
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Ole Daniel Trandheim Røn

Optimizing the Inspection Schedule
of an Offshore Wind Turbine with
Reinforcement Learning

TPK4950 - Sikkerhet, pålitelighet og vedlikehold

Master’s thesis in Mechanical Engineering
Supervisor: Shen Yin
December 2023

Ole Daniel Trandheim Røn

Optimizing the Inspection Schedule of
an Offshore Wind Turbine with
Reinforcement Learning

TPK4950 - Sikkerhet, pålitelighet og vedlikehold

Master’s thesis in Mechanical Engineering
Supervisor: Shen Yin
December 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

This report intends to study how reinforcement learning can be used to reduce the

maintenance costs for offshore wind turbines. The explored approach is to optimize the

inspection scheduling, and to see what effect this will have on the costs. Component

degradation is simulated with a 4-state Weibull-Markov model and two different

approaches to reliability. The degradation is approximated using Monte Carlo simulations.

The work is done with Proximal Policy Optimization and programmed in Python. The

performance of the suggested inspection model is measured against that of a calendar-

based inspection schedule. The report finds that reinforcement learning can be used to

improve on the performance of the calendar-based model by a small margin.

Keywords: Maintenance, Inspection schedule, PPO, Weibull, Markov, Monte Carlo

simulation, Reinforcement Learning, Python, RAMS

Sammendrag

Denne rapporten søker å utforske hvordan forsterket læring (RL) kan anvendes til å

redusere vedlikeholdskostnader for offshore vindturbiner. Den valgte tilnærmingen er å

optimalisere inspeksjonsplanleggingen, og å utforske hvilken effekt dette vil ha på

kostnadene. Komponentslitasje er simulert med en 4-tilstands Weibull-Markov-modell og

to forskjellige tilnærminger til pålitelighet. Tilstanden til komponentene approksimeres

ved hjelp av Monte Carlo-simuleringer. Arbeidet er gjennomføres med ‘Proximal Policy

Optimization’ og er programmert i Python. Programmets prestasjon sammenlignes med

en kalenderbasert inspeksjonsplanleggingsplan. Rapporten finner at forsterket læring kan

anvendes til å forbedre det kalenderbaserte regimet med en liten margin.

Stikkord: Vedlikehold, Inspeksjon, PPO, Weibull, Markov, Monte Carlo simulering,

Forsterket læring, Python, RAMS

Preface

This is a master’s thesis in Reliability, Availability, Maintenance and Safety (RAMS) as part

of a M.Sc. in Mechanical Engineering at the Department of Mechanical and Industrial

Engineering – Norwegian University of Science and Technology (NTNU). The work for this

report was conducted during the autumn semester of 2023. The idea for the report was

thought up during the literature review. All simulation work was done on a laptop.

The report is intended for other master’s students in RAMS. Some experience with

programming in Python is recommended.

Trondheim, 2023-12-22

Ole Daniel Trandheim Røn

Acknowledgements

Firstly, I would like to thank Professor Shen Yin for his support throughout my work on

this report. He has carved out room in his busy schedule and made himself available

when needed. His insightful feedback has been a great help. This report would not be the

same without his contributions.

Secondly, I would like to thank PhD student Andrie Pasca Hendradewa. Andrie has been

working on a separate RL-optimization problem in parallel to my work on this report.

Although he started his work earlier than I started mine, he made sure to set aside the

time needed to catch me up to speed. I have learned a lot from our collaboration and am

grateful for his patience and selflessness.

Thirdly, I would also like to express my gratitude to Professor Jørn Vatn and the rest of

the Department of Mechanical and Industrial Engineering at NTNU for their patience and

understanding during the process leading up to this report.

I would also like to thank the online reinforcement learning communities for their

willingness to share their tools and experience. The tools provided by OpenAI have been

instrumental to the work done in this report.

Finally, I wish to thank friends and family for their continued support.

Executive Summary

The work in this report demonstrates how reinforcement learning can be used for the

maintenance planning of offshore wind turbines. The report explores the effectiveness of

using reinforcement learning to optimize inspection scheduling. This is conducted in the

following way:

First, the model of the system is constructed. This model is designed to describe how the

system acts depending on what actions are performed. For this system, there are two

actions: to do or not do an inspection. If no inspection is performed, the reliability of the

system is calculated and used to give an approximation of how much power is produced

on average. If an inspection is performed, the degradation is calculated for all

components and used to evaluate their state. If a component is found to be degraded, a

maintenance action is simulated according to the degree of degradation. The system

reward is penalized according to the maintenance actions performed and estimated

power production is calculated.

Second, a reinforcement learning agent is tasked to find the optimal way to solve the

model. This agent performs better the longer it is allowed to simulate.

Third, a similar model is built to test different calendar-based inspection schedules. This

program is designed to test a wide range of intervals to find the optimal one.

Fourth, the performances of the two models are evaluated.

Fifth, the steps above are repeated with a different approach to reliability.

Though this methodology, the reinforcement learning agent is found to be capable of

outperforming the optimized calendar-based schedule by a small margin both times.

Calendar-based inspection planning is quite effective, but there is still some room for

improvement.

Table of Contents
List of Figures ... 1

List of Simplified Code .. 1

List of Tables ... 2

List of Abbreviations .. 2

List of Symbols .. 2

RAMS Theory ... 2

Computer Science .. 3

General Parameters .. 3

Chapter 1 - Introduction ... 4

1.1 Background .. 4

1.2 Objectives .. 5

1.3 Approach ... 6

1.4 Limitations ... 6

1.5 Outline .. 7

Chapter 2 – System Description .. 9

2.1 Wind Turbine Reliability .. 9

2.2 Wind Turbine Power Production ..11

Chapter 3 – Theoretical Background ...12

3.1 Reinforcement Learning (RL) ...12

3.2 Deep Reinforcement Learning (DRL) ...13

3.3 Proximal Policy Optimization (PPO) ...13

3.4 Implementation ...14

3.5 Reliability Theory ...15

3.6 Maintenance Theory ...16

Chapter 4 – System Model ...17

4.1 Simulating Degradation ..17

4.2 Observation Space and Action Space ..18

4.3 The Reward Structure ...19

Chapter 5 – Calculation Data..20

5.1 General Parameters ..20

5.2 Weibull Parameters ..20

5.3 Maintenance Costs and Durations...22

Chapter 6 – First Case Study ...23

6.1 Central System ..23

6.2 Control System ..25

6.3 Policy Collapse ...27

6.4 Results ...29

Chapter 7 – Second Case Study ...33

7.1 Model Changes ..33

7.2 Results ...36

Chapter 8 – Discussion ..40

Chapter 9 – Conclusions and Future Work ..41

Conclusions ..41

Suggestions for Future Work ...41

Bibliography ...42

Appendix A .. i

The First Environment .. i

Appendix B ... vi

Optimizing the First Environment .. vi

Appendix C .. vii

Visualizing the First Environment ... vii

Appendix D ... xiii

Finding the First Optimal Inspection Interval .. xiii

Appendix E ... xviii

Visualizing the First Constant Inspection Interval .. xviii

Appendix F .. xxv

The Second Environment .. xxv

Appendix G .. xxx

Optimizing the Second Environment .. xxx

Appendix H ... xxxi

Visualizing the Second Environment .. xxxi

Appendix I .. xxxvii

Finding the Second Optimal Inspection Interval .. xxxvii

Appendix J .. xlii

Visualizing the Second Optimal Inspection Interval ... xlii

1

List of Figures
Figure 2.1 Example of a wind turbine and its nacelle layout showing some of the

terminology

Figure 2.2 Fault tree analysis of wind turbine system failure

Figure 2.3 Power production of a 5 MW wind turbine

Figure 3.1 “The Bathtub curve”

Figure 4.1 Descriptive illustration of the Markov states

Figure 4.2 Illustration of the Markov state transition model

Figure 4.3 Example of a state probability distribution

Figure 6.1 Finding Optimal Inspection Interval, Low Precision

Figure 6.2 Finding Optimal Inspection Interval, Higher Precision

Figure 6.3 Policy collapse

Figure 6.4 New learning rate graph

Figure 6.5 Central system: Reward per simulation

Figure 6.6 Control system: Reward per simulation

Figure 6.7 Central system: System reliability

Figure 6.8 Control system: System reliability

Figure 6.9 Central system: State probability distribution

Figure 6.10 Control system: State probability distribution

Figure 7.1 Illustration of proposed component reliability and failure rate function

Figure 7.2 Descriptive illustration of terms

Figure 7.3 Finding optimal inspection interval, low precision

Figure 7.4 Finding optimal inspection interval, higher precision

Figure 7.5 Central system: Reward per simulation

Figure 7.6 Control system: Reward per simulation

Figure 7.7 Central system: System reliability

Figure 7.8 Control system: System reliability

Figure 7.9 Central system: State probability distribution

Figure 7.10 Control system: State probability distribution

List of Simplified Code
Code 6.1 Finding state probability distribution with Monte Carlo simulations

Code 6.2 Logic to find the optimal inspection interval

2

List of Tables
Table 5.1 Calculation values

Table 5.2 Weibull parameters

Table 5.3 Cost and duration of maintenance actions

Table 6.1 Maintenance data for wind turbine blades

Table 6.2 Weibull parameters for wind turbine blades

Table 6.3 Performance measurements of the system

Table 7.1 Performance measurements of the systems

List of Abbreviations
RAMS Reliability, Availability, Maintenance and Safety

O&M Operation and Maintenance

AI Artificial Intelligence

RL Reinforcement Learning

DRL Deep Reinforcement Learning

PPO Proximal Policy Optimization

G20 The Group of Twenty. Forum for international economics cooperation.

GW Giga Watt

PM Preventive Maintenance

CM Corrective Maintenance

List of Symbols
RAMS Theory

𝑖 Component index

𝑠 State (Markov state)

𝑅𝑖(𝑡) Component reliability

𝑅𝑠𝑦𝑠(𝑡) System reliability

α, β Weibull shape parameter. α = β

𝜆, η Weibull scale parameter. λ =
1

η

𝑧(𝑡) Failure rate function

Pr𝑖,𝑠=𝑋(𝑡) Probability of component i being in Markov state X at time t

3

Computer Science
𝑠 State (observation)

𝑆 State space (observation space)

𝑎 Action

𝐴 Action space

𝑅𝑤(𝑡) Reward in week t

𝐺𝑡 Total cumulative rewards including week t

𝛾 Discount factor

ratio𝑡 Probability ratio between the old and new policy

𝑐𝑙𝑖𝑝(·) Clipping function for the gradient

𝜀𝑐𝑙𝑖𝑝 Clipping parameter

Â𝑡 Estimation of the average function at timestep t

𝐻(·) Entropy

𝛽 Hyperparameter to control the strength of entropy

𝑉𝜔 Critic network that estimates the state value

General Parameters
𝐼(𝑡) Income in week t

𝐶𝑀(𝑡) Maintenance costs in week t

𝑇(𝑡) System operational time in week t

𝑃 Maximal power production capacity

𝐶 Average expected capacity factor

𝑆 Average expected selling price of power

𝐶𝐼 Cost of inspection

𝐶𝑃𝑀,𝑖(𝑡) Cost of preventive maintenance actions for component i in week t

𝐶𝐶𝑀,𝑖(𝑡) Cost of corrective maintenance actions for component i in week t

𝑇𝑖 Duration of inspection

𝑇𝑃𝑀,𝑖(𝑡) Duration of preventive maintenance actions for component i in week t

𝑇𝐶𝑀,𝑖(𝑡) Duration of corrective maintenance actions for component i in week t

Chapter 1 - Introduction

4

Chapter 1 - Introduction
1.1 Background
Offshore wind technology is a rapidly growing segment of power production. From 2010

to 2022 the cumulative global capacity of deployed offshore wind turbines increased from

3.1 GW to 63.2 GW, more than a twenty-fold increase. Draw factors for the industry

include a vastness of available real estate and a more stable wind distribution than on

land, meaning that they operate with a higher capacity factor. In Europe, the technology

has an added benefit of peaking its power production during winter, coinciding with an

increased demand in power [14].

Offshore wind turbines have a higher cost of construction, operation, and maintenance

than onshore wind turbines. To compensate, offshore wind turbines are generally

constructed at a larger scale, which significantly increases their power output. A doubling

in the blade span increases potential power production by a factor of four.

Datapoints from the G20 countries report that operation and maintenance (O&M) costs

typically account for 16% to 25% of the levelized cost of electricity of offshore wind

turbines [14]. For comparison, onshore wind turbine O&M costs are reported to make up

around 5% of its levelized electricity costs [22]. The differential is caused by a higher

cost of accessing the site to perform maintenance. O&M of an offshore wind turbine

requires utilizing specialized vessels and skilled crew. The harsh climate at sea can also

cause significant lead times at all stages of the O&M process. There are some

uncertainties connected to the expected lifetime O&M costs of an offshore wind turbine.

This is caused by a lack of operational experience and a lack of available O&M cost data

for the industry [14]. The high O&M costs make the industry an excellent candidate for

optimization studies.

Reinforcement Learning (RL) has in the last decades emerged as promising tool for

optimization. This is largely caused by a rapid increase of available processing power and

data. RL is a type of machine learning that involves training an agent to act in an

environment to maximize the reward signal. In the context of industrial systems, RL can

be used to develop maintenance strategies based on real-time system data rather than

predetermined schedules.

Problem Formulation

Offshore wind turbines have high operation and maintenance costs. Utilizing

reinforcement learning to optimize the inspection schedule could have significant impact

on the cost-effectiveness of the industry. Demonstrate how RL can be used to develop a

predictive maintenance strategy for offshore wind turbines.

Related Work

[18] Deep reinforcement learning for cost-optimal condition-based maintenance policy of

offshore wind turbine components (2023) by Cheng, J., Liu, Y., Li, W., & Li, T.:

This paper explores different deep reinforcement learning frameworks to derive

the cost-optimal condition-based maintenance policy for offshore wind turbines. It

Chapter 1 - Introduction

5

explores different inspection intervals and repair thresholds and compares the

cost-efficiency of the approaches. The scope is limited to the blade of a single

wind turbine. It considers variations in wind conditions and some logistical factors.

The maintenance actions considered in the report are inspection and replacement.

