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Abstract— We present the design and development of a com-
bined octagonal and square-shaped coplanar waveguide (CPW)-
fed nanosilver inkjet-printed on Kapton polyimide-based flexible
antenna sensor for liquid acetone/water detection which is the first
of its kind. Sensing was performed by monitoring the resonant
frequency and its corresponding amplitude of the reflection coef-
ficient. Our experimental results show that the antenna sensor is
able to distinguish between water and acetone, and it can also
respond to varying concentration levels of acetone. The overall size
of the antenna sensor is 0.564λ0×0.627λ0×0.001175λ0, where λ0
is calculated at 4.7 GHz. The proposed sensor can operate under
deformed conditions, making it suitable for sensing near a liquid
mixture (acetone-water) by wrapping around the sample holder
surface. The results without materials under test show a 10-dB
impedance bandwidth between 4.61 GHz and 4.81 GHz in simulations, and from 4.42 GHz to 4.86 GHz in measurements.
The simulation results also show a peak realized gain of 4.44 dBi with a maximum total efficiency of 92.8%. In comparison,
the measured gain of 4.12 dBi at 4.7 GHz with a maximum total efficiency of 76.5%. Furthermore, experimental results
considering the materials under test show that the resonant frequency of the sensor was at 4.63 GHz and 4.54 GHz
without– and with– 100% acetone presence in liquid mixtures, respectively. Thus, the proposed antenna sensor has great
potential in non-contact liquid acetone sensing applications, paving the way for antenna-based liquid sensing solutions.

Index Terms— Flexible antennas, flexible antenna sensor, antennas, antenna sensor, acetone, 5G, sub-6 GHz, inkjet-
printed, nanosilver.

I. INTRODUCTION

ACETONE is a commonly used solvent in industry, lab-
oratory, medical, cosmetic, and household applications

due to its solvency properties and ability to evaporate quickly
[1], [2]. However, high levels of acetone in the body can be
toxic [3], [4]. It is also highly volatile and has a low molecular
weight, making it readily transferable to air and water. It
has been found to be present in the water supplies, raising
concern about potential health hazards when mixed with water
[5]–[7]. Therefore, the development of sensors for monitoring
acetone in liquid mixtures has become essential in various
fields, including domestic drinking water, biomedical research,
environmental monitoring, and industrial process control.

Microwave sensors have been widely used in conjunction
with electrochemical or chemo-resistive sensors for acetone
detection, enabling the monitoring and control of the compo-
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sition and concentration of both liquid and gaseous forms [3],
[8]–[10]. They possess the unique capability to absorb and
desorb a target analyte without relying on additional energy
sources [11]–[14]. Instead of using a resonator to construct
microwave sensors [15]–[17], an antenna can be designed to
act as a sensor as it can transmit/receive signals in addition
to sensing [18], [19]. Antenna sensors use the propagation
characteristics of electromagnetic (EM) waves within a spe-
cific frequency range for sensing purposes [20]–[22]. They are
used in different sensing applications such as temperature [23],
strain [24], and liquid concentration estimation [25].

In recent years, flexible antenna systems have emerged as
a viable component in wireless communications [26], [27]. In
contrast to brittle and rigid substrates, flexible substrates (e.g.,
paper, polyimide, polyethylene, and plastics) offer an attractive
and feasible alternative for state-of-the-art electronics [28].
With its many advantages including drop-on-demand and non-
contact properties, good production adaptability, fast fabrica-
tion turnaround, low cost, and roll-to-roll compatibility—inkjet
printing (IJP) technology is widely used. By eliminating the
need for costly masks and material waste associated with the
conventional subtractive manufacturing process, it provides an
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alternative for the rapid and low-cost production of integrated
circuits [29], [30]. In fact, in the existing body of research, a
multitude of IJP based sensors have been proposed for sensing
applications, e.g., human body temperature monitoring [31],
[32], gaseous analytes detection [33]–[35], pressure [36], [37],
strain [38], [39], humidity [40], [41], and biological samples
characterisation [42], [43]. Furthermore, the versatile IJP tech-
nology has demonstrated its effectiveness in liquid sensing
applications, such as Gugliandolo et al. [44] reported a sensor
stracture using two-capacitive coupled split-ring resonators-
based IJP to sense ethanol concentration.

