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ABSTRACT Offshore salmon aquaculture is a growing industry that faces challenges such as sea lice
infestations and varying environmental conditions, necessitating the development of newmonitoring systems
to improve fish welfare and sustainability. In this paper, we propose and test a machine learning based
method for underwater detection and localisation using multibeam echosounders (MBES) in fish farming
applications. We demonstrate a three-stage process involving data acquisition, pre-processing, and object
detection. We then compare the performance of four different vision based deep learning object detection
algorithms in different signal-to-noise scenarios by artificially adding noise to the pre-beamformed signals.
This method successfully detects fish in MBES images, which has potential applications in optimising
feeding schedules, behaviour analysis, and fish health monitoring. Furthermore, this method holds potential
for the detection and tracking of other objects within fish farms, such as cages and mooring lines. This study
paves the way for further development ofMBES data being used as a non-invasive and automated monitoring
method in aquaculture.

INDEX TERMS Salmon, observation, echosounder, multibeam, automatic object detection, target detection.

I. INTRODUCTION
Aquaculture is driving the increase in global aquatic food
production, offering crucial contributions to food security
and fuelling economic growth worldwide [1]. To keep
up with global trends, offshore salmon farming in the
northern Atlantic has moved from sheltered locations to
include exposed farming sites [2]. However, larger waves
and stronger currents at exposed sites set high requirements
for the equipment needed for fish farming. This study
addresses the predominant form of offshore salmon farming:
the gravity-type fish farm, where salmon are housed in large,
flexible net cages [3]. An example is shown in Figure 1. The
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cages can be up to 60m in diameter and 30m deep. The shape
of the cage is often square or round [3]. These cages move
around due to mooring flexibility and undergo significant
deformation when subjected to strong forcing from currents
or large waves. As wave height increases, fish dive deeper
to avoid unsteady water at the surface and swim farther from
the net, reducing the available volume inside the cage that the
fish can occupy [4].

Various challenges arise during the offshore phase of the
growth cycle which can adversely affect the health and
welfare of farmed fish. Among these issues is sea lice
infestations [5], which can directly affect fish health, expose
them to infection, and indirectly affect fish welfare through
delousing treatments [6].Welfare concernsmay also arise due
to low oxygen conditions [7], causing fish to seek swimming
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FIGURE 1. Cross section of the main components of an example offshore
cage, including moorings to the mooring plates, frames, anchors, and
fastening buoys.

depths with more favourable oxygen levels [6]. Moreover,
other factors such as temperature [8], time of day [9], currents
[4], [9], and waves [4] can also influence fish diving depth.
Each of these factors can serve as an indicator of potential
welfare issues for salmon. To enhance the welfare of fish
and manage these challenges, fish farmers garner location-
specific experiences through their work. This knowledge is
frequently hard-earned, but extremely valuable as it supports
better decision-making that can prevent incidents that lead to
stress or harm to the farmed fish.

To address these issues, a new approach called Precision
Fish Farming has been proposed [10]. This method suggests
a shift from experience-based to knowledge-based fish
farming, based on observable data. Observing what is
happening below the water line is crucial for data-driven and
knowledge-based approaches, as it provides the accurate and
reliable data necessary for informed decision-making.

Monitoring the underwater environment in fish farming is
a difficult task, as traditional monitoring methods such as
underwater cameras and the capture of live fish for welfare
scoring can be limited in range and/or sample size, labour-
intensive and stressful for fish. There is a clear need for non-
invasive monitoring tools that can overcome these challenges
and provide accurate and reliable estimates of key parameters
[11]. Among the various non-invasive monitoring tools
available, acoustic observations are particularly promising.
This is primarily because this technology has the range to
capture information on the scale of fish farms [4], contrary
to alternatives such as submerged camera-based systems
where the maximum range varies between 0.5 - 25m [10].
The simplest form of acoustic observation is the active
single-beam sonar which, by producing acoustic pulses and
measuring the backscatter, can produce information about
the range and target strength of objects in the field of view.
In single-beam sonars, target detection has been performed by
applying a threshold on received echo level intensity [12], and
by extension, counting the number of targets provides a count
of the fish [13]. However, one limitation of using single-beam
sonars is that only targets within the beam can be observed,
since there is no way to steer the beam. Therefore, a single
beam system can only observe a part of the fish farm, and the
information acquired is limited to target strength and range.
This limitation also means that individual or multiple targets
at the same distance within the beam can not be distinguished.

