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ABSTRACT

This paper focuses on the first steps in setting up simulations
of oceanic hyperspectral datacubes, to simulate hyperspectral
images of coastal areas as obtained with a pushbroom hyper-
spectral imager. The purpose is to learn more about recogniz-
ing and estimating water constituents in spectral signatures,
thereby facilitating the development of better algorithms for
processing of hyperspectral data that is becoming more avail-
able from new satellites. In this work we show that we can
distinguish diatoms and flagellates from observations of the
remote sensing reflectance (Rrs). We do this by using in-vivo
spectral reflectance settings from either diatoms or flagellates
in a light model (Ecolight-S) that models how incident light
on the ocean surface propagates in the water column and pro-
duces estimates of Rrs. Ecolight-S is also applied to diatom
and flagellate concentrations from numerical ocean simula-
tions using the SINMOD model. The estimated Rrs values
are converted to a hyperspectral datacube of an area that an
image from a hyperspectral satellite such as HYPSO-1 could
cover. By this method we can make large datasets with vari-
able ocean constituents, and simulated datacubes correspond-
ing to these. In future research, it should be studied how we
can distinguish mixed concentrations of diatoms and flagel-
lates in the remote sensing reflectance. In addition, the influ-
ence of atmospheric effects on the spectral signature should
be implemented in the model. Last, it should be studied how
effective the modelled, hyperspectral datacubes perform as la-
beled datasets to train machine learning algorithms in classi-
fying phytoplankton in hyperspectral datacubes from satellite
imaging.

Index Terms— Ocean Simulations, Light Modelling,
Marine Biology, Remote Sensing, Hyperspectral Imaging

1. INTRODUCTION

Ocean observations are important to learn more about hydro-
dynamic and ecological phenomena in the ocean. Imaging
the oceans from satellite is commonly done to map physi-
cal variables like sea surface temperature, and also ecolog-
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ical phenomena, for example chlorophyll-a (chla). Hyper-
spectral ocean data will be more often collected in the fu-
ture with upcoming, hyperspectral imagers on small satel-
lites about 500-800 km above sea-level, e.g. [1, 2]. These
smaller satellites can typically be controlled to track selected
target areas, which allows for a lower revisit time. Moreover,
these small satellites allow for on-demand imaging of loca-
tions where there is a sudden event such as a harmful algae
bloom. Hyperspectral data resulting from pushbroom imag-
ing typically consists of a datacube of information that con-
tains a 3D dataset with two spatial axes (cross-track, along-
track) and one spectral axis, see the illustration in Fig. 1. The
spectral axis contains the continuous light spectrum.

Fig. 1: Hyperspectral datacube illustration.

The light that the hyperspectral imagers capture is the
light that leaves the oceans after interacting with the water.
These spectra contain information about what is inside the
top layer of the water column. Important terms that are often
used to describe these spectra are scalar irradiance and re-
mote sensing reflectance (Rrs). The scalar irradiance is used
to measure the photon flux and is the equally weighted ir-
radiance from all directions on one point, this term is often
used because phytoplankton are randomly oriented in mea-
surements of coastal areas. The Rrs is the surface reflectance
per steradian. The surface reflectance tells how much of the
incident light is reflected back. The spectral absorption is then
how much light was absorbed by the watercolumn as the light
passes through it, where the absorption differs for each wave-
length depending on the water constituents. The light that
backscatters is mostly caused by scattering, and not due to
the absorption of the water column. Therefore, backscatter-



Table 1: Summary of abbreviated model variables and parameters.

