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Abstract

Since the introduction of the Retinex theory by Land and McCann

in 1971, a multitude of different families, versions, interpretations, im-

plementations, and applications have been proposed. The applications

for image enhancement mainly differ in (i) how they explore the loc-

ality of the images to determine the local context, and (ii) how they

recompute the pixel values based on this context. STRESS (spatio-

temporal Retinex-inspired envelopes with stochastic sampling) is one

of many quite successful members of the family of Retinex-based im-

age enhancement algorithms. It explores the locality using a stochastic

sampling technique, resulting in two envelope images – one maximum

and one minimum envelope, completely enclosing the image signal and

serving as a representation of the local image context. In this paper,

we propose to exchange the stochastic sampling technique of STRESS,

which causes significant chromatic noise, with an adapted version of

constrained linear anisotropic diffusion for computing the envelopes,

resulting in almost noise-free images. Using both subjective experi-
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ments and objective image metrics, we show that it improves the per-

ceived and measured image quality and reduces noise artefacts.

1 Introduction

The basic purpose of image enhancement is to improve the perceived quality

of an image for a human observer. Many techniques have been proposed over

the years, with varying effectiveness and efficiency. A common strategy for

many algorithms is that they in one way or another try to mimic some prop-

erties of the human visual system. Many such algorithms are based on the

Retinex theory of colour vision [1, 2, 3]. Retinex-based image enhancement

is often a two-step procedure. Firstly, the local context of the image is com-

puted. Secondly, the pixel values are recomputed based on the local context.

Many families, versions, interpretations, and implementations of Retinex-

based image enhancement techniques have been proposed over the years,

and it has been used for various colour imaging applications such as colour

correction, computational colour constancy, HDR image rendering [4], colour

gamut mapping, and colour-to-greyscale conversion [5]. More recent devel-

opments take Retinex-based methods in the direction of deep learning [6, 7,

8].

STRESS – Spatio-temporal Retinex-inspired envelopes with stochastic

sampling – is one quite successful member of the family of Retinex-inspired

algorithms [9]. In STRESS, the locality is represented by two envelope colour

images with gamma-corrected RGB values, Emax and Emin, which have the

properties 0 ≤ Emin ≤ u0 ≤ Emax ≤ u0, where u0 is the original image. Like
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for other Retinex-based algorithms such as RSR [10], these envelopes are

computed by a stochastic sampling technique, and are thus subject to chro-

matic noise. The noise in each channel is caused by the random sampling, and

the chromatic content of it is caused by the fact that the three colour chan-

nels are sampled independently. In the second step, the (gamma-corrected)

values of the original image are linearly rescaled using the envelopes.

In this paper, we propose another method for exploring the locality in the

STRESS algorithm to significantly reduce the noise caused by the stochastic

sampling. Like other more recent methods like STRETV (based on total

variation, which is isotropic) [11] and ReMark (based on Markov chains, also

isotropic) [12], we focus our attention on diffusion-based approach. By intro-

ducing an adapted and constrained version of linear anisotropic diffusion –

a technique originally aimed at reducing image noise that has recently been

applied to colour imaging applications beyond denoising [13, 14] – for com-

puting the envelopes, we will be able to minimise the image noise resulting

from the noise in the envelopes.

In Section 2, we present the basic ideas of the STRESS algorithm and

anisotropic diffusion. Then, in Section 3, we detail the proposal of using

anisotropic diffusion for computing the envelopes and show example results.

The experimental setup for evaluating its performance both in terms of over-

all image preference and noise is described in Section 4, and the results are

given in Section 5, before concluding in Section 6.

3



2 Background

2.1 STRESS

Some Retinex-based implementations explore the images by using paths or

computing ratios with neighbours in a multilevel framework [3, 15, 16, 17,

18, 19] or using models of Brownian motions to analyse the image along

paths [20, 21]. Other implementations compute values over the given image

with convolution masks or weighting distances [22, 23, 24, 25, 26]. In refer-

ence [10], the path-based scanning was substituted by a new approach using

random sampling of a cloud of points.

A similar approach was followed for the STRESS algorithm [9]. Here,

the visual context was characterised using two envelopes Emax and Emin.

For each pixel, p0, the values of the maximum and minimum envelopes at

the corresponding positions, are computed through N iterations. In every

iteration, M pixel values pi in each channel are sampled at random with a

probability proportional to 1/d, d being the Euclidean distance in the image

from the sampled pixel to the pixel in question. The value of the centre pixel

is not eligible for random sampling but is always included in the sampled set.