There are three states considered: Normal working state, degraded and failed.

The explored RL-models are PPO and DQN.

This paper is the main inspiration for the work done in this report.

[2] Joint optimization of preventive and condition-based maintenance for offshore wind

farms (2022) by Toftaker, H., Bødal, E. F., & Sperstad, I. B.:

This paper utilizes a constrained integer linear program, maximizing for income, to

explore the trade-off between maximizing power production and limiting the

degradation of the turbines.

The reward structure utilized in this paper was a major inspiration during the

design of the reward structure for in this report.

[3] Modelling wind turbine degradation and maintenance (2016) by Le, B., & Andrews, J.:

This paper presents an asset model for offshore wind turbine reliability. The model

accounts for degradation, inspection, and maintenance actions. The purposes of

the model are to predict the future condition of wind turbine components and to

investigate the effect of a specified maintenance strategy.

This paper is this report’s main source of statistical degradation data.

[31] Proximal Policy Optimization Algorithms v2 (2017) by Schulman, J., Wolski, J.,

Dhariwal, P., Radford, A., & Klimov, O.:

This paper is the basis for the reinforcement learning technique utilized in this

report.

What Remains to Be Done?

Utilizing RL for maintenance scheduling is an emerging field of study that shows great

promise. Its uses and limitations are still being explored. The complexity of industrial

systems can pose significant challenges to applying RL to system maintenance. Industrial

systems often have numerous interacting components and subsystems with complex

dependencies and feedback loops. This complexity can make it challenging to develop RL

algorithms that effectively model the system’s behavior. Most articles on the subject let

the RL algorithm decide the maintenance action outright, but how would the program

perform if its actions were limited to inspection planning?

1.2 Objectives
The main objectives of this master thesis are to:

1 Develop a RL-based predictive maintenance model for an offshore wind turbine.

2 Compare the effectiveness of the RL-based model to that of a calendar-based

inspection model.

Chapter 1 - Introduction

6

1.3 Approach
This is the chosen approach to meet the objectives:

1 Familiarize myself with RL by solving an easy, preexisting environment (cartpole).

2 Create and solve a simple custom environment based on a Markov model.

3 Do a literature review to establish a better understanding of the system.

4 Do a literature review to establish a better understanding of RL.

5 Establish the data sets that will be used for the digital representation of the system.

6 Create a digital representation of the system in a RL model.

7 Create a digital representation of the calendar-based inspection model.

8 Make observations about the systems’ performances.

9 Compare the results.

1.4 Limitations

Experience

I am a master student in mechanical engineering specializing in the field of RAMS. I have

limited prior knowledge of Artificial Intelligence and no prior experience with utilizing the

technology for optimization. Additionally, my experience with coding in Python is purely

from recreational use. As a result of these factors, the programming in this report will not

be optimized.

Field of Study

Writing a multi-disciplinary thesis means that the department is unlikely to specialize in

both fields of study. Most of the computer science theory utilized in this report will be

self-thought over the duration of the work.

Timeframe

This paper was produced over a timeframe of 16 weeks.

Data accuracy

The data used in this report is based on approximations and available literature. There

has not been conducted any collaboration with the industry or field research.

Tools

All simulations in this report were done on an HP EliteBook 830 G6 laptop. It runs on the

Intel i5-8265U @ 1.60GHz and has 8GB RAM. These are the program specs:

Visual Studio Code v1.84.2

Chapter 1 - Introduction

7

Python v3.11.5

Gymnasium v0.29.1

Stable Baselines3 v2.1.0

1.5 Outline
Here is an overview of how the report is organized:

Abstract: Practical information about what has been done and the assumed background

of the reader.

Acknowledgements: Gratitude for received support.

Executive summary: Summary of the work done in this report.

List of figures

List of simplified code

List of tables

List of abbreviations

List of symbols: List of symbols used in calculations.

Chapter 1. Introduction: Background, objectives, approach, limitations, and outline of

the report.

Chapter 2. System description: System descriptions and assumptions relevant to

modelling the system for maintenance optimization.

Chapter 3. Theoretical background: State of the art in RL and RAMS theory.

Chapter 4. System model: The model is explained. Observation space, action space

and reward structure are described here.

Chapter 5. Calculation data: Chosen parameters to describe the system.

Chapter 6. First case study: Case study on the effectiveness of utilizing RL for

inspection planning.

Chapter 7. Second case study: Second case study in the effectiveness of utilizing RL

for inspection planning.

Chapter 8. Discussion: Results from the case studies are discussed.

Chapter 9. Conclusion and future work

Bibliography

Appendixes: The appendixes contain the code of the report. They are formatted in the

following way:

• Appendix A contains the first case study environment. This is where the step

function, the reward structure, the observation space, and the action space are

defined.

Chapter 1 - Introduction

8

• Appendix B contains the optimization code. This is where the PPO learns, and

results are saved.

• Appendix C contains the code to visualize the results.

• Appendix D contains the code to find the optimal calendar-based inspection

interval.

• Appendix E contains the code to visualize the calendar-based inspection interval.

• Appendix F, G, H, I and J are structured in the same way, but for the second case

study.

Chapter 2 – System Description

9

Chapter 2 – System Description
2.1 Wind Turbine Reliability
A wind turbine is a structurally complex system comprised of thousands of components

[25]. Each component has its own life expectancy, failure conditions and suitable

maintenance actions. Notable maintenance actions are routine inspection, cleaning,

lubrication, repair, and replacement [15]. For a meaningful representation of the system,

it is important to define the scope. For this report, the scope will be limited to the major

components. The maintenance actions are limited to inspection, repair, and replacement.

Figure 2.1: Example of a wind turbine and its nacelle layout showing some of the

terminology [28]

In this report, no redundancy is assumed in the wind turbine system (see Figure 2.2 for

the fault tree analysis). The components’ reliabilities are also taken to be completely

independent of each other. Based on these assumptions, the system reliability, 𝑅𝑠𝑦𝑠(𝑡), is

calculated by taking the product of the component reliabilities, 𝑅𝑖(𝑡):

𝑅𝑠𝑦𝑠(𝑡) = ∏𝑅𝑖(𝑡) (2.1)

There is not conducted a hazard analysis for this report. The risk of critical failure is

considered beyond the scope of the task. As such, no additional penalty is applied for

component failures during simulations.

Chapter 2 – System Description

10

Chapter 2 – System Description

11

2.2 Wind Turbine Power Production
Wind conditions heavily influence the power production of a wind turbine (see Figure

2.3). The correlation between a wind turbine’s maximum capacity and its average power

output is called the capacity factor. Offshore wind turbine projects commissioned in

Europe in 2022 reported a weighted average capacity factor of 49% [14]. This is the

capacity factor that will be utilized in this report, though it could also be argued for using

a capacity factor of 34.2%, the global average for existing offshore wind turbines [16].

The capacity factor will influence reward for keeping the system running.

A weakness of utilizing a capacity factor to estimate power production is that the model

will be blind to seasonal changes in production.

Figure 2.3: Power production of a 5 MW wind turbine [26]

Chapter 3 – Theoretical Background

12

Chapter 3 – Theoretical Background
3.1 Reinforcement Learning (RL)
The growth in processing power has made Artificial Intelligence (AI) technology an

increasingly relevant field of science. Machine learning is a type of AI where the agent

makes predictions and decides what actions to take based on past and present

observations [35]. For machine learning to be effective, the future must resemble the

past. With sufficient historical data, machine learning can be used to approximate

component degradation, making maintenance planning an excellent candidate for

machine learning optimization.

Reinforcement Learning (RL) is a type of machine learning where the algorithm has the

ability to learn without explicitly being told how. The RL-agent is defined by the

observation space, the action space, and the reward structure. The observation space

aims to describe the current state of the system. It contains all the information required

to make a prediction about the future state of the system. The action space contains all

the actions the agent is allowed to take at any timestep. The reward structure assigns

rewards or penalties based on the performance. The goal of the RL agent is to score as

high of a reward as possible. The RL agent starts by performing random actions, and

slowly develops an understanding of the optimal action throughout the observation

space.

To better illustrate this structure, here is the cartpole problem [36]:

A pole is attached by an un-actuated joint to a cart. The cart moves along a frictionless

track. The pendulum is placed upright on the cart. The goal is to balance the pole by

applying forces to the left and right direction on the cart.

Action space:

(0) push cart left

(1) push cart right

Observation space:

(0) cart position

(1) cart velocity

(2) pole angle

(3) pole angular velocity

Reward structure:

+1 for every timestep

The simulation is terminated if the pole falls below a defined angle or if the maximal

timestep is reached.

The outcome of each action is calculated in the step function and conveyed back to the

RL algorithm.

Chapter 3 – Theoretical Background

13

3.2 Deep Reinforcement Learning (DRL)
RL algorithms learn dynamically with a trial-and-error method to maximize the reward.

Mapping the optimal reward path for all states can overwhelm the algorithm for complex

systems. This is where DRL comes in. DRL algorithms learn from existing knowledge and

applies it to the new data set. The “deep” portion refers to the application of a neural

network. This network estimates the state-action-reward correlation instead of mapping

every solution [40].

The cartpole problem is an example of how this is useful. The state space for this

problem is a 4-dimensional continuous vector. Mapping the optimal reward path for all

states in a continuous observation space is infeasible. Traditional RL algorithms would

therefore require the observation space to be discretized. This is a viable option, but the

amount of states would still be extremely high.

3.3 Proximal Policy Optimization (PPO)
PPO is the DRL algorithm that is used for the optimization work in this report. PPO is the

default RL algorithm at OpenAI [38] and is often referred to as the state of the art in RL.

Compared with other DRL algorithms, the three main advantages of PPO are its

simplicity, stability, and sample efficiency [37]. PPO has shown great performance in

deriving the maintenance schedule of wind turbine systems [18].

The PPO agent starts by using a trial-and-error method to map performance based on

actions, observations, and rewards. This mapping is used to establish a policy network.

The policy network is used to create a probability distribution of the action space based

on their expected performance from the current observed state. An action’s assigned

probability is correlated to its expected performance. The next action is picked with a

random sampling. The policy network gets continuously updated with observed results.

A more detailed explanation of a PPO algorithm [18], [31], [37]:

The policy is expressed as a neural network 𝜋𝜃(𝑎|𝑠) with the parameters 𝜃:

𝜋𝜃(𝑎|𝑠) = Pr[𝑎|𝑠] ∀ 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆 (3.1)

S is the state space of the model. A is the action space of the model. s is a state. a is an

action.

The policy attempts to maximize the total reward, 𝐺𝑡, over a chosen timeframe. 𝐺𝑡 is

expressed by:

𝐺𝑡 = 𝑅𝑤(𝑡) + 𝛾𝑅𝑤(𝑡 + 1) + 𝛾2𝑅𝑤(𝑡 + 2) + ⋯ = 𝑅𝑤(𝑡) + 𝐺𝑡+1 (3.2)

𝑅𝑤(𝑡) is the reward per timestep and 𝛾 is the discount factor.

The agent takes an action, 𝑎𝑡, sampled from the policy 𝜋𝜃(𝑎|𝑠𝑡) in state 𝑠𝑡. The reward,

𝑅𝑤(𝑡), and the next state, 𝑠𝑡+1, are noted. At the end of the episode, the total reward,

𝐺(𝑡), is calculated and the transition process {𝑠𝑡 , 𝑎𝑡 , 𝑅𝑤(𝑡), 𝐺𝑡} is stored in the replay

memory. After enough samples are stored, the parameters 𝜃 and 𝜔 are updated. 𝜃 is

updated by minimizing the following loss function:

Chapter 3 – Theoretical Background

14

𝐿𝐶𝐿𝐼𝑃 = 𝔼 [min (ratio𝑡(𝜃), 𝑐𝑙𝑖𝑝(𝑟𝑎𝑡𝑖𝑜𝑡(𝜃), 1 − 𝜀𝑐𝑙𝑖𝑝, 1 + 𝜀𝑐𝑙𝑖𝑝))Â𝑡 + 𝛽𝐻(𝜋𝜃)] (3.3)

𝑐𝑙𝑖𝑝(·) is the clipping function for the gradient. It is there to prevent rapid change of

parameters. 𝜀𝑐𝑙𝑖𝑝 is the clipping parameter. 𝐻(·) is the entropy. 𝛽 is the hyperparameter to

control the strength of entropy. ratio𝑡 is the probability ratio between the new, 𝜋𝜃(𝑎|𝑠𝑡),

and the old policy, 𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠𝑡):

ratio𝑡(𝜃) =
𝜋𝜃(𝑎|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠𝑡)
 (3.4)

Â𝑡 is the estimation of the average function at timestep t:

Â𝑡 = 𝐺𝑡 − 𝑉𝜔(𝑠𝑡) (3.5)

𝑉𝜔 is the critic network that estimates the state value.

The parameters 𝜔 of the critic network are found by minimizing:

𝐿𝑉(𝜔) = 𝔼 [(G𝑡 − 𝑉𝜔(𝑠𝑡))
2
] (3.6)

The samples in the replay memory are be used to update the parameters numerous

times before they are deleted, and new samples are collected.

3.4 Implementation
A challenge with PPO is that it is vulnerable to early convergence. This means that it finds

a local optimum and stops exploring before it reaches the global optimum. This can be

combatted by incentivizing exploration. However, if the incentive for exploration is too

high, the model’s ability to learn will be reduced. The model may even unlearn previous

progress. Different hyperparameter initializations and search parameters can have a

significant impact on performance [30].

The optimization in this report is done using a simple, vectorized wrapper for multiple

environments, calling each environment in sequence. The program essentially runs

multiple iterations of the same environment. This environment wrapping technique is

sometimes referred to as “DummyVecEnv.” The technique reduces the time spent in the

network interface by parallelizing over multiple inputs when doing rollouts. Running

decorrelated samples also helps with training. “DummyVecEnv” is optimal for

computationally simple environments, where the overhead outweighs the computation

time [33], [34].

Chapter 3 – Theoretical Background

15

3.5 Reliability Theory
Mechanical component failures can generally be segmented into three categories (Figure

3.1):

• Early failures: Failures caused by errors in installation or production.

• Intrinsic failures: Failures caused by short-term overload and sudden

breakdowns.

• Deterioration: Failures caused by long-term degradation and aging.

