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Abstract. Recent AI tools like ChatGPT have prompted worries that assess-

ment integrity in education will be increasingly threatened. From the perspec-

tive of introductory programming courses, this paper poses two research ques-

tions: 1) How well does ChatGPT perform on various assessment tasks typical 

of a CS1 course? 2) How does this technology change the threat profile for var-

ious types of assessments? Question 1 is analyzed by trying out ChatGPT on a 

range of typical assessment tasks, including code writing, code comprehension 

and explanation, error correction, and code completion (e.g., Parson’s problems, 

fill-in tasks, inline choice). Question 2 is addressed through a threat analysis of 

various assessment types, considering what AI chatbots would be adding rela-

tive to pre-existing assessment threats. Findings indicate that for simple ques-

tions, answers tend to be perfect and ready-to-use, though might need some re-

phrasing work from the student if the task partly consists of images. For more 

difficult questions, solutions might not be perfect on the first try, but the student 

could be able to get a more precise answer via follow-up questions. The threat 

analysis indicates that chatbots might not introduce any entirely new threats, ra-

ther they aggravate existing threats. The paper concludes with some thoughts on 

the future of assessment, reflecting that practitioners will likely use bots in the 

workplace, meaning that students must also be prepared for this. 
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1 Introduction 

Academic integrity in the assessment and grading of students is key to the credibility 

of university degrees [1]. During the Covid-19 lockdowns, when many universities 

suddenly needed to switch from proctored on-campus exams to less supervised re-

mote exams, there were many reports of increased exam cheating [2, 3]. There were 

concerns that students would be able to get undeservedly good grades by delivering 

work that was not really their own, achieved by collusion with peers or outsider assis-

tance. However, cheating on assessments were a challenge long before Covid [4, 5], 

and will remain so long after.  

Recently, advances in AI have been seen as a new factor that may aggravate cheat-

ing problems. Tools like ChatGPT have an impressive ability to write both natural 

language essays and program code from assignment texts, hence student access to 
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such tools during an assessment task may enable them to solve problems that would 

have been beyond them in an unaided situation [6]. For instance, a student who knows 

little or nothing about programming, might seemingly be able to perform quite well 

on assessment tasks in a programming course, achieving a passing grade or even a 

good grade where a fail would have been more correct based on the student’s own 

competence [7].  

This paper looks at the issue from the perspective of university-level introductory 

programming courses, posing the following two research questions: 1) How well does 

ChatGPT perform on various assessment tasks typical of a CS1 course? 2) How does 

this technology change the threat profile for various types of assessments?  

The rest of this paper is structured as follows: Section 2 presents the research 

method. Then, section 3 reviews related work. Sections 4 and 5 present results for 

RQ1 and RQ2, respectively. Finally, section 5 provides the discussion and conclu-

sions of the paper. 

2 Research Method 

RQ1 is analyzed by trying out ChatGPT on a range of assessment tasks that might be 

typical for CS1 courses. It was decided to focus on one single programming language 

for this study, namely Python, which is used in many CS1 courses – including our 

own. While a complete coverage of all kinds of problems would be beyond this paper, 

it was sought to achieve reasonable coverage in having tasks at various levels of diffi-

culty, with student average scores typically ranging from 40% to 90%. The tasks tar-

geted various programming concepts, such as loops, branching, different elementary 

and composite data types, functions and parameter passing, exception handling, input, 

print, and file read and write. GUIs or object-orientation was not included, as this 

does not feature in the CS1 course at the authors’ department, rather being addressed 

in CS2.  

We also sought to cover various question genres: code comprehension and expla-

nation (e.g., what will be printed / returned? Or explain step by step), code writing, 

error identification and correction, and various code completion tasks (e.g., Parson’s 

problems, fill-ins, inline choice). Specifically, as the first code writing task, we picked 

the Rainfall problem – as a well-known problem for which unaided student perfor-

mance has been thoroughly studied. In addition, we looked at a selection of exam 

tasks from the authors’ university, for which student performance without the help of 

ChatGPT was known from exam score averages.  

