downloaded from their website [28]. KiCad uses a unique file format, so opening these files in

the future will require downloading the program.

51

7 Discussion

7.1 Use of mini-factory in Industrial Mechatronics

Sund has in his master’s thesis [3] found that there is a desire to use the mini-factory to replace

existing assignments in Industrial Mechatronics. The thesis was discussing the options of using

actual PLCs to run the factory. Due to licensing issues and the issue of actually acquiring PLCs

it was an impracticable solution. However, his research stated that it was valuable experience for

the students taking the course.

This project thesis focuses on further developing Sunds research and present an alternative option

to replace PLCs for the assignments. The Raspberry Pi has a lot of benefits over a PLC regarding

educational content. One major benefit is the adaptability and ability to be used for multiple

assignments in the course. In addition, all of the software used in this project are both free and

open-source, which eliminates cost and licensing errors.

7.2 The hardware

The solution to the main objective of this project was to use a Raspberry Pi to emulate a PLC.

The assembly of the Raspberry Pi and the PCB can be considered an actual PLC, which does not

fulfill the formal standards for PLCs. Therefore, the PCB and Raspberry Pi together can be seen

as an emulated PLC, since they together have all of the software features to be considered a PLC

with OpenPLC installed. This is according to the PLC software standards [12]. The Raspberry Pi

with OpenPLC will also interprete all of the 5 languages supported in the standard [12].

Several other solutions were also considered to work as a PLC emulator, one of which included

using an Arduino as the microcontroller. OpenPLC provides a program compatible with multiple

Arduinos, the software would then work the same way as if it were on a Raspberry Pi. One of

the problems with using an Arduino, is the limited amount of GPIO pins. A normal Arduino

Uno is short of the number of pins required to read all the inputs and outputs from the factory.

There are possibilities to fix this, including using an I/O extender, or just use an Arduino MEGA.

Arduino MEGAs and I/O extenders were not in immediate access, therefore it seemed better to

use a Raspberry Pi. Another benefit of using a Raspberry Pi is that it’s already a big part of the

assignments in Industrial Mechatronics, which means that the institute does not have to buy new,

or modify existing microcontrollers.

One of the main problems of this assignment was to separate the Raspberry Pi from the higher

voltage required to run the mini-factory. A solution that was considered to solve the problem, was

to make a master-slave configuration with the Raspberry Pi and Arduino, totally separating the

Raspberry Pi from the system. However, due to the added complexity, and other problems stated

above, it was decided to use a Raspberry Pi directly and solve the problem using hardware instead.

How the specific solution was implemented is found in Section 5.7. One way to implement TCP/IP

in an assignment regarding the mini-factory, could be to use an Arduino MKR WiFi3 as a slave

to control the first corner of the factory, and use a Raspberry Pi to control it with TCP/IP. With

the current PCB design, it’s possible to implement this solution, although a bit inconvenient.

3This is a specific Arduino from the maker series with WiFi capabilities.

52

7.3 PCB

The PCB produced and used in the project thesis is the version 1 design in Section 5.14. As was

mentioned in both Section 5.14 and Section 5.15 there are some faults in the design. In these

sections, it is also described how to fix or circumvent these faults. This is fine for the prototype

however, this is not a good solution for a finished product. Since multiple will be produced

for educational purposes, it will be beneficial to have a version that does not need quick fixes

during manufacturing. It is recommended to produce a newer PCB design. Version 3 described

in Section 5.17 is an adequate solution. This is an improvement of the version 1 design, with

the faults fixed. The best solution however, is to further refine the design before new PCBs are

produced. Some of the recommendations in further works about PCB in Section 7.7.2 can then be

implemented.

7.4 Multisim

One of the key programs that were used for development of the circuitry, was MultiSim described

in Section 2.6. Every circuit that were tested were made in MultiSim first. MultiSim provides

a simple solution on prototyping circuits quickly. In addition, the circuits can be tested before

implementation in real life. This eliminates some sources of error that can be encountered when

connecting the circuits physically. Some examples are short-circuiting, breaks in the wires and

faulty connections. All of which are a common occurrence when prototyping on a breadboard.

Another key benefit of using MultiSim, is the ability to change resistance continuously. It’s possible

to monitor both the voltage and current in real time anywhere in the circuit. Therefore, it’s easy

to adjust the resistance to reach the desired voltage and current of the circuit. This was done in

all of the circuits stated in Section 5. One problem with using MultiSim to calculate resistance

though, is that the program simulates with ideal conditions. Physical parts are never perfect.

There were instances that the resistance had to be lowered compared to MultiSim due to this

problem. Although small adjustments were done accordingly.

7.5 CONFIG KVM

When adjusting the menuconfig for the real time kernel for the Raspberry Pi, there was a problem

adding Fully pre-emptible kernel for the ARM64 processor. In the config file for the patch, a

change needed to be done to allow the user to choose a fully pre-emptible kernel. To fix this prob-

lem, the config CONFIG KVM=y needed to be changed to CONFIG KVM=n. The fix was implemented

by inspiration from this blogpost [29].

