
IEEE TRANSACTION ON NANOBIOSCIENCE, VOL. XX, NO. XX, XXXX 2023 1

Optimization of Extracellular Vesicle Release for
Targeted Drug Delivery
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Abstract— Targeted drug delivery is a promising ap-
proach for many serious diseases, such as glioblastoma
multiforme, one of the most common and devastating brain
tumor. In this context, this work addresses the optimiza-
tion of the controlled release of drugs which are carried
by extracellular vesicles. Towards this goal, we derive
and numerically verify an analytical solution for the end-
to-end system model. We then apply the analytical so-
lution either to reduce the disease treatment time or to
reduce the amount of required drugs. The latter is formu-
lated as a bilevel optimization problem, whose quasicon-
vex/quasiconcave property is proved here. For solving the
optimization problem, we propose and utilize a combination
of bisection method and golden-section search. The numer-
ical results demonstrate that the optimization can signifi-
cantly reduce the treatment time and/or the required drugs
carried by extracellular vesicles for a therapy compared to
the steady state solution.

Index Terms— Extracellular vesicle, glioblastoma, joint
optimization, molecular communication, targeted drug de-
livery.

I. INTRODUCTION

The research area of molecular communications deals with
the biologically-inspired way of transmitting information by
means of molecules. One of the cutting-edge applications of
this concept is in targeted drug delivery (TDD) [1], where
molecules can be used to regulate drug release and/or act as
the drug themselves. As a result, the drug release can take
place locally at the site of the diseased cells and in proper
quantity over an appropriate time. This enables a reduction
of adverse effects, a personalized treatment improving the
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therapeutic effect, and thus opens a new era of drug treatment.
Molecular communication can be used in this application to
control and coordinate the release of the drug or for tracking
and navigation to the local target. Furthermore, the release of
the drug, its transport, uptake as well as achieved effects at
the target site can be abstracted and treated as a molecular
communication system, based on the transmitter, channel, and
receiver.

This work assumes but is not limited to a TDD scenario for a
brain tumor, where cell-derived extracellular vesicles (EVs) are
used as vehicles to deliver therapeutic cargo to cancer cells [2],
[3]. EVs are lipid bilayer-delimited particles on the order of
20 nm to 10 µm. They are biologically tolerable, can be target-
specific, and serve as vehicles for therapeutic molecules such
as micro ribonucleic acids (RNAs), which they protect from
various environmental factors (e.g., enzymes). At the cancer
cell, the EVs act as a Trojan horse, which is internalized and
degraded, wherein their cargo can interfere with the underlying
disease pathway. Here, we address the optimization of EV
release from originating cells with respect to a therapeutic ef-
fect, which is important to provide the discussed personalized
treatment and to control/minimize adverse effects. In addition,
the release can be adapted to the urgency of the treatment or
the synthesis of EVs.

In the literature, there are several papers dealing with the
optimization of TDD systems. The considered optimization
criteria can be roughly divided into two categories. The
first category describes the problem from a communication
theoretic point of view and tries to optimize typical quanti-
ties such as intersymbol interference [4], bit error rate [4],
[5], or throughput [6]. While these quantities are interesting
for Shannon information transfer, they provide only limited
information about the therapeutic effect of the drug at the
target. The second category takes a more direct approach
and optimizes the drug concentration level in the target cell
to guarantee a therapeutic effect [7]–[9]. The corresponding
works mainly consider steady state solutions. Although they
do not optimize the initial concentration rise, which occurs
at the start of a therapy and is necessary to obtain a target
concentration level, they bear a lot of potential in suggesting
how to either save resources in form of released drugs or to
enable fast treatment. Hence, we address the optimization of
the initial EV concentration rise in target cells, here cancer
cells, using a specific brain tumor (glioblastoma multiforme)
as a case study. The novel contributions can be summarized
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Fig. 1. The EV-mediated brain drug delivery molecular communication
system model. The illustration was created using BioRender.com.

as follows:
• A time-domain analytical solution for the end-to-end

model (detailed in Sec. II) is derived incorporating the
existing endocytosis (the EV uptake) model [2]. It is
demonstrated that the exact exocytosis (the EV release)
model [3] can be replaced by its averaged dynamics in
the end-to-end model.

• The rise in drug concentration within the target cell
is optimized with respect to a target concentration, in
contrast to the existing works [4]–[9]. The cases of fastest
possible treatment and drug conserving treatment are
considered.

