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a b s t r a c t

We consider immiscible and incompressible two-phase flow in porous media under
steady-state conditions using a dynamic pore network model. We focus on the fluc-
tuations in a Representative Elementary Area (REA), with the aim to demonstrate that
the statistical distributions of the volumetric flow rate and the saturation within the REA
become independent of the size of the entire model when the model is large enough.
This independence is a necessary condition for developing a local statistical theory for
the flow, which in turn opens for the possibility to formulate a description at scales
large enough for the typical pore size to be negligible using differential equations.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When two or more immiscible fluids compete for space while flowing in a porous medium, we are dealing with
ultiphase flow [1–4]. Finding a proper description of multiphase flow at the Darcy scale, which may be orders of
agnitude larger than the pore scale, is a central problem in porous media research. On the Darcy scale, the only practical
pproach to the multiphase flow problem is to replace the original porous medium with a continuous medium and then
escribe the flow through a set of differential equations relating the fluid velocities to the driving forces, e.g. pressure
radients, saturation gradients and gravity. The approach dominating any practical applications of immiscible two-phase
low that today requires calculations is based on relative permeability theory [5]. This is a purely phenomenological theory
ssentially stating that the two immiscible fluids get into each other way and therefore reduce the effective permeability
ach fluid experiences. Add a capillary pressure function to take into account the capillary forces between the two fluids,
nd the theory is complete [6]. This phenomenological approach has the flaw that it provides no path to implement into
t our increasing understanding of the interactions and flow of the fluids at both the pore scale and the molecular scale.

Solving the scale-up problem in immiscible two-phase flow in porous media consists of expressing the flow at the pore
cale in terms of the flow at the molecular scale and then expressing the flow at the Darcy scale in terms of the flow at
he pore scale. The favored approach to the scale-up problem is that of homogenization. That is, start with a description
f the problem on small scale using variables appropriate for that scale. Then average these variables over the large scale,
ollowed by closure assumptions.

One example of the homogenization approach of scaling up immiscible two-phase flow in porous media starts
rom mechanical principles such as momentum conservation to arrive at an effective description of the flow through
omogenization [7–12]. Thermodynamically Constrained Averaging Theory (TCAT) [13–18] is a very different approach
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o the scale-up problem. It is based on volume averages of thermodynamic quantities defined at the sub-pore and pore
cale, together with closure relations at the homogeneous scale as formulated by Whittaker [7]. Another homogenization
pproach is that of Kjelstrup et al. [19–21], who use Euler scaling to work out the averages of intensive variables such as
ressure. This approach manages to keep the number of variables down in contrast to other approaches. We also point to
he homogenization approach based on expressing the central thermodynamic potentials in terms of geometric variables
hat characterize the porous medium, the fluid interfaces and the contact lines and the Minkowski functionals combined
ith powerful theorems from differential geometry [22–25].
These homogenization approaches succeed in taking the description of the flow from the sub-pore scale to scales

ust above the pore scale. They do not, however, take into account the fluid structures that appear at even larger scales.
hese structures result from the way the fluids arrange themselves within the porous medium, i.e., their cluster structure.
hey profoundly affect the flow on the intermediate scales below the Darcy scale — and this must be reflected in the
low at the Darcy scale. Energetically, these structures are not dominating, and therefore easy to discard in the different
omogenization approaches. However, any scale-up attempt taking the problem from the pore scale to the Darcy scale
eeds to take these structures into account. As the structures appear over many length scales, a different approach from
hose based on homogenization techniques is needed.

Looking back in history, there is an upscaling technique that is capable of dealing with structures and correlations
hat stretch across scales: statistical mechanics [26]. The early developers of thermodynamics constructed their approach
n order to understand heat and its relation to work in parallel to the development of the steam engine. It is based
n conservation laws and symmetries, especially dilation symmetry. It treats the medium as a continuum and provides
he necessary differential equations. Statistical mechanics was developed to understand how the motion of atoms and
olecules leads to the thermodynamic relations, i.e., it provides the scaling up from the molecular scale to the continuum
cale, thus circumventing the necessity to solve the equations of motion for every molecule.
One may therefore get the impression that thermodynamics and statistical mechanics are inextricably linked to atomic

nd molecular systems. This is, however, not correct. Jaynes [27] developed a generalized statistical mechanics in the
ifties based on the statistical approach to information developed by Shannon a few years earlier [28]. This approach,
n turn, originates in the principle of sufficient reason formulated by Laplace [29]: If we know nothing about a process
ith two outcomes, the optimal choice of probabilities for the two outcomes is 50 % for each. Shannon constructed a

unction of ignorance measuring quantitatively what we do not know about a given process having a number of different
utcomes. One of his criteria for this function, called the Shannon entropy, was that it would have its maximum value
hen the probabilities for all outcomes would be equal, which is a generalization of the Laplace principle of sufficient
eason. Jaynes took this approach further by adding the criterion that the Shannon entropy is maximum given what is
nown about the process. This leads to a set of equations that determine the probabilities for the different outcomes. This
s Jaynes’ generalization of statistical mechanics.