The polyimide-based Kapton substrate has been used in [45]
due to its exceptional electrical, mechanical, chemical, and
thermal properties. Most research on metal deposition by inkjet
printing has focused on silver because of its high conductivity,
cost-effectiveness, and resistance to oxidation [46], [47]. When
compared to other types of ink (e.g., copper, gold, nickel),
silver surpasses copper and nickel as it remains stable without
forming oxides [48], [49] and does not require complex
sintering equipment [50]–[53]. Additionally, in comparison to
gold, silver ink is much cheaper [54], [55]. When considering
thin substrates (such as Kapton) for the design of an antenna
sensor, the coplanar waveguide (CPW) approach appears to
be the best option [56]. The CPW-fed technique has also been
widely used by the antenna research community to achieve
wide bandwidth [30], [57]–[59]. However, achieving a narrow
band is necessary for liquid detection as it improves the
sensitivity of the sensor. To emphasise this point, frequency
domain sensors are preferred for use in narrow bandwidth
applications [21], [60]. Furthermore, in a resonance-based
sensor (e.g., antenna-based sensor), a narrower bandwidth can
ensure a more accurate measurement. This is because the
dense fringing field on the sensor resulting from a narrow
bandwidth can be highly sensitive to the material under test
[61], [62]. Also, the sensing performance of the microstrip
sensor is closely related to its structural characteristics [63].

In addition to a narrow bandwidth, the choice of operating
frequency band is critical to antenna sensor design. However,
diverse works in the literature have utilised various frequency
bands to design microwave sensors. Although there is no
consensus on the optimal frequency band for sensor devel-
opment, the choice of frequency should be based on both
the requirements of the application and its future prospects.
Consequently, the selected operating frequency is primarily
determined by considerations related to communication bands.
In fact, the fifth generation (5G) sub-6 GHz could be one
of the promising candidates [64]. The increasing demand for
high data rates in recent years has led researchers to find
a viable alternative, with 5G sub-6 GHz frequency bands
being adopted in many countries [65]. According to 3GPP,
the 5G sub-6 GHz frequency bands are classified under FR1,
more specifically they are designated by the numbers n77
(3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz)
[66]. Among the FR1 frequency bands, n79 has become one of
the most promising candidates for future mobile applications
and has been extensively studied by many researchers [67],
[68]. We can also use this frequency band for antenna sensor
development, paving the way for the proposed sensor to be

used in existing wireless systems [14], [69].
The most commonly used microwave sensors for liquid de-

tection rely on resonators [60], [70]–[75]. However, these sen-
sors lack communication and contactless sensing capabilities.
While Zhu et al. [76] investigated antenna-based sensors util-
ising microfluidic cavities integrated into antennas. However,
these reported sensors require contact with the liquid analyte
for sensing, making immediate reuse difficult and affecting
performance due to residues from previous experiments. There
are also a limited number of inkjet-printed sensors that have
been proposed. Dai et al. [77] developed a flexible microwave
sensor using a spoof surface plasmons resonator printed on
Polyethylene terephthalate, assessing response only with air,
water, or ethanol. In another study [44], a split-ring resonator-
based microwave sensor was inkjet printed on a rigid FR4
substrate, which lacks flexibility but it possesses contactless
sensing capabilities.

This paper proposes a nanosilver inkjet-printed on Kapton
polyimide-based conformal flexible antenna sensor in n-79
band of 5G sub-6 GHz. To date, limited study on inkjet
printed flexible material (e.g., Kapton polyimide) based de-
signs have been reported [78]. In [79], an artificial magnetic
conductor-loaded Kapton-substrate-based RFID tag antenna
at 2.45 GHz was designed. However, in the design process,
9 mm thick foam was used, and hence the overall antenna
size is bulky. Conductive graphene on Kapton-based inkjet
printed quasi-Yagi–Uda antenna with low gain and efficiency
was reported in [80]. Moreover, Khaleel et al. [57], and
Wang et al. [58] developed flexible CPW-fed inkjet printed
antennas for wideband applications. Compared to state-of-the-
art wideband CPW-fed antenna designs considering flexible
thin substrates, our contribution lies in presenting a pioneer-
ing flexible narrowband CPW-fed antenna sensor fabricated
using IJP technology while upholding efficiency, marking the
inaugural achievement of its kind to the best of our current
knowledge. Contactless permittivity measurement of liquid
under test (i.e., acetone-water mixture) was performed by
analysing the reflection coefficient from the sensor. The sensor
can respond to the minimal concentration (as low as 20%) of
acetone in water. The novel designs can also be used to create
a portable sensor instrument that can be conveniently used to
monitor the presence of acetone in liquid mixtures in a wide
range of applications, including domestic water supply. The
flexibility also allows the sensor to be attached to the surface
of the sample holder, which would provide an accurate sensing
without having a direct contact with the liquid under test.