• The optimization is formulated as a bilevel optimization
problem. It is further proved that the problem is at least
quasiconvex/quasiconcave and an algorithm combining
bisection method and golden-section search is proposed
to solve the problem.

The remainder of the paper is organized as follows. In
Sec. II, the EV-mediated brain drug delivery molecular com-
munication system model is described and the analytical
solution for the end-to-end model in the time domain is
derived. This serves as the basis for the formulation of the drug
release optimization as a bilevel optimization problem and its
solution algorithm, which are given in Sec. III. In Sec. IV,
numerical results are used to verify the end-to-end model and
to demonstrate and discuss the potential of optimizing the
initial concentration rise. Finally, the paper is concluded in
Sec. V.

II. THE EV-MEDIATED BRAIN DRUG DELIVERY
MOLECULAR COMMUNICATION SYSTEM MODEL

Fig. 1 gives an overview of the system model under
investigation using glioblastoma multiforme as an example
application. For the sake of simplicity, we consider a point-
to-point transmission in this study. However, the concept
can be extended to multipoint transmission in future works.
A neuron acts as the transmitter of therapeutic EVs within
the considered TDD system. Neurons, like many other cells,
naturally synthesize EVs and release them into their en-
vironment [10]. The cargo of EVs contain, among others,
genetic material such as messenger RNA, micro RNA, short
interfering RNA, and genomic deoxyribonucleic acid [11].
These genetic materials are known to play an important role
in cell-to-cell signaling and to achieve a potential therapeutic

effect by interfering with disease pathways inside cancer cells
[12]. Based on these insights, one treatment approach is
the reprogramming of somatic cells to create induced neural
stem cells (i-NSCs) that are engineered to deliver anticancer
molecules present in the synthesized and released EVs [13].
These iNSCs will typically differentiate into neurons and
astrocytes [14]. It should be mentioned that the practical
implementation of such modifications is outside the scope of
this work, but the interested reader is referred to [15] and
references therein. The assumption relevant for this study is
that wavelength-dependent promoters are incorporated into the
therapeutic EV-releasing neuron [3]. Consequently, the neuron
can be stimulated by an external electromagnetic signal, which
further regulates neural spiking and, subsequently, the EV
release accomplished via the mechanism called exocytosis. The
released EVs diffuse through the extracellular matrix (ECM)
of the brain to the targeted glioblastoma cell and enter the
cell via the mechanism called endocytosis. Inside the cell, the
therapeutic cargo, for example micro RNA, is released and
interferes with the disease pathway.

In the following, we describe the transmitter, channel, and
receiver with respect to their assumptions. In addition to their
transfer functions in the Laplace domain, we present their time
domain representation.

A. Transmitter
Throughout this paper, a neuron is assumed as the transmit-

ter. However, the results can be extended to other neural cells,
e.g., astrocytes, with little effort as shown in [3]. Due to the
promoters, the external stimulus will lead to depolarization
of the neuron cell membrane and, if intense enough, to the
generation of an action potential. The latter follows an all-or-
nothing principle and the intensity of the stimulus does not
affect the amplitude but only the frequency of the generated
action potentials. The maximum frequency is thereby limited
by the minimal refractory period of a neuron to 500Hz [16].
Depolarization also leads to an increase in exocytosis of EVs
[17], and thus can be exploited for regulation of EV release.
For simplicity, but without loss of generality, we assume that
the neuron will not spontaneously generate action potentials.

For this study, we consider the action potential-based
changed release rate of EVs presented in [3]1 as approximately
described by a decaying exponential function. Since internal-
ization as part of endocytosis is the rate-limiting process [18],
the exact shape of the EV release does not have a significant
impact on the end-to-end behavior and an approximation is not
critical, as we discuss in more detail in Sec. IV-B. Furthermore,
the exponential function has a simple Laplace transform and
thus can be easily tracked mathematically. Fig. 2 shows an
example of the EV release rate in response to a stimulus that
generates K action potentials with a frequency of 1/T as

x(t) = cmin + (cmax − cmin)×
K−1∑
k=0

exp (−γ(t− kT ))Θ(t− kT ), (1)

where the parameter γ > 0 determines the strength of the
exponential decay, cmax is the maximum EV release rate, and
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Fig. 2. EVs release rate in response to a stimulus that generates action
potentials with a frequency of 1/T .

