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Abstract— Structural health monitoring (SHM) of bridges is crucial
for ensuring safety and long-term durability, however, standard
damage-detection algorithms are computationally intensive. This
paper proposes a computationally-efficient algorithm based on
graph signal processing (GSP) to leverage the underlying network
structure in the data. Under the assumption that damages impact
both spatial and temporal structures of the sensors data, the algo-
rithm combines spatial and temporal information from accelerome-
ters by computing the smoothness of graph signals expanded along
time. The Kullback-Leibler (KL) divergence is used as dissimilarity
metric to distinguish between healthy condition and presence of a
damage, while Tukey’s method for outliers removal and sequential
detection via exponential Weighted moving average (EWMA) are then employed for performance improvement. The
proposed GSP-based SHM system is appealing in terms of simplicity and low-complexity, and is also suitable for real-
time monitoring. The effectiveness in terms of detection performance is validated both on synthetically-generated data
and real-world measurements.

Index Terms— Structural health monitoring (SHM), graph signal processing (GSP), joint graph Laplacian, KL divergence,
KW51 bridge, finite element model.

I. INTRODUCTION

D IGITALIZATION is pervading several areas ranging
from entertainment activities to industrial applications.

Real-time monitoring and anomaly detection are among the
relevant topics being enhanced by the development and inte-
gration of digital solutions into safety-critical systems, given
the capability of processing data collected by sensors deployed
in environments of interest.

Structural Health Monitoring (SHM) is an interdisciplinary
field playing a crucial role in civil engineering relying on
the integration of signal processing, data mining, and sensor
technology. SHM aims at safety by enabling cost-effective
predictive maintenance of civil infrastructures such as build-
ings and bridges [1]. For efficient monitoring, sensors are
strategically placed at various locations on these structures,
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leading to the generation of spatio-temporal data usually
arranged into multivariate time series.

Graph signal processing (GSP) is an effective approach
for analyzing data originating from irregular and complex
structures. GSP extends classic signal processing tools (e.g.
Fourier analysis and filtering) with application to graph-based
structures and has established the groundwork for developing
novel graph-based learning algorithms [2]. These develop-
ments have attracted considerable attention from researchers
across various fields encompassing applications from detecting
faulty sensors [3] to advancements in coal mining [4].

SHM and GSP appears to be a good match given the
relevance of the spatial information related to the topology
of the physical structure to be monitored and the potential
improvements in terms of performance and computational
complexity. In this work, we investigate the feasibility of a
GSP-based SHM approach for damage detection of bridges.
Aging bridge infrastructures worldwide pose growing chal-
lenges due to increased mobility, traffic volume, and climate
change, which accelerate their deterioration [5], [6]. Current
procedures for bridge maintenance primarily depend on man-
ual and visual inspections, which are costly, time-consuming
and largely subjective. Hence, the demand for more efficient
and objective SHM approaches, is pressing [7].
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A. Related Work

Amongst SHM techniques, those based on vibrations have
gained substantial attention due to their capability to record the
comprehensive behaviour of the structure and detect damages
without any prior information related to the the damaged area
[8]. Vibration-based SHM techniques for damage detection
can essentially be divided into two groups: (i) model-based
methods and (ii) data-driven methods.

Methods from the former group rely on numerical models
alongside experimental data to assess the structural integrity
and mostly rely on measuring and processing strain. Despite
their popularity and precision, these methods present high
computational complexity, making them unsuitable for large-
scale SHM applications [9]. Recently, edge-computing has
been considered as an opportunity to reduce the amount of
data sharing in SHM systems [10].

Data-driven approaches mainly use data mining and ad-
vanced signal processing techniques to extract valuable infor-
mation directly from the sensor data collected from the target
bridge. Although the training phase might be computationally
expensive, data-driven methods are more suitable for real-
time damage detection in large structures, given less-intensive
computational requirements during operation [11]. Among
data-driven approaches, cable losses in a cable-stayed bridge
were assessed via identification of rotation influence lines
by instrumenting only two locations at the bridge bearings
[12]. Similarly, accelerometers were used to identify structural
rotation and related influence lines to detect damages due to
the loss of bending stiffness in the bridge deck [13], [14].
Also, low- and band-pass filters were shown to detect damage-
sensitive structural features from acceleration measurements
[15], [16]. First-order eigen-perturbation techniques for SHM
have been discussed in [17], [18] for the identification of the
structural modal parameters and damage assessment.

It is worth noticing that despite the performance in terms
of damage evaluation, the practical application of most ap-
proaches to SHM is still challenging due to the need of data
obtained from continuous bridge monitoring [19]. However,
in real-world scenarios, continuous monitoring is extremely
challenging (and sometimes not practical) due to various con-
straints (e.g. limited power, limited bandwidth, difficulties with
batteries replacement) particularly when reliant on wireless
sensor networks [20] [21]. Thus, event-triggered sensing sys-
tems have emerged, designed to focus on significant portions
of data, reduce power consumption and promote enduring
operation of sensor nodes [22].

