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Abstract

Consider an input-output system where the output is the tracking error given some desired reference signal. It is natural
to consider under what conditions the problem has an exact solution, that is, the tracking error is exactly the zero
function. If the system has a well defined relative degree and the zero function is in the range of the input-output map,
then it is well known that the system is locally left invertible, and thus, the problem has a unique exact solution. A
system will fail to have relative degree when more than one exact solution exists. The general goal of this paper is to
describe a decomposition of an input-output system having a Chen-Fliess series representation into a parallel product of
subsystems in order to identify possible solutions to the problem of zeroing the output. For computational purposes, the
focus is on systems whose generating series are polynomials. It is shown that the shuffle algebra on the set of generating
polynomials is a unique factorization domain so that any polynomial can be uniquely factored modulo a permutation
into its irreducible elements for the purpose of identifying the subsystems in a parallel product decomposition. This is
achieved using the fact that this shuffle algebra is isomorphic to the symmetric algebra over the vector space spanned by
Lyndon words. A specific algorithm for factoring generating polynomials into its irreducible factors is presented based
on the Chen-Fox-Lyndon factorization of words.
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1. Introduction

Consider a smooth control-affine state space realization

ż = g0(z) + g1(z)u, z(0) = z0 (1a)

y = h(z), (1b)

where g0, g1, and h are defined on W ⊆ Rn. If the real-
ization has a well defined relative degree at z0 ∈ W , then
it is a classical result that the corresponding single-input,
single-output map F : u 7→ y is left invertible on a neigh-
borhood of z0 [20, 26]. If the zero output is known to be
in the range of F for some class of inputs U , then there
exists a unique input u∗ ∈ U satisfying F [u∗] = 0 which
can be generated in real-time using feedback [20, 26] or
computed analytically using formal power series methods
[12]. This construction leads to the notion of zero dynam-
ics [14, 20, 21, 26] and has well known applications in out-
put tracking and path planning problems when the output
is taken to be an error signal [12, 21, 26]. The problem of
zeroing the output can also be applied in optimal control
problems in order to determine critical points of functional
derivatives [5].

∗Corresponding author
Email addresses: sgray@odu.edu (W. Steven Gray),

kurusch.ebrahimi-fard@ntnu.no (Kurusch Ebrahimi-Fard),
alexander.schmeding@ntnu.no (Alexander Schmeding)

System (1) can fail to have relative degree under a num-
ber of different circumstances. For example, it can turn
out that the Lie derivative Lg1h is exactly zero at z0. As
explained in [32, Remark 3], it is still possible for the sys-
tem to be left invertible in a certain sense if the state tra-
jectory immediately leaves the singularity after t = 0, and
two inputs are said to be equivalent when they differ only
on a set of measure zero. Another possibility is the case
where the input-output map is simply not left-invertible.
Take as a simple example the system

ż1 = 1− u, ż2 = z3 − u, ż3 = 1, z(0) = 0 (2a)

y = z1z2. (2b)

It is easily verified that this realization does not have rel-
ative degree at the origin. The input-output map is not
injective since there are two inputs which give the zero
output: u∗1(t) = 1, t ≥ 0 and u∗2(t) = t, t ≥ 0. This is a
result of the fact that the system can be decomposed into
a parallel product of two subsystems F1 : u 7→ y1 = z1
and F2 : u 7→ y2 = z2 as shown in Figure 1, where each
subsystems has the zero function in its range. The general
goal of this paper is to describe how to perform this de-
composition in order to identify possible solutions to the
problem of zeroing the output. This problem is only non-
trivial in the nonlinear setting since linear time-invariant
systems always have relative degree.

The approach taken will be to work purely in the input-
output setting using Chen-Fliess series representations.
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Figure 1: Parallel product connection of systems F1 and F2

One advantage to this point of view is that the nonunique-
ness of coordinate systems can be avoided. That is, the
generating series for the input-output map of a state space
realization is invariant under coordinate transformation.
In addition, this framework is more general as every ana-
lytic state space realization (1) has an input-output map
with a Chen-Fliess series representation but not conversely.
In order to avoid convergence issues associated with such
series, the analysis will be done using formal Fliess opera-
tors [17], that is, maps that take an infinite jet represent-
ing a formal input function to an infinite jet representing
a formal output function. In this context, the problem of
zeroing the output boils down to a purely algebraic prob-
lem.

The concept of a nullable generating series is presented
first. This is a formal power series representing a formal
Fliess operator having the property that the zero output
(jet) is in the range of the operator. A generating series
is called strongly nullable if there is a nonzero input that
maps to the zero output and primely nullable if this in-
put is the only input with this property. A special class of
primely nullable series are those having relative degree and
one additional property. These will be called linearly nul-
lable. While there is no known general test for nullability,
linearly nullable series can be completely characterized,
and their nulling inputs can be computed directly using
the methods in [12]. A key fact is that the parallel product
of two Chen-Fliess series has a Chen-Fliess series represen-
tation whose generating series is the shuffle product of the
generating series of the subsystems [8]. It will be shown
that the shuffle product of two linearly nullable series is
always strongly nullable but never linearly nullable. On
the other hand, a given series may not be linearly nullable
but if any of its shuffle factors is linearly nullable, then the
problem of zeroing the output can be directly solved since
nulling one factor will zero the system output. The main
issue then becomes how to factor a generating series into
its irreducible elements in the shuffle algebra.