From these samples, the maximum and minimum samples in the spray are

found: smax = max(pj), smin = min(pj). Since p0 is always among the sample

points, it is granted that smin ≤ p0 ≤ smax. These maximum and minimum

points could be taken as direct estimates for the envelopes. However, better

results were achieved when the relative position vi of the pixel p0 within the

range ri = smax − smin was used.
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The final envelopes were computed as

Emin = p0 + v̄r̄ (1)

Emax = Emin + r̄ (2)

where v̄ is the average of the v values, and r̄ is the average of the r values

over the N iterations. The new image is recomputed by stretching the image

to these envelopes,

p =
p0 − Emin

Emax − Emin
(3)

It should be noted that this is a quite heavy computational technique that

requires O(NMP ) operations, where N is the number of iterations, M is

the number of samples per iteration, and P is the number of pixels in the

image.

The sampling technique also introduces a significant chromatic noise, see

the example in Figure 13. The type of noise is quite particular to STRESS.

To the best of our knowledge, this type of noise has not been characterised in

the literature. A histogram of the noise in each colour channel, produced by

computing the difference between STRESS images with 100 (noisy) vs. 1000

(virtually noiseless) iterations, is shown in Figure 1. It is symmetric, but

far from Gaussian. There is no correlation between the noise of the different

image channels.
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Figure 1: Histogram of the noised caused by the random sampling in the
STRESS algorithm.

2.2 Anisotropic Diffusion

Since this method produces significant chromatic noise, another approach is

taken in the STRETV algorithm [11]. Here, the constrained total variation

method is used to calculate the envelopes. Total variation minimisation res-

ults in a process very similar to non-linear isotropic diffusion. This imple-

mentation showed promising results when used in contrast enhancement and

in automatic colour correction, with significantly reduced noise levels. How-

ever, due to the non-linearity of total variation, the method requires a tiny

time-step and thus very many iterations to converge. Although it behaves

nicely near edges in the original image, it creates some artefacts near corners

and lines of high curvature.

Various diffusion techniques have been widely used in computer vision

and image processing to reduce the image noise without removing significant
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information from the image. One important technique was the Perona–Malik

diffusion [27], which is an isotropic, local, non-linear diffusion technique, not

too different from total variation minimisation. Unfortunately, Perona–Malik

diffusion was misnomed ‘anisotropic diffusion’. Real anisotropic diffusion for

image processing was first described by Tchumperle and Deriche [28] as a

non-linear process.

The starting point for Tschumperle and Deriche non-linear anisotropic is

the 2×2 structure tensor S of the original image [29], whose components for

every single pixel can be expressed as

Sij =
∑
µ,v

∂uµ0
∂xi

∂uv0
∂xj

(4)

Here u0 denotes the original image, the indexes µ and ν denote the colour

channels, and xi and xj denote the two spatial directions. The eigenvalues

of the structure tensor S are denoted λ+ and λ−, and the corresponding

normalised eigenvectors e+ and e− are stored as columns in the orthonormal

eigenvector matrix V , such that the structure tensor can be written S =

V T diag(λ+, λ−)V [14]. From this, the diffusion tensor is then defined as

D = V T diag(d(λ+), d(λ−))V (5)

where d(λ) is a nonlinear diffusion coefficient function (Equation (6)) [14]

whose task is to suppress the diffusion across the edges while preserving it

along the edges,

d(λ) =
1

1 + κλ2
(6)
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and κ is a suitably chosen numeric constant. Higher values of κ will give

more edge preservation in the image.

Having defined the diffusion tensor, D, anisotropic diffusion results from

solving the Euler–Lagrange equations for minimising its eigenvalues by gradi-

ent descent using the artificial time parameter t (corresponding to the iter-

ations when discretised),
∂u

∂t
= ∇ · (D∇u) (7)

It has been found in various studies (see, e.g., [13]) that the structure

tensor, and thus the diffusion tensor, can be computed once and for all

from the original image. Then, the diffusion equation, Equation (7) becomes

linear. In the same study, it was also found that the anisotropic diffusion was

better than the isotropic one (Perona–Malik-type) for preserving edges and,

in particular, corners.

It should be noted that, even after linearisation, the solution of the

anisotropic diffusion equation employing iterative gradient descent is, like

STRESS, a computationally heavy procedure. The diffusion lengths, and

thus the number of iterations needed, are on the order of the image size, and

the diffusion tensor that reduces the diffusion locally increases the need for

iterations further.