Figure 3.1: “The Bathtub curve” [27] – The shape parameter is denoted by β.

Two common ways of expressing system reliability of a mechanical system are the

exponential distribution function and the Weibull distribution function. The exponential

distribution function assumes a constant failure rate. The failures are considered to be

evenly distributed throughout the recorded timeframe. In other words, this approach

takes most failures to be intrinsic, and early failures and deterioration failures are

assumed to be negligible. A strength of the exponential distribution function is that it

makes expressing reliability trivial for any data set. The simplicity of the expression also

simplifies calculations.

The Weibull distribution function expands upon the exponential function by introducing

the shape parameter. The purpose of the shape parameter is to simulate changes in the

failure function. This way degradation can be simulated. Most failures in mechanical

systems are gradual processes, rather than sudden occurrences [9]. As such,

deterioration should be assumed to be a notable cause of component failures. For this

reason, the Weibull distribution function is chosen to simulate the system degradation.

Premature (early) failures are not considered.

Chapter 3 – Theoretical Background

16

3.6 Maintenance Theory
The two main types of maintenance actions are preventive maintenance and corrective

maintenance.

Corrective maintenance (CM) refers to maintenance actions performed after critical

degradation or failure. A corrective maintenance strategy, run-to-failure maintenance,

can quickly become costly due to production interruptions caused by extended equipment

downtime [11]. In this report, corrective maintenance is used interchangeably with

replacement.

Preventive maintenance (PM) is planned maintenance performed when an item is

functioning correctly to prevent future failures. Preventative maintenance aims to prolong

the lifetime of a system component. Preventive maintenance plans can be classified into

the following categories [20]:

• Age-based maintenance: Tasks are performed at a specified component age.

• Clock-based maintenance: Tasks are performed at fixed calendar times.

• Condition-based maintenance: Tasks are performed based on measured

condition variables.

The downside of a preventive maintenance plan is that it generally performs maintenance

before it is necessary, reducing the lifespan of some components and resulting in

additional costs [11]. Repairs or overhauls generally cannot return the system to its

initial state. Practically, the lifetimes of repaired components show a significant amount of

uncertainty [9]. In this report preventive maintenance is used interchangeably with

repair.

The maintenance plan utilized in this report is predictive, condition-based maintenance.

The program schedules inspections based on component ages. Its performance is

compared to that of a clock-based inspection cycle.

Chapter 4 – System Model

17

Chapter 4 – System Model
4.1 Simulating Degradation

Degradations of the system components are simulated with a 4-state Markov model.

Figure 4.1 illustrates the attributes of the states.

Figure 4.1: Descriptive illustration of the Markov states [3]

The program will calculate the probability distribution between the four states at each

timestep. This is done by using the failure rate function for the system component, 𝑧𝑖(𝑡).

𝑧(𝑡) = 𝛼𝜆(𝜆𝑡)𝛼−1 [20] (4.1)

𝑧𝑖,𝑠(𝑡) = 𝛼𝑖,𝑠𝜆𝑖,𝑠(𝜆𝑖,𝑠𝑡𝑖,𝑠)
𝛼𝑖,𝑠−1 (4.2)

𝜆 is the scale parameter and 𝛼 is the shape parameter of the Weibull distribution function.

𝑡𝑠 denotes time spent in state s. i is the system component index.

Figure 4.2: Illustration of the Markov state transition model

Chapter 4 – System Model

18

The reliability of a system component, 𝑅𝑖(𝑡), is the probability of not being in the failed

state, state 3.

𝑅𝑖(𝑡) = 1 − Pr𝑖,𝑠=3(𝑡) (4.3)

4.2 Observation Space and Action Space
The observation space of the system keeps track of the age of each system component.

Observation space:

(0) Time since maintenance action for component 0.

(1) Time since maintenance action for component 1.

…

(i) Time since maintenance action for component i.

Action space:

(0) No action

(1) Inspection

If an inspection is performed, the program calculates the state probability distribution for

each component. This is used to simulate the component state. The program uses a

random number between 0 and 1 to simulate the expected state of the system

component. Using Figure 4.3 as an example, rolling 0.00 - 0.40 would simulate a normal

working state, 0.40 - 0.65 a degraded state, 0.65 - 0.85 a critical state and 0.85 - 1.00 a

failed state.

Figure 4.3: Example of a state probability distribution

Chapter 4 – System Model

19

For components in the normal working state, no futher maintenance actions are

performed. For components in a degraded state, preventive maintenance is performed.

For components in a critical state or failed state, corrective maintenance is performed.

Preventive and corrective maintenance are both assumed to return the component to

“good as new,” resulting in a component age of 0 weeks.

4.3 The Reward Structure
The reward structure for the program is based on expected income and expenditures.

The reward is divided by 106 to prevent it from going out of the bounds of the PPO policy.

𝑅𝑤(𝑡) = 𝐼(𝑡) − 𝐶𝑀(𝑡) (4.4)

Here, 𝑅𝑤(𝑡) represents expected income in week t and 𝐶𝑀(𝑡) represents maintenance

costs in week t.

Expected income, 𝐼(𝑡), at any timestep is given by:

𝐼(𝑡) = 𝑅𝑠𝑦𝑠(𝑡) ∗ 𝑇(𝑡) ∗ 𝑃 ∗ 𝐶 ∗ 𝑆 (4.5)

Here, 𝑅𝑠𝑦𝑠(𝑡) is the system reliability on week t. 𝑇(𝑡) is the production hours of the system

during week t. 𝑃 is the maximum power capacity of the wind turbine. 𝐶 is the average

capacity factor for the turbine. 𝑆 is the average selling price of power.

If inspection is not performed:

𝐶𝑀(𝑡) = 0 (4.6)

𝑇(𝑡) = 24ℎ ∗ 7 (4.7)

If inspection is performed:

𝐶𝑀(𝑡) = 𝐶𝐼 + ∑𝐶𝑃𝑀(𝑡) + ∑𝐶𝐶𝑀(𝑡) (4.8)

𝑇(𝑡) = 24ℎ ∗ 7 − 𝑇𝐼 − ∑𝑇𝑃𝑀(𝑡) − ∑𝑇𝐶𝑀(𝑡) (4.9)

𝐶𝐼 is the cost of inspection. ∑𝐶𝑃𝑀(𝑡) is the cost of all preventive maintenance actions

performed in week t. ∑𝐶𝐶𝑀(𝑡) is the cost of all corrective maintenance actions performed

in week t. 𝑇𝐼 is the system downtime required to do an inspection, this is assumed to be

1 hour. ∑𝑇𝑃𝑀(𝑡) is the duration of all preventive maintenance actions performed in week t.

∑𝑇𝐶𝑀(𝑡) is the duration of all corrective maintenance actions performed in week t.

Chapter 5 – Calculation Data

20

Chapter 5 – Calculation Data
5.1 General Parameters
The data used to simulate the system is based on approximations and available

literature. The simulations will be based on a 5 MW capacity wind turbine. The wind

turbine is expected to operate with an average capacity factor of 49%. The selling price

of power is simplified to be static at 0,04 € / kWh.

Description Value Source

Power capacity (𝑷) 5 MW [29]

Capacity factor (𝑪) 49 % [14]

Selling price of power (𝑺) 0,04 € / kWh [18], [26]

Inspection cost (𝑪𝑰) 2500 € [18], [26]

Conversion rate 1,14 €/£

Table 5.1: Calculation values

5.2 Weibull Parameters
Table 5.2 contains estimated Weibull parameters. They describe the behavior of the

simulated failure rate function as the component degrades to the specified state. The

numbers are based on estimates and inspection data for onshore wind turbines, as there

currently is limited data available for offshore wind turbines [14].

Chapter 5 – Calculation Data

21

Subsystem Component Degraded

condition

(years)

Critical

condition

(years)

Functional

failure

(years)

Source

Drivetrain Main bearings β = 1.2,

η = 160

β = 1.5,

η = 20

β = 1.5,

η = 20

[3]

 Gearbox β = 1.3,

η = 16

β = 1.2, η = 2 β = 1.4,

η = 2

[3]

 Main shafts β = 1.2,

η = 160

β = 1.5,

η = 20

β = 1.5,

η = 20

[3]

Hydraulic

system

Motor/gear

pump

- - β = 1.2,

η = 20

[3]

 Valves/pipes β = 1.2,

η = 13.11

- β = 1.2,

η = 3.28

[3]

Brake

system

Callipers/pads β = 1.2,

η = 13.11

- β = 1.2,

η = 3.28

[3]

 Brake discs β = 1.2,

η = 42.28

- β = 1.2,

η = 10.57

[3]

Yaw

system

Hydraulic

actuator

β = 1.2,

η = 42.28

- β = 1.2,

η = 10.57

[3]

 Bearing/gear β = 1.2,

η = 29.12

β = 1.2,

η = 3.64

β = 1.2,

η = 3.64

[3]

 Yaw brake β = 1.2,

η = 29.12

β = 1.2,

η = 3.64

β = 1.2,

η = 3.64

[3]

Pitch

system

Hydraulic

actuator

β = 1.2,

η = 29.12

- β = 1.2,

η = 7.28

[3]

 Bearing/gear β = 1.2,

η = 15.38

β = 1.2,

η = 1.92

β = 1.2,

η = 1.92

[3]

Hub Hub β = 1.2,

η = 15.38

β = 1.2,

η = 1.92

β = 1.2,

η = 1.92

[3]

Blades Blades β = 1.2,

η = 23.02

β = 1.2,

η = 2.88

β = 1.2,

η = 2.88

[3]

Power

system

Generator β = 1.2,

η = 15.38

β = 1.2,

η = 1.92

β = 1.2,

η = 1.92

[3]

 Frequency

converter

β = 1.2,

η = 33.38

- β = 1.2,

η = 8.35

[3]

 Transformer - - β = 1.2,

η = 14.93

[3]

Structure Tower - - β = 1.2,

η = 14.93

[3]

 Nacelle β = 1.2,

η = 133.33

β = 1.2,

η = 16.67

β = 1.2,

η = 16.67

[3]

 Foundation β = 1.2,

η = 133.33

β = 1.2,

η = 16.67

β = 1.2,

η = 16.67

[3]

Table 5.2: Weibull parameters

Chapter 5 – Calculation Data

22

In literature, many Greek letters are used in the literature to describe the parameters of

the Weibull distribution function. For clarity:

λ =
1

η
 (scale parameter)

α = β (shape parameter)

5.3 Maintenance Costs and Durations
The maintenance options are limited to one preventive and one corrective maintenance

action per component. This is done to streamline the modelled maintenance plan. It is

important to be cognizant of simplifications. An oversimplified system can give optimized

solutions that are misleading or wrong. Establishing the right calculation parameters is

critical to the effectiveness of the program. On a real-life implementation, the work to

establish these parameters should be thorough. As this report is purely for research

purposes, the data sets in this chapter serves its use, and are considered good enough.

Subsystem Component PM

costs

PM

duration

CM

costs

CM

duration

Source

Drivetrain Main bearings £5,000 3 h £20,000 70 h [3]

 Gearbox £50,000 10 h £260,000 50 h [3]

 Main shafts £5,000 3 h £37,000 70 h [3]

Hydraulic

system

Motor/gear

pump

- - £26,000 10 h [3]

 Valves/pipes - - £1,000 3 h [3]

Brake

system

Callipers/pads - - £4,000 10 h [3]

 Brake discs - - £4,000 10 h [3]

Yaw

system

Hydraulic

actuator

£7,000 3 h £20,000 10 h [3]

 Bearing/gear £7,000 10 h £9,000 70 h [3]

 Yaw brake - - £9,000 10 h [3]

Pitch

system

Hydraulic

actuator

£8,000 3 h £23,000 10 h [3]

 Bearing/gear £8,000 3 h £23,000 10 h [3]

Hub Hub £3,000 3 h £44,000 70 h [3]

Blades Blades £4,000 3 h £200,000 70 h [3]

Power

system

Generator £50,000 10 h £150,000 50 h [3]

 Frequency

converter

- - £12,000 50 h [3]

 Transformer - - £30,000 10 h [3]

Structure Tower £20,000 3 h £264,000 70 h [3]

 Nacelle £5,000 3 h £40,000 70 h [3]

 Foundation £15,000 3 h £204,000 70 h [3]

Table 5.3: Cost and duration of maintenance actions

Chapter 6 – First Case Study

23

Chapter 6 – First Case Study
6.1 Central System
See Appendix A, Appendix B and Appendix C for the code.

For the first case study, a program is designed to model the deterioration and

maintenance of a single-component system consisting of solely of the blade of a wind

turbine. This system is a single-component 4-state Weibull-Markov model.

The state probability distribution is calculated from the time of the last maintenance

action (installation, repair, or replacement). In other words, the reliability of a system

component is reset on maintenance. On inspection and maintenance, the program

estimates production downtime and reduces the reward accordingly. The system is then

set to state 0. This means that the simulated timeframe exclusively represents operative

time. A change in degradation after repair is also not simulated.

PM cost PM duration CM cost CM duration

£4,000 * 1,14 €/£ 3 h £200,000 * 1,14 €/£ 70 h

Table 6.1: Maintenance data for wind turbine blades, from Table 5.1 and 5.3.

Notice the difference in the cost of preventive and corrective maintenance (see Table

6.1). Based on this observation, the PPO agent should be expected to be cautious about

degrading the component to the critical state, as it would be forced perform corrective

maintenance. The scale of the cost difference may be a result of an oversimplification of

the data.

Degraded condition

(weeks)

Critical condition

(weeks)

Functional failure

(weeks)

𝛼0 = 1.2 𝛼1 = 1.2 𝛼2 = 1.2

𝜆0 =
1

23.02 ∗ 52
 𝜆1 =

1

2.88 ∗ 52
 𝜆2 =

1

2.88 ∗ 52

Table 6.2: Weibull parameters for wind turbine blades, from Table 5.2.

The transition probabilities of the Markov chain are used to calculate the state probability

distribution at each timestep. The complexity of the chosen model makes it impossible to

calculate the state probability directly. For this reason, a Monte Carlo simulation is used

to find an approximation of the state probability distribution.