An important caveat in applying the Jaynes maximum entropy approach is that it does not work for driven systems [30].
mmiscible two-phase flow in porous media does represent a driven system where there is production of entropy due to
iscous dissipation and irreversible motion of fluid interfaces and contact lines. Nevertheless, in a recent paper, Hansen
t al. [31] developed a statistical mechanics for immiscible and incompressible two-phase flow in porous media based on
he Jaynes principle of maximum entropy, leading to a formalism resembling thermodynamics that describes the flow at
he continuum level. The trick to make it work was not to consider the molecular entropy which is being produced when
he fluids move, but rather the entropy associated with the flow patterns of the fluids. This entropy is not being produced
nder steady-state flow conditions. Furthermore, it is this entropy that properly describes the fluid structures on scales
bove the pore scale, whereas the molecular entropy associated with dissipation dominate at scales up to the pore scale.
The Jaynes approach solves the scale-up problem in the same way as it was solved through ordinary statistical

echanics for atomistic systems. It is the aim of the present paper to investigate numerically a necessary criterion which
as only assumed to be true in [31] for the Jaynes approach to be applicable to immiscible two-phase flow in porous
edia: can we partition the porous medium into a ‘‘system’’ in contact with a ‘‘reservoir’’ as in ordinary thermodynamics?
he term ‘‘reservoir’’ has very different meanings in thermodynamics and in porous media research. In this work, the term
s used in a thermodynamical sense, which is that a reservoir is a system large enough so that the variables describing it
o not change when brought into contact with a system small enough for its variables to be affected. The way we answer
he question just posed is this: Based on a numerical model, we record the statistics of key parameters in the system for
ifferent sizes of the reservoir, finding that the statistics is independent of the reservoir size when it is large enough.
We note that there have been earlier attempts at capturing the evolution of retention in unsaturated porous media

ubject to quasi-static changes in imposed pressure. Xu and Louge [32] formulate drainage or imbibition through porous
edia using an Ising model that predicts the retention curve of saturation vs capillary pressure. This is a very different
pproach with different aims from that of Hansen et al. [31] who focus on steady-state flow.
We will in the following relate the concept of a ‘‘system’’ to that of a Representative Elementary Area (REA) [33]. At each

oint in the pore space of the porous medium, we may place an area that is orthogonal to the streamline passing through
t. The area qualifies as an REA if it is large enough for the variables describing the properties of the medium itself and
he fluids passing through it to have well-defined averages. To obtain meaningful averages, the length scale of REA must
e larger than the microscopic characteristic length of the porous medium to avoid rapid small-scale fluctuations, and
ust also be smaller than the characteristic length of the large-scale inhomogeneities [13,34].
2
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Fig. 1. A porous medium in the shape of a cylinder. There is a flow of volumetric flow rate Q passing through it. Four planes cutting through the
ylinder orthogonally to the average flow direction, i.e., the z-axis, are shown. The volumetric flow rate Q is the same through each plane. However,
he volumetric flow rate of each fluid, Qw and Qn vary from plane to plane.

The statistical mechanics developed by Hansen et al. for immiscible and incompressible two-phase flow in porous
edia [31], leading to a thermodynamics-like formalism for the macroscopic variables describing the flow [35–38], is

eviewed in Section 2. We go into some detail here in order to place the present work in a proper context.
The dynamic pore network model [39,40] used in this work is introduced in Section 3. The model is implemented as

two-dimensional lattice where the REA is defined as a one-dimensional sub-lattice placed orthogonally to the average
low direction.

The aim of this paper is to demonstrate that Eq. (4) is valid for our dynamic pore network model. This equation states
hat the statistics of the variables characterizing the REA do not depend on the statistics of the reservoir apart from local
nteractions. We report on our findings in Section 4. We first investigate how the statistics of the variables we focus on,
he wetting saturation and the Darcy velocity, vary with the size of the sub-lattice we consider, see Section 4.1. This allows
s to determine when the sub-lattice is large enough to act as an REA. We then proceed to study the dependence of the
ariable fluctuations on the size of the REA in Section 4.2. Surprisingly, whereas the fluctuations of the wetting saturation,
cale as the inverse of the square root of the size of the REA, the average Darcy flow velocity fluctuations scale as the
nverse of the size of the REA to the power 0.83. Lastly, in Section 4.3 we test whether the statistics measured in the REA
re independent of the size of the reservoir. We do indeed find that this is, thus verifying the validity of Eq. (4) for our
ynamical pore network model.
A pertinent question is, what would happen if the verification of Eq. (4) would have failed? It would invalidate the

tatistical mechanics of Ref. [31], but it would also have a negative impact on any attempt at constructing a local theory
or immiscible two-phase flow at the Darcy scale in that all quantities are local. Rather than having the theory represented
n the form of differential equations, they would contain integrals over space. We summarize and discuss this in Section 5
n addition to the other results.