Multibeam echosounder (MBES) is a technology that
electronically steers beams in different directions using array
processing and which can provide high-resolution images
of the underwater environment. A MBES can provide real-
time location and target strength information over many
beams, covering a wide field of view. Additionally, secondary
information can be estimated from the backscatter data, such
as biomass, spatial distribution, swimming behaviour and
health indicators, in addition to the presence and position of
other objects such as cage outline, mooring lines, predators,
or intruders.

Multibeam echosounders have rarely been used in fish
farming applications. To the authors’ knowledge, only a
few other studies have used a MBES to extract information
from an offshore fish farm, e.g. [14]. Other studies have
investigated the acoustic effects inside an offshore fish farm,
including metroscopic wave physics and ultra-slow acoustic
energy transport [15], [16].

The use of MBES in fish farming poses significant
challenges due to the large amount of data generated and
the labour intensive nature of manual analysis of backscatter
data. To address these challenges and investigate the utility
of MBES in fish farming, there is a need to develop
methods for automatic data analysis. Object detection and
classification are key tasks for extracting useful information
from the data produced by a sonar looking into a fish cage.
Object detection involves locating and identifying objects
of interest in an image, while object classification involves
assigning labels to detected objects based on their features
or characteristics. Efforts have been made to implement
object detection and classification based on multibeam
imagery. For example in [17], a method that can detect
and classify diving seabirds, single fish, and fish schools
in a very intense backscatter environment near a power-
generating tidal turbine was presented. This method uses
a threshold and filtering to detect objects and provides
tracking with a nearest-neighbour algorithm. Classification
is achieved by extracting key metrics such as size, shape,
backscatter intensity, and velocity, and then setting thresholds
for these parameters. Another study employed a Gabor-
based feature pyramid network to effectively detect mine-like
objects in side-scan sonar images, demonstrating its potential
for handling multi-scale object detection tasks [17]. Some
studies have explored the potential of machine learning-
based approaches for object detection in MBES data. For
instance, a recent study [18] proposed a target detection
and classification workflow that demonstrated improved
efficiency and reliability in detecting and classifying objects
in sonar images.

This study aims to investigate the potential of vision-based
machine learning to detect targets in multibeam images.
On this basis, we make the following contributions:

• We present a novel approach that leverages machine
vision techniques, instead of conventional threshold-
based detection to detect targets in MBES
images.
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FIGURE 2. Proposed method.

• We test the approach by identify targets imaged from a
MBES.

• Wedemonstrate the precision, adaptability, and potential
of our approach for the automatic monitoring of fish
farms.

• We evaluate the robustness of our approach in noisy
environments.

This paper is organised as follows: In Section II our
approach is described, including our experimental setup, data
acquisition and pre-processing. The results are presented in
Section III, Section IV discusses the results and limitations
of this approach, and Section V concludes this paper.

II. PROPOSED METHOD
The proposed method for object detection and classification
of MBES data involves a three-stage process consisting of
data acquisition, pre-processing, and object detection. Data
was acquired from a MBES attached to the side of a fish
farm, the specifications and operating parameters of which
are detailed in Section II-C. During the data acquisition
stage, system parameters such as the source level, range,
and transmit beamforming angles were configured to acquire
baseband data per transducer. The acquired data were saved
and passed to the pre-processing stage. During this stage,
the data were beamformed, target strengths estimated and a
transformation applied from polar to Cartesian coordinates to
transform 3D sonar data into 2D sonar images. These images
were then sent to the object detection stage of the process.
A summary of this process is visualised in Figure 2.
A training dataset must be created to train the object detec-

tion algorithms. This is accomplished by manually labelling
some of the data that have been captured with different
settings, at different ranges and orientations. Subsequently,
various machine learning-based object detection algorithms
were trained on the dataset to identify and locate targets in
the scans.