𝑧𝑖,𝑠(𝑡) = 𝛼𝑖,𝑠𝜆𝑖,𝑠(𝜆𝑖,𝑠𝑡𝑖,𝑠)
𝛼𝑖,𝑠−1 (4.2)

To find the distribution at time T, the system component degradation is simulated with

the failure rate function (Formula 4.2) for every timestep t in range [t0, T], where t0 is

the time of entering the current state. The result is compared to a random number

between 0 and 1. If the failure rate function is larger, then the component is considered

to have degraded to the next state for the rest of the calculation. For state 0, t0 is the

Chapter 6 – First Case Study

24

time of the last maintenance action; for states 1 and 2, t0 is the time of degradation. In

the end, the component is found to be in states 0, 1, 2 or 3. The result is stored, and the

simulation is repeated. A higher number of iterations produces a higher probability

distribution precision. See Code 6.1 for simplified Python code.

Code 6.1: Finding state probability distribution with Monte Carlo simulations.

 See Appendix A for the complete code.

state_dist = [0,0,0,0]

for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state = 0

 for t in range (0, time_since_maintenance + 1):

 if state == 0:

 Compute z_0

 if z_0 >= random.randint(0,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 Compute z_1

 if z_1 >= random.randint(0,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 Compute z_2

 if z_2 >= random.randint(0,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[state] += 1/MC_LOOPS

Chapter 6 – First Case Study

25

6.2 Control System
See, Appendix E for the code.

For the control system, the same system attributes are used, but with a constant

inspection interval instead. To find the optimal inspection interval, a simulation is run for

every interval in a chose range, for example 1 to 200 weeks. The best-performing

interval is then chosen to be compared to the reinforcement learning system.

A Monte Carlo simulation is used for the probability distribution, as well as for the

expected reward for each inspection interval. In other words, the program runs a Monte

Carlo simulation inside another Monte Carlo simulation. That makes this step quite time-

consuming. See Code 6.2 for simplified Python code.

Code 6.2: Logic to find the optimal inspection interval.

 See Appendix D for the complete code.

sum_reward = [0] * NUMBER_OF_INTERVALS

for loop in range (0, LOOPS):

 for inspection_interval in range (MIN_INTERVAL, MAX_INTERVAL+1):

 for runtime in range (1, TIMEFRAME+1):

 if (runtime % inspection_interval) == 0:

 action = 1

 else:

 action = 0

 Compute reward

 sum_reward [inspection_interval – MIN_INTERVAL] += reward

sum_reward /= LOOPS

rw_max = 0

optimal_inspection_interval = 0

for interval in range (MIN_INTERVAL, MAX_INTERVAL+1):

 if sum_reward[interval - MIN_INTERVAL] > rw_max:

 rw_max = sum_reward[interval - MIN_INTERVAL]

 optimal_inspection_interval = interval

The program is run with low precision over an extensive range of inspection intervals

(see Figure 6.1) to establish a rough approximation of the optimal interval. The resulting

graph is then used to narrow the range for the next, higher-precision run (see Figure

6.2). This is done to save computing time. The high-precision run is run with 15 of each

Monte Carlo loop. This is too low to get a conclusive result on the optimal inspection

interval, but the resulting estimate is a good enough for our use. The simulation finds the

optimal inspection interval to be 15 weeks. Based on these results, 15 weeks is used as

the inspection interval of the control system.

Chapter 6 – First Case Study

26

Figure 6.1: Finding Optimal Inspection Interval, Low Precision: 17 weeks.

Avg. reward: 82.145. Minimum interval: 1. Maximum interval: 200.

Timeframe: 100 years. Both Monte Carlo simulations: 5 iterations.

Figure 6.2: Finding Optimal Inspection Interval, Higher Precision: 15 weeks.

Avg. reward: 82.111. Minimum interval: 10. Maximum interval: 40.

Timeframe: 100 years. Both Monte Carlo simulations: 15 iterations.

Chapter 6 – First Case Study

27

6.3 Policy Collapse
Running the PPO simulations outright results in a policy collapse (see Figure 6.3). A

policy collapse means that the policy dramatically worsen as the agent continues

interacting with the environment. Policy collapse is a known phenomenon in RL, however

there is currently not much research on the subject [39].

Figure 6.3: Policy collapse. Visualized with TensorBoard.

A common way of overcoming policy collapse is by modifying the parameters of the RL

algorithm. This process can be time consuming as a simulation needs to be run after

each modification to evaluate its impact.

The policy collapse of the case study PPO is likely caused by the high cost of corrective

maintenance. These random spikes in penalty can confuse the algorithm. To reduce the

impact of the spikes, the PPO algorithm parameters are altered. The agent is made to

base its decision making on a larger batch size and learn at a slower pace. There is also

introduced a clipping parameter, which aims to reduce the impact of sudden spikes.

Chapter 6 – First Case Study

28

Simulation and PPO algorithm parameters

n_envs = 5

This is the number of environments that are simulated in succession. It helps with

exploration and run time.

n_steps = 1 000

This is the horizon. It defines how far into the future rewards influence the policy.

batch_size = 5 000

This is the minibatch size. It defines the number of samples that are stored in the replay

memory. batch_size = n_envs * n_steps.

gamma = 0.998

This is the discount factor. It defines how much future rewards are weighted. This

coefficient is increased to make the program consider a larger time frame for its actions.

learning_rate = 5 ∗ 10−5

This is the learning rate. It influences how fast the neural network adapts to

observations. By default, learning_rate = 0.003. This rate is reduced to minimize the

impact of random spikes.

clip_range = 0.1

This is the clipping parameter. Its purpose is to prevent rapid changes in the policy from

singular updates.

Effect of the Parameter Changes

A new simulation is run with the parameter changes in place (see Figure 6.4). The reward

is also reduced by a factor of 10 for this test in case the reward function was running out

of the bounds of the PPO algorithm. The performance can be observed to be more stable

with these changes in place.

Figure 6.4: New learning rate graph. Visualized with TensorBoard.

Chapter 6 – First Case Study

29

6.4 Results
Both programs are run though 10 simulations over a timeframe 30 years with 50 Monte

Carlo loops. The 30 year time frame was chosen to make the figures easier to read.

These are the results:

Measurement Central system Control system

Average reward 24.719119 24.577995

Standard deviation 0.092868 0.108421

Table 6.3: Performance measurements of the systems

See figure 6.5 and 6.6 on the next page for the reward spreads over the 10 simulations.

From these figures the performance spread can be observed. Their performances are also

documented in Table 6.3. A higher number of Monte Carlo loops would increase the

precision of the graphs, but 50 Monte Carlo loops per simulation is found to be sufficient

to establish a trend. The control system holds up surprisingly well. The central system

outperforms the control system, but only by 0.57%. This illustrates the effectiveness of

calendar-based maintenance and serves as a reminder to why this is the industry

standard.

Figures 6.7 and 6.8 show the simulated system reliability of the two approaches over the

span of 30 years. The dashed cyan lines are times of inspection. In these figures, it can

be observed a notable difference in the system reliability level. The central system is able

to maintain a higher level of reliability while performing substantially fewer inspections.

Figures 6.9 and 6.10 provide some more insight into this observation. These figures

describe the state probability distribution of the approaches over 30 years. Note how the

probability distributions for the degraded and critical states are similar between the two

approaches. The main difference is seen in the normal working state and the failed state.

This means that the RL system is more effective at performing maintenance on

components before they reach the failed state. This can also be observed in the spread of

inspections (cyan lines).

Chapter 6 – First Case Study

30

Figure 6.5: Central system: Reward per simulation. Timeframe: 30 years. 50 Monte

Carlo simulations. Avg. reward: 24.719. Standard deviation: 0.093.

Figure 6.6: Control system: Reward per simulation. Timeframe: 30 years. 50 Monte

Carlo simulations. Avg. reward: 24.578. Standard deviation: 0.108.

Chapter 6 – First Case Study

31

Figure 6.7: Central system: System reliability. 65 inspections over 30 years.

50 Monte Carlo simulations. The dashed cyan lines are times of inspection.

Figure 6.8: Control system: System reliability. 104 inspections over 30 years.

50 Monte Carlo simulations. The dashed cyan lines are times of inspection.

Chapter 6 – First Case Study

32

Figure 6.9: Central system: State probability distribution. 65 inspections over 30

years. 50 Monte Carlo simulations. The dashed cyan lines are times of

inspection.

Figure 6.10: Control system: State probability distribution. 104 inspections over 30

years. 50 Monte Carlo simulations. The dashed cyan lines are times of

inspection.

Chapter 7 – Second Case Study

33

Chapter 7 – Second Case Study
See Appendix F, Appendix G, Appendix H, Appendix I and Appendix J for the code.

7.1 Model Changes
A weakness of the model in the first case study was that an inspection without repair had

no effect on the reliability of the system. In this chapter, a different model is proposed.

This model will assume all components to be in the normal working state after an

inspection is performed and use this to calculate the state probability distribution.

Figure 7.1: Illustration of proposed component reliability and failure rate function

The model will use the time since inspection as the basis for the component state and the

component age (time since maintenance) will be used to find the failure rate function

(see figure 7.1 and 7.2). The main goal of the model is to reduce the simulation

processing time by lowering number of calculations. The PPO agent is also expected to

stop suggesting weekly inspections for components that have surpassed a certain age.

Figure 7.2: Descriptive illustration of terms

Chapter 7 – Second Case Study

34

In Figure 7.2, notice how component 2 received maintenance during the last inspection.

The time since inspection and time since maintenance action for this component are

therefore the same.

The model in this case study also has a different way of calculating the cost of

maintenance. The spikes in penalty in the previous system seemed to impact its

performance. Since the system model does not simulate a change in degradation after

repairs the only simulated difference between preventive and corrective maintenance is

the cost and production time loss. There is also no additional penalty for system

breakdowns. This means that the spikes can be evened out by extrapolating the cost of

preventive and corrective maintenance into a continuous function with the state

probability distribution as its variable (See formula 7.1). This approach should not have

any impact on the optimal solution.

𝐶𝑀,𝑖(𝑡) = 𝐶𝑃𝑀,𝑖
Pr𝑖,𝑠=1(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
+ 𝐶𝐶𝑀,𝑖

Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
 (7.1)

The same approach is also used to calculate expected maintenance downtime:

𝑇𝑀,𝑖(𝑡) = 𝑇𝑃𝑀,𝑖
Pr𝑖,𝑠=1(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
+ 𝑇𝐶𝑀,𝑖

Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)

Pr𝑖,𝑠=1(𝑡)+Pr𝑖,𝑠=2(𝑡)+Pr𝑖,𝑠=3(𝑡)
 (7.2)

Like before, the combined maintenance costs are found by adding the cost of inspection,

𝐶𝐼, to the cost of all preventive/corrective maintenance actions performed at time t,

∑𝐶𝑀,𝑖(𝑡). The same is done for production loss.

If inspection is performed at t:

𝐶𝑀(𝑡) = 𝐶𝐼 + ∑𝐶𝑀,𝑖(𝑡) (7.3)

𝑇𝑀(𝑡) = 𝑇𝐼 + ∑𝑇𝑀,𝑖(𝑡) (7.4)

The optimal constant inspection interval is found with the same method as before (see

figure 7.3 and 7.4).

Chapter 7 – Second Case Study

35

Figure 7.3: Finding optimal inspection interval, low precision: 78 weeks.

Avg. reward: 85.356. Minimum interval: 1. Maximum interval: 200.

Timeframe: 100 years. Both Monte Carlo simulations: 5 iterations.

Figure 7.4: Finding optimal inspection interval, higher precision: 59 weeks.

Avg. reward: 85.404. Minimum interval: 40. Maximum interval: 120.

Timeframe: 100 years. Both Monte Carlo simulations: 15 iterations.

Chapter 7 – Second Case Study

36

Policy Collapse

Like in the first case study, the RL policy struggles with policy collapse. A clipping

parameter of 0.1 is introduced to combat this as well as an increase in the gamma

parameter from 0.99 to 0.995. The RL-agent is able to outperform the control system

after 6 000 000 timesteps of simulation. This simulation took 18 hours. With more

simulation time it can be assumed that the performance would increase further.

7.2 Results
Both programs are run though 10 simulations over 30 years with 50 Monte Carlo loops.

These are the results:

Measurement Central system Control system

Average reward 25.577634 25.551247

Standard deviation 0.025703 0.021337

Table 7.1: Performance measurements of the systems

Though the time per simulation was lowered, the system model was a lot harder to

optimize than the first. The reason for this can be seen in Figure 7.3 and 7.4. The top of

the curve is quite flat, meaning that the difference in performance between inspection

intervals is very low. This makes establishing the pattern notably hard for the algorithm.

Even the slightest of maintenance spikes would be devastating for the PPO without the

clipping parameter in place.

Figures 7.5 and 7.6 show the performance spread for the central and control systems

across 10 simulations. The result is also summarized in Table 7.1.

The difference in performance between the two approaches is 0.1%, even lower than in

the previous case study. It should be noted that this difference likely would increase if

given more simulation time. The times of inspection (cyan lines) in figures 7.7 and 7.9

visualize how the RL-agent is yet to understand the system. It would be more optimal to

perform rapid inspections on an old component. The simulation starts with a completely

new component, so the spike in inspections around week 1 shows this misunderstanding.

It can also be observed how the correlation between degradation and inspection is yet to

be established by how the peaks in degradation does not correlate to increased frequency

in inspections. Still, the agent has slowly been improving with the simulations and

performs on par with the optimal calendar-based approach, even before ironing out these

misunderstandings.

From Figure 7.7, 7.8, 7.9 and 7.10 it can be observed that the central system performs

approximately the same number of inspections (cyan lines) as the control system while

maintaining a similar or perhaps even worse level of reliability.

The rewards in this case study are higher than in the previous one. This was expected

because it is based on a more optimistic approach to reliability. This means that an

implementation of this approach would demand a higher level of precision in the

inspection data and the statistical data. The model in the second case study is based on a

very theoretical understanding of degradation. It assumes rigid differences in the Markov

states, perfect maintenance, and perfect inspections. In practice, the lines are generally a

bit more blurred.

Because the simulation time for this case study was so limited, the first case study will be

weighted higher in the conclusions.

Chapter 7 – Second Case Study

37

Figure 7.5: Central system: Reward per simulation. Timeframe: 30 years. 50 Monte

Carlo simulations. Avg. reward: 25.578. Standard deviation: 0.026.