CONFIG KVM is the configuration of the Kernel Virtual Machine virtualization support. KVM is

an open-source software tool which allows running a virtual machine on unmodified Linux and

Windows versions. Atleast on the Linux versions that were tested (5.4 and 5.15.65) this had to be

disabled for a fully preemptible kernel to function. This was done on two separate Raspberry Pis.

The fully preemptible kernel were built on 3 different systems. One PC booted with Linux Ubuntu

22.04 Jammy and two Raspberry Pis. The Ubuntu PC did not require to disable CONFIG KVM to

work, but it was necessary on both Raspberry Pis.

A reasonable explanation why KVM needs to be disabled while running a real-time kernel might be

53

because of the limited processing power of the ARM64 processor and small amounts of storage

usually found in Raspberry Pis. This choice limits the storage taken and processing power needed

to run the OS on the Raspberry Pis. This might be the reason the developers of the RT patch chose

to make the choice of building the kernel with both options enabled unavailable for the ARM64

architectures.

7.6 The final results

The prototype developed as a part of this thesis is fully functional and fulfills the main objective

of the task. The final solution was also showed in the course TPK4125 Mechatronics, which is

recommended previous knowledge for TPK4128 Industrial Mechatronics. The students in this

class showed interest in the prototype, and was positive to incorporate this as an assignment in

Industrial Mechatronics, which several of them are likely to take the next semester.

With these results it was found more confirmation of Sunds findings, that the students prefers

education with more practical elements. As well as the ability to apply the theory learnt in classes

in practical assignments.

7.7 Further work and possible expansions

7.7.1 Simulation

Simulation of the factory is a possibility for further work. The possibility for a simulation expansion

has already been explored as a part of the existing project assignment. Although, this part of the

project was not successful, due to time constraints and obstacles found on the way. Some ways to

overcome these obstacles has been provided in section 6.6. This topic provides a lot of opportunities

for future project assignments/master thesis’ and topics to explore further. One of these expansions

could also be implementing a digital twin of the factory.

7.7.2 PCB design

Another part of the project with room for improvement is the PCB design. One possible update is

to add silkscreen to the 40pin connector. This will make it easier to connect other microcontrollers

with only the PCB, and not having to read it in the documentation and count pins. It is a bit

easier to wire the cables with the PCB, than it was directly on the 40pin connector of the RPi.

Since the pins on the PCB connector are color coded.

Another addition to the PCB that can be considered, is toggle switches to control the machining

stations. This solution can make them easier to control, compared to using separate software on

the RPi. Understanding the functionality is also easier with this solution. It can be implemented

directly on the PCB, or on a daughterboard. The reason for using toggle switches instead of dip

switches, mentioned in Section 5.14, is that surface mount dip switch packets cannot withstand

the continuous use.

There is also a possibility to create another design that uses surface mount components instead.

This can be a good solution if there is a need for many boards, since the PCBs can be designed to

54

be smaller. They can also be produced with the components already soldered on. This is a good

solution in the example of; if a professor needs 40 of the boards to use in his/hers subject.

7.7.3 Machine learning

Machine learning and camera vision are modules that can be added to the assembly as future

expansions. There are existing camera modules that can be added onto a Raspberry Pi, on which

OpenCV can be used to recognise different objects that travels on the conveyors. The machining

modules are already run by a separate program written in Python. This program can be replaced

with a program running image recognition to decide what operations should be done on the part.

For this task, it is possible to send different objects on the conveyors, and the program decides if

the part is going to be milled, drilled, both, or none, based on the shape, color or other distinct

characteristics.

7.7.4 Robot arm and ROS2

Another big part of the Industrial Robotics course is to learn the basics of ROS and robot con-

trol. There are also current assignments in the course related to these topics. ROS2 can also be

implemented in an assignment using the mini-factory. One way to do this is to implement a small

robot arm to put objects on the conveyor belts. This is a great opportunity to possibly automate

a currently manual operation.

55

8 Conclusion

All of the main objectives from Section 1.3 has been met. In addition, some extensions and quality-

of-life improvements were implemented successfully. These were not critical for the project, but

will ease the process of turning this thesis into future exercises for Industrial Mechatronics.

Some secondary objectives were also met. An expandable solution was implemented successfully

with the additional vacant pins of the PCB easy to connect to, and with the ability to run separate

code to control the machining stations.

With this setup, it is possible to run the mini-factory with several types of microcontrollers. An

Arduino Uno was used to run the first corner, but another controller would have been needed to

run the factory in its completeness.

The excitement from students during the demonstration shows the interest in using practical

assignments in education. This confirms the findings in Sunds Master’s thesis, which is the basis

for why this project was started.

All in all, the project gave a working prototype, that can with small adjustments be used as an

assignment in Industrial Mechatronics.

56

Bibliography

[1] A. Skavhaug, Tpk4128 - industrial mechatronics, 2022. [Online]. Available: https://www.

ntnu.edu/studies/courses/TPK4128.

[2] F. GmbH, Indexed line with two machining stations 24v, 2022. [Online]. Available: https:

//www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-

two-machining-stations-24v.

[3] A. K. Sund, ‘Improving mechatronics education with design thinking’, 2022.

[4] A. C. Arnholm and M. N. Henriksen, ‘Combining industry 4.0 and 5g connectivity with

robots in digital production factories’, 2021.