The algorithmic focus in this paper will be on the poly-
nomial case. It is first established that the shuffle algebra
as a commutative polynomial ring over a finite set of non-
commuting indeterminates is a unique factorization do-
main. This is achieved by assembling existing results from
algebra [4] and algebraic combinatorics [24]. Of particu-
lar importance is the fact that this shuffle algebra can be

viewed as the symmetric algebra over the R-vector space
spanned by Lyndon words [24, 28]. Next, an algorithm
is given to factor a polynomial into its irreducible shuffle
components. This is done by first mapping the polyno-
mial to the symmetric algebra using the Chen-Fox-Lyndon
factorization of words [3, 19, 24, 28, 30]. The resulting
polynomial is then factored using one of the many known
algorithms for factoring multivariate commutative polyno-
mials [33]. Then each factor is mapped back to the shuffle
algebra.

The paper is organized as follows. In the next section, a
brief summary is given of the mathematical tools used to
establish the main results of the paper. In Section 3, the
concept of nullable generating series is presented. The sub-
sequent section addresses the problem of factoring generat-
ing series in the shuffle algebra. The final section provides
the main conclusions of the paper. It should be stated that
a shorter preliminary version of this paper was presented
as a conference paper [15]. The present version includes
three additional examples (Examples 3.6, 3.10, and 4.1), a
proof of identity (6) (see appendix), a new Corollary 3.1, a
revised and expanded version of the proof of Theorem 4.1,
an expanded description of the factorization algorithm in
Section 4, two new figures, and seven additional references.
In particular, Example 3.10 provides a new application of
the main results in the context of optimal control, while
the revised proof of Theorem 4.1 is simpler and more di-
rect.

2. Preliminaries

An alphabet X = {x0, x1, . . . , xm} is any nonempty
and finite set of symbols referred to as letters. A word
η = xi1 · · ·xik is a finite sequence of letters from X. The
number of letters in a word η, written as |η|, is called its
length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by
Xk. Define X∗ =

⋃
k≥0X

k, which is a monoid under

the concatenation product. Any mapping c : X∗ → Rℓ

is called a formal power series. Often c is written as
the formal sum c =

∑
η∈X∗(c, η)η, where the coefficient

(c, η) ∈ Rℓ is the image of η ∈ X∗ under c. The support
of c, supp(c), is the set of all words having nonzero co-
efficients. A series c is called proper if ∅̸∈supp(c). The
order of c, ord(c), is the length of the shortest word in
its support. By definition the order of the zero series is
+∞. The set of all noncommutative formal power series
over the alphabet X is denoted by Rℓ⟨⟨X⟩⟩. The subset of
series with finite support, i.e., polynomials, is represented
by Rℓ⟨X⟩. Each set is an associative R-algebra under the
concatenation product and an associative and commuta-
tive R-algebra under the shuffle product, that is, the bi-
linear product uniquely specified by the shuffle product of
two words

(xiη) (xjξ) = xi(η (xjξ)) + xj((xiη) ξ),
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where xi, xj ∈ X, η, ξ ∈ X∗ and with η ∅ = ∅ η = η
[8]. For any letter xi ∈ X, let x−1

i denote the R-linear left-
shift operator defined by x−1

i (η) = η′ when η = xiη
′ and

zero otherwise. Higher order shifts are defined inductively
via (xiξ)

−1(·) = ξ−1x−1
i (·), where ξ ∈ X∗. It acts as a

derivation on the shuffle product.

2.1. Chen-Fliess series

Given any c ∈ Rℓ⟨⟨X⟩⟩ one can associate a causal
m-input, ℓ-output operator, Fc, in the following man-
ner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue
measurable function u : [t0, t1] → Rm, define ∥u∥p =
max{∥ui∥p : 1 ≤ i ≤ m}, where ∥ui∥p is the usual Lp-
norm for a measurable real-valued function, ui, defined
on [t0, t1]. Let Lm

p [t0, t1] denote the set of all measurable
functions defined on [t0, t1] having a finite ∥·∥p norm and
Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] : ∥u∥p ≤ R}. Assume

C[t0, t1] is the subset of continuous functions in L
m
1 [t0, t1].

Define inductively for each word η = xiη̄ ∈ X∗ the map
Eη : Lm

1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X, η̄ ∈ X∗, and u0 = 1. The Chen-Fliess
series corresponding to c ∈ Rℓ⟨⟨X⟩⟩ is defined in [8] as

y(t) = Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0).

If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, ∀η ∈ X∗, (3)

then Fc constitutes a well defined mapping from Bm
p (R)[t0,

t0+T ] into B
ℓ
q(S)[t0, t0+T ] for sufficiently small R, T > 0

and some S > 0, where the numbers p, q ∈ [1,∞] are
conjugate exponents, i.e., 1/p + 1/q = 1 [16]. (Here,
|z| := maxi |zi| when z ∈ Rℓ.) Any series c satisfying (3)
is called locally convergent, and Fc is called a Fliess oper-
ator. The subset of all locally convergent series is denoted
by Rℓ

LC⟨⟨X⟩⟩.
A Fliess operator Fc defined on Bm

p (R)[t0, t0 + T ] with
ℓ = 1 is said to be realizable when there exists a state
space realization (1) with each gi being an analytic vector
field expressed in local coordinates on some neighborhood
W of z0 ∈ Rn, and the real-valued output function h is
an analytic function on W such that (1a) has a well de-
fined solution z(t), t ∈ [t0, t0 + T ] for any given input
u ∈ Bm

p (R)[t0, t0 + T ], and y(t) = Fc[u](t) = h(z(t)),
t ∈ [t0, t0 + T ]. Denoting the Lie derivative of h with re-
spect to gi by Lgih, it can be shown that for any word
η = xik · · ·xi1 ∈ X∗

(c, η) = Lgηh(z0) := Lgi1
· · ·Lgik

h(z0) (4)

[8, 20, 26].