3 Proposed Algorithm

We introduce a new model for spatio-temporal image enhancement, which we

call STREAD (Spatio-Temporal Retinex-Inspired Envelope with Anisotropic

Diffusion). This model is based on the STRESS algorithm, which has a main
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feature of computing the envelopes Emax and Emin for each channel of the

image. However, instead of applying stochastic sampling to obtain Emax and

Emin as in STRESS, we propose to use anisotropic diffusion [28]. The second

part of the algorithm, i.e., the recomputation of the pixel values based on

the computed envelopes, remains unaltered.

3.1 Anisotropic Diffusion for Computing the Envelopes

The envelopes of STRESS are images Emax and Emin with the property that,

for each image channel in the original image u0, 0 ≤ Emin ≤ u0 ≤ Emax ≤ 1.

The basic idea here, is to use the diffusion tensor of anisotropic diffusion,

Equation (5) to compute alternative versions of the STRESS envelopes. This

can be achieved in two different ways. Either, one can use the original image

as the initial value for both envelopes, or one can use a black image as the

initial value for the minimum envelope and a white image for the maximum

one. In both cases, adding a data attachment term to the diffusion equation

will ensure that the envelopes will stay reasonably close to the image. The

resulting equations for the envelopes are

∂Emax

∂t
= ∇(D∇Emax)− λ(Emax − u0) s.t. Emax ≥ u0 (8)

∂Emin

∂t
= ∇(D∇Emin)− λ(Emin − u0) s.t. Emin ≤ u0 (9)

Normal boundary conditions are applied to the envelopes to make sure

that there are no problems when calculating with the pixels at the border

of the image. The equations are solved by the explicit Euler method for the

time integration, and centred differences for the spatial derivatives. For each
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iteration, Emax and Emin are constrained so that they are greater than or

smaller than the original image, respectively. The envelopes and the original

image are finally used to recompute the image exactly as in the original

STRESS algorithm.

3.2 Resulting Envelopes

In Figure 2, the envelopes for STRESS and STREAD are shown. The envel-

opes contain some of the original image content, always brighter (for Emax)

or darker (for Emin), and preserve the edges of the image. A plot of the cor-

responding scan lines is shown in Figure 3. One can see that the envelopes of

STREAD are smoother than those of STRESS, and also that they, in gen-

eral, are not so close to the original image. This means that STREAD will

lead to less dramatic changes of the images. Notice also how both algorithms

can follow sharp edges in the image (left part of the graphs). The less sharp

transitions for the STREAD envelpes on the right part of the graph can

be explained by other image information transversal to the scan line that

diffuses into the shown line of the image.

3.3 Impact of Parameters

As with the STRESS algorithm, the behaviour of STREAD varies with the

values of its parameters. We will now explore in more detail how these para-

meters influence the output of the algorithm.

Although both STRESS and STREAD converge to the final solution,

iterations in STRESS and STREAD have quite different effects. STRESS

iterates the stochastic sampling and computes the average to reduce the
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(a) Emax STRESS, N = 1000 itera-
tions

(b) Emin STRESS, N = 1000 itera-
tions

(c) Emax STREAD, N = 1000 itera-
tions

(d) Emin STREAD, N = 1000 itera-
tions

Figure 2: Envelopes: κ = 1000 for STREAD, M = 3 sampling points for
STRESS
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Figure 3: Scan lines for the envelopes shown in Figure 2.
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sampling chromatic noise, while iterations in STREAD bring you closer to

the stationary solution of the constrained PDEs.

The algorithm was tested with N ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

iterations. With this test, it was easier to see the difference in what the higher

iterations did with the output. In Figure 4 the envelopes are shown for the

extreme values of N in this set, and Figure 5 shows the resulting images.

The edges are much sharper in the image with the most iterations. We can

also notice some artefacts starting to appear near the edges.

As for the iterations, experiments were performed with κ to determine

what value it had to be to give the best output. While testing the highest

value for iterations, a value of κ = 1000 was used. When the number of

iterations got higher than 700, artefacts like halos started to appear on edges

in the image. Results for different values of κ are shown in Figure 6 and

Figure 7 for the envelopes and resulting images, respectively. In Figure 7a,

we can see how the halos appear around the edges in the image (see, e.g.,

the greenish area in the sky close to the red/pink caps, number four from

the left). To counter this, a higher value of κ is needed, since higher values of

κ will give more edge preservation in the image. Even with κ = 100000 and

N = 1000, some artefacts still appear around some edges, but lower number

of iterations does not result in these artefacts. Based on this, κ was set to

10000 and N ∈ {300, 350, 400, 450, 500, 550, 600} for the remaing studies.

