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Abstract 

This report intends to study how reinforcement learning can be used to reduce the 

maintenance costs for offshore wind turbines. The explored approach is to optimize the 

inspection scheduling, and to see what effect this will have on the costs. Component 

degradation is simulated with a 4-state Weibull-Markov model and two different 

approaches to reliability. The degradation is approximated using Monte Carlo simulations. 

The work is done with Proximal Policy Optimization and programmed in Python. The 

performance of the suggested inspection model is measured against that of a calendar-

based inspection schedule. The report finds that reinforcement learning can be used to 

improve on the performance of the calendar-based model by a small margin. 

Keywords: Maintenance, Inspection schedule, PPO, Weibull, Markov, Monte Carlo 

simulation, Reinforcement Learning, Python, RAMS 

 

 



 

 

  



 

 

Sammendrag 

Denne rapporten søker å utforske hvordan forsterket læring (RL) kan anvendes til å 

redusere vedlikeholdskostnader for offshore vindturbiner. Den valgte tilnærmingen er å 

optimalisere inspeksjonsplanleggingen, og å utforske hvilken effekt dette vil ha på 

kostnadene. Komponentslitasje er simulert med en 4-tilstands Weibull-Markov-modell og 

to forskjellige tilnærminger til pålitelighet. Tilstanden til komponentene approksimeres 

ved hjelp av Monte Carlo-simuleringer. Arbeidet er gjennomføres med ‘Proximal Policy 

Optimization’ og er programmert i Python. Programmets prestasjon sammenlignes med 

en kalenderbasert inspeksjonsplanleggingsplan. Rapporten finner at forsterket læring kan 

anvendes til å forbedre det kalenderbaserte regimet med en liten margin. 

Stikkord: Vedlikehold, Inspeksjon, PPO, Weibull, Markov, Monte Carlo simulering, 

Forsterket læring, Python, RAMS 
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Executive Summary 

The work in this report demonstrates how reinforcement learning can be used for the 

maintenance planning of offshore wind turbines. The report explores the effectiveness of 

using reinforcement learning to optimize inspection scheduling. This is conducted in the 

following way: 

First, the model of the system is constructed. This model is designed to describe how the 

system acts depending on what actions are performed. For this system, there are two 

actions: to do or not do an inspection. If no inspection is performed, the reliability of the 

system is calculated and used to give an approximation of how much power is produced 

on average. If an inspection is performed, the degradation is calculated for all 

components and used to evaluate their state. If a component is found to be degraded, a 

maintenance action is simulated according to the degree of degradation. The system 

reward is penalized according to the maintenance actions performed and estimated 

power production is calculated. 

Second, a reinforcement learning agent is tasked to find the optimal way to solve the 

model. This agent performs better the longer it is allowed to simulate. 

Third, a similar model is built to test different calendar-based inspection schedules. This 

program is designed to test a wide range of intervals to find the optimal one. 

Fourth, the performances of the two models are evaluated. 

Fifth, the steps above are repeated with a different approach to reliability.  

Though this methodology, the reinforcement learning agent is found to be capable of 

outperforming the optimized calendar-based schedule by a small margin both times. 

Calendar-based inspection planning is quite effective, but there is still some room for 

improvement. 
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Chapter 1 - Introduction 
1.1 Background 
Offshore wind technology is a rapidly growing segment of power production. From 2010 

to 2022 the cumulative global capacity of deployed offshore wind turbines increased from 

3.1 GW to 63.2 GW, more than a twenty-fold increase. Draw factors for the industry 

include a vastness of available real estate and a more stable wind distribution than on 

land, meaning that they operate with a higher capacity factor. In Europe, the technology 

has an added benefit of peaking its power production during winter, coinciding with an 

increased demand in power [14]. 

Offshore wind turbines have a higher cost of construction, operation, and maintenance 

than onshore wind turbines. To compensate, offshore wind turbines are generally 

constructed at a larger scale, which significantly increases their power output. A doubling 

in the blade span increases potential power production by a factor of four. 

Datapoints from the G20 countries report that operation and maintenance (O&M) costs 

typically account for 16% to 25% of the levelized cost of electricity of offshore wind 

turbines [14]. For comparison, onshore wind turbine O&M costs are reported to make up 

around 5% of its levelized electricity costs [22]. The differential is caused by a higher 

cost of accessing the site to perform maintenance. O&M of an offshore wind turbine 

requires utilizing specialized vessels and skilled crew. The harsh climate at sea can also 

cause significant lead times at all stages of the O&M process. There are some 

uncertainties connected to the expected lifetime O&M costs of an offshore wind turbine. 

This is caused by a lack of operational experience and a lack of available O&M cost data 

for the industry [14]. The high O&M costs make the industry an excellent candidate for 

optimization studies. 

Reinforcement Learning (RL) has in the last decades emerged as promising tool for 

optimization. This is largely caused by a rapid increase of available processing power and 

data. RL is a type of machine learning that involves training an agent to act in an 

environment to maximize the reward signal. In the context of industrial systems, RL can 

be used to develop maintenance strategies based on real-time system data rather than 

predetermined schedules. 

 

Problem Formulation 

Offshore wind turbines have high operation and maintenance costs. Utilizing 

reinforcement learning to optimize the inspection schedule could have significant impact 

on the cost-effectiveness of the industry. Demonstrate how RL can be used to develop a 

predictive maintenance strategy for offshore wind turbines. 

 

Related Work 

[18] Deep reinforcement learning for cost-optimal condition-based maintenance policy of 

offshore wind turbine components (2023) by Cheng, J., Liu, Y., Li, W., & Li, T.: 

This paper explores different deep reinforcement learning frameworks to derive 

the cost-optimal condition-based maintenance policy for offshore wind turbines. It 



Chapter 1 - Introduction 

5 

 

explores different inspection intervals and repair thresholds and compares the 

cost-efficiency of the approaches. The scope is limited to the blade of a single 

wind turbine. It considers variations in wind conditions and some logistical factors. 

The maintenance actions considered in the report are inspection and replacement. 

There are three states considered: Normal working state, degraded and failed. 

The explored RL-models are PPO and DQN. 

This paper is the main inspiration for the work done in this report. 

[2] Joint optimization of preventive and condition-based maintenance for offshore wind 

farms (2022) by Toftaker, H., Bødal, E. F., & Sperstad, I. B.: 

This paper utilizes a constrained integer linear program, maximizing for income, to 

explore the trade-off between maximizing power production and limiting the 

degradation of the turbines. 

The reward structure utilized in this paper was a major inspiration during the 

design of the reward structure for in this report. 

[3] Modelling wind turbine degradation and maintenance (2016) by Le, B., & Andrews, J.: 

This paper presents an asset model for offshore wind turbine reliability. The model 

accounts for degradation, inspection, and maintenance actions. The purposes of 

the model are to predict the future condition of wind turbine components and to 

investigate the effect of a specified maintenance strategy. 

This paper is this report’s main source of statistical degradation data. 

[31] Proximal Policy Optimization Algorithms v2 (2017) by Schulman, J., Wolski, J., 

Dhariwal, P., Radford, A., & Klimov, O.: 

This paper is the basis for the reinforcement learning technique utilized in this 

report. 

 

What Remains to Be Done? 

Utilizing RL for maintenance scheduling is an emerging field of study that shows great 

promise. Its uses and limitations are still being explored. The complexity of industrial 

systems can pose significant challenges to applying RL to system maintenance. Industrial 

systems often have numerous interacting components and subsystems with complex 

dependencies and feedback loops. This complexity can make it challenging to develop RL 

algorithms that effectively model the system’s behavior. Most articles on the subject let 

the RL algorithm decide the maintenance action outright, but how would the program 

perform if its actions were limited to inspection planning? 

 

1.2 Objectives 
The main objectives of this master thesis are to: 

1 Develop a RL-based predictive maintenance model for an offshore wind turbine. 

2 Compare the effectiveness of the RL-based model to that of a calendar-based 

inspection model. 
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1.3 Approach 
This is the chosen approach to meet the objectives: 

1 Familiarize myself with RL by solving an easy, preexisting environment (cartpole). 

2 Create and solve a simple custom environment based on a Markov model. 

3 Do a literature review to establish a better understanding of the system. 

4 Do a literature review to establish a better understanding of RL. 

5 Establish the data sets that will be used for the digital representation of the system. 

6 Create a digital representation of the system in a RL model. 

7 Create a digital representation of the calendar-based inspection model. 

8 Make observations about the systems’ performances. 

9 Compare the results. 

 

1.4 Limitations 

Experience 

I am a master student in mechanical engineering specializing in the field of RAMS. I have 

limited prior knowledge of Artificial Intelligence and no prior experience with utilizing the 

technology for optimization. Additionally, my experience with coding in Python is purely 

from recreational use. As a result of these factors, the programming in this report will not 

be optimized. 

 

Field of Study 

Writing a multi-disciplinary thesis means that the department is unlikely to specialize in 

both fields of study. Most of the computer science theory utilized in this report will be 

self-thought over the duration of the work. 

 

Timeframe 

This paper was produced over a timeframe of 16 weeks. 

 

Data accuracy 

The data used in this report is based on approximations and available literature. There 

has not been conducted any collaboration with the industry or field research. 

 

Tools 

All simulations in this report were done on an HP EliteBook 830 G6 laptop. It runs on the 

Intel i5-8265U @ 1.60GHz and has 8GB RAM. These are the program specs: 

Visual Studio Code v1.84.2 
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Python v3.11.5 

Gymnasium v0.29.1 

Stable Baselines3 v2.1.0 

 

1.5 Outline 
Here is an overview of how the report is organized: 

Abstract: Practical information about what has been done and the assumed background 

of the reader. 

Acknowledgements: Gratitude for received support. 

Executive summary: Summary of the work done in this report. 

List of figures 

List of simplified code 

List of tables 

List of abbreviations 

List of symbols: List of symbols used in calculations. 

Chapter 1. Introduction: Background, objectives, approach, limitations, and outline of 

the report. 

Chapter 2. System description: System descriptions and assumptions relevant to 

modelling the system for maintenance optimization. 

Chapter 3. Theoretical background: State of the art in RL and RAMS theory. 

Chapter 4. System model: The model is explained. Observation space, action space 

and reward structure are described here. 

Chapter 5. Calculation data: Chosen parameters to describe the system. 

Chapter 6. First case study: Case study on the effectiveness of utilizing RL for 

inspection planning. 

Chapter 7. Second case study: Second case study in the effectiveness of utilizing RL 

for inspection planning. 

Chapter 8. Discussion: Results from the case studies are discussed. 

Chapter 9. Conclusion and future work 

Bibliography 

Appendixes: The appendixes contain the code of the report. They are formatted in the 

following way: 

• Appendix A contains the first case study environment. This is where the step 

function, the reward structure, the observation space, and the action space are 

defined. 
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• Appendix B contains the optimization code. This is where the PPO learns, and 

results are saved. 

• Appendix C contains the code to visualize the results. 

• Appendix D contains the code to find the optimal calendar-based inspection 

interval. 

• Appendix E contains the code to visualize the calendar-based inspection interval. 

• Appendix F, G, H, I and J are structured in the same way, but for the second case 

study.
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Chapter 2 – System Description 
2.1 Wind Turbine Reliability 
A wind turbine is a structurally complex system comprised of thousands of components 

[25]. Each component has its own life expectancy, failure conditions and suitable 

maintenance actions. Notable maintenance actions are routine inspection, cleaning, 

lubrication, repair, and replacement [15]. For a meaningful representation of the system, 

it is important to define the scope. For this report, the scope will be limited to the major 

components. The maintenance actions are limited to inspection, repair, and replacement. 

 

 

Figure 2.1:  Example of a wind turbine and its nacelle layout showing some of the 

terminology [28] 

 

In this report, no redundancy is assumed in the wind turbine system (see Figure 2.2 for 

the fault tree analysis). The components’ reliabilities are also taken to be completely 

independent of each other. Based on these assumptions, the system reliability, 𝑅𝑠𝑦𝑠(𝑡), is 

calculated by taking the product of the component reliabilities, 𝑅𝑖(𝑡): 

𝑅𝑠𝑦𝑠(𝑡) = ∏𝑅𝑖(𝑡)          (2.1)  

There is not conducted a hazard analysis for this report. The risk of critical failure is 

considered beyond the scope of the task. As such, no additional penalty is applied for 

component failures during simulations. 
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2.2 Wind Turbine Power Production 
Wind conditions heavily influence the power production of a wind turbine (see Figure 

2.3). The correlation between a wind turbine’s maximum capacity and its average power 

output is called the capacity factor. Offshore wind turbine projects commissioned in 

Europe in 2022 reported a weighted average capacity factor of 49% [14]. This is the 

capacity factor that will be utilized in this report, though it could also be argued for using 

a capacity factor of 34.2%, the global average for existing offshore wind turbines [16]. 