Furthermore, while most data-driven research on damage
assessment in bridges has focused on the use of ambient vi-
bration data or static effects, recent studies recognize vehicle-
induced or forced responses as useful for performing damage
assessment [23]. These recent monitoring techniques and re-
lated data interpretations have been explored with application
to both highway and railway bridges [24]. Artificial neural
networks have been proposed for classifying bridge health
and damage states using deck acceleration and bridge weigh-
in-motion data [25], [26]. Long-short-term-memory neural
networks and other deep neural network have been explored

focusing on reducing the number of false alarms due to
sensor failures [27]. Other SHM methods include time series
analysis for global monitoring of railway bridges [28] and
the use of autoregressive models to extract damage-sensitive
features from traffic-induced vibration responses [29]. Finally,
optical fibre networks have shown to provide relevant benefits,
especially as an alternative when conventional sensors cannot
capture peak strains [30], while some preliminary results
on the development of data-driven SHM monitoring systems
based on non-contact sensing techniques (e.g. based on image
processing) are found in [31].

In summary, most existing works and methodologies have
certain limitations, such as requiring data from the continu-
ous monitoring of the bridge or performing computationally-
expensive training of deep neural networks. To overcome these
limitations, this study aims to develop a methodology based
on GSP that can extract damage-sensitive features from data
generated by trains crossing by utilizing limited amount of
data, eliminate the need for continuous monitoring.

B. Contribution and Paper Organization
Motivated by the previous discussion, this paper presents

an effective algorithm for detecting structural damages on
bridges. The algorithm leverages GSP techniques to extract
information from data acquired by sensors mounted on the
bridge using forced response. The algorithm incorporates the
knowledge of sensor placement on the bridge to extract the
underlying graph structure and relies on the concepts of
smoothness and Kullback-Leibler (KL) divergence. The main
contribution of the paper is the following.

• The proposed method adopts an event-based approach
focusing on forced vibrations where data is collected in
relation to particular events (such as a vehicle or train
crossing the bridge), thus, unlike continuous monitoring
systems, being energy efficient.

• The proposed method relies on tools from GSP to inte-
grate the topology of the sensor network together with
the measured data from the sensors.

• The proposed algorithm is computationally efficient and
does not require learning any parameter.

• Perforamnce has been assessed on both synthetic data
from numerical simulations and realistic data from real-
world measurements.

The remainder of this paper is organized as follows. Sec. II
presents the fundamentals of GSP, while the GSP-based SHM
approach is described in detail in Sec. III. Sec. IV provides
a description of the datasets considered for the validation of
the proposed approach (one dataset is synthetically gener-
ated from numerical simulations and one dataset is collected
from real-world measurements). The corresponding achieved
performance are presented and discussed in Sec. V, which
includes also a comparison with one of the common tradi-
tional approaches in structural engineering. Finally, Sec. VI
summarizes the paper and adds some final remarks.

Notations - Lower-case (resp. upper-case) bold letters de-
note column vectors (resp. matrices), with ai (resp. Ai,j)
representing the ith entry (resp. (i, j)th entry) of a (resp.
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A); diag(a) denotes a diagonal matrix with a on the main
diagonal; I is the identity matrix; upper-case calligraphic
letters denote finite sets, with |A| being the cardinality of A;
R denotes the set of real numbers; (·)T, tr(·) and ∥ · ∥ denote
transpose, trace and Euclidean norm operators, respectively;
× is the Cartesian product.

II. PRELIMINARIES OF GRAPH SIGNAL PROCESSING

We describe the main concepts of graph signal processing
necessary for the development of the proposed SHM approach.
More specifically, we focus on discussing the graph Laplacian
matrix and the graph Fourier transform (GFT) in Secs. II-A
and the normalized smoothness II-B.

A sensor network is usefully represented via an undirected
graph G(V, E ,A), where V represents the set of N = |V|
nodes (i.e., sensors), E represents the set of edges (i.e.,
the connection among the nodes), and A ∈ RN×N is the
adjacency matrix describing the connectivity of the graph1,
which is defined as

Ai,j =

{
1 node i and node j are connected

0 else
.

A graph signal is defined by a vector x ∈ RN where the
ith element xi collects the value from the ith node in the
corresponding graph G.

A. Graph Laplacian and Graph Fourier Transform

For a given graph G(V, E ,A), we define the graph Lapla-
cian matrix as

L = D −A , (1)

where the degree matrix D is a diagonal matrix whose entries
on the main diagonal are Di,i =

∑N
j=1 Ai,j . The graph

Laplacian matrix is one of the most relevant operators in graph
signal processing as its eigendecomposition defines the GFT
[32]. More specifically, L = QΛQT defines the orthogonal
matrix of eigenvectors Q ∈ RN×N , namely the graph Fourier
basis, and the diagonal matrix Λ = diag (λ1, . . . , λN ) with
λ1 ≤ . . . ≤ λN being the corresponding eigenvalues, namely
the spatial frequencies.