. Statistical mechanics

We review in the following the statistical mechanics approach to immiscible and incompressible two-phase flow in
orous media of Hansen et al. [31]. Envision a homogeneous cylindrical block of porous medium as shown in Fig. 1,
ith a volumetric flow rate Q flowing through it. This flow consists of two immiscible and incompressible fluids which
re well mixed before entering the porous medium. Keeping the flow entering into the porous media constant creates
steady-state flow within the porous medium. By steady-state flow we mean that the macroscopic variables describing
he flow remain constant or fluctuate around well-defined averages. It is important to note that this does not imply that
he pore scale interfaces between the fluids remain static. Rather, at the scale of the fluid clusters, there may be strong
ctivity where clusters form and break up. Steady-state flow is a concept that is defined at the macroscopic Darcy level,
ot at the pore level. We may split Q into the volumetric flow rate of the more wetting fluid, Qw , and the volumetric flow
ate of the less wetting fluid, Qn, so that

Q = Qw + Qn . (1)

The flow is dissipative and hence molecular entropy is produced. There is viscous dissipation and the motion of fluid
nterfaces and contact lines contains a dissipative element [41]. This means that there is a production of entropy as
ydrodynamic motion is converted into thermal motion. The Jaynes maximum entropy principle should therefore not
e applicable [30]. We now explain how we get around this hurdle.
There are three scales that stand out in porous media: the molecular scale, the pore scale and the Darcy scale.

t the sub-pore scale, the dissipation dominates the flow and methods from non-equilibrium thermodynamics are
3
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Fig. 2. We are illustrating to the left (a) the world lines of molecules in a two-dimensional gas in a space–time diagram. To the right (b), we show
ome streamlines of a fluid mixture flowing in a porous medium.

ppropriate [19–21]. However, on scales above the pore scale, it is the fluid clusters and how they move that dominate.
ne may associate an entropy with these fluid structures.
In order to construct this flow entropy, we imagine a cylindrical porous plug as shown in Fig. 1. There is immiscible

wo-phase flow in the direction of the cylinder axis. We now focus on a set of imaginary planes that cut through the
orous plug orthogonal to the cylinder axis as shown in Fig. 1. Imagine each plane is divided into voxels with sufficient
esolution. Each voxel is associated with a number of variables describing the flow through it. To be concrete, suppose
e model the porous medium using the Lattice Boltzmann method (LBM) [42]. The voxels would then be the nodes of
he lattice along the plane used in LBM and the variables would be the LBM variables associated with these nodes. The
onfiguration in the plane, X , would be the values the voxel variables have at that particular instance in each voxel.
easuring over many configurations we may define a configurational probability density P(X). This, in turn, defines our
ntropy,

Σ = −

∫
dX P(X) ln P(X) , (2)

here the integral is over all physically feasible configurations in the plane. Note the important fact that since the structure
f the porous matrix varies from plane to plane, this quenched disorder must be taken into account.
Before taking the next step, it is useful to think of the following system: We imagine a two-dimensional gas confined

nside a box. The molecules of the gas move around incessantly. At a given moment, the position and velocity of each
olecule will define an instantaneous gas configuration. The aim of statistical mechanics in this context is to provide

he configurational probability density for these instantaneous configurations. There is no production of entropy in this
ystem from the motion of the molecules. It is in equilibrium. However, we may represent the gas in a three-dimensional
pace–time plot, see Fig. 2(a). Then, each molecule is represented by its world line and the configurations represent the
orld lines cutting through planes orthogonal to the time axis.
Fig. 2(b) shows the streamlines of a fluid flowing through a porous medium. There is a striking analogy between these

treamlines and the world lines of the molecules in the space–time plot of molecules of the two-dimensional gas, when
e interpret the z-axis in Fig. 2(b) as a ‘‘time’’ axis. Figure 7 in Ref. [43] illustrates this point in more detail. Cuts through
he porous medium as shown in Fig. 1 are then analogous to the snapshots of configurations of the gas molecules taken
t different times. The flow entropy defined in Eq. (2) then corresponds to the entropy of the gas molecules, and as in the
as, there is no production of this flow entropy along the z-axis.
The volumetric flow rate Q has the same value for all planes orthogonal to the flow axis. Hence, with the flow axis

cting as a ‘‘time’’ axis, Q is a conserved quantity along this axis. We may therefore interpret Q as being analogous to
the internal energy of the two-dimensional gas. Note that neither Qw nor Qn are conserved, only their sum Q (Eq. (1))
is. However, both have well-defined averages. The porous medium block of Fig. 1 may be seen as an analog of a two-
dimensional gas that does not exchange heat with its surroundings. In other words, it is the analog of a microcanonical
system.