The capacity factor will influence reward for keeping the system running. 

A weakness of utilizing a capacity factor to estimate power production is that the model 

will be blind to seasonal changes in production. 

 

Figure 2.3: Power production of a 5 MW wind turbine [26] 
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Chapter 3 – Theoretical Background 
3.1 Reinforcement Learning (RL) 
The growth in processing power has made Artificial Intelligence (AI) technology an 

increasingly relevant field of science. Machine learning is a type of AI where the agent 

makes predictions and decides what actions to take based on past and present 

observations [35]. For machine learning to be effective, the future must resemble the 

past. With sufficient historical data, machine learning can be used to approximate 

component degradation, making maintenance planning an excellent candidate for 

machine learning optimization. 

Reinforcement Learning (RL) is a type of machine learning where the algorithm has the 

ability to learn without explicitly being told how. The RL-agent is defined by the 

observation space, the action space, and the reward structure. The observation space 

aims to describe the current state of the system. It contains all the information required 

to make a prediction about the future state of the system. The action space contains all 

the actions the agent is allowed to take at any timestep. The reward structure assigns 

rewards or penalties based on the performance. The goal of the RL agent is to score as 

high of a reward as possible. The RL agent starts by performing random actions, and 

slowly develops an understanding of the optimal action throughout the observation 

space. 

To better illustrate this structure, here is the cartpole problem [36]: 

A pole is attached by an un-actuated joint to a cart. The cart moves along a frictionless 

track. The pendulum is placed upright on the cart. The goal is to balance the pole by 

applying forces to the left and right direction on the cart. 

Action space:   

(0) push cart left 

(1) push cart right 

Observation space:  

(0) cart position 

(1) cart velocity 

(2) pole angle 

(3) pole angular velocity 

Reward structure:   

+1 for every timestep 

The simulation is terminated if the pole falls below a defined angle or if the maximal 

timestep is reached. 

The outcome of each action is calculated in the step function and conveyed back to the 

RL algorithm. 
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3.2 Deep Reinforcement Learning (DRL) 
RL algorithms learn dynamically with a trial-and-error method to maximize the reward. 

Mapping the optimal reward path for all states can overwhelm the algorithm for complex 

systems. This is where DRL comes in. DRL algorithms learn from existing knowledge and 

applies it to the new data set. The “deep” portion refers to the application of a neural 

network. This network estimates the state-action-reward correlation instead of mapping 

every solution [40]. 

The cartpole problem is an example of how this is useful. The state space for this 

problem is a 4-dimensional continuous vector. Mapping the optimal reward path for all 

states in a continuous observation space is infeasible. Traditional RL algorithms would 

therefore require the observation space to be discretized. This is a viable option, but the 

amount of states would still be extremely high. 

 

3.3 Proximal Policy Optimization (PPO) 
PPO is the DRL algorithm that is used for the optimization work in this report. PPO is the 

default RL algorithm at OpenAI [38] and is often referred to as the state of the art in RL. 

Compared with other DRL algorithms, the three main advantages of PPO are its 

simplicity, stability, and sample efficiency [37]. PPO has shown great performance in 

deriving the maintenance schedule of wind turbine systems [18]. 

The PPO agent starts by using a trial-and-error method to map performance based on 

actions, observations, and rewards. This mapping is used to establish a policy network. 

The policy network is used to create a probability distribution of the action space based 

on their expected performance from the current observed state. An action’s assigned 

probability is correlated to its expected performance. The next action is picked with a 

random sampling. The policy network gets continuously updated with observed results. 

 

A more detailed explanation of a PPO algorithm [18], [31], [37]: 

The policy is expressed as a neural network 𝜋𝜃(𝑎|𝑠) with the parameters 𝜃: 

𝜋𝜃(𝑎|𝑠) = Pr⁡[𝑎|𝑠] ∀ 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆       (3.1) 

S is the state space of the model. A is the action space of the model. s is a state. a is an 

action. 

The policy attempts to maximize the total reward, 𝐺𝑡, over a chosen timeframe. 𝐺𝑡 is 

expressed by: 

𝐺𝑡 = 𝑅𝑤(𝑡) + 𝛾𝑅𝑤(𝑡 + 1) + 𝛾2𝑅𝑤(𝑡 + 2) + ⋯ = 𝑅𝑤(𝑡) + 𝐺𝑡+1    (3.2) 

𝑅𝑤(𝑡) is the reward per timestep and 𝛾 is the discount factor. 

The agent takes an action, 𝑎𝑡, sampled from the policy 𝜋𝜃(𝑎|𝑠𝑡) in state 𝑠𝑡. The reward, 

𝑅𝑤(𝑡), and the next state, 𝑠𝑡+1, are noted. At the end of the episode, the total reward, 

𝐺(𝑡), is calculated and the transition process {𝑠𝑡 , 𝑎𝑡 , 𝑅𝑤(𝑡), 𝐺𝑡} is stored in the replay 

memory. After enough samples are stored, the parameters 𝜃 and 𝜔 are updated. 𝜃 is 

updated by minimizing the following loss function: 
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𝐿𝐶𝐿𝐼𝑃 = 𝔼 [min (ratio𝑡(𝜃), 𝑐𝑙𝑖𝑝(𝑟𝑎𝑡𝑖𝑜𝑡(𝜃), 1 − 𝜀𝑐𝑙𝑖𝑝, 1 + 𝜀𝑐𝑙𝑖𝑝))Â𝑡 + 𝛽𝐻(𝜋𝜃)]  (3.3) 

𝑐𝑙𝑖𝑝(·) is the clipping function for the gradient. It is there to prevent rapid change of 

parameters. 𝜀𝑐𝑙𝑖𝑝 is the clipping parameter. 𝐻(·) is the entropy. 𝛽 is the hyperparameter to 

control the strength of entropy. ratio𝑡 is the probability ratio between the new, 𝜋𝜃(𝑎|𝑠𝑡), 

and the old policy, 𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠𝑡): 

ratio𝑡(𝜃) =
𝜋𝜃(𝑎|𝑠𝑡)⁡

𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠𝑡)⁡
         (3.4) 

Â𝑡 is the estimation of the average function at timestep t: 

Â𝑡 = 𝐺𝑡 − 𝑉𝜔(𝑠𝑡)          (3.5) 

𝑉𝜔 is the critic network that estimates the state value. 

The parameters 𝜔 of the critic network are found by minimizing: 

𝐿𝑉(𝜔) = 𝔼 [(G𝑡 − 𝑉𝜔(𝑠𝑡))
2
]         (3.6) 

The samples in the replay memory are be used to update the parameters numerous 

times before they are deleted, and new samples are collected. 

 

3.4 Implementation 
A challenge with PPO is that it is vulnerable to early convergence. This means that it finds 

a local optimum and stops exploring before it reaches the global optimum. This can be 

combatted by incentivizing exploration. However, if the incentive for exploration is too 

high, the model’s ability to learn will be reduced. The model may even unlearn previous 

progress. Different hyperparameter initializations and search parameters can have a 

significant impact on performance [30].  

The optimization in this report is done using a simple, vectorized wrapper for multiple 

environments, calling each environment in sequence. The program essentially runs 

multiple iterations of the same environment. This environment wrapping technique is 

sometimes referred to as “DummyVecEnv.” The technique reduces the time spent in the 

network interface by parallelizing over multiple inputs when doing rollouts. Running 

decorrelated samples also helps with training. “DummyVecEnv” is optimal for 

computationally simple environments, where the overhead outweighs the computation 

time [33], [34]. 
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3.5 Reliability Theory 
Mechanical component failures can generally be segmented into three categories (Figure 

3.1):  

• Early failures: Failures caused by errors in installation or production. 

• Intrinsic failures: Failures caused by short-term overload and sudden 

breakdowns. 

• Deterioration: Failures caused by long-term degradation and aging. 

 

Figure 3.1: “The Bathtub curve” [27] – The shape parameter is denoted by β. 

 

Two common ways of expressing system reliability of a mechanical system are the 

exponential distribution function and the Weibull distribution function. The exponential 

distribution function assumes a constant failure rate. The failures are considered to be 

evenly distributed throughout the recorded timeframe. In other words, this approach 

takes most failures to be intrinsic, and early failures and deterioration failures are 

assumed to be negligible. A strength of the exponential distribution function is that it 

makes expressing reliability trivial for any data set. The simplicity of the expression also 

simplifies calculations. 

The Weibull distribution function expands upon the exponential function by introducing 

the shape parameter. The purpose of the shape parameter is to simulate changes in the 

failure function. This way degradation can be simulated. Most failures in mechanical 

systems are gradual processes, rather than sudden occurrences [9]. As such, 

deterioration should be assumed to be a notable cause of component failures. For this 

reason, the Weibull distribution function is chosen to simulate the system degradation. 

Premature (early) failures are not considered. 
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3.6 Maintenance Theory 
The two main types of maintenance actions are preventive maintenance and corrective 

maintenance. 

Corrective maintenance (CM) refers to maintenance actions performed after critical 

degradation or failure. A corrective maintenance strategy, run-to-failure maintenance, 

can quickly become costly due to production interruptions caused by extended equipment 

downtime [11]. In this report, corrective maintenance is used interchangeably with 

replacement.  

Preventive maintenance (PM) is planned maintenance performed when an item is 

functioning correctly to prevent future failures. Preventative maintenance aims to prolong 

the lifetime of a system component. Preventive maintenance plans can be classified into 

the following categories [20]:  

• Age-based maintenance: Tasks are performed at a specified component age. 

• Clock-based maintenance: Tasks are performed at fixed calendar times. 

• Condition-based maintenance: Tasks are performed based on measured 

condition variables. 

The downside of a preventive maintenance plan is that it generally performs maintenance 

before it is necessary, reducing the lifespan of some components and resulting in 

additional costs [11]. Repairs or overhauls generally cannot return the system to its 

initial state. Practically, the lifetimes of repaired components show a significant amount of 

uncertainty [9]. In this report preventive maintenance is used interchangeably with 

repair. 

The maintenance plan utilized in this report is predictive, condition-based maintenance. 

The program schedules inspections based on component ages. Its performance is 

compared to that of a clock-based inspection cycle.
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Chapter 4 – System Model 
4.1 Simulating Degradation 

Degradations of the system components are simulated with a 4-state Markov model. 

Figure 4.1 illustrates the attributes of the states. 

 

 

Figure 4.1: Descriptive illustration of the Markov states [3] 

 

The program will calculate the probability distribution between the four states at each 

timestep. This is done by using the failure rate function for the system component, 𝑧𝑖(𝑡). 

𝑧(𝑡) = 𝛼𝜆(𝜆𝑡)𝛼−1         [20] (4.1)  

𝑧𝑖,𝑠(𝑡) = 𝛼𝑖,𝑠𝜆𝑖,𝑠(𝜆𝑖,𝑠𝑡𝑖,𝑠)
𝛼𝑖,𝑠−1        (4.2) 

𝜆 is the scale parameter and 𝛼 is the shape parameter of the Weibull distribution function. 

𝑡𝑠 denotes time spent in state s. i is the system component index. 

 

Figure 4.2: Illustration of the Markov state transition model 
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The reliability of a system component, 𝑅𝑖(𝑡), is the probability of not being in the failed 

state, state 3. 

𝑅𝑖(𝑡) = 1 − Pr𝑖,𝑠=3(𝑡)         (4.3) 

 

 

4.2 Observation Space and Action Space 
The observation space of the system keeps track of the age of each system component. 

Observation space:  

(0) Time since maintenance action for component 0. 

(1) Time since maintenance action for component 1. 

… 

(i) Time since maintenance action for component i. 

 

Action space:   

(0) No action 

(1) Inspection 

If an inspection is performed, the program calculates the state probability distribution for 

each component. This is used to simulate the component state. The program uses a 

random number between 0 and 1 to simulate the expected state of the system 

component. Using Figure 4.3 as an example, rolling 0.00 - 0.40 would simulate a normal 

working state, 0.40 - 0.65 a degraded state, 0.65 - 0.85 a critical state and 0.85 - 1.00 a 

failed state. 

 

Figure 4.3: Example of a state probability distribution 
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For components in the normal working state, no futher maintenance actions are 

performed. For components in a degraded state, preventive maintenance is performed. 

For components in a critical state or failed state, corrective maintenance is performed. 

Preventive and corrective maintenance are both assumed to return the component to 

“good as new,” resulting in a component age of 0 weeks.  

 

 

4.3 The Reward Structure 
The reward structure for the program is based on expected income and expenditures. 

The reward is divided by 106 to prevent it from going out of the bounds of the PPO policy. 

𝑅𝑤(𝑡) = 𝐼(𝑡) − 𝐶𝑀(𝑡)         (4.4) 

Here, 𝑅𝑤(𝑡) represents expected income in week t and 𝐶𝑀(𝑡) represents maintenance 

costs in week t. 