The GFT of the graph signal x defined on G is given by
xF = QTx =

[
qT
1 x, . . . , q

T
Nx

]T
. It is worth noticing that the

ith element of the GFT corresponds to the projection of the
graph signal onto the ith eigenvector.

B. Normalized Smoothness

The level of variation in a graph signal (i.e. how similar are
the values on neighboring nodes) is a relevant information,
which might be related to anomalies [33]. It may be inferred
via the normalized smoothness, formally defined as

sG(x) =
xTLx

∥x∥2
. (2)

1More general representations for the graph connectivity are possible.

Fig. 1: Schematic example of a bridge equipped with sensors
collecting information when a train is traversing it.

More specifically, exploiting the egiendecomposition of the
graph Laplacian matrix, Eq. (2) can be expressed as

sG(x) =

N∑
i=1

λi

∥x∥2
∥∥qT

i x
∥∥2 ,

which shows how the smoothness is a linear combination of
the energy content of frequency components qT

i x weighted
with the corresponding spatial frequencies λi (normalized
with the signal energy ∥x∥2), thus resulting in a measure of
variation (the larger the smoothness, the larger the level of
variation for the graph signal). The range of the smoothness
is limited by the maximum Laplacian eigenvalue2 [34], i.e.
sG(x) ∈ [0,maxi λi].

III. GSP-BASED SHM
We consider a scenario involving a bridge equipped with

N sensors, each collecting M temporal measurements each
time an event (e.g. a train or vehicle crossing the bridge) is
completed, as illustrated in Fig. 1. The eth event is associated
to a multivariate time series arranged in a data matrix X[e] ∈
RN×M , where Xn,m[e] denotes the mth measurement from
the nth sensor.

Information about the bridge and sensors placement is
assumed to be known in the form of a given adjacency
matrix (A) representing the topology of the sensor network
at each discrete time. The data matrix is split into C non-
overlapping snapshots, each collecting data from all the sen-
sors and K consecutive discrete times3, i.e. the ℓth snapshot
from the eth event includes data {Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1

arranged in K graph signals {x(e;ℓ)[k]}Kk=1 with x
(e;ℓ)
n [k] =

Xn,(ℓ−1)K+k[e].

A. Spatio-Temporal Graphs
Including the temporal dynamics into the graph representa-

tion is crucial to operate with time-series data from sensors.
Referring to the generic snapshot from the generic event and
omitting here the superscript (e; ℓ) for ease of notation, x[k]
denotes the graph signal from the kth discrete-time instant,
with k = 1, 2, . . . ,K.

One possible approach is to extend the concept of graph and
corresponding graph signal to a spatio-temporal domain, where
each node refers to a specific sensor in a given time instant,
and edge representing either spatial or temporal connections
among nodes. The spatio-temporal graph is described via
the set of nodes and edges and the adjacency matrix. The

2The smoothness can also be defined using the normalized graph Lapacian
(L = I −D−1/2AD−1/2), in which case the upper range limit is 2.

3Without loss of generality, we assume that M/K is an integer number.
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(a) Linear spatial topology (b) Triangular spatial topology

Fig. 2: Spatio-temporal graphs with N = 4 sensors and K
discrete times. Red nodes denote the spatial placement of the
sensors, blue nodes represent their temporal extension. Spatial
(resp. temporal) edges are depicted in black (resp. green).

spatio-temporal graph signal (x̃) is defined as the vector
stacking the graph signal from each discrete time, i.e. x̃T =[
x[1]T, . . . ,x[K]T

]
. A similar analysis about the GFT and

normalized smoothness can be done by obtaining the corre-
sponding Laplacian matrix (namely spatio-temporal Laplacian
matrix (L̃)), related eigendecomposition, and corresponding
spatio-temporal normalized smoothness (STNS)

s̃(x̃) =
x̃TL̃x̃

∥x̃∥2
. (3)

where the subscript G is removed for ease of notation.
In this work, we assume that the topology of the sensor

network is invariant with time, thus from a spatial perspective
the graph Laplacian matrix (L) is a proper representation of
the system. Also, from a temporal perspective, we assume that
each node is simply connected with its own one-step backward
and forward replicas, i.e. the temporal structure is described
by the matrix Θ ∈ RK×K such that

Θi,j =

{
1 j = i± 1

0 else
.

Fig. 2 shows two examples of spatio-temporal graphs with
N = 4 sensors expanded along K discrete times: the former
with a linear spatial topology, the latter with a triangular
one. Similar to Eq. (1), a Laplacian matrix for the temporal
structure is obtained as

Λ = ∆−Θ , (4)

where the degree matrix ∆ is a diagonal matrix whose entries
on the main diagonal are ∆i,i =

∑K
j=1 Θi,j . Exploring

connections beyond a single time step, although potentially
beneficial, lies outside the scope of this study.