RQ2 is addressed through a threat analysis [8] of various assessment types, consid-

ering what AI chatbots would be adding relative to pre-existing assessment threats. It 

must be acknowledged that this analysis is rather commonsensical rather than build-

ing on empirical evidence. 



3 Related Work 

Recently, several studies have investigated the efficiency of AI chat tools in solving 

programming tasks. Lo [9] in a broader review of literature found that ChatGPT had 

worked very well for solving assignments in economy, quite well in programming, 

and not so well in mathematics. However, for mathematics there are other tools al-

ready doing that very well (e.g., Wolfram Alpha [10]) so ChatGPT would anyway not 

be the students’ first choice. Piccolo et al. [11] found that ChatGPT worked well on 

the programming assignments given in a bioinformatics course. Surameery et al. [12]  

investigated ChatGPT’s efficiency in finding and solving programming bugs, con-

cluding that it would be a helpful tool, though also having limitations, meaning that it 

could not replace the need for professional debugging tools. Kashefi and Mukerji [13] 

looked at ChatGPT’s capabilities in solving numerical programming problems, find-

ing that good answers were provided on many problems, though there were also some 

limitations and failures on more advanced problems. Savelka et al. performed a study 

where they looked at ChatGPT’s ability to solve several different types of multiple 

choice questions about code – some formulated  only in natural language, others also 

containing snippets of code [14]. They found that problems described by text only 

tended to be solved well, while those including code snippets sometimes were wrong-

ly answered by ChatGPT. In another study by Savelka et al. [15] they investigated 

how well ChatGPT did on all the assignments in an introductory (CS1) and interme-

diary (CS2) Python course at their university. The assignments range from very sim-

ple ones (Python functions / code snippets of a few lines) to larger ones (projects with 

code bases spread across multiple files). They found that ChatGPT scored far from 

perfectly – around 70% on the CS1, 55% on the CS2 – but this would still be of sub-

stantial help to a low competence cheater who might not have achieved such a score 

otherwise. 

Several researchers have looked into the cheating threat related to ChatGPT. Rah-

man [16] discussed the usage of ChatGPT for learning and teaching programming, as 

well as looking briefly at cheating risks. Oravec [17] discussed student cheating by 

means of ChatGPT as a form of misattributed co-authorship, and suggests that one 

remedy would be to educate students better on how to document their sources and 

collaborations (both human-machine and human-human). Ouh et al. [18] found that 

ChatGPT did well on Java problems described textually – both easy ones and medium 

complexity problems – but did more poorly if part of the problem was explained by 

figures / diagrams. They suggested this could be utilized to make assessment tasks 

that would be harder to cheat on. Manoharan et al. [19] performed a study comparing 

ChatGPT with Chegg (a question-answer service depending on human experts in low-

cost countries) concerning the quality of answers to a range of CS1 and CS2 ques-

tions. They found that the answers by ChatGPT were generally as good or better than 

the answers from Chegg, although the latter cost money and took 30 minutes, while 

ChatGPT was almost instant and free.  

Other authors, while mentioning cheating risks, have focused more on the need for 

renewal in how to teach programming, and urge to avoid panic on how to avoid cheat-

ing. Maher et al. [20] discuss how AI could help the students learn how to program. 
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Similarly, Kendon et al. [21] argue that it will be futile to make strictly controlled 

assessments that prevent the usage of AI yet remain valid – instead the technological 

development should be taken as a wake-up call to rethink how we teach and assess 

programming competencies. Similar views are stated by Bull and Kharrufa [22], argu-

ing that industry is showing clear intent to increase their usage of AI in the production 

of code, so this is a competence students also need to master. Denny et al. [23] specif-

ically discuss that an essential future competence for our students is to be able to write 

good prompts to the AI (so that the AI in turn comes up with code that solves the 

problem), rather than drilling the students on how to write basic code snippets from 

scratch, and they also suggest a new type of assessment task – the prompt problem – 

to target such competence. 