The last variable is λ, which is used to control the strength of the data

attachment. The data attachment term λ(u−u0) in Equation (8) and Equa-

tion (9) is a regularisation term that incorporates the prior information about

the original image into the enhancement process, and acts as a constraint
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(a) Emax for N = 100 iterations (b) Emax for N = 1000 iterations

(c) Emin for N = 100 iterations (d) Emin for N = 1000 iterations

Figure 4: STREAD envelopes for N ∈ {100, 1000} iterations, κ = 1000
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(a) N = 100 iterations (b) N = 1000 iterations

Figure 5: STREAD: 100/1000 iterations, κ = 1000
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(a) Emax for N = 1000, κ = 1000 (b) Emax for N = 1000, κ = 100000

(c) Emin for N = 1000, κ = 1000 (d) Emin for N = 1000, κ = 100000

Figure 6: Envelopes for κ = 1000 and κ = 100000
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(a) κ = 1000 (b) κ = 5000

(c) κ = 10000 (d) κ = 50000

(e) κ = 100000

Figure 7: Images with different values of κ
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(a) N = 250 iterations, λ = 0.01 (b) N = 250 iterations, λ = 0.001

(c) N = 500 iterations, λ = 0.01 (d) N = 500 iterations, λ = 0.001

Figure 8: Images with different values of λ and N . κ = 1000, λ ∈
{0.01, 0.001}, and N ∈ {250, 500}.

that minimises the discrepancy between the envelope and the original im-

age [30, 31]. If λ = 0, the envelopes will be flat, resulting in the algorithm

becoming spatially independent or global. If λ → ∞, the envelopes will be

the same as the original image. Results for different values of λ can be seen

in Figure 8.

Figure 9 shows a comparison between STREAD and STRESS for different

numbers of iterations. We can see that STREAD is better at enhancing the

vertical lines on the wall. STRESS also amplifies the noise present in the

more uniform areas.
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(a) STREAD, N = 300 (b) STREAD N = 400 (c) STREAD N = 500

(d) STREAD N = 600 (e) STRESS N = 300 (f) STRESS N = 400

(g) STRESS N = 500 (h) STRESS N = 600

Figure 9: Comparison between STREAD and STRESS for different itera-
tions. The images have been cropped to a smaller region to better show
differences.
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3.4 Colour Balance

One challenge with the preliminary experiments was that while STREAD

kept more or less the same colour balance as the original, STRESS made the

images a bit brighter and a bit blue, see Figure 11. In order for the images to

become more comparable, the last stage of STRESS was modified to coun-

teract this. Two linear scalings for preserving white and gray and a gamma

correction for preserving gray were added. The difference between these two

can be seen in Figure 10. The linear scaling to preserve gray was chosen since

it was the one that looked most similar to the original and STREAD. The

scaling is performed for each channel separately by multiplying the result

with the mean of the original image, and then dividing it by the mean of

the resulting image. After these preliminary experiments, the final image set

was chosen.

4 Subjective Experiment

4.1 Comparing STREAD with STRESS

In a preliminary experiment, we compared visually the images resulting from

STREAD to those of STRETV [11], and found that the STREAD images

were so much better than the STRETV ones, that STRETV was left out

of the experiments. The images generated by STREAD and STRESS were

compared by a subjective survey and objective image metrics. Initial tests

indicated that STREAD performed well with κ = 10000, λ = 0.001 and

N ranging from 300 to 600. A sample of 10 standard RGB test images was
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(a) Default STRESS (b) Linear scaling to preserve white

(c) Linear scaling to preserve gray (d) Gamma correction to preserve
gray

Figure 10: Colour-corrected images for STRESS
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(a) Image with STREAD (b) Image with STRESS

(c) Original image

Figure 11: Image after STREAD and STRESS

selected for a paired comparison evaluation. The selected images are standard

test images with a good range of different properties in terms of level of detail,

contrast, and colours. The original images are shown in Figure 12. Seven

pairs (STRESS and STREAD) were computed for each original image, with

iterations N ∈ {300, 350, 400, 450, 500, 550, 600}. All the resulting images are

available as supplementary material.