Figure 7.6: Control system: Reward per simulation. Timeframe: 30 years. 50 Monte

Carlo simulations. Avg. reward: 25.551. Standard deviation: 0.021.

Chapter 7 – Second Case Study

38

Figure 7.7: Central system: System reliability. 28 inspections over 30 years.

 50 Monte Carlo simulations. The dashed cyan lines are times of inspection.

Figure 7.8: Control system: System reliability. 27 inspections over 30 years.

 50 Monte Carlo simulations. The dashed cyan lines are times of inspection.

Chapter 7 – Second Case Study

39

Figure 7.9: Central system: State probability distribution. 28 inspections over 30

years. 50 Monte Carlo simulations. The dashed cyan lines are times of

inspection.

Figure 7.10: Control system: State probability distribution. 27 inspections over 30

years. 50 Monte Carlo simulations. The dashed cyan lines are times of

inspection.

Chapter 8 – Discussion

40

Chapter 8 – Discussion
Due to the time constraints, equipment limitations and available experience, there was

no time to study how the effectiveness of RL-based vs calendar-based inspection

planning developed as more components were introduced. This will have to be done in

future work. The complexity of the model created a bottleneck for processing power.

Using a PPO-algorithm to optimize an inspection schedule is substantially more RAM

intensive than letting it decide the actions outright. Combining this problem setting with

a 4-state Weibull-Markov system representation was perhaps a bit ambitious, given the

limitations.

Policy collapse was the biggest time sink of the report. It did, however, teach a valuable

lesson in how policy parameters of the PPO can stabilize the model with enough trial and

error.

The results of the case studies have demonstrated the possibility of utilizing RL for

optimizing the inspection schedules for mechanical systems. The case studies have also

highlighted the effectiveness of calendar-based inspection planning.

The optimal inspection intervals were drastically different in the two case studies. The

two different approaches to reliability theory would therefore have a substantial impact

on the performance of the inspection schedule. It is important to be mindful of the

significance of the simplifications that are made when modelling a complex system.

Chapter 9 – Conclusions and Future Work

41

Chapter 9 – Conclusions and Future Work
Conclusions
This report has demonstrated how reinforcement learning can be used for inspection

scheduling for offshore wind turbines. The performance of the model was compared to

that of an optimized calendar-based inspection schedule. Performance was measured in

cost savings, but reliability and number of inspections were also observed. There were

conducted two case studies of single-component systems based on different approaches

to reliability.

The reinforcement learning-based models performed marginally better than the calendar-

based inspections. The first cast study was able to achieve this performance while

maintaining a higher level of reliability and scheduling notably fewer inspections.

Optimizing the second case study was more time intensive than the first. During the

timeframe of this report, it could only be optimized to the point of performing on par with

the control system.

Suggestions for Future Work
Short term: It would be interesting to investigate how the RL- and calendar-based

approaches perform as more components are introduced. Can a trend be observed as

more components are added?

Medium term: The RL environment could be expanded to handle logistical parameters,

such as additional wind turbines, available maintenance crew, travel times, work hours

and supply chain delays. How would it handle these additional parameters? This would

significantly add to the complexity of the model further increasing its processing demand.

Long term: Could a complex RL-based inspection schedule be designed to be

competitive in performance to that of a condition-monitoring approach to maintenance

planning?

Bibliography

42

Bibliography
[1] Yürüşen, N. Y., Rowley, P. N., Watson, S. J., & Melero, J. J. (2020). Automated

wind turbine maintenance scheduling. Reliability Engineering & System Safety,

200, 1–14. https://doi.org/10.1016/j.ress.2020.106965

[2] Toftaker, H., Bødal, E. F., & Sperstad, I. B. (2022). Joint optimization of preventive

and condition-based maintenance for offshore wind farms. Journal of Physics.

Conference Series, 2362(1), 12041. https://doi.org/10.1088/1742-

6596/2362/1/012041

[3] Le, B., & Andrews, J. (2016). Modelling wind turbine degradation and

maintenance. Wind Energy (Chichester, England), 19(4), 571–591.

https://doi.org/10.1002/we.1851

[4] Belhaj Salem, M., Fouladirad, M., & Deloux, E. (2021). Prognostic and

Classification of Dynamic Degradation in a Mechanical System Using Variance

Gamma Process. Mathematics (Basel), 9(3), 254.

https://doi.org/10.3390/math9030254

[5] Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., & Zio, E. (2022). Optimization

of the Operation and Maintenance of renewable energy systems by Deep

Reinforcement Learning. Renewable Energy, 183, 752–763.

https://doi.org/10.1016/j.renene.2021.11.052

[6] Su, J., Huang, J., Adams, S., Chang, Q., & Beling, P. A. (2022). Deep multi-agent

reinforcement learning for multi-level preventive maintenance in manufacturing

systems. Expert Systems with Applications, 192, 116323.

https://doi.org/10.1016/j.eswa.2021.116323

[7] Huang, J., Chang, Q., & Arinez, J. (2020). Deep reinforcement learning based

preventive maintenance policy for serial production lines. Expert Systems with

Applications, 160, 113701. https://doi.org/10.1016/j.eswa.2020.113701

[8] Yao, L., Dong, Q., Jiang, J., & Ni, F. (2020). Deep reinforcement learning for

long‐term pavement maintenance planning. Computer-Aided Civil and

Infrastructure Engineering, 35(11), 1230–1245.

https://doi.org/10.1111/mice.12558

[9] Zhang, Q., Hua, C., & Xu, G. (2014). A mixture Weibull proportional hazard model

for mechanical system failure prediction utilising lifetime and monitoring data.

Mechanical Systems and Signal Processing, 43(1-2), 103–112.

https://doi.org/10.1016/j.ymssp.2013.10.013

[10] Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., & Zio, E. (2022). Optimization

of the Operation and Maintenance of renewable energy systems by Deep

Reinforcement Learning. Renewable Energy, 183, 752–763.

https://doi.org/10.1016/j.renene.2021.11.052

[11] Ruiz Rodríguez, M. L., Kubler, S., de Giorgio, A., Cordy, M., Robert, J., & Le Traon,

Y. (2022). Multi-agent deep reinforcement learning based Predictive Maintenance

on parallel machines. Robotics and Computer-Integrated Manufacturing, 78,

102406. https://doi.org/10.1016/j.rcim.2022.102406

[12] Zhang, C., Chen, H.-P., Tee, K. F., & Liang, D. (2021). Reliability-Based Lifetime

Fatigue Damage Assessment of Offshore Composite Wind Turbine Blades. Journal

of Aerospace Engineering, 34(3). https://doi.org/10.1061/(ASCE)AS.1943-

5525.0001260

https://doi.org/10.1016/j.ress.2020.106965
https://doi.org/10.1088/1742-6596/2362/1/012041
https://doi.org/10.1088/1742-6596/2362/1/012041
https://doi.org/10.1002/we.1851
https://doi.org/10.3390/math9030254
https://doi.org/10.1016/j.renene.2021.11.052
https://doi.org/10.1016/j.eswa.2021.116323
https://doi.org/10.1016/j.eswa.2020.113701
https://doi.org/10.1111/mice.12558
https://doi.org/10.1016/j.ymssp.2013.10.013
https://doi.org/10.1016/j.renene.2021.11.052
https://doi.org/10.1016/j.rcim.2022.102406
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001260
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001260

Bibliography

43

[13] De Simón-Martín, M. (2022). Levelized cost of energy in sustainable energy

communities : a systematic approach for multi-vector energy systems. Springer

International Publishing.

[14] IRENA (2023), Renewable power generation costs in 2022, International

Renewable Energy Agency, Abu Dhabi.

[15] Ren, Verma, Li, Teuwen, & Jiang. (2021). Offshore wind turbine operations and

maintenance: A state-of-the-art review.

https://www.sciencedirect.com/science/article/pii/S1364032121001805

[16] Karyotakis, A., & Bucknall, R. (2010). Planned intervention as a maintenance and

repair strategy for offshore wind turbines. Journal of Marine Engineering and

Technology, 9(1), 27–35. https://doi.org/10.1080/20464177.2010.11020229

[17] Saleh, A., Chiachío, M., Salas, J. F., & Kolios, A. (2023). Self-adaptive optimized

maintenance of offshore wind turbines by intelligent Petri nets. Reliability

Engineering & System Safety, 231, 109013.

https://doi.org/10.1016/j.ress.2022.109013

[18] Cheng, J., Liu, Y., Li, W., & Li, T. (2023). Deep reinforcement learning for cost-

optimal condition-based maintenance policy of offshore wind turbine components.

Ocean Engineering, 283, 115062.

https://doi.org/10.1016/j.oceaneng.2023.115062

[19] Wang, Y., Deng, C., Wu, J., & Xiong, Y. (2015). Failure time prediction for

mechanical device based on the degradation sequence. Journal of Intelligent

Manufacturing, 26(6), 1181–1199. https://doi.org/10.1007/s10845-013-0849-4

[20] Rausand, M., & Høyland, A. (2004). System Reliability Theory: Models, Statistical

Methods, and Applications. Wiley, Hoboken, NJ, 2nd edition.

[21] Rausand, M. (2011). Risk Assessment: Theory, Methods, and Applications. Wiley,

Hoboken, NJ.

[22] Zhao, X., & Ren, L. (2015). Focus on the development of offshore wind power in

China: Has the golden period come? Renewable Energy, 81, 644–657.

https://doi.org/10.1016/j.renene.2015.03.077

[23] Hermelink, A., & de Jager, D. (2015). Evaluating Our Future: The crucial role of

discount rates in European Commission energy system modelling. The European

Council for an Energy Efficient Economy & Ecofys.

[24] B. Lu, Y. Li, X. Wu and Z. Yang, "A review of recent advances in wind turbine

condition monitoring and fault diagnosis," 2009 IEEE Power Electronics and

Machines in Wind Applications, Lincoln, NE, USA, 2009, pp. 1-7, doi:

10.1109/PEMWA.2009.5208325

[25] Sun, Y., Li, H., Sun, L., & Guedes Soares, C. (2023). Failure Analysis of Floating

Offshore Wind Turbines with Correlated Failures. Reliability Engineering & System

Safety, 238, 109485. https://doi.org/10.1016/j.ress.2023.109485

[26] Nielsen, J. J., & Sørensen, J. D. (2011). On risk-based operation and

maintenance of offshore wind turbine components. Reliability Engineering &

System Safety, 96(1), 218–229. https://doi.org/10.1016/j.ress.2010.07.007

[27] Wang, Y., & Liu, Y. (2019). Optimal Reliability Growth Program for Repairable and

Warranted Products. 2019 Annual Reliability and Maintainability Symposium

(RAMS), 1–6. https://doi.org/10.1109/RAMS.2019.8769010

[28] Tavner, P. (2012). Offshore Wind Turbines: Reliability, availability and

maintenance (1st ed., Vol. 13). The Institution of Engineering and Technology.

https://www.sciencedirect.com/science/article/pii/S1364032121001805
https://doi.org/10.1080/20464177.2010.11020229
https://doi.org/10.1016/j.ress.2022.109013
https://doi.org/10.1016/j.oceaneng.2023.115062
https://doi.org/10.1007/s10845-013-0849-4
https://doi.org/10.1016/j.renene.2015.03.077
https://doi.org/10.1016/j.ress.2023.109485
https://doi.org/10.1016/j.ress.2010.07.007
https://doi.org/10.1109/RAMS.2019.8769010

Bibliography

44

[29] McMillan, D., & Ault, G. W., (2008) Specification of reliability benchmarks for

offshore wind farms. Proceedings of the European safety and reliability; 22–25.

https://cs.stir.ac.uk/~kjt/research/prosen/pub/esrel08-mcmillan.pdf

[30] AurelianTactics. (2018, Jul 28). PPO Hyperparameters and Ranges. Medium.com

https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-

6fc2d29bccbe

[31] Schulman, J., Wolski, J., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal

Policy Optimization Algorithms. (v2). CoRR. arXiv:1707.06347v2

[32] Tessler, Chen. (2020). Deep Reinforcement Learning Works - Now What?

https://tesslerc.github.io/posts

[33] Stable Baselines3. (Last accessed: 2023, Nov 11). Vectorized Environments.

https://stable-baselines.readthedocs.io/en/master/guide/vec_envs.html

[34] Gym library. (Last accessed: 2023, Nov 11). Vectorising your environments.

https://www.gymlibrary.dev/content/vectorising/

[35] Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach:

global trends, research directions, and regulatory standpoints. Data Science and

Management Volume 4, Pages 19-29. https://doi.org/10.1016/j.dsm.2021.12.002

[36] A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive elements

that can solve difficult learning control problems," in IEEE Transactions on

Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp. 834-846, Sept.-Oct.