4 Results for RQ1: How well does ChatGPT perform? 

4.1 The Rainfall Problem 

As our first entry in the chat, we used the same phrasing of the Rainfall Problem as 

provided as “traditional rainfall phrasing” in Lappalainen et al. (2017, p.3), except 

adding the phrase “in Python” (their task was implicitly in Java) and replacing “array” 

with “list”. We followed up with various additional requests to further explore the 

capabilities of ChatGPT. Results are summarized in Table 1, where 100% means a 

perfectly correct response, i.e., in case of code a correctly running solution, and less 

than 100% means a sub-perfect solution that would likely have caused some point 

deduction in exam grading. For the follow-up requests in the same dialogue, it was 

unnecessary to repeat the initial assignment text (then part of established context), one 

just needed to add specific requests, such as please make another implementation 

using recursion rather than a loop. 

As can be seen from the table, there was only one mistake, and this was a minor 

one. Asked to provide test cases for the first function, it came up with 5 (normal case, 

lower limit case, sentinel case, empty list, and all values lower than lower limit). In 

test case #3, the sentinel value had been changed from 999 to 5, but the expected val-

ue had not been changed accordingly. The error was thus just in one code line of 36 

total code lines for the test cases. It could be noted though that for the recursive vari-

ant of the Rainfall Problem, ChatGPT first proposed a solution that would be sub-

optimal – namely using slicing to provide the reduced list in the recursive call – which 

wastes time since slicing implies copying of the sub-list. This might not have been 

penalized in a CS1 course as optimal efficiency is seldom stressed (and if it were, the 

assignment text would not demand a recursive solution for this task). With a follow-

up question to avoid slicing, ChatGPT adapted the solution to using indices instead. 

All in all, if students had access to ChatGPT during an exam, and some variation of 

the Rainfall Problem was among the tasks, even the weakest students would likely be 

able to deliver good solutions for that problem.  

 



Table 1. ChatGPT’s results for the Rainfall Problem 

Request Result Comment 

Traditional phrasing (??) 100%  

… and test cases for function 90% Tiny error in case 4 (of 5) 

New solution (-- plagiarism) risky Only changed var. names 

…other structure 100% Using list(filter(lambda…)) 

…use list comprehension 100%  

…use while-loop 100%  

Rainfall, recursion 100% Slightly sub-optimal (Slicing) 

… without slicing 100%  

Rainfall as script w/ input() 100% while True:, ‘q’ to quit 

… only sentinel, not q 100% while True: 

… use sentinel while-test 100%  

…add exception handling 100%  

Rainfall, some other lang. 100% JavaScript, C#, C++ 

Rainfall, Java 100%  

… in requested context 100% Cf. Lappalainen 

 

 

4.2 Other short coding tasks 

ChatGPT was tried on various tasks from CS1 exams given in the authors’ own uni-

versity. These exams were given in English and native language versions. We used 

the English versions as input to ChatGPT, and results are summarized in Table 2.As 

our first entry in the chat we used the English version of the exam question as given, 

though notably only the text that could be directly pasted into the chat question field. 

Hence, illustrations or graphic parts of the Inspera UI (such as drag and drop objects, 

alternatives for inline choice gaps, etc.) would not be included, and similarly, the 

question would not include pre-existing code shown in the form of an image (which is 

sometimes done because the display of code from the standard text editor of Inspera is 

rather lackluster).  

As Table 2 indicates, ChatGPT wrote perfect code for all the six code writing tasks 

when given a complete task description. The only case that it did not solve perfectly 

was with an incomplete task description of counting local minima in a 2D numpy 

matrix. This task was partly explained by an example image. Since the image could 

not be pasted into the chat field, we tried first to paste just the text (as one would im-

agine a student faced with the task might also have done). Based on the text alone, 

ChatGPT assumed that edge elements were not eligible candidates for local minima – 

while the image clearly indicated that they were. The code written by ChatGPT did 

present a perfect solution given its assumptions, but disregarding edge elements elim-

inates a lot of complications from the task (e.g., index errors), so that the resulting 

code would hardly score anything above 50% on the task. However, thereafter provid-
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ing ChatGPT with extra information – which only needed to be a brief follow-up 

request to also consider edge elements as potential local minima – it delivered a per-

fect solution to the exam task. 