Symbol Type Unit/Value Description
Rrs Output from Ecolight-S sr−1 Remote sensing reflectance
Pd Variable mg/m3 Diatom concentration
Pf Variable mg/m3 Flagellate concentration
rf Parameter as assumed by SINMOD 7.6 Redfield ratio
Acd Variable m−1 Diatoms in-vivo chla specific absorption coefficient
Acf Variable m−1 Flagellates in-vivo chla specific absorption coefficient
Asd Parameter from [3] m2(mg chla)−1 Diatoms in-vivo chla specific absorption spectrum
Asf Parameter from [3] m2(mg chla)−1 Flagellates in-vivo chla specific absorption spectrum
chlad Parameter as assumed by SINMOD 0.03 mg/m3 Estimated chla concentration in diatoms
chlaf Parameter as assumed by SINMOD 0.012 mg/m3 Estimated chla concentration in flagellates
chladt

Variable mg/m3 Total chla concentration in diatoms in one layer
chlaft Variable mg/m3 Total chla concentration in flagellates in one layer
Act Variable m−1 Total absorption coefficient
σ Parameter 1 Exponent for calculating of Acd from chla

ing usually changes more slowly with wavelength than ab-
sorption. The spectral absorption and backscattering coef-
ficients of phytoplankton are species specific, and are nec-
essary to use in light modelling as inherent optical proper-
ties (IOPs). With these inputs, the radiative transfer equa-
tions can be solved, for example by using a model set-up of
Ecolight-S [4] or SINMOD light [5].

In [6] hyperspectral differentiation of phytoplankton taxo-
nomic groups is performed, where using the Rrs is compared
to using absorption spectra for distinguishing phytoplankton
types. The absorption spectra are more thrustworthy, how-
ever, the study indicates that there is a potential for using the
Rrs to distinguish different phytoplankton types. The Rrs

is also modelled in for example [7], where remote sensing
of zooplankton is performed, mainly by finding chla peaks
in satellite data and combining this with in-situ data. In this
study the Rrs of the area was modelled, where the IOP values
were measured in-situ, however, the modeled Rrs still devi-
ated from the satellite Rrs, in some regions of the spectrum.
The authors assume that this is because the IOP values were
not precise enough and only achieved from small volumes,
showing how important setting correctly achieved IOP values
in modelling approaches is for realistic modelling. In [8] Em-
pirical Orthogonal Functions (EOF) were applied to Rrs data,
to be able to predict which species would be present in Rrs

data. The limitation of this technique is that the pigments only
can be predicted if they were in every collocated samples. In
[9], a model is presented to go from Rrs to phytoplankton
pigment composition. In [9] the same limitation occurs that
the model is only limited to the dataset that it was developed
for. These papers made use of the fact that each water con-
stituent has its unique spectral signature. In theory, the hy-
perspectral ocean data should be useful as a data-source to
distinguish between water constituents. However, to the best
of our knowledge, there is no trustworthy processing method
of hyperspectral data found that is able to distinguish differ-
ent types of algae applied to different datasets. The problem is

that there can be different concentrations and types of colored
dissolved organic matter (cDOM) and algae in the ocean wa-
ter columns, including vertical variations, whereas the hyper-
spectral image capture by satellites only provides one spec-
trum coming from each water column composition.

One way to understand the composition of hyperspectral
datacubes captured with the small satellites, is by taking in-
situ samples. Although sampling is a necessity for validation
of findings, doing so over the full area that can be covered
by hyperspectral satellite images is a tedious task, and only
provides small, labeled datasets that do not cover each wa-
ter column imaged by satellites. Therefore, it is important to
set-up missions where in-situ data and hyperspectral data are
collected simultaneously, as for example in [10, 11, 12]. The
question is how to combine these different datasets of differ-
ent spatial and temporal resolutions, because in both [8, 9] the
differences in spatial and temporal resolutions of in-situ data
gathering and remote sensing observations make it difficult to
overcome the limitations. Because of the low spatial and tem-
poral coverage of in-situ data it is difficult to get large, labeled
datasets.

One possible way to exploit the in-situ datasets and satel-
lites observations is by using ocean simulation models. Ocean
simulation models are used to model physical and ecological
variables, as for example in the Sintef Ocean model (SIN-
MOD) set-up [13, 14]. In recent works, as for example in
[15] it is shown that improvements are made to make mod-
elling outputs even more realistic by implementing in-situ and
satellite measurements with Kalman filtering in the model.
This makes numerical modelling an interesting candidate to
provide for a exteneded dataset.