II. FLEXIBLE POLYIMIDE-BASED ANTENNA SENSOR
DESIGN

A polyimide-based flexible antenna sensor was modelled
and simulated using Computer Simulation Technology (CST)
Microwave Studio Suite (MWS) in a time-domain solver over
the frequency range from 3.5 GHz to 5.5 GHz. The substrate
material used was 75 µm thick DuPontTM Kapton® HN with
a dielectric constant of 3.4, and a loss tangent of 0.002.
Meanwhile, silver nanoparticles (AgNPs) were used as the
radiator of the antenna sensor.
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Fig. 1 depicts the proposed antenna sensor designed by
combining two octagonal and a square-shaped patch. Firstly,
this shape was chosen by considering a coplanar waveguide-
fed in our design which helps to reduce the fabrication
complexity, shows optimum performance and makes it suitable
for inkjet printing. Secondly, the octagonal-shaped patch of
split-ring resonators acts as a LC resonator—contributing to a
lower resonant frequency. This in turn helps to miniaturise
the overall structure of the antenna sensor [81], [82]. The
combined octagonal and square structure also helps to improve
the electromagnetic current flow, which is discussed in more
details in the following subsection. The tuning of the antenna
resonant frequency can be achieved by accurately modelling
the gaps present in the design, namely those between the
octagonal and square geometries [63]. In addition, Kapton
polyimide was used in our design due to its excellent electrical,
thermal, chemical, and mechanical properties. Kapton is also
a suitable substrate for inkjet printers to print conductive
nanosilver inks. Finally, the chosen antenna sensor design
allows for impedance matching at the chosen frequency band
and for maximum gain and radiation efficiency. In addition,
the proposed design offers a narrow operating bandwidth at the
frequency of interest, as opposed to a wide band, making it
suitable for use in liquid acetone sensing in water. The overall
dimension of the antenna sensor is 36 × 40 × 0.075 mm3

(0.564λ0×0.627λ0×0.001175λ0, where λ0 is the free space
wavelength at 4.7 GHz). All dimensions are tabulated in
Table I.

A. Antenna Sensor Design Geometry and
Configurations

Fig. 2 shows the antenna sensor design analysis and op-
timisation process. We simulated and analysed the surface
current distribution at 4.7 GHz where the colour represents
the current intensity—of the antenna designs to gain further
insight into its working principles. A combined octagonal and
square resonator was considered as the radiating element of
the antenna design.

Fig. 2(a) shows the antenna design with a full ground
plane, where the chosen radiating element helps to perturb
a strong surface current concentration at the inner edges of
the octagonal-shaped radiator. Furthermore, a strong electro-
magnetic coupling was realised due to the extremely small
distance between the top plane (radiating element) and the
ground plane. The strong electromagnetic coupling causes a
significant impedance mismatch, as can be seen from the
reflection coefficient (S11) results shown in Fig. 2(a). In addi-
tion, we also observed a similar phenomenon for the partial
ground plane design (shown in Fig. 2(b)). However, adopting
a partial ground plane contributed to a slightly lower mutual
coupling effect compared to a full ground plane resulting in a
better S11 performance as shown in Fig. 2(b). Fig. 2(b) also
shows that strong mutual coupling occurs where the ground
plane is located. This means that the feed line area has the
most electromagnetic coupling, which can also be seen from
the surface current distribution. A coplanar waveguide-fed
approach was further adopted in Fig. 2(c)—where a partial
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Fig. 1. Schematic diagram of the proposed antenna sensor.

TABLE I
ANTENNA SENSOR PARAMETERS

Parameter W L L1 L2 L3 L4 Wa Wb

Value(mm) 36 40 13.5 10 8.5 5 1 1.6

Parameter Wc Wd We Wf Wg h ht −
Value(mm) 1.7 22 0.5 3.8 0.5 0.075 0.0175 −

CPW plane was used. At this stage, a capacitive effect was
realised between the microstrip line and the coplanar plane,
contributing to the impedance matching, as evidenced by a
10-dB bandwidth improvement over the previous steps. The
design was further extended to a full CPW plane on the
top plane as shown in Fig. 2(d). In contrast, a full CPW
plane created a strong coupling with the radiating element.
Similarly, the step in Fig. 2(d) does not provide a better S11

impedance result. The design was further optimised as shown
in Fig. 2(e). The optimised design achieves a balance between
surface currents and the resonance of the sensor. This balance
results in an optimum coupling effect between the CPW plane
and the radiating element, leading to a significantly improved
10-dB impedance bandwidth.