A. MULTIBEAM ECHOSOUNDER
The MBES used in these trials was a Seapix-R [19]. The
Seapix-R consists of a reversible steerable symmetric Mills

FIGURE 3. Cross section of the measurement setup. The MBES is drawn
in red, and the field of view of the MBES is orange.

cross containing 2 × 64 transceivers. It can steer acoustic
beams at angles of 120◦

× 120◦ and operates at a frequency
range of 145-155 kHz.

The Seapix-RMills cross consists of a vertical transmitting
array which beamforms in a fan-like pattern in the vertical
and a receiving array that beamforms received data in a
horizontal fan. This process is made possible by Seapix-R’s
fully digital receiving front-end, which includes individual
receiving chains for each transducer, thus enabling simulta-
neous beamforming across all angles during reception. The
independence of the two arrays also allows data to be received
at short distances without ringing caused by the transmitted
pulse.

The beam aperture of the Seapix-R is 1.6o × 1.6o aligned
with the element axis. Seapix-R is connected to a Beam-
Former Unit (BFU) that stores the data locally [20]. 4G
cellular networking allows remote control and real-time data
retrieval.

B. MEASUREMENT SETUP
During the experiment a MBES was placed outside the
cage on a mounting bracket with a 45o downward tilt, such
that most of the cage was within the vertical beamforming
capability of the system, with the exception of a wedge-
shaped section near the net, 1.5 meters high, extending
5.5 meters into the cage. Since salmon generally avoid being
near the water surface and net [4], we did not consider
this limitation to be a significant issue. A mounting bracket
was attached to the walkway of the farming cage and
oriented such that theMBESwas pointed perpendicular to the
walkway. The MBES was mounted 2 m from the side net and
submerged 2m below the water surface, as shown in Figure 3.
The rotation of the MBES on the mounting bracket is such
that one of the element arrays is horizontal, and the other lies
in the vertical plane. With this setup, the cage was insonified
from one side. Due to the extremely high biomass, the power-
delay profile is expected to decrease severely as the distance
from the MBES increases because of biomass scattering
and absorption. Fish closer to the MBES are exptected to
be clearly visible, while those at greater distances become
increasingly obscured due to interference frommultiple wave
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TABLE 1. MBES Configuration parameters during data acquisition.

paths. Such an effect is a well-documented characteristic in
environments with high biomass [21]. Consequently, only
the portion of the cage nearest to the MBES is likely to be
observable. The cage can be insonified by either transmitting
with the horizontal or vertical array and receiving with the
other. This means that for each swath, we can either obtain
a bird’s eye view or a cross-sectional view of the cage at
the angles determined by the beamforming of the transmitted
beam. Naturally, by combining the data frommultiple swaths,
the responses can be combined to obtain data from the
other orientation, at the cost of the view not being captured
simultaneously.

C. DATA ACQUISITION
The dataset used in this study was obtained during a
single data collection event. The sampling was conducted
at an offshore salmon farming site operated by Lingelaks
in Bergadalen, Norway. The data capture started at 09:22
on April 15 2021, during daylight hours and outside the
routine feeding schedule, ensuring minimal disturbances
and deviations in behavioural patterns. During the sampling
event, 15,300 swaths were collected over a 10-minute period.
Each swath is the result of one beamformed transmission
pulse sent by the vertical array and then sampled by
the horizontal array. These data consist of samples from
64 different channels, each sampled at a rate of 36 kHz.
The reception duration of a swath was 25ms, resulting in
865 samples from each element for each swath. Samples
captured at distances over 10mwere not processed, due to the
deterioration of the signal passing through the high biomass
environment. Each sample consists of an in-phase and
quadrature component, representing information spanning
4.2 cm in distance andwithin the beam aperture of 1.6o×1.6o.
The description of the configuration of the MBES is reported
in Table 1. During the capture events, the vertical array was
transmitting and the horizontal array was receiving, resulting
in a bird’s eye view snapshot.