Expected income, 𝐼(𝑡), at any timestep is given by: 

𝐼(𝑡) = 𝑅𝑠𝑦𝑠(𝑡) ∗ 𝑇(𝑡) ∗ 𝑃 ∗ 𝐶 ∗ 𝑆        (4.5) 

Here, 𝑅𝑠𝑦𝑠(𝑡) is the system reliability on week t. 𝑇(𝑡) is the production hours of the system 

during week t. 𝑃 is the maximum power capacity of the wind turbine. 𝐶 is the average 

capacity factor for the turbine. 𝑆 is the average selling price of power. 

 

If inspection is not performed: 

𝐶𝑀(𝑡) = 0           (4.6) 

𝑇(𝑡) = 24ℎ ∗ 7          (4.7) 

 

If inspection is performed: 

𝐶𝑀(𝑡) = 𝐶𝐼 + ∑𝐶𝑃𝑀(𝑡) + ∑𝐶𝐶𝑀(𝑡)        (4.8) 

𝑇(𝑡) = 24ℎ ∗ 7 − 𝑇𝐼 − ∑𝑇𝑃𝑀(𝑡) − ∑𝑇𝐶𝑀(𝑡)       (4.9) 

 

𝐶𝐼 is the cost of inspection. ∑𝐶𝑃𝑀(𝑡) is the cost of all preventive maintenance actions 

performed in week t. ∑𝐶𝐶𝑀(𝑡) is the cost of all corrective maintenance actions performed 

in week t. 𝑇𝐼 is the system downtime required to do an inspection, this is assumed to be 

1 hour. ∑𝑇𝑃𝑀(𝑡) is the duration of all preventive maintenance actions performed in week t. 

∑𝑇𝐶𝑀(𝑡) is the duration of all corrective maintenance actions performed in week t.
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Chapter 5 – Calculation Data 
5.1 General Parameters 
The data used to simulate the system is based on approximations and available 

literature. The simulations will be based on a 5 MW capacity wind turbine. The wind 

turbine is expected to operate with an average capacity factor of 49%. The selling price 

of power is simplified to be static at 0,04 € / kWh. 

 

Description Value Source 

Power capacity (𝑷) 5 MW [29] 

Capacity factor (𝑪) 49 % [14] 

Selling price of power (𝑺) 0,04 € / kWh [18], [26] 

Inspection cost (𝑪𝑰) 2500 € [18], [26] 

Conversion rate 1,14 €/£  

Table 5.1: Calculation values 

 

5.2 Weibull Parameters 
Table 5.2 contains estimated Weibull parameters. They describe the behavior of the 

simulated failure rate function as the component degrades to the specified state. The 

numbers are based on estimates and inspection data for onshore wind turbines, as there 

currently is limited data available for offshore wind turbines [14]. 
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Subsystem Component Degraded 

condition 

(years) 

Critical 

condition 

(years) 

Functional 

failure 

(years) 

Source 

Drivetrain Main bearings β = 1.2, 

η = 160 

β = 1.5, 

η = 20 

β = 1.5, 

η = 20 

[3] 

 Gearbox β = 1.3, 

η = 16 

β = 1.2, η = 2 β = 1.4, 

η = 2 

[3] 

 Main shafts β = 1.2, 

η = 160 

β = 1.5, 

η = 20 

β = 1.5, 

η = 20 

[3] 

Hydraulic 

system 

Motor/gear 

pump 

- - β = 1.2, 

η = 20 

[3] 

 Valves/pipes β = 1.2, 

η = 13.11 

- β = 1.2, 

η = 3.28 

[3] 

Brake 

system 

Callipers/pads β = 1.2, 

η = 13.11 

- β = 1.2, 

η = 3.28 

[3] 

 Brake discs β = 1.2, 

η = 42.28 

- β = 1.2, 

η = 10.57 

[3] 

Yaw 

system 

Hydraulic 

actuator 

β = 1.2, 

η = 42.28 

- β = 1.2, 

η = 10.57 

[3] 

 Bearing/gear β = 1.2, 

η = 29.12 

β = 1.2, 

η = 3.64 

β = 1.2, 

η = 3.64 

[3] 

 Yaw brake β = 1.2, 

η = 29.12 

β = 1.2, 

η = 3.64 

β = 1.2, 

η = 3.64 

[3] 

Pitch 

system 

Hydraulic 

actuator 

β = 1.2, 

η = 29.12 

- β = 1.2, 

η = 7.28 

[3] 

 Bearing/gear β = 1.2, 

η = 15.38 

β = 1.2, 

η = 1.92 

β = 1.2, 

η = 1.92 

[3] 

Hub Hub β = 1.2, 

η = 15.38 

β = 1.2, 

η = 1.92 

β = 1.2, 

η = 1.92 

[3] 

Blades Blades β = 1.2, 

η = 23.02 

β = 1.2, 

η = 2.88 

β = 1.2, 

η = 2.88 

[3] 

Power 

system 

Generator β = 1.2, 

η = 15.38 

β = 1.2, 

η = 1.92 

β = 1.2, 

η = 1.92 

[3] 

 Frequency 

converter 

β = 1.2, 

η = 33.38 

- β = 1.2, 

η = 8.35 

[3] 

 Transformer - - β = 1.2, 

η = 14.93 

[3] 

Structure Tower - - β = 1.2, 

η = 14.93 

[3] 

 Nacelle β = 1.2, 

η = 133.33 

β = 1.2, 

η = 16.67 

β = 1.2, 

η = 16.67 

[3] 

 Foundation β = 1.2, 

η = 133.33 

β = 1.2, 

η = 16.67 

β = 1.2, 

η = 16.67 

[3] 

Table 5.2: Weibull parameters 
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In literature, many Greek letters are used in the literature to describe the parameters of 

the Weibull distribution function. For clarity:     

λ =
1

η
 (scale parameter) 

α = β (shape parameter) 

 

5.3 Maintenance Costs and Durations 
The maintenance options are limited to one preventive and one corrective maintenance 

action per component. This is done to streamline the modelled maintenance plan. It is 

important to be cognizant of simplifications. An oversimplified system can give optimized 

solutions that are misleading or wrong. Establishing the right calculation parameters is 

critical to the effectiveness of the program. On a real-life implementation, the work to 

establish these parameters should be thorough. As this report is purely for research 

purposes, the data sets in this chapter serves its use, and are considered good enough. 

 

Subsystem Component PM 

costs 

PM 

duration 

CM 

costs 

CM 

duration 

Source 

Drivetrain Main bearings £5,000 3 h £20,000 70 h [3] 

 Gearbox £50,000 10 h £260,000 50 h [3] 

 Main shafts £5,000 3 h £37,000 70 h [3] 

Hydraulic 

system 

Motor/gear 

pump 

- - £26,000 10 h [3] 

 Valves/pipes - - £1,000 3 h [3] 

Brake 

system 

Callipers/pads - - £4,000 10 h [3] 

 Brake discs - - £4,000 10 h [3] 

Yaw 

system 

Hydraulic 

actuator 

£7,000 3 h £20,000 10 h [3] 

 Bearing/gear £7,000 10 h £9,000 70 h [3] 

 Yaw brake - - £9,000 10 h [3] 

Pitch 

system 

Hydraulic 

actuator 

£8,000 3 h £23,000 10 h [3] 

 Bearing/gear £8,000 3 h £23,000 10 h [3] 

Hub Hub £3,000 3 h £44,000 70 h [3] 

Blades Blades £4,000 3 h £200,000 70 h [3] 

Power 

system 

Generator £50,000 10 h £150,000 50 h [3] 

 Frequency 

converter 

- - £12,000 50 h [3] 

 Transformer - - £30,000 10 h [3] 

Structure Tower £20,000 3 h £264,000 70 h [3] 

 Nacelle £5,000 3 h £40,000 70 h [3] 

 Foundation £15,000 3 h £204,000 70 h [3] 

Table 5.3: Cost and duration of maintenance actions
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Chapter 6 – First Case Study 
6.1 Central System 
See Appendix A, Appendix B and Appendix C for the code. 

For the first case study, a program is designed to model the deterioration and 

maintenance of a single-component system consisting of solely of the blade of a wind 

turbine. This system is a single-component 4-state Weibull-Markov model. 

The state probability distribution is calculated from the time of the last maintenance 

action (installation, repair, or replacement). In other words, the reliability of a system 

component is reset on maintenance. On inspection and maintenance, the program 

estimates production downtime and reduces the reward accordingly. The system is then 

set to state 0. This means that the simulated timeframe exclusively represents operative 

time. A change in degradation after repair is also not simulated. 

 

PM cost PM duration CM cost CM duration 

£4,000 * 1,14 €/£ 3 h £200,000 * 1,14 €/£ 70 h 

Table 6.1: Maintenance data for wind turbine blades, from Table 5.1 and 5.3. 

 

Notice the difference in the cost of preventive and corrective maintenance (see Table 

6.1). Based on this observation, the PPO agent should be expected to be cautious about 

degrading the component to the critical state, as it would be forced perform corrective 

maintenance. The scale of the cost difference may be a result of an oversimplification of 

the data. 

 

Degraded condition 

(weeks) 

Critical condition 

(weeks) 

Functional failure 

(weeks) 

𝛼0 = 1.2 𝛼1 = 1.2 𝛼2 = 1.2 

𝜆0 =
1

23.02 ∗ 52
 𝜆1 =

1

2.88 ∗ 52
 𝜆2 =

1

2.88 ∗ 52
 

Table 6.2:  Weibull parameters for wind turbine blades, from Table 5.2. 

 

The transition probabilities of the Markov chain are used to calculate the state probability 

distribution at each timestep. The complexity of the chosen model makes it impossible to 

calculate the state probability directly. For this reason, a Monte Carlo simulation is used 

to find an approximation of the state probability distribution. 

𝑧𝑖,𝑠(𝑡) = 𝛼𝑖,𝑠𝜆𝑖,𝑠(𝜆𝑖,𝑠𝑡𝑖,𝑠)
𝛼𝑖,𝑠−1        (4.2) 

To find the distribution at time T, the system component degradation is simulated with 

the failure rate function (Formula 4.2) for every timestep t in range [t0, T], where t0 is 

the time of entering the current state. The result is compared to a random number 

between 0 and 1. If the failure rate function is larger, then the component is considered 

to have degraded to the next state for the rest of the calculation. For state 0, t0 is the 
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time of the last maintenance action; for states 1 and 2, t0 is the time of degradation. In 

the end, the component is found to be in states 0, 1, 2 or 3. The result is stored, and the 

simulation is repeated. A higher number of iterations produces a higher probability 

distribution precision. See Code 6.1 for simplified Python code. 

 

Code 6.1: Finding state probability distribution with Monte Carlo simulations. 

  See Appendix A for the complete code. 

state_dist = [0,0,0,0] 

for mc_loop in range (0, MC_LOOPS): 

 state = 0 

 time_in_state = 0 

 for t in range (0, time_since_maintenance + 1): 

  if state == 0: 

   Compute z_0 

   if z_0 >= random.randint(0,10**6)/10**6: 

                        state = 1 

                        time_in_state = 0 

                  else: 

                        time_in_state += 1 

  elif state == 1: 

   Compute z_1 

              if z_1 >= random.randint(0,10**6)/10**6: 

                   state = 2 

                     time_in_state = 0 

             else: 

                   time_in_state += 1 

   elif state == 2: 

              Compute z_2 

                if z_2 >= random.randint(0,10**6)/10**6: 

                   state = 3 

                       time_in_state = 0 

               else: 

                      time_in_state += 1 

 state_dist[state] += 1/MC_LOOPS 
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6.2 Control System 
See, Appendix E for the code. 

For the control system, the same system attributes are used, but with a constant 

inspection interval instead. To find the optimal inspection interval, a simulation is run for 

every interval in a chose range, for example 1 to 200 weeks. The best-performing 

interval is then chosen to be compared to the reinforcement learning system. 

A Monte Carlo simulation is used for the probability distribution, as well as for the 

expected reward for each inspection interval. In other words, the program runs a Monte 

Carlo simulation inside another Monte Carlo simulation. That makes this step quite time-

consuming. See Code 6.2 for simplified Python code. 

 

Code 6.2: Logic to find the optimal inspection interval. 