Table 2. Results for other short coding tasks 

Code writing Stud Chat Comment 

Conditional sum 78% 100% sum() and list comprehension 

Soccer field ok size? 78% 100%  

Exponential string 61% 100% Added text (code screenshot) 

String of factors 65% 100% Added text (code screenshot) 

File to list of lists 53% 100% Including exception handling 

Local minima (text) -- 50% partly explained by image 

…add explanation 36% 100%  

Comprehension Stud Chat Comment 

Digital root 74% 100% 9 LOC, recursive function 

Symbol count func 70% 100% 15 LOC, loop, if-elif-else 

Completion Stud Chat Comment 

List -> dict (fill-in) 58% 100% Paste + insert ? for gaps 

Str -> dict (2D Parson) 78% 100% 2 extra Qs to get same lines 

Fee brackets (inline choice) 51% 100%* Must list options to get exactly same 

Sequence in matrix (choice) 37% 100% Options not needed (paste w gaps) 

 

For code comprehension tasks, the typical format in the CS1 course in the authors’ 

university is to present the students with some code with short non-informative varia-

ble names, and asking what will be printed or what will be returned from a function 

given certain inputs. ChatGPT answered these questions perfectly. For such questions, 

the students would not need an advanced AI tool to cheat – any simple code editor 

with possibility to run the code would suffice. What ChatGPT offers in addition, 

however, is a nice natural language explanation of what the code does. Indeed, one 

does not even need to ask any explicit question – simply paste the code into the chat 

field, and it will immediately be explained. Subsequently, if you want to know what is 

printed or returned for specific inputs, just follow up with a short extra question about 

that, and it will provide the answer, accompanied with a step by step explanation of 

the code for that specific input. 

Some program completion tasks were also tried. These were somewhat more cum-

bersome – not because ChatGPT had any problems with the tasks as such, but because 

they could not so easily be pasted directly into the chat field. When copy-pasting the 

fill-in task, the fill-in fields did not show in the pasted text, so the user would have to 

explicitly add indication where something was supposed to be filled in. However, this 

was not very difficult – it would suffice for instance to insert a question mark in the 

code in each position where the task had a gap. 



Similarly, for the 2D Parsons task, implemented as a drag-and-drop question in the 

e-exam system, it was impossible to copy-paste the drag objects, which were images, 

not text. However, copy-pasting only the text explaining requirements for the function 

caused ChatGPT to respond with a function which was essentially the same as the 

solution, though some minor differences in approach caused some code lines to be 

slightly different from the options available to the student in the task. In particular, 

ChatGPT used enumerate in its for-loop while the student only had for i in range… 

available, and this difference caused two later code lines to be slightly different, too. 

However, only two extra questions were needed to steer ChatGPT towards the exact 

same solution as the exam task targeted – namely to use range instead of enumerate, 

and to name variables in a certain way. A similar challenge emerged with the inline 

choice question about fee brackets, where the code had 8 gaps, each with 3 alternative 

options that could be selected. The inline choice fields as such were not possible to 

paste, as students would need to click on each one to see the three options. However, 

pasting the code and simply getting “Select alternative” in each gap, was sufficient to 

have ChatGPT come up with essentially the same solution. For 6 of 8 fields ChatGPT 

had the same as the solution, while 2 of 8 contained something that did not corre-

spond to any of the three options. The code proposed by ChatGPT was also a correct 

solution to the task (disregarding options available), but it had chosen a slightly dif-

ferent approach from the teacher’s model solution. Again, a couple of extra questions 

would suffice to get an exactly same solution, for instance asking ChatGPT if it could 

replace the fragment that was different from any options with one of the three provid-

ed options and still get a working solution. For the last completion task we had tried – 

which had been very challenging for the students with only 37% score in the exam 

(albeit with penalties for choosing wrong options), ChatGPT did not even need op-

tions, it ended up providing the exact solution when pasting the task description and 

code with the text “Select alternative” in each gap and ask it to replace all occurrences 

of “Select alternative” to make a working solution. 

