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Abstract. The annotation of physical activity data collected with ac-
celerometers for human activity recognition (HAR) remains challenging
despite the growing interest in large public health studies. Existing free-
living accelerometer-based datasets are limited, hindering the training
of effective deep learning models. To address this limitation, some stud-
ies have explored self-supervised learning (SSL), i.e., training models
on both labeled and unlabeled data. Here, we extend previous work by
evaluating whether large-scale pre-training improves downstream HAR
performance. We introduce the SelfPAB method, which includes pre-
training a transformer encoder network on increasing amounts of ac-
celerometer data (10-100K hours) using a reconstruction objective to
predict missing data segments in the spectrogram representations. Ex-
periments demonstrate improved downstream HAR performance using
SelfPAB compared to purely supervised baseline methods on two publicly
available datasets (HARTH and HAR70+). Furthermore, an increase in
the amount of pre-training data yields higher overall downstream per-
formance. SelfPAB achieves an F1-score of 81.3% (HARTH), and 78.5%
(HAR70+) compared to the baselines’ F1-scores of 74.2% (HARTH) and
63.7% (HAR70+). Additionally, SelfPAB leads to a performance increase
for activities with little training data.

Keywords: accelerometer· human activity recognition· self-supervised
learning· machine learning· transformer.

1 Introduction

Accelerometer-based human activity recognition (HAR) is a research field fo-
cusing on predicting human postures and physical activities from accelerometer
data [28]. Supervised machine learning (ML) is one of the most successful tech-
niques to facilitate accelerometer-based HAR due to its ability to learn complex
patterns in the data [24]. More recently, self-supervised learning (SSL), a form
of semi-supervised learning, gained much attention in the ML community due to
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its ability to extract useful representations from unlabeled data [11], thus omit-
ting the costly task of annotating large-scale datasets. In general, SSL consists
of two steps. First, a model is pre-trained on unlabeled data by defining an ob-
jective (auxiliary task) the model has to solve (upstream training). Second, the
learned representations of the upstream training are leveraged to solve tasks that
rely on annotated data (downstream training), like HAR [19]. The main goal is
to improve the downstream performance, compared to purely supervised learn-
ing (i.e., no upstream training), based on the representations learned through
self-supervised pre-training. SSL achieved state-of-the-art performances in many
research fields [33,6,15]. But also the HAR research community started to investi-
gate different SSL approaches (see Section 2). However, most works in SSL-based
HAR use small labeled datasets for both upstream and downstream training. It
has been shown in the research field of natural language processing, especially
in large-language models, that the amount of training data plays a crucial role
in a neural network’s performance, with more data leading to better results [12].
None of the existing SSL-based HAR literature investigates large-scale datasets
for pre-training and their influence on HAR performance. We fill this gap by
making the following contributions:

1) We implement a self-supervised physical activity behavior representation
learning method (SelfPAB). We pre-train a transformer encoder network [30]
on the large-scale, unlabeled HUNT4 data corpus. The auxiliary task during
pre-training is to reconstruct masked time windows and frequency bands in
six spectrograms. The pre-trained network is used as a feature extractor dur-
ing downstream HAR training on the two labeled HAR datasets, HARTH [18]
and HAR70+ [29]. 2) We experiment with different amounts of unlabeled data
for pre-training. In particular, 10 hours, 100 hours, 1k hours, 10k hours, and
100k hours of the HUNT4 dataset. We show that only 10 hours of acceleration
signals, less than many supervised datasets contain, are sufficient to achieve simi-
lar (on HARTH) and higher (on HAR70+) performances than purely-supervised
methods. Using 100 hours shows better results in both datasets. Our experi-
ments indicate that the amount of hours used for pre-training scales with the
downstream performance. 3) We show that especially the performance of activi-
ties with little data benefits from pre-training. Our experiments and pre-trained
models are publicly available3.