2.2. System interconnections

Given Fliess operators Fc and Fd, where c, d ∈
Rℓ

LC⟨⟨X⟩⟩, the parallel and product connections satisfy
Fc + Fd = Fc+d and FcFd = Fc d, respectively [8]. It is
also known that the composition of two Fliess operators
Fc and Fd with c ∈ Rℓ

LC⟨⟨X⟩⟩ and d ∈ Rm
LC⟨⟨X⟩⟩ always

yields another Fliess operator with generating series c ◦ d,
where the composition product is given by

c ◦ d =
∑
η∈X∗

(c, η)ψd(η)(1) (5)

[7]. Here ψd is the continuous (in the ultrametric sense) al-
gebra homomorphism from R⟨⟨X⟩⟩ to the vector space en-
domorphisms on R⟨⟨X⟩⟩, End(R⟨⟨X⟩⟩), uniquely specified
by ψd(xiη) = ψd(xi) ◦ ψd(η) with ψd(xi)(e) = x0(di e),
i = 0, 1, . . . ,m for any e ∈ R⟨⟨X⟩⟩, and where di is the
i-th component series of d (d0 := 1 := 1∅). By definition,
ψd(∅) is the identity map on R⟨⟨X⟩⟩. The left-shift oper-
ators distribute over the composition product as follows:

x−1
j (c ◦ d) =

x
−1
0 (c) ◦ d+

m∑
i=1

di (x−1
i (c) ◦ d) : j = 0

0 : j ̸= 0.
(6)

(See the appendix for a proof of this property.) If c, d ∈
R⟨⟨X⟩⟩ with m = ℓ = 1 and d non-proper, then one can
define the quotient c/d = c d −1 so that Fc/Fd = Fc/d

with the shuffle inverse of d defined as

d −1 = ((d, ∅)(1− d′)) −1 = (d, ∅)−1(d′) ∗,

where d′ = 1 − (d/(d, ∅)) is proper and (d′) ∗ :=∑
k≥0(d

′) k [12]. The following lemma will be useful.

Lemma 2.1. For any c, d, e ∈ R⟨⟨X⟩⟩ with d non-proper,
the following identity holds

(c/d) ◦ e = (c ◦ e)/(d ◦ e).

Proof: It can be shown directly from the definition of
the composition product that if d is non-proper then so is
d◦e. In fact, (d◦e, ∅) = (d, ∅) ̸= 0. Thus, both sides of the
equality in question are at least well defined formal power
series. In light of the known identity

(c d) ◦ e = (c ◦ e) (d ◦ e) (7)

for any c, d, e ∈ R⟨⟨X⟩⟩ [9], it is sufficient to show that

d −1 ◦ e = (d ◦ e) −1. (8)

It is clear via induction that for any k ∈ N,

d k ◦ e = (d ◦ e) k.

Therefore, since d is non-proper, it follows that

d −1 ◦ e = (d, ∅)−1 lim
n→∞

n∑
k=0

(d′) k ◦ e
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= (d ◦ e, ∅)−1 lim
n→∞

n∑
k=0

(d′ ◦ e) k

= (d ◦ e) −1.

As d′ and d′◦e are both proper, all the limits above (in the
ultrametric sense) exist, and thus, the claim is verified.

2.3. Formal Fliess operators

Suppose X = {x0, x1}, X0 = {x0}, and define R[[X0]] to
be the set of all (commutative) formal power series in the
letter x0. Then every series cu ∈ R[[X0]] can be identified
with an infinite jet j∞t0 (u) for any fixed t0 ∈ R. By Borel’s
Lemma, there is a real-valued function u ∈ C∞(t0) whose
Taylor series corresponds to j∞t0 (u). In the event that
the coefficients of cu satisfy the growth bound (3), then
u is real analytic. In which case, for any c ∈ RLC⟨⟨X⟩⟩,
Fcy [v] = y = Fc[u] = Fc[Fcu [v]] = Fc◦cu [v], where v is just
a placeholder in this chain of equalities. If the Taylor series
for u does not converge, it is viewed as a formal function.
Nevertheless, the mapping c ◦ : R[[X0]] → R[[X0]] : cu 7→
cy = c ◦ cu is still well defined and takes the input infinite
jet to the output infinite jet. This is called a formal Fliess
operator [17]. The advantage of working with these formal
objects is that their algebraic properties can be character-
ized independently of their analytic nature. This will be
the approach taken below.

2.4. Relative degree of a generating series

Observe that c ∈ R⟨⟨X⟩⟩ can always be decomposed into
its natural and forced components, that is, c = cN + cF ,
where cN :=

∑
k≥0(c, x

k
0)x

k
0 and cF := c− cN .

Definition 2.1. [12] Given c ∈ R⟨⟨X⟩⟩ with X =
{x0, x1}, let r ≥ 1 be the largest integer such that
supp(cF ) ⊆ xr−1

0 X∗. Then c has relative degree r if the
linear word xr−1

0 x1 ∈ supp(c), otherwise it is not well de-
fined.

It is immediate that c has relative degree r if and only if
there exists some e ∈ R⟨⟨X⟩⟩ with supp(e) ⊆ X∗/{X∗

0 , x1}
such that

c = cN + cF = cN +Kxr−1
0 x1 + xr−1

0 e (9)

and K ̸= 0. This notion of relative degree coincides with
the usual definition given in a state space setting [13].

3. Nullable Generating Series

It is assumed for the remainder of the paper that all
systems are single-input, single-output, i.e., m = ℓ = 1
so that X = {x0, x1} and all series coefficients are real-
valued. Consider the following classes of generating series.

Definition 3.1. A series c ∈ R⟨⟨X⟩⟩ is said to be nul-
lable if the zero series is in the range of the mapping
c ◦ : R[[X0]] → R[[X0]], cu 7→ c ◦ cu. That is, there ex-
ists a nulling series cu∗ ∈ R[[X0]] such that c ◦ cu∗ = 0.
The series is strongly nullable if it has a nonzero nulling
series. A strongly nullable series is primely nullable if its
nulling series is unique.