Θ(t) denotes the Heaviside step function. Even when neurons
are not excited, they release cmin of EVs, which corresponds
to the so-called baseline EV release rate. The corresponding
representation in the Laplace domain is

X(s) =
cmin

s
+ (cmax − cmin)

K−1∑
k=0

exp (−kTs)
s+ γ

. (2)

In the limit, when K increases (K → ∞), the averaged EV
release rate is

c̄ = cmin +
cmax − cmin

T

∞∫
0

exp (−γt) dt

= cmin +
cmax − cmin

γT
.

(3)

B. Channel

EVs released by exocytosis propagate by diffusion in the
ECM of the brain. The propagation of a released EV, under
the assumption of isotropic propagation and no degradation,
can be described by the channel impulse response [2]1

hc(t) =
λ3

α(4πDt)3/2
exp

(
−λ2d2

4Dt

)
Θ(t), (4)

where D is the free diffusion coefficient, and d is the distance
to the initial release point at t = 0. The parameters λ and α de-
scribe the effect of tortuosity and volume fraction, respectively.
Tortuosity indicates the ratio of propagation in an obstacle-
free medium to effective propagation in a complex medium
such as the ECM of the brain. Thereby λ = 1 is equivalent
to an obstacle-free medium and λ = ∞ is equivalent to an
impenetrable medium. Volume fraction describes the ratio of
the volume of a medium, such as the ECM of the brain, in
which EVs can propagate, to the total volume of tissue. While
α = 0 is equivalent to an absence of the ECM of the brain,
α = 1 represents brain tissue consisting exclusively of the
ECM of the brain. The Laplace transform of (4) gives the
channel transfer function

Hc(s) =
λ2

4πdαD
exp

(
−λd

√
s

D

)
. (5)

1For more details on the established models and their underlying assump-
tions, we kindly refer the interested reader to our previous work.

C. Receiver

When the EVs reach the glioblastoma cell, they may be
internalized by the cell and their cargo released. Internalization
can occur by several different processes. In this work, we focus
on the internalization mechanism referred to as the clathrin-
dependent receptor-mediated endocytosis [2]. Assuming that
the concentration of clathrin-coated pits N is constant and
taking into account the first-order kernel of the Volterra Series,
the receiver impulse response and receiver transfer function
can be modeled respectively by [2]1

hr(t) = kiapmN
exp (−kit)− exp (−kdt)

kd − ki
Θ(t), (6)

Hr(s) =
kiapmN

(kd + s)(ki + s)
, (7)

where N denotes the concentration of clathrin-coated pits, pm
the maximum number of receptors per pit, a the rate at which
EVs bind to the receptor, ki the internalization rate, and kd
the degradation rate of EVs.

D. End-to-End Model

We aim here to optimize the release of the drug-carrying
EVs with respect to the therapeutic effect in the cancer cell. To
achieve this goal, having an end-to-end model that describes
the input-output behavior of the system is essential. The
input of the system represents the EV release rate x(t) at
the transmitter. The output is the resulting internalized EV
concentration y(t) at the receiver. Assuming that the system
is (at least approximately) linear and time-invariant, y(t) and
its Laplace transform Y (s) can be calculated as

y(t) = (x ∗ hc ∗ hr)(t), (8)
Y (s) = X(s)Hc(s)Hr(s). (9)

The complex evaluation of the convolutions in the time domain
can be avoided by a simple multiplication in the Laplace
domain and a subsequent inverse transformation. The internal-
ization of EVs in endocytosis is the rate-limiting process and
is comparatively much slower than the release of EVs at the
transmitter [18]. Consequently, as we additionally investigate
in Sec. IV-B, X(s) can be well approximated by its averaged
EV release rate in (3) to

X(s) ≈ c̄

s
= X̄(s) (10)

and thus results in

Ȳ (s) = X̄(s)Hc(s)Hr(s)

=
c̄

s

λ2

4πdαD
exp

(
−λd

√
s

D

)
kiapmN

(kd + s)(ki + s)
.

(11)

To the best of the authors’ knowledge, no closed-form solution
exists for the inverse Laplace transform of (11). To overcome
this limitation, we replace the exponential term in (11) by its
Maclaurin series

exp

(
−λd

√
s

D

)
= 1− λd√

D

√
s+

λ2d2

2D
s− λ3d3

6D3/2
s3/2+ . . . .