QuickEval [32] was used for setting up and running the experiment in the

lab. A gray background was used behind the images and a 200 ms delay was

added before going to the next image to avoid the memory effect from the

previous stimulus. The experiment was run in a controlled room to make sure

that there were no other disturbances during the experiment. The computer
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(a) Alley (b) Caps (c) Flower

(d) Red boat (e) Sunrise (f) Sunset

(g) Small alley (h) Overhead (i) Church

(j) White flower

Figure 12: Image set used in survey
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screen, an Asus PA32UCG with a resolution of 3840×2160, was calibrated

using an i1 Display Pro. The colours for the screen were in sRGB and the

luminance 300 cd/m2. The distance from the participants was 70 cm, with

the room fully lit. The dynamic ranges of the display and the selected images

were not so high that glare was a relevant factor.

The experiment was set up on campus and a group of students from the

university was picked to do the experiment. The students had different aca-

demic backgrounds and genders. A total of 22 observers participated in the

experiment. The experiment was conducted in two parts. The first part ana-

lysed image preference and the part analysed image noise. For both parts,

the observers were presented with instructions on what to do. For the im-

age noise part, the observers were first shown an image with chromatic noise,

Figure 13, for them to know what kind of noise we were looking for. To make

sure only results of comparable computational complexity were compared,

the participants were shown only the pair of images that had the same num-

ber of iterations. So, e.g., STRESS_300 was compared to STREAD_300.

The image pairs that were shown had their placement randomized, to avoid

some bias toward one of the images.

4.2 Comparing STREAD with the Original Images

To assess how well STREAD performs in comparison with the original im-

ages, we set up a pair-comparison experiment where the 10 original images

(Figure 12) were compared to STREAD with 300, 450 and 600 iterations.

This resulted in 30 pairs for observers to evaluate, shown in random order.

Observers were asked to select the image they preferred. The experiment was
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Figure 13: A comparison of the chromatic noise. STREAD above, STRESS
below, cropped and zoomed version on the right.
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Figure 14: Results from image preference experiment. The bar plot shows
the number of times STRESS and STREAD were preferred by the observers
for the different images.

carried out using QuickEval [32], as an uncontrolled online experiment. A

total of 31 observers participated in the experiment.

5 Results and Discussion

5.1 Subjective Experiments

The raw data from QuickEval for the image preference part of the subjective

experiment is shown in Table 1. The table contains the number of times the

given image was preferred by the participants. The table is set up such that

the image on the y-axis is the one selected. For example, for the Alley image

at N = 300 iterations, the STRESS image was selected by 6 observers and

the stress image STREAD image by 16. The same data is shown graphically

in Figure 14.

To analyse the statistical significance of the results from the experiment,
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Table 1: Raw data for image preference for the individual images (down) and
iterations N (across).

300 350 400 450 500 550 600

Alley
STRESS 6 3 3 1 3 2 3

STREAD 16 19 19 21 19 20 19

Caps
STRESS 10 12 11 9 6 7 8

STREAD 12 10 11 13 16 15 14

Church
STRESS 2 2 3 3 3 2 2

STREAD 20 20 19 19 19 20 20

Flower
STRESS 8 6 5 7 4 3 3

STREAD 14 16 17 15 18 19 19

Overhead
STRESS 4 5 4 1 2 3 2

STREAD 18 17 18 21 20 19 20

Red boat
STRESS 6 4 3 4 2 2 3

STREAD 16 18 19 18 20 20 19

Small alley
STRESS 3 5 5 4 4 2 3

STREAD 19 17 17 18 18 20 19

Sunrise
STRESS 2 1 2 7 3 2 3

STREAD 20 21 20 15 19 20 19

Sunset
STRESS 2 2 7 5 7 3 2

STREAD 20 20 15 17 15 19 20

White flower
STRESS 2 2 1 2 4 3 3

STREAD 20 20 21 20 18 19 19
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a two-sided binomial test with the null hypothesis H0 : p = 1/2 was con-

ducted. The resulting p-values for the individual comparisons are given in

Table 2. Using a threshold of p < 0.05, as shown in the coloured cells of

Table 2, we can see that many of the results are statistically significant, all

in favour of STREAD. Even with thresholds of p < 0.01 and p < 0.001, many

results are still significant. Even though not all the individual comparisons

are statistically significant, it should be noted that there is not one single

occurrence of a statistically significant preference of STRESS over STREAD.

