
Computer Networks 244 (2024) 110345

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Experimental assessment of a JANUS-based consensus protocol
Emil Wengle a,∗, Elias Strandell Erstorp b, Viktor Lidström c, Damiano Varagnolo d, Hefeng Dong a

a Norwegian University of Science and Technology (NTNU), Department of Electronic Systems, NO-7491, Trondheim, Norway
b Stockholm University (SU), Department of Geological Sciences, Stockholm, Sweden
c Swedish Defence Research Agency (FOI), Stockholm, Sweden
d Norwegian University of Science and Technology (NTNU), Department of Engineering Cybernetics, NO-7491, Trondheim, Norway

A R T I C L E I N F O

Dataset link: Askö Field Experiment Data 2023-
05 (Original data)

Keywords:
JANUS
Underwater sensor network
Distributed algorithm

A B S T R A C T

This paper proposes a distributed, JANUS-based protocol that enables an underwater acoustic network to
reach consensus on arbitrary local opinions as numeric state variables. An envisioned scenario where nodes
shall agree on parameters describing the acoustic environment is used to evaluate the protocol. The scenario
exemplifies the protocol’s potential in future applications where nodes use the environment description to
decide on appropriate modulation and coding schemes.

The evaluation is based on numerical simulations and sea experiments in a challenging acoustic environ-
ment. The numerical simulations allowed examining the performance for different parameter values regarding
the timing of transmission events and state transitions in the finite state machine implementation of the
protocol. The best parameter configuration was used in the sea experiments conducted in a bay in the Baltic
Sea. The experiments comprised several deployments of five to six commercial modems.

Results from the experiments show that the protocol can achieve a consensus up to 89% of the time
in the tested environment, and up to 96% of the time if the state variables are permitted to differ by one
discretisation step maximum across the network. In addition, if the network separates due to environmental
conditions, connected components appear to achieve consensus more often when the links are more reliable.
Finally, it is shown that when different consensus processes are active in parallel, packets from one process
do not interfere with the opinions in different processes, besides the existing probability of packet loss due to
packet collision.
1. Introduction

JANUS is an open standard for digital underwater acoustic com-
munication developed by the NATO Centre for Maritime Research and
Experimentation (CMRE) [1] with a wide range of applications in mind.
In particular, it is intended to be a lingua franca to make first contacts
and to discover the capabilities of other devices [2], to communicate
distress signals, e.g., from submarines, or to enable switching the
modulation and coding scheme, allowing the communication link to
be adapted on the fly.

JANUS is inherently robust to the underwater acoustic channel,
which is often defined by a harsh delay spread and Doppler spread, ad-
mitting communication in challenging sea conditions [1]. However, its
data rate is limited to 36 bits/s1 when using the 9.44 kHz to 13.6 kHz fre-
quency band, which is insufficient in applications that involve stream-
ing large amounts of data. JANUS may instead be used as a tool to
find a sufficiently robust high-rate communication link, compatible

∗ Corresponding author.
E-mail addresses: emil.wengle@ntnu.no (E. Wengle), elias.erstorp@geo.su.se (E. Strandell Erstorp), viklid@foi.se (V. Lidström),

damiano.varagnolo@ntnu.no (D. Varagnolo), hefeng.dong@ntnu.no (H. Dong).
1 The 36 bits/s data rate applies to baseline packets. For packets with cargo length approaching infinity, the data rate approaches 69 bits/s.

with the deployed modems, to increase the network throughput. This
approach was proposed in [2], where the authors designed a three-
stage protocol: a node-discovery stage, a capabilities-sharing stage, and
a negotiation stage (where a high-rate scheme can be selected). The
three-stage protocol enables the network to select higher-rate links from
a list, built on a peer-to-peer basis, based on the common capabilities
that the peers found in the capabilities-sharing stage. Field experiments
revealed the need for a more reliable link-switching mechanism since
the modems could end up employing different communication links
when feedback packets were lost. This behaviour is a known disad-
vantage with feedback-based link-switching mechanisms [3]. Despite
this drawback, [2] clearly shows that changing the communication link
dynamically requires solving two specific problems: (1) discovering
the capabilities of the modems in contact and (2) performing the
link-switching based on measured feedback on the current state of
the channel between the modems. Using JANUS for both capability
vailable online 19 March 2024
389-1286/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2024.110345
Received 20 September 2023; Received in revised form 28 February 2024; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 16 March 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
mailto:emil.wengle@ntnu.no
mailto:elias.erstorp@geo.su.se
mailto:viklid@foi.se
mailto:damiano.varagnolo@ntnu.no
mailto:hefeng.dong@ntnu.no
https://doi.org/10.1016/j.comnet.2024.110345
https://doi.org/10.1016/j.comnet.2024.110345
http://creativecommons.org/licenses/by/4.0/

Computer Networks 244 (2024) 110345E. Wengle et al.
discovery and link-switching requires a dedicated type of feedback
messaging. While JANUS is the natural choice for link discovery, there
being no other open standards, it may not be the best choice for such
feedback and link-switching mechanisms, compared to other robust link
solutions with higher data capacity. However, to the best of our knowl-
edge, no other link-switching mechanism with equivalent technology
readiness level to JANUS currently exists. Meanwhile, there are benefits
to using JANUS for feedback and link-switching; its robustness is well-
suited for retaining the topology after the discovery phase, which is
key to efficient link-switching, and the JANUS packet definition allows
flexibility in defining the feedback packets.

The goal of this paper is to assess the capabilities of JANUS as
a generic protocol for performing distributed estimation. The paper
extends the work of [4] by presenting a full network protocol that im-
plements the capability-discovery step and enables the link-switching
step described above via a distributed consensus algorithm. This is
done by inserting feedback messages into certain JANUS packet fields
and using the feedback to exchange state variables between the assets
participating in the negotiation phase.

The proposed protocol is first evaluated in a simulated environment,
then in field experiments, using a small network of five to six modems
deployed in a shallow-water environment in the Baltic Sea, near Stock-
holm. The simulations are used to analyse the convergence rates of
the protocol under typical operations, assuming sufficiently stable link
performance. The field experiments are then used to assess how often
the network achieves consensus in a real-world scenario, and, in the
case of a disconnected network, how often the connected components
can achieve a local consensus.