[5] W. Bolton, Programmable logic controllers. Newnes, 2015.

[6] Wikipedia, File:originating register, number five crossbar switching system (museum of com-

munications, seattle).jpg, 2007. [Online]. Available: https : / / en . wikipedia . org /wiki / File :

Originating Register, Number Five Crossbar Switching System (Museum of Communications,

Seattle).jpg.

[7] M. G. Hudedmani, R. Umayal, S. K. Kabberalli and R. Hittalamani, ‘Programmable logic

controller (plc) in automation’, Advanced Journal of Graduate Research, vol. 2, no. 1, pp. 37–

45, 2017.

[8] E. R. Alphonsus and M. O. Abdullah, ‘A review on the applications of programmable logic

controllers (plcs)’, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1185–1205, 2016.

[9] G. Frey and L. Litz, ‘Formal methods in plc programming’, in Smc 2000 conference pro-

ceedings. 2000 ieee international conference on systems, man and cybernetics. ’cybernetics

evolving to systems, humans, organizations, and their complex interactions’ (cat. no.0, vol. 4,

2000, 2431–2436 vol.4. doi: 10.1109/ICSMC.2000.884356.

[10] Standard-Norge, Nek iec 61131-3:2013, 2013. [Online]. Available: https://www.standard.no/

no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454.

[11] IEC, ‘Programmable controllers – part 1: General information’, en, International Electro-

technical Commission, Geneva, CH, Standard IEC 61131-1:2003, 2003. [Online]. Available:

https://webstore.iec.ch/publication/4550.

[12] IEC, ‘Programmable controllers – part 3: Programming languages’, en, International Electro-

technical Commission, Geneva, CH, Standard IEC 61131-3:2013, 2013. [Online]. Available:

https://webstore.iec.ch/publication/31007.

[13] IEC, ‘Industrial-process measurement and control – programmable controllers – part 2:

Equipment requirements and tests’, en, International Electrotechnical Commission, Geneva,

CH, Standard IEC 61131-2:2017, 2017. [Online]. Available: https://webstore.iec.ch/publication/

31007.

[14] Redhat.com, Working with the real-time kernel for red hat enterprise linux, 2022. [Online].

Available: https://www.redhat.com/sysadmin/real-time-kernel.

[15] Raspberry-Pi-foundation, Raspberrypi.com, 2022. [Online]. Available: https://www.raspberrypi.

com/.

[16] thiagoralves, Tpk4128 - industrial mechatronics, 2022. [Online]. Available: https://github.

com/thiagoralves/OpenPLC v3.

57

https://www.ntnu.edu/studies/courses/TPK4128
https://www.ntnu.edu/studies/courses/TPK4128
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://www.fischertechnik.de/en/products/learning/training-models/96790-edu-indexed-line-with-two-machining-stations-24v
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://en.wikipedia.org/wiki/File:Originating_Register,_Number_Five_Crossbar_Switching_System_(Museum_of_Communications,_Seattle).jpg
https://doi.org/10.1109/ICSMC.2000.884356
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=627454
https://webstore.iec.ch/publication/4550
https://webstore.iec.ch/publication/31007
https://webstore.iec.ch/publication/31007
https://webstore.iec.ch/publication/31007
https://www.redhat.com/sysadmin/real-time-kernel
https://www.raspberrypi.com/
https://www.raspberrypi.com/
https://github.com/thiagoralves/OpenPLC_v3
https://github.com/thiagoralves/OpenPLC_v3

[17] V. Components, Visual components, 2022. [Online]. Available: https://www.visualcomponents.

com/about-us/.

[18] A. Wordpress, Connecting raspberry pi to eduroam, 2016. [Online]. Available: https : / /

autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/.

[19] OpenPLC, 1.4 installing openplc runtime on linux, 2022. [Online]. Available: https://openplcproject.

com/docs/installing-openplc-runtime-on-linux-systems/.

[20] F. GmbH, Technical faq’s, 2022. [Online]. Available: https : //www.fischertechnik . de/en/

service/faq/technical-faqs.

[21] Simatic s7-1500 signal modules, 2022. [Online]. Available: https://new.siemens.com/global/

en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html.

[22] PCBWay, Pcbway, pcb prototype the easy way, 2022. [Online]. Available: https://www.pcbway.

com/.

[23] OpenPLC, Openplc editor download, 2022. [Online]. Available: https://openplcproject.com/

download/.

[24] OpenPLC, Openplc runtime overview, 2022. [Online]. Available: https://openplcproject.com/

docs/2-1-openplc-runtime-overview/.

[25] OpenPLC, 2.4 physical addressing, 2022. [Online]. Available: https://openplcproject.com/

docs/2-4-physical-addressing/.

[26] S. B. Reddy, Instrumentation tools, 2022. [Online]. Available: https://instrumentationtools.

com/what-is-sequential-function-chart-sfc/.

[27] thiagoralves, Openplc forum, 2022. [Online]. Available: https://openplc.discussion.community/

post/how-to-make-openplc-support-opc-ua-12342333.

[28] KiCAD, Kicad eda. a cross platform and open source electronics design automation suite,

2022. [Online]. Available: https://www.kicad.org/.