2 Related Work

There are various related works that have investigated different SSL strategies
for HAR. Those can be grouped into three categories:

1) Multi-task self-supervision: In this category, multiple auxiliary tasks
are defined at once. Related works focused on transformation-based multi-task
self-supervision, hence, identifying what kind of transformation(s), if any, is ap-
plied to the input signal [22,26].

3 https://github.com/ntnu-ai-lab/SelfPAB (accessed on 2023-10-16)

https://github.com/ntnu-ai-lab/SelfPAB
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2) Contrastive learning: In contrastive learning, input representations are
learned through comparing input samples [14]. The representations of ”similar”
samples (positive samples) need to be closer together than the representations
of ”dissimilar” samples (negative samples)[14]. How ”similar” / ”dissimilar” and
the distance are defined depends on the used algorithm. Different contrastive
approaches are proposed in [8,27,17,23,13,32,10,31].

3) Masked reconstruction: In masked reconstruction-based SSL, parts of
the input signals are masked out (e.g., replaced with zeros), and the pre-training
objective is the reconstruction of these parts to learn local temporal dependencies
[9]. Related works focus on time-domain masked reconstruction only [7,25].

The authors of [9] made an in-depth investigation of the state-of-the-art
in SSL-based HAR. They used the Capture-24 dataset [2] to pre-train various
conceptually different SSL approaches. The mentioned related works for masked
reconstruction-based SSL show some limitations. First, they consider only a
single sensor even though many studies show that using more than one can
increase the HAR performance [5,20]. Second, the former two works ([7,25]) use
the labeled HAR datasets for both pre-training and downstream training. Due
to the datasets’ limited size, this aspect makes it difficult to investigate whether
more pre-training data can improve the HAR results. The authors of [9] studied
different pre-training data quantities with the unlabeled Capture-24 dataset.
However, they focused on only one sensor, and Capture-24 has its limitations of
4000 hours and 151 participants.

3 Methods

The self-supervised physical activity behavior representation learning method
(SelfPAB), used in this work, is illustrated in Figure 1. It is based on TERA
[15], a speech representation learning technique. SelfPAB consists of two parts,
an upstream (left) and a downstream part (right). First, an upstream network
is pre-trained on unlabeled data to acquire potentially useful physical activity
representations. Second, the resulting model is utilized as a feature extractor
for downstream training (e.g., HAR). The goal is to improve the performance
of a downstream model by leveraging the representations the upstream model
acquires from the unlabeled data.

3.1 Upstream

Acceleration Signals We use three existing datasets (see Section 4), each
recorded with two Axivity AX3 (Axivity Ltd., Newcastle, UK) 4 accelerometers
attached to the participants’ lower back and thigh. Each sensor records the ac-
celeration in three spatial dimensions, resulting in six time signals. We compute
spectrograms of each signal using the short-time Fourier transform (STFT) to
get the frequency content over time. This is inspired by the research field of au-
tomatic speech recognition (ASR), where spectrograms are successfully utilized

4 http://www.axivity.com/ (accessed on 2021-06-29)

http://www.axivity.com/


4 A. Logacjov et al.

Fig. 1: Illustration of the SelfPAB method, consisting of two parts, the self-
supervised pre-training (left) and the supervised downstream training (right).

for pre-training instead of raw time signals [15,16]. We stack the six resulting
spectrograms on top of each other to create vectors for each time frame.

Signal Alteration and Auxiliary Task We utilize the masked reconstruction
auxiliary task as it allows learning of temporal dependencies without much effort
[9], which leads to useful representations of accelerometer signals for downstream
tasks. Another benefit of masked reconstruction is that, compared to contrastive
approaches, it does not suffer from the so-called sampling bias [4]. The primary
strategy is to mask certain parts of the input and let the model learn to re-
construct these parts using the unmasked parts. As a result, we perform two
alteration techniques on the input spectrograms.