Observe that from (5) it follows that (c ◦ cu, ∅) = (c, ∅)
for all cu ∈ R[[X0]]. Thus, if c is nullable, then necessarily c
must be proper. Also, every series c = cF satisfies c◦0 = 0.
Thus, it is nullable. If c = cN + cF with cN ̸= 0, then
c ◦ 0 = cN . Therefore, if c is nullable, it must be strongly
nullable.

Example 3.1. Observe that c = x20−x1x0 is primely nul-
lable since c ◦ 1 = x20 − x20 = 0, and cu∗ = 1 is the only
series with this property.

Example 3.2. The polynomial c = x0 + x0x1 is not nul-
lable since c ◦ cu = x0 + x20cu ̸= 0 for all cu ∈ R[[X0]].

A sufficient (but not necessary) condition for a series
to be primely nullable is given in the following theorem.
It has its roots in [12]. A concise proof is given here to
make its computational features explicit and the subse-
quent corollary more apparent.

Theorem 3.1. If c ∈ R⟨⟨X⟩⟩ has relative degree r, and
supp(cN ) ⊆ xr0X

∗
0 is nonempty, then c is primely nullable.

Proof: Since cN ̸= 0 by assumption, any nulling series
must be nonzero. The claim is that c has a unique nonzero
nulling series. Applying (6) to cy = c ◦ cu with m = 1 (let
d1 = d) under the assumption that c has relative degree r
gives

cy = c ◦ cu
x−1
0 (cy) = x−1

0 (c) ◦ cu
...

x−r+1
0 (cy) = x−r+1

0 (c) ◦ cu
x−r
0 (cy) = x−r

0 (c) ◦ cu + cu ((xr−1
0 x1)

−1(c) ◦ cu).

Since (xr−1
0 x1)

−1(c) is non-proper (specifically,
((xr−1

0 x1)
−1(c), ∅) = K ̸= 0 in (9)) it can be shown

that (xr−1
0 x1)

−1(c) ◦ cu is also non-proper and thus has
a shuffle inverse. Setting x−r

0 (cy) = 0 and dividing by
(xr−1

0 x1)
−1(c) ◦ cu gives

0 = (x−r
0 (c) ◦ cu)/((xr−1

0 x1)
−1(c) ◦ cu) + cu.

Next, applying Lemma 2.1 yields

0 = (x−r
0 (c)/(xr−1

0 x1)
−1(c)) ◦ cu + cu.

Define a generalized series δ with the defining property
that Fδ[u] = u for all admissible inputs u. Then it must
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have the unital property δ ◦ c = c ◦ δ = c on the semigroup
(R⟨⟨X⟩⟩, ◦). The previous equation can be written as

0 = (δ + (x−r
0 (c)/(xr−1

0 x1)
−1(c)))︸ ︷︷ ︸

:=dδ

◦cu.

It is known that the set of series δ+R⟨⟨X⟩⟩ forms a group
under the induced composition product [11]. Therefore,
one can solve for cu directly via left inversion to give cu =
d◦−1
δ ◦ 0. In which case, there exists a unique cu that will

zero out all the coefficients of cy with the exception of the
first r coefficients. These initial coefficients are completely
determined by c since

(cy, x
k
0) = (x−k

0 (cy), ∅) = (x−k
0 (c) ◦ cu, ∅)

= (x−k
0 (c), ∅) = (c, xk0), k = 0, 1, . . . , r − 1.

By assumption supp(cN ) ⊆ xr0X
∗
0 . Hence, all the coeffi-

cients above must be zero so that cy = 0 as desired.

It is worth noting that (R⟨⟨X⟩⟩, ◦, δ) described above as
well as (R⟨⟨X⟩⟩, ,1) both include the monoids of char-
acters over their respective graded connected bialgebras
of coordinate functions. Identity (7), which is central in
this work, can then be viewed in terms of the concept of
two bialgebras in cointeraction [10]. In this respect, equa-
tion (8) is equivalent to stating that the right action of
the character monoid (R⟨⟨X⟩⟩, ◦, δ) on the group of unital
non-proper series (1 + Rnp⟨⟨X⟩⟩, ,1) ⊂ (R⟨⟨X⟩⟩, ,1)
is compatible with the antipode of its Hopf algebra of co-
ordinate functions.

Series satisfying the condition in Theorem 3.1 will be
referred to as linearly nullable since the linear word xr−1

0 x1
in its support plays a key role in computing the nulling
series. In light of (9), every such series has the form

c = xr0e0 +Kxr−1
0 x1 + xr−1

0 e1,

where r ∈ N, K ̸= 0, e0 ∈ R[[X0]]/{0}, and supp(e1) ⊆
X∗/{X∗

0 , x1}. From the general identity (xk0c)◦d = xk0(c◦
d) and the fact that the composition product is left linear,
it follows that

c ◦ cu∗ = (xr0e0 +Kxr−1
0 x1 + xr−1

0 e1) ◦ cu∗

= xr−1
0 ((x0e0 +Kx1 + e1) ◦ cu∗)

= 0.

That is, cu∗ is a solution to

(x0e0 +Kx1 + e1) ◦ cu∗ = x0(e0 +Kcu∗) + e1 ◦ cu∗ = 0.

Central to the proof of Theorem 3.1 is the observation
that mapping c◦ under the condition that c has relative
degree is injective since it is left invertible. The following
corollary, which also follows directly from this proof, states
that c◦ is never surjective on R[[X0]] under this condition.