(12)
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By applying the inverse Laplace transform and considering the
first order Maclaurin series, the received signal y(t) ≈ ȳ(t) can
be approximated, where

ȳ(t) ≈ c̄
λ2kiapmN

4πdαD(k2dki − kdk2i )
×Θ(t)×[

2λd
(
ki
√
kdFD

(√
kdt

)
− kd

√
kiFD

(√
kit

))
√
πD

− kd exp (−kit) + ki exp (−kdt) + kd − ki

]
(13)

and FD (·) denotes the Dawson integral of the form

FD (x) = exp
(
−x2

) ∫ x

0

exp
(
z2
)
dz. (14)

III. DRUG RELEASE OPTIMIZATION

In TDD, there are several limitations in the system that
must be taken into account. The most important ones can be
summarized as follows:

• Transmitter: The release of EVs from the transmitter cell
cannot be modulated arbitrarily. Since it is a biological
process, the rate of release and concentration are limited.
For example, a neuron, as assumed here, follows an all-
or-nothing principle and only the frequency of generated
action potentials can be controlled. Additionally, this
frequency is upper bounded by the minimal refractory
period. Furthermore, the transmitter cell contains only a
finite amount of EVs and needs time for synthesizing
new EVs. In this work, we assume that the transmitter
will have a sufficient amount of EVs available after
the minimal refractory period. In other words, EVs are
not depleted at the time of action potentials. Given this
assumption, the transmitter model from Sec. II-A can be
applied. If EVs can get depleted, the transmitter model
from Sec. II-A has to be extended by the synthesis rate of
EVs and their storage within the cell. This may introduce
a time dependency which has to be considered in the
derivation of y(t). To conserve the energy used for the
generation of the induced current and to avoid a drop
of the EV concentration at the receiver, the complete
depletion of the EVs in the transmitter should be avoided.
In this case the optimization problem introduced later in
this section is still valid for an updated y(t).

• Channel: In drug delivery, toxicity is an important effect.
If the local concentration of a drug is too high, it can be
harmful to (healthy) cells in the environment after uptake.
In this work, we consider a special case where the drugs
are encapsulated in EVs and propagate through the ECM.
EVs can be target-specific and thus are assumed to be
taken up only by the targeted cells. Thus, toxicity is not
considered in this work.

• Receiver: The time that the drug is present at a specific
concentration in the target cell determines the achieved
therapeutic effect [19]. The therapeutic window indicates
a range between an upper and a lower concentration
threshold in which the drug concentration ideally should
be during the entire duration of treatment. The lower

threshold is defined by the least effective concentration.
If the concentration falls below this threshold, the ther-
apeutic effect can no longer be guaranteed. The upper
threshold is defined by the efficacy. Due to a finite
number of receptors and the time required for binding,
only a finite number of EVs can be internalized by the
target cell per time. Thus, an increase in concentration
above the upper threshold will only result in a waste of
drug-carrying EVs, whose quantity is also limited in the
transmitter [6], [9].

In addition to holding a target concentration at the target
cell for a certain period of time, reaching this concentration
provides room for optimization. In this paper, we consider two
different optimization approaches. In the first approach, the
focus is on the fastest possible treatment. In this case, a target
concentration should be reached as quickly as possible [6]. The
second approach tries to optimize the resources used. Here, the
amount of EVs released to reach the target concentration is to
be minimized [7]. Depending on the disease and the applied
delivery system, one of the two approaches will be of interest.

In the following, the optimization solutions are presented.
A distinction is made between the steady state and rising state.
The former deals with holding a target concentration while the
latter deals with reaching the target concentration either fast
or in a resource-efficient way.

A. Steady State Solution
Depending on the period T between the generated action

potentials, a steady state with a constant uptake concentration
level C∞ will be reached after sufficient time. Using the final
value theorem and (11) yields

C∞ = lim
t→∞

y(t) = lim
s→0

sY (s)

=

(
cmin +

cmax − cmin

γT

)
λ2apmN

4πdαDkd
.

(15)

Solving (15) for T , we obtain the required neuron excitation
period

T∞ =

cmax−cmin

γ

Ct
4πdαDkd

λ2apmN − cmin

, (16)

to hold a target uptake concentration Ct under steady state
condition.