In this paper we study how two of the outputs, the di-
atom and flagellate concentrations over the water columns, of
these ocean models can be used as an input for ocean light
models, such as Ecolight-S [4] or SINMOD light [5]. This
way, we can create labeled ocean color datasets. This means
that we can make a large number of datasets with different



ocean constituents, and the corresponding, expected hyper-
spectral datacube that belongs to these. In future work we
can use this model to set up lots of different variations in wa-
ter constituents and train e.g. neural networks to predict the
relationship between the hyperspectral datacube data and the
water column that includes different concentrations and types
of phytoplankton. The purpose of this study is to see if we
can recognize and distinguish between different algae groups,
diatoms and flagellates, from their pigment groups, by using
their remote sensing reflectance.

First, we are setting up a simplified model chain of
ocean simulations with SINMOD and light modelling with
Ecolight-S, which will be briefly described in section 2.
Then, the results of modelling diatom and flagellates in this
set-up are shown and discussed in section 3, where it can be
seen in this simplified set-up that the Rrs differs for diatoms
and flagellates, and finally the set-up is also done for a part
of the Norwegian coastal area that is regularly imaged with
HYPSO-1 hyperspectral satellite. In section 4 the conclusions
and future work are described.

2. METHODS

2.1. SINMOD for Ocean Simulations

SINMOD is a numerical ocean model that can be used to per-
form spatio-temporal simulations of physical and biological
properties of the ocean. The model is run in a nested setup
where the largest scale grid covers the Greenland, Iceland and
Norwegian seas with a horizontal resolution of 20 km. The
top level domain provides boundary conditions for a domain
with 4 km resolution covering the Norwegian Sea, Barents
Sea and a part of the Arctic. More details about the physi-
cal set-up of the model can be found in [14] and details about
the ecological model used for the Norwegian sea set up is de-
scribed in [13].

The model set-up used in this paper covers the coastal line
of mid-Norway, including the area of Frohavet and Trond-
heimsfjorden. The model has a horizontal spatial resolution
of 800 meters and a temporal resolution of 120 seconds, in the
current set-up the storage interval for biology was 24 hours.
The set up is run for the period in the spring of 2022, for in
total 118 days. The outputs from SINMOD include hydrody-
namical and biological values. For this work we specifically
focus on the output of diatoms and flagellates concentrations,
and to use these as input concentrations for Ecolight-S.

An example output of the diatom and flagellate concentra-
tions in the top surface, at one moment in time in the middle
of Norway set-up can be seen in Fig. 2.

2.2. Ecolight-S for light modelling

Ecolight-S is a model that is developed to to solve radiative
transfer problems in systems that include physical and bio-
logical effects [4]. The model is set-up as a subroutine, and
can therefore be easily combined and run with separate user

Fig. 2: The diatom and flagellate concentrations in the coast
of Norway from SINMOD. The red contours refer to the depth
contours, and the gray areas are land. The map of Norway is
just for geographical context and not the model domain it is
nested from

codes. Ecolight-S is mainly focused on fast run times by in-
stead of solving the radiative transfer equations for every layer
depth, the user can set a parameter to a value F0 that deter-
mines that the radiative transfer equation will be solved up to
the depth where the irradiance has decreased to F0 of its sur-
face value. The further values of the scalar irradiances down
and up are extrapolated from this dataset. In the set-up that
was used in this model, the value of F0 is set to 0.1.

In Ecolight-S the bottom reflectance properties should be
chosen depending on the type of bottom. In our model set-up
we chose to set the bottom boundary condition for infinitely
deep water, therefore we did not need to define bottom reflec-
tion properties.

Fig. 3: The in-vivo spectral chla specific absorption spectra
of diatoms and flagellates from [3].