D. BEAMFORMING AND TARGET STRENGTH ESTIMATION
To perform beamforming, a steering vector was applied to the
transmitting and receiving signal. Steering vector v describes
the phase delay applied to each transducer for a plane wave
arriving from an angle of arrival (AOA) or departure the from
an angle of departure (AOD). The steering vector can be

derived from the following wave vector:

k(θ, φ) = [kx , ky, kz] =
2π
λ
[cosφ sin θ, sin θ, sinφ, cos θ ]

(1)

This describes the phase change rate in any given direction.
The transducer array R is defined in terms of the transducer
coordinates (x, y, z):

R =

x1 x2 . . . xn
y1 y2 . . . yn
z1 z2 . . . zn

 (2)

where n denotes the number of transducers in the transducer
array. After combining the wave vector (1) with the
transducer coordinates (2), we obtain the phase for each
transducer as follows:

αe(θ, φ) = kR =


x1kx + y1ky + z1kz
x2kx + y2ky + z2kz

...

xnkx + ynky + znkz

 (3)

This produces the steering vector of the array:

v(θ, φ) =


ejαe1

ejαe2
...

ejαeN

 (4)

Beamforming is accomplished by applying the phase shift
defined by the steering vector v(θ, φ) (4) at the time of
transmission and to the received signal after sampling. The
received signal per transducer is denoted by y, and captured
by the horizontal transducer array, and the transmitted
waveform is denoted by x and is sent with the vertical array.
The steering vector for the receiving case is:

wT
= v(θ, 0)H (5)

and in the transmitting case:

f = v(0, φ) (6)

The received echo level (EL) after beamforming the transmit-
ted and received signals can be expressed as:

EL = wTH · f · x + wTn (7)

where the pulse x to be transmitted is beamformed with
the transmitting steering vector f and passes through the
acoustic channel H. The echo signal, which results from the
interaction of the transmitted waveform with the surrounding
environment, is shaped by the channel H. This channel
imposes the effects of the echo on the signal, characterising
the multiple-input, multiple-output (MIMO) relationship
between the transmitting and receiving transducers. The
signal from the receiving transducer array then applies a
steering vector wT to the received signal, including potential
noise n in the system.
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The EL, which can be presented in terms of energy, can be
determined using the sonar equation [22]. The beamformed
data provide a voltage vs. delay for each angle θ, φ integrated
over the sampling period. The received EL in logarithmic
form can be expressed as:

EL = SL + 2AF(θ, φ) + TS − 2 · 20 log10(r) − 2rα (8)

where SL is the source level, TS is the target strength,
AF is the array factor, r is the distance to the target, and
α is the absorption coefficient. The model is based on the
assumption of spherical spreading from the source and target;
thus, we employed the term 20 · log10(r) [23]. This range
correction aligns with the methodology employed in [14].
To obtain the target strength at each distance, we take the
received signal Pa, translate it to V and compensate for the
source level (SL) and two-way path loss by applying time-
varied-gain (TVG) and adding a constant for the absorption
coefficient.

TS = EL − SL − 2AF(θ, φ) + 40 log10(r) + 2rα (9)

This provides a value for target strength versus distance for
each angle (θ, φ).

The methodology is demonstrated here in the context of
salmon observation using a specific sonar system. Neverthe-
less, since our approach is based on fundamental underlying
principles of the sonar equation and array processing it is
broadly applicable to many other configurations and species.

E. ADAPTING 3D ACOUSTIC DATA FOR IMAGE
RECOGNITION ALGORITHMS
To facilitate object detection and classification, multi-
ple readily-accessible image recognition algorithms were
employed for performance comparison. These algorithms
have been primarily developed to work on images with
multiple colour channels which are fundamentally different
from the beamformed data target strength images resulting
from our data. To improve the performance of image-based
algorithms, we take the logarithm of the target strengths (TS).
This transformation maps the TS into a space that better
aligns with the implicit assumptions of optical computer
vision algorithms, given their typical expectation of a linear
relationship between sensor irradiance and the corresponding
image intensity [24].