B. Rising State Solution
First, we consider the case where a target concentration

is to be reached as fast as possible. Logically, in this case
action potentials must be triggered at the neuron with the
smallest possible period T , which is limited by the minimal
refractory period. From the time when (13) reaches the desired
EV uptake concentration Ct in the cancer cell, the stimulus
is switched to the steady state solution and action potentials
with period T∞ are generated.

As shown later in Sec. IV and in Fig. 8, reaching the
target concentration as fast as possible leads to a significant
overshoot. Avoiding this overshoot leads to the resource effi-
cient solution. To achieve this goal, the neuron’s excitation is
divided into three phases.
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1: procedure OPTIMIZE(Ct, ε,
←−τ ,−→τ ,

←−−
tmax,

−−→
tmax)

2: τ ← (←−τ +−→τ ) /2
3: tmax ← maximize fr(t, τ) within

←−−
tmax < t <

−−→
tmax

4: C ← fr(tmax, τ)
5: if |Ct − C| > ε then ▷ Ct not reached
6: if C > Ct then ▷ Right side of optimum
7: OPTIMIZE(Ct, ε,

←−τ , τ,
←−−
tmax, tmax)

8: else ▷ Left side of optimum
9: OPTIMIZE(Ct, ε, τ,

−→τ , tmax,
−−→
tmax)

10: end if
11: end if
12: return τ, tmax

13: end procedure

Fig. 3. Recursive optimization algorithm based on bisection method to
solve (18).

1) In the initial rising phase, the neuron is excited with T ,
which leads to an initial increase in EV concentration
in the tumor cell.

2) At time τ , the resting phase begins, where the external
signal, used to depolarize the neuron, is turned off.
Consequently, no more EVs are released from the neuron
than the baseline EV release rate cmin. The time τ is
chosen such that the remaining increase in uptake con-
centration reaches its maximum with the target uptake
concentration Ct at time point tmax.

3) At time point tmax, the maximum uptake concentration
from the resting phase and thus also the target uptake
concentration Ct is reached. Consequently, the external
stimulus is switched to the steady state phase, where the
neuron is excited with T∞ and thus Ct is held.

We describe the initial concentration increase as a function of
τ as

fr(t, τ) = ȳ(t)− ȳ(t− τ). (17)

The optimal choice of τ such that at time tmax the target
uptake concentration Ct is reached can be described by a
bilevel optimization problem as

min
τ∈R>0

{
(Ct − fr(tmax, τ))

2
}
,

subject to tmax ∈ arg max
t∈R>0

{fr(t, τ)} .
(18)

While the lower-level optimization describes the achieved
uptake concentration maximum for given τ , the upper-level
optimization ensures that the uptake concentration maximum
coincides with the target uptake concentration Ct. As shown in
the Appendix, the optimization problems are quasiconcave and
quasiconvex, respectively. This property is essential to define
(18) as optimum, because it ensures that only a single mini-
mum and maximum respectively exists for each optimization
level. Therefore, there is only a single tmax for each τ .

Unfortunately, direct computation of tmax is not possible
and must be obtained by search algorithms. One approach is
to nest two optimization methods, which describe the lower-
level and upper-level optimization separately. The upper-level
optimization can be solved recursively using the bisection

TABLE I
DEFINITION OF MATHEMATICAL SYMBOLS AND CORRESPONDING

VALUES FOR THE SCENARIO UNDER INVESTIGATION. NOTE THAT UNIT

Mol REFERS TO THE NUMBER OF EVS OR PITS.

Parameter Symbol Value Ref.

Neuron excitation period T ≥ 2ms [16]
Maximum EV release rate cmax

Minimum EV release rate cmin cmax/10
Target EV uptake concentration Ct cmax/109

Exponential decay factor γ 59.91 1/s [3]
Free diffusion coefficient D 10 µm2/s [22]
Volume fraction brain ECM α 0.2 [23]
Tortuosity brain ECM λ 1.6 [23]
Transmission distance d 1 µm [2]
Rate of EVs
binding to receptor a

6.64× 10−17

mL/(Mol · s) [2]