Corollary 3.1. Suppose c has relative degree r. Define
cr−1
N = (c, ∅) + (c, x0)x0 + · · · + (c, xr−1

0 )xr−1
0 . Then the

range of the mapping cu 7→ c ◦ cu is the affine subspace of
the R-vector space R[[X0]]

Rc := {cy = cr−1
N + xr0e : e ∈ R[[X0]]}.

Therefore, c is nullable in this case only if cr−1
N = 0.

Example 3.3. The polynomial c = x0 + x1 has relative
degree 1 and cN = x0 ∈ x0X

∗
0 . Therefore, it is linearly

nullable. Specifically, cu∗ = −1 is the only series that
yields c ◦ cu∗ = 0.

Example 3.4. The polynomial c = x20 − x1x0 in Exam-
ple 3.1 does not have relative degree since it does not have
a linear word in its support (i.e., K = 0 in (9)). So it is
primely nullable but not linearly nullable.

Example 3.5. The polynomial c = x0 + x0x1 in Exam-
ple 3.2 has relative degree 2 and was shown not to be
nullable. Observe cN = x0 ̸∈ x20X

∗
0 , which is consistent

with Theorem 3.1.

Example 3.6. Consider the series c =
∑

η∈X+ |η|! η,
where X+ := X∗/{∅}. The series has relative degree 1
and is linearly nullable. In this instance, the correspond-
ing Chen-Fliess series has the closed-form expression

Fc[u] =
Fx0+x1

[u]

1− Fx0+x1
[u]
.

Therefore, the unique nulling series for c is cu∗ = −1.

Let c ∈ R⟨⟨X⟩⟩ be nullable. Define the (two-sided) prin-
cipal ideal

Ic = (c) := {c d : d ∈ R⟨⟨X⟩⟩}

in the shuffle algebra on R⟨⟨X⟩⟩.

Lemma 3.1. Every series in Ic is nullable. If c is strongly
nullable, then every series in Ic is strongly nullable.

Proof: Applying (7) it follows that (c d) ◦ cu∗ = (c ◦
cu∗) (d ◦ cu∗) = 0 if cu∗ is selected so that c ◦ cu∗ = 0,
which is always possible since c is nullable by assumption.
The second claim is now obvious.

The first theorem below is obvious given the definition
of primely nullable. The second theorem is less trivial
but not unexpected. It confirms that the set of linearly
nullable series is not closed under the shuffle product.

Theorem 3.2. If c, d ∈ R⟨⟨X⟩⟩ are primely nullable with
cu∗ ̸= du∗ , then c d is strongly nullable but not primely
nullable.

Theorem 3.3. If c, d ∈ R⟨⟨X⟩⟩ are linearly nullable, then
c d is strongly nullable but not linearly nullable.
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Proof: The strong nullability property follows directly
from the lemma above. Regarding the second assertion, if
c d is linearly nullable, then necessarily c d must have
relative degree, say s, and (c d)N ∈ xs0X

∗
0 . Observe that

c d = (xrc0 e0 +Kcx
rc−1
0 x1 + xrc−1

0 e1)

(xrd0 f0 +Kdx
rd−1
0 x1 + xrd−1

0 f1)

has the property that (c d)N ∈ xrc+rd
0 X∗

0 . But the asser-
tion is that c d cannot have relative degree rc+ rd. This
would require that the shortest linear word in supp(c d)F
be xrc+rd−1

0 x1 and all other words in supp((c d)F ) must
have the prefix xrc+rd−1

0 . This linear word will only be
present if

Kc(f0, ∅) +Kd(e0, ∅) ̸= 0. (10)

This means that at least one of the constant terms (e0, ∅)
or (f0, ∅) must be nonzero. In addition, note that every
word in the support of

(e0, ∅)xrc0 Kdx
rd−1
0 x1 + (f0, ∅)xrd0 Kcx

rc−1
0 x1

= Kd(e0, ∅)(xrc0 xrd−1
0 x1) +Kc(f0, ∅)(xrd0 xrc−1

0 x1)

has length rc+rd, and these words must have the required
prefix xrc+rd−1

0 since no other words in the larger shuffle
product are short enough to cancel these words. But the
only way to remove an illegal word would violate (10). For
example, if rc = rd = 1, then

(e0, ∅)x0 Kdx1 + (f0, ∅)x0 Kcx1

= Kd(e0, ∅)(x0x1 + x1x0) +Kc(f0, ∅)(x0x1 + x1x0).

The illegal word x1x0 cannot be canceled without remov-
ing the required linear word x0x1. Thus, c d cannot be
linearly nullable.

Example 3.7. Suppose c = x0 − x1 and d = x20 − x1.
Both series are linearly nullable with relative degree 1.
The nulling series for c is cu∗ = 1, and the nulling series
for d is du∗ = x0. Observe

c d = −x0x1 −x1x0 +2x21 +3x30 −x20x1 −x0x1x0 −x1x
2
0

does not have relative degree. Therefore c d is strongly
nullable, but not linearly nullable and not primely nul-
lable. In fact, if the coefficients for the realization (2) are
computed from (4), one will find directly that the generat-
ing series is the polynomial given above. This is the origin
of the example given in the introduction.

Example 3.8. Suppose c = x0 + x1 and d = 1 + x1. In
this case, c is linearly nullable with relative degree 1, and
d also has relative degree 1 but is not nullable as it is not
proper. Observe

c d = x0 + x1 + x0x1 + x1x0 + 2x21

is also linearly nullable with relative degree 1. That is,
Theorem 3.3 does not preclude the possibility that primely
nullable series can have shuffle factors that are not nul-
lable.