TSdB = 10 log10(TS) (10)

Once the target strengths (TS) are transformed into decibels
(dB), the distribution of TS across different azimuth angles
can be evaluated to get an insight into the frequency of
backscatter strengths across the swath, as can be seen in
Figure 4. Notably, the target strength distribution closely
approximates a Gaussian distribution, as indicated by an
R2 value of 0.99981. This can be attributed to the combined
reflections from different fish sizes, orientations and loca-
tions, coupled with multiple scattering events and system
noise. Such aggregated independent measurements often

FIGURE 4. Histogram of target strengths (TS) from a single swath (θ = 0o)
showing the distribution of backscatter strengths.

produce a Gaussian-like distribution due to the Central Limit
Theorem.

The raw data consists of multiple swaths resulting in a
3D representation of the area in front of the MBES. Due to
the limitations of the image recognition algorithms, we need
to flatten the data from 3D to 2D to analyse each swath
separately. Thus, each image consists of delay vs. either
θ or φ with TS as intensity. To maintain relative angles
and distances across the image and thereby ensure coherent
interpretation, the images were transformed from polar to
Cartesian coordinates. This transformation was performed by
constructing a polar grid with Equation11.

X = rNorm · sin(θ )

Y = rNorm · cos(θ ) (11)

where rNorm is the normalised radius, θ is the azimuth, and X
and Y are the Cartesian coordinates.

This results in a 2D image, where the backscatter from
targets near the MBES is near the origin (the vertex at the
bottom) and distances between targets in angle are relative
to the physical distance. An example of a resulting image
is shown in Figure 5. Given the rapid speed of sound in
water and the comparatively slow movement of fish, any fish
movement within this short timeframe is minimal and doesn’t
significantly affect our analysis.

F. TRAINING DATA
To use the 2D images obtained from the pre-processing
steps as training data for the object detection algorithm, each
image was carefully analysed, and the positions of any clearly
distinguishable targets were marked. The only significant
source of backscatter in the measurements recorded during
this trial was the fish inside the cage. This process was
meticulous and labour-intensive, as great care had to be taken
to ensure that the quality of the training data was good.

Of the 15,300 swaths measured, 300 (1.96%) were chosen
at random times and angles to produce the training, validation
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FIGURE 5. Target strength of a single swath (θ = 0o) from the MBES.
Backscatter from fish at different angles and distances can be seen. The
targets observed in these measurements had a TS of <-65dB.

FIGURE 6. Spatial distribution of targets in training data.

and test data. The targets in these 300 swaths were carefully
annotated, resulting in a total of 10,352 labelled objects. The
spatial distribution of all 10,352 targets manually identified
in the training data is illustrated in Figure 6.

Of the 300 labelled swaths, the data were then split
into training (70%), validation(20%) and test data(10%).
The training set was augmented by flipping the images
horizontally to double the amount of training data to
600 swaths to increase the amount of training data. Some
of the chosen object detection algorithms have limitations
regarding the image resolution and maximum number of
targets per image. Therefore to ensure compatibility, the
data set was tiled in a 2 × 2 format, transforming one
image into four smaller sub-images. This tiling approach
not only reduces the resolution of each sub-image but also
effectively distributes the objects present, so that the number
of detections needed in each sub-image is decreased. The
number of targets in each original image varied between
27 and 100 before tiling, and between 3-48 after tiling. The

FIGURE 7. Distribution of number of targets in the training data before
tiling.

frequency of the number of targets is illustrated in Figure 7.
Following the tiling, we ended upwith a total of 2,400 images.
Then we manually removed 98 swaths where the targets
were not distinctly discernible. Ultimately, 70% of the refined
dataset, amounting to 1,582 swaths after augmentation, was
used for training the algorithms.