Fig. 3 shows one of the planes cutting through the porous medium orthogonally to the flow direction, i.e., the z-axis. A
sub-area of this plane that is large enough to reflect the behavior of the entire plane is chosen. Hence, this area acts as an
REA [33]. We characterize this REA by three variables in addition to its total area A: Qp the volumetric flow rate through
it, Ap which is the area inside the REA covered by pores, and Aw,p which is the part of the pore area that is covered by the
wetting fluid. The configurations within the REA we refer to as Xp. These configurations are a subset of the configurations
X in the entire plane. Denoting Xr as the part of X which excludes the REA gives

X = X ∪ X . (3)
r p

4
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a
(

Fig. 3. Shows one of the planes cutting through the porous media block orthogonal to the flow direction which is upwards as marked with the
rrows. In the plane, a sub-area that is large enough to reflect the behavior of the entire plane so that it acts as a Representative Elementary Area
REA) is selected. The REA is characterized by three variables besides its area A: The volumetric flow rate through it, Qp , the area covered by the
pores, Ap , and the area filled with the wetting fluid Aw,p .

We now refer to the discussion in the Introduction (Section 1) and interpret the REA as the system and the plane
excluding the REA as the reservoir . For the Jaynes maximum entropy approach to be applicable, we must have that

P(X) = pr (Xr )p(Xp) , (4)

where pr (Xr ) is the configurational probability for the reservoir and p(Xp) is the configurational probability for the REA.
The significance of this equation is that it ensures that it is possible to consider the REA as an autonomous system that
interacts with the reservoir. Without this property, a local description of the flow at the Darcy scale would then not be
possible.

It is the aim of this paper to verify the validity of Eq. (4). This equation allows us to define a flow entropy for the REA,

Σp = −

∫
dXp p(Xp) ln p(Xp) , (5)

where the integral runs over all physically feasible configurations.
We maximize the entropy with the constraints that the averages of Qp, Ap and Aw,p are known. This gives [31]

p(Xp) =
1
Z

exp
[
−

Qp(Xp)
θ

+
πAp(Xp)

θ
+

µAw,p(Xp)
θ

]
, (6)

where the partition function Z is given by

Z(θ, π, µ) =

∫
dXp e−Qp(Xp)/θ+πAp(Xp)/θ+µAw,p(Xp)/θ . (7)

Here Qp(Xp), Ap(Xp) and Aw,p(Xp) are the variable values for the REA configuration Xp. It is through these three variables
that contact is made with the pore-scale physics since this is where the configuration Xp enters. Three parameters appear
in this equation: 1. the agiture θ which plays a role similar to that of temperature (and we note that the name, which is
a contraction of the words ‘‘agitation’’ and ‘‘temperature’’ has been chosen to emphasize that this is not a temperature),
2. the flow pressure π which is conjugate of the pore area Ap — and hence the porosity, and 3. the flow derivative µ which
plays the role similar to the chemical potential and which is the conjugate to the wetting area Aw,p and hence the wetting
saturation Sw,p = Aw,p/Ap.

Eq. (7) constitutes the scaling up from the microscopic level, in other words the pore level, to the Darcy level, since we
may from it determine the values of the macroscopic variables. We have thus succeeded in turning the scale-up problem
from being a physical one to the mathematical problem of integration in Eq. (7). The macroscopic variables that ensue
from this approach are related through a thermodynamics-like formalism with all its richness [31,35].

In ordinary thermodynamics, one finds a set of general relations between the macroscopic variables. They stem either
from the Euler theorem for homogeneous functions or from the Gibbs relation [44,45]. The same applies to the present
formulation of the two-phase flow problem. We sketch the approach in the following.