Related work. In [5], the authors use a subject-oriented business pro-
cess management approach to underwater networking. One of their
examples is a first-contact protocol, originally proposed in [6], where
nodes exchange packets containing information about their own mod-
ulation and coding capabilities, as well as known neighbours. A node
begins by transmitting a ‘‘hello, I am new’’ packet in JANUS. Other
nodes that receive the ‘‘hello, I am new’’ packet and support a commu-
nication link that the sender also supports can reply to the sender using
a common communication link. If the node shares no communication
links with the sender, it replies with a ‘‘hello, I do not speak your
language’’ packet in JANUS. The protocol can handle multiple co-
existing communication links through translator nodes, which can reply
with a ‘‘hello, I can help you’’ packet indicating which links it can
translate. However, the packets only let nodes report two of 15 possible
links (one of the values indicates ‘‘none’’).

The work in [7] devised a first-contact procedure using JANUS. New
nodes send a first-contact request, detailing their known communica-
tion links (up to 15) and proposed address. The request is repeated
periodically until a recipient delivers a response. The node then joins
the network if the address is available and no further responses are
heard in a set amount of time. If the address is occupied, and the
following packet with occupied addresses reaches the new node, the
new node selects an available address and restarts the procedure. The
protocol allows nodes to resolve and assign unique 2-hop addresses and
inform their peers how many, and which, links a new sender supports;
however, the design of decision algorithms for negotiating the link-
switching was left for future work since all modems supported the same
links. Furthermore, response packets contain the CRC of the in-reply-
to packet. If two nodes attempt to join the network simultaneously,
there is a small chance that their first-contact packets generate identical
CRCs. Hence, both nodes may mistake packets that were intended for
the other node as intended for themselves. By letting new nodes select
the initial 5-bit portion of the address at random, the risk of confusion
is mitigated.

Consensus estimation has a wide range of applications to wireless
sensor networks, including distributed target localisation [8], and clock
synchronisation [9]. Consensus estimation can also be used in under-
2

water wireless sensor networks, particularly for environmental sensing.
One example is [10], wherein the authors consider a decentralised
approach to estimating ocean currents. The network divides the ocean
space into triangles and uses a distributed Kalman filter to track the
ocean current field. Selected neighbours are considered in the update
equation, which are included via a consensus matrix. The selection
is based on shortest-path metrics from nodes of a specific type. The
algorithm was tested with both reliable and unreliable links, and fixed
node failures, albeit only in simulation. The simulated sensor network
used acoustics for communication; however, the communication link
was not reported, presumably because the algorithm was not run in
any field experiment.

The work in [11] uses a criterion for consensus as motivation for a
distributed algorithm that finds the connectivity degree of a directed
graph, which the authors define as the least number of nodes that
must be removed to break strong connectivity. The nodes start with
knowledge of only their own existence, and add nodes and edges to
their graph of known nodes and edges based on packets received from
other nodes. These packets are broadcast in a fixed periodic pattern,
which takes the propagation delay into account. The algorithm uses
an auto-regressive moving-average method to track the reliability of
the links, both when stationary and when varying over time. The
algorithm is tested by simulation on a network of six nodes, with a
specified probability of delivery per link. The paper shows that the
network reaches a consensus on the network size after three cycles and
the connectivity degree after ten cycles in the static case. However, a
geographical topology of the simulated network is not provided, and
the packet duration is not reported.

Organisation of the paper. Section 2 explains the proposed consensus
protocol, in terms of behaviour and the packets it exchanges between
participating nodes. Section 3 presents and motivates the numerical
simulations that preceded the field experiments, and the decisions
that were made based on the simulation results. Section 4 describes
the experimental setup of the field experiments and the employed
commercial modems. Section 5 explains how the data in the figures and
tables were generated. Section 6 presents the field experiment results,
in terms of validating the field experiment performance against the
preparatory simulations, testing performance for varying transmission
power, and running different consensus processes in parallel. Section 7
discusses and analyses the results from the field experiments. Section 8
concludes the paper.

2. Protocol structure and properties

This section describes the consensus protocol: how the exchanged
packets are constructed by the sender and subsequently processed by
the receivers. A mathematical analysis of its convergence properties is
provided in Appendix.

2.1. Packet structure

Nodes employing the consensus protocol disseminate their opinion
on a certain value by exchanging JANUS baseline packets with specific
JANUS application data blocks (ADB, 34 bits) and application types.
The data fields of the baseline packets are assigned as in Table 1 in [4],
with one revision with respect to the application type. All packets
have their JANUS class user ID set to 66 since this class user ID is
not claimed [12]. Moreover, the packets from nodes that participate
in a consensus process have their application type set to 0, to signal
that the node must abort its consensus process via a distress packet, or
to 1, to signal that the node is requesting to initiate a new round of
consensus via a new round packet. A third application type is used to
define specific consensus rounds in which only certain partitions of the
nodes may wish to participate. In this case, they must choose the same
application type number to avoid creating interfering opinions among

the various partitions.

Computer Networks 244 (2024) 110345E. Wengle et al.

t
c
e
t
t
a
F
0
I
t
w
a
t
r

b
i
b

2

t
t
h

a
l
i
c
a

t
f
d
s

𝑝

Fig. 1. Structure of a packet whose application type is 0, i.e., a distress packet.

Fig. 2. Structure of a packet whose application type is 1, i.e., a new round packet.

Composition of the distress packet. The distress packet is sent only when
a node cannot keep participating in the consensus process. This packet,
shown in Fig. 1, contains the sender’s identifier (8 bits), and uses the
remaining bits to indicate what led the node to leave (e.g., the node
running out of energy). If a node that is running a consensus process
receives a distress packet, it drops any registered opinion received from
the sender since the last adaptation step.