B. Fabrication Process of the Proposed Antenna Sensor
The detailed fabrication procedures are depicted in Fig. 3. In

the first step, we exported the Gerber file of the antenna sensor
design from CST MWS. Then in the second step, the Gerber
file was converted to a 1-bit Bitmap image with ACE® 3000
(from Numerical Innovations Inc., Henderson, Nevada, USA),
where the image resolution was setup up according to the print
drop space. Then, the Bitmap file was uploaded to the DMP-
2850 printer (from Fujifilm, Greenwood, Indiana, USA) and
saved as a pattern file—after confirming the dimension, and
drop space. Then in step 4, the Metalon® JS-A291 nanosilver
ink (from Novacentrix, Austin, Texas, USA) was placed in
an ultrasonic shaker for 5 min to eliminate any aggregation
and make the ink more homogeneous. Chemical compositions
of the AgNPs ink are also shown in step 4, which consists
of water, diethylene glycol and a non-hazardous polyurethane
dispersion along with the Ag nanoparticle [83]. In the fifth
step, the ink was filtered with a 0.2 µm PTEF filter attached
to the syringe to avoid any nozzles clogging. Then 1.5 mL
ink was filled to the cartridge and the pattern was printed
at room temperature. Since drop space has a considerable
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Fig. 2. Antenna sensor design analysis and evolution process in this study. Antenna sensor design considering (a) full ground plane, (b) partial
ground plane, (c) partial CPW plane, (d) full CPW plane, and (e) optimised design with a CPW plane.

influence on the final resolution and conductivity, we tried
5 µm, 10 µm, and 15 µm, and we found that 10 µm offered
the best result in terms of both conductivity and resolution.
After inkjet printing, we sintered the print in a convection
oven at a temperature of 200 °C for 5 min to bond Metalon®

JS-A291 nanosilver ink to DuPontTM Kapton® HN substrate.
This procedure generates long-lasting conductive pathways,
improving flexibility while preserving efficiency [84], [85].
Sintering guarantees strong ink adhesion, minimising the like-
lihood of detachment during bending and maintaining low
resistance to enhance antenna sensor efficiency [45], [84],
[86]. Nevertheless, precise sintering time and temperature
regulation are imperative to prevent any harm to the substrate,
and ensuring uniformity is vital for maintaining consistent
conductivity [86], [87]. Afterwards, a SMA connector (from

Rosenberger, Mfr. Part No.: 168322, GmbH, Germany) was
assembled to the printed antenna sensor in the final step. The
fabricated prototype of the proposed antenna sensor is shown
in step 7 (the last step).

III. RESULTS OF THE PROPOSED ANTENNA SENSOR

The simulated and measured reflection coefficient result of
the proposed antenna sensor is shown in Fig. 4. The simulated
result shows a 10-dB impedance bandwidth of 200 MHz
(4.61–4.81 GHz) with VSWR<1.06. We measured the antenna
sensor’s S11 using a Vector Network Analyzer (VNA, ZVA
67, Rohde and Schwarz) to ensure that the simulated results
were accurate. The measured result shows a 10-dB impedance
bandwidth of 440 MHz (4.42–4.86 GHz), which is greater than
the simulated result. The discrepancy between the measured
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Fig. 3. Antenna sensor fabrication steps and procedures in this study.
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Fig. 4. Simulated and measured S11 results of the proposed antenna
sensor.

and simulated impedance bandwidth could be explained by
differences in fabrication accuracy and soldering procedures.
Simulation accuracy, however, can be increased by improving
precise material modelling and optimising boundary condi-
tions. Thus, perfect impedance matching was achieved within
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Fig. 5. (a) 3D radiation pattern, and normalised radiation pattern at (b)
E (yz)–plane and (c) H (xz)–plane of the proposed antenna sensor.

the frequency of interest meaning that we can potentially use
this design for various mobile applications in the 5G sub-6
GHz regime.

Fig. 5(a) shows simulated 3D radiation pattern, and Figs.
5(b) and 5(c) illustrate simulated and measured normalized
radiation pattern results of the proposed antenna sensor at
4.7 GHz for E (yz)– and H (xz)–planes, respectively. The
radiation pattern observed in the E–plane is bidirectional,
while the H–plane shows omnidirectional patterns for both
simulations and measurements. The observed bidirectional
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(a) (b)

Fig. 6. Photograph of experimental bending along the (a) x–axis, and
(b) y–axis.

radiation pattern in the E–plane indicates that the antenna
sensor shows varying radiation intensity in two opposing
directions within the vertical plane. Conversely, the omni-
directional radiation pattern in the H–plane refers to the
radiation pattern’s consistency in all directions within the
horizontal plane. The bi-directional radiation on E–plane and
omnidirectional radiation on H–plane of our antenna sen-
sor can enable communication even if blocked by a liquid
sample under test. Knowing radiation patterns in both E–
and H–planes helps define the antenna sensor coverage [88]
and calculate the link budget [89] in practical applications.
This knowledge can also aid in system-level optimisation for
sensor network deployment and helps mitigate interference
in crowded electromagnetic environments, ensuring robust
performance. Moreover, the simulated result shows a peak gain
of 4.44 dBi at 4.7 GHz, while the measured results show a 4.12
dBi gain. The maximum total efficiency achieved at 4.7GHz is
92.8% in the simulation and 76.5% in the measurement. The
observed 0.32 dBi difference in gain between simulation and
measurement results can be attributed to inherent dielectric
and conduction losses in the substrate material, worsened by
SMA connector losses [90]. Additionally, the flexible nature
of the antenna during measurements led to deviations from
the theoretically flat configuration predicted by simulations.
To address this, maintaining the antenna in an ideal flat
condition during measurements is crucial. Furthermore, sub-
strate thickness plays a role in radiation efficiency; reducing
thickness may increase conduction and dielectric losses [91].
To enhance simulation accuracy and measurement consistency,
employing a high-quality, low-loss tangent substrate material
is recommended [92]. Implementing these measures will likely
minimise disparities, improving the accuracy of the antenna’s
performance characterisation in both simulation and measure-
ment scenarios.