In case of time-invariant graphs, the spatio-temporal Lapla-
cian matrix can be shown to be expressed as the Cartesian
product of the 2 Laplacian matrices [35], i.e.

L̃ = Λ×L , (5)

with L̃ ∈ RKN×KN . Also, we have x̃ ∈ RKN×1.

B. Event Anomaly Detection

The proposed SHM system is meant to operate on group of
consecutive events, since relying on a single event for damage
detection might be unreliable. It is built on the following
main steps: (i) compute the STNS statistics of the group of
events; (ii) compute the deviation of the group of events from
normal operation mode (represented by a reference model) via
the KL divergence; (iii) remove the outliers of the sequence
of KL-divergence values; and (iv) process the sequence of
KL-divergence values after outliers removal with a sequential
detection algorithm.

The eth event is associated with a STNS vector s̃[e] ∈
RC×1, where each entry s̃ℓ[e] represents a STNS value com-
puted by applying Eq. (3) to the graph signals from the ℓth
snapshot. We use the SNTS vector to infer the statistical
behaviour of the system and assess if it resembles healthy
behavior or significantly deviates from it. We assume that
the STNS values follows a Gaussian distribution, given the
specific event, and we use the sample mean and sample
variance (i.e. the maximum-likelihood estimators [36]) as
statistical representation

µ[e] =
1

C

C∑
ℓ=1

s̃ℓ[e] , σ
2[e] =

1

C

C∑
ℓ=1

(s̃ℓ[e]− µ[e])2 . (6)

The KL divergence [37] is a statistical distance commonly
used to assess the difference between 2 probability density
functions (PDFs). It is worth mentioning that the KL diver-
gence is asymmetric and may be interpreted as a measure of
dissimilarity of an arbitrary PDF from a reference PDF. In the
specific case that both PDFs are Gaussian, the KL divergence
associated to the eth event is expressed as

D[e] = log

(
σ[e]

σH

)
+

(σ2
H − σ2[e])− (µH − µ[e])2

2σ2[e]
, (7)

where µH and σ2
H denote the mean and variance, respectively,

of the reference Gaussian PFD characterizing the bridge
under healthy condition. The reference mean and variance are
computed applying Eq. (6) to a vector collecting STNS values
from multiple events associated to healthy condition.

As for outliers removal, we apply Tukey’s method [38],
which operates based on the interquartile range (i.e. the
interval encapsulating the central 50% of the data). Any data
point outside the interval [Q1−I(Q3−Q1), Q3+I(Q3−Q1)]
is considered an outlier, where Q1 (resp. Q3) represents the
first (resp. third) quartile of the dataset and I is a parameter
usually chosen in the range [1.5, 3].

A sequential detection algorithm, namely EWMA, is then
applied to the sequence of KL-divergence values

Ze = αD[e] + (1− α)Ze−1 , (8)

where Ze is the decision variable to be compared with a
threshold for final decision, and α ∈ (0, 1] is a parameter
trading relevance between current and previous events.

The pseudo-code of the procedure for damage detection is
illustrated in Algorithm 1.
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Algorithm 1 Damage Detection

Require: events, L, Λ, K
1: L̃ = Λ×L
2: for e in events do
3: Initialize vector s̃[e]
4: for ℓ in e do
5: x̃ =vectored({Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1)

6: s̃ℓ[e] =
x̃TL̃x̃
∥x̃∥2 ▷ By equation (3)

7: s̃[e] = s̃ℓ[e]
8: end for
9: s̃events = APPEND(s̃[e])

10: end for
11: µH, σ2

H = BASELINE(s̃events)
12: for e in eventsNew do
13: Initialize vector s̃[e]
14: for ℓ in e do
15: x̃ =vectored({Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1)

16: s̃ℓ[e] =
x̃TL̃x̃
∥x̃∥2

17: s̃[e] = s̃ℓ[e]
18: end for
19: µ[e], σ2[e] = STATS(s̃[e]) ▷ By equation (6)
20: D[e] = KL(µ[e], σ2[e], µH, σ

2
H) ▷ By equation (7)

21: end for
22: Dfiltered = OUTLIERREMOVAL(D)
23: Z = EWMA(Dfiltered) ▷ By equation (8)
24: UCL, LCL = CL(µH, σ

2
H) ▷ By equation (9) and (10)

25: if LCL ≤ Z ≤ UCL then
26: Decision: Healthy
27: else
28: Decision: Damage
29: end if

IV. DATA DESCRIPTION

The two datasets used for validating our work are described
here: one is generated via numerical simulations (namely Case
Study 1) and one is obtained from real-world measurements
(namely Case Study 2). The two datasets are not related
each other and are treated separately to demonstrate the
effectiveness of the proposed algorithm on both synthetic and
real-world scenarios. The minimum number of sensors and
related positions were strategically selected to capture the first
three modes of the bridge. In scenarios with a many sensors,
these were placed at regular (spatial) intervals.