Combining all iterations for STREAD and STRESS for each image, the

binomial test gives the p-values shown in Table 3. Here we see that the p-

values are so small that we can easily draw conclusions about which algorithm

is best for image preference. Finally, a last binomial test was done on all

STREAD versus all STRESS images, resulting in a p-value p = 5.5×10−153.

The raw data from QuickEval for the subjective experiment on resulting

image noise is shown in Table 4. It is set up similarly to Table 1, and shows

the number of times one image was perceived to be more noisy than the

other. The corresponding graphical representation is shown in Figure 15.

A brief look at the table shows us that the images created with STRESS

are selected by far the most, and in some cases, they are even the only one

selected.

The trend is even more pronounced than for the image preference, which

is also confirmed by the individual p-values for the binomial tests shown

in Table 6. Contrary to the image preference, there is no p-value for this

test that has a value larger than 0.05. Using a threshold of p < 0.05, the

coloured cells, we can infer that the result is statistically significant. However,
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Table 2: p-values for image preference with individual images (across) and
iterations N (down). white: p ≥ 0.05, yellow: 0.05 > p ≥ 0.01, green: 0.01 >
p ≥ 0.001, blue: p < 0.001.

Images

Alley Caps Church Flower Overhead

N

300 5.2× 10−2 8.3× 10−1 1.2× 10−4 2.9× 10−1 4.3× 10−3

350 8.6× 10−4 8.3× 10−1 1.2× 10−4 5.2× 10−2 1.7× 10−2

400 8.6× 10−4 1.0 8.6× 10−4 1.7× 10−2 4.3× 10−3

450 1.1× 10−5 5.2× 10−1 8.6× 10−4 1.3× 10−1 1.1× 10−5

500 8.6× 10−4 5.2× 10−2 8.6× 10−4 4.3× 10−3 1.2× 10−4

550 1.2× 10−4 1.3× 10−1 1.2× 10−4 8.6× 10−4 8.6× 10−4

600 8.6× 10−4 2.9× 10−1 1.2× 10−4 8.6× 10−4 1.2× 10−4

Images

Red boat Small alley Sunrise Sunset White flower

N

300 5.2× 10−2 8.6× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4

350 4.3× 10−3 1.7× 10−2 1.1× 10−5 1.2× 10−4 1.2× 10−4

400 8.6× 10−4 1.7× 10−2 1.2× 10−4 1.3× 10−1 1.1× 10−5

450 4.3× 10−4 4.3× 10−3 1.3× 10−1 1.7× 10−2 1.2× 10−4

500 1.2× 10−4 4.3× 10−3 8.6× 10−4 1.3× 10−1 4.3× 10−3

550 1.2× 10−4 1.2× 10−4 1.2× 10−4 8.6× 10−4 8.6× 10−4

600 8.6× 10−4 8.6× 10−4 8.6× 10−4 1.2× 10−4 8.6× 10−4

29



Table 3: p-values for each image across iterations

Alley 4.2× 10−21

Caps 2.9× 10−2

Church 1.7× 10−24

Flower 2.2× 10−11

Overhead 4.2× 10−21

Red boat 8.2× 10−19

Small alley 2.2× 10−17

Sunrise 6.5× 10−22

Sunset 4.8× 10−16

White flower 1.7× 10−24

Figure 15: Results from image noise experiment. The bar plot shows the
number of times STRESS and STREAD were selected to have higher noise
by the observers for the different images.
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Table 4: Raw data for image noise for the individual images (down) and
iterations N (across).

300 350 400 450 500 550 600

Alley
STRESS 21 21 20 18 18 17 19

STREAD 1 1 2 4 4 5 3

Caps
STRESS 21 21 20 20 19 20 20

STREAD 1 1 2 2 3 2 2

Church
STRESS 22 22 22 22 22 22 22

STREAD 0 0 0 0 0 0 0

Flower
STRESS 21 21 20 20 21 21 20

STREAD 1 1 2 2 1 1 2

Overhead
STRESS 20 19 20 17 21 21 18

STREAD 2 3 2 5 1 1 4

Red boat
STRESS 21 22 21 20 19 22 20

STREAD 1 0 1 2 3 0 2

Small alley
STRESS 19 21 18 18 17 18 17

STREAD 3 1 4 4 5 4 5

Sunrise
STRESS 22 21 21 19 22 19 19

STREAD 0 1 1 3 0 3 3

Sunset
STRESS 22 22 22 22 18 22 21

STREAD 0 0 0 0 4 0 1

White flower
STRESS 22 22 22 20 22 21 22

STREAD 0 0 0 2 0 1 0
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when performing so many statistical tests from the same data, a Bonferroni