Clathrin-coated pits concentration N 1.81Mol/mL [24]
Maximum receptors per pit pm 200 [24]
EV internalization rate ki 0.0027 1/s [24]
EV degradation rate kd 0.0002 1/s [24]

method [20], as we demonstrate in Fig. 3. This takes advantage
of the fact that fr(tmax, τ) is monotonically increasing with
τ . By comparing C = fr(tmax, τ) with the target EV uptake
concentration Ct, it can be determined whether the current τ
is to the left or to the right of the optimum. Accordingly, the
next search interval is chosen to be [τ,−→τ ] or [←−τ , τ ], which
is expressed by the recursive call in either line 7 or line 9 in
Fig. 3. The lower-level optimization (line 3 in Fig. 3) can be
realized, for example, by the golden-section search algorithm
[21], where the search interval can be bounded, since tmax is
monotonically increasing with τ . Consequently, tmax lies be-
tween

←−−
tmax and

−−→
tmax of the left and right interval boundaries,

respectively. The search for the optimum is completed when
the deviation of C from Ct is smaller than a residual error ε.

IV. NUMERICAL RESULTS

In the following, we first discuss the parameters selected
for the obtained numerical results. Afterwards, we justify the
approximations made for the derivation of the end-to-end
model. Finally, we analyze the impact of the optimizations
of the initial concentration rise presented in this work.

A. Parameter Selection
Within the numerical results, we attempt to reproduce as

well as possible a realistic TDD scenario for brain tumors such
as glioblastoma multiforme. Tab. I lists the parameters under
investigation with their respective references. The transmitter
is assumed to be a neuron whose excitation is limited by
the minimal refractory period. As described in Section II-A,
the release rate of EVs associated with action potentials is
approximated using an exponential decay function. The expo-
nential decay factor γ is estimated by the presented release
rate results [3]. The diffusion coefficient is a typical value
for EVs and the tortuosity and volume fraction are typical
values for the ECM of the brain. Unfortunately, there is little
work available in the literature on the parameterization of the
endocytosis process and we are not aware of any work in this
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Fig. 4. Power spectra that demonstrate the low-pass filter characteristic
of the diffusion channel and the receiver based on clathrin-dependent
receptor-mediated endocytosis. Parameters are chosen according to
Tab. I.

regard with respect to brain tumor cells. Therefore, we take the
receiver parameters from references dealing with hepatocytes
instead [2], [24]. While the parameters for glioblastoma cells
may be different, the mechanics of endocytosis are still the
same. Thus, it is to be expected that the system model can
be adapted to new specific values of the parameters with little
effort. Furthermore, experimental work is often performed in
cultured cells. Thus, the exact EV concentration in organisms
remains unclear [25]. Therefore, in this work, release rates and
uptake concentrations are given relative to cmax.

B. Channel Assumptions

We made two approximations to derive the end-to-end
model presented in Sec. II, which are analyzed and justified
here by means of numerical results.

The first approximation concerns the exact mathematical
description of the exocytosis at the transmitter side. Since
the internalization of EVs in endocytosis is the rate-limiting
process and comparatively much slower than the release of
EVs by exocytosis [18], the exact dynamics of the EV release
has minimal influence and can be replaced by its averaged
dynamics in (10). This observation is also reflected when
examining the power spectra of the channel and the receiver
in Fig. 4. In fact, the channel and the receiver show a
low-pass filter behavior. The receiver-side endocytosis and
internalization react as a second-order low-pass filter, see also
(7). To further justify the inclusion of only the averaged
dynamics of exocytosis in the system model, Fig. 5 compares
the obtained results of the optimization strategies presented
in this work with a numerical calculation considering the
complete exocytosis model and parameters from [3]. An
induced control current of iind = 20 µA/cm2 is assumed for
the rising phase and iind = 5 µA/cm2 for a steady state.
Assuming a microdomain volume of 1mL, this corresponds
to an average release rate of c̄ = 3.86 × 10−3 µmol/s and
c̄ = 2.23×10−3 µmol/s, respectively. Fig. 5 demonstrates that
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Fig. 5. EV concentration in the tumor cell for rising time optimization,
resource optimization, and steady state solution. As a comparison,
the numerical results of the exocytosis model presented in [3] are
added. The parameters under investigation for exocytosis are taken
from [3] with an induced control current of iind = 20 µA/cm2 for the
rising phase and iind = 5 µA/cm2 for the steady state. Assuming a
microdomain volume of 1mL, this leads to an average release rate of
c̄ = 3.86× 10−3 µmol/s and c̄ = 2.23× 10−3 µmol/s, respectively,
which is used in the end-to-end model derived in this paper. Channel
and endocytosis parameters are listed in Tab. I.

the simplification through approximation is in good agreement
with the results obtained using the entire exocytosis model. In
fact, the maximum normalized squared error is 2.58 × 10−5

and occurs in resource optimization at the transition to the
steady state phase. The more detailed analysis of the different
optimization strategies is elaborated in Sec. IV-C and is
therefore omitted here.