  See Appendix D for the complete code. 

sum_reward = [0] * NUMBER_OF_INTERVALS 

for loop in range (0, LOOPS): 

 for inspection_interval in range (MIN_INTERVAL, MAX_INTERVAL+1): 

  for runtime in range (1, TIMEFRAME+1): 

             if (runtime % inspection_interval) == 0: 

                  action = 1 

             else: 

                  action = 0 

   Compute reward 

   sum_reward [inspection_interval – MIN_INTERVAL] += reward 

sum_reward /= LOOPS 

rw_max = 0 

optimal_inspection_interval = 0 

for interval in range (MIN_INTERVAL, MAX_INTERVAL+1): 

 if sum_reward[interval - MIN_INTERVAL] > rw_max: 

  rw_max = sum_reward[interval - MIN_INTERVAL] 

  optimal_inspection_interval = interval 

 

The program is run with low precision over an extensive range of inspection intervals 

(see Figure 6.1) to establish a rough approximation of the optimal interval. The resulting 

graph is then used to narrow the range for the next, higher-precision run (see Figure 

6.2). This is done to save computing time. The high-precision run is run with 15 of each 

Monte Carlo loop. This is too low to get a conclusive result on the optimal inspection 

interval, but the resulting estimate is a good enough for our use. The simulation finds the 

optimal inspection interval to be 15 weeks. Based on these results, 15 weeks is used as 

the inspection interval of the control system. 

 



Chapter 6 – First Case Study 

26 

 

 

Figure 6.1: Finding Optimal Inspection Interval, Low Precision: 17 weeks. 

Avg. reward: 82.145. Minimum interval: 1. Maximum interval: 200. 

Timeframe: 100 years. Both Monte Carlo simulations: 5 iterations. 

 

Figure 6.2: Finding Optimal Inspection Interval, Higher Precision: 15 weeks. 

Avg. reward: 82.111. Minimum interval: 10. Maximum interval: 40. 

Timeframe: 100 years. Both Monte Carlo simulations: 15 iterations. 
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6.3 Policy Collapse 
Running the PPO simulations outright results in a policy collapse (see Figure 6.3). A 

policy collapse means that the policy dramatically worsen as the agent continues 

interacting with the environment. Policy collapse is a known phenomenon in RL, however 

there is currently not much research on the subject [39]. 

 

Figure 6.3: Policy collapse. Visualized with TensorBoard. 

 

A common way of overcoming policy collapse is by modifying the parameters of the RL 

algorithm. This process can be time consuming as a simulation needs to be run after 

each modification to evaluate its impact. 

The policy collapse of the case study PPO is likely caused by the high cost of corrective 

maintenance. These random spikes in penalty can confuse the algorithm. To reduce the 

impact of the spikes, the PPO algorithm parameters are altered. The agent is made to 

base its decision making on a larger batch size and learn at a slower pace. There is also 

introduced a clipping parameter, which aims to reduce the impact of sudden spikes. 
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Simulation and PPO algorithm parameters 

n_envs = 5 

This is the number of environments that are simulated in succession. It helps with 

exploration and run time. 

n_steps = 1 000 

This is the horizon. It defines how far into the future rewards influence the policy. 

batch_size = 5 000 

This is the minibatch size. It defines the number of samples that are stored in the replay 

memory. batch_size = n_envs * n_steps. 

gamma = 0.998 

This is the discount factor. It defines how much future rewards are weighted. This 

coefficient is increased to make the program consider a larger time frame for its actions. 

learning_rate = 5 ∗ 10−5 

This is the learning rate. It influences how fast the neural network adapts to 

observations. By default, learning_rate = 0.003. This rate is reduced to minimize the 

impact of random spikes. 

clip_range = 0.1 

This is the clipping parameter. Its purpose is to prevent rapid changes in the policy from 

singular updates. 

 

Effect of the Parameter Changes 

A new simulation is run with the parameter changes in place (see Figure 6.4). The reward 

is also reduced by a factor of 10 for this test in case the reward function was running out 

of the bounds of the PPO algorithm. The performance can be observed to be more stable 

with these changes in place. 

 

Figure 6.4: New learning rate graph. Visualized with TensorBoard.  
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6.4 Results 
Both programs are run though 10 simulations over a timeframe 30 years with 50 Monte 

Carlo loops. The 30 year time frame was chosen to make the figures easier to read. 

These are the results: 

Measurement Central system Control system 

Average reward 24.719119 24.577995 

Standard deviation 0.092868 0.108421 

Table 6.3: Performance measurements of the systems 

 

See figure 6.5 and 6.6 on the next page for the reward spreads over the 10 simulations. 

From these figures the performance spread can be observed. Their performances are also 

documented in Table 6.3. A higher number of Monte Carlo loops would increase the 

precision of the graphs, but 50 Monte Carlo loops per simulation is found to be sufficient 

to establish a trend. The control system holds up surprisingly well. The central system 

outperforms the control system, but only by 0.57%. This illustrates the effectiveness of 

calendar-based maintenance and serves as a reminder to why this is the industry 

standard. 

Figures 6.7 and 6.8 show the simulated system reliability of the two approaches over the 

span of 30 years. The dashed cyan lines are times of inspection. In these figures, it can 

be observed a notable difference in the system reliability level. The central system is able 

to maintain a higher level of reliability while performing substantially fewer inspections. 

Figures 6.9 and 6.10 provide some more insight into this observation. These figures 

describe the state probability distribution of the approaches over 30 years. Note how the 

probability distributions for the degraded and critical states are similar between the two 

approaches. The main difference is seen in the normal working state and the failed state. 

This means that the RL system is more effective at performing maintenance on 

components before they reach the failed state. This can also be observed in the spread of 

inspections (cyan lines). 
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Figure 6.5: Central system: Reward per simulation. Timeframe: 30 years. 50 Monte 

Carlo simulations. Avg. reward: 24.719. Standard deviation: 0.093. 

 

Figure 6.6: Control system: Reward per simulation. Timeframe: 30 years. 50 Monte 

Carlo simulations. Avg. reward: 24.578. Standard deviation: 0.108. 
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Figure 6.7: Central system: System reliability. 65 inspections over 30 years. 

50 Monte Carlo simulations. The dashed cyan lines are times of inspection. 

 

Figure 6.8: Control system: System reliability. 104 inspections over 30 years. 

50 Monte Carlo simulations. The dashed cyan lines are times of inspection. 
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Figure 6.9: Central system: State probability distribution. 65 inspections over 30 

years. 50 Monte Carlo simulations. The dashed cyan lines are times of 

inspection. 

 

Figure 6.10: Control system: State probability distribution. 104 inspections over 30 

years. 50 Monte Carlo simulations. The dashed cyan lines are times of 

inspection.
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Chapter 7 – Second Case Study 
See Appendix F, Appendix G, Appendix H, Appendix I and Appendix J for the code. 

7.1 Model Changes 
A weakness of the model in the first case study was that an inspection without repair had 

no effect on the reliability of the system. In this chapter, a different model is proposed. 

This model will assume all components to be in the normal working state after an 

inspection is performed and use this to calculate the state probability distribution.  

 

Figure 7.1: Illustration of proposed component reliability and failure rate function 

 

The model will use the time since inspection as the basis for the component state and the 

component age (time since maintenance) will be used to find the failure rate function 

(see figure 7.1 and 7.2). The main goal of the model is to reduce the simulation 

processing time by lowering number of calculations. The PPO agent is also expected to 

stop suggesting weekly inspections for components that have surpassed a certain age. 

 

Figure 7.2: Descriptive illustration of terms 
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In Figure 7.2, notice how component 2 received maintenance during the last inspection. 

The time since inspection and time since maintenance action for this component are 

therefore the same. 

The model in this case study also has a different way of calculating the cost of 

maintenance. The spikes in penalty in the previous system seemed to impact its 

performance. Since the system model does not simulate a change in degradation after 

repairs the only simulated difference between preventive and corrective maintenance is 

the cost and production time loss. There is also no additional penalty for system 

breakdowns. This means that the spikes can be evened out by extrapolating the cost of 

preventive and corrective maintenance into a continuous function with the state 

probability distribution as its variable (See formula 7.1). This approach should not have 

any impact on the optimal solution. 

𝐶𝑀,𝑖(𝑡) = 𝐶𝑃𝑀,𝑖
Pr𝑖,𝑠=1(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
+ 𝐶𝐶𝑀,𝑖

Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
  (7.1) 

 

The same approach is also used to calculate expected maintenance downtime: 

𝑇𝑀,𝑖(𝑡) = 𝑇𝑃𝑀,𝑖
Pr𝑖,𝑠=1(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
+ 𝑇𝐶𝑀,𝑖

Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
  (7.2) 

 

Like before, the combined maintenance costs are found by adding the cost of inspection, 

𝐶𝐼, to the cost of all preventive/corrective maintenance actions performed at time t, 

∑𝐶𝑀,𝑖(𝑡). The same is done for production loss. 

 

If inspection is performed at t: 

𝐶𝑀(𝑡) = 𝐶𝐼 + ∑𝐶𝑀,𝑖(𝑡)         (7.3) 

𝑇𝑀(𝑡) = 𝑇𝐼 + ∑𝑇𝑀,𝑖(𝑡)         (7.4) 

 

The optimal constant inspection interval is found with the same method as before (see 

figure 7.3 and 7.4). 
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Figure 7.3: Finding optimal inspection interval, low precision: 78 weeks. 

Avg. reward: 85.356. Minimum interval: 1. Maximum interval: 200. 

Timeframe: 100 years. Both Monte Carlo simulations: 5 iterations. 

 

Figure 7.4: Finding optimal inspection interval, higher precision: 59 weeks. 

Avg. reward: 85.404. Minimum interval: 40. Maximum interval: 120. 

Timeframe: 100 years. Both Monte Carlo simulations: 15 iterations. 
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Policy Collapse 

Like in the first case study, the RL policy struggles with policy collapse. A clipping 

parameter of 0.1 is introduced to combat this as well as an increase in the gamma 

parameter from 0.99 to 0.995. The RL-agent is able to outperform the control system 

after 6 000 000 timesteps of simulation. This simulation took 18 hours. With more 

simulation time it can be assumed that the performance would increase further. 

7.2 Results 
Both programs are run though 10 simulations over 30 years with 50 Monte Carlo loops. 

These are the results: 

Measurement Central system Control system 

Average reward 25.577634 25.551247 

Standard deviation 0.025703 0.021337 

Table 7.1: Performance measurements of the systems 

Though the time per simulation was lowered, the system model was a lot harder to 

optimize than the first. The reason for this can be seen in Figure 7.3 and 7.4. The top of 

the curve is quite flat, meaning that the difference in performance between inspection 

intervals is very low. This makes establishing the pattern notably hard for the algorithm. 

Even the slightest of maintenance spikes would be devastating for the PPO without the 

clipping parameter in place. 

Figures 7.5 and 7.6 show the performance spread for the central and control systems 

across 10 simulations. The result is also summarized in Table 7.1. 

The difference in performance between the two approaches is 0.1%, even lower than in 

the previous case study. It should be noted that this difference likely would increase if 

given more simulation time. The times of inspection (cyan lines) in figures 7.7 and 7.9 

visualize how the RL-agent is yet to understand the system. It would be more optimal to 

perform rapid inspections on an old component. The simulation starts with a completely 

new component, so the spike in inspections around week 1 shows this misunderstanding. 

It can also be observed how the correlation between degradation and inspection is yet to 

be established by how the peaks in degradation does not correlate to increased frequency 

in inspections. Still, the agent has slowly been improving with the simulations and 

performs on par with the optimal calendar-based approach, even before ironing out these 

misunderstandings. 

From Figure 7.7, 7.8, 7.9 and 7.10 it can be observed that the central system performs 

approximately the same number of inspections (cyan lines) as the control system while 

maintaining a similar or perhaps even worse level of reliability. 

The rewards in this case study are higher than in the previous one. This was expected 

because it is based on a more optimistic approach to reliability. This means that an 

implementation of this approach would demand a higher level of precision in the 

inspection data and the statistical data. The model in the second case study is based on a 

very theoretical understanding of degradation. It assumes rigid differences in the Markov 

states, perfect maintenance, and perfect inspections. In practice, the lines are generally a 

bit more blurred. 

Because the simulation time for this case study was so limited, the first case study will be 

weighted higher in the conclusions.  
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Figure 7.5: Central system: Reward per simulation. Timeframe: 30 years. 50 Monte 

Carlo simulations. Avg. reward: 25.578. Standard deviation: 0.026. 

 

Figure 7.6: Control system: Reward per simulation. Timeframe: 30 years. 50 Monte 

Carlo simulations. Avg. reward: 25.551. Standard deviation: 0.021. 
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Figure 7.7: Central system: System reliability. 28 inspections over 30 years. 

  50 Monte Carlo simulations. The dashed cyan lines are times of inspection. 

   

Figure 7.8: Control system: System reliability. 27 inspections over 30 years. 

  50 Monte Carlo simulations. The dashed cyan lines are times of inspection. 
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Figure 7.9: Central system: State probability distribution. 28 inspections over 30 

years. 50 Monte Carlo simulations. The dashed cyan lines are times of 

inspection. 

 

Figure 7.10: Control system: State probability distribution. 27 inspections over 30 

years. 50 Monte Carlo simulations. The dashed cyan lines are times of 

inspection.
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Chapter 8 – Discussion 
Due to the time constraints, equipment limitations and available experience, there was 

no time to study how the effectiveness of RL-based vs calendar-based inspection 

planning developed as more components were introduced. This will have to be done in 

future work. The complexity of the model created a bottleneck for processing power. 