Composition of the new round packet. The new round packet is sent when
a node requests to restart the consensus process. This packet is always
sent when the done-timer expires. It may also be sent in application-
specific circumstances; for example, in a link-tuning application, a
new round packet may be sent when a node experiences too many
packet drops, potentially because of a change in the properties of the
communication channel. The proposed structure of a new round packet
is shown in Fig. 2. Note the presence of the ‘‘forcing’’ flag, which allows
a new round packet to interrupt a running consensus process. After
being interrupted, the receiving node starts a new consensus process.
If the forcing flag is not set, then the receiving node starts a new
process only if in the done state. New round packets also accommodate
a Consensus ID field (bits 31 down to 26) to indicate the targeted
consensus process, so only nodes participating in a matching process
may initiate a new round. Finally, the ‘‘round ID’’ field (last 26 bits)
indicates which ID the new round has. The ‘‘round ID’’ number is
initialised to 0 on the first round and is incremented every time the
done-timer expires. If the node starts a new round due to receiving a
new round packet, it sets its round ID to the ‘‘round ID’’ of the received
packet instead.

Composition of the opinion packet. When the JANUS application type of
he packet is 2 to 63, then the packet is an opinion packet, belonging to a
onsensus process ID specified by the application type. All opinion pack-
ts must contain the sender identifier (8 bits) encoded in bits 33 down
o 26. The remaining 26 bits encode state variables, as determined by
he consensus process ID. For the purposes of this paper, the state vari-
bles are encoded as following, for all valid application types (see also
ig. 3): delay spread (7 bits, 0, 1,… , 127 ms), Doppler spread (6 bits,
, 0.5,… , 31.5 Hz), and noise level (7 bits, 32, 33,… , 159 dB re. 1 μPa).
n both the simulations and the field experiments, the initial values of
he three quantities were randomly selected from the supported values
ith equal probability of selecting each value, to better demonstrate the
bility of the protocol to reach a consensus. For practical applications,
he initial values of the quantities should be estimated from the most
ecent channel sounding, or from the most recent correctly decoded new
round packet.

The packet structure in Fig. 3 provides the network with a basis
for selecting an appropriate communication link, which is one of the
envisioned applications of the protocol. The defined structure, shown
as the coloured blocks in Fig. 3, may be tailored to other applications,
subject to the following restrictions: (a) keep all state variables as
numeric, (b) represent each variable as an 𝑛𝑖-bit wide integer or fixed-
point number (𝑛𝑖 ∈ N), signed or unsigned, (c) keep the mapping
3

function of its representation as monotonically increasing, (d) keep all
Fig. 3. Example structure of a packet whose application type is 2 to 63, i.e., signalling
an opinion packet.

Fig. 4. State machine representation of the protocol.
Source: Adapted from [4].

its representing the same variable contiguous, i.e., occupying a closed
nterval in the ADB, (e) let any reserved bits be the most significant
its.

.2. Actions to be taken by the nodes when creating or receiving packets

This subsection exemplifies the protocol by providing a walk-
hrough of the consensus process round, i.e., what actions are taken by
he participating nodes in response to certain events. The walk-through
ere supersedes the walk-through in the prior work [4].

The protocol consists of four states: listen, message, adapt,
nd done. Each node goes through a sequence of cycles where it
istens, broadcasts its current opinion, and adapts it when receiving
nformation from others. A ‘‘pass’’ denotes one cycle of listening, broad-
asting, and adapting. The protocol is visualised in Fig. 4, which shows
finite state machine representation of one consensus process round.

At the beginning of a consensus process round, all nodes begin in
he listen state. Here, a node listens for incoming opinion packets
or a random amount of time, sampled from a shifted exponential
istribution with the probability density function (𝑢(𝑡) being the unit
tep function)
(

𝑡 ; 𝑡0, 𝑡
)

=
𝑢(𝑡 − 𝑡0)

𝑡
exp

(

−(𝑡 − 𝑡0)
𝑡

)

. (1)

The distribution in (1) is parameterised by an offset 𝑡0 and the expected
value of the exponential distribution 𝑡. Any incoming opinion packets of
the correct application type are registered on the node, overwriting any
existing unprocessed opinion from the same sender. The listen-timer is
reset, and its duration is sampled from (1) anew, every time the node
registers a new opinion.

The first time in a round that the listen-timer expires, the protocol
enters the message state. It may also enter this state if the extended
listen-timer expires and the node still has not received any opinion
packets of the correct kind in the current pass. Each time the protocol
enters this state, the node transmits an opinion packet and then enters
the listen state. When it does, the initial listen-time is extended to
three times the generated time to account for other nodes resetting their
listen-time.

A node can enter the message state three times in one pass (i.e., a
cycle of listening, broadcasting and adapting). If this limit is reached
in the first pass, and the node has not registered any opinion packets,

then the node transmits its opinion as a last opportunity to reach out

Computer Networks 244 (2024) 110345E. Wengle et al.
Fig. 5. Example of a deadlock situation when rounding to the nearest integer without
dithering.

to any nodes that could be in reception range. After the transmission,
the protocol goes to the done state, and finally suspends the process.
This situation indicates that the node is likely isolated. If this situation
occurs in a later pass, the protocol instead assumes that the network
around it has reached a consensus already.

If a node has registered at least one opinion in the current pass
when the listen-timer expires, it proceeds to the adapt state. First, it
compares its opinion to all registered opinions. If all registered opinions
are equal to its own, the node recognises that it has reached a local
consensus. If at least one opinion is different to that of the node
itself, it computes a compromise opinion from the registered opinions.
The computation of such a compromise is user-definable, under the
restriction that the compromise must lie on or within the convex hull
of the set of known opinions in the opinion space. The implementation
in this paper computes the compromise as the mean of the known
opinions. The node then adjusts its opinion towards the compromise
with a step length 0 < 𝛽 ≤ 1, and rounds the new opinion towards the
compromise. When the new opinion of the node is found, the protocol
enters the message state, and the registry of state variables is cleared
to ensure that the node only uses reasonably up-to-date opinions.

To decouple the rounding error from the state variables [13], and
help the network escape deadlocks (for example, as shown in Fig. 5
for a modular network), the new opinion may be perturbed before
rounding by dithering, i.e., adding noise to each variable, distributed
uniformly between −𝛥∕2 and 𝛥∕2, where 𝛥 is the discretisation-step
size of the variable. Dithering the opinion before rounding makes
the quantisation scheme probabilistic, which lets the network reach a
consensus almost surely [14].