The second approximation involves substituting the expo-
nential term using the first order Maclaurin series in (12).
Fig. 6 shows the approximation accuracy in comparison to a
numerically obtained inverse Laplace transform of (9), taking
into account the parameters listed in Tab. I. At least for
the scenario under investigation, it can be observed that the
Maclaurin series of the first order already offer a sufficiently
accurate approximation and is therefore applied throughout the
rest of the paper. As a comparison, the normalized squared
error taking into account the Maclaurin series of the second
and third order is also shown. In these two cases, the inverse
Laplace transform is determined numerically and not by an
analytical solution. It can be observed that the approximation
becomes more accurate with increasing order. Further justifi-
cation for the approximation accuracy is provided in Fig. 5.
While the optimization results are based on the end-to-end
model (13), the results considering the exact exocytosis model
are based on the convolution in time domain according to (8),
thereby avoiding the approximation by the Maclaurin series.
The good agreement of the results further demonstrates the
sufficient accuracy of the approximation performed.

So far we have shown that the two approximations are
reasonable for the parameters under investigation. In the
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Fig. 7. Impact of parameter variations on the normalized mean squared
error between numerically determined inverse Laplace transform of
Y (s) including exocytosis model presented in [3] and first order Maclau-
rin series approximated solution ȳ(t) assuming averaged EV release
rate. Parameter variation is described by a variation factor multiplied
by the channel and endocytosis parameters listed in Tab. I. For the
exocytosis model, the steady-state scenario in Fig. 5 is used.

following, we want to analyze the validity of the two approx-
imations when the parameters are varied. For this purpose we
consider the steady state scenario from Fig. 5 and vary channel
and endocytosis parameters by multiplying a variation factor.
To evaluate the validity of the approximation, we calculate
the normalized mean squared error (NMSE) between ȳ(t) and
the numerical inverse Laplace transform of Y (s) considering
the exocytosis model from [3]. In Fig. 7 it is evident that
the NMSE is mainly influenced by λ, d and D. As shown in
(12), the terms of higher orders gain influence when λ and
d are increased, or D is decreased. Consequently, the error
increases by considering only the first order term in ȳ(t). The
increasing NMSE with decreasing variation factor is due to
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Fig. 8. EV concentration in the tumor cell for rising time and resource
optimization at different excitation periods T . The parameters under
investigation are summarized in Tab. I.

numerical limitations instead of the performed approximation.
For decreasing d, λ, or increasing D, the shape of hc becomes
increasingly impulsive. In order to reflect this shape correctly
in the numerical Laplace transform, the temporal resolution
must theoretically be increased which would lower the NMSE.
Practically, however, the temporal resolution cannot be in-
creased arbitrarily. A variation of a, pm, and N does not
affect the NMSE, since they act only as factors in (11) and
their variation is compensated by the normalization in the
NMSE. The same applies also to λ, d, and D outside the
exponential term in (11). If ki and kd are varied, the low-
pass characteristic of the endocytosis process is affected. An
increase of the chemical reaction rates leads to an increase of
the cutoff frequency and relatively less attenuation of higher
frequency components. Consequently, the exact time course of
the transmitted signal becomes more important and the NMSE
increases. The NMSE increases, however, only to a limited
extent, since the channel still features a low-pass characteristic
as well. In conclusion, the approximations made in this work
are reasonable over a wide range of parameters.

C. Optimization Analysis

Fig. 8 shows the EV uptake concentration profiles in the
target cell for the two different optimizations and different
excitation intervals. As expected, the target concentration is
reached fastest when the smallest possible excitation interval
T = 2ms is applied until y(t) = Ct (see also Fig. 9).
The change to T∞ = 20.82ms calculated according to
(16) already occurs after 16min. In comparison, the target
concentration is almost reached after 500min for continuous
excitation with T∞. Since endocytosis is a slow process, the
fast increase results in an overshoot. This overshoot decreases
with increasing T and disappears with continuous excitation
with T∞.
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Fig. 9. Required resources and time to reach the target concentration
Ct for the resource optimization and the time optimization as a function
of the excitation period T . The parameters under investigation are given
in Tab. I.