[29] D. Zundel, Testing preempt rt on the i.mx8mm soc in 15 minutes, 2022. [Online]. Available:

https://blog.lazy-evaluation.net/posts/embedded/imx8mm-rt-preempt.html#.

58

https://www.visualcomponents.com/about-us/
https://www.visualcomponents.com/about-us/
https://autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/
https://autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-to-eduroam/
https://openplcproject.com/docs/installing-openplc-runtime-on-linux-systems/
https://openplcproject.com/docs/installing-openplc-runtime-on-linux-systems/
https://www.fischertechnik.de/en/service/faq/technical-faqs
https://www.fischertechnik.de/en/service/faq/technical-faqs
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/signal-modules.html
https://www.pcbway.com/
https://www.pcbway.com/
https://openplcproject.com/download/
https://openplcproject.com/download/
https://openplcproject.com/docs/2-1-openplc-runtime-overview/
https://openplcproject.com/docs/2-1-openplc-runtime-overview/
https://openplcproject.com/docs/2-4-physical-addressing/
https://openplcproject.com/docs/2-4-physical-addressing/
https://instrumentationtools.com/what-is-sequential-function-chart-sfc/
https://instrumentationtools.com/what-is-sequential-function-chart-sfc/
https://openplc.discussion.community/post/how-to-make-openplc-support-opc-ua-12342333
https://openplc.discussion.community/post/how-to-make-openplc-support-opc-ua-12342333
https://www.kicad.org/
https://blog.lazy-evaluation.net/posts/embedded/imx8mm-rt-preempt.html#

Appendix

59

A PLC architecture from IEC 61131-2

Figure 43: Typical interface/port diagram of a PLC-system (from IEC 61131-2)[13]

60

B Eduroam Guide

This Guide is exactly the same as the one from [18], but is added to make it possible to recreate

our testing with only reading this document. It is tested to work on Eduroam at NTNU’s campus

Gløshugen as of December 2022.

First, we must add a few lines of text in the file /etc/wpa supplicant/wpa supplicant.conf (it must

be done with root permission):

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Then append the following lines (yes, change username and password to something appropriate)

network={

identity="username@ntnu.no"

password="password"

eap=PEAP

phase1="peaplabel=0"

phase2="auth=MSCHAPV2"

priority=999

disabled=0

ssid="eduroam"

scan_ssid=0

mode=0

auth_alg=OPEN

proto=RSN

pairwise=CCMP

key_mgmt=WPA-EAP

proactive_key_caching=1

}

Then hit < control > +x, then y and < enter > to save and exit.

Depending on your version of Pi and your Pi’s operating system you might or might not have a

connection now (check with ifconfig). If you do not, you should try to stop networking and start

wpa supplicant:

sudo service networking stop

sudo wpa_supplicant -i wlan0 -c

/etc/wpa_supplicant/wpa_supplicant.conf -B↪→

If you still don’t have a connection you should try to reboot

61

sudo reboot

Still no connection? Check that all of the special characters in /etc/wpa supplicant/wpa supplicant.conf

have been copied correctly, for example

''

is not the same as

"

Is Eduroam being stubborn? You can do as we did, search around a bit and try tweaking the

settings in /etc/wpa supplicant/wpa supplicant.conf until you win.

62

C Milling, Drilling or not code Example

This is the the code we used to control the mill and drill. It is written fast to make it possible

to choose which states is desired without having to re run the program each time. This can be

written more efficiently, but that was not the purpose of this code. It should just work, which it

does.

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

mill = 3

drill = 5

GPIO.setup(mill, GPIO.OUT)

GPIO.setup(drill, GPIO.OUT)

m = ''

d = ''

cont = ''

while True:

while True:

m = input('Type y for milling and n for not milling: ')

if m == 'y':

break

elif m == 'n':

break

while True:

d = input('Type y for dilling and n for not dilling: ')

if d == 'y':

break

elif d == 'n':

break

if m == 'y':

GPIO.output(mill, GPIO.HIGH)

print('m->high')

else:

GPIO.output(mill, GPIO.LOW)

print('m->low')

if d == 'y':

GPIO.output(drill, GPIO.HIGH)

63

print('d->high')

else:

GPIO.output(drill, GPIO.LOW)

print('d->low')

while True:

cont = input('Type y for continue and n for quiting: ')

if cont == 'y':

break

elif cont == 'n':

break

if cont == 'n':

break

64

D Attachments

D.1 Attached files:

• The Ladder Diagram PLC code

• The SFC PLC code

• The PCB files for design version 3

• Visual Components files

D.2 Hardware:

The mini-factory with the prototype.

65

E Extended Raspberry Pi OpenPLC table

66

P
in

N
am

e
O
p
en
P
L
C

ad
d
re
ss

P
C
B

fu
n
ct
io
n
a
li
ty

P
C
B

fu
n
ct
io
n
a
li
ty

O
p
en
P
L
C

a
d
d
re
ss

N
a
m
e

P
in

1
3.
3V

D
C

P
ow

er
-

3
.3
V

5
V

-
5V

D
C

P
ow

er
2

3
G
P
IO

02
(S
D
A
1,

I2
C
)

%
IX

0.
0
*

M
il
li
n
g?
!!