A. Case Study 1: Dataset from Numerical Simulations
The considered numerical model integrates the behaviors of

the train, the ballasted track, and the bridge:
• The train is modeled as a sequence of consecutive ve-

hicles, each characterized by a multi-body system with
six degrees of freedom. This model includes a primary
suspension system that connects the two axles of each
bogie and a secondary suspension system that supports
the main body [39].

• The track is modeled identifying rails, pad, sleeper,
ballast, and sub-ballast. More specifically, we employed

TABLE I: Bridge specifications.

Bridge Specifications Value
Length (m) 50
Second Moment of Area (m4) 51.3
Mass per Unit Length (kg/m) 69000
Modulus of Elasticity (N/m2) 3.5× 1010

TABLE II: Variability of the train-model parameters.

Min. Max. Mean St. Dev.
Velocity (km/h) 150 170 160 3
Body Mass (kg) 42100 53500 47800 500

Class-6 track irregularities from the Federal Railroad
Administration [40]. The rail is modeled as a beam, while
the other components are treated as lumped masses.

• The bridge is modeled using a Finite Element Model
(FEM) based on Euler-Bernoulli beam theory. Each ele-
ment comprises 2 nodes with two degrees of freedom per
node (specifications in Table I).

Our study examines an ICE3 Velaro train configuration
comprised of 8 wagons, with mechanical properties and di-
mensions as in [41]. To ascertain dynamic stability before the
train’s entry onto the bridge, we model a 100 m extension
beyond the bridge using a standard UIC60 rail design and
a sleeper spacing of 0.6 m. The presented train-track-bridge
simulation tool is available in [39] together with additional
descriptions.

In this work, we assume that the train speed and body
mass vary for each event (according to Table II), while the
train’s suspension properties remain constant. In addition, 3
different damage cases (DCs) are considered to demonstrate
the effectiveness of the proposed SHM approach, each with a
different location of the damage:

• DC1 - damage location is at the midpoint of the the first
half of the bridge;

• DC2 - damage location is at the midpoint of the bridge;
• DC3 - damage location is at the midpoint of the the

second half of the bridge.
The damage was modelled using 20% stiffness loss at each
location. For each case, 300 events were generated: 200 in
healthy scenario and 100 in presence of damages. Each event
contains the values of the accelerations from the bridge with
white noise added to mimic measurement noise4.

B. Case Study 2: Data from Real-World Measurements

We considered signals from a bridge in Leuven, Belgium,
known as the KW51 railway bridge [42]. Spanning 115 m in
length and 12.4 m in width, this bridge features 2 separated
ballasted tracks situated at the north and south sides (namely
Track A and Track B). Both tracks have a curved horizontal
alignment, with an enforced speed limit of 160 km/h for
passenger trains. The bridge’s monitoring system provides
data in 3 different periods (starting from September 2018)
experiencing different bridge conditions: (i) the first period

4A truncated Gaussian noise is selected to reproduce signal-to-noise ratios
within the range [25dB, 35dB], see also [23]
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TABLE III: Sensors’ relative position along the bridge.

N Relative Positions
3 3/50, 1/2, 47/50
5 3/50, 6/25, 1/2, 19/25, 47/50
9 3/50, 7/50, 6/25, 9/25, 12/25, 29/50, 7/10, 8/10, 47/50

(a) N = 3 (b) N = 5

(c) N = 9

Fig. 3: Spatial topology.

consists of 7.5-month measurements under normal conditions;
(ii) the second period includes 4.5 months of measurements
from the retrofit installation, namely RI case; and (iii) the
final period features 3.5 months of measurements from the
strengthened bridge, namely SB case.

V. RESULTS AND DISCUSSION

Data have been processed using MATLAB according to the
algorithm described in Sec. III.

A. Case Study 1: Results on Simulated Data
Scenarios with N ∈ {3, 5, 9} aligned sensors are con-

sidered, with Tab. III providing the relative location of the
sensors along the bridge (0 and 1 represents the two ends
of the bridge). As for the spatial topology, fully-connected
topology is assumed in both cases N = 3 and N = 5,
while in the case N = 9 two sensors are connected if at
most 3 sensors are found in between them. Fig. 3 shows the
spatial topology of the three considered scenarios. A fully-
connected topology allows to infer the dependencies among
sensor measurements in the most comprehensive way, but it
is also the most expensive topology in terms of computational
complexity. For small-size systems (N = 3 and N = 5)
the complexity is not prohibitive even in the case of fully-
connected topology. Differently, for the case with N = 9,
we considered reduced number of connections for complexity
issues. The impact of the number of connections on the
inference capability falls beyond the scope of this paper. As
for the temporal extension, K = 512 discrete-time instants are
considered, with M = 7800 samples per event generated5.