 

4.3 Larger Projects 

The CS1 course that the authors have been involved in does not have any larger pro-

ject work as part of the graded assessment. However, as this might be the case in oth-

er CS1 courses, it was also explored whether ChatGPT might be of help to students in 

such a context. If asked to write a Python project of considerable size (for a novice) – 

say 500 code lines – ChatGPT will respond that it is a chat program and cannot write 

such long programs. However, you can ask it for an outline. We requested an outline 

for a Python project to help a household reduce food waste, by somehow warning the 

user when food items were soon to expire, and then also suggesting recipes that in-

cluded these items. ChatGPT aptly suggested a structure with a main function and 8 

other functions, where food items and recipes would be stored in files. Two follow-up 

questions yielded proposed structures for the files (CSV for the food items file, JSON 

for recipes), and code for reading and writing the CSV file, and it would be straight-

forward to keep on asking for suggestions for code for the other proposed functions, 

too. 
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5 Results for RQ2: How does AI change the threats towards 

assessments? 

Exactly how exams and other graded assessments are conducted will vary a lot be-

tween and even within learning institutions, and this will impact the risk of various 

cheating threats. A detailed threat analysis for one specific exam setup was not con-

ducted here, rather we took a more general view, considering some broad types of 

assessment, with the purpose of identifying how ChatGPT and similar AI tools might 

change the overall risk profile of assessments. The types of assessment considered 

were thus four types of written exams: on-site proctored exams using PCs with lock-

down, on-site proctored with open PCs, remote proctored exams, and remote un-

proctored exams; two types of oral exams: on site and remote by video conference, 

and two types of longer-duration coursework: with and without checkpoints during 

the semester. Across these various assessment types, there are some broad categories 

of cheating threats that can be considered: (a) Impersonation – another person does 

the assessment work altogether. For an on-site oral or written examination, this might 

entail somebody else showing up with a fake ID (or with sufficient resemblance to the 

candidate that the read ID could be used) (b) Illegal assistance – the right person is in 

the exam room, technically answering the questions, but is doing so by means of hints 

or answers somehow received from other persons, who could be other exam-takers, 

corrupt employees, or outside helpers. (c) Usage of forbidden tools or materials – like 

using a calculator in a math test supposed to be done without one, googling for an-

swers, or using cheat notes or a book in a test not allowing such sources. (d) Plagia-

rism – you were allowed to use sources, if explicitly cited, but instead deceptively 

gave the impression that source content was written by yourself.  

Technically, AI is in the category (c) of forbidden tools, and potentially (d) plagia-

rism if the candidate deceptively presents AI text as self-authored. Traditionally, cate-

gories c and d have been less potent for grade gain than (a) and (b). If an impersonator 

or helper is much more competent than the candidate, this can easily give an F to A 

grade lift due to cheating. Googling for answers, plagiarizing etc., would seldom lead 

to A answers unless the candidate is lucky to find a direct hit which perfectly matches 

the task at hand. Rather, weak candidates cheating in this way would often end up 

with answers where different parts of code or text do not quite fit together. The thing 

about AI, however, is that while it is technically in the category c/d (forbidden tool, 

plagiarism), the quality it delivers – at least for many types of questions – is more on 

par with what a cheater could achieve by help of a competent impersonator or human 

assistant during the exam.  