5
V

-
5V

D
C

P
ow

er
4

5
G
P
IO

03
(S
D
L
1,

I2
C
)

%
IX

0.
1
*

D
ri
ll
in
g
?!
!

G
N
D
1

G
ro
u
n
d

6
7

G
P
IO

04
(G

P
C
L
K
0)

%
IX

0.
2

B
tn

S
1
fr
o
n
t

S
li
d
er
1
fo
rw

%
Q
X
0
.0

G
P
IO

14
(T

X
D
0,

U
A
R
T
)

8
9

G
ro
u
n
d

-
G
N
D
1

S
li
d
er
1
b
a
ck

%
Q
X
0.
1

G
P
IO

15
(R

X
D
0,

U
A
R
T
)

10
11

G
P
IO

17
%
IX

0
.3

B
tn

S
1
re
ar

P
in
1
2
p
as
s
th
ro
u
gh

%
Q
W

0
G
P
IO

18
(P

W
M
0)

1
2

13
G
P
IO

27
%
IX

0.
4

B
tn

S
2
fr
o
n
t

G
N
D
1

-
G
ro
u
n
d

1
4

15
G
P
IO

22
%
IX

0
.5

B
tn

S
2
re
ar

S
li
d
er
2
fo
rw

%
Q
X
0
.2

G
P
IO

23
16

17
3.
3V

D
C

P
ow

er
-

3.
3V

S
li
d
er
2
b
a
ck

%
Q
X
0.
3

G
P
IO

24
1
8

19
G
P
IO

10
(S
P
10

M
O
S
I)

%
IX

0.
6

S
en
so
r2

co
n
v
1

G
N
D
1

-
G
ro
u
n
d

20
21

G
P
IO

09
(S
P
10

M
IS
O
)

%
IX

0.
7

S
en
so
r3

co
n
v
2

C
on

v
1

%
Q
X
0
.4

G
P
IO

25
22

23
G
P
IO

11
(S
P
10

C
L
K
)

%
IX

1
.0

S
en
so
r1

S
ta
rt

C
on

v
2

%
Q
X
0.
5

G
P
IO

08
(S
P
I0

C
E
0
N
)

2
4

25
G
ro
u
n
d

-
G
N
D
1

M
il
l

%
Q
X
0
.6

G
P
IO

07
(S
P
I0

C
E
1
N
)

26
27

G
P
IO

00
(S
D
A
0,

I2
C
)

-
P
in
2
7
p
a
ss

th
ro
u
g
h

P
in
2
8
p
as
s
th
ro
u
gh

-
G
P
IO

07
(S
D
L
0,

I2
C
)

28
29

G
P
IO

05
%
IX

1.
1

S
en
so
r4

co
n
v
3

G
N
D
1

-
G
ro
u
n
d

3
0

31
G
P
IO

06
%
IX

1
.2

S
en
so
r5

co
n
v
4

C
on

v
3

%
Q
X
0.
7

G
P
IO

12
(P

W
M
0)

32
33

G
P
IO

13
(P

W
M
1)

%
IX

1
.3

I
M
il
l

G
N
D
1

-
G
ro
u
n
d

3
4

35
G
P
IO

19
%
IX

1
.4

I
D
ri
ll

D
ri
ll

%
Q
X
1.
0

G
P
IO

16
36

37
G
P
IO

26
%
IX

1.
5

P
in
37

p
as
s
th
ro
u
g
h

C
on

v
4

%
Q
X
1
.1

G
P
IO

20
38

39
G
ro
u
n
d

-5
G
N
D
1

P
in
4
0
p
as
s
th
ro
u
gh

%
Q
X
1.
2

G
P
IO

21
4
0

67

Identification:
Your name: Lars Bonvik Completed HSE Online course and HSE Room tour: Yes

Your institute: MTP
Your phone number: 91361010

Your e-mail: larsbon@ntnu.no Phd:
Name of your supervisor: Amund Skavhaug Bachelor

Project number: 985512113 Post-Doc:
Laboratory(ies) you are requesting access to: Ubåten + Flex Sintef:

Period you want access, from-to: 28.08 - 23.12 2023 Other:Master

Signatures, approved by:
Date: Name:

Applicant: Lars Bonvik

Supervisor: Amund Skavhaug

Equipment training:

Room responsible: Håvard Vestad

Lab leader: Arve Skorstad

RISK ASSESSMENT FOR:
Mini-factory testing

(Name of the project is entered in the sheet "Risk assessment")
An approved risk assessment implies that you have received authorization to carry out the activities described in this document. If there are any changes to your activities, you must update your risk
assessment and have the update approved before you can proceed with the new work and/or any new equipment.

An approved risk assessment grants you access to the laboratory, provided that you have also completed and documented the online HSE course and the HSE facility tour. This access is exclusive to you;
you should not allow others to enter.

To access the equipment, specific equipment training must be completed. Your supervisor will provide you with information about the rules that apply to the laboratory you are gaining access to. Note
that different laboratories have different rules.

The risk assessment is converted to PDF before signing (done by you). The template is prepared for printing in landscape A4 format (do not alter the formatting).