In order to provide a visual representation of the impact
on the smoothness of healthy and damaged bridge condi-
tions, we compute (per event) the following statistics of the
smoothness: max, min, mean, and standard deviation. Fig. 4
shows the smoothness statistics for the scenario with N = 5

5The last 120 samples are discarded.

sensors considering the 3 damaged cases (DC1, DC2, and
DC3) compared with the normal condition (Healthy). Other
scenarios are not shown here for brevity. Apparently, the
smoothness behavior is affected by the absence/presence of
structural damages, but unfortunately no specific statistic (or
combination of statistics) showed to work effectively in all
considered cases6. This motivated the use of a more general
metric like the KL divergence for the final detection.

Figs. 5, 6 and 7 depict the damage index (Z) for various
scenarios and damage cases7. More specifically, the first 60
events represent healthy data and are used to establish the base-
line distribution. The remaining part is made of 140 healthy
events and 100 damaged events, showing the effectiveness of
the proposed methodology. It is apparent how the damage
index behavior is significantly affected by the presence of
a damage and how different locations of the damage have
different impact. More specifically, Figs. 5, 6 and 7 show that
the change in the damage index (Z) is more pronounced in
DC2 than DC1 and DC3 for all three sensor configurations,
suggesting that the damage index might include information
related to damage localization and damage-magnitude estima-
tion. However, given our focus on damage detection, those
tasks are beyond the scope of this paper.

A detection system should finally take decisions based on
a threshold-based rule, however hyper-parameter optimization
and assessment of detection performance fall beyond the scope
of the paper. To provide an insight on the potential value of the
proposed methodology, Figs. 5, 6 and 7 show possible upper
and lower control limits (UCL and LCL), computed as [43]

UCLe = µH + 7σH

√
α

(2− α)
[1− (1− α)2e] , (9)

LCLe = µH − 7σH

√
α

(2− α)
[1− (1− α)2e] . (10)

In all cases, damage-index values fall inside (resp. outside) the
considered bounds when the damage is absent (resp. present),
thus confirming the validity of the proposed approach.

Also, Fig. 8 shows the ROC curves for each damage case
to further illustrate the implications of threshold selection in
terms of probability of detection and probability of false alarm.
It can be noticed how misclassifications are reduced when
increasing the number of sensors with the N = 3 scenario
showing worse (but still sufficiently good) performance. The
gap between scenarios with increasing number of sensors
(N ) seems to saturate to attractive performance levels, thus
suggesting that the proposed approach does not require large
number of sensors.

B. Case Study 2: Results on Real-World Measurements

We construct a graph using four sensors arranged in a
triangular spatial topology as in Fig. 2b. These sensors are
part of the original six that were installed on the bridge, each
measuring acceleration in the horizontal and vertical directions

6In the specific case shown here, the maximum value of the smoothness is
the most effective indicator.

7Tukey’s method is implemented using non-overlapping windows with size
20 and tuned with I = 3, while EWMA is tuned with α = 0.05.
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(a) DC1 (b) DC2 (c) DC3

Fig. 4: Smoothness statistics with N = 5 sensors. Simulated data. Healthy (resp. damaged) conditions in blue (resp. red).
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Fig. 5: Damage index with N = 3 sensors. Simulated data.
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Fig. 6: Damage index with N = 5 sensors. Simulated data.
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Fig. 7: Damage index with N = 9 sensors. Simulated data.

[42]: those measuring the acceleration in the vertical direction
are selected in this work. As for the temporal extension,
K = 16 discrete-time instants are considered.

Fig. 9 shows the smoothness statistics for the scenario with
N = 4 sensors considering the 2 damaged cases (RI and SB)
compared with the normal condition (Healthy). It is interesting
to notice that the RI case exhibits different statistics than the
Healthy case, while the difference is largely reduced when
comparing the SB and Healthy cases, i.e. the strengthening
intervention somehow makes the bridge to behave similarly to
the normal condition.

Fig. 10 depicts the damage index (Z) for the considered

case with real-world measurement8. More specifically, the first
60 events represent healthy data and are used to establish
the baseline distribution. The remaining part is made of 222
healthy events, 149 events with RI case and 129 events with
SB case. It is apparent how the results from the real-world
measurements confirm that the proposed damage index is a
relevant candidate for the design of effective SHM systems.
Additionally, the interesting behavior of the RI and SB cases
with respect to the Healthy case, suggests that the proposed
damage index might be also useful to quickly assess the

8Similar setting as with simulated data is assumed for Tukey’s method and
EWMA. UCL and LCL curves are also shown.
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Fig. 8: ROC curves for the numerical data.

validation of maintenance/repairing operations.
Also, Fig. 11 shows the ROC curve for the damage detection

in real-world data, again showing the implications of threshold
selection in terms of probability of detection and probability
of false alarm.

As for performance comparison in the case of real-world
measurements, we also implemented a monitoring procedure
based on Operational Modal Analysis (OMA) on an hourly
basis, utilizing ambient vibration data from the KW 51 Bridge.
OMA is a popular method to identify modal frequencies and
mode shapes of bridges, often employed for damage evalu-
ation. More specifically, the modal frequencies were derived
according to [44] and signals analyzed via the covariance-
driven stochastic subspace identification algorithm [45] and
clustering approach recommended in [46]. To provide a fair
comparison with the proposed method, only global vertical
modes were considered. Furthermore, an unsupervised deep
learning method based on a Probabilistic Temporal Autoen-
coder (PTAE) [47] has been considered as performance bound.