We define an average pore velocity vp = Qp/Ap and an entropy density σp = Σp/Ap. The average pore velocity vp
depends on the flow entropy density σp and the wetting saturation Sw,p: vp = vp(σp, Sw,p). With these variables, we may
construct an equivalent to the Gibbs relation,

dvp = θ dσp − µ dSw,p . (8)

We do a Legendre transform of the average flow velocity vp from (σp, Sw,p) to (σp, µ) as control variables, finding

v̂ (σ , µ) = v (σ , µ) − S (σ , µ)µ , (9)
n p p p w,p p

5
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here we have defined the thermodynamic non-wetting velocity [35]

v̂n =

(
∂Qp

∂An,p

)
Aw,p,σ

. (10)

here is also the thermodynamic wetting velocity

v̂w =

(
∂Qp

∂Aw,p

)
An,p,σ

. (11)

he non-wetting area An,p is the area of the REA that is covered by the non-wetting fluid. We furthermore have that

Sw,p = −

(
∂v̂n

∂µ

)
σ

, (12)

nd

µ = −

(
∂vp

∂Sw,p

)
σ

. (13)

qs. (9) through (13) demonstrate the power of this approach. These relations are far from obvious.
There is one more central aspect that needs to be brought to light. The thermodynamic velocities defined in Eqs. (10)

nd (11) are not the pore velocities of the fluids

vw =
Qw,p

Aw,p
, (14)

nd

vn =
Qn,p

An,p
, (15)

here Qp = Qw,p + Qn,p in analogy with Eq. (1). Rather, they are related through the two equations [35–37]

vw = v̂w − Sw,pvm , (16)

vn = v̂n + Sn,pvm , (17)

here Sn,p = An,p/Ap = 1− Sw,p and vm is the co-moving velocity. It turns out from experimental and numerical data that
he co-moving velocity is extraordinarily simple [37],

vm = a(σ ) + b(σ )µ , (18)

here a(σ ) and b(σ ) are functions of the flow entropy density. There is no equivalent to the co-moving velocity in ordinary
hermodynamics [38].

Calculating the partition function Z(θ, π, µ) defined in Eq. (7) requires a knowledge of the pore-scale configurations
p through the three variables Qp(Xp), Ap(Xp) and Aw,p(Xp). Furthermore, the integral runs only over physically feasible
onfigurations. As already mentioned, this is where the characteristics of a given porous medium and the fluids enter. It
s here details of the pore scale physics enters, such as interfacial tension gradients and interface curvature at the fluid–
luid interfaces. This is where contact is made between this theory and the ongoing research on the pore-scale physics of
mmiscible two-phase flow.

. Dynamic pore network model

In order to explore the validity of Eq. (4), we use a dynamic pore network model [40,46] originally developed by Aker
t al. [39] and then further developed in e.g., [47–53], including direct comparison with experimental systems, [54,55]. In
he latter of these two references, the performance of the model is also compared to other models.

We illustrate the model as it is implemented in the context of the present paper in Fig. 4. We use a square lattice
here the links represent single pores, all having the same length l, but with a distribution in their radii. The lattice has
imensions Lx × Ly measured in units of l, and we implement periodic boundary conditions in both the flow direction and
he transversal direction. The square lattice is oriented at 45◦ angle with respect to the average flow direction.

The links connecting neighboring nodes contain the pore throats. The nodes have no volume associated with them.
he variation in the cross-sectional area of the pore throat and pore bodies are modeled by an hourglass shape so that a
luid meniscus in link i will generate a capillary pressure according to the Young–Laplace Equation [3]

pc,i(x) =
2γ cos θ

ri(x)
, (19)

here x ∈ [0, l] is the position of the interface along the center axis of the link, having a length l. Here γ is the surface
tension and θ is the wetting angle measured through the wetting fluid which is the fluid that has the smallest angle
6
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Fig. 4. Two dimensional dynamic pore network model with dimensions Lx × Ly links consists of hourglass shaped links with length l and volumetric
flow rate q passing through them, oriented 45◦ from the average flow direction. The total volumetric flow rate Q is constant over all the cross
sections normal to the average flow direction. An example of a ‘‘system’’ with length lp = 4 links is marked, and the rest of the network surrounding
he system is the ‘‘reservoir’’.

ith the solid wall. We note that this expression is only valid under hydrostatic conditions. Hence, using it in a dynamic
etting implies the assumption that the motion of the interfaces is slow. This assumption is difficult to justify during
aines jumps. We still use it as an approximation that enters together with all the other approximations that the model
equires. We furthermore ignore hysteretic effects associated with the wetting angle with the same justification as for
sing the Young–Laplace equation. The variable indicating the shape of the link in Eq. (19) is the radius of the link at
osition x, which is given by

ri(x) =
r0,i

1 − c · cos
( 2πx

l

) , (20)

here c is the amplitude of the variation and r0/c is randomly chosen from the interval [0.1l, 0.4l], thus creating a disorder
n the properties of the network.