For the watercolumn depths we used the same 15 lay-
ers and layer depths for all inputs and model runs, including
while implementing the previously described concentrations
of diatoms and flagellates coming from SINMOD. When the
layer depths of SINMOD were containing less than these lay-



Fig. 4: The chla concentration of 10.094 mg/m3 (1.094 mg/m3) is set up by using only diatoms in water (Pd) in pink (dots).
The Rrs is shown right in pink (dotted) lines. Similarly, only Pf in water was given as an input, in green (dotted) lines. The
black line indicates the Rrs of only pure water (without Pf and Pd).

ers, the concentrations would be set to 0. In a model set-up in
SINMOD the bathymetry and layer depths belonging to the
water columns are known, and in a future set-up of this model
combination this bathymetry should be used correctly in the
Ecolight-S simulations.

The diatoms and flagellates that we want to model in the
watercolumn are described with their individual IOP values.
In the next section it is described how the IOPs are deter-
mined.

2.3. IOP values

The Ecolight-S set-up needs as an input the IOP values. The
IOP of interest in this specific set up is the absorption coef-
ficients specific for flagellates and the absorption coefficients
for diatoms. First the concentration of diatoms and flagel-
lates (Pd and Pf , see table 1 for the most used abbreviated
model variables and parameters) over the depth is given as
an input. These concentrations can be generated or com-
ing from SINMOD. As SINMOD in this simulations runs a
non-spectral light model, no absorption spectra are actually
used in SINMOD. Therefore, as a second input the absorp-
tion spectrum of diatoms Asf and flagellates Asf is used.
Different options are available for using absorption spectra,
as for example shown in [16] for different functional groups.
Recenty in [17], a model is developed for calculating IOP’s,
for different species, which could be an interesting option
when setting up model runs with a mixture of more species
than the diatoms and flagellates. For this work we had access

to use the mean in-vivo chla-specific absorption spectrum of
6 diatoms species, and of 8 bloom forming prymnophycean
species (prymno) as determined by [3], which is a verified and
extensive data set. The spectra are normalized for 1 mg/m3

chla, and more information about these absorption spectra can
be found in [3]. The mean spectra can be seen in Fig. 3. The
data is available with a spectral resolution of 1 nm, and for us-
ing the spectral resolution of 0.5 nm the Asf and Asf coeffi-
cients are interpolated according to the wavelength absorption
spectra.

Based on the SINMOD states and the model’s assump-
tions, it is estimated that the chla concentration in diatoms is
chlad = 0.03 mg/m3 and in flagellates the chla concentra-
tion is chlaf = 0.012 mg/m3. To determine the total chla
concentration in the flagellates, this chla concentration esti-
mation is multiplied by the atomic weight of carbon (12) and
the Redfield ratio (see table 1). The chlad, chlaf , and rf are
assumption of the SINMOD model. The total chla concentra-
tion (chladt ) is estimated as follows for diatoms;

chladt = Pd · chlad · 12 · rf . (1)

The absorption coefficient for the diatoms (Acd) and flag-
ellates are calculated by multiplying (for each wavelength)
the absorption spectrum by the chla concentration,

Acd = Asd · chlaσdt
. (2)

In this set-up the same simplification is made as in [5],
where the value of 1 has been used for σ. For flagellates; the



same result can be found when substituting the index d with
f in equations (1) and (2).

Finally, for each layer and wavelength the total absorption
coefficients are determined by adding up all different contri-
butions:

Act = Acw +Acf +Acd +Accdom (3)

where Acw is the absorption coefficient for pure water and
Accdom is the absorption coefficient of cDOM.

3. RESULTS AND DISCUSSION

Fig. 5: For different chla levels the mean value of Rrs in the
region of 400-450 nm is divided by the mean value of Rrs at
550-600 nm. This is done for the set-up that only contains
diatoms (pink) and the set-up that only contains flagellates
(green).