Table IV presents the performance comparison regarding
accuracy, precision, and recall, where the Upper Control Limit
UCL and LCL were utilized as detection thresholds for the
proposed GSP-based approach and both the OME and the
PTAE benchmarks. In the case of OMA, a one-class Support
Vector Machine (SVM) [48] was employed for damage detec-
tion. It is worth mentioning that no optimization analysis was
performed for both approaches, so no optimality claim in terms
of performance. Also, OMA can be considered a traditional
approach while PTAE can be considered a recent AI-based
approach. Our proposed method slightly outperforms the for-
mer, while exhibits some performance gap with the latter. On
a different note, we believe it important to stress that similar
performance to traditional approaches were achieved with the
proposed GSP-based methods despite requiring lower compu-
tational cost and having no critical dependency on some crucial
parameter. From a computational perspective, the OMA-based
approach require singular value decomposition of covariance
matrices and is quite sensitive to system-order selection. On
the other hand, deep learning methods require a substantial
amount of data and significant computational resources to train
and run the model. It involves learning thousands of param-

(a) RI

(b) SB

Fig. 9: Smoothness statistics with N = 4 sensors. Real-world
measurements. Healthy (resp. damaged) conditions in blue
(resp. red).

eters and their utilization in bridge assessments, making it
resource-intensive and potentially inefficient for resource and
energy-constrained devices. In addition, deel-learning models
might be problematic to adopt in safety-critical systems due
to their black-box inherent behaviour and poor explanaibil-
ity. Conversely, the proposed GSP-based approach appears a
very promising candidate from performance, computational-
complexity, robustness and explainability points of view.

VI. CONCLUSION AND FUTURE WORK

We proposed a GSP-based algorithm for SHM of bridges
which effectively exploits both spatial and temporal structure
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Fig. 10: Damage index with N = 4 sensors. Real-world
measurements.
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Fig. 11: ROC curve for the experimental data.

TABLE IV: Performance comparison using real-world mea-
surements.

RI case SB case
GSP OMA PTAE GSP OMA PTAE

Accuracy 93.4% 87.5% 97.6% 89.6% 96.5% 95.3%
Precision 89.2% 92% 96.7% 87.3% 86.8% 96.1%

Recall 95.0% 76.2% 99.3% 87.3% 100% 95.3%

of data collected from sensors. Spatio-temporal graphs seemed
the natural formal structure for representing the sensors data
and related bridge behaviour. The proposed algorithm pro-
cesses sensor data via low-complexity GSP techniques, then
KL divergence, Tukey’s outlier method and EWMA filtering
are combined for damage detection. The assumption that
structural damages impact the statistics of the smoothness of
the corresponding graphs has been validated analyzing data
collected both from numerical simulations and from real-
world measurements. Comparisons with standard solutions
from common practice in structural engineering seem very

promising and make GSP-based solutions potentially suit-
able for cost-effective and resource-efficient real-time SHM
systems. Future work should focus on performing damage
localization using the proposed GSP-based methodology.
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“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, Apr. 2018.

[3] H. Darvishi, D. Ciuonzo, and P. Salvo Rossi, “Deep recurrent graph
convolutional architecture for sensor fault detection, isolation, and
accommodation in digital twins,” IEEE Sensors Journal, vol. 23, no. 23,
pp. 29 877–29 891, 2023.

[4] Z. Xing, S. Zhao, W. Guo, F. Meng, X. Guo, S. Wang, and H. He, “Coal
resources under carbon peak: Segmentation of massive laser point clouds
for coal mining in underground dusty environments using integrated
graph deep learning model,” Energy, vol. 285, p. 128771, 2023.

[5] B. F. Spencer Jr, V. Hoskere, and Y. Narazaki, “Advances in computer
vision-based civil infrastructure inspection and monitoring,” Engineer-
ing, vol. 5, no. 2, pp. 199–222, Apr. 2019.

[6] H. Nick and A. Aziminejad, “Vibration-based damage identification
in steel girder bridges using artificial neural network under noisy
conditions,” Journal of Nondestructive Evaluation, vol. 40, pp. 1–22,
Jan. 2021.

[7] Z. Lingxin, S. Junkai, and Z. Baijie, “A review of the research and
application of deep learning-based computer vision in structural damage
detection,” Earthquake Engineering and Engineering Vibration, vol. 21,
no. 1, pp. 1–21, Jan. 2022.

[8] Y. An, E. Chatzi, S.-H. Sim, S. Laflamme, B. Blachowski, and J. Ou,
“Recent progress and future trends on damage identification methods for
bridge structures,” Structural Control and Health Monitoring, vol. 26,
no. 10, p. e2416, Jul. 2019.