The fluids within a given link are pushed with a force caused by the total effective pressure across it which is the
ifference between the pressure drop between the two nodes it is attached to, ∆p, and the total capillary pressure
k pc(xk) due to all the interfaces with positions xk ∈ [0, l]. The model has been set to allow up to four interfaces in

each link, and this necessitates merging of the interfaces as described in [40].
The constitutive relation between the volumetric flow rate qi through link i and pressure drop ∆pi across the same

link is [40,56]

qi = −
π r̄4i
8µil

(
∆pi −

∑
k

pc,i(xk)

)
, (21)

here r̄i is the average hydraulic radius along the link. Furthermore, we have that µi = sw,iµw,i+sn,iµn,i is the saturation-
weighted viscosity of the fluids in link i where sw,i = Vw,i/Vi and sn,i = Vn,i/Vi are the saturations of the wetting fluid
and the non-wetting fluid respectively with viscosities µw,i and µn,i, and volumes Vw,i, Vn,i, and Vi = π r̄2i l.

In order to calculate the flow through the links and move the interfaces correspondingly, we solve the Kirchhoff for
the network using a conjugate gradient algorithm [57]. Our numerical precision in determining the flow rates is 10−6.

Using the terminology introduced in the Introduction, we divide the network into a ‘‘system’’, corresponding to the
REA, and a ‘‘reservoir’’ which is the rest of the network. The systems are chosen as illustrated with an example in Fig. 4
where the system is placed orthogonally to the flow direction, i.e., in the same way as in Fig. 3. Systems are made up
of lp number of links, for instance, the system in Fig. 4 has lp = 4 links. The pore area Ap of a system is the sum of the
ransverse area, the area orthogonal to the total flow direction, of each link belonging to that system,

Ap =

lp∑
i=1

√
2π (r̄i)2 , (22)

here
√
2 = 1/ cos (45◦) comes from the fact that links in the model are oriented in 45◦ angle from the flow direction.

Similarly, the total wetting fluid pore area of the system Aw,p is the sum of the product of the transverse area and the
wetting fluid saturation in each link,

Aw,p =

lp∑
i=1

√
2π (r̄i)2sw,i . (23)

he volumetric flow rate through a system with lp links is

Qp =

lp∑
qi , (24)
i=1

7
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Fig. 5. Box plots showing the wetting fluid saturation Sw,p in systems with width lp . The model has dimensions 120 × 60 links2 .

nd its wetting saturation is

Sw,p =
Aw,p

Ap
. (25)

. Numerical investigations

The simulations start from a random distribution of fluids within the network. The model is then integrated forwards
n time while monitoring the pressure drop across it. When the pressure drop settles to a well-defined and stable average
alue, the model has reached steady-state flow. At this point, 20 system locations are chosen randomly at every 100th
ime-iteration, to get measurements that are mostly uncorrelated in time and space. Within each of these systems, the
alues of Qp/lp and Sw,p are measured. This procedure ensures averaging not only over the motion of the fluids but
lso over the disorder of the porous medium itself. This process is repeated for a time corresponding to the passing
f approximately 25 pore volumes of fluid through the model, where pore volume is the total volume of the links in the
odel. We do this for different widths lp for the systems. In addition, the changes in the model size are studied by testing
arious model widths Lx while keeping the total length of the model fixed at Ly = 60 links. The links in the model are all
= 1 mm long. The two immiscible fluids have γ = 3.0 · 10−5 N/ mm, µw = µnw = 0.1 Pa s and θ = 70◦. The overall
etting saturation for the network is fixed at Sw = 0.5. Due to the periodic boundary conditions, the volume of the fluids

s conserved and the total saturation is constant. The total volumetric flow rate per unit width of the network is fixed
t Q/Lx = 0.7 mm3/(s link). The capillary number can be calculated from Ca = µQ/(γAtot) where Atot is the total cross
ectional area [40], giving Ca ≈ 0.012.

4.1. System variable statistics

Figs. 5 and 6 show box plots of Sw,p and Qp/lp as functions of lp, for a network with dimensions 120 × 60 links2. In
ach box plot, the lower edge of the box which we can denote b1, the center line (median) b2 and the upper edge b3
orrespond to the 25th, 50th and 75th percentiles of the data, respectively. The lower and upper limits that exclude the
utliers are b1 − 1.5(b3 − b1) and b3 + 1.5(b3 − b1), respectively.
Since the control parameters for the entire network are fixed at Sw = 0.5 and Q/Lx = 0.7 mm3/(s link), the average

alues ⟨Sw,p⟩ and ⟨Qp/lp⟩ in the systems will be the same as these values if measured with large enough statistics while
he fluctuations around them will depend on lp. In Figs. 5 and 6, the medians for all system sizes, lp, agree well with these
xpected average values. This factor indicates the existence of REAs since the intensive quantities inside REA must have
ell-defined averages that are independent of the size of the REA. This agreement is even true for systems as small as