3.1. Varying diatom and flagellate concentrations

The Ecolight-S model was run for different set-ups of vary-
ing diatom and flagellate concentrations. First, two datasets
are generated for different diatom concentrations. The Pd is
chosen such that the chla content, which is calculated accord-
ingly with equation (1), has one low (1.094 mg/m3) and one
higher value (10.944 mg/m3). Then, mutatis mutandis two
datasets are generated for different flagellate concentrations,
using the same chla concentration values. The values of Pd

and Pf , and their resulting chla densities can be seen in Fig.
4. Each dataset is given as input values to Ecolight-S, and
the resulting Rrs can be seen in the right side of Fig. 4. In
Fig. 4 the pink graphs represent diatom results, and green
flagellate results. The dotted results are for chla densities of
1.094 mg/m3, and the solid values represent chla densities of
10.944 mg/m3. From Fig. 4, we can see a difference in the
Rrs for the Pd and Pf , even though the amount of chla in
the set-up is the same. The shape of the Rrs, changes sig-
nificantly for different concentrations of the phytoplankton,
making it complex to find a method that determines whether

Fig. 6: The scalar irradiance down and up for an increasing
Pd, while the Pf and Pcdom remain zero.

the Rrs corresponds to diatoms or flagellates. However, it
seems that the Rrs over the wavelengths 440-450 nm for di-
atoms is larger than for flagellates for low and high concen-
trations of chla. In the region of wavelengths of 550-600 nm,
the Rrs seems slightly higher for diatoms, but mostly similar
for both diatoms and flagellates at low and high chla. In Fig.
5, the ratio of the average Rrs over the wavelengths 440-450
nm (Rrs400−450) and the average Rrs over the wavelengths
of 550-600 nm (Rrs550−600), so (Rrs400−450

Rrs550−600
), is shown.

For lower Pd and Pf (so lower chla concentrations), it
is harder to distinguish the different species based on their
Rrs ratios. This is as expected, as for lower concentrations
the contribution of the phytoplankton to the Rrs, is naturally
smaller. However, for higher concentrations, it can be seen
that Rrs400−450

Rrs550−600
is consistently larger for diatoms than for flag-

ellates.
From comparing the Rrs to the absorption spectra of the

phytoplankton from Fig. 3, it can be seen that higher absorp-
tion peaks of flagellates in 400-500 nm of the spectrum, has as
a consequence that the Rrs peaks in this part of the spectrum
is lower than the diatom Rrs, this holds for the low and high
chla concentrations. For both the diatoms and the flagellates
there is a small effect visible of the second peak at 675 nm in



Fig. 7: The diatom and flagellate concentrations Trondheim-
fjord from a SINMOD model run simulating 04-04-2022 at
time 00:00:00 in (a). For the geographical location and the
color scaling please see Fig. 2. (b) Shows a cropped RGB
render of a hyperspectral image taken of Trondheimfjord with
the HYPSO-1 satellite on 27-03-2023.

the absorption spectrum in Fig. 3, as it can be seen that for
this absorption peak the reflectance has a small dip when for
the high chla values. However, for lower chla densities (the
dotted lines), this effect cannot be observed in Fig. 4, this is
because in the wavelength region of 600-700 nm there is a
high absorbance of pure water.

When we look into more detail on the effects of the diatom
and flagellate concentrations on how the light propagates in
the water column, a dataset is generated with increasing di-
atom concentrations, while the flagellate and CDOM concen-
trations are kept constant at zero. The scalar irradiance down
and up can be seen in Fig. 6, for three different layers of
depth. It can be seen that the model behaves as expected, the
scalar irradiance up is low for higher concentrations, and de-
creases for lower depths. The scalar irradiance down is not
decreasing as fast for lower depths as the scalar irradiance up,
and is higher for lower concentrations of diatoms. Similar ef-
fects are found for setting up the model with only flagellates.

Because of the high absorbance of pure water in the wave-
length region of 600-700 nm it can be seen in the top left plot
of Fig. 6 that for the fifth layer the scalar irradiance down
from 600 nm and higher is only a third or less of the scalar ir-
radiance in the region of 450 nm. For different scaling of the
scalar irradiance values over the spectrum it could be tried to
set other σ values. As explained in section 2 and shown in ta-
ble 1, the value is now equal for all wavelengths and has value
one. By setting this in a more accurate way, this could poten-
tially be improved. For example, if one would choose the
same wavelength spectrum of values as in [18], the spectra
values would be relatively higher in the 600-700 nm region.