G. TARGET DETECTION
Departing from conventional threshold-based detection
methods, this study leveraged machine vision techniques to
detect objects in the collected acoustic data. These techniques
offer significant advantages in terms of adaptability and
precision and provide an innovative approach for underwater
object detection and analysis.

In this study, YOLOv5 [25] (v7.0, 2022), YOLOv6 [26]
(v4.0, 2023), YOLOv8 [27](v8.0.0, 2023), and SSD [28]
were employed as representative algorithms to demonstrate
the effectiveness of the proposed framework for object detec-
tion using acoustic data. Each algorithm operates by setting
bounding boxes to detect objects, classifying the object
within the box and provides a confidence score, an example of
which can be seen in Figure 8. These algorithmswere selected
to demonstrate the applicability and efficacy of machine
vision techniques for this application. More sophisticated
target detection algorithms can be considered to further
enhance performance in future research.

The original YOLO algorithm, released in 2015 [29],
paved the way for new single-stage object detectors, includ-
ing YOLOv5, YOLOv6, and YOLOv8. The latter versions
have introduced various enhancements to the original model.
For instance, YOLOv8 applies a compound scaling method
that simultaneously adjusts the network depth and width,
employs a multi-scale feature fusion technique to combine
features from different network layers, and incorporates a
novel loss function [27]. A recent update of YOLOv6 intro-
duced a new network design and training methodology that
significantly improved its performance, achieving state-of-
the-art accuracy [26]. In comparison to these advancements,
YOLOv5 has remained a popular choice for similar detection
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FIGURE 8. YOLOv8-L inference on a unseen swath.

tasks, owing to its robust performance [30], [31], including
automatic single fish detection with data acquired from a
single-beam sonar [32]. The YOLO models were trained
withminimal tweaking of hyper-parameters andwere quickly
able to achieve satisfactory performance. Larger models of
YOLO (X and L) were chosen because of the primary
goal of testing the detection accuracy, with less importance
placed on latency and throughput. Each model was trained
for 10,000 epochs. However, the patience parameter was
set to 600, which means that if there was no improvement
after 600 consecutive epochs, the training process would
terminate. The best-performing model from multiple training
rounds was selected for further comparison.

On the other hand, SSD or ‘‘Single Shot MultiBox Detec-
tor’’ is a renowned object detection algorithm recognised
for its balance between speed and accuracy. Similar to
YOLO, SSD employs a deep neural network composed of
convolutional layers of varying sizes to perform detections
at multiple scales and aspect ratios. The SSD is easy to train
and offers an effective trade-off between speed and accuracy.
The SSD implementation used in this study was provided in
[33]. The training and validation data were converted to the
COCO format, and training was performed for 64 epochs.
Hyper-parameters such as the learning rate, momentum, and
weight decay were adjusted, and the model with the highest
detection accuracy was selected for comparison.

III. RESULTS
This section presents the findings from our experimental
assessment of the efficacy of the proposed method in object
detection and classification within MBES swaths of fish
farming cages. Additional tests were conducted to evaluate
the detection accuracy and the impact of noise on the
detection performance.

A. DETECTION ACCURACY
To evaluate the performance of the algorithms, we employed
three metrics: Precision, Recall, and Mean Average Precision
(mAP).

TABLE 2. Detection accuracy for the tested object detection methods.

FIGURE 9. Precision recall curve of the different YOLO based models.

Precision is defined as the proportion of identified positives
(i.e., detected objects) that are correct. A model with perfect
precision would only produce correct detections, but it might
miss many objects. Recall is defined as the proportion of
true positives that are identified correctly. A model with
perfect recall can detect every instance of an object in an
image, but it may also produce many false positives. mAP50
(Mean Average Precision at 50% Intersection over Union) is
a combined metric. A detected bounding box is considered
correct if it overlaps ≥ 50% with the ground truth box.
Essentially, mAP50 evaluates both the model’s detection
ability and the precision of its bounding box placement.