Signature:

06/09 - 2023

06/09 - 2023

07.09.23

11.09.2023

arveskor
Stamp

Description of project

Write here (line breaks = Alt+Enter):
I am running a model factory using an Arduino PLC and other micro controllers. I wanna do prototyping to make embedded solutions to be able to get the micro controllers
to run the 24V system. Therefore I'm gonna work some with breadboards making circuits. Cutting and fitting wires, measure voltages and other stuff related to circuit
prototyping. I might also use the soldering iron, but I'm not 100% I'll need it yet.

Provide a comprehensive description of your project, making it detailed enough for the reader to understand what
activities you intend to do, and (briefly) to what purpose. Include details about the instruments you plan to use,
specifying the names of the instruments.

Visual depiction- (Insert a photo/illustration/drawing of your project):

Unit / Department: Areas of concequence: Project name:

Relevance:
not

relevant(nr)
or yes

Relevance:
not

relevant(nr)
or yes

nr Ja
nr nr
nr nr

Existing risk-reducing measures nr nr
Responsible supervisor: nr nr
Amund Skavhaug nr nr
Candidate: nr Ja
Lars Bonvik nr nr
Date of evaluation nr nr

29.08.2023 nr nr

Propability (P)

(1-5) Human
health

Environment Material
values

Reputation Human
health

Environment Material
values

Reputation

1

Bruk av loddebolt Kan få brannskader om man tar på enden
av loddebolten. Inhalering av avgasser.

Bruk av avtrekk og tidsur på
loddeboltene. Vite hvor nærmeste vask
er sånn at man kan raskt avkjøle en
eventuell skade. Vite hvor
brannslukkeren er. Pass på å ha
avtrekket nærme for å ikke inhalere
avgassen

2 2 1 2 0 4 2 4 0

2
Bruk av elektriske håndverktøy Kan få små kuttskader eller sprut av små

biter som kan komme i øynene
Vernebriller

2 2 0 0 1 4 0 0 2

3
Jobbe med strøm (24v) Kan gi elektrisk sjokk, eller generere mye

varme om det skjer en kortslutning
Ikke lettantennelig arbeidsplass

1 2 1 1 1 2 1 1 1

4 NR NR NR NR
5 NR NR NR NR
6 NR NR NR NR
7 NR NR NR NR
8 NR NR NR NR
9 NR NR NR NR

10 NR NR NR NR
11 NR NR NR NR
12 NR NR NR NR
13 NR NR NR NR
14 NR NR NR NR
15 NR NR NR NR
16 NR NR NR NR
17 NR NR NR NR
18 NR NR NR NR
19 NR NR NR NR
20 NR NR NR NR
21 NR NR NR NR
22 NR NR NR NR

Nr.

Risk value (P x C)

Online HSE course
Personal risk assessment
HSE room tour
Machine card
PPE - Personal Protective Equipment
Equipment - Emergency stop/guarding,
etc.

Situation Possible unwanted event Prevention measure/ PPE

Consequence (C)
(0-5)

Vibration:
Fire:

Tripping:
High / low pressure:

Parts with high velocity:

Mini-factory testing Loud noise:
Hazardous dust:

Human health, Environment, Material
values, and Reputation

Department of Mechanical and
Industrial Engineering (MTP)

RISK ANALYSIS

Rotating parts:
Electric shock:

Dangers to consider
Burns:

Poisoning:
Radiation:

Dangers to consider

High / low temperatures:

Pinch hazard:
Falling:

Cuts:
Work at heights:

RISK ANALYSIS FOR CHEMICALS
Fill in 'yes' if these hazards apply to your work.

Relevance: not relevant(nr) or yes

nr

nr

nr

nr

nr

Information about the chemicals you will use is available in the Safety Data Sheets (SDS) in EcoOnline.

List the chemicals you intend to use and make an estimate of the quantity you need. Ethanol and acetone for general cleaning of equipment does not need to be listed here.

Estimated use (g/kg/mL/L/etc.) Concentration (if relevant)

10 mL
50 mL

Dangers to consider
Relevance: not relevant(nr)

or yes

nr

nr

nr

Oxidising

Acute toxicity

Gas under pressure

Dangers to consider

Health hazard /
 Hazardous to the ozone layer

Explosive

Flussmiddel

Plan for chemical waste disposal:

If two or more chemicals are to be mixed, describe the procedure you will perform here (leave blank if not relevant):
(Line break: Alt+Enter)

nr

Name of chemical

Superlim

nr

Disposal (Hazardous waste)

Hazardous to the environment

Serious health hazard

Corrosive Hazardous fumes

Propability (P)

(1-5) Human health Environment Material
values

Reputation Human health Environment Material
values

Reputation

1
H319: Gir alvorlig øye-irritasjon Avtrekk med "skjold", og

muligens vernebriller
1 2 1 0 0 2 1 0 0

2 H315: Irriterer huden Ha tørkepapir tilgjengelig 3 1 1 0 0 3 3 0 0

3

H319: Gir alvorlig øye-irritasjon,
osen kan være irriterende, og få det
direkte på øynene kan være veldig
irriterende