There could be several ways of cheating by means of AI, depending on the rules 

concerning AI usage in each course. We will consider two main options in that re-

spect: (i) Forbidden usage: The candidate uses AI while answering an assessment 

task where AI usage was not allowed. (ii) Undeclared usage: The usage of AI was 

allowed on the condition that the candidate is explicit about it, e.g., precisely report-

ing what code was generated by AI, and what was written by oneself, or attaching 

screenshots of all communication with the AI tool. However, the candidate’s report-

ing on this could be dishonest, making excessive claims of self-authoring where code 



was really AI generated, and omitting the required attachment of conversation screen-

shots.  

Table 3 presents a summary of various cheating threats that are aggravated by AI. 

Altogether, there are many more cheating threats related to exams and other assess-

ments, but we deliberately skip discussions of threats for which AI chatbots do not 

change the risk assessment. For instance, old fashioned tricks like cheat notes, whis-

pering, looking at the answers of neighbors (school exams), plagiarism by copy-paste 

(home-exams, term papers), and free-riding (group projects; posing to have contribut-

ed a fair share while really doing nothing) will still be available to cheaters regardless 

of the development in AI. The table instead concentrates on ways of cheating which 

are made easier (less effort needed to cheat), more effective (bigger potential gain in 

performance by cheating), or less risky (reduced chance of getting caught) by the 

advent of AI chatbots.  

Table 3. Cheating threats most importantly aggravated by AI 

Type of exam Way of cheating (Risk) Role of AI 

Supervised on-site exam with 
lockdown 

Breaking lockdown (L) 
Using cellphone (H) 
Help via earpiece (?) 

Answer search more effective 
Answer search more effective 
Outside helper more effective w AI 

Supervised on-site exam without 
lockdown (assuming tool usage 
allowed) 

Plagiarism (M)  
Prompt sharing (H) 

Answers of better quality 
Prompts are shorter and easier to 
share than the resulting code 

Remotely proctored home-exam 
with lockdown 

Use extra device (H) 
Use third p. helper (H) 

Answer search more effective, quick-
er 
Third person helper more effective w 
AI 

Un-proctored home-exam (as-
suming tool usage allowed) 

Plagiarism (H) Can deliver unique answer which is 
not caught by plagiarism check 

Long-term project / coursework 
(assuming tool usage allowed) 

Plagiarism (H) AI can deliver unique answer not 
caught by plagiarism check 

On-site oral exam Hidden ear-piece (L) AI makes remote helper more effec-
tive 

Remote oral exam (video conf.) Use extra device (H) AI makes search quicker 

 

The contents of Table 3 could be explained as follows: 

• Supervised on-site exam with lockdown: Since lockdown is typically used to pre-

vent students from accessing the internet and files on their own PC, most such ex-

ams will likely have the rule that usage of AI is forbidden. The risk that students 

circumvent this lockdown is fairly low, since few would have the necessary tech-

nical competence to do it, and even then facing some risk of discovery if there is 

also on-site supervision. The much bigger risk for supervised school exams is the 

usage of mobile phones, especially during toilet visits [24]. Exam regulations may 

state that invigilators should be able to see candidates, meaning that the door to the 

toilet booth should be left open. However, it is extremely rare that invigilators en-

force this, as it feels embarrassing for both parties. Googling for answers to a pro-

gramming problem during a toilet visit might not be fully effective. Unless it is a 
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very standard and straightforward problem the would-be-cheater would only find 

partial solutions, which would then have to be adapted to fit the task, meaning that 

weak students would still have weak answers (though might have achieved the cru-

cial lift from F to E). Chatbots like ChatGPT can do a lot better, giving perfectly 

fitting answers to typical CS1 tasks, as seen in section 4. 