1983, doi: 10.1109/TSMC.1983.6313077

[37] Hugging Face (2022, Aug 5) Proximal Policy Optimization (PPO)

https://huggingface.co/blog/deep-rl-ppo

[38] OpenAI.com (2017, Jul 20) Research: Proximal Policy Optimization

https://openai.com/research/openai-baselines-ppo

[39] Dohare, S., Lan, Q., & Mahmood, A. R. (2023). Overcoming Policy Collapse in

Deep Reinforcement Learning. Sixteenth European Workshop on Reinforcement

Learning. https://openreview.net/forum?id=m9Jfdz4ymO

[40] Li, Y. (2018). Deep Reinforcement Learning: An Overview. CORR.

https://doi.org/10.48550/arXiv.1810.06339

https://cs.stir.ac.uk/~kjt/research/prosen/pub/esrel08-mcmillan.pdf
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://arxiv.org/abs/1707.06347v2
https://tesslerc.github.io/posts
https://stable-baselines.readthedocs.io/en/master/guide/vec_envs.html
https://www.gymlibrary.dev/content/vectorising/
https://doi.org/10.1016/j.dsm.2021.12.002
https://huggingface.co/blog/deep-rl-ppo
https://openai.com/research/openai-baselines-ppo
https://openreview.net/forum?id=m9Jfdz4ymO
https://doi.org/10.48550/arXiv.1810.06339

Appendices

i

Appendix A
The First Environment
import numpy as np

import random

import gymnasium

from gymnasium import spaces

class Simple_Single_Component(gymnasium.Env):

 metadata = {"render_modes": ["rgb_array"], "render_fps": 4}

 def __init__(self):

 # Action space: (0) no action, (1) inspection

 self.action_space = spaces.Discrete(2)

 # Observation space:

 # | Num | Description | Min | Max|

 # |-----|---|-----|----|

 # | 0 | (Blade) Time since maintenance action (weeks) | 0 | inf|

 COMPONENTS = 1

 low = np.zeros((COMPONENTS),dtype=np.float32)

 high = np.ones((COMPONENTS),dtype=np.float32)

 high *= 10**6

 self.observation_space = spaces.Box(low, high, dtype=np.float32)

 self.time_since_maintenance = None

 def step(self, action):

 COMPONENTS = 1

 MC_LOOPS = 10

 POWER_CAPACITY = 5

 CAPACITY_FACTOR = 0.49

 VALUE_OF_MWH = 40

Appendices

ii

 INSPECTION_COST = 2000

 CONVERSION_RATE = 1.14

 # Cost of repair, cost of replacement

 COST_OF_MAINTENANCE = np.array([

 [4000, 200000]], dtype=np.float32)

 COST_OF_MAINTENANCE *= CONVERSION_RATE

 # Duration of repair, duration of replacement

 DURATION_OF_MAINTENANCE = np.array([

 [3, 70]], dtype=np.float32)

 # Weibull parameters for the markov transition to degradated,

critical, failure states

 SCALE_PARAM = np.array([

 [23.02, 2.88, 2.88]], dtype=np.float32)

 SCALE_PARAM = 1/(SCALE_PARAM*52)

 SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

 z_normal = np.zeros(COMPONENTS, dtype=np.float32)

 z_degraded = np.zeros(COMPONENTS, dtype=np.float32)

 z_critical = np.zeros(COMPONENTS, dtype=np.float32)

 reward = 0

 done = False

 production_hours = 7*24

 reliability = [1] * COMPONENTS

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state = 0

 for t in range (0,

round(self.time_since_maintenance[component])+1):

Appendices

iii

 if state == 0:

 z_normal[component] =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal[component] >=

random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded[component] =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded[component] >=

random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical[component] =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical[component] >=

random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/MC_LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 self.time_since_maintenance[component] += 1

 if action == 1:

 reward -= INSPECTION_COST

 production_hours -= 1

Appendices

iv

 for component in range (0, COMPONENTS):

 random_number = random.randint(1,10**6)/10**6

 if state_dist[component, 3] >= random_number:

 # System component has failed

 reward -= COST_OF_MAINTENANCE[component,1]

 self.time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component, 2])

>= random_number:

 # System component is in critical state

 reward -= COST_OF_MAINTENANCE[component,1]

 self.time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]) >= random_number:

 # System component is in degraded state

 reward -= COST_OF_MAINTENANCE[component,0]

 self.time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,0]

 reward += system_reliability * production_hours * POWER_CAPACITY *

CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 10**6

 self.runtime += 1

 if self.runtime >= 3000000:

 done=True

 truncated = False

 info = {}

 obs = self.time_since_maintenance

 return np.array(obs, dtype=np.float32), reward, done, truncated,

info

 def render(self):

Appendices

v

 pass

 def reset(self, seed = None, options = None):

 super().reset(seed = seed)

 COMPONENTS = 1

 MAX = [2*52] # Adds some variance in start age to encourage

exploration

 self.runtime = 0

 self.number_of_repairs_since_replacement =

np.zeros(COMPONENTS,dtype=np.float32)

 self.time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32)

 if options == None:

 self.time_since_maintenance[0] = random.randint(0, MAX[0])

 obs = self.time_since_maintenance

 info = {}

 return np.array(obs, dtype=np.float32), info

Appendices

vi

Appendix B
Optimizing the First Environment
import gymnasium

import os

from stable_baselines3 import PPO

from stable_baselines3.common.env_util import make_vec_env

gymnasium.register(

 id='Simple_single_component-v0',

 entry_point='1 Simple single component

environment:Simple_Single_Component',

 max_episode_steps=1000

)

envs = make_vec_env(env_id='Simple_single_component-v0', seed=1, n_envs=5)

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple\Training', 'RL_Simple')

Log_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple\Training', 'Logs')

model = PPO('MlpPolicy', envs, verbose=0, tensorboard_log=Log_Path,

n_steps=1000, gamma=0.998, batch_size=5000, learning_rate=5*10**-5,

clip_range=0.1)

model.learn(total_timesteps=2000000, progress_bar=True)

model.save(RL_Path)

envs.close

Appendices

vii

Appendix C
Visualizing the First Environment
import gymnasium

import os

import math

from stable_baselines3 import PPO

import matplotlib.pyplot as plt

import numpy as np

import random

gymnasium.register(

 id='Simple_single_component-v0',

 entry_point='1 Simple single component

environment:Simple_Single_Component',

 max_episode_steps=1000

)

env = gymnasium.make('Simple_single_component-v0')

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple\Training', 'RL_Simple')

model = PPO.load(RL_Path, env=env)

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

SIMULATIONS = 10

YEARS = 30

MC_LOOPS = 50

COMPONENTS = 1

SCALE_PARAM = np.array([

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

x_axis = []

r_sys = []

Appendices

viii

rew = []

norm = []

crit = []

deg = []

fail = []

min_norm = 1

max_norm = 0

min_crit = 1

max_crit = 0

min_deg = 1

max_deg = 0

min_fail = 1

max_fail = 0

sum_action = 0

score = 0

score_sum = 0

time = 0

inspection_times = []

for simulation in range(0,SIMULATIONS):

 print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS))

 obs, _ = env.reset(options=1)

 done = False

 truncated = False

 score = 0

 sum_action = 0

 time = 0

 while not done:

 action, state = model.predict(obs)

 if action == 1 and simulation == SIMULATIONS-1:

 inspection_times.append(time/52)

Appendices

ix

 sum_action += action

 obs, reward, done, truncated, info = env.step(action)

 time_since_maintenance = obs

 reliability = np.ones(COMPONENTS, dtype=np.float32)

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state = 0

 for t in range (0,

round(time_since_maintenance[component])+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

Appendices

x

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/MC_LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 score += reward

 time += 1

 if time>=52*YEARS:

 done=True

 if simulation == SIMULATIONS-1:

 if min_fail > state_dist[0, 3]:

 min_fail = state_dist[0, 3]

 if max_fail < state_dist[0, 3]:

 max_fail = state_dist[0, 3]

 if min_crit > state_dist[0, 2]:

 min_crit = state_dist[0, 2]

 if max_crit < state_dist[0, 2]:

 max_crit = state_dist[0, 2]

 if min_deg > state_dist[0, 1]:

 min_deg = state_dist[0, 1]

 if max_deg < state_dist[0, 1]:

 max_deg = state_dist[0, 1]

 if min_norm > state_dist[0, 0]:

 min_norm = state_dist[0, 0]

 if max_norm < state_dist[0, 0]:

 max_norm = state_dist[0, 0]

 fail.append(state_dist[0, 3])

 crit.append(state_dist[0, 2])

 deg.append(state_dist[0, 1])

 norm.append(state_dist[0, 0])

 x_axis.append(time/52)

Appendices

xi

 r_sys.append(system_reliability)

 rew.append(score)

 score_sum += score

env.close

sims = []

for simulation in range(0,SIMULATIONS):

 sims.append(simulation+1)

 std = (rew[simulation]-(score_sum/SIMULATIONS))**2

std /= SIMULATIONS

std = math.sqrt(std)

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} -

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation:

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS,

score_sum/SIMULATIONS, std))

plt.figure(1)

figure, axis = plt.subplots(2, 2)

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95,

wspace=0.31, hspace=0.51)

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c',

linestyle='dashed')

axis[0,0].plot(x_axis, fail, color = 'k')

axis[0,0].set_title("Failed")

axis[0,0].set_xlabel('Time (years)')

axis[0,0].set_ylabel('Probability')

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c',

linestyle='dashed')

axis[0,1].plot(x_axis, crit, color = 'k')

axis[0,1].set_title("Critical")

axis[0,1].set_xlabel('Time (years)')

axis[0,1].set_ylabel('Probability')

Appendices

xii

axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c',

linestyle='dashed')

axis[1,0].plot(x_axis, deg, color = 'k')

axis[1,0].set_title("Degraded")

axis[1,0].set_xlabel('Time (years)')

axis[1,0].set_ylabel('Probability')

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c',

linestyle='dashed')

axis[1,1].plot(x_axis, norm, color = 'k')

axis[1,1].set_title("Normal")

axis[1,1].set_xlabel('Time (years)')

axis[1,1].set_ylabel('Probability')

plt.figure(2)

figure, ax = plt.subplots()

ax.plot(sims, rew, color = 'r')

ax.set_title("Reward per simulation")

ax.set_xlabel('Simulation')

ax.set_ylabel('Total reward (million euros)')

plt.figure(3)

figure, ax = plt.subplots()

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed')

ax.plot(x_axis, r_sys, color = 'r')

ax.set_title("System reliability")

ax.set_xlabel('Time (years)')

ax.set_ylabel('Reliability')

plt.show()

Appendices

xiii

Appendix D
Finding the First Optimal Inspection Interval
import numpy as np

import random

import matplotlib.pyplot as plt

TIMEFRAME = 52*100

LOOPS = 5

MC_LOOPS = 5

MIN_INSPECTION_INTERVAL = 1

MAX_INSPECTION_INTERVAL = 200

INSPECTION_SPAN = MAX_INSPECTION_INTERVAL - MIN_INSPECTION_INTERVAL + 1

sum_reward = np.zeros(INSPECTION_SPAN, dtype=np.float32)

COMPONENTS = 1

DISCOUNT_FACTOR = 0.04

POWER_CAPACITY = 5

CAPACITY_FACTOR = 0.49

VALUE_OF_MWH = 40

INSPECTION_COST = 2000

CONVERSION_RATE = 1.14

Cost of repair, cost of replacement

COST_OF_MAINTENANCE = np.array([

 [4000, 200000]], dtype=np.float32)

COST_OF_MAINTENANCE *= CONVERSION_RATE

Duration of repair, duration of replacement

DURATION_OF_MAINTENANCE = np.array([

 [3, 70],], dtype=np.float32)

Weibull parameters for the markov transition to degradated, critical,

failure states

Appendices

xiv

SCALE_PARAM = np.array([

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

for loop in range(0,LOOPS):

 for inspection_interval in range (MIN_INSPECTION_INTERVAL,

MAX_INSPECTION_INTERVAL+1):

 print('Running loop: {} of {} - Interval: {} of

{}'.format((loop+1),LOOPS,inspection_interval,MAX_INSPECTION_INTERVAL))

 time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32)

 for runtime in range (1,TIMEFRAME+1):

 if (runtime % inspection_interval) == 0:

 action = 1

 else:

 action = 0

 reward = 0

 done = False

 production_hours = 7*24

 reliability = [1] * COMPONENTS

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state = 0

 for t in range (0,

round(time_since_maintenance[component])+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

Appendices

xv

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 time_since_maintenance[component] += 1

 if action == 1:

 reward -= INSPECTION_COST

 production_hours -= 1

 for component in range (0, COMPONENTS):

 random_number = random.randint(1,10**6)/10**6

 if state_dist[component, 3] >= random_number:

 # System component has failed

Appendices

xvi

 reward -= COST_OF_MAINTENANCE[component,1]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component,

2]) >= random_number:

 # System component is in critical state

 reward -= COST_OF_MAINTENANCE[component,1]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component,

2] + state_dist[component, 1]) >= random_number:

 # System component is in degraded state

 reward -= COST_OF_MAINTENANCE[component,0]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,0]

 reward += system_reliability * production_hours *

POWER_CAPACITY * CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 1000000

 sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] +=

reward

sum_reward /= LOOPS

i = []

rw = []

optimal_inspection_interval = 0

rw_max = 0

rw_min = sum_reward[0]

for inspection_interval in range (MIN_INSPECTION_INTERVAL,

MAX_INSPECTION_INTERVAL+1):

 if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] > rw_max:

 rw_max = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]

 optimal_inspection_interval = inspection_interval

Appendices

xvii

 if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] < rw_min:

 rw_min = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]

 i.append(inspection_interval)

 rw.append(sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL])

print('Optimal inspection interval: {} - Reward: {:.8f} - Reward per year:

{}'.format(optimal_inspection_interval, rw_max, rw_max*52/TIMEFRAME))

plt.plot(i, rw, color='k')

plt.title("Average Reward Per Inspection Interval over 100 years")

plt.xlabel('Inspection interval')

plt.ylabel('Average reward (million euros)')

plt.vlines(optimal_inspection_interval,rw_min,rw_max, color = 'c',

linestyle='dotted')

plt.show()

Appendices

xviii

Appendix E
Visualizing the First Constant Inspection Interval
import numpy as np

import random

import matplotlib.pyplot as plt

import math

INSPECTION_INTERVAL = 15

SIMULATIONS = 10

YEARS = 30

MC_LOOPS = 50

COMPONENTS = 1

SCALE_PARAM = np.array([

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

x_axis = []

r_sys = []

rew = []

norm = []

crit = []

deg = []

fail = []

min_norm = 1

max_norm = 0

min_crit = 1

max_crit = 0

min_deg = 1

max_deg = 0

Appendices

xix

min_fail = 1

max_fail = 0

sum_action = 0

score = 0

score_sum = 0

time = 0

inspection_times = []

DISCOUNT_FACTOR = 0.04

POWER_CAPACITY = 5

CAPACITY_FACTOR = 0.49

VALUE_OF_MWH = 40

INSPECTION_COST = 2000

CONVERSION_RATE = 1.14

COST_OF_MAINTENANCE = np.array([

Cost of repair, cost of replacement

 [4000, 200000]], dtype=np.float32)

COST_OF_MAINTENANCE *= CONVERSION_RATE

DURATION_OF_MAINTENANCE = np.array([

Duration of repair, duration of replacement

 [3, 70]], dtype=np.float32)

for simulation in range(0,SIMULATIONS):

 print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS))

 time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32)

 done = False

 truncated = False

 score = 0

 sum_action = 0

 time = 0

 time_since_maintenance = np.zeros(COMPONENTS,dtype=np.float32)

 while not done:

Appendices

xx

 if (time % INSPECTION_INTERVAL) == 0:

 action = 1

 inspection_times.append(time/52)

 sum_action += 1

 if simulation == SIMULATIONS-1:

 inspection_times.append(time/52)

 else:

 action = 0

 reward = 0

 production_hours = 7*24

 reliability = np.ones(COMPONENTS, dtype=np.float32)

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state = 0

 for t in range (0,

round(time_since_maintenance[component])+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

Appendices

xxi

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/MC_LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 time_since_maintenance[component] += 1

 if action == 1:

 reward -= INSPECTION_COST

 production_hours -= 1

 for component in range (0, COMPONENTS):

 random_number = random.randint(1,10**6)/10**6

 if state_dist[component, 3] >= random_number:

 # System component has failed

 reward -= COST_OF_MAINTENANCE[component,1]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component, 2])

>= random_number:

 # System component is in critical state

 reward -= COST_OF_MAINTENANCE[component,1]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 elif (state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]) >= random_number:

Appendices

xxii

 # System component is in degraded state

 reward -= COST_OF_MAINTENANCE[component,0]

 time_since_maintenance[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,0]

 reward += system_reliability * production_hours * POWER_CAPACITY *

CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 1000000

 score += reward

 time += 1

 if time>=52*YEARS:

 done=True

 if simulation == SIMULATIONS-1:

 if min_fail > state_dist[0, 3]:

 min_fail = state_dist[0, 3]

 if max_fail < state_dist[0, 3]:

 max_fail = state_dist[0, 3]

 if min_crit > state_dist[0, 2]:

 min_crit = state_dist[0, 2]

 if max_crit < state_dist[0, 2]:

 max_crit = state_dist[0, 2]

 if min_deg > state_dist[0, 1]:

 min_deg = state_dist[0, 1]

 if max_deg < state_dist[0, 1]:

 max_deg = state_dist[0, 1]

 if min_norm > state_dist[0, 0]:

 min_norm = state_dist[0, 0]

 if max_norm < state_dist[0, 0]:

 max_norm = state_dist[0, 0]

 fail.append(state_dist[0, 3])

 crit.append(state_dist[0, 2])

 deg.append(state_dist[0, 1])

 norm.append(state_dist[0, 0])

Appendices

xxiii

 x_axis.append(time/52)

 r_sys.append(system_reliability)

 rew.append(score)

 score_sum += score

sims = []

for simulation in range(0,SIMULATIONS):

 sims.append(simulation+1)

 std = (rew[simulation]-(score_sum/SIMULATIONS))**2

std /= SIMULATIONS

std = math.sqrt(std)

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} -

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation:

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS,

score_sum/SIMULATIONS, std))

plt.figure(1)

figure, axis = plt.subplots(2, 2)

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95,

wspace=0.31, hspace=0.51)

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c',

linestyle='dashed')

axis[0,0].plot(x_axis, fail, color = 'k')

axis[0,0].set_title("Failed")

axis[0,0].set_xlabel('Time (years)')

axis[0,0].set_ylabel('Probability')

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c',

linestyle='dashed')

axis[0,1].plot(x_axis, crit, color = 'k')

axis[0,1].set_title("Critical")

axis[0,1].set_xlabel('Time (years)')

axis[0,1].set_ylabel('Probability')

Appendices

xxiv

axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c',

linestyle='dashed')

axis[1,0].plot(x_axis, deg, color = 'k')

axis[1,0].set_title("Degraded")

axis[1,0].set_xlabel('Time (years)')

axis[1,0].set_ylabel('Probability')

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c',

linestyle='dashed')

axis[1,1].plot(x_axis, norm, color = 'k')

axis[1,1].set_title("Normal")

axis[1,1].set_xlabel('Time (years)')

axis[1,1].set_ylabel('Probability')

plt.figure(2)

figure, ax = plt.subplots()

ax.plot(sims, rew, color = 'r')

ax.set_title("Reward per simulation")

ax.set_xlabel('Simulation')

ax.set_ylabel('Total reward (million euros)')

plt.figure(3)

figure, ax = plt.subplots()

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed')

ax.plot(x_axis, r_sys, color = 'r')

ax.set_title("System reliability")

ax.set_xlabel('Time (years)')

ax.set_ylabel('Reliability')

plt.show()

Appendices

xxv

Appendix F
The Second Environment
import numpy as np

import random

import gymnasium

from gymnasium import spaces

class Inspection_Single_Component(gymnasium.Env):

 metadata = {"render_modes": ["rgb_array"], "render_fps": 4}

 def __init__(self):

 # Action space: (0) no action, (1) inspection

 self.action_space = spaces.Discrete(2)

 # Observation space:

 # | Num | Description |

 # |-----|---|

 # | 0 | Time since inspection (weeks) |

 # | 1 | Blade - Component age after last inspection (weeks) |

 COMPONENTS = 1

 low = np.zeros((COMPONENTS+1),dtype=np.float32)

 high = np.ones((COMPONENTS+1),dtype=np.float32)

 high *= 10**6

 self.observation_space = spaces.Box(low, high, dtype=np.float32)

 self.time_since_inspection = None

 self.component_age_after_last_inspection = None

 def step(self, action):

 COMPONENTS = 1

 MC_LOOPS = 50

Appendices

xxvi

 POWER_CAPACITY = 5

 CAPACITY_FACTOR = 0.49

 VALUE_OF_MWH = 40

 INSPECTION_COST = 2000

 CONVERSION_RATE = 1.14

 COST_OF_MAINTENANCE = np.array([

 # Cost of repair, cost of replacement

 [4000, 200000]], dtype=np.float32)

 COST_OF_MAINTENANCE *= CONVERSION_RATE

 DURATION_OF_MAINTENANCE = np.array([

 # Duration of repair, duration of replacement

 [3, 70]], dtype=np.float32)

 SCALE_PARAM = np.array([

 # Weibull parameters for the markov transition to degradated,

critical, failure states

 [23.02, 2.88, 2.88]], dtype=np.float32)

 SCALE_PARAM = 1/(SCALE_PARAM*52)

 SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

 reward = 0

 done = False

 production_hours = 7*24.0

 reliability = [1] * COMPONENTS

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

Appendices

xxvii

 time_in_state =

round(self.component_age_after_last_inspection[component])

 for t in range (0, round(self.time_since_inspection)+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/MC_LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 self.time_since_inspection += 1

 if action == 1:

 reward -= INSPECTION_COST

Appendices

xxviii

 production_hours -= 1

 for component in range (0, COMPONENTS):

 # if (state_dist[component, 3] + state_dist[component, 2])

>= random.randint(1,10**6)/10**6:

 # # System component is in critical or failed state

 # reward -= COST_OF_MAINTENANCE[component,1]

 # production_hours -=

DURATION_OF_MAINTENANCE[component,1]

 # self.component_age_after_last_inspection[component] =

0

 if (state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]) >= random.randint(1,10**6)/10**6:

 # System component is in degraded, critical or failed

state

 reward -= COST_OF_MAINTENANCE[component,0] *

(state_dist[component,1]/(state_dist[component,1]+state_dist[component,2]+s

tate_dist[component,3]))

 reward -= COST_OF_MAINTENANCE[component,1] *

((state_dist[component,2]+state_dist[component,3])/(state_dist[component,1]

+state_dist[component,2]+state_dist[component,3]))

 production_hours -=

DURATION_OF_MAINTENANCE[component,0] *

(state_dist[component,1]/(state_dist[component,1]+state_dist[component,2]+s

tate_dist[component,3]))

 production_hours -=

DURATION_OF_MAINTENANCE[component,1] *

((state_dist[component,2]+state_dist[component,3])/(state_dist[component,1]

+state_dist[component,2]+state_dist[component,3]))

 self.component_age_after_last_inspection[component] = 0

 else:

 self.component_age_after_last_inspection[component] +=

self.time_since_inspection

 self.time_since_inspection = 0

 reward += system_reliability * production_hours * POWER_CAPACITY *

CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 10**6

 self.runtime += 1

 if self.runtime >= 10000000:

 done=True

Appendices

xxix

 truncated = False

 info = {}

 obs = np.zeros(COMPONENTS+1,dtype=np.float32)

 obs[0] = self.time_since_inspection

 for component in range (0, COMPONENTS):

 obs[component+1] =

self.component_age_after_last_inspection[component]

 return np.array(obs, dtype=np.float32), reward, done, truncated,

info

 def render(self):

 pass

 def reset(self, seed = None, options = None):

 super().reset(seed = seed)

 COMPONENTS = 1

 # MAX = [2*52]

 self.runtime = 0

 self.component_age_after_last_inspection =

np.zeros(COMPONENTS,dtype=np.float32)

 self.time_since_inspection = 0

 obs = np.zeros(COMPONENTS+1,dtype=np.float32)

 obs[0] = self.time_since_inspection

 for component in range (0, COMPONENTS):

 obs[component+1] =

self.component_age_after_last_inspection[component]

 info = {}

 return np.array(obs, dtype=np.float32), info

Appendices

xxx

Appendix G
Optimizing the Second Environment
import gymnasium

import os

from stable_baselines3 import PPO

from stable_baselines3.common.env_util import make_vec_env

gymnasium.register(

 id='Inspection_single_component-v0',

 entry_point='1 Inspection single component

environment:Inspection_Single_Component',

 max_episode_steps=5000

)

envs = make_vec_env(env_id='Inspection_single_component-v0', seed=1,

n_envs=5)

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple inspection\Training', 'RL_Inspection')

Log_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple inspection\Training', 'Logs')

model = PPO('MlpPolicy', envs, verbose=0, tensorboard_log=Log_Path,

gamma=0.995, clip_range=0.1)

model.learn(total_timesteps=6000000, progress_bar=True)

model.save(RL_Path)

envs.close

Appendices

xxxi

Appendix H
Visualizing the Second Environment
import gymnasium

import os

import math

from stable_baselines3 import PPO

import matplotlib.pyplot as plt

import numpy as np

import random

gymnasium.register(

 id='Inspection_single_component-v0',

 entry_point='1 Inspection single component

environment:Inspection_Single_Component',

 max_episode_steps=5000

)

env = gymnasium.make('Inspection_single_component-v0')

RL_Path = os.path.join(r'C:\Users\PC\Desktop\Reinforcement

Learning\Windmill problem\Simple inspection\Training', 'RL_Inspection')

model = PPO.load(RL_Path, env=env)

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

SIMULATIONS = 1

YEARS = 30

MC_LOOPS = 5

COMPONENTS = 1

SCALE_PARAM = np.array([

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

x_axis = []

r_sys = []

rew = []

Appendices

xxxii

norm = []

deg = []

crit = []

fail = []

min_norm = 1

max_norm = 0

min_crit = 1

max_crit = 0

min_deg = 1

max_deg = 0

min_fail = 1

max_fail = 0

score = 0

sum_action = 0

sum_score = 0

time = 0

inspection_times = []

for simulation in range(0, SIMULATIONS):

 print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS))

 obs, _ = env.reset(options=1)

 done = False

 truncated = False

 score = 0

 sum_action = 0

 time = 0

 component_age_after_last_inspection = np.zeros(COMPONENTS,

dtype=np.float32)

 time_since_inspection = 0

 while not done:

 action, state = model.predict(obs)

 if action == 1 and simulation == SIMULATIONS-1:

 inspection_times.append(time/52)

Appendices

xxxiii

 sum_action += action

 obs, reward, done, truncated, info = env.step(action)

 time_since_inspection = obs[0]

 for component in range(0,COMPONENTS):

 component_age_after_last_inspection[component] =

obs[component+1]

 reliability1 = np.ones(COMPONENTS, dtype=np.float32)

 system_reliability1 = 1

 state_dist1 = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state =

round(component_age_after_last_inspection[component])

 for t in range (0, round(time_since_inspection)+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

Appendices

xxxiv

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist1[component, state] += 1/MC_LOOPS

 reliability1[component] = 1 - state_dist1[component, 3]

 system_reliability1 *= reliability1[component]

 score += reward

 time += 1

 if time>=52*YEARS:

 done=True

 if simulation == SIMULATIONS-1:

 if min_fail > state_dist1[0, 3]:

 min_fail = state_dist1[0, 3]

 if max_fail < state_dist1[0, 3]:

 max_fail = state_dist1[0, 3]

 if min_crit > state_dist1[0, 2]:

 min_crit = state_dist1[0, 2]

 if max_crit < state_dist1[0, 2]:

 max_crit = state_dist1[0, 2]

 if min_deg > state_dist1[0, 1]:

 min_deg = state_dist1[0, 1]

 if max_deg < state_dist1[0, 1]:

 max_deg = state_dist1[0, 1]

 if min_norm > state_dist1[0, 0]:

 min_norm = state_dist1[0, 0]

 if max_norm < state_dist1[0, 0]:

 max_norm = state_dist1[0, 0]

 fail.append(state_dist1[0, 3])

Appendices

xxxv

 crit.append(state_dist1[0, 2])

 deg.append(state_dist1[0, 1])

 norm.append(state_dist1[0, 0])

 x_axis.append(time/52)

 r_sys.append(system_reliability1)

 rew.append(score)

 sum_score += score

env.close

sims = []

for simulation in range(0,SIMULATIONS):

 sims.append(simulation+1)

 std = (rew[simulation]-(sum_score/SIMULATIONS))**2

std /= SIMULATIONS

std = math.sqrt(std)

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} -

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation:

{}'.format(time/52, sum_action, score, time/sum_action, score/YEARS,

sum_score/SIMULATIONS, std))

plt.figure(1)

figure, axis = plt.subplots(2, 2)

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95,

wspace=0.31, hspace=0.51)

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c',

linestyle='dashed')

axis[0,0].plot(x_axis, fail, color = 'k')

axis[0,0].set_title("Failed")

axis[0,0].set_xlabel('Time (years)')

axis[0,0].set_ylabel('Probability')

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c',

linestyle='dashed')

axis[0,1].plot(x_axis, crit, color = 'k')

axis[0,1].set_title("Critical")

Appendices

xxxvi

axis[0,1].set_xlabel('Time (years)')

axis[0,1].set_ylabel('Probability')

axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c',

linestyle='dashed')

axis[1,0].plot(x_axis, deg, color = 'k')

axis[1,0].set_title("Degraded")

axis[1,0].set_xlabel('Time (years)')

axis[1,0].set_ylabel('Probability')