1) Time domain alteration: As in [15], we define a time alteration percentage
PT , which determines the maximal amount of time frames to be altered in all
six spectrograms. First, a number Tnum = ⌊PT ·LT

WT
⌋ of start indices are randomly

chosen without replacement. LT is the total number of input time frames, and
WT is a predefined window width to be altered. With a probability of 80%,
the selected frames are replaced with zeros, with a probability of 10%, they are
swapped with other frames in the input, and with a probability of 10%, they
are not altered at all. The authors of [15] argue that the latter case tackles the
train-test inconsistency problem. The white vertical lines in the spectrograms
of Figure 1 illustrate the masking of time frames with zeros in all six spec-
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trograms. Note that altered windows can overlap, leading to larger consecutive
masked/swapped areas.

2) Frequency domain masking: Like in time domain masking, we compute a
number of start indices Fnum = ⌊PF ·LF

WF
⌋ using frequency masking percentage

PF , frequency window width WF , and the number of frequency bins of one
sensor LF . The same consecutive frequency bands are masked (zeroed out) in
all six spectrograms. The white horizontal lines in the spectrograms of Figure 1
illustrate this masking.

Note that time domain alteration and frequency domain masking are com-
bined in most cases. Like in TERA [15], we use the L1 reconstruction loss
l1 = M · |y − ŷ| between the upstream model’s output ŷ and the unmasked
spectrograms y. M is a matrix with the same dimension as y and ŷ and contains
ones where alteration (masking or swapping) is applied and zeros anywhere else.
The multiplication with M ensures that the L1 loss is computed for the altered
parts only. Initial experiments with the L2 loss and the Huber loss showed no
benefits to the L1 loss.

Upstream Architecture The masked spectrograms are forwarded to a linear
input projection layer. It is a single trainable feed-forward layer, mapping the
input to a predefined embedding of dimension dmodel. Sinusoidal positional en-
coding is used to preserve information about the order of the input sequence.
Input embedding and positional encoding are summed together and forwarded
to a transformer encoder network consisting of N transformer encoder layers.
Transformer models, proposed in [30], can learn relationships between a set of
input vectors, in our case, between time windows in the stacked spectrograms,
without the usage of recurrent or convolutional layers, making them efficient
to train. The output of the last transformer encoder layer is forwarded to the
prediction head, a feed-forward layer mapping the dmodel-dimensional vectors
back to the input dimension dinput to make the model’s output comparable to
the unmasked spectrogram. Despite the similarity of SelfPAB to TERA [15], we
want to highlight the differences here. 1) We work with standard spectrograms
in contrast to log Mel spectrograms. 2) We consider a six-dimensional time series
(two sensors, each having three axes) instead of a univariate time series. 3) The
authors of TERA applied magnitude alteration by adding noise to the spectro-
grams, which we do not. The reason is that it did not provide a strong benefit
in classification tasks [15].

3.2 Downstream

We use the pre-trained linear input projection layer and the transformer en-
coder upstream network to extract features from the input spectrograms. Like
in [15], we use the weighted sum F =

∑L
l=1 Fl · wl of each transformer encoder

layer’s output Fl as input to the downstream network. L is the number of trans-
former encoder layers and wl a trainable weight scalar. This technique allows the
model to learn which layer in the upstream network is most important for the
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downstream training. It is inspired by the authors of [3], who showed that us-
ing internal transformer encoder layers for feature extraction can lead to better
speaker recognition and phoneme classification results.

The downstream architecture is a multilayer perceptron (MLP) with one
hidden layer. It receives the upstream model’s dmodel-dimensional output as
input. The output layer has the same dimension as the number of activities
in the HAR downstream dataset. A ReLU activation is applied to the hidden
layer’s output and a softmax activation function to the output layer. Initially,
the weights of the upstream model are frozen, and only the weighted-sum layer
and downstream MLP are trained to prevent the initially large gradients from
altering the carefully set parameters of the upstream model too much. However,
we unfreeze the upstream model’s weights after 75% of the total number of
downstream steps, i.e., we perform fine-tuning. Fine-tuning upstream models
showed promising downstream results in other works [15,3].