p = 6 links.
Furthermore, both Figs. 5 and 6 show a steady decrease in the variations in the distributions with increasing lp as

he edges of the boxes approach the medians. This is more prominent for Qp/lp in Fig. 6 than for Sw,p in Fig. 5. This
s a reflection of Q/Lx being constant for any cut through the model orthogonally to the average flow direction, since
p/lp → Q/Lx as lp → Lx. On the other hand, Sw,p has no such restrictions and is therefore allowed to fluctuate, even
hen lp = Lx. The fact that there is a smaller spread in both distributions with increased lp is another factor that signals
ossible REAs.
8
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Fig. 6. Box plots showing the volumetric flow rate per unit system-width Qp/lp in systems with width lp . The model has dimensions 120 × 60 links2 .

Fig. 7. Standard deviation of the wetting fluid saturation Sw,p in systems with widths lp residing in models having widths Lx and length 60 links.

4.2. Size dependence of fluctuations

One way to quantitatively study the fluctuations in ξ ∈
{
Sw,p,Qp/lp

}
is through their corrected standard deviations

iven by [58]

δξ =

√∑N
i (ξi − ⟨ξ⟩)2

N − 1
(26)

here N is the number of measurements and ⟨ξ⟩ =

(∑N
i ξi

)
/N is the mean. The standard deviations of Sw,p and δQp/lp

s a function of the system width lp are shown in Figs. 7 and 8, respectively.
We note the difference in behavior in Figs. 7 and 8 in that δQp/lp drops off dramatically when lp approaches Lx whereas

o such effect is seen for δSw,p. This is caused by the fact that Q is not fluctuating in the planes orthogonal to the
verage flow direction, whereas there is no such constraint for Sw , which is a factor also mentioned earlier. To avoid
he measurements taken inside the systems being affected by the boundary effects, REA needs to be adequately smaller
han the total model.

We also show in Figs. 7 and 8 the results of extrapolation to infinitely large model Lx → ∞. To understand how this
as calculated, start by looking at Fig. 9 where the results from Figs. 7 and 8 have been plotted in a different way. In order
o extrapolate to Lx → ∞, the simulation results used must be from cases where the systems are much smaller than the
odel. To comply with this, the extrapolation process was performed for lp ∈ [1, 20] links and Lx ∈ [150, 198] links. For

these values of lp and Lx, Fig. 9 shows that there is a linear relationship between δξ ∈
{
δSw,p, δQp/lp

}
and 1/Lx. Therefore,

inear regression fit of the form

δξ =
c1
Lx

+ δξ∞ , (27)

an be performed for each lp, where c1 and δξ∞ are constants. It can be observed from Eq. (27) that δξ → δξ∞ when
x → ∞, hence δξ∞ are the extrapolation results. In Fig. 9, δξ∞ are the intersections the linear fits in Eq. (27) make with
he vertical axis.
9
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Fig. 8. Standard deviation of the volumetric flow rate per unit system width δQp/lp in systems with widths lp residing in models with widths Lx
nd length 60 links.

Fig. 9. Standard deviation of (a) the wetting fluid saturation Sw,p and (b) the volumetric flow rate per unit system width Qp/lp in systems with
widths lp residing in models having widths Lx and length 60 links.

After obtaining estimates for δξ∞ for each lp, we do a power law fit

δξ∞ = c2 l−β
p (28)

o model the relationship between δξ∞ and lp where c2 is a constant and β is an exponent. The result is

lim δSw,p ≈ 0.22l−0.48
p (29)
Lx→∞

10
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Fig. 10. Normalized histogram for the wetting fluid saturation Sw,p in systems with width lp = 20 links. The model has length 60 links and widths
x that are close to lp in (a) and are much larger than lp in (b).

for Fig. 7 and

lim
Lx→∞

(
δQp

lp

)
≈ 1.23l−0.83

p (30)

or Fig. 8.
Based on the central limit theorem, the standard deviation of the average of lp equally distributed independent variables

s proportional to lp−1/2. The quantities Sw,p and Qp/lp are both intensive quantities representing averages in lp. We note
rom Eq. (29) that this is the case with Sw,p, which could indicate that samples are uncorrelated. However, that the
luctuations δQp/lp in Eq. (30) scales as one over lp to the power 0.83 is a surprise presumably indicative of the samples
eing non-zero correlated in such a way that they fall off faster than when there are no correlations. This further means
hat the reservoir should be larger than the spatial correlation length for the systems to be not affected by finite-size
ffects.