Using a PPO-algorithm to optimize an inspection schedule is substantially more RAM 

intensive than letting it decide the actions outright. Combining this problem setting with 

a 4-state Weibull-Markov system representation was perhaps a bit ambitious, given the 

limitations. 

Policy collapse was the biggest time sink of the report. It did, however, teach a valuable 

lesson in how policy parameters of the PPO can stabilize the model with enough trial and 

error. 

The results of the case studies have demonstrated the possibility of utilizing RL for 

optimizing the inspection schedules for mechanical systems. The case studies have also 

highlighted the effectiveness of calendar-based inspection planning. 

The optimal inspection intervals were drastically different in the two case studies. The 

two different approaches to reliability theory would therefore have a substantial impact 

on the performance of the inspection schedule. It is important to be mindful of the 

significance of the simplifications that are made when modelling a complex system. 
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Chapter 9 – Conclusions and Future Work 
Conclusions 
This report has demonstrated how reinforcement learning can be used for inspection 

scheduling for offshore wind turbines. The performance of the model was compared to 

that of an optimized calendar-based inspection schedule. Performance was measured in 

cost savings, but reliability and number of inspections were also observed. There were 

conducted two case studies of single-component systems based on different approaches 

to reliability.  

The reinforcement learning-based models performed marginally better than the calendar-

based inspections. The first cast study was able to achieve this performance while 

maintaining a higher level of reliability and scheduling notably fewer inspections. 

Optimizing the second case study was more time intensive than the first. During the 

timeframe of this report, it could only be optimized to the point of performing on par with 

the control system. 

 

Suggestions for Future Work 
Short term: It would be interesting to investigate how the RL- and calendar-based 

approaches perform as more components are introduced. Can a trend be observed as 

more components are added? 

Medium term: The RL environment could be expanded to handle logistical parameters, 

such as additional wind turbines, available maintenance crew, travel times, work hours 

and supply chain delays. How would it handle these additional parameters? This would 

significantly add to the complexity of the model further increasing its processing demand. 

Long term: Could a complex RL-based inspection schedule be designed to be 

competitive in performance to that of a condition-monitoring approach to maintenance 

planning?  
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Appendix A 
The First Environment 
import numpy as np 

import random 

import gymnasium 

from gymnasium import spaces 

 

class Simple_Single_Component(gymnasium.Env): 

    metadata = {"render_modes": ["rgb_array"], "render_fps": 4} 

 

    def __init__(self): 

        # Action space: (0) no action, (1) inspection 

        self.action_space = spaces.Discrete(2) 

 

       # Observation space: 

       # | Num | Description                                   | Min | Max| 

       # |-----|-----------------------------------------------|-----|----| 

       # | 0   | (Blade) Time since maintenance action (weeks) | 0   | inf| 

 

        COMPONENTS = 1 

        low = np.zeros((COMPONENTS),dtype=np.float32) 

        high = np.ones((COMPONENTS),dtype=np.float32) 

        high *= 10**6 

        self.observation_space = spaces.Box(low, high, dtype=np.float32) 

 

        self.time_since_maintenance = None 

 

    def step(self, action): 

        COMPONENTS = 1 

        MC_LOOPS = 10 

        POWER_CAPACITY = 5 

        CAPACITY_FACTOR = 0.49 

        VALUE_OF_MWH = 40 
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        INSPECTION_COST = 2000 

        CONVERSION_RATE = 1.14 

 

        # Cost of repair, cost of replacement 

        COST_OF_MAINTENANCE = np.array([ 

            [4000, 200000]], dtype=np.float32) 

        COST_OF_MAINTENANCE *= CONVERSION_RATE 

 

        # Duration of repair, duration of replacement 

        DURATION_OF_MAINTENANCE = np.array([ 

            [3, 70]], dtype=np.float32) 

 

        # Weibull parameters for the markov transition to degradated, 

critical, failure states 

        SCALE_PARAM = np.array([ 

            [23.02, 2.88, 2.88]], dtype=np.float32) 

        SCALE_PARAM = 1/(SCALE_PARAM*52) 

        SHAPE_PARAM = np.array([ 

            [1.2, 1.2, 1.2]], dtype=np.float32) 

        z_normal = np.zeros(COMPONENTS, dtype=np.float32) 

        z_degraded = np.zeros(COMPONENTS, dtype=np.float32) 

        z_critical = np.zeros(COMPONENTS, dtype=np.float32) 

        reward = 0 

        done = False 

        production_hours = 7*24 

        reliability = [1] * COMPONENTS 

        system_reliability = 1 

        state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 

                time_in_state = 0 

                for t in range (0, 

round(self.time_since_maintenance[component])+1): 
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                    if state == 0: 

                        z_normal[component] = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal[component] >= 

random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded[component] = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded[component] >= 

random.randint(1,10**6)/10**6: 

                            state = 2 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 

                        z_critical[component] = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical[component] >= 

random.randint(1,10**6)/10**6: 

                            state = 3 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist[component, state] += 1/MC_LOOPS 

            reliability[component] = 1 - state_dist[component, 3] 

            system_reliability *= reliability[component] 

            self.time_since_maintenance[component] += 1 

        if action == 1: 

            reward -= INSPECTION_COST 

            production_hours -= 1 
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            for component in range (0, COMPONENTS): 

                random_number = random.randint(1,10**6)/10**6 

                if state_dist[component, 3] >= random_number: 

                    # System component has failed 

                    reward -= COST_OF_MAINTENANCE[component,1] 

                    self.time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                elif (state_dist[component, 3] + state_dist[component, 2]) 

>= random_number:  

                    # System component is in critical state 

                    reward -= COST_OF_MAINTENANCE[component,1] 

                    self.time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                elif (state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1]) >= random_number: 

                    # System component is in degraded state 

                    reward -= COST_OF_MAINTENANCE[component,0] 

                    self.time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,0]  

 

        reward += system_reliability * production_hours * POWER_CAPACITY * 

CAPACITY_FACTOR * VALUE_OF_MWH 

        reward /= 10**6 

        self.runtime += 1 

        if self.runtime >= 3000000: 

            done=True 

        truncated = False 

        info = {} 

        obs = self.time_since_maintenance 

        return np.array(obs, dtype=np.float32), reward, done, truncated, 

info 

 

    def render(self): 
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        pass 

 

    def reset(self, seed = None, options = None): 

        super().reset(seed = seed) 

        COMPONENTS = 1 

        MAX = [2*52]    # Adds some variance in start age to encourage 

exploration 

        self.runtime = 0 

        self.number_of_repairs_since_replacement = 

np.zeros(COMPONENTS,dtype=np.float32) 

        self.time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32) 

        if options == None: 

            self.time_since_maintenance[0] = random.randint(0, MAX[0]) 

        obs = self.time_since_maintenance 

        info = {} 

        return np.array(obs, dtype=np.float32), info 
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Appendix B 
Optimizing the First Environment 
import gymnasium 

import os 

from stable_baselines3 import PPO 

from stable_baselines3.common.env_util import make_vec_env 

 

gymnasium.register( 

     id='Simple_single_component-v0', 

     entry_point='1 Simple single component 

environment:Simple_Single_Component', 

     max_episode_steps=1000 

) 

 

envs = make_vec_env(env_id='Simple_single_component-v0', seed=1, n_envs=5) 

 

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple\Training', 'RL_Simple') 

Log_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple\Training', 'Logs') 

 

model = PPO('MlpPolicy', envs, verbose=0, tensorboard_log=Log_Path, 

n_steps=1000, gamma=0.998, batch_size=5000, learning_rate=5*10**-5, 

clip_range=0.1) 

model.learn(total_timesteps=2000000, progress_bar=True) 

model.save(RL_Path) 

envs.close 
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Appendix C 
Visualizing the First Environment 
import gymnasium 

import os 

import math 

from stable_baselines3 import PPO 

import matplotlib.pyplot as plt 

import numpy as np 

import random 

 

gymnasium.register( 

     id='Simple_single_component-v0', 

     entry_point='1 Simple single component 

environment:Simple_Single_Component', 

     max_episode_steps=1000 

) 

env = gymnasium.make('Simple_single_component-v0') 

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple\Training', 'RL_Simple') 

model = PPO.load(RL_Path, env=env) 

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 

 

SIMULATIONS = 10 

YEARS = 30 

MC_LOOPS = 50 

COMPONENTS = 1 

SCALE_PARAM = np.array([ 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 

SHAPE_PARAM = np.array([ 

    [1.2, 1.2, 1.2]], dtype=np.float32) 

 

x_axis = [] 

r_sys = [] 
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rew = [] 

 

norm = [] 

crit = [] 

deg = [] 

fail = [] 

 

min_norm = 1 

max_norm = 0 

min_crit = 1 

max_crit = 0 

min_deg = 1 

max_deg = 0 

min_fail = 1 

max_fail = 0 

 

sum_action = 0 

score = 0 

score_sum = 0 

time = 0 

inspection_times = [] 

for simulation in range(0,SIMULATIONS): 

    print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS)) 

    obs, _ = env.reset(options=1) 

    done = False 

    truncated = False 

    score = 0 

    sum_action = 0 

    time = 0 

    while not done: 

        action, state = model.predict(obs) 

        if action == 1 and simulation == SIMULATIONS-1: 

            inspection_times.append(time/52) 
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        sum_action += action 

        obs, reward, done, truncated, info = env.step(action) 

        time_since_maintenance = obs 

        reliability = np.ones(COMPONENTS, dtype=np.float32) 

        system_reliability = 1 

        state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 

                time_in_state = 0 

                for t in range (0, 

round(time_since_maintenance[component])+1): 

                    if state == 0: 

                        z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal >= random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded >= random.randint(1,10**6)/10**6: 

                            state = 2 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 

                        z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical >= random.randint(1,10**6)/10**6: 

                            state = 3 
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                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist[component, state] += 1/MC_LOOPS 

 

            reliability[component] = 1 - state_dist[component, 3] 

            system_reliability *= reliability[component] 

        score += reward 

        time += 1 

        if time>=52*YEARS: 

            done=True 

        if simulation == SIMULATIONS-1: 

            if min_fail > state_dist[0, 3]: 

                min_fail = state_dist[0, 3] 

            if max_fail < state_dist[0, 3]: 

                max_fail = state_dist[0, 3] 

            if min_crit > state_dist[0, 2]: 

                min_crit = state_dist[0, 2] 

            if max_crit < state_dist[0, 2]: 

                max_crit = state_dist[0, 2] 

            if min_deg > state_dist[0, 1]: 

                min_deg = state_dist[0, 1] 

            if max_deg < state_dist[0, 1]: 

                max_deg = state_dist[0, 1] 

            if min_norm > state_dist[0, 0]: 

                min_norm = state_dist[0, 0] 

            if max_norm < state_dist[0, 0]: 

                max_norm = state_dist[0, 0] 

            fail.append(state_dist[0, 3]) 

            crit.append(state_dist[0, 2]) 

            deg.append(state_dist[0, 1]) 

            norm.append(state_dist[0, 0]) 

            x_axis.append(time/52) 
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            r_sys.append(system_reliability) 

    rew.append(score) 

    score_sum += score 

env.close 

 

sims = [] 

for simulation in range(0,SIMULATIONS): 

    sims.append(simulation+1) 

    std = (rew[simulation]-(score_sum/SIMULATIONS))**2 

std /= SIMULATIONS 

std = math.sqrt(std) 

 

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} - 

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation: 

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS, 

score_sum/SIMULATIONS, std)) 

 

plt.figure(1) 

figure, axis = plt.subplots(2, 2) 

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95, 

wspace=0.31, hspace=0.51) 

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c', 

linestyle='dashed') 

axis[0,0].plot(x_axis, fail, color = 'k') 

axis[0,0].set_title("Failed") 

axis[0,0].set_xlabel('Time (years)') 

axis[0,0].set_ylabel('Probability') 

 

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c', 

linestyle='dashed') 

axis[0,1].plot(x_axis, crit, color = 'k') 

axis[0,1].set_title("Critical") 

axis[0,1].set_xlabel('Time (years)') 

axis[0,1].set_ylabel('Probability') 
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axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c', 

linestyle='dashed') 

axis[1,0].plot(x_axis, deg, color = 'k') 

axis[1,0].set_title("Degraded")  

axis[1,0].set_xlabel('Time (years)') 

axis[1,0].set_ylabel('Probability') 

 

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c', 

linestyle='dashed') 

axis[1,1].plot(x_axis, norm, color = 'k') 

axis[1,1].set_title("Normal") 

axis[1,1].set_xlabel('Time (years)') 

axis[1,1].set_ylabel('Probability') 

 

plt.figure(2) 

figure, ax = plt.subplots() 

ax.plot(sims, rew, color = 'r') 

ax.set_title("Reward per simulation") 

ax.set_xlabel('Simulation') 

ax.set_ylabel('Total reward (million euros)') 