4 Experiments

We test our approach in experiments with three different datasets, the HUNT4
[1], the HARTH v1.2 [18], and the HAR70+ [29]. HUNT4 is an unlabeled dataset,
and it is utilized for pre-training only. After pre-training, we investigate the HAR
performance on the latter two datasets, which are both labeled.

4.1 Pre-training / Upstream

HUNT4 Dataset (unlabeled) In HUNT4, accelerometer data of approxi-
mately 35,000 participants were recorded [1]. Each participant wore two three-
axial Axivity AX3 accelerometers for up to seven days. The sensors were attached
to the participants’ lower back and thigh, and recordings were made with a sam-
pling rate of 50Hz. HUNT4 consists of around 230 times more subjects with
significantly more hours of data than the Capture-24 dataset [2]. Hence, it is a
good candidate to investigate a large variety of hours used for pre-training.

Data Pre-processing Five-minute time windows (15, 000 samples at 50Hz), a
frame length of 1sec (= 50 samples), an overlap of half a second (= 25 samples),
and the Hann window function are used for STFT computation. This results in 26
frequency bins and 599 time frames for each axis. The six sensor spectrograms are
stacked, resulting in 156×599-dimensional input matrices. We use the upstream
dataset’s mean and variance to normalize the input before pre-training.

Hyperparameters After initial experiments, the following hyperparameter as-
signments achieved the best results during pre-training. The linear projection
layer transforms the input of dimension dinput = 156 to dmodel = 1500. The
transformer encoder network consists of four transformer encoder layers each
having six attention heads, and a 2048-dimensional feed-forward layer. We use
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AdamW with a weight decay factor of 1e−5 as the optimizer. Like in TERA
[15], we perform a linear learning rate warm-up in the first 7% of training steps,
leading to a peak learning rate of 1e−4. Afterward, a linear learning rate decay is
applied with a final learning rate of 1e−6. We further compare the downstream
performance when using upstream models trained on 10, 100, 1k, 10k, and 100k
hours of acceleration data. To ensure that all five models take the same num-
ber of gradient steps, we train the 10 hours model for 500,000, the 100 hours
model for 50,000, the 1k hours model for 5,000, the 10k hours model for 500,
and the 100k hours one for 50 epochs, all with a batch size of 64. We randomly
select five-minute time windows of the HUNT4 data corpus to collect the re-
quired amount of data. For creating the altered time frames, we define a time
alteration percentage of PT = 0.15 and the amount of consecutive time frames
to alter is set to WT = 3. We set the frequency masking percentage to PF = 0.2
and the frequency masking width to WF = 3.

4.2 Downstream

Datasets (labeled) This work considers two publicly available and labeled
datasets for downstream training (i.e., HAR). Those are, to the best of our
knowledge, the only two labeled and publicly available HAR datasets with the
same sensor setup as HUNT4.

1) HARTH v1.2: The first is the HARTH v1.2 [18]5. Twenty-two subjects
were recorded for around 1.5 to 2 hours in a free-living setting. HARTH v1.2
has twelve different professionally annotated activities: walking, running, shuf-
fling (i.e., standing with leg movement), stairs (ascending), stairs (descending),
standing, sitting, lying, cycling (sit), cycling (stand), cycling (sit, inactive), and
cycling (stand, inactive). The dataset contains around 2221.6 min (≈ 37 hours)
of acceleration data. HARTH v1.2 is highly imbalanced, making HAR a chal-
lenging task for ML approaches [18]. We combine the active and inactive cycling
activities, resulting in ten activities, to make our experiments more comparable
to the original HARTH experiments [18].

2) HAR70+: The HAR70+ contains 18 subjects, which are over 70 years old
[29]6. Seven activities were professionally annotated: standing, shuffling, walking,
sitting, lying, stairs (descending), and stairs (ascending). HAR70+ consists of
around 756 min (= 12.6 hours) accelerometer recordings. As in HARTH v1.2, a
high class imbalance is observable [29].