To exemplify the mechanisms above, consider the network in Fig. 5,
comprised by a linear network of three densely connected partitions,
interconnected by only one bidirectional edge. Herein, the compromise
opinion is computed as the mean of all registered opinions, and the
number on each node indicates its initial opinion on an arbitrary
integer state variable. Nodes with the same initial opinion are in the
same partition, and have the same colour. Only a node that serves as
a gateway to a node in a different partition (the rightmost 0-node in
Fig. 5 is a gateway node because it is the only 0-node connected to
a node in a different partition, namely the leftmost 1-node, and vice
versa) can compute a compromise different to its own opinion. Each
gateway node is connected to all other nodes in its own partition, and
only one node in a different partition. Regardless of which packets a
gateway node receives, the node will remain at their initial opinion
after rounding the compromise. If half-integers are always rounded to
the previous opinion, the network as a whole will never reach a global
consensus. By dithering the compromise, there is a slight chance that
gateway nodes change their opinions. This, in turn, implies a chance
that other nodes in the same partition will change their opinions in the
next pass, and the network may eventually reach a global consensus.

When a node recognises that it has reached a local consensus, the
protocol broadcasts its opinion and enters the done state. Any actions
defined by an active application type are taken at this point, and
a done-timer with duration 𝑇 is set. Meanwhile, the node continues
listening for opinion packets. When registering an opinion of the same
application type that is different from the local consensus, the protocol
4

Fig. 6. Geographic distribution of the simulated network. Edges are omitted since the
network was fully connected during the simulation.

initiates a new pass in fine-tuning mode. While in fine-tuning mode, the
node forgoes any perturbation (dithering) in the adaptation step and
rounds down the compromise when situated between two values. The
motivation behind the fine-tuning mode is two-fold. Firstly, the other
nodes in the network could have converged to a nearby value, and the
node could either adjust its opinion down to their value or vice versa.
Secondly, always rounding to the nearest permitted value can create
deadlock situations; see Fig. 5.

When the timer reaches the halfway mark, the node logs the local
consensus and is prohibited from engaging in new passes for the
remainder of the current round. The time elapsed from initiating the
round to the latest entry into the done state is also logged, as are
packet transmission and reception statistics, plus the number of re-
entries from the done state.

When the done-timer expires, or the node receives a new round
packet with a higher round ID and the same consensus type in the
done state, the node initiates a new round by broadcasting a new round
packet, which is equivalent to any triggering new round packet.

Note that the user may specify additional events that may trigger a
new round, specific to their elected application type.

3. Simulation setup

The protocol was simulated in the UnetStack framework [15] in
advance of the field experiments. An important objective of the simula-
tions was to find a suitable configuration of the timing parameters for a
representative network topology; specifically, the minimum listen-time
𝑡0, the mean of the exponentially distributed part of the listen-time 𝑡,
and the duration of the done-timer 𝑇 , as defined in the explanation of
the done state in Section 2.2.

For this reason, consider the following performance indexes:

• consensus error rate (CER), defined as the number of rounds of
consensus that did not end in strict consensus, divided by the total
number of rounds of consensus [4]; and

• quantised consensus error rate (q-CER), defined similarly, with
respect to quantised consensus.

Strict consensus is attained when all nodes reach the same values
of all variables, while quantised consensus permits two adjacent values
of all variables across the network, as described in [16]. Hence, strict
consensus also implies quantised consensus, so q-CER is necessarily less
than or equal to CER. Whether quantised consensus is sufficient or not
is application-dependent; for instance, a sensor network may accept
quantised consensus on the oxygen concentration in a fish farm, but
not always on which communication-link parameters to use.

Fig. 6 shows the geographic distribution of the simulated network.
Edges are omitted since all nodes could receive packets from every-
body else in the simulation. The high connectivity is a result of using

Computer Networks 244 (2024) 110345E. Wengle et al.
Fig. 7. Simulation consensus error rate plotted against the duration of the done-timer
𝑇 .

UnetStack’s default acoustic channel model, which does not depend on
ray-tracing algorithms, but on a set of scalar channel parameters and a
Rician/Rayleigh fading model, to determine the packet detection and
decoding probabilities [15]. Such a configuration was then simulated
20 times, and each simulation ran the protocol for 12 h in simulator
time. Note that the large number of simulations introduced a safeguard
against random node failure, and introduced a natural partitioning of
the simulation into cycles.

Fig. 7 shows the estimated (via simulation) CER as a function of
the done-timer. The legend specifies the offset 𝑡0 and shape parameter
𝑡 of the distribution of the listening time, given in (1), and the error
bars mark the 95% Clopper–Pearson intervals of the CER. The Clopper–
Pearson interval, introduced in [17], is an exact confidence interval
used in estimating the binomial proportion 𝑝 of a binomially distributed
random variable 𝑋 ∼ Bin(𝑛, 𝑝), when the sample size 𝑛 is known. The
Clopper–Pearson interval is exact in that it always has minimum 95%
coverage, but it often has higher coverage [18], so terms like ‘‘with at
least 95% confidence’’ are used herein.

From these results, one can note that setting too high listening-time
parameters 𝑡0 and 𝑡 with respect to the done-timer 𝑇 causes a large
CER, because at least one node will often be out of the done state
when the first done-timer on a node expires, and a new round packet
arrives. Recall that a node may enter the listen state three times
in one pass, listening for three times the normal duration each time.
If no opinions are registered during any visit, then it will remain in
the listen state for at least 9𝑡0 seconds in total, and is expected
to stay there for 9(𝑡0 + 𝑡) seconds. Simulating the (𝑡0, 𝑡) = (6, 3) and
(𝑡0, 𝑡) = (6, 6) series with the 60-second done-timer was not motivated
since the probability of listening for at least 𝑇 = 60 seconds in a silent
pass (i.e., a pass where a node registers no opinions) would become too
high (99.845% and 99.979%, respectively). It is noted that increasing 𝑇
while holding 𝑡0 and 𝑡 fixed reduces CER down to a floor. The location
of the CER floor depends on two factors. First, the choice of 𝑡0 and
𝑡; the higher they are set, the lower the CER floor becomes. Second,
because the modems access the channel randomly, extending the listen-
timer reduces network load and mitigates packet loss due to collisions,
lowering the floor. Missing repeated packets causes a node to suspend
the process or recognise local consensus prematurely, often resulting in
a consensus error if the node has time to report its local consensus.