A. Deformation Analysis
If the antenna sensor is made of a flexible material, it is

more likely to have a physical deformation effect (due to
stretching or bending), which results in changing the EM
properties of the antenna sensor. This causes an unwanted
impedance mismatch [93]–[98]. Therefore, we evaluated the
S11 result of the proposed antenna in the presence of different
bending radii.
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Fig. 7. The effects of bending the antenna sensor along the x–axis:
(a) simulated results for various radii, and (b) measured results with
approximate bending radii.
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The experiment setup of deformation measurement along
the x-axis and y-axis is shown in Fig. 6. In this setup, a series
of Polyethylene Terephthalate foam (PET foam, AIREX®

T10.100, 3A Composites Core Materials, Switzerland [99])
cylinders with different diameters were customised with the
aid of turning-lathe machine. The radius of the cylinders
were determined according to the different bending angle
(approximately 30°, 60° and 90°) [100]–[102]. Due to the fact
that the permittivity of this foam is very similar to that of air,
we disregarded the foam support’s influence on the antenna
sensor.

Fig. 7(a) shows simulated results, and Fig. 7(b) shows mea-
sured results for different banding conditions along the x–axis.
Both simulated and measured findings show a frequency shift
toward a lower frequency. Fig. 7(a) also indicates simulated
resonant frequency shift is on average 50 MHz. Furthermore,
Fig. 7(b) shows a similar trend to the simulation, but it exhibits
an average 60 MHz shift toward higher frequency. Also, the
measurement shows a wider 10-dB impedance bandwidth,
from 4.65 GHz to 4.71 GHz, which is ultimately within the
n79 band.

Furthermore, we also carried out bending analysis at the y-
axis for both simulation and measurements which are shown in
Fig. 8. Simulated bending analysis results—which are shown
in Fig. 8(a)—indicate a slight resonant frequency shift toward
higher frequency with, on average 35 MHz. Fig. 8(b) shows
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measured bending analysis results with a minor frequency
shift—where the average shift is less than 10 MHz. Hence,
both simulation and measurement show a similar trend, consid-
ering bending analysis indicates a good agreement with both
simulations and measurements.

We conducted a detailed investigation into the physical
deformation of the proposed antenna sensor to reveal its
durability and adaptability, key attributes that significantly
influence its performance in challenging conditions. Based on
our observations, the sensor can consistently maintain a stable
response, highlighting its durability under adverse situations.
This suggests that the sensor can exhibit balanced sensitivity
across its measurements, particularly in liquid acetone/water
sensing. Also, the flexibility allows the sensor to be attached to
the surface of the sample holder, which would provide an accu-
rate measurement result in a non-invasive manner—enhancing
its versatility in liquid sensing applications. The sensor is
specifically designed for the non-contact detection of liquid
acetone and water, showcasing its potential for adaptability in
various fields, such as wireless RF systems, sensor technology,
and emerging RF/microwave applications.

B. Impedance Matching
Numerous studies have reported experiencing impedance

mismatched effects due to bending (while considering flexible
material) or fabrication error [26]. Mindful of the fact that, this
problem can be solved with a proper LC impedance matching
circuit to ensure efficient power transfer between the antenna
and measurement equipment. While reading this paper, some
readers may be interested to know what would happen if we do
not achieve the expected antenna performance (due to bending
or other effects that can cause impedance mismatch). The
readers in this concern can find more information related to
the RF-front end, involving impedance matching network and
antennas, in [103]–[106].

Although outside the main scope of this manuscript, we
provide a brief insight into this kind of problem and its solution
related to impedance mismatches. For demonstration purposes,
we suppose the antenna was bent 60° at the y–axis (for the
worst-case scenario) as considering measurement results—
refer to Fig. 8(b). Fig. 9(a) shows an impedance-matching
circuitry with a corresponding test board considering a series
inductor (0.001 nH) and a parallel capacitor (0.051 pF). Thus,
Condition 1 in Fig. 9(b) represents the ideal condition for the
measured results and where the antenna/sensor is intended to
radiate. We suppose our antenna is in the mismatched state
shown in Condition 2. After adopting the impedance matching
circuitry for Condition 2 (which is shown in Fig. 9(a)),
we observed that the attainable result—shown in Fig. 9(b)
Condition 3—is in good agreement.