Downstream Training We investigate three different settings to show the ben-
efits of our two-stage approach. (1) SelfPAB: Our proposed downstream training
as described in Section 3.2. The downstream MLP’s hidden layer has a dimen-
sion of 1028 and the output layer a dimension of 10 and 7 depending on the used

5 Dataset available at https://github.com/ntnu-ai-lab/harth-ml-experiments/

tree/v1.2/harth (accessed on 2022-04-13)
6 https://github.com/ntnu-ai-lab/harth-ml-experiments/tree/main/

har70plus (accessed on 2023-03-24)

https://github.com/ntnu-ai-lab/harth-ml-experiments/tree/v1.2/harth
https://github.com/ntnu-ai-lab/harth-ml-experiments/tree/v1.2/harth
https://github.com/ntnu-ai-lab/harth-ml-experiments/tree/main/har70plus
https://github.com/ntnu-ai-lab/harth-ml-experiments/tree/main/har70plus
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dataset’s number of activities. (2) Spectrograms + MLP: We skip the pre-trained
model and train the mentioned MLP directly on the stacked spectrograms. The
same MLP hyperparameters as in setting (1) are used. (3) Spectrograms + TE:
We train the upstream architecture (linear projection layer, transformer encoder,
and prediction head) purely-supervised, i.e., without pre-training. The predic-
tion head has a dimension of 10 or 7, depending on the used dataset. A softmax
activation follows the prediction head. The remaining hyperparameters are the
same as described in Section 4.1. Settings (2) and (3) will answer the question of
whether the pre-training objective in combination with the proposed architec-
ture is helpful for HAR or not. Since we normalize the HUNT4 data during pre-
training, we do the same for HARTH v1.2 and HAR70+ using HUNT4’s mean
and variance before downstream training. This strategy showed a considerable
performance improvement in previous work [9]. The first 20% of each subject’s
spectrogram is used as the validation set and the remaining 80% as the training
set, leading to roughly the same activity distribution between the two sets. We
randomly cut 32 (batch size) five-minute spectrograms (599 time bins) out of the
training set in each training step. The models are trained on 2000 steps in total.
We utilize the Adam optimizer, a learning rate of 1e−4, and exponential learning
rate decay with a decay factor of 0.1. The categorical cross-entropy is used as
the loss function. A leave-one-subject-out cross-validation (LOSO) is performed.
Hence, the model is trained on S − 1 subjects and tested on 1, with S being
the number of subjects. This is repeated S times, each time with a different test
subject. Averaged across all activities, we compute the harmonic mean of recall
and precision, the average F1-score = 2 · Recall·Precision

Recall+Precision for each test subject. In
contrast to the accuracy, the F1-score takes class imbalances into account. Note
that we create one-second predictions for five minutes (599 samples) at once. To
make the results comparable, we replicate the resulting one-second predictions
to 50 samples per second, hence, back to the original time domain dimension.

Baselines We compare our method to the best baseline approaches presented
in [18], a support vector machine (SVM) and an extreme gradient boost (XGB).
Additionally, we compare SelfPAB to the well-established DeepConvLSTM ap-
proach [21]. We ensure a fair comparison by performing a hyperparameter op-
timization with following LOSO for each baseline method. For the XGB and
SVM, we compute the same 161 features of five-second time frames the authors
in [18] used for training. Similar to the downstream experiments, we replicate
these five-second predictions to 50 samples per second, ensuring comparability.
We investigate DeepConvLSTM’s performance on the raw time signals, as well
as spectrograms, denoted as (TS) and (Spectr.), respectively.