correction should be applied, leading to a lower p-value threshold. Even with

stricter thresholds of p < 0.01 and p < 0.001, the results are still robust. A

binomial test was also conducted on all iterations for STREAD and STRESS

for each image, and the results are displayed in Table 5. Here, we observe that

the p-values are so small that we can confidently conclude which algorithm

is superior for image preference. Finally, a binomial test was carried out

on all STREAD versus all STRESS images, which yielded a p-value of p =

8.99× 10−288.

Comparison of STREAD with the original images is shown in Table 7,

where the number of times STREAD or the original is preferred is shown.

This reveals that overall for the 10 images, STREAD is, according to a bino-

mial test, significantly better than the original (p = 1.73×10−7). Conducting

the binomial test on 300, 450 and 600 iterations gives a similar conclusion,

being statistically significant at p < 0.05 for all. p-values are p = 0.0005,

p = 0.0007, and p = 0.0354 for 300, 450 and 600 iterations, respectively. We

can notice that with higher iterations, the preference towards the original is

increasing slightly. Analysis of the images reveals that in 7 images STREAD

has a higher number than the original and lower in 3 images (Alley, Sunrise,

and White flower). This can indicate that content plays a role.

5.2 Objective Image Metrics

We evaluate the performance of the suggested STREAD compared to STRESS

using objective metrics. The Visual-Signal-to-Noise-Ratio (VSNR) [33] is a

full-reference metric that is made for the detection of distortions in nat-
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Table 5: p-values for image preference with individual images (across) and
iterations N (down). white: p ≥ 0.05, yellow: 0.05 > p ≥ 0.01, green: 0.01 >
p ≥ 0.001, blue: p < 0.001

Images

Alley Caps Church Flower Overhead

N

300 1.1× 10−5 1.1× 10−5 4.8× 10−7 1.1× 10−5 1.2× 10−4

350 1.1× 10−5 1.1× 10−5 4.8× 10−7 1.1× 10−5 8.6× 10−4

400 1.2× 10−4 1.2× 10−4 4.8× 10−7 1.2× 10−4 1.2× 10−4

450 4.3× 10−3 1.2× 10−4 4.8× 10−7 1.2× 10−4 1.7× 10−2

500 4.3× 10−3 8.6× 10−4 4.8× 10−7 1.1× 10−5 1.1× 10−5

550 1.7× 10−2 1.2× 10−4 4.8× 10−7 1.1× 10−5 1.1× 10−5

600 8.6× 10−4 1.2× 10−4 4.8× 10−7 1.2× 10−4 4.3× 10−3

Images

Red boat Small alley Sunrise Sunset White flower

N

300 1.1× 10−5 8.6× 10−4 4.8× 10−7 4.8× 10−7 4.8× 10−7

350 4.8× 10−7 1.1× 10−5 1.1× 10−5 4.8× 10−7 4.8× 10−7

400 1.1× 10−5 4.3× 10−3 1.1× 10−5 4.8× 10−7 4.8× 10−7

450 1.2× 10−4 4.3× 10−3 4.8× 10−7 4.8× 10−7 1.2× 10−4

500 8.6× 10−4 1.7× 10−2 4.8× 10−7 4.3× 10−3 4.8× 10−7

550 4.8× 10−7 4.3× 10−3 8.6× 10−4 4.8× 10−7 1.1× 10−5

600 1.2× 10−4 1.7× 10−2 8.6× 10−4 1.1× 10−5 4.8× 10−7
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Table 6: p-values for each image across iterations