• Supervised on-site exams without lockdown: The motivation for using this form of 

assessment would typically be to enable students to use professional programming 

environments – and this type of exam might even allow the usage of AI tool sup-

port. If AI is allowed, one might think there is no particular cheating threat related 

to it – and this might be true. Instead, the challenge becomes to develop exam tasks 

that measure relevant student competence in spite of their using AI. For instance, 

this could be perceived as moving the task of the student from “writing good code” 

to “writing good docstrings” (which in turn causes GitHub Copilot to write good 

code) or “writing clear natural language requests” (which in turn causes ChatGPT 

to write good code). This does still cause some change to the cheating risk: The 

docstring or natural language request is typically a lot shorter than the resulting 

code. Hence, while it would be prohibitively risky and time-consuming for a stu-

dent to try to help a peer by sending one’s entire code to the other candidate, the 

docstrings or natural language requests can much more easily be shared by sms or 

similar – typed and read during toilet breaks. Moreover, if the AI generates unique 

code even with similar prompts, this kind of cheating has much less risk of getting 

caught for plagiarism than what is the case if sharing the answer code directly. 

• Remotely proctored home exams: These are rare in Norway, so we will not dwell a 

lot on them. It may be impossible or risky for the student to use forbidden AI tools 

on the exam PC, due to lockdown or screen capture by the remote proctoring sys-

tem. Using a second device instead will be more feasible, if able to do so without 

looking suspicious on the video. If it is hard to accomplish alone, you could also 

have a third person helper using AI on your behalf (e.g., using a cable splitter to 

send the monitor picture also to the next room, outside video surveillance, where 

the helper can work out answers by means of AI and then just needs to somehow 

communicate them back, e.g., by wireless communication to the candidate’s hid-

den ear-piece. 

• Un-proctored home-exams and coursework: Here it is typically allowed to use 

tools and sources, but you may have to declare what you have used, and be explicit 

about what code you wrote yourself, and what was written by AI. It is however 

hard to check whether candidates are truthful about this. Similar to on-site exams 

where tool usage is allowed, the teacher would typically try to change the assess-

ment task, not having something where the assignment text can simply be fed into 

the AI tool. Instead, one might opt for a task where substantial work is needed by 

the student to understand and structure the problem, before the student can even 

begin to pose requests to the AI chatbot. Again, then, the cheating threat would 

move from the sharing of code to the sharing of natural language requests likely to 

result in good code. A mitigation against this would be to give each student a dif-

ferent programming assignment for the home-exam, or a different case for the pro-

ject work, removing the potential for sharing of the natural language requests. 



However, this might increase the burden of assessing and grading the work. More-

over, the old threat of getting help from somebody more competent will always 

loom large over unsupervised home-exams and coursework – and if this helper on-

ly needs to write some quick natural language requests rather than hundreds of 

code lines, more candidates might be able to secure such help. 

• On-site oral exams: These are considered to have low cheating risk [25], and AI 

does not change this – at least not currently. In a face-to-face situation with two 

examiners, it will be very difficult for a student to type on a device to search for 

answer hints along the way. A device able to interpret voice might be helpful, for 

instance transcribing the examiner’s question, feeding it automatically to ChatGPT, 

and then delivering the answer back to the student. However, receiving the answer 

is also hard, as the candidate cannot be seen looking at a device – it would have to 

be a synthetically spoken answer delivered to the candidate through a hidden ear-

piece. Unless answers are meant to be very short and factual (which would be poor 

usage of oral examination relative to its potential for assessing a wider range of 

learning outcomes), this might not give much gain in performance. In an oral ex-

amination having the form of an instant dialogue, the candidate would struggle to 

respond fluently while at the same time listening to prompts via a concealed ear-

piece. 

• Remote oral exams via video conference: These have somewhat higher cheating 

risk than face-to-face orals, since the candidate has more options in receiving hints 

from AI, e.g., having a device strategically placed outside the webcam angle, yet in 

a position which makes it seem the candidate is just looking in the general direc-

tion of the screen. Still, cheating is much more difficult in the oral examination 

than in the written one, especially if it is conducted as a dialogue with frequent 

twists and follow-up questions, rather than just having the candidate answering one 

long question [26]. 