 

plt.figure(3) 

figure, ax = plt.subplots() 

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed') 

ax.plot(x_axis, r_sys, color = 'r') 

ax.set_title("System reliability") 

ax.set_xlabel('Time (years)') 

ax.set_ylabel('Reliability') 

plt.show() 
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Appendix D 
Finding the First Optimal Inspection Interval 
import numpy as np 

import random 

import matplotlib.pyplot as plt 

 

TIMEFRAME = 52*100 

LOOPS = 5 

MC_LOOPS = 5 

MIN_INSPECTION_INTERVAL = 1 

MAX_INSPECTION_INTERVAL = 200 

INSPECTION_SPAN = MAX_INSPECTION_INTERVAL - MIN_INSPECTION_INTERVAL + 1 

sum_reward = np.zeros(INSPECTION_SPAN, dtype=np.float32) 

 

COMPONENTS = 1 

DISCOUNT_FACTOR = 0.04 

POWER_CAPACITY = 5 

CAPACITY_FACTOR = 0.49 

VALUE_OF_MWH = 40 

INSPECTION_COST = 2000 

CONVERSION_RATE = 1.14 

 

# Cost of repair, cost of replacement 

COST_OF_MAINTENANCE = np.array([ 

    [4000, 200000]], dtype=np.float32) 

COST_OF_MAINTENANCE *= CONVERSION_RATE 

 

# Duration of repair, duration of replacement 

DURATION_OF_MAINTENANCE = np.array([ 

    [3, 70],], dtype=np.float32) 

 

# Weibull parameters for the markov transition to degradated, critical, 

failure states 
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SCALE_PARAM = np.array([ 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 

SHAPE_PARAM = np.array([ 

    [1.2, 1.2, 1.2]], dtype=np.float32) 

 

for loop in range(0,LOOPS): 

    for inspection_interval in range (MIN_INSPECTION_INTERVAL, 

MAX_INSPECTION_INTERVAL+1): 

        print('Running loop: {} of {} - Interval: {} of 

{}'.format((loop+1),LOOPS,inspection_interval,MAX_INSPECTION_INTERVAL)) 

        time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32) 

        for runtime in range (1,TIMEFRAME+1): 

            if (runtime % inspection_interval) == 0: 

                action = 1 

            else: 

                action = 0 

            reward = 0 

            done = False 

            production_hours = 7*24 

            reliability = [1] * COMPONENTS 

            system_reliability = 1 

            state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

            for component in range (0, COMPONENTS): 

                for mc_loop in range (0, MC_LOOPS): 

                    state = 0 

                    time_in_state = 0 

                    for t in range (0, 

round(time_since_maintenance[component])+1): 

                        if state == 0: 

                            z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                            if z_normal >= random.randint(1,10**6)/10**6: 

                                state = 1 
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                                time_in_state = 0 

                            else: 

                                time_in_state += 1 

                        elif state == 1: 

                            z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                            if z_degraded >= random.randint(1,10**6)/10**6: 

                                state = 2 

                                time_in_state = 0 

                            else: 

                                time_in_state += 1 

                        elif state == 2: 

                            z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                            if z_critical >= random.randint(1,10**6)/10**6: 

                                state = 3 

                                time_in_state = 0 

                            else: 

                                time_in_state += 1 

                                 

                    state_dist[component, state] += 1/LOOPS 

 

                reliability[component] = 1 - state_dist[component, 3] 

                system_reliability *= reliability[component] 

 

                time_since_maintenance[component] += 1 

            if action == 1: 

                reward -= INSPECTION_COST 

                production_hours -= 1 

                for component in range (0, COMPONENTS): 

                    random_number = random.randint(1,10**6)/10**6 

                    if state_dist[component, 3] >= random_number: 

                        # System component has failed 
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                        reward -= COST_OF_MAINTENANCE[component,1] 

                        time_since_maintenance[component] = 0 

                        production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                    elif (state_dist[component, 3] + state_dist[component, 

2]) >= random_number: 

                        # System component is in critical state 

                        reward -= COST_OF_MAINTENANCE[component,1] 

                        time_since_maintenance[component] = 0 

                        production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                    elif (state_dist[component, 3] + state_dist[component, 

2] + state_dist[component, 1]) >= random_number: 

                        # System component is in degraded state 

                        reward -= COST_OF_MAINTENANCE[component,0] 

                        time_since_maintenance[component] = 0 

                        production_hours -= 

DURATION_OF_MAINTENANCE[component,0]  

 

            reward += system_reliability * production_hours * 

POWER_CAPACITY * CAPACITY_FACTOR * VALUE_OF_MWH 

            reward /= 1000000 

 

            sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] += 

reward 

sum_reward /= LOOPS 

i = [] 

rw = [] 

optimal_inspection_interval = 0 

rw_max = 0 

rw_min = sum_reward[0] 

for inspection_interval in range (MIN_INSPECTION_INTERVAL, 

MAX_INSPECTION_INTERVAL+1): 

    if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] > rw_max: 

        rw_max = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] 

        optimal_inspection_interval = inspection_interval 
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    if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] < rw_min: 

        rw_min = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] 

    i.append(inspection_interval) 

    rw.append(sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]) 

 

print('Optimal inspection interval: {} - Reward: {:.8f} - Reward per year: 

{}'.format(optimal_inspection_interval, rw_max, rw_max*52/TIMEFRAME)) 

 

plt.plot(i, rw, color='k') 

plt.title("Average Reward Per Inspection Interval over 100 years") 

plt.xlabel('Inspection interval') 

plt.ylabel('Average reward (million euros)') 

plt.vlines(optimal_inspection_interval,rw_min,rw_max, color = 'c', 

linestyle='dotted') 

plt.show() 
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Appendix E 
Visualizing the First Constant Inspection Interval 
import numpy as np 

import random 

import matplotlib.pyplot as plt 

import math 

 

INSPECTION_INTERVAL = 15 

SIMULATIONS = 10 

YEARS = 30 

MC_LOOPS = 50 

COMPONENTS = 1 

SCALE_PARAM = np.array([ 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 

SHAPE_PARAM = np.array([ 

    [1.2, 1.2, 1.2]], dtype=np.float32) 

 

x_axis = [] 

r_sys = [] 

rew = [] 

 

norm = [] 

crit = [] 

deg = [] 

fail = [] 

 

min_norm = 1 

max_norm = 0 

min_crit = 1 

max_crit = 0 

min_deg = 1 

max_deg = 0 
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min_fail = 1 

max_fail = 0 

 

sum_action = 0 

score = 0 

score_sum = 0 

time = 0 

inspection_times = [] 

 

DISCOUNT_FACTOR = 0.04 

POWER_CAPACITY = 5 

CAPACITY_FACTOR = 0.49 

VALUE_OF_MWH = 40 

INSPECTION_COST = 2000 

CONVERSION_RATE = 1.14 

COST_OF_MAINTENANCE = np.array([ 

# Cost of repair, cost of replacement 

    [4000, 200000]], dtype=np.float32) 

COST_OF_MAINTENANCE *= CONVERSION_RATE 

DURATION_OF_MAINTENANCE = np.array([ 

# Duration of repair, duration of replacement 

    [3, 70]], dtype=np.float32) 

 

for simulation in range(0,SIMULATIONS): 

    print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS)) 

    time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32) 

    done = False 

    truncated = False 

    score = 0 

    sum_action = 0 

    time = 0 

    time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32) 

    while not done: 
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        if (time % INSPECTION_INTERVAL) == 0: 

            action = 1 

            inspection_times.append(time/52) 

            sum_action += 1 

            if simulation == SIMULATIONS-1: 

                inspection_times.append(time/52) 

        else: 

            action = 0 

        reward = 0 

        production_hours = 7*24 

        reliability = np.ones(COMPONENTS, dtype=np.float32) 

        system_reliability = 1 

        state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 

                time_in_state = 0 

                for t in range (0, 

round(time_since_maintenance[component])+1): 

                    if state == 0: 

                        z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal >= random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded >= random.randint(1,10**6)/10**6: 

                            state = 2 

                            time_in_state = 0 



Appendices 

xxi 

 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 

                        z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical >= random.randint(1,10**6)/10**6: 

                            state = 3 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist[component, state] += 1/MC_LOOPS 

 

            reliability[component] = 1 - state_dist[component, 3] 

            system_reliability *= reliability[component] 

            time_since_maintenance[component] += 1 

        if action == 1: 

            reward -= INSPECTION_COST 

            production_hours -= 1 

            for component in range (0, COMPONENTS): 

                random_number = random.randint(1,10**6)/10**6 

                if state_dist[component, 3] >= random_number: 

                    # System component has failed 

                    reward -= COST_OF_MAINTENANCE[component,1] 

                    time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                elif (state_dist[component, 3] + state_dist[component, 2]) 

>= random_number:  

                    # System component is in critical state 

                    reward -= COST_OF_MAINTENANCE[component,1] 

                    time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                elif (state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1]) >= random_number: 
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                    # System component is in degraded state 

                    reward -= COST_OF_MAINTENANCE[component,0] 

                    time_since_maintenance[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,0]  

 

        reward += system_reliability * production_hours * POWER_CAPACITY * 

CAPACITY_FACTOR * VALUE_OF_MWH 

        reward /= 1000000 

        score += reward 

        time += 1 

        if time>=52*YEARS: 

            done=True 

        if simulation == SIMULATIONS-1: 

            if min_fail > state_dist[0, 3]: 

                min_fail = state_dist[0, 3] 

            if max_fail < state_dist[0, 3]: 

                max_fail = state_dist[0, 3] 

            if min_crit > state_dist[0, 2]: 

                min_crit = state_dist[0, 2] 

            if max_crit < state_dist[0, 2]: 

                max_crit = state_dist[0, 2] 

            if min_deg > state_dist[0, 1]: 

                min_deg = state_dist[0, 1] 

            if max_deg < state_dist[0, 1]: 

                max_deg = state_dist[0, 1] 

            if min_norm > state_dist[0, 0]: 

                min_norm = state_dist[0, 0] 

            if max_norm < state_dist[0, 0]: 

                max_norm = state_dist[0, 0] 

            fail.append(state_dist[0, 3]) 

            crit.append(state_dist[0, 2]) 

            deg.append(state_dist[0, 1]) 

            norm.append(state_dist[0, 0]) 
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            x_axis.append(time/52) 

            r_sys.append(system_reliability) 

    rew.append(score) 

    score_sum += score 

 

sims = [] 

for simulation in range(0,SIMULATIONS): 

    sims.append(simulation+1) 

    std = (rew[simulation]-(score_sum/SIMULATIONS))**2 

std /= SIMULATIONS 

std = math.sqrt(std) 

 

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} - 

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation: 

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS, 

score_sum/SIMULATIONS, std)) 

 

plt.figure(1) 

figure, axis = plt.subplots(2, 2) 

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95, 

wspace=0.31, hspace=0.51) 

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c', 

linestyle='dashed') 

axis[0,0].plot(x_axis, fail, color = 'k') 

axis[0,0].set_title("Failed") 

axis[0,0].set_xlabel('Time (years)') 

axis[0,0].set_ylabel('Probability') 

 

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c', 

linestyle='dashed') 

axis[0,1].plot(x_axis, crit, color = 'k') 

axis[0,1].set_title("Critical") 

axis[0,1].set_xlabel('Time (years)') 

axis[0,1].set_ylabel('Probability') 
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axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c', 

linestyle='dashed') 

axis[1,0].plot(x_axis, deg, color = 'k') 

axis[1,0].set_title("Degraded")  

axis[1,0].set_xlabel('Time (years)') 

axis[1,0].set_ylabel('Probability') 

 

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c', 

linestyle='dashed') 

axis[1,1].plot(x_axis, norm, color = 'k') 

axis[1,1].set_title("Normal") 

axis[1,1].set_xlabel('Time (years)') 

axis[1,1].set_ylabel('Probability') 

 

plt.figure(2) 

figure, ax = plt.subplots() 

ax.plot(sims, rew, color = 'r') 

ax.set_title("Reward per simulation") 

ax.set_xlabel('Simulation') 

ax.set_ylabel('Total reward (million euros)') 

 

plt.figure(3) 

figure, ax = plt.subplots() 

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed') 

ax.plot(x_axis, r_sys, color = 'r') 

ax.set_title("System reliability") 

ax.set_xlabel('Time (years)') 

ax.set_ylabel('Reliability') 

plt.show() 
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Appendix F 
The Second Environment 
import numpy as np 

import random 

import gymnasium 

from gymnasium import spaces 

 

class Inspection_Single_Component(gymnasium.Env): 

    metadata = {"render_modes": ["rgb_array"], "render_fps": 4} 

 

    def __init__(self): 

 