5 Results

5.1 Overall Downstream Performance

The average F1-scores, together with the corresponding standard errors, of the
HARTH v1.2 and HAR70+ LOSOs are shown in Table 1. The first four rows
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contain the results of the baselines, the fifth and sixth rows of setting (2) and
(3), respectively, and the remaining row when using SelfPAB, pre-trained on
100k hours of HUNT4 data. With the highest F1-scores of 81.3% and 78.5% for
HARTH and HAR70+, respectively, SelfPAB is the best model in our experi-
ments, which is an improvement of around 7% compared to the best baseline
model, the XGB. Furthermore, it generally attains a lower standard error than
the baselines. The DeepConvLSTM trained on the time signals has the worst re-
sults in both datasets. A considerable improvement is observable when training
DeepConvLSTM on spectrograms instead. However, it still shows the second-
worst performance. Setting two (Spectrograms + MLP) has the third-worst F1-
scores in both datasets. Setting three (Spectrograms + TE) outperforms the
XGB in the HAR70+ dataset (64.5%) but not in the HARTH v1.2. Both, set-
ting two and setting three, are considerably worse than SelfPAB, showing that
the pre-training is important for good results.

Table 1: Average F1-score results of the leave-one-subject-out cross-validations
on HARTH v1.2 and HAR70+. The best results are shown in bold letters.

Approach HARTH v1.2 (in %) HAR70+ (in %)

SVM 71.7 ± 2.0 64.3 ± 2.9
XGB 74.2 ± 1.9 63.7 ± 2.4
DeepConvLSTM (TS) 51.2 ± 6.2 54.7 ± 3.3
DeepConvLSTM (Spectr.) 60.2 ± 2.2 59.3 ± 1.9

Spectr. + MLP 60.5 ± 2.4 61.9 ± 2.5
Spectr. + TE 66.1 ± 2.0 64.5 ± 2.5

SelfPAB (ours) 81.3 ± 1.3 78.5 ± 2.1

Figure 2 shows the average F1-scores (with standard error) for each activ-
ity in the HARTH v1.2 (Figure 2a) and HAR70+ (Figure 2b) datasets. The
SelfPAB, pre-trained on 100k hours, the XGB, and the Spectrograms + TE
experiments are visible. The shown activities are ordered according to the num-
ber of samples in the dataset, with sitting being the most common activity for
HARTH v1.2 and walking the most common for HAR70+. The well-represented
classes (HARTH v1.2: sitting, walking, standing, cycling(sit), lying, and run-
ning; HAR70+: walking, sitting, standing, and lying) are largely dominated by
good but similar results for all models. Cycling (sit) has a similar average per-
formance across the models, considering the high standard error. Shuffling is an
exception here for the HARTH v1.2 dataset. It has almost the same amount
of samples as running but a much lower performance across all models. Nev-
ertheless, SelfPAB has considerably better results than the baseline XGB for
shuffling. The rare classes (HARTH v1.2: stairs (ascending), stairs (descending),
and cycling(stand); HAR70+: shuffling, stairs (descending), and stairs (ascend-
ing)) have, in general, much poorer performance. Despite this, we observe that
SelfPAB performs comparably well on these rare classes, especially on stairs (as-
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cending) and stairs (descending). Cycling (stand), on the other hand, is similarly
poor predicted by all models and shows a high standard error.

(a) HARTH v1.2 (b) HAR70+

Fig. 2: Average F1-scores for each activity in the HARTH v1.2 (a) and HAR70+
(b) datasets. The black lines show the corresponding standard errors. The activ-
ities are ordered according to their amount of minutes in the dataset, with left
being the most common activity. Spectr. is the abbreviation for Spectrograms.

5.2 Impact of the Amount of Unique Upstream Samples

The overall increase in the average F1-score with an increasing amount of hours
is illustrated in Figure 3a for the HARTH v1.2 dataset and in Figure 3b for the
HAR70+. For HARTH v1.2 (Figure 3a), a strong performance gain is achieved
when training on 1k hours compared to 10 or 100 hours. Using more pre-training
data improves the performance marginally, with 10k hours being worse than
1k hours. Similarly, in the HAR70+ experiments (Figure 3b), the F1-score in-
creases with increasing hours used during pre-training, while the performance
gain from 10 hours to 1k hours is stronger than from 1k hours to 100k hours. In
both cases, the model pre-trained on the most hours of unique upstream samples,
SelfPAB 100k, achieves the best average F1-score. Note that for HARTH v1.2
SelfPAB pre-trained on 10 hours has similar well results as the best baseline
model, the XGB, with 73.9%. For HAR70+ SelfPAB pre-trained on 10 hours
shows even better performance than all purely supervised baselines.