 

6 Discussion and conclusion 

AI chatbots can do very well on short, concise programming tasks that are typical of 

many CS1 courses – as found in our study, and also in those mentioned in related 

work. They can also do well on longer programming tasks, though this will require a 

longer dialogue, where the candidate may first need to ask what functions or classes 

the program should consist of, then ask for code for each of these. As we have indi-

cated in section 5, even supervised on-campus written exams carry a considerable 

cheating risk – a likely approach of a would-be cheater is to use a mobile phone with 

an AI chatbot to seek answers to exam questions. Usage of mobile phones is not a 

new cheating threat, but ChatGPT or similar will deliver answers of much higher 

quality than what the candidate would likely achieve by ordinary web search. For 

home exams, another issue is that while copy-paste from web sources may get you 

caught for plagiarism, the usage of AI chatbots might not, since the answer could be 

different every time even if several students ask the same question. AI might not (yet) 
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beat the quality you could achieve by having a highly competent friend – or hired 

ghost writer – do the home-exam or project for you. However, not all have access to 

such a friend, nor the money to hire a ghost writer or use a pay-per-answer web-

service such as Chegg – yet everybody can be able to paste the question text into 

ChatGPT or GitHub Copilot. Hence, AI chatbots have not changed the worst-case 

cheating threat – which is still that an F level candidate gets his exam done by an A 

level ghostwriter – but it has made somewhat similar assistance available to every-

body, thus “democratizing” a cheating threat that was previously exclusive to the 

lucky few. 
Based on our investigations, as well as advice found in some of the related work, 

some potential advice are as follows: 

• For exams, whether to be conducted at home or supervised on campus, have a mix-

ture of different question types. In particular, avoid having only questions with 

short textual descriptions requesting short code written from scratch, as this is the 

task type most aptly solved by ChatGPT. 

• Images as a vital part of the task description will make it much more difficult to get 

a quick solution from current mainstream AI-tools – but take care that visually im-

paired candidates are not disadvantaged. One use of images might be to convey in-

put-output relations, e.g., with some 2d numpy array as input, this other array 

should be the resulting output; or maybe the code is going to plot some graphic 

output. Another usage of images could be to show partly complete code where the 

students are going to fill in what is missing. With some digital exam systems, there 

is good reason to use images for this anyway, as writing the code directly as text in 

the system (e.g., Inspera) gives a poor display of the code. 

• Fill-in tasks can be more cumbersome to solve with AI than tasks where the code is 

to be written from scratch. The fill in fields, especially inline choice, do not paste 

well from digital exam systems like Inspera and into a text editor or input field of 

an AI chatbot. Although the AI may come up with an ok generic solution for the 

task, this solution might not fit the one used by the question author, in which case it 

will not be obvious to the student what to put in the various fill-in gaps in the code.  

• Especially for home-exams, remember that AI chatbots is not the only cheating 

option, and maybe not even the most potent one. Students who have access to a 

much more competent friend who can do the exam for them, or funds to hire such 

help online, would be able to come up with good solutions even for tasks where AI 

chatbots currently fall short. 

• If the learning outcomes of your course makes it viable to allow the usage of AI 

chatbots, this could be a good idea, since allowing it sort of makes that type of 

cheating disappear. Still, remember that this will not make all cheating disappear. 

As the challenge for the students moves from code writing to prompt writing, 

cheating is likely to move along, for instance to sharing of prompts instead of shar-

ing of code or having a more competent person write the prompts for you. 

Hence, countermeasures against AI chatbots should not be your only concern when 

it comes to cheating – there should be a wide range of countermeasures, not only 

focusing on control and punishment, but also addressing the factors that make stu-



dents want to cheat in the first place, such as test anxiety, grade pressure, etc. If cheat-

ing can be reduced by giving students an improved feeling of mastery during the se-

mester, thus reducing grade anxiety, this will be better than controlling and prosecut-

ing cheating, which causes a lot of labor both for teachers and the university admin-

istration, as well as cost to the society in terms of students being excluded from their 

studies for 6 or 12 months due to cheating.  
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