IV. CONTACTLESS LIQUID ACETONE/WATER DETECTION

The sensing procedures are shown in Fig. 10. First, we
calibrated the sensor. As part of the calibration procedure, we
recorded five readings and averaged them—to make sure the
measured data was accurate—by considering it in the vicinity
of the empty liquid sample holder, without liquid under test

0.051 pF

Antenna

Port

0.001 nH

(a)

Condition 1
Condition 2
Condition 3

(b)

3.5 4 4.5 5 5.5
-40

-30

-20

-10

0

S1
1, 

dB

Frequency, GHz

Fig. 9. (a) Illustration of impedance matching circuit with a correspond-
ing test board—where series inductor value is 0.001 nH, and parallel ca-
pacitor value is 0.051 pF. (b) Performance evaluation of the impedance
matching network, where Condition 1: ideal measured S11 result of
the antenna sensor, Condition 2: impedance mismatch condition while
the antenna was deformed with a bending radius approximately 60°
along with the x–axis in real life measurement scenario, and Condition
3: impedance matched condition for the Condition 2 with considering
matching network.

(LUT). In fact, the sensor was considered in the bent condition.
The resonant frequency could show cross-sensitivity to the
shape (bending) of the antenna, which would lead to measure-
ment errors. However, calibration strategies helped to avoid
these errors taking into account the deformation of the antenna
sensor around the sample holder during the measurements. The
calibration result was taken as the reference for future com-
parisons. A micropipette was used to add a specific amount
of acetone and distilled water to a small vial (from Sigma-
Aldrich®, USA, with a total capacity of 11 cm3 [109])—
as shown in Fig. 10(a). Throughout the contactless liquid
acetone/water detection with our proposed antenna sensor, we
maintained a constant volume at 10 cm3 for all liquid mixtures
with different concentrations. Water and acetone solutions of
varying concentrations were added to the liquid under test and
measured numerically by the proposed sensor to determine the
frequency shift. The acetone content was chosen to range from
0% (100% water) to 100% (0% water) with a step of 10%. The
proposed antenna sensor was touched the outer surface of the
small vial with a bent condition and the VNA measured the
reflection coefficient. To minimise any possible interference
(due to human movement), the experimental equipment was
shielded using a microwave absorber, as shown in Fig. 10(b).
Microwave absorbers isolate the antenna from the outside
environment by reducing unwanted reflection/transmission and
interference, thus ensuring reliable measurements. In addition
to eliminating the influence of antenna and cable movement,
a small box was used as a holder to fix the cable and antenna,
and this box was opened during the experiment. The VNA
was also connected to a laptop computer via a LAN cable
and programmed using MATLAB software to measure data
without interrupting the process.

The theory behind the liquid mixture adopted in this study
is that different volume fractions of acetone in DI water lead
to variations in the relative permittivity of the mixture. To
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Fig. 10. (a) Graphical presentation of the experimental setup. (b) Photographic of the experimental setup where the proposed antenna sensor
was connected to a VNA and data was recorded using a computer via MATLAB software. (c) Relationship between acetone concentration and
relative permittivity in the liquid mixture of the experiment. Measured responses of the proposed antenna sensor: (d ) S11 as a function of
frequency for different acetone/water concentrations; and its corresponding (e) scatter plot with error bar and cubic polynomial curve fitting relation
between acetone concentration and frequency shift, and (f) scatter plot with error bar and cubic polynomial curve fitting relation between acetone
concentration and amplitude variation.

show intuitively how the relative permittivity of the binary
mixture changes with the concentration of acetone, a widely
used Maxwell-Garnett model [110], [111] can be considered,
which can be calculated mathematically using (1),

εeff = εr1 + 3 |m| εr1 ·
εr2 − εr1

εr2 + 2εr1 − |m| (εr2 − εr1)
(1)

where εr1 and εr2 are the relative permittivities of DI water
and acetone, which are 80 and 21, respectively [112], [113],
and m is the concentration of acetone in DI water. Then again
εeff is the relative permittivity of the mixture, which is plotted
in Fig. 10(c). As we can see, as the concentration of acetone
increases, the permittivity of the mixture gradually decreases
because the permittivity of acetone is lower than that of DI
water.