Example 3.9. Suppose c = d = x0 − x1 so that both
series are linearly nullable with relative degree 1. As ex-
pected,

c d = 2x20 − 2x0x1 − 2x1x0 − 2x21

is not linearly nullable as it does not have relative degree,
but it is primely nullable since cu∗ = du∗ = 1 is the only
nulling series for c d as the shuffle product is an integral
domain. That is, in general (c d) ◦ eu = (c ◦ eu) (d ◦
eu) = 0 if and only if at least one argument in the second
shuffle product is the zero series.

In summary, if Rp⟨⟨X⟩⟩ is the set of all proper series in
R⟨⟨X⟩⟩, then the following inclusions hold:

Rp⟨⟨X⟩⟩ ⊃ nullable series ⊃ strongly nullable se-
ries ⊃ primely nullable series ⊃ linearly nullable
series.

In light of Theorems 3.2 and 3.3, only the set of nullable se-
ries and strongly nullable series are closed under the shuffle
product.

The final example provides an application of nullable
series.

Example 3.10. In optimal control problems, it is often
necessary to determine critical points of quadratic objec-
tive functions. From the calculus of variations, this is ac-
complished by computing the critical points of a varia-
tional derivative. For a system described only in terms
of a Chen-Fliess series, this would involve determining
the critical points of a variational derivative of a Chen-
Fliess series. The Fréchet derivative of Fc, for example,
can be computed by introducing a variational alphabet
associated with X = {x0, x1}, say δX = {δx0, δx1}. De-
fine the mapping δ : X → δX by δ(x0) = δx0 = 0 and
δ(x1) = δx1. Extend the definition of δ to X∗ by letting it
act as a derivation with respect to concatenation. Further
extend the definition to R⟨⟨X⟩⟩ by linearity. In which case,
the Fréchet derivative of Fc at u is the linear functional
DFc[u][h] = Fδ(c)[u, h] [5]. Consider the simple example
where c = x0x1+x1x0+x

2
1 so that δ(c) = (x0+x1) δx1.

Identifying u with x1 and h with δx1 from some admissible
set of functions U , it follows that

DFc[u][h] = Fx0+x1
[u]Eδx1

[h],

where DFc[u][·] is clearly linear. Critical points in this
context are the inputs u∗ ∈ U such that DFc[u

∗][h] = 0
for all h ∈ U . Here it is evident since x0 + x1 is linearly
nullable that u∗(t) = −1, t ≥ 0.

4. Factorizations in the Shuffle Algebra

The shuffle product on R⟨X⟩ forms a commutative ring.
Such structures appear in the following chain of class in-
clusions:
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commutative rings ⊃ integral domains ⊃ in-
tegrally closed domains ⊃ GCD domains ⊃
unique factorization domains ⊃ principal ideal do-
mains ⊃ Euclidean domains ⊃ fields

[1, 23]. The integral domain property of the shuffle algebra
was proved in [29, Theorem 3.2]. The following theorem
identifies the strongest structure available on this ring.

Theorem 4.1. The shuffle algebra on R⟨X⟩ is a unique
factorization domain but not a principal ideal domain.

Proof: The claim that the shuffle algebra on R⟨X⟩ is a
unique factorization domain follows from existing results.
It is known from [28] (see also [18, Section 6] and [24,
Chapter 5]) that the shuffle algebra on R⟨X⟩ is isomor-
phic to the symmetric algebra on the R-vector space V
having basis L = {li}i≥0, the set of Lyndon words. The
symmetric algebra S(V ) is in turn canonically isomorphic
to the free polynomial algebra R[L]. Thus, there exists an
R-linear map L : R⟨X⟩ → R[L] such that

L (η1 η2) = L (η1)L (η2), ∀ηi ∈ X∗ (11)

with L (1) = 1, and, in particular, L (li) = li. Put an-
other way, the shuffle algebra on R⟨X⟩ is freely generated
by the set of all Lyndon words [30, Theorem 6.1]. It is
shown in [4, Section 4, Corollary 1] that any such polyno-
mial ring is a unique factorization domain (see also [2]).

To be a principal ideal domain, it is necessary that every
ideal in R⟨X⟩ be generated by a single element. The clas-
sical argument that this is not the case in the present con-
text goes as follows (e.g., see [25, p. 153]). The assertion is
that the set of all proper polynomials in R⟨X⟩, Rp⟨X⟩, is
an ideal which is not principal. It is clear that Rp⟨X⟩ is an
ideal. Now suppose Rp⟨X⟩ has a single generator p in the
shuffle algebra, i.e., Rp⟨X⟩ = (p) := {p q : q ∈ R⟨X⟩}.
Since x0, x1 ∈ Rp⟨X⟩, there must exist q0, q1 ∈ R⟨X⟩ such
that x0 = p q0 and x1 = p q1. In light of the degrees
of x0 and x1, this would require a generator of the form
p = α0x0+α1x1, αi ∈ R. If α0 = 0, then p will generate x1
but not x0. Likewise, if α1 = 0 then p will generate x0 but
not x1. Thus, the ideal Rp⟨X⟩ has two basis elements, that
is, Rp⟨X⟩ = (x0, x1) := {x0 q0+x1 q1 : q0, q1 ∈ R⟨X⟩},
and thus is not principal.

The main theorem of this section is presented next. It
describes how to zero the output of a formal Fliess operator
Fc using its parallel product decomposition as shown in
Figure 2.

Theorem 4.2. Let c ∈ R⟨X⟩ with cN ̸= 0 and unique fac-
torization c = c1 c2 · · · cn (modulo a permutation),
where each ci is irreducible as a polynomial in the shuffle
algebra. Then cu∗ ̸= 0 is a nulling series for c if and only
if it is a nulling series for at least one of the factors ci.