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c',

linestyle='dashed')

axis[1,1].plot(x_axis, norm, color = 'k')

axis[1,1].set_title("Normal")

axis[1,1].set_xlabel('Time (years)')

axis[1,1].set_ylabel('Probability')

plt.figure(2)

figure, ax = plt.subplots()

ax.plot(sims, rew, color = 'r')

ax.set_title("Reward per simulation")

ax.set_xlabel('Simulation')

ax.set_ylabel('Total reward (million euros)')

plt.figure(3)

figure, ax = plt.subplots()

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed')

ax.plot(x_axis, r_sys, color = 'r')

ax.set_title("System reliability")

ax.set_xlabel('Time (years)')

ax.set_ylabel('Reliability')

plt.show()

Appendices

xxxvii

Appendix I
Finding the Second Optimal Inspection Interval
import numpy as np

import random

import matplotlib.pyplot as plt

TIME_FRAME = 52*100

LOOPS = 15

MC_LOOPS = 15

MIN_INSPECTION_INTERVAL = 40

MAX_INSPECTION_INTERVAL = 120

INSPECTION_SPAN = MAX_INSPECTION_INTERVAL - MIN_INSPECTION_INTERVAL + 1

sum_reward = np.zeros(INSPECTION_SPAN, dtype=np.float32)

COMPONENTS = 1

DISCOUNT_FACTOR = 0.04

POWER_CAPACITY = 5

CAPACITY_FACTOR = 0.49

VALUE_OF_MWH = 40

INSPECTION_COST = 2000

CONVERSION_RATE = 1.14

COST_OF_MAINTENANCE = np.array([

 # Cost of repair, cost of replacement

 [4000, 200000]], dtype=np.float32)

COST_OF_MAINTENANCE *= CONVERSION_RATE

DURATION_OF_MAINTENANCE = np.array([

 # Duration of repair, duration of replacement

 [3, 70],], dtype=np.float32)

SCALE_PARAM = np.array([

 # Weibull parameters for the markov transition to degradated, critical,

failure states

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

SHAPE_PARAM = np.array([

Appendices

xxxviii

 [1.2, 1.2, 1.2]], dtype=np.float32)

for loop in range(0,LOOPS):

 for inspection_interval in range (MIN_INSPECTION_INTERVAL,

MAX_INSPECTION_INTERVAL+1):

 print('Running loop: {} of {} - Interval: {} of

{}'.format((loop+1),LOOPS,inspection_interval,MAX_INSPECTION_INTERVAL))

 component_age_after_last_inspection =

np.zeros(COMPONENTS,dtype=np.float32)

 time_since_inspection = 0

 for runtime in range (1,TIME_FRAME+1):

 if (runtime % inspection_interval) == 0:

 action = 1

 else:

 action = 0

 reward = 0

 done = False

 production_hours = 7*24

 reliability = [1] * COMPONENTS

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state =

round(component_age_after_last_inspection[component])

 for t in range (0, round(time_since_inspection)+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

Appendices

xxxix

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 time_since_inspection += 1

 if action == 1:

 reward -= INSPECTION_COST

 production_hours -= 1

 for component in range (0, COMPONENTS):

 random_number = random.randint(1,10**6)/10**6

 if (state_dist[component, 3] + state_dist[component, 2]

+ state_dist[component, 1]) >= random_number:

 # System component is in degraded, critical or

failed state

 reward -= COST_OF_MAINTENANCE[component,0] *

(state_dist[component, 1]/(state_dist[component, 3] + state_dist[component,

2] + state_dist[component, 1]))

 reward -= COST_OF_MAINTENANCE[component,1] *

((state_dist[component, 2]+state_dist[component, 3])/(state_dist[component,

3] + state_dist[component, 2] + state_dist[component, 1]))

Appendices

xl

 component_age_after_last_inspection[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,0] * (state_dist[component,

1]/(state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]))

 production_hours -=

DURATION_OF_MAINTENANCE[component,1] * ((state_dist[component,

2]+state_dist[component, 3])/(state_dist[component, 3] +

state_dist[component, 2] + state_dist[component, 1]))

 else:

 component_age_after_last_inspection[component] +=

time_since_inspection

 time_since_inspection = 0

 reward += system_reliability * production_hours *

POWER_CAPACITY * CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 10**6

 sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] +=

reward

sum_reward /= LOOPS

i = []

rw = []

optimal_inspection_interval = 0

rw_max = 0

rw_min = sum_reward[0]

for inspection_interval in range (MIN_INSPECTION_INTERVAL,

MAX_INSPECTION_INTERVAL+1):

 if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] > rw_max:

 rw_max = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]

 optimal_inspection_interval = inspection_interval

 if sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL] < rw_min:

 rw_min = sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL]

 i.append(inspection_interval)

 rw.append(sum_reward[inspection_interval-MIN_INSPECTION_INTERVAL])

print('Optimal inspection interval: {} - Reward: {:.8f} - Reward per year:

{}'.format(optimal_inspection_interval, rw_max, rw_max*52/TIME_FRAME))

plt.plot(i, rw)

plt.xlabel("Inspection interval (weeks)")

Appendices

xli

plt.ylabel("Average reward in million Euro")

plt.vlines(optimal_inspection_interval,rw_min,rw_max, color = 'c',

linestyle='dotted')

plt.show()

Appendices

xlii

Appendix J
Visualizing the Second Optimal Inspection Interval
import numpy as np

import random

import matplotlib.pyplot as plt

import math

SIMULATIONS = 10

TIMEFRAME = 52*30

MC_LOOPS = 50

INSPECTION_INTERVAL = 59

COMPONENTS = 1

DISCOUNT_FACTOR = 0.04

POWER_CAPACITY = 5

CAPACITY_FACTOR = 0.49

VALUE_OF_MWH = 40

INSPECTION_COST = 2000

CONVERSION_RATE = 1.14

COST_OF_MAINTENANCE = np.array([

 # Cost of repair, cost of replacement

 [4000, 200000]], dtype=np.float32)

COST_OF_MAINTENANCE *= CONVERSION_RATE

DURATION_OF_MAINTENANCE = np.array([

 # Duration of repair, duration of replacement

 [3, 70],], dtype=np.float32)

SCALE_PARAM = np.array([

 # Weibull parameters for the markov transition to degradated, critical,

failure states

 [23.02, 2.88, 2.88]], dtype=np.float32)

SCALE_PARAM = 1/(SCALE_PARAM*52)

Appendices

xliii

SHAPE_PARAM = np.array([

 [1.2, 1.2, 1.2]], dtype=np.float32)

x_axis = []

r_sys = []

rew = []

norm = []

crit = []

deg = []

fail = []

min_norm = 1

max_norm = 0

min_crit = 1

max_crit = 0

min_deg = 1

max_deg = 0

min_fail = 1

max_fail = 0

sum_action = 0

score = 0

score_sum = 0

time = 0

inspection_times = []

for simulation in range(0,SIMULATIONS):

 print('Running simulation {} of {}'.format((simulation+1),SIMULATIONS))

 time_since_inspection = 0

 component_age_after_last_inspection =

np.zeros(COMPONENTS,dtype=np.float32)

 done = False

 truncated = False

 score = 0

 sum_action = 0

 time = 0

 while not done:

Appendices

xliv

 if (time % INSPECTION_INTERVAL) == 0:

 action = 1

 inspection_times.append(time/52)

 sum_action += 1

 if simulation == SIMULATIONS-1:

 inspection_times.append(time/52)

 else:

 action = 0

 reward = 0

 reliability = np.ones(COMPONENTS, dtype=np.float32)

 production_hours = 7*24.0

 system_reliability = 1

 state_dist = np.zeros((COMPONENTS, 4), dtype=np.float32)

 for component in range (0, COMPONENTS):

 for mc_loop in range (0, MC_LOOPS):

 state = 0

 time_in_state =

round(component_age_after_last_inspection[component])

 for t in range (0, round(time_since_inspection)+1):

 if state == 0:

 z_normal =

SHAPE_PARAM[component,0]*SCALE_PARAM[component,0]*((SCALE_PARAM[component,0

]*time_in_state)**(SHAPE_PARAM[component,0]-1))

 if z_normal >= random.randint(1,10**6)/10**6:

 state = 1

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 1:

 z_degraded =

SHAPE_PARAM[component,1]*SCALE_PARAM[component,1]*((SCALE_PARAM[component,1

]*time_in_state)**(SHAPE_PARAM[component,1]-1))

 if z_degraded >= random.randint(1,10**6)/10**6:

 state = 2

Appendices

xlv

 time_in_state = 0

 else:

 time_in_state += 1

 elif state == 2:

 z_critical =

SHAPE_PARAM[component,2]*SCALE_PARAM[component,2]*((SCALE_PARAM[component,2

]*time_in_state)**(SHAPE_PARAM[component,2]-1))

 if z_critical >= random.randint(1,10**6)/10**6:

 state = 3

 time_in_state = 0

 else:

 time_in_state += 1

 state_dist[component, state] += 1/MC_LOOPS

 reliability[component] = 1 - state_dist[component, 3]

 system_reliability *= reliability[component]

 time_since_inspection += 1

 if action == 1:

 reward -= INSPECTION_COST

 production_hours -= 1

 for component in range (0, COMPONENTS):

 random_number = random.randint(1,10**6)/10**6

 if (state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]) >= random_number:

 # System component is in degraded, critical or failed

state

 reward -= COST_OF_MAINTENANCE[component,0] *

(state_dist[component, 1]/(state_dist[component, 3] + state_dist[component,

2] + state_dist[component, 1]))

 reward -= COST_OF_MAINTENANCE[component,1] *

((state_dist[component, 2]+state_dist[component, 3])/(state_dist[component,

3] + state_dist[component, 2] + state_dist[component, 1]))

 component_age_after_last_inspection[component] = 0

 production_hours -=

DURATION_OF_MAINTENANCE[component,0] * (state_dist[component,

1]/(state_dist[component, 3] + state_dist[component, 2] +

state_dist[component, 1]))

 production_hours -=

DURATION_OF_MAINTENANCE[component,1] * ((state_dist[component,

Appendices

xlvi

2]+state_dist[component, 3])/(state_dist[component, 3] +

state_dist[component, 2] + state_dist[component, 1]))

 else:

 component_age_after_last_inspection[component] +=

time_since_inspection

 time_since_inspection = 0

 reward += system_reliability * production_hours * POWER_CAPACITY *

CAPACITY_FACTOR * VALUE_OF_MWH

 reward /= 10**6

 score += reward

 time += 1

 if time>=TIMEFRAME:

 done=True

 if simulation == SIMULATIONS-1:

 if min_fail > state_dist[0, 3]:

 min_fail = state_dist[0, 3]

 if max_fail < state_dist[0, 3]:

 max_fail = state_dist[0, 3]

 if min_crit > state_dist[0, 2]:

 min_crit = state_dist[0, 2]

 if max_crit < state_dist[0, 2]:

 max_crit = state_dist[0, 2]

 if min_deg > state_dist[0, 1]:

 min_deg = state_dist[0, 1]

 if max_deg < state_dist[0, 1]:

 max_deg = state_dist[0, 1]

 if min_norm > state_dist[0, 0]:

 min_norm = state_dist[0, 0]

 if max_norm < state_dist[0, 0]:

 max_norm = state_dist[0, 0]

 fail.append(state_dist[0, 3])

 crit.append(state_dist[0, 2])

 deg.append(state_dist[0, 1])

Appendices

xlvii

 norm.append(state_dist[0, 0])

 x_axis.append(time/52)

 r_sys.append(system_reliability)

 rew.append(score)

 score_sum += score

sims = []

for simulation in range(0,SIMULATIONS):

 sims.append(simulation+1)

 std = (rew[simulation]-(score_sum/SIMULATIONS))**2

std /= SIMULATIONS

std = math.sqrt(std)

print('Years: {} - Inspections: {} - Reward: {} - Avg interval: {:.2f} -

Reward per year: {:.6f} - Avg Reward: {} - Standard deviation:

{}'.format(time/52, sum_action, score, time/sum_action, score*52/TIMEFRAME,

score_sum/SIMULATIONS, std))

plt.figure(1)

figure, axis = plt.subplots(2, 2)

plt.subplots_adjust(left=0.12, bottom=0.11, right=0.95, top=0.95,

wspace=0.31, hspace=0.51)

axis[0,0].vlines(inspection_times,min_fail,max_fail, color = 'c',

linestyle='dashed')

axis[0,0].plot(x_axis, fail, color = 'k')

axis[0,0].set_title("Failed")

axis[0,0].set_xlabel('Time (years)')

axis[0,0].set_ylabel('Probability')

axis[0,1].vlines(inspection_times,min_crit,max_crit, color = 'c',

linestyle='dashed')

axis[0,1].plot(x_axis, crit, color = 'k')

axis[0,1].set_title("Critical")

axis[0,1].set_xlabel('Time (years)')

axis[0,1].set_ylabel('Probability')

Appendices

xlviii

axis[1,0].vlines(inspection_times,min_deg,max_deg, color = 'c',

linestyle='dashed')

axis[1,0].plot(x_axis, deg, color = 'k')

axis[1,0].set_title("Degraded")

axis[1,0].set_xlabel('Time (years)')

axis[1,0].set_ylabel('Probability')

axis[1,1].vlines(inspection_times,min_norm,max_norm, color = 'c',

linestyle='dashed')

axis[1,1].plot(x_axis, norm, color = 'k')

axis[1,1].set_title("Normal")

axis[1,1].set_xlabel('Time (years)')

axis[1,1].set_ylabel('Probability')

plt.figure(2)

figure, ax = plt.subplots()

ax.plot(sims, rew, color = 'r')

ax.set_title("Reward per simulation")

ax.set_xlabel('Simulation')

ax.set_ylabel('Total reward (million euros)')

plt.figure(3)

figure, ax = plt.subplots()

ax.vlines(inspection_times,0,1, color = 'c', linestyle='dashed')

ax.plot(x_axis, r_sys, color = 'r')

ax.set_title("System reliability")

ax.set_xlabel('Time (years)')

ax.set_ylabel('Reliability')

plt.show()