Fig. 10(d) shows the measured S11 data for different mix-
tures. The 10-dB impedance bandwidth for the bare antenna
was measured to be 251 MHz. When introducing DI water
and acetone, the 10-dB impedance bandwidths were observed
to be 255 MHz and 241 MHz, respectively. Compared to the
empty vial, the presence of acetone resulted in an average
4.15% decrease in bandwidth, while an approximate 1.6%
increase in the average bandwidth was observed as the water
percentage increased within the mixture. It also shows a
noticeable change in both amplitude and frequency compared
to reference frequency which helps trace the acetone level in
the water. The reference frequency is at 4.66 GHz with an
amplitude of –38.43±0.06 dB. Considering a 10% acetone
concentration, the resonant frequency shifted to 4.62 GHz

with an amplitude of –18.95±0.05 dB, which corresponds to a
40 MHz resonant frequency shift, and about 20.88 dB change
in amplitude. It can also be seen from Fig. 10(d) that a higher
concentration of acetone causes the S11 to shift towards a
lower frequency range. The resonant frequency of the sensor
was at 4.61 GHz and 4.55 GHz without (0%) and with (100%)
acetone presence in liquid mixtures, respectively. Therefore,
the proposed antenna sensor can be used to quantitatively
discriminate the concentration of the acetone-water mixture.

Sensitivity and limit of detection (LoD) are the two most
important indicators of sensor performance. In this study, we
established a quantitative relationship between the acetone
concentration and the observed variations in the S11 from our
antenna sensor. Fig. 10(e) and Fig. 10(f) show the variations
in resonance frequency and amplitude, respectively, as the
acetone concentration in DI water was varied. We conducted
thorough experiments where the sensor was exposed to a range
of known acetone concentrations in controlled settings. By
recording the sensor’s response to these concentrations, we
established a quantitative relationship between the acetone
concentration and the reflection coefficient of the antenna
sensor.

We applied a cubic polynomial fitting curve to further anal-
yse the data shown in Fig. 10(d) considering 0–100% acetone
concentration in DI water. The selection of cubic polynomial
fitting was motivated by the need to effectively capture the
curvature in the data. As illustrated in Fig. 10(e) and Fig. 10(f),
the data points closely follow the cubic polynomial curve, sug-
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TABLE II
A COMPARISON OF THE MEASUREMENTS OF THIS WORK WITH OTHER RELEVANT WORKS BASED ON THEIR KEY PARAMETERS

Ref. Sensor Type Operation
freq. (GHz)

Sensitivity
(kHz/ per-
centage)

Com.
Cap.

Measured gain Measurement setup Flex. IJP CSC Sensor size (mm3)

[44] Split ring res-
onators

2 – 3 188 No NA Water and ethanol No Yes Yes 60×20×1.6

[60] Dielectric res-
onator

2.45 718 No NA Water and ethanol No No No NA

[70] SIW cavity
resonator

3.16 2600 No NA Water and ethanol No No No 20×21×1.27

[71] SIW resonator 10 900 No NA Water and methanol No No No NA

[72] Complementary
split ring
resonator

2 350 No NA Water and ethanol No No No 20×25×1.6

[73] Complementary
split ring
resonator

2.36 440 No NA Water and ethanol No No No 20×28×0.75

[74] Complementary
split ring
resonator

2.4 300 No NA Water and ethanol No No No 25×35×3

[75] Split ring res-
onator

2.1 1100 No NA Water and ethanol No No No 28×28×1.9

[76] Split ring
patch antenna

1.33 and 2.55 380 Yes 1.5dBi @1.33 GHz
and
5.7dBi @2.69 GHz

Water and acetone No No No 85×85×1.6

[77] Microwave
plasmonic
resonator

5.23 NA No NA Water and ethanol Yes Yes No 34×40×2.5

[107]
Metamaterial-
based
resonator

3.2 and 4.85 610 No NA Ethanol and 1–
pentanol

No No No 30.6×61.4×4.2

[108]
Patch antenna 4.478 – 4.833 117.6 Yes NA Ethanol in wine

and isopropyl in
disinfectant

No No No 70×70×1.6

This
work

CPW-fed
patch antenna

4.42 – 4.86 600 Yes 4.12dBi @4.7 GHz Water and acetone Yes Yes Yes 36×40×0.075

Com. Cap. = Communication capabilities; Flex.= Flexibility; IJP = Inkjet Printed; CSC = Contactless sensing capabilities

gesting a strong correlation between acetone concentration and
resonant frequency shift and amplitude deviation, respectively.
The mathematical equations governing these phenomena are
denoted as (2) and (3), respectively.

y = −0.2127x3 + 0.2792x2 − 0.1266x+ 4.61 (2)

y = −11.01x3 + 11.66x2 − 4.956x− 17.55 (3)

Referring to Fig. 10(e) and Fig. 10(f), the response of the
sensor to changes in the volume fraction shows a non-linear
trend, a characteristic commonly observed in microwave sen-
sors as shown by previous research studies presented in [71],
[108], [114], [115]. In addition to presenting this relationship
curve, we incorporated error bars in Figs. 10(e) and Fig. 10(f)
to illustrate the uncertainty and variability inherent in our
multiple measurements. The short length of these error bars
indicates a high level of accuracy and repeatability within
these measurements. This enabled us to quantitatively evaluate
the sensor’s ability to measure acetone concentration levels

accurately. Apart from that, Figs. 10(e) and Fig. 10(f) show
a maximum change of 60 MHz in frequency and a 4.31-dB
change in amplitude. The sensitivity can be calculated using
(4),

S =
∆f

100
(4)

where the ∆f is the resonate frequency shift from 0% to 100%
acetone in water, which is the 60 MHz in our case, S is the
sensitivity [60], [116]. By inserting the values in (4), we can
get a sensitivity of 600 kHz/percentage.