Proof: If cu∗ ̸= 0 is a nulling series for ci, then directly
from Lemma 3.1 it is a nulling series for c. Conversely, if

c ◦ cu∗ = (c1 ◦ cu∗) (c2 ◦ cu∗) · · · (cn ◦ cu∗) = 0

u y × 

Fc 1 

Fc 2 

Fc n 

Figure 2: Parallel product decomposition of Fc

for some cu∗ ̸= 0, then since the shuffle algebra is an inte-
gral domain, at least one series ci ◦ cu∗ must be the zero
series, and the theorem is proved.

It is important to point out what the theorem above
is not saying, namely, that every nullable series can be
factored into a shuffle product of primely nullable series.
While it is easy to demonstrate that a primely nullable
series need not be irreducible (Examples 3.8 and 4.3), it
is unknown at present whether a nullable and irreducible
series is always primely nullable. This is a much deeper
problem.

Next, an algorithm is given to shuffle factorize any poly-
nomial c ∈ R⟨X⟩ into its irreducible components. This re-
sult follows from combining the proof of the previous theo-
rem and various known properties of Lyndon words. Sup-
poseX = {x0, x1} is ordered with x0 < x1 so as to induce a
corresponding lexicographical ordering onX+. Recall that
a word η ∈ X+ is called a Lyndon word if all factorizations
η = ξν with ξ, ν ∈ X+ have the property that η < νξ. In
this case, the first few Lyndon words are L = {li}i≥0 =
{x0, x1, x0x1, x20x1, x0x21, x30x1, x20x21, x0x31, . . .}, where here
the ordering is by increasing word length and then lexico-
graphically among words of the same length.1 The Chen-
Fox-Lyndon factorization of a word η ∈ X+ is a unique
non-increasing product of Lyndon words so that

η = li1 li2 · · · lin , li1 ≥ li2 ≥ · · · ≥ lin

[3, 19, 24, 30]. A consequence of this factorization is that

li1 li2 · · · lin = aη +R, (12)

where a is a nonzero element in the set of rational numbers,
Q, and all the words in the remainder R are lexicograph-
ically smaller than η [19, Theorem 5.6]. Applying (11) to
both sides of (12) provides the recursive formula

L (li1 li2 · · · lin) =
1

a
(li1 li2 · · · lin − L (R)). (13)

1This ordering is only for convenience in displaying results and
does not play any mathematical role in this presentation.
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The recursion will terminate when all the remainders are
zero.

Example 4.1. Let η1 = x0x1x0, η2 = x20x1x0, η3 =
x0x1x

2
0. Their Chen-Fox-Lyndon factorizations are, re-

spectively, η1 = (x0x1)x0 = l2l0, η2 = (x20x1)(x0) = l3l0,
and η3 = (x0x1)(x0)(x0) = l2l

2
0. Observe, for example,

that
l2 l0 = x0x1x0 + 2x20x1 = η1 +R,

where R = 2l3. Therefore, from (13)

L (η1) = l0l2 − 2l3.

Likewise,

L (η2) = l0l3 − 3l5

L (η3) =
1

2
l20l2 − 2l0l3 + 3l5.

To illustrate the isomorphism between the shuffle algebra
on R⟨X⟩ and the free algebra R[L], observe that

η1 x0 = 2η2 + 2η3,

so that as expected from (11)

L (η1 x0) = 2L (η2) + 2L (η3)

= (l0l2 − 2l3)l0

= L (η1)L (x0).

The proposed algorithm for shuffle factoring a proper
polynomial c is summarized below:

1. Compute cL = L (c) using (12)-(13).

2. Factor cL using Mathematica’s Factor command
[34].

3. Apply the map L −1 to each factor in R[L] from
the previous step. In particular, L −1(li1 li2 · · · lik) =
li1 li2 · · · lik .

An efficient algorithm for the Chen-Fox-Lyndon factoriza-
tions in step 1 is given in [6] (see also [31]). Mathematica’s
implementation notes for Factor provide a description of
the specific algorithms used to factor multivariate poly-
nomials. For a more general treatment of the subject see
[33].

Example 4.2. Consider the polynomial

c = 2x20 − 2x21 + 2x20x1x0 + 2x0x1x
2
0 − 2x0x

2
1x0

+ 2x1x
2
0x1 + 2x1x0x

2
1 + 2x21x0x1 + 2x0x1x0x1x0x1

+ 2x0x1x0x
2
1x0 + 4x0x

2
1x

2
0x1 + 2x0x

2
1x0x1x0

+ 2x1x
2
0x1x0x1 + 4x1x

2
0x

2
1x0 + 2x1x0x1x

2
0x1

+ 2x1x0x1x0x1x0,

which does not have relative degree since it has no linear
words of the form xr−1

0 x1 in its support. The algorithm
above is applied to c with the help of the Mathematica
NCFPS package [27]. The underlined terms correspond to
Example 4.1 which is embedded in this example.
Step 1: Observe

cL = L (c) = l20 − l21 + l20l2 + l21l2 + l0l1l
2
2 − 2l0l3

+ 2l1l3 − 2l1l2l3 − 2l0l4 − 2l1l4 − 2l0l2l4 + 4l3l4.

Step 2: Using the Factor command in Mathematica gives

cL = (l0 + l1 + l0l2 − 2l3)(l0 − l1 + l1l2 − 2l4).

Step 3: Mapping each factor of cL back to Rp⟨X⟩ yields

c = c1 c2 = (x0 + x1 + x0x1x0) (x0 − x1 + x1x0x1).

Observe that the two factors of c are distinct and linearly
nullable with relative degree r = 1. Hence, there exist two
distinct nulling inputs cu∗

1
and cu∗

2
for this polynomial.

Each input can be computed via the algorithm in [12] or by
solving an initial value problem which follows from setting
Fci [u] = 0 and then repeatedly differentiating with respect
to time. For c1 the latter approach yields

uü− 2u̇2 − u4 = 0, u(0) = −1, u̇(0) = 0

so that

cu∗
1
= 1+ x20 + 7x40 + 127x60 + 4369x80 + · · · .