The resource-efficient approach according to (18) prevents
overshoot entirely by its resting phase and simultaneously
concerves EVs. Fig. 9 shows the required resources by the
different approaches to reach the target uptake concentration
Ct as a function of the excitation period T . For this purpose,
the resources are represented by the EV release rate multiplied
by the time required to reach it. In addition, the time needed
to reach Ct is depicted over T . Here it can be seen that also
for the optimization according to (18), the excitation interval
T should be chosen as small as possible. The minimum
resource consumption is 5162 cmax s for initial excitation with
T = 2ms, whereas the maximum resource consumption is
24642 cmax s for continuous excitation with T∞. The target
concentration is reached after 24min.

V. CONCLUSION

This work considers an EV-based TDD scenario for the
treatment of glioblastoma multiforme as a case study. In this
context, the transmitter is modeled as an excitable neuron
which releases therapeutic EVs, and the receiver is modeled
as a sick glioblastoma cell which takes up EVs from the
ECM of the brain via the clathrin-dependent endocytosis. To
describe the input-output behavior of the system, the transfer
function is formulated in the Laplace domain. Based on the
transfer function, an analytical solution in the time domain
is derived and verified by numerical results. The analytical
solution is used to optimize the stimulation of the neuron,
including the release of the drug carrying EVs, with respect
to the concentration of internalized EVs in the glioblastoma
cell. The focus is on either the fastest possible treatment or a
drug-saving treatment. The latter is formulated as a bilevel op-
timization problem and its quasiconvex/quasiconcave property
is proved. A solving algorithm is proposed by a combination
of bisection method and golden-section search. The numerical
results demonstrate the great potential of the optimization.
For the scenario under investigation, the time to reach the

therapeutic target concentration can be shortened by a factor
of ≥ 32 compared to the steady state solution. Alternatively,
the required EVs to reach the target concentration can be
reduced by a factor of ≥ 4.7. It should be mentioned that the
derived end-to-end model is applied here to optimize TDD,
but is not limited to it. It provides the community a more
realistic model described by an analytical solution in the time
domain for intercellular communication scenarios by taking
into account effects such as tortuosity and volume fraction, and
physiological mechanisms such as exocytosis and endocytosis.

Future works include an extension to a network of neurons
and glioblastoma cells and an enhanced modeling of the
transmitter. Besides the consideration of astrocytes, the exact
dynamics of exocytosis [3] can be included in the end-to-end
model. Furthermore, modeling of EV synthesis in neurons and
its resulting limitation would be of interest.

APPENDIX

All parameters in (13) describe nonnegative physical phe-
nomena. Furthermore, ȳ(0) = 0 and ȳ(∞) = C∞ applies. In
between, ȳ is monotonically increasing because

1√
t
>

1√
t+ ϵ

and exp(−t) > exp(−(t+ ϵ)), (19)

and the Dawson integral can be approximated by

FD (z) ≈
{
z if z is small
1/(2z) if z is large

. (20)

Consequently, it is added/subtracted less and less to/from kd−
ki with increasing t in (13), which results in a monotonic in-
crease. Subtracting a time-shifted version of the monotonically
increasing and converging function ȳ(t) from itself in (17),
leads to a unimodal function with a single global maximum
whose value increases with τ . Consequently, also fr(tmax, τ)
is a monotonically increasing function and (Ct−fr(tmax, τ))

2

results in a unimodal expression with a single global minimum.
The unimodality properties are already sufficient to guarantee a
unique solution to the optimization problem. Beyond that are
all unimodal functions with a global minimum quasiconvex
[26]. Consequently are −fr(t, τ) and (Ct − fr(tmax, τ))

2

quasiconvex, which indicates that fr(t, τ) is quasiconcave.
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[2] M. Veletić, M. T. Barros, I. Balasingham, and S. Balasubramaniam,
“A molecular communication model of exosome-mediated brain drug
delivery,” in Proc. ACM Int. Conf. on Nanoscale Computing and
Communication (NANOCOM), Dublin, Ireland, Sep. 2019, p. 1–7.
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