[9] Y. Zhang and K.-V. Yuen, “Review of artificial intelligence-based bridge
damage detection,” Advances in Mechanical Engineering, vol. 14, no. 9,
Sep. 2022.

[10] A. Moallemi, A. Burrello, D. Brunelli, and L. Benini, “Exploring
scalable, distributed real-time anomaly detection for bridge health mon-
itoring,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 660–
17 674, 2022.

[11] O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, and
D. J. Inman, “A review of vibration-based damage detection in civil
structures: From traditional methods to machine learning and deep
learning applications,” Mechanical Systems and Signal Processing, vol.
147, Jan. 2021.

[12] M. M. Alamdari, K. Kildashti, B. Samali, and H. V. Goudarzi, “Damage
diagnosis in bridge structures using rotation influence line: Validation
on a cable-stayed bridge,” Engineering Structures, vol. 185, pp. 1–14,
Apr. 2019.

[13] F. Huseynov, C. Kim, E. J. Obrien, J. Brownjohn, D. Hester, and
K. Chang, “Bridge damage detection using rotation measurements–
experimental validation,” Mechanical Systems and Signal Processing,
vol. 135, Jan. 2020.

[14] E. J. Obrien, J. Brownjohn, D. Hester, F. Huseynov, and M. Casero,
“Identifying damage on a bridge using rotation-based bridge weigh-in-
motion,” Journal of Civil Structural Health Monitoring, vol. 11, pp.
175–188, Oct. 2021.

[15] S. Quqa, L. Landi, and P. P. Diotallevi, “Automatic identification of
dense damage-sensitive features in civil infrastructure using sparse
sensor networks,” Automation in Construction, vol. 128, Aug. 2021.

[16] ——, “Instantaneous identification of densely instrumented structures
using line topology sensor networks,” Structural Control and Health
Monitoring, vol. 29, no. 3, Nov. 2022.

[17] B. Bhowmik, T. Tripura, B. Hazra, and V. Pakrashi, “First-order eigen-
perturbation techniques for real-time damage detection of vibrating
systems: Theory and applications,” Applied Mechanics Reviews, vol. 71,
no. 6, p. 060801, 2019.

[18] ——, “Real time structural modal identification using recursive canoni-
cal correlation analysis and application towards online structural damage
detection,” Journal of Sound and Vibration.



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

[19] Z. Deng, M. Huang, N. Wan, and J. Zhang, “The current development of
structural health monitoring for bridges: A review,” Buildings, vol. 13,
no. 6, p. 1360, 2023.

[20] M. Tang, J. Cao, and X. Jia, “Efficient power management for wireless
sensor networks: A data-driven approach,” in 2008 33rd IEEE Confer-
ence on Local Computer Networks (LCN). IEEE, 2008, pp. 106–113.

[21] H. Fu, Z. S. Khodaei, and M. F. Aliabadi, “An event-triggered energy-
efficient wireless structural health monitoring system for impact detec-
tion in composite airframes,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1183–1192, 2018.

[22] M. Z. Sarwar, M. R. Saleem, J.-W. Park, D.-S. Moon, and D. J.
Kim, “Multimetric event-driven system for long-term wireless sensor
operation for shm applications,” IEEE Sensors Journal, vol. 20, no. 10,
pp. 5350–5359, 2020.

[23] M. Z. Sarwar and D. Cantero, “Vehicle assisted bridge damage assess-
ment using probabilistic deep learning,” Measurement, vol. 206, Jan.
2023.

[24] Y.-W. Wang, Y.-Q. Ni, and S.-M. Wang, “Structural health monitoring
of railway bridges using innovative sensing technologies and machine
learning algorithms: a concise review,” Intelligent Transportation Infras-
tructure, vol. 1, Sep. 2022.

[25] I. Gonzalez and R. Karoumi, “BWIM aided damage detection in bridges
using machine learning,” Journal of Civil Structural Health Monitoring,
vol. 5, pp. 715–725, Aug. 2015.
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[41] K. N. Gia, J. M. G. Ruigómez, and F. G. Castillo, “Influence of rail
track properties on vehicle–track responses,” vol. 168, no. 6, pp. 499–
509, Dec. 2015.

[42] K. Maes, L. Van Meerbeeck, E. Reynders, and G. Lombaert, “Validation
of vibration-based structural health monitoring on retrofitted railway
bridge KW51,” Mechanical Systems and Signal Processing, vol. 165,
pp. 1–24, Sep. 2021.

[43] D. C. Montgomery, Introduction to statistical quality control. John
wiley & sons, 2019.

[44] K. Maes and G. Lombaert, “Monitoring railway bridge KW51 before,
during, and after retrofitting,” Journal of Bridge Engineering, vol. 26,
no. 3, pp. 1–19, Jan. 2021.

[45] B. Peeters and G. De Roeck, “Reference-based stochastic subspace
identification for output-only modal analysis,” Mechanical Systems and
Signal Processing, vol. 13, no. 6, pp. 855–878, Nov. 1999.
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