.3. Reservoir independence

We have now reached the central aim of this paper: Testing the validity of Eq. (4) for our dynamic pore network model.
his is done by keeping lp fixed and varying Lx while monitoring histograms of Sw,p and Qp/lp. If Eq. (4) is valid for this
odel, the histograms should be independent of the model size Lx for large enough Lx.
The normalized histograms of Sw,p and Qp/lp, measured for systems of width lp = 20 links, are shown in Figs. 10 and 11

espectively. We have split the two figures into two sub figures each in order to increase readability. Figs. 10(a) and 11(a)
how the normalized histograms for Lx being close to lp, whereas Figs. 10(b) and 11(b) show the normalized histograms
or Lx much larger than lp.

The normalized histograms for Sw,p in Fig. 10 seem to overlap for essentially all values of Lx. This effect can also be
een in the standard deviations in Fig. 7 where δSw,p approximately follows Eq. (29) regardless of the model size Lx or the
ystem size lp. This means, in the case of Sw,p, the reservoir independence seems to be satisfied regardless of the difference
etween lp and Lx.
On the other hand, the histograms of Qp/lp differ more from each other when Lx is close to lp, see Fig. 11(a), compared

o L being much larger than l where they overlap significantly larger, see Fig. 11(b). This behavior is reflected in the
x p

11
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Fig. 11. Normalized histogram for the volumetric flow rate per link Qp/lp in systems width lp = 20 links. The model has length 60 links and widths
x that are close to lp in (a) and are much larger than lp in (b).

tandard deviation results in Fig. 8 as well where δQp/lp following Eq. (30) only when lp is less than Lx. From these findings,
e conclude that Qp/lp is independent of the reservoir size when Lx is sufficiently larger than lp. This difference in behavior

s presumably related to the flow rate Q/Lx being constant in all layers whereas the wetting saturation Sw fluctuates.
The results combined indicate that reservoir independence is valid for our model when the reservoir is adequately

arger than the system.

. Conclusion

The aim of this paper has been to address the plausibility of a necessary condition for the Jaynes statistical mechanics
ormulation [27] to be applicable to immiscible and incompressible two-phase flow in porous media. The condition
emands that a such porous medium can be split into a system, functioning as a Representative Elementary Area (REA),
nd a reservoir as in ordinary thermodynamics. This requires the statistics of the system to be independent of the size
f the reservoir. Using dynamic pore network model simulations, we studied this by measuring distributions of key
arameters using systems and reservoirs with different sizes.
First, the results show that there exist systems that can qualify as REAs within which the studied distributions have

mall spread and have well defined averages independent of the size of the REAs.
Second, REAs exhibit reservoir independence as demonstrated in Figs. 10 and 11. Hence, the central Eq. (4)

P(X) = pr (Xr )p(Xp) ,

orks for the dynamic pore network model.
As was alluded to at the end of the Introduction, the importance of the validity of Eq. (4) goes beyond verifying the

aynes statistical mechanics framework [31]. If Eq. (4) would have failed, any attempt at constructing a local theory for
mmiscible two-phase flow at the Darcy scale would be in jeopardy. By local we mean that we can define variables that
epend on a given point in the porous medium and the theory then provides relations between these variables depending
nly on that point. Relative permeability theory is an example of such a local theory. A failure of Eq. (4) would presumably
ecessitate the relations between variables containing integration over space.
When the reservoir size approaches to infinity, as the extrapolation results show, the fluctuations in the wetting fluid

aturation depend on the system size through an exponent of −0.48. The same exponent in the case of volumetric flow
12
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ate per unit system width is −0.83. The fact that at least one of the fluctuations corresponds to an exponent significantly
ifferent from −1/2 indicates a non-zero spatial correlation between the links in the network, according to the central
imit theorem. We speculate that this may be a consequence of total volumetric flow rate in the planes orthogonal to the
verage flow direction being a conserved quantity, whereas saturation in the same planes is not.
The measured distributions of saturation and volumetric flow rate inside systems are more similar when reservoir is

uch larger than system than when system and reservoir are closer in size. The cases with similar distributions indicate
hat reservoirs in these cases are adequately larger than the spatial correlation length for the systems to be unaffected
y finite-size effects. Reservoir independence can be said to be achieved in these cases.
Our dynamic pore network model is capable of modeling porous media with a large number of pores (links). This

omes at the cost of a simplified description of the structure of the pores and the motion of the fluids. Other models such
s the Lattice Boltzmann Model [42] are capable of modeling the structure of the pores and the motion of the fluids inside
hem quite accurately. However, the price for this is the number of pores that may be modeled is limited. Nevertheless,
ttempts should be made to test reservoir independence of the systems also within the limits of this model. Another
ormidable task would be to analytically derive reservoir independence using hydrodynamics at the pore level.
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