Alley 6.5× 10−22

Caps 2.5× 10−28

Church 8.8× 10−47

Flower 1.4× 10−31

Overhead 1.3× 10−23

Red boat 9.9× 10−33

Small alley 2.2× 10−17

Sunrise 1.9× 10−30

Sunset 6.1× 10−38

White flower 5.3× 10−41

ural images, this is done by using contrast thresholds and visual masking

to determine if the distortion is visible. VSNR is therefore a good metric to

compare visible distortions in STREAD and STRESS. Default parameters

for VSNR are used, these being Alpha=0.04 and viewing parameters equal to

b=0, k=0.02874, g=2.2, r=138, v=27.5, num_levels = 5 and filter_gains =

2.ˆ(1:num_levels) The second metric is the no-reference Natural Image Qual-

ity Evaluator (NIQE) [34], which is a no-reference metric based on analysis

of statistical features from natural scene statistics. It has shown to correlate

well with subjective scores on various distortions, including noise [35]. For

NIQE we calculate the results for each colour channel and average them. The

last objective metric is a contrast metric, the RSC [36] which is a weighted

multilevel contrast metric. For RSC, we have used the optimal parameters

from Simone et al. [36]. We will calculate the difference in contrast between

the contrast enhanced images and the original image, so a higher value will

indicate increased contrast and a lower value decreased contrast compared

to the original.
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Table 7: Raw data for image preference for the individual images (down) and
iterations N (across) for STREAD compared to the original. A total of 31
observers participated in the experiment.

300 450 600 Sum

Alley
Original 21 22 23 66

STREAD 10 9 8 27

Caps
Original 13 11 11 45

STREAD 18 20 20 58

Church
Original 12 9 11 32

STREAD 19 22 20 61

Flower
Original 10 9 11 30

STREAD 21 22 20 63

Overhead
Original 8 12 12 32

STREAD 23 19 19 61

Red boat
Original 9 9 9 27

STREAD 22 22 22 66

Small alley
Original 9 7 8 24

STREAD 22 24 23 69

Sunrise
Original 14 18 15 47

STREAD 17 13 16 46

Sunset
Original 9 8 11 28

STREAD 22 23 20 65

White flower
Original 19 20 25 64

STREAD 12 11 6 29

Sum
Original 124 125 136 385

STREAD 186 185 174 545

35



The results for VSNR, NIQE, and RSC are shown in Figure 16. Higher

VSNR values are better, given in dB in the range 0 - Inf, while for NIQE

lower values are better, where it has been found that values higher than

40 rarely occur [37]. We see that for VSNR all values for STREAD are

higher than STRESS, while for NIQE all values for STREAD are lower than

STRESS. For all images, VSNR indicates that STREAD has less visible

distortions compared to STRESS. We can also see that the difference between

STREAD and STRESS is image-dependent, and consistent with the results

from the subjective experiment. For the contrast metric RSC, we notice that

increasing the number of iterations produces images with higher contrast

compared to the original. This is the case except for the image Church, for

this image, the STREAD algorithm produces very uniform areas without

noise, which lowers the local contrast and therefore leads to a lower RSC

value. We can also notice that STRESS produces higher RSC values, which

is partly due to the global contrast change because of the colour shift in

STRESS.

To supplement the analysis, we have also calculated the difference between

the original and the enhanced images. This has been done by taking the nor-

malized sum of the absolute difference between the original and enhanced

images for each pixel for both STREAD and STRESS. We visualize the res-

ults for the church image with 600 iterations in Figure 17. We can notice

the higher differences that STRESS produces in the sky, where the noise in-

creases. The result for the caps image is shown for 400 iterations in Figure 18.

We can notice the same observation regarding noise in the sky for STRESS,

and that STREAD in general makes fewer changes to the images and treats
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Figure 16: VSNR (top), NIQE (middle) and RSC (bottom) for the 10 images.
For VSNR higher values are better, for NIQE lower values are better, while
for RSC higher values indicate higher contrast than the original. We can see
that for VSNR and NIQE the proposed STREAD in all images has better
values compared to STRESS. For 9 out of the 10 images, STREAD produces
images with higher contrast. Colour in the legend indicates the number of
iterations.
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STREAD - 600 iteration
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(a) STREAD

STRESS - 600 iteration
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(b) STRESS

Figure 17: The difference between the original and enhanced images for each
pixel for the church image, with 600 iterations for each method.

the image more locally. STRESS increases the edge of the shadows of the

caps, while STREAD can also enhance the areas between the shadows

6 Conclusion

We have proposed an alternative algorithm for computing the envelopes of

the STRESS algorithm using linear anisotropic diffusion, resulting in the

STREAD algorithm. The main goal of the transition was to reduce the chro-

matic noise and thus increase the overall image preference. Both subjective

experiments and objective image metrics show that both of these goals were

achieved with the new approach, and that the STREAD images were pre-

ferred over both STRESS images and the originals with statistical signific-

ance.
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STREAD - 400 iterations
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STRESS - 400 iterations
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Figure 18: The difference between the original and enhanced images for each
pixel for the caps image, with 400 iterations for each method.
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