Åpent ventilert område, med
tilgjengelige vernebriller og se
hvor øyeskyllestasjonen er

1 3 0 0 0 3 0 0 0

4
H335: Kan forårsake irritasjon av
luftveiene

Brukes i åpent ventilert
område

1 2 0 0 0 2 0 0 0

5 NR NR NR NR
6 NR NR NR NR
7 NR NR NR NR
8 NR NR NR NR
9 NR NR NR NR

10 NR NR NR NR
11 NR NR NR NR
12 NR NR NR NR
13 NR NR NR NR
14 NR NR NR NR
15 NR NR NR NR
16 NR NR NR NR
17 NR NR NR NR
18 NR NR NR NR
19 NR NR NR NR
20 NR NR NR NR
21 NR NR NR NR
22 NR NR NR NR
23 NR NR NR NR
24 NR NR NR NR
25 NR NR NR NR
26 NR NR NR NR
27 NR NR NR NR

Kjemikalie håndtering (Superlim)

Nr.

Chemical name

Not relevant

Kjemikalie til lodding (flussmiddel)

RISK ANALYSIS

H-number and H-sentence Prevention measure/ PPE

Kjemikalie håndtering (Superlim)

Risk value (P x C)
Consequence (C)

(0-5)

Kjemikalie håndtering (Superlim)

RISK ASSESSMENT FOR:
Mini-factory testing

1. What can go wrong?
2. What is the probability of this going wrong?
3. What is the consequence if it does happen?
4. What can we do to prevent something from going wrong or to reduce the consequence if something still happens?

Tabs with a blue color should be filled out:
Fill in the necessary information. If you don't know who the room manager is, leave the field blank. All fields under identification should be completed.
Please do it thoroughly and detailed; this will make it easier to assess your risk assessment, and it will speed up the access process.
Example of not approved: Grinding of materials.
Example of approved: In this lab, I will use a manual grinding machine to polish around 20 steel discs. The goal is to prepare the samples for friction testing.
Select an image that can describe what you are going to do, or draw a sketch. If this is not relevant to your work, explain why.

WHAT IS A RISK ANALYSIS, AND WHAT IS MEANT BY RISK?

The sheet is formatted so that you can fill in the necessary fields. Here, you should enter all the risks associated with the activities of your work, except for hazards from chemicals
(which are assessed separately). In the "situation" columns, you describe the hazard to be assessed, and then evaluate the hazardous factors. You indicate the type of hazard by
marking "yes" or "nr" (not relevant) in the table at the top right. In the risk assessment table, you specify the situation as "Pinch hazard" if you have marked this as a relevant hazard
for your work, and so on. Write detailed enough that it is easily understood for the reader when/where/how the danger arises.

Risk analysis is a systematic approach to describing and/or calculating risk. It involves mapping out unwanted events, their causes, and consequences. Risk refers to the possibility of undesired events occurring and
the potential consequences they can have on people, material assets, the environment, and the reputation of the department or university.

Risk is expressed by the probability of, and the consequence of, the undesired events.
RISK = PROBABILITY LEVEL X CONSEQUENCE LEVEL

A risk analysis consists of asking four simple questions regarding an activity:

Two tabs in this document contain informative guidance on what criteria to consider – a form with probability and consequence, along with an overview showing various criteria available, including types of
protective equipment, hazards to assess, and already established measures. The list is not exhaustive; you're allowed to think beyond what's listed.

Front page:
Description of project:

Picture:
Risk assessment:

Risikostyring

Safety Measures Overview

PPE - Personal Protective Equipment Established measures Dangers to consider Dangers to consider

 Protective glasses • "Experiment in progress" signs • Loud noise • Burns
 Lab coat • Experiment procedures and routines • Hazardous dust • Poisoning
 Gloves • Labeling containers with contents • Pinch hazard • Radiation
 Safety shoes • Buddy check • Falling • Biological/infectous
 Hearing protection • Equipment card • Cuts • High / Low pressure

• Barrier equipment and screens • Tripping • High / Low temperature
Alternative measures • Approved lifting equipment • Parts with high velocity • Electric shock

 Reduce scale of experiment • Safety data sheet • Rotating parts • Work at height
 Eliminate experiment • Chemical database - Eco Online • Vibration
 Substitute for chemicals • Working alone - alarm/prohibition • Fire
 Adjust experiment for HSE • First aid equipment

• Emergency shower
Ventilation and encapsulation • Eye wash station

 Fume arm • Fire extinguishers
 Fumehood • Fire alarms connected to the fire department
 Oven/refrigirator • Room access card
 Room

Safety barriers and emergency equipment
• Emergency shower and eye wash
• First aid equipment
• Fire extinguishers and fire blankets
• Communication system
• PPE - Personal Protective Equipment (Eyes, head, hands, feet, and body)
• Safety data sheet
• Procedures

	List of Figures
	List of Tables
	Introduction
	Motivation and Project Description
	Previous Work
	Objective
	Structure of thesis

	Background theory
	Programmable Logic Controller (PLC)
	Control systems and controllers
	The functions of PLCs
	The Hardware and Architecture of PLCs
	PLC Inputs and Outputs
	PLC Manufacturers and Models