3.2. Simulating a hyperspectral datacube

For the region of the middle of Norway the SINMOD model
was run with the set-up described in section 2.1. The region

Fig. 8: The Rrs distribution for λ = 427.5 nm (top) and λ =
567.5 nm (bottom) over the area of Trondheimsfjorden. a and
b denote the locations of which the Rrs is plotted in Fig. 9.
The data is generated from a SINMOD model run simulation
at timestep 04-04-2022 at 00:00:00.

of Trondheimsfjorden is regularly imaged with the HYPSO-
1 satellite, and an example of a RGB render of a HYPSO-1
image can be seen in Fig. 7b, along with a detailed map of the
flagellate and diatom concentrations in the fjord estimated by
SINMOD in Fig. 7a. The Pd and Pf of this area were used
as an input in the Ecolight-S model, and for each cell the Rrs

is determined. For two example locations the Pd and Pf , and
their resulting chla concentrations are shown respectively in
the two left plots of Fig. 9. The Rrs is shown in the right plot
in Fig. 9. For two different wavelengths (λ = 427.5 nm and
λ = 576.5 nm) the complete map of every cell can be seen in
Fig. 8.

In Fig. 8, it can be seen that for the whole area of Trond-
heimfjord the Rrs at 427.5 nm is lower than at 567.5 nm,
which is also expected from Rrs simulations in two different
model set ups shown in Fig. 4. For the more shallow areas,
for example nearby land, it can be seen that a higher Rrs is
not related to high diatom and flagellate concentrations as can
be seen in Fig. 7. This can be explained by the approximation
that was made that in Ecolight-S, where for now the depths
are all considered constant, and therefore, more shallow ar-
eas have instead of a earlier bottom reflection now just as a
flagellate and diatom concentration 0.



Fig. 9: The Rrs of two different input cells of SINMOD. The lines show cell a of Fig. 8, and the dotted lines cell b. The vertical
lines represent the wavelengths that were mapped in Fig. 8. The two plots on the left denote the Pd and Pf , and their resulting
chla concentrations from cell a and b, for every layer. In this plot layer 0 is the surface layer.

4. CONCLUSION

The Rrs resulting from model set-ups only containing di-
atoms, can be distinguished from model set-ups only contain-
ing flagellates, while each set-up has the same amount of total
chla. This is shown by taking ratio of the average Rrs over
the wavelengths 440-450 nm (Rrs400−450) and the average
Rrs over the wavelengths of 550-600 nm (Rrs550−600), so
(Rrs400−450

Rrs550−600
). It was found that this ratio is consistently larger

for diatoms than for flagellates over a wide range of tested
chla levels. In future work algorithms should be tested in de-
termining ratio’s of flagellates and diatoms based on the Rrs

in mixed water columns.
We have shown that we can use the diatom and flagel-

lates concentrations in the watercolumn, coming from numer-
ical ocean simulation modelling (using SINMOD) as an input
for light interaction modelling (using Ecolight-S). This way
we can create a hyperspectral data based on realistic ocean
model simulations. One application of this tool is determining
whether hyperspectral imaging allows the detection of harm-
ful algal blooms.

In future research, the influence of atmospheric effects on
the spectral signature should be implemented in the model.
For example, by performing data-assimilation with in-situ
data, and comparing this to hyperspectral images taken with
the satellite (at the same time as the in-situ samples are
collected). Then, it should be studied how effective the mod-
elled, hyperspectral datacubes are as labeled datasets to train
machine learning algorithms in labeling.
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Allali, and Hervé Claustre, “Variations of light absorp-
tion by suspended particles with chlorophyll a concen-
tration in oceanic (case 1) waters: Analysis and impli-
cations for bio-optical models,” Journal of Geophysical
Research: Oceans, vol. 103, no. C13, pp. 31033–31044,
1998.