In summary, these simulations suggested timing parameters 𝑡0 = 𝑡 =
3 seconds and 𝑇 = 120 seconds, which yielded the CER reported in
Table 2. It should be noted, however, that the intermediate opinions
were not logged in these simulations, preventing a transparent process.
Consequently, the true CER may be lower; rounds where not all nodes
had logged their final opinion were classified as erroneous, even if all
nodes had reached the done state.
5

Fig. 8. Map over the experiment site, with node locations marked. Map data used
under a CC-BY-SA 2.0 licence (link: https://creativecommons.org/licenses/by-sa/2.0/).

Table 1
Summary of the deployments.

Deployment Key feature Starting time (UTC) Duration (h)

First Verification 2023-05-08 13:00 4
Second Verification 2023-05-09 11:00 24
Third Varying power 2023-05-11 18:30 16
Fourth Concurrent processes 2023-05-14 16:30 16

4. Field experiments

The field experiments were performed in a bay southwest of the
Askö laboratory, located in the archipelago of the Swedish east coast.
The water depth at the site varied between 10 m and 46 m. The network
was deployed on four separate occasions, summarised in Table 1.

During the first two deployments, five Subnero Silver Edition
modems were used to verify the simulation results from the prior
work [4]. The modems were deployed at locations A through E, as
marked in Fig. 8. During the last two deployments, a total of six Sub-
nero Silver Edition modems were deployed. In the third deployment,
the transmission power varied between cycles to emulate different
input signal-to-noise ratios. The modems were deployed at locations
A through D, plus F and G. In the fourth deployment, the transmission
power was kept fixed and the network ran two concurrent consensus
processes. Odd-numbered nodes ran one consensus process, and even-
numbered nodes ran another consensus process, using a different

https://creativecommons.org/licenses/by-sa/2.0/

Computer Networks 244 (2024) 110345E. Wengle et al.

/
o

e
b
o

i
o
p
p
O
o
p
I
t

6

a
e
a
t
p
i
t
a
a

6

t
d
p
i
e

Fig. 9. Sound speed profiles measured two weeks after the field experiments,
demonstrating the typical spring-time thermocline.

application type. The odd-numbered nodes were located at A, C and
K, and the even-numbered nodes at B, H and J. All modems used a
transmission power level of 175 dB re. 1 μPa @ 1 m, and the power
level was scheduled to rotate between 0,−3,−6,−10,−14, and − 20 dB
relative to this power level at the start of each cycle in the third
deployment.

The upper layer of water of the Baltic Sea is brackish, and the sound
speed is primarily governed by the water’s temperature, which varies
drastically between seasons and the prevailing weather conditions [19].
The field experiments were performed in the spring, during which a
thermocline generally forms in the upper layers of the water column
due to solar radiation [20]. The weather was clear and calm during
all field experiments, except for the last cycle of the final experiment
when it turned cloudy. The wind came from the south and varied
between 4 m∕s and 6 m∕s. For practical reasons, the sound speed profile
was measured on-site two weeks after the field experiments; however,
they demonstrate the typical behaviour of the regional spring-time
thermocline. Fig. 9 shows two measurements of the sound speed profile.
The profile has a negative gradient, so the acoustic waves refract
towards the sea bottom, limiting horizontal long-range communication.
The nodes were placed at depths between 2 and 3 m since a region of
isovelocity appears in the upper layers due to water mixing whenever
surface waves are present, as indicated in Fig. 9. The network operated
overnight, under clear skies, during which the near-surface thermocline
generally is weaker since the thermal heat flow driving the process is
reversed. Consequently, the sound waves were likely less refracted at
night, reflecting against the sea bottom fewer times and reducing the
combined reflection loss.

During the field experiments, the modems used a UnetStack im-
plementation2 of the consensus agent from [4], revised to support
additional consensus process IDs. In the field-tested version, the com-
promise function was defined as the average of all registered opinions,
including the own opinion. A watchdog agent handled the experiment
cycles and ensured that the consensus agents ran properly on the
modems. Following the simulation results from Section 3, the listen-
time parameters in (1) were set to 𝑡0 = 𝑡 = 3 seconds and the done-timer
to 120 seconds. These timing parameters were estimated to permit
about 60 rounds per cycle and a consensus error rate (CER) less than
0.01.

2 The implementation is available on the first author’s GitHub (link: https:
/github.com/tuff-krister/janus-consensus), along with a generalised version
f the startup script that was run on each device.
6

N

5. Data analysis

The consensus protocol writes the end-of-round results, as well as
received and transmitted opinion packets, to a log file. The end-of-round
result consists of the final value of the state variables; the number
of transmitted, received, or lost packets; the timestamp of the report;
the time and number of passes taken from start to finish; and the
number of times it had reached a local consensus that was followed
by a disagreeing opinion packet.

To facilitate the CER calculations, the end-of-round results from
each modem’s log file were aggregated and formatted, then sorted by
timestamp. The modems were synchronised before deployment, and
the clock drift was insignificant with respect to the duration of the
experiments, so sorting the aggregated and formatted logs by times-
tamp did not mix results from different rounds of consensus. Successful
rounds of consensus could then be filtered out by differencing the rows
𝑛 − 1 times, with 𝑛 being the number of nodes used in the experiment,
and locating the zeroes in state variables. The remaining rounds were
classified by manual inspection. Reports from the same round were
identified by comparing timestamps. Complete reports that were not
classified as strict consensus were classified as a quantised consensus or
no consensus by comparing the state variables before differencing, and
incomplete reports could be classified as a strict consensus, a quantised
consensus or no consensus by tracing the opinion packets in the log files
near the relevant timestamps.

To produce the packet delivery ratio statistics, the log file on each
modem was filtered to contain only reports of received and transmitted
opinion packets, and windowed by timestamp. The opinion-packet trans-
missions and receptions were counted, separated by the sender ID. For
each node pair (𝑖, 𝑗), the packet delivery ratio from node 𝑖 to node 𝑗 was
stimated as node 𝑗’s reception counter of packets from node 𝑖, divided
y node 𝑖’s transmission counter. If 𝑖 = 𝑗, the packet delivery ratio is
ne, because every node knows its own opinion.