Table II presents a comparison of the proposed work with
recently published microwave sensors designed for liquid
mixture sensing. The liquid sensing systems shown in the table
demonstrate a wide range of variations in terms of their diverse
topologies, constituent materials, working mechanisms, and
operational frequencies. This indicates that comparing them
directly is a complex undertaking. Nevertheless, this table
offers a comprehensive analysis of various microwave sensors
and their efficacy compared to the proposed sensor. The
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evaluation primarily concentrates on binary liquid mixtures
(e.g., acetone/water mixture) as reported in existing literature.
Applying inkjet-printed microwave sensors for monitoring
liquid mixtures is a comparatively underexplored field. A
study cited as [44] demonstrates the development of an inkjet-
printed microwave sensor employing split-ring resonators that
obtained a remarkable sensitivity of 188 kHz/percentage. A
different study using inkjet printing has reported in [77]
yielded no results on sensitivity. Our proposed sensor demon-
strates a sensitivity value that is comparable to those that are
reported in the table, yet this value is somewhat lower than
those that are exhibited by the other sensors cited as [70],
[71], [75]. This may primarily be attributed to the fact that our
sensor is specifically designed for contactless measurements,
particularly for characterising the liquid mixtures within a
container (e.g., a vial). In this scenario, the key component
that may contribute to the reduced sensor sensitivity is likely
the thickness of the container itself. However, despite this con-
sideration, the proposed sensor still showcases commendable
performance. Its cost-effective fabrication process, which is
achieved with the inkjet-printing technique, renders it an eco-
nomically viable sensor. Hence, compared to existing liquid
sensing systems, our proposed antenna sensor is compact in
terms of its electrical size and sensitivity in detecting liquid
acetone concentration at room temperature based on radio
frequency signals. Also, the proposed antenna sensor is flexible
and capable of working under deformation, which would allow
the sensor to be attached to the surface of the sample holder,
making it ideal for contactless liquid sensing applications.

Besides sensitivity, the limit of the detection is also a
crucial characterising metric of a sensor [117]–[120]. In our
experiment, we employed a measurement increment of 10%.
However, due to the limited variation observed within the
30–70% acetone concentration range, we have considered the
worst-case scenario of a 20% change as the practical LoD.
Additionally, as demonstrated in Fig. 10(e), a 1% change in
acetone concentration in water resulted in a substantial 600
kHz deviation, well within the discernible range of our VNA.
Therefore, it is reasonable to conclude that the theoretical LoD
may potentially extend as low as 1%.

The proposed antenna sensor utilises commercially available
materials, simplifying its fabrication process for improved
stability and reproducibility. Detailed procedures, including
inkjet printing steps and setup parameters, are provided for
easy replication by other researchers. The sensor’s stability
is validated under different bending conditions. The sensor
can also distinguish between acetone and water based on their
relative permittivities.

V. CONCLUSION

We describe the design and development of a combined
octagonal and square-shaped patch CPW-fed inkjet-printed
flexible antenna for sensing a liquid acetone/water mixture.
The proposed antenna sensor provides high sensitivity while
operating at room temperature in a laboratory environment.
Both simulation and measurement showed that this antenna
sensor has an impedance bandwidth of 10-dB between 4.61

GHz and 4.81 GHz. It also has a measured peak realized gain
of approximately 4.12 dBi with an efficiency of 76.5%. In
addition, the antenna sensor has an omnidirectional radiation
pattern in the H plane and a bidirectional radiation pattern in
the E plane. Besides, the sintering process of the nanosilver ink
is enabled by the Kapton substrate, resulting in the flexibility,
compactness, light weight, robustness, and good radiation
characteristics of the proposed design. Antenna sensors such
as the one proposed in this study have great potential in future
conformal and flexible electronic systems. It can be fabricated
from advanced materials and can be used for a wide range of
wireless applications in the 5G sub-6 GHz n79 band regime.
Overall, the proposed design can be used in sensing and/or
communication applications, making it a valuable component
for sensor networks. As such, it opens up a new horizon
for antenna sensor based liquid sensing technologies with
potential applications in acetone sensing in cosmetics and
personal care products, industrial process control, wastewater
treatment, and safety and hazard detection. In future research,
we aim to enhance our capabilities to detect more complex
conditions, such as varying volumes or different types of liquid
mixtures.
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