        # Action space: (0) no action, (1) inspection 

        self.action_space = spaces.Discrete(2) 

 

        # Observation space: 

        # | Num | Description                                         | 

        # |-----|-----------------------------------------------------| 

        # | 0   | Time since inspection (weeks)                       | 

        # | 1   | Blade - Component age after last inspection (weeks) | 

 

        COMPONENTS = 1 

        low = np.zeros((COMPONENTS+1),dtype=np.float32) 

        high = np.ones((COMPONENTS+1),dtype=np.float32) 

        high *= 10**6 

        self.observation_space = spaces.Box(low, high, dtype=np.float32) 

 

        self.time_since_inspection = None 

        self.component_age_after_last_inspection = None 

 

    def step(self, action): 

        COMPONENTS = 1 

        MC_LOOPS = 50 
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        POWER_CAPACITY = 5 

        CAPACITY_FACTOR = 0.49 

        VALUE_OF_MWH = 40 

        INSPECTION_COST = 2000 

        CONVERSION_RATE = 1.14 

 

        COST_OF_MAINTENANCE = np.array([ 

            # Cost of repair, cost of replacement 

            [4000, 200000]], dtype=np.float32) 

        COST_OF_MAINTENANCE *= CONVERSION_RATE 

 

        DURATION_OF_MAINTENANCE = np.array([ 

            # Duration of repair, duration of replacement 

            [3, 70]], dtype=np.float32) 

 

        SCALE_PARAM = np.array([ 

            # Weibull parameters for the markov transition to degradated, 

critical, failure states 

            [23.02, 2.88, 2.88]], dtype=np.float32) 

        SCALE_PARAM = 1/(SCALE_PARAM*52) 

        SHAPE_PARAM = np.array([ 

            [1.2, 1.2, 1.2]], dtype=np.float32) 

 

        reward = 0 

        done = False 

 

        production_hours = 7*24.0 

        reliability = [1] * COMPONENTS 

        system_reliability = 1 

        state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 
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                time_in_state = 

round(self.component_age_after_last_inspection[component]) 

                for t in range (0, round(self.time_since_inspection)+1): 

                    if state == 0: 

                        z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal >= random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded >= random.randint(1,10**6)/10**6: 

                            state = 2 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 

                        z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical >= random.randint(1,10**6)/10**6: 

                            state = 3 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist[component, state] += 1/MC_LOOPS 

            reliability[component] = 1 - state_dist[component, 3] 

            system_reliability *= reliability[component] 

        self.time_since_inspection += 1 

        if action == 1: 

            reward -= INSPECTION_COST 
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            production_hours -= 1 

            for component in range (0, COMPONENTS): 

                # if (state_dist[component, 3] + state_dist[component, 2]) 

>= random.randint(1,10**6)/10**6: 

                #     # System component is in critical or failed state 

                #     reward -= COST_OF_MAINTENANCE[component,1] 

                #     production_hours -= 

DURATION_OF_MAINTENANCE[component,1] 

                #     self.component_age_after_last_inspection[component] = 

0 

                if (state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1]) >= random.randint(1,10**6)/10**6: 

                    # System component is in degraded, critical or failed 

state 

                    reward -= COST_OF_MAINTENANCE[component,0] * 

(state_dist[component,1]/(state_dist[component,1]+state_dist[component,2]+s

tate_dist[component,3])) 

                    reward -= COST_OF_MAINTENANCE[component,1] * 

((state_dist[component,2]+state_dist[component,3])/(state_dist[component,1]

+state_dist[component,2]+state_dist[component,3])) 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,0] * 

(state_dist[component,1]/(state_dist[component,1]+state_dist[component,2]+s

tate_dist[component,3])) 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] * 

((state_dist[component,2]+state_dist[component,3])/(state_dist[component,1]

+state_dist[component,2]+state_dist[component,3])) 

                    self.component_age_after_last_inspection[component] = 0 

                else: 

                    self.component_age_after_last_inspection[component] += 

self.time_since_inspection 

            self.time_since_inspection = 0 

 

        reward += system_reliability * production_hours * POWER_CAPACITY * 

CAPACITY_FACTOR * VALUE_OF_MWH 

        reward /= 10**6 

        self.runtime += 1 

        if self.runtime >= 10000000: 

            done=True 
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        truncated = False 

        info = {} 

        obs = np.zeros(COMPONENTS+1,dtype=np.float32) 

        obs[0] = self.time_since_inspection 

        for component in range (0, COMPONENTS): 

            obs[component+1] = 

self.component_age_after_last_inspection[component] 

        return np.array(obs, dtype=np.float32), reward, done, truncated, 

info 

 

    def render(self): 

        pass 

 

    def reset(self, seed = None, options = None): 

        super().reset(seed = seed) 

        COMPONENTS = 1 

        # MAX = [2*52] 

        self.runtime = 0 

        self.component_age_after_last_inspection = 

np.zeros(COMPONENTS,dtype=np.float32) 

        self.time_since_inspection = 0 

        obs = np.zeros(COMPONENTS+1,dtype=np.float32) 

        obs[0] = self.time_since_inspection 

        for component in range (0, COMPONENTS): 

            obs[component+1] = 

self.component_age_after_last_inspection[component] 

        info = {} 

        return np.array(obs, dtype=np.float32), info 
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Appendix G 
Optimizing the Second Environment 
import gymnasium 

import os 

from stable_baselines3 import PPO 

from stable_baselines3.common.env_util import make_vec_env 

 

gymnasium.register( 

     id='Inspection_single_component-v0', 

     entry_point='1 Inspection single component 

environment:Inspection_Single_Component', 

     max_episode_steps=5000 

) 

 

envs = make_vec_env(env_id='Inspection_single_component-v0', seed=1, 

n_envs=5) 

 

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple inspection\Training', 'RL_Inspection') 

Log_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple inspection\Training', 'Logs') 

 

model = PPO('MlpPolicy', envs, verbose=0, tensorboard_log=Log_Path, 

gamma=0.995, clip_range=0.1) 

model.learn(total_timesteps=6000000, progress_bar=True) 

model.save(RL_Path) 

envs.close 
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Appendix H 
Visualizing the Second Environment 
import gymnasium 

import os 

import math 

from stable_baselines3 import PPO 

import matplotlib.pyplot as plt 

import numpy as np 

import random 

 

gymnasium.register( 

     id='Inspection_single_component-v0', 

     entry_point='1 Inspection single component 

environment:Inspection_Single_Component', 

     max_episode_steps=5000 

) 

env = gymnasium.make('Inspection_single_component-v0') 

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement 

Learning\Windmill problem\Simple inspection\Training', 'RL_Inspection') 

model = PPO.load(RL_Path, env=env) 

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 

 

SIMULATIONS = 1 

YEARS = 30 

MC_LOOPS = 5 

COMPONENTS = 1 

SCALE_PARAM = np.array([ 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 

SHAPE_PARAM = np.array([ 

    [1.2, 1.2, 1.2]], dtype=np.float32) 

x_axis = [] 

r_sys = [] 

rew = [] 
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norm = [] 

deg = [] 

crit = [] 

fail = [] 

 

min_norm = 1 

max_norm = 0 

min_crit = 1 

max_crit = 0 

min_deg = 1 

max_deg = 0 

min_fail = 1 

max_fail = 0 

 

score = 0 

sum_action = 0 

sum_score = 0 

time = 0 

inspection_times = [] 

for simulation in range(0, SIMULATIONS): 

    print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS)) 

    obs, _ = env.reset(options=1) 

    done = False 

    truncated = False 

    score = 0 

    sum_action = 0 

    time = 0 

    component_age_after_last_inspection = np.zeros(COMPONENTS, 

dtype=np.float32) 

    time_since_inspection = 0 

    while not done: 

        action, state = model.predict(obs) 

        if action == 1 and simulation == SIMULATIONS-1: 

            inspection_times.append(time/52) 
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        sum_action += action 

        obs, reward, done, truncated, info = env.step(action) 

        time_since_inspection = obs[0] 

        for component in range(0,COMPONENTS): 

            component_age_after_last_inspection[component] = 

obs[component+1] 

        reliability1 = np.ones(COMPONENTS, dtype=np.float32) 

        system_reliability1 = 1 

        state_dist1 = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 

                time_in_state = 

round(component_age_after_last_inspection[component]) 

                for t in range (0, round(time_since_inspection)+1): 

                    if state == 0: 

                        z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal >= random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded >= random.randint(1,10**6)/10**6: 

                            state = 2 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 
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                        z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical >= random.randint(1,10**6)/10**6: 

                            state = 3 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist1[component, state] += 1/MC_LOOPS 

 

            reliability1[component] = 1 - state_dist1[component, 3] 

            system_reliability1 *= reliability1[component] 

        score += reward 

        time += 1 

        if time>=52*YEARS: 

            done=True 

        if simulation == SIMULATIONS-1: 

            if min_fail > state_dist1[0, 3]: 

                min_fail = state_dist1[0, 3] 

            if max_fail < state_dist1[0, 3]: 

                max_fail = state_dist1[0, 3] 

            if min_crit > state_dist1[0, 2]: 

                min_crit = state_dist1[0, 2] 

            if max_crit < state_dist1[0, 2]: 

                max_crit = state_dist1[0, 2] 

            if min_deg > state_dist1[0, 1]: 

                min_deg = state_dist1[0, 1] 

            if max_deg < state_dist1[0, 1]: 

                max_deg = state_dist1[0, 1] 

            if min_norm > state_dist1[0, 0]: 

                min_norm = state_dist1[0, 0] 

            if max_norm < state_dist1[0, 0]: 

                max_norm = state_dist1[0, 0] 

            fail.append(state_dist1[0, 3]) 
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            crit.append(state_dist1[0, 2]) 

            deg.append(state_dist1[0, 1]) 

            norm.append(state_dist1[0, 0]) 

            x_axis.append(time/52) 

            r_sys.append(system_reliability1) 

    rew.append(score) 

    sum_score += score 

env.close 

  

sims = [] 

for simulation in range(0,SIMULATIONS): 

    sims.append(simulation+1) 

    std = (rew[simulation]-(sum_score/SIMULATIONS))**2 

std /= SIMULATIONS 

std = math.sqrt(std) 

 

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} - 

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation: 

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS, 

sum_score/SIMULATIONS, std)) 

 

plt.figure(1) 

figure, axis = plt.subplots(2, 2) 

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95, 

wspace=0.31, hspace=0.51) 

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c', 

linestyle='dashed') 

axis[0,0].plot(x_axis, fail, color = 'k') 

axis[0,0].set_title("Failed") 

axis[0,0].set_xlabel('Time (years)') 

axis[0,0].set_ylabel('Probability') 

 

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c', 

linestyle='dashed') 

axis[0,1].plot(x_axis, crit, color = 'k') 

axis[0,1].set_title("Critical") 
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axis[0,1].set_xlabel('Time (years)') 

axis[0,1].set_ylabel('Probability') 

 

axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c', 

linestyle='dashed') 

axis[1,0].plot(x_axis, deg, color = 'k') 

axis[1,0].set_title("Degraded")  

axis[1,0].set_xlabel('Time (years)') 

axis[1,0].set_ylabel('Probability') 

 

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c', 

linestyle='dashed') 

axis[1,1].plot(x_axis, norm, color = 'k') 

axis[1,1].set_title("Normal") 

axis[1,1].set_xlabel('Time (years)') 

axis[1,1].set_ylabel('Probability') 

 

plt.figure(2) 

figure, ax = plt.subplots() 

ax.plot(sims, rew, color = 'r') 

ax.set_title("Reward per simulation") 

ax.set_xlabel('Simulation') 

ax.set_ylabel('Total reward (million euros)') 

 

plt.figure(3) 

figure, ax = plt.subplots() 

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed') 

ax.plot(x_axis, r_sys, color = 'r') 

ax.set_title("System reliability") 

ax.set_xlabel('Time (years)') 

ax.set_ylabel('Reliability') 

plt.show() 
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Appendix I 
Finding the Second Optimal Inspection Interval 
import numpy as np 

import random 

import matplotlib.pyplot as plt 

 

TIME_FRAME = 52*100 

LOOPS = 15 

MC_LOOPS = 15 

MIN_INSPECTION_INTERVAL = 40 

MAX_INSPECTION_INTERVAL = 120 

INSPECTION_SPAN = MAX_INSPECTION_INTERVAL - MIN_INSPECTION_INTERVAL + 1 

sum_reward = np.zeros(INSPECTION_SPAN, dtype=np.float32) 

COMPONENTS = 1 

DISCOUNT_FACTOR = 0.04 

POWER_CAPACITY = 5 

CAPACITY_FACTOR = 0.49 

VALUE_OF_MWH = 40 

INSPECTION_COST = 2000 

CONVERSION_RATE = 1.14 

COST_OF_MAINTENANCE = np.array([ 

    # Cost of repair, cost of replacement 

    [4000, 200000]], dtype=np.float32) 