The approach to produce the timestamp-received signal strength
ndicator (RSSI) diagrams is similar, but considers only notifications
f received packets. UnetStack reports the data and RSSI of received
ackets, which enables estimates of the transmission loss over any link,
rovided the user knows the transmission power at the sending node.
nly the reports of received opinion packets were considered, because
nly opinion and distress packets contain the sender ID, and no distress
ackets were sent. After filtering the opinion packet reports, the sender
D could be extracted from the application data block (ADB), allowing
he user to create timestamp-RSSI scatter plots per incoming link.

. Results

The protocol’s performance was evaluated regarding the CER and
ssociated Clopper–Pearson intervals and how these metrics are influ-
nced by the modems’ transmission powers (i.e., decreasing the SNR
t the receivers). Specifically, the aim is to investigate the effects of
ransmission power on network topology, and in which subsets of the
articipating nodes that consensus is attained. Another question regards
nterference between two concurrent consensus processes, deploying
wo distinct networks with three modems in the same geographical
rea, where each network runs the consensus protocol with different
pplication types.

.1. Verification

The first two deployments were made to validate the consensus pro-
ocol. Table 2 shows the estimated CER and q-CER from the verification
eployments, together with the simulations. The error rates are given in
ercent, with Clopper–Pearson intervals with at least 95% confidence
n brackets. The number of completed consensus rounds, whether they
nded with the network reaching consensus or not, is also reported.

ote that the second deployment is presented both in its entirety, and

https://github.com/tuff-krister/janus-consensus
https://github.com/tuff-krister/janus-consensus

Computer Networks 244 (2024) 110345E. Wengle et al.

s
o
p
n
c

a
t
a
f
t
c
3
r
i
v
c
v
b

6

a
s
T
N
g
i
l
N
i
w
l
w
b
A
t

s

7

m

7

a
T
t

Table 2
Strict and quantised consensus error rate from the first two deployments and the
simulations, with Clopper–Pearson intervals in brackets.

Deployment Rounds CER (%) q-CER (%)

Simulation 3421 0.523 [0.312, 0.830] 0.497 [0.290, 0.794]
First 64 3.12 [0.381, 10.8] 1.56 [0.0396, 8.40]
Second (all cycles) 394 12.4 [9.34, 16.1] 2.28 [1.05, 4.29]
Second (node 4 active) 121 5.79 [2.36, 11.6] 3.31 [0.908, 8.25]
Second (node 4 muted) 273 15.4 [11.3, 20.2] 1.83 [0.597, 4.22]

partitioned by the functionality of node 4. At the beginning of the third
cycle, node 4 ceased to transmit packets. Node 4 could receive packets
from its peers, so it could still participate as a ‘‘listener’’.

In the first deployment, the network finished 71 rounds of con-
sensus. In nine of them, results were not reported by all modems; in
seven of these nine, the network was being recovered from the site.
These seven rounds are not counted towards the total in Table 2. In
one of the remaining two rounds, one node had locked its opinion to
local consensus because it failed to decode most of the packets from its
peers. One of its variables differed by one increment from the rest of
the network, and the network only reached quantised consensus as a
result. Also, the node that could not report its local consensus was still
in the time window where it could initiate another pass in fine-tuning
mode. While in this window, it missed all new round packets before it
heard its first opinion packet, triggering the ‘‘Dissident’’ transition in the
tate machine representation in Fig. 4. In the other of those two rounds,
ne node recognised local consensus prematurely, and it lost several
ackets from its peers before it reported its results. Consequently, this
ode requested a new round before the rest of the network had finished,
ausing a consensus error.

In the second deployment, the network conducted six 4-hour cycles
nd 400 rounds of consensus in total. Six of these rounds ended as
he network was recovered, and are not counted. The network as

whole successfully completed 345 rounds of consensus, of which
our demanded closer inspection because not all nodes had reported
he end-of-round results. This gives 49 rounds that ended in a strict
onsensus error. Node 4 was one increment away from consensus in
4 of the rounds, indicating quantised consensus. The 15 remaining
ounds ended in a consensus error due to multiple packets lost at
nappropriate times, except in one case, where one node generated a
ery long listening-timer when the rest of the network had reached
onsensus. Six of these 15 rounds ended with at most two adjacent
alues in all state variables, which qualifies for quantised consensus,
ut not strict consensus.

.2. Varying signal power

Fig. 10 shows cycle-wise estimates of the packet delivery ratios over
ll links in the network. It is seen in Fig. 10(a) that the network was
eparated in the first cycle, as nodes 4 and 5 were isolated from the rest.
he overall connectivity was better in the second cycle (Fig. 10(b)).
ode 5 was isolated from all nodes but node 4, which served as a
ateway to the rest of the network. The network topology was similar
n the first and third cycles (Fig. 10(c)); the main differences are in the
ink from node 3 to node 1, and the links between node 2 and node 6.
ode 3 rebooted during the third cycle, and reset its power cycle. The

ncreased source level let node 1 receive more packets from node 3,
hich raised the packet delivery ratio over that link, and made that

ink asymmetric. In the fourth cycle (Fig. 10(d)), node 4 and node 5
ere completely separated from the rest, and the connected component
etween the other nodes became centralised, with node 1 at the centre.
lso, node 2 lost connection to the rest of its component halfway into

he fourth cycle, and was effectively removed from the network.
The global consensus error rate was very high in all cycles but the
7

econd cycle, which is a consequence of the poor network connectivity
Table 3
Strict and quantised consensus error rate of the third deployment,
starting from the third cycle.

Component Rounds CER (%) q-CER (%)

1236 54 54 [40, 67] 48 [34, 62]
123 54 17 [7.9, 29] 11 [4.2, 23]
136 92 52 [42, 63] 47 [36, 57]
45 90 23 [15, 33] 18 [11, 27]

in these cycles and the occasional absence of a node. On the other hand,
the connected components, shown in Fig. 11, could reach consensus
among themselves. These components will be the focus of the study,
rather than the whole network.