Table 2 presents a comparative analysis of the detection
accuracy for the various object detection methods tested in
our study. With the exception of SSD, the overall mAP50
achieved was generally above 70%, with small variations
depending on the model used, demonstrating a good ability
to detect objects in the MBES images.

The Precision-Recall curve (Figure 9) shows Precision
against Recall. A model with perfect classification yields a
curve that reaches the top-right corner of the plot, signifying
both high Precision and Recall. Conversely, a model with
poor classification performance produces a curve closer to
the diagonal, indicating a random or arbitrary prediction.
Among the methods evaluated in this study, the Yolo-based
algorithms performed reasonably well. The models were able
to correctly identify a high percentage of objects of interest
while minimising the number of false detections.

While processing time is a crucial metric in many
applications, our study primarily focussed on accuracy and
feasibility. Previous literature, such as [26], [29], and [28], has
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FIGURE 10. Beamformed image after adding noise. This illustrates the
deterioration of the image as noise is added before beamforming. Notice
the side-lobe effects on areas with high backscatter.

extensively covered processing time comparisons for various
models.

B. DETECTION ACCURACY IN THE PRESENCE OF NOISE
In real-world scenarios, image and object detection systems
often encounter noisy environments which can affect their
accuracy. For our experiment, set in real-world conditions,
we wanted to explore the impact of noise on detection.
To provide a consistent and controlled investigation of the
robustness of object detection algorithms under varying
signal-to-noise ratio (SNR) conditions, we introduced an
artificial deterioration of the SNR using Normally-distributed
random noise. This method is commonly employed in
simulations to approximate the random noise typically found
in real-world environments and is very similar to models that
aim to model the spectrum of background noise underwater
[34]. Further, as can been seen in Figure 4, this distribution
also fits the TS distribution observed in our experiment.

To artificially deteriorate the signal-to-noise ratio before
beamforming, we add Normally-distributed noise to the
received signal. The expression for the noise-augmented
received signal, derived from Equation 7, is:

y = H · f · x + n +N (0, σ ) (12)

We introduced a new parameter to set the noise level NL.

σ = 20 log10(NL) (13)

We used noise levels (NL) ranging from -20 dB to 20 dB.
The noise was added as a vector n in equation 7: for
each level of noise, Gaussian noise was randomly added to
the input images, with the standard deviation of the noise
determined by the NL parameter. The detection accuracy of
the model was evaluated on noisy images using the mAP50.
Examples of the effects of added noise are shown in Figure 10
and Figure 11. The results of this evaluation are shown
in Figure 12 which shows that the Detection Accuracy of
the different models decreased as the NL increased, with a
significant drop in performance at NL levels above 5 dB. At
0 dB, the model’s mAP50 dropped by approximately 20%
compared to its performance on noise-free images. At low

FIGURE 11. Power delay profile of the beamformed signal with two
different noise levels applied. The figure illustrates that while features at
high TS remain observable, lower intensity features become obscured at
higher NL.

FIGURE 12. mAP50 at different artificially added noise levels.

NL, the model’s Detection Accuracy reaches levels near to
its noise-free performance at -20 dB NL. We also observe
that the YOLO-based models perform significantly better
than the SSD300 model at low NL, with a smaller difference
at high NL.

Given that theDetectionAccuracy remains unaffected until
a substantial degree of noise is introduced, it is plausible to
suggest that the acoustic emission power we used may be
excessive for the employed range. Consequently, reducing the
power level could not only contribute to a reduction in MBES
power consumption but also potentially enhance fish welfare.