	Scheduling algorithm for Ubuntu Linux
	Real-time kernel for Linux

	Raspberry Pi
	Arduino UNO
	Arduino MEGA
	Arduino Pro
	OpenPLC
	Arduino PLC IDE

	First time setup of the devices
	First time setup of the Arduino PMC
	License Activation with Product key

	Setup of real-time kernel on Raspberry Pi
	Installing OpenPLC runtime on the Raspberry Pi

	Technical spesifications
	The interface circuitry
	Specifications of the mini-factory
	PLC standards
	Running the factory with Arduino PMC

	Connecting the factory and the micro controllers
	The softwares
	Arduino Portenta Machine Control H7
	PMC Hardware

	Ardunio PMC with OpenPLC software
	Arduino PMC analog pins
	Analog input
	Analog output
	Software driver for the programmable I/O

	Arduino PMC with Arduino PLC IDE
	Arduino MEGA with OpenPLC
	Testing the Ardunio MEGA
	Testing and fixing inputs

	Updating the circuit board
	Adding a pull-down resistor
	Changing the resistances

	Connecting micro-controller to the factory
	Connecting wires directly
	Hardware shields
	Hardware shield on Arduino PMC
	Hardware shield Arduino MEGA
	Hardware shield Arduino UNO

	Software and Simulation
	Connecting to Raspberry Pi
	Programming and language
	Programming in Arduino PLC IDE
	Programming in OpenPLC
	Raspberry PI specific changes; PCB
	Connecting Arduino PMC to OpenPLC
	Compiling and running code in Arduino PLC IDE

	PLC code for the factory
	Ladder Diagram code
	LD Code part 1
	LD Code part 2
	LD Code part 3
	LD Code part 4
	Discussing the Ladder Diagram Code

	SFC - Sequential Function Chart
	Arduino PLC IDE: SFC
	SFC section 1
	SFC section 2
	SFC section 3
	Discussing the SFC code

	Discussion
	Use of mini-factory in Industrial Mechatronics
	Raspberry PI
	RPi Advantages
	RPi Disadvantages

	Arduino PMC
	PMC Advantages
	PMC Disadvantages

	Arduino UNO
	UNO Advantages
	UNO Disadvantages

	Arduino MEGA
	MEGA Advantages
	MEGA Disadvantages

	Using other devices
	Hardware choice
	PCB
	Software choice: OpenPLC vs Arduino PLC IDE
	User Interface and programming
	Reliability
	Final verdict

	Conclusion
	Further work and possible expansions
	PCB design
	Machine learning
	Robot arm and ROS2
	Developing the UNO system

	Bibliography
	Appendix
	PLC architecture from IEC 61131-2
	Eduroam Guide
	Milling, Drilling or not code Example
	Attachments
	Attached files:
	Hardware:

	Extended Raspberry Pi OpenPLC table
	List of Figures
	List of Tables
	Introduction
	Motivation and Project Description
	Previous Work
	Objective
	Structure of thesis

	Background theory
	Programmable Logic Controller (PLC)
	Control systems and controllers
	The functions of PLCs
	The Hardware and Architecture of PLCs
	PLC Inputs and Outputs
	PLC Manufacturers and Models

	Real-time kernel for linux
	Raspberry Pi
	OpenPLC
	OPCUA
	MultiSim
	Visual Components

	The setup of the Raspberry Pi
	Setup of real-time kernel on Raspberry Pi
	Installing OpenPLC runtime on the Raspberry Pi

	Technical spesifications
	The interface circuitry
	Specifications of the mini-factory
	PLC standards
	Testing with other microcontrollers

	Circuitry
	Push-pull circuit version 1
	Push-Pull version 1 evaluation
	IO signal circuit
	IO signal circuit evaluation
	Push-pull version 2
	Push-Pull version 2 evaluation
	MOSFET circuit
	MOSFET circuit evaluation
	Sensor circuits
	Sensor circuit with optocoupler
	Sensor circuits evaluation
	Breadboard circuit
	PCB circuit
	PCB version 1
	PCB version 1 soldering
	PCB version 2
	PCB version 3 - Final version
	OpenPLC

	Software and Simulation
	Connecting to Raspberry Pi
	Programming and language
	Ladder Diagram Code
	LD Code part 1
	LD Code part 2
	LD Code part 3
	LD Code part 4
	Discussing the Ladder Diagram Code

	SFC
	SFC code part 1 and 2
	SFC code part 3 and 4
	SFC code part 5 and 6

	Simulation
	Modelling

	Connecting to VC
	Possible solutions
	Implement FreeOPC
	Implement OPCUA into OpenPLC
	TCP/IP addressing

	PCB design software

	Discussion
	Use of mini-factory in Industrial Mechatronics
	The hardware
	PCB
	Multisim
	CONFIG_KVM
	The final results
	Further work and possible expansions
	Simulation
	PCB design
	Machine learning
	Robot arm and ROS2

	Conclusion
	Bibliography
	Appendix
	PLC architecture from IEC 61131-2
	Eduroam Guide
	Milling, Drilling or not code Example
	Attachments
	Attached files:
	Hardware:

	Extended Raspberry Pi OpenPLC table