Table 3 shows the CER, the q-CER, and the number of rounds
that were completed in the third and fourth cycles, organised by
the connected components. Consecutive rounds where a node in the
component did not attempt to participate are not counted.

6.3. Concurrent consensus processes

The network ran one consensus process on nodes 1, 3 and 5, and
the other consensus process, with a different consensus process ID, on
nodes 2, 4 and 6.

Fig. 12 shows the packet delivery ratio over all links between
functional nodes in the network. Nodes 4 and 5 failed to participate in
the process due to corrupted files, and are omitted. Node 1 could not
detect any packets across any link, and always suspended its process in
the first round of each cycle. However, the rest of the network could
receive its opinion packets. Node 3 heard node 1 in only one consensus
process round, and finished that round normally. Naturally, the round
ended in a consensus error, both strict and quantised. All opinion and
new round packets that node 3 received from nodes 2 and 6 were
correctly ignored because they were of the wrong consensus process
ID, and vice versa. Nodes 2 and 6 finished 87 rounds of consensus, at
a CER of 8.05% [3.30%, 15.9%], and a q-CER of 4.60% [1.27%, 11.4%].

. Discussion

This section analyses and discusses the outcome of the field experi-
ents, and aims to answer the questions posed in Section 6.

.1. Verification

The first two deployments served to verify the consensus protocol
nd assess its performance with respect to CER and q-CER. From
able 2, both the CER interval ([0.381%, 10.8%]) and the q-CER in-
erval ([0.0396%, 8.40%]) from the first deployment overlap with the

Clopper–Pearson intervals from the simulation ([0.312%, 0.830%] and
[0.290%, 0.794%], respectively). This indicates that there was no statisti-
cally significant difference in performance between the simulation and
the verification deployment, even though two additional nodes were
used in the simulation. It should be noted that the first deployment
lasted for one cycle of four hours, and admitted many fewer rounds
of consensus than the simulations with the same timing-parameter
configuration (240 h effective time). Accordingly, the Clopper–Pearson
interval for such a cycle is much wider.

The second deployment lasted for six cycles of four hours each.
From Table 2, neither the CER nor the q-CER interval across all
cycles from the second deployment overlaps with the corresponding
intervals from the simulation, [9.34%, 16.1%] and [1.05%, 4.29%] vs.
[0.312%, 0.830%] and [0.290%, 0.794%], so there is a statistically signif-
icant difference in performance between these two deployments. The
three main potential contributing factors to this statistically significant
difference appear to be:

Computer Networks 244 (2024) 110345E. Wengle et al.
Fig. 10. Packet delivery ratio in the network in the third deployment, per cycle.
Fig. 11. Topology of the connected components from the third cycle and onward. The
letters correspond to locations in Fig. 8 and the dashed lines indicate weak links.

Fig. 12. Packet delivery ratio in the functional part of the network in the fourth
deployment.
8

1. in general, the underwater acoustic channel is time-varying, and
even when the weather conditions are similar on two days, the
channels on those days could be quite different [21];

2. underwater channel simulators cannot be perfect statistical rep-
resentations of real world channels, and there is no consensus on
how to model the underwater channel statistically — see [22]
and references therein;

3. node 4 stopped transmitting packets at the beginning of the
third cycle, which reduced the probability of reaching strict
consensus.

To support the considerations above, consider the bottom two rows of
Table 2. In the first two cycles, when node 4 could transmit packets,
the CER was 5.79% ([2.36%, 11.6%]), which still is outside the Clopper–
Pearson interval from the simulations. In the other cycles, when node 4
could not transmit, the CER was 15.4% ([11.3%, 20.2%]), which barely
overlaps with the Clopper–Pearson interval from the first two cycles.
Due to the marginal overlap, it cannot be said with at least 95% con-
fidence that the transmission failure alone had a significant impact on
CER. The corresponding intervals for q-CER before and after the failure
of node 4 overlap more clearly ([0.908%, 8.25%] vs. [0.597%, 4.22%]). The
network did not become separated when the outgoing links from node 4
were removed, which suggests that the protocol could be tolerant to
node failures, provided the failure does not disrupt the rooted structure
of the network, and quantised consensus is sufficient for the application
at hand.

7.2. Varying signal power

The packet delivery ratio across most links was the best in the
second cycle (Fig. 10(b)), surpassing even the performance in the
first cycle (Fig. 10(a)). The improved connectivity may seem counter-
intuitive, because the transmission power was 3 dB lower in the second
cycle, compared to the first cycle. Reducing transmission power should
also reduce SNR, and reducing SNR typically reduces packet delivery
ratio. Recall, however, that the second cycle took place at night, so the
thermocline was possibly less adverse than in the first cycle. The less
adverse thermocline could be reflected in the received signal strength
indicator (RSSI) of successfully received packets.

Computer Networks 244 (2024) 110345E. Wengle et al.

b
R
m
t
s
c
n
t
e
w
t
t
r
l
t
w
h
t
n
t
d
i

t
n
t

i
F
o
r
n
n
o
n
s
r
w
i
i
c
a
a
t
s

n
p
c
a
c
r
a
a
r
s
o
t

7

f
s
p
o
i
t
b
w
i

Fig. 13. Estimated RSSI of successfully received packets over select links.

Fig. 13 shows the RSSI of successfully received packets, as estimated
y the physical agent on UnetStack, of select links. Inspecting the
SSI of the received packets reveals that the transmission loss over
any links varies more quickly, and by a larger magnitude, than the

ransmission power. The link from node 4 to node 5 was one of the
tablest in terms of transmission loss, and the sudden decrements were
aused by cycling the transmission power. In contrast, the link from
ode 1 to node 3 clearly varies over time in transmission loss. The
ransmission loss decreases until 02:00 UTC, and then increases to the
nd of the deployment, except for a brief period after 05:00 UTC,
here it decreases. The sun set at 19:04 UTC and rose at 02:27 UTC;

hese times correspond rather well with the UTC time of the observed
rend changes of the 1 → 3 link. As was argued in Section 4, solar
adiation tends to form a surface thermocline. As the sun set, the upper
ayers of the water column might have cooled, weakening the surface
hermocline, and allowing the packets to travel farther horizontally
ithout reflecting. Conversely, as the sun rose, the upper layers might
ave heated again, forming a surface thermocline. The time-varying
ransmission loss has a greater impact on the link from node 6 to
ode 2. The transmission loss over the 6 → 2 link varies more quickly
han the loss over the other links on a short time scale, and the trend is
ecreasing until 22:00 UTC, then increasing, to the point that the link
s effectively broken near 03:00 UTC.