COST_OF_MAINTENANCE *= CONVERSION_RATE 

DURATION_OF_MAINTENANCE = np.array([ 

    # Duration of repair, duration of replacement 

    [3, 70],], dtype=np.float32) 

SCALE_PARAM = np.array([ 

    # Weibull parameters for the markov transition to degradated, critical, 

failure states 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 

SHAPE_PARAM = np.array([ 
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    [1.2, 1.2, 1.2]], dtype=np.float32) 

 

for loop in range(0,LOOPS): 

    for inspection_interval in range (MIN_INSPECTION_INTERVAL, 

MAX_INSPECTION_INTERVAL+1): 

        print('Running loop: {} of {} - Interval: {} of 

{}'.format((loop+1),LOOPS,inspection_interval,MAX_INSPECTION_INTERVAL)) 

        component_age_after_last_inspection = 

np.zeros(COMPONENTS,dtype=np.float32) 

        time_since_inspection = 0 

        for runtime in range (1,TIME_FRAME+1): 

            if (runtime % inspection_interval) == 0: 

                action = 1 

            else: 

                action = 0 

            reward = 0 

            done = False 

            production_hours = 7*24 

            reliability = [1] * COMPONENTS 

            system_reliability = 1 

            state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

            for component in range (0, COMPONENTS): 

                for mc_loop in range (0, MC_LOOPS): 

                    state = 0 

                    time_in_state = 

round(component_age_after_last_inspection[component]) 

                    for t in range (0, round(time_since_inspection)+1): 

                        if state == 0: 

                            z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                            if z_normal >= random.randint(1,10**6)/10**6: 

                                state = 1 

                                time_in_state = 0 

                            else: 

                                time_in_state += 1 
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                        elif state == 1: 

                            z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                            if z_degraded >= random.randint(1,10**6)/10**6: 

                                state = 2 

                                time_in_state = 0 

                            else: 

                                time_in_state += 1 

                        elif state == 2: 

                            z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                            if z_critical >= random.randint(1,10**6)/10**6: 

                                state = 3 

                                time_in_state = 0 

                            else: 

                                time_in_state += 1       

                    state_dist[component, state] += 1/LOOPS 

                reliability[component] = 1 - state_dist[component, 3] 

                system_reliability *= reliability[component] 

            time_since_inspection += 1 

            if action == 1: 

                reward -= INSPECTION_COST 

                production_hours -= 1 

                for component in range (0, COMPONENTS): 

                    random_number = random.randint(1,10**6)/10**6 

                    if (state_dist[component, 3] + state_dist[component, 2] 

+ state_dist[component, 1]) >= random_number: 

                        # System component is in degraded, critical or 

failed state 

                        reward -= COST_OF_MAINTENANCE[component,0] * 

(state_dist[component, 1]/(state_dist[component, 3] + state_dist[component, 

2] + state_dist[component, 1])) 

                        reward -= COST_OF_MAINTENANCE[component,1] * 

((state_dist[component, 2]+state_dist[component, 3])/(state_dist[component, 

3] + state_dist[component, 2] + state_dist[component, 1])) 
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                        component_age_after_last_inspection[component] = 0 

                        production_hours -= 

DURATION_OF_MAINTENANCE[component,0] * (state_dist[component, 

1]/(state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1])) 

                        production_hours -= 

DURATION_OF_MAINTENANCE[component,1] * ((state_dist[component, 

2]+state_dist[component, 3])/(state_dist[component, 3] + 

state_dist[component, 2] + state_dist[component, 1])) 

                    else: 

                        component_age_after_last_inspection[component] += 

time_since_inspection 

                time_since_inspection = 0 

            reward += system_reliability * production_hours * 

POWER_CAPACITY * CAPACITY_FACTOR * VALUE_OF_MWH 

            reward /= 10**6 

            sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] += 

reward 

sum_reward /= LOOPS 

i = [] 

rw = [] 

optimal_inspection_interval = 0 

rw_max = 0 

rw_min = sum_reward[0] 

for inspection_interval in range (MIN_INSPECTION_INTERVAL, 

MAX_INSPECTION_INTERVAL+1): 

    if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] > rw_max: 

        rw_max = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] 

        optimal_inspection_interval = inspection_interval 

    if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] < rw_min: 

        rw_min = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] 

    i.append(inspection_interval) 

    rw.append(sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]) 

print('Optimal inspection interval: {} - Reward: {:.8f} - Reward per year: 

{}'.format(optimal_inspection_interval, rw_max, rw_max*52/TIME_FRAME)) 

plt.plot(i, rw) 

plt.xlabel("Inspection interval (weeks)") 
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plt.ylabel("Average reward in million Euro") 

plt.vlines(optimal_inspection_interval,rw_min,rw_max, color = 'c', 

linestyle='dotted') 

plt.show() 
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Appendix J 
Visualizing the Second Optimal Inspection Interval 
import numpy as np 

import random 

import matplotlib.pyplot as plt 

import math 

 

SIMULATIONS = 10 

TIMEFRAME = 52*30 

MC_LOOPS = 50 

INSPECTION_INTERVAL = 59 

COMPONENTS = 1 

DISCOUNT_FACTOR = 0.04 

POWER_CAPACITY = 5 

CAPACITY_FACTOR = 0.49 

VALUE_OF_MWH = 40 

INSPECTION_COST = 2000 

CONVERSION_RATE = 1.14 

 

COST_OF_MAINTENANCE = np.array([ 

    # Cost of repair, cost of replacement 

    [4000, 200000]], dtype=np.float32) 

COST_OF_MAINTENANCE *= CONVERSION_RATE 

 

DURATION_OF_MAINTENANCE = np.array([ 

    # Duration of repair, duration of replacement 

    [3, 70],], dtype=np.float32) 

 

SCALE_PARAM = np.array([ 

    # Weibull parameters for the markov transition to degradated, critical, 

failure states 

    [23.02, 2.88, 2.88]], dtype=np.float32) 

SCALE_PARAM = 1/(SCALE_PARAM*52) 
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SHAPE_PARAM = np.array([ 

    [1.2, 1.2, 1.2]], dtype=np.float32) 

 

x_axis = [] 

r_sys = [] 

rew = [] 

norm = [] 

crit = [] 

deg = [] 

fail = [] 

min_norm = 1 

max_norm = 0 

min_crit = 1 

max_crit = 0 

min_deg = 1 

max_deg = 0 

min_fail = 1 

max_fail = 0 

sum_action = 0 

score = 0 

score_sum = 0 

time = 0 

inspection_times = [] 

for simulation in range(0,SIMULATIONS): 

    print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS)) 

    time_since_inspection = 0 

    component_age_after_last_inspection = 

np.zeros(COMPONENTS,dtype=np.float32) 

    done = False 

    truncated = False 

    score = 0 

    sum_action = 0 

    time = 0 

    while not done: 
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        if (time % INSPECTION_INTERVAL) == 0: 

            action = 1 

            inspection_times.append(time/52) 

            sum_action += 1 

            if simulation == SIMULATIONS-1: 

                inspection_times.append(time/52) 

        else: 

            action = 0 

             

        reward = 0 

        reliability = np.ones(COMPONENTS, dtype=np.float32) 

        production_hours = 7*24.0 

        system_reliability = 1 

        state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32) 

        for component in range (0, COMPONENTS): 

            for mc_loop in range (0, MC_LOOPS): 

                state = 0 

                time_in_state = 

round(component_age_after_last_inspection[component]) 

                for t in range (0, round(time_since_inspection)+1): 

                    if state == 0: 

                        z_normal = 

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1)) 

                        if z_normal >= random.randint(1,10**6)/10**6: 

                            state = 1 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 1: 

                        z_degraded = 

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1)) 

                        if z_degraded >= random.randint(1,10**6)/10**6: 

                            state = 2 
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                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                    elif state == 2: 

                        z_critical = 

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1)) 

                        if z_critical >= random.randint(1,10**6)/10**6: 

                            state = 3 

                            time_in_state = 0 

                        else: 

                            time_in_state += 1 

                state_dist[component, state] += 1/MC_LOOPS 

            reliability[component] = 1 - state_dist[component, 3] 

            system_reliability *= reliability[component] 

        time_since_inspection += 1 

        if action == 1: 

            reward -= INSPECTION_COST 

            production_hours -= 1 

            for component in range (0, COMPONENTS): 

                random_number = random.randint(1,10**6)/10**6 

                if (state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1]) >= random_number: 

                    # System component is in degraded, critical or failed 

state 

                    reward -= COST_OF_MAINTENANCE[component,0] * 

(state_dist[component, 1]/(state_dist[component, 3] + state_dist[component, 

2] + state_dist[component, 1])) 

                    reward -= COST_OF_MAINTENANCE[component,1] * 

((state_dist[component, 2]+state_dist[component, 3])/(state_dist[component, 

3] + state_dist[component, 2] + state_dist[component, 1])) 

                    component_age_after_last_inspection[component] = 0 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,0] * (state_dist[component, 

1]/(state_dist[component, 3] + state_dist[component, 2] + 

state_dist[component, 1])) 

                    production_hours -= 

DURATION_OF_MAINTENANCE[component,1] * ((state_dist[component, 
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2]+state_dist[component, 3])/(state_dist[component, 3] + 

state_dist[component, 2] + state_dist[component, 1])) 

                else: 

                    component_age_after_last_inspection[component] += 

time_since_inspection 

            time_since_inspection = 0 

 

        reward += system_reliability * production_hours * POWER_CAPACITY * 

CAPACITY_FACTOR * VALUE_OF_MWH 

        reward /= 10**6 

        score += reward 

        time += 1 

        if time>=TIMEFRAME: 

            done=True 

        if simulation == SIMULATIONS-1: 

            if min_fail > state_dist[0, 3]: 

                min_fail = state_dist[0, 3] 

            if max_fail < state_dist[0, 3]: 

                max_fail = state_dist[0, 3] 

            if min_crit > state_dist[0, 2]: 

                min_crit = state_dist[0, 2] 

            if max_crit < state_dist[0, 2]: 

                max_crit = state_dist[0, 2] 

            if min_deg > state_dist[0, 1]: 

                min_deg = state_dist[0, 1] 

            if max_deg < state_dist[0, 1]: 

                max_deg = state_dist[0, 1] 

            if min_norm > state_dist[0, 0]: 

                min_norm = state_dist[0, 0] 

            if max_norm < state_dist[0, 0]: 

                max_norm = state_dist[0, 0] 

            fail.append(state_dist[0, 3]) 

            crit.append(state_dist[0, 2]) 

            deg.append(state_dist[0, 1]) 
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            norm.append(state_dist[0, 0]) 

            x_axis.append(time/52) 

            r_sys.append(system_reliability) 

    rew.append(score) 

    score_sum += score 

 

sims = [] 

for simulation in range(0,SIMULATIONS): 

    sims.append(simulation+1) 

    std = (rew[simulation]-(score_sum/SIMULATIONS))**2 

std /= SIMULATIONS 

std = math.sqrt(std) 

 

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} - 

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation: 

{}'.format(time/52, sum_action, score, time/sum_action, score*52/TIMEFRAME, 

score_sum/SIMULATIONS, std)) 

 

plt.figure(1) 

figure, axis = plt.subplots(2, 2) 

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95, 

wspace=0.31, hspace=0.51) 

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c', 

linestyle='dashed') 

axis[0,0].plot(x_axis, fail, color = 'k') 

axis[0,0].set_title("Failed") 

axis[0,0].set_xlabel('Time (years)') 

axis[0,0].set_ylabel('Probability') 

 

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c', 

linestyle='dashed') 

axis[0,1].plot(x_axis, crit, color = 'k') 

axis[0,1].set_title("Critical") 

axis[0,1].set_xlabel('Time (years)') 

axis[0,1].set_ylabel('Probability') 
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axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c', 

linestyle='dashed') 

axis[1,0].plot(x_axis, deg, color = 'k') 

axis[1,0].set_title("Degraded")  

axis[1,0].set_xlabel('Time (years)') 

axis[1,0].set_ylabel('Probability') 

 

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c', 

linestyle='dashed') 

axis[1,1].plot(x_axis, norm, color = 'k') 

axis[1,1].set_title("Normal") 

axis[1,1].set_xlabel('Time (years)') 

axis[1,1].set_ylabel('Probability') 

 

plt.figure(2) 

figure, ax = plt.subplots() 

ax.plot(sims, rew, color = 'r') 

ax.set_title("Reward per simulation") 

ax.set_xlabel('Simulation') 

ax.set_ylabel('Total reward (million euros)') 

 

plt.figure(3) 

figure, ax = plt.subplots() 

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed') 

ax.plot(x_axis, r_sys, color = 'r') 

ax.set_title("System reliability") 

ax.set_xlabel('Time (years)') 

ax.set_ylabel('Reliability') 

plt.show() 

 

 