6 Discussion

Most activities benefit from our pre-training. However, while more frequent ac-
tivities have a generally high performance for all models, less common activities
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Fig. 3: The average downstream F1-score for (a) HARTH v1.2 and (b) HAR70+
if SelfPAB is trained on 10 hours, 100 hours, 1k hours, 10k hours, and 100k hours
of the HUNT4 data. The shaded areas represent the standard error, and the y-
axis range is between 70% and 85%.

show a strong F1-score increase. This is beneficial, especially in current free-
living datasets, which are relatively small and where certain activities are not
performed that often. There are multiple explanations for this behavior. First,
SelfPAB could be more robust against class imbalances, as observed in related
works [9]. Second, the pre-training allows a more data-efficient training of down-
stream tasks. This is strengthened by the stairs (ascending/descending) results
for both datasets. Third, certain activities are hard to distinguish from others
due to their strong similarity. The poor shuffling performance in HARTH v1.2,
with a sample count similar to running but notably lower performance, strength-
ens this explanation. Shuffling’s ”semantic” proximity to walking and standing
can lead to misclassification. We further show that increasing the number of
unique data samples for pre-training improves the HAR downstream perfor-
mance, with 100k hours leading to the best results. A similar observation was
made in [12] on transformer-based language models, where the loss scales with
the amount of training data. SelfPAB enhances the performance of activities
with limited data but requires longer training and higher power consumption,
necessitating a trade-off between performance and training complexity. Never-
theless, we also show that already 10 hours of pre-training data are enough to
achieve better/similar performances than the purely supervised baselines. Hence,
our approach can learn useful representations even from small amounts of unla-
beled data. Furthermore, the performance increase slows down after 1k hours,
indicating a convergence. Hence, a limitation of our study is that we do not
investigate more than 100k hours to examine whether an actual convergence
occurs. Augmentation can be seen as an alternative to SelfPAB, since it can in-
crease underrepresented class samples. However augmentation is considered less
effective than SSL in related work [15]. Thus, a comparison with augmentation
falls outside the scope of this study. Spectrograms + TE lags behind SelfPAB
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pre-trained on just 10 hours, suggesting that weight freezing in SelfPAB serves
as beneficial weight initialization procedure for downstream training. It remains
an open question of how well SelfPAB performs compared to other SSL-based
HAR approaches, like the ones presented in Section 2. Nevertheless, the focus
of this work is not to create a novel state-of-the-art SSL approach for HAR but
rather the investigation of the influence of the amount of pre-training data on
the model’s downstream HAR performance. Hence, we consider a comparison
to other SSL approaches as out of the scope of this paper and refer it to future
work.

7 Conclusion

Inspired by the recent success of self-supervised machine learning and the large-
scale HUNT4 data corpus, we implement the SelfPAB method. SelfPAB learns
physical activity representations by reconstructing masked parts of accelerom-
eter signal spectrograms of the unlabeled HUNT4 dataset. SelfPAB achieves
better HAR performances than purely supervised baselines, especially for activ-
ities with little data. Furthermore, we show that increasing the amount of unique
pre-training samples leads to an increase in the downstream HAR performance.
For future research, we recommend the investigation of a potential sensor loca-
tion mismatch between pre-training and downstream data. It would reveal how
robust SelfPAB is regarding sensor position. Furthermore, the fact that two sep-
arate sensors record the data can be used to design more innovative pre-training
objectives. The ever-growing community of physical activity behavior research
based on accelerometer (attached to the thigh and lower back) measurements
will acquire new knowledge about the influence of physical activity behavior on
public health by using our SelfPAB method.
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