The time-varying links affected the network topology, and from the
hird cycle and on, the network consisted of two connected compo-
ents. Fig. 11 shows that nodes 4 and 5 formed one component, and
he others formed the other component.

Table 3 indicates that there is a statistically significant difference
n the performance of two components, with at least 95% confidence.
rom Figs. 10(c) and 10(d), which show the packet delivery ratio
ver these two cycles, in order, the links between node 6 and the
est of its component were poor or broken, in both directions. Indeed,
ode 6 rarely decoded more than five packets in one round, and
ode 6 suspended its round or had a different opinion in all but one
f the attempts that resulted in a quantised consensus error. Removing
ode 6 from the 1236 component, the consensus error rates decrease
ignificantly, as Table 3 shows. The improvement in performance with
espect to the entire component (123 vs. 1236) is statistically significant
ith at least 95% confidence, suggesting that the poor link to node 6

s the culprit. The same conclusion can be made if node 2 is ignored
n its component, because node 2 always reached at least a quantised
onsensus with node 1 from the third cycle and on. In contrast, node 4
nd node 5 achieve a packet delivery ratio near 0.5 between each other,
nd, as the series ‘‘4 to 5’’ in Fig. 13 shows, these links have a stable
ransmission loss (the reversed link, from node 5 to node 4, is very
9

imilar).
In the fourth cycle, node 2 could receive packets exclusively from
ode 1. The link eventually ceased to provide successfully decoded
ackets, and node 2 was fully isolated. It was also observed that the
onnected components of the network experienced periods of out-
ge. As no packets were successfully delivered, the outage eventually
aused the connected components to suspend their processes, and they
emained suspended for the remainder of the cycle. A memory mech-
nism would be a more effective way of handling outage situations. If
node has successfully received a packet at any point in a previous

ound, then ends a round without having received any packets, it still
uspends the process, but it initiates a new round after a set amount
f time has elapsed. The time to wait for next round should be longer
han the done-timer, preferably by a factor near ten.

.3. Concurrent consensus processes

One node in each partition failed to participate due to missing
iles, and the partition consisting of odd-numbered nodes immediately
uspended their consensus rounds because node 1 did not detect any
ackets. Still, node 3 could receive four opinion packets from node 1 in
ne round, and many packets from nodes 2 and 6. Node 3 correctly
gnored all opinion and new round packets that were delivered from
he even-numbered nodes, so the opinion of node 3 was unaffected
y them in the round that it could finish, even though it finished
ith a quantised consensus error. Likewise, the even-numbered nodes

gnored all opinion packets from the odd-numbered nodes. The logs
therefore showed that consensus processes with different consensus
process IDs can be run in parallel in a network, without interfering with
the opinions of each other.

8. Conclusion

This paper presented and explained the working mechanisms of a
consensus protocol built on JANUS that enables nodes in an underwater
network to decide which modulation and coding scheme they should
use after having used the protocol as a first contact. The protocol’s
performance was assessed both in numerical simulation and in field
experiments conducted in a bay southwest of the Askö laboratory,
Sweden, using five to six Subnero Silver Edition modems. The field ex-
periments confirmed that the protocol can operate on Subnero modems,
and gives acceptable performance even in a challenging acoustic envi-
ronment. However, the challenging environment caused a noticeable
discrepancy in performance between simulation and field tests. The
tests further indicated that, due to the time-varying transmission loss
and transmission power, network partitions which have more reliable
connectivity are more likely to reach a local consensus, and that two co-
existing networks using different consensus IDs may operate in parallel
without interfering with each other, despite poor connectivity and node
failures. Overall, simulations and field tests indicate the suitability of
the protocol for the initially intended uses.

It is envisioned that the protocol may be extended to support
JANUS’ link-switching application by using actual measurements of the
channel, rather than assigning them random numbers. In other words,
extending the protocol to use the consensus on these measurements
to select a predetermined parametric communication link, such as
orthogonal frequency-division multiplexing (OFDM), with parameters
chosen in a distributed-optimisation sense to give the ‘‘best’’ data rate
with a sufficiently high reliability.

Another potential future extension is to expand the possibility of
running multiple consensus processes in parallel, to acquire a dis-
tributed network-partitioning algorithm. For instance, based on packet
delivery ratio estimates, the protocol can be extended to find network
partitions that are more strongly connected (and possibly overlapping).
The protocol may subsequently initiate one consensus process per

partition.

Computer Networks 244 (2024) 110345E. Wengle et al.

w

𝑪
i
t
b
l
p

c
r

B
b
v
𝑪
d
e
h

𝑝

N
f
k
a
f

t
t

CRediT authorship contribution statement

Emil Wengle: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing. Elias Stran-
dell Erstorp: Methodology, Resources, Software, Validation, Writing
– original draft, Writing – review & editing, Investigation. Viktor
Lidström: Methodology, Resources, Software, Writing – original draft,
Writing – review & editing, Investigation. Damiano Varagnolo: Con-
ceptualization, Formal analysis, Funding acquisition, Project admin-
istration, Supervision, Visualization, Writing – original draft, Writing
– review & editing. Hefeng Dong: Funding acquisition, Supervision,
Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data is available on Mendeley Data, under the name Askö Field
Experiment Data 2023-05.

Askö Field Experiment Data 2023-05 (Original data) (Mendeley
Data).

Acknowledgments

This work was supported by the Research Council of Norway,
grant number 302435: ‘‘Autonomous Underwater Fleets: from AUVs
to AUFs through adaptive communication and cooperation schemes’’,
and by the Swedish Foundation for Strategic Research (SSF) via grant
number IRC15-0046: the Swedish Maritime Robotics Centre (SMaRC).
The authors would also like to thank Prof. John Potter for his valuable
feedback on the experiment design and the manuscript.

Appendix