Similarly, for c2 the corresponding initial value problem is

u̇+ tu = 0, u(0) = −1,

which gives

cu∗
2
= −1+ x20 − 3x40 + 15x60 − 105x80 + · · · .

To empirically verify that c ◦ cu∗
i
= 0, it is necessary to

truncate cu∗
i
. This means that c ◦ cu∗

i
will not be exactly

zero, but instead zero up to some word length depending
on the number of terms retained in cu∗

i
. For example,

truncating both cu∗
i
to words of maximum length six gives

c ◦ cu∗
1
= 87380x100 + 2946560x120 + 153856528x140 +O(x160 )

c ◦ cu∗
2
= 2100x100 − 840840x140 + 57657600x160 −O(x180 ).

Example 4.3. Reconsider Example 3.8 where cL = l0+l1
and dL = 1 + l1. As observed earlier, c d is primely
nullable and linearly nullable. Clearly (c d)L = cLdL is
reducible with one linearly nullable factor cL.

Example 4.4. Recall that for polynomials in one vari-
able, the class of irreducible polynomials depends on the
base field. For example, over the real field, the irre-
ducible polynomials are either of degree 1 or degree 2
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(e.g., x20 + 1). Over the complex field, there are only de-
gree 1 irreducibles [22, Chapter IV.1]. However, in ev-
ery multivariate polynomial ring there are irreducible el-
ements of higher degree. Consider the polynomial c =
6x31 − 2x1x

2
0 − 2x0x1x0 − 2x20x1 − 24x40 ∈ Rp⟨X⟩. It does

not have relative degree, and thus, it is not linearly nul-
lable. There is at present no direct test for any other
form of nullability. In the Lyndon basis, it follows that
cL = l31 − l20l1 − l40 ∈ R[L]. Now if cL is reducible, one
could write

cL = (l1 − p1(l0))(l
2
1 + p2(l0)l1 + p3(l0)) (14)

for some polynomials pi(l0). Since l40 = p1(l0)p3(l0),
necessarily p1(l0) = aln0 and p3(l0) = bl4−n

0 for some
n ∈ {0, 1, 2, 3, 4} and a, b ∈ R with ab = 1. Substitut-
ing these forms into (14) shows directly that there are no
values of n that can yield cL. Thus, cL is an irreducible
multivariate polynomial of degree 4 as an element in R[L].

5. Conclusions

Working entirely in a Chen-Fliess series setting, it was
shown that the problem of zeroing the output can be solved
for the class of systems who generating series can be fac-
tored via the shuffle algebra into terms where at least one
factor is nullable. The shuffle algebra on R⟨X⟩ was shown
to be a unique factorization domain so that any polyno-
mial can be uniquely factored into its irreducible elements
for this purpose. The factorization is done by viewing this
shuffle algebra as the symmetric algebra over the vector
space spanned by Lyndon words. A specific polynomial
factorization algorithm was given based on the Chen-Fox-
Lyndon factorization of words.
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Appendix. Proof of Identity (6)

Observe for any c, d ∈ R⟨⟨X⟩⟩ that

x−1
0 (c ◦ d) =

∑
η∈X∗

(c, η)x−1
0 (η ◦ d)

=
∑
η∈X∗

(c, x0η)x
−1
0 (x0η ◦ d)+

m∑
i=1

∑
η∈X∗

(c, xiη)x
−1
0 (xiη ◦ d)

=
∑
η∈X∗

(x−1
0 (c), η) η ◦ d+

m∑
i=1

∑
η∈η∗

(x−1
i (c), η) (di (η ◦ d))

= x−1
0 (c) ◦ d+

m∑
i=1

di [x−1
i (c) ◦ d].

For any i ̸= 0, note that

x−1
i (c ◦ d) =

∑
η∈X∗

(c, η)x−1
i (η ◦ d),

and η ◦ d always has a leading x0 when η is nonempty.
Thus, x−1

i (η ◦ d) = 0 for all η ∈ X∗, and the identity is
verified.
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J. Control Optim., 55 (2017) 885–912.

[14] W. S. Gray, K. Ebrahimi-Fard, and A. Schmeding, Universal
zero dynamics: SISO case, Proc. 55th Conf. on Information
Sciences and Systems, Baltimore, MD, 2021, 6 pages.

[15] W. S. Gray, K. Ebrahimi-Fard, and A. Schmeding, Zeroing the
output of nonlinear systems without relative degree, Proc. 57th
Conf. on Information Sciences and Systems, Baltimore, MD,
2021, 6 pages.

[16] W. S. Gray and Y. Wang, Fliess operators on Lp spaces: Con-
vergence and continuity, Systems Control Lett., 46 (2002) 67–74.

[17] W. S. Gray and Y. Wang, Formal Fliess operators with appli-
cations to feedback interconnections, Proc. 18th Inter. Symp.
on the Mathematical Theory of Networks and Systems, Blacks-
burg, VA, 2008, 12 pages.

[18] D. Grinberg and V. Reiner, Hopf algebras in combinatorics,
arXiv:1409.8356, 2020.

[19] M. Hazewinkel, The algebra of quasi-symmetric functions is free
over the integers, Adv. Math., 164 (2001) 283–300.

9



[20] A. Isidori, Nonlinear Control Systems, 3rd Ed., Springer, Lon-
don, 1995.

[21] A. Isidori, The zero dynamics of a nonlinear system: From the
origin to the latest progresses of a long successful story, Euro-
pean J. Control, 19 (2013) 369–378.

[22] S. Lang, Algebra, 3rd Ed., Springer, New York, 2002.
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