C. BOUNDING BOX ANALYSIS
In our results, we observed that the average size of the
bounding boxes is approximately 0.11m2, as can be seen
in Figure 13. While bounding box dimensions generally
correlate with fish size, with larger fish producing larger
bounding boxes, it’s important to understand this correlation
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FIGURE 13. Bounding box size distribution of targets detected with
YOLOv6.

is not direct. Equating bounding box dimensions to fish size
directly would be misleading as the heading of the fish can
significantly influence the size of the bounding box. For
example, if the fish is swimming in the direction of the
Cartesian axis of the image the bounding box will appear
small, but if the fish is swimming diagonally the bounding
box becomes larger. Furthermore, it may happen that not
all parts of a fish are equally insonified in the sonar image.
Situations may arise where only a portion of the fish is
visible, leading to an underestimation of its size based on the
bounding box dimensions. This issue is further complicated
when considering that the beam angle of the MBES is only
1.6 deg, meaning that there may be many fish in each image
that are only partially illuminated. While most bounding
boxes corresponded to the anticipated size range, we did
note the presence of some that were significantly larger. This
indicates the potential occurrence of scenarios wheremultiple
fish are near each other, resulting in overlap and a consequent
larger bounding box. Overlapping object detection is a
recognised challenge in this field [35]. However, given the
relatively consistent shape of a fish, there are techniques
available to fit known shapes to overlapping objects, aiding
in their differentiation, such as [36]. Nevertheless, in our
dataset, instances of overlapping fish were uncommon.
Approximately 95% of the bounding boxes were smaller than
0.2m2, suggesting they likely encapsulated a single fish.

IV. DISCUSSION
Our results demonstrate the potential of using machine-
learning algorithms for object detection in images as an
alternative to the traditional method of selecting a threshold.
We demonstrate that a machine vision algorithm can exploit
information from multiple delays and angles to provide
accurate target detection. However, some disadvantages must
be considered. For example, this method is currently limited
to detecting objects within a specific range of sizes, and may
not perform well in detecting objects that are significantly
smaller or larger than the sizes present in the training data.

Exposing the algorithms to more training data, captured
in more varied situations, may improve their performance,
as it would allow them to better recognise and differentiate
between different objects.

This work serves as an initial step in showcasing some
of the possibilities that a MBES offers to fish farming,
particularly by establishing the feasibility of employing
machine vision for object detection in sonar images. While
the current study provides insights into the feasibility of
this method, we recognise the limitations in using vision-
based algorithms, and the merit in developing a dedicated
algorithm for this task. This is consequently a direction we
are considering for future research. One promising avenue
for future work is the exploration of temporal tracking of
targets. This approach would involve analysing consecutive
swaths to track the movement of individual fish over time,
allowing us to account for fish movement during longer
periods. Correlating the positions of fish over time provides
a more comprehensive understanding of fish behaviour and
movement patterns, addressing concerns related to temporal
dynamics not captured in isolated swaths.

Another promising direction for future work is to explore
the potential of 3D expansion to improve the detection per-
formance. By incorporating additional azimuth information,
we can potentially improve the ability of our method to detect
objects from different viewpoints and under different lighting
conditions.

Overall, although our proposed method demonstrates
promising results for object detection in images, there is
certainly still room for improvement. Future work should
focus on exploring new approaches and techniques that can
help address the current limitations and further improve the
performance of our method.

V. CONCLUSION
In this study, we successfully trained different vision-based
machine learning algorithms to detect targets based on images
obtained from an MBES pointed at a fish farming cage.

Successful implementation of this method may have
significant implications for fish farming. Reliable methods
for fish detection can potentially improve the efficiency and
reduce welfare risks of fish during fish farming operations.
This can include optimising feeding schedules, analysing
behaviour, and detecting fish health issues.

Although the present work focuses on detecting fish, this
method of using vision-based object detection algorithms to
detect targets in fish farms can be extended to detect and
classify other objects present in and around fish farms, such
as cages, mooring lines, and mooring plates allowing for live
monitoring of the dynamics of fish farms.

In conclusion, our study demonstrates the feasibility of
using machine learning algorithms to successfully detect
targets from MBES images of fish farming cages. The
incorporation of this technology has the potential to develop
sustainability and welfare practices in aquaculture by intro-
ducing new observation methods. Moreover, it paves the
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way for further research and advancements in precision
aquaculture, contributing to the development of intelligent
management systems that can revolutionise howwe approach
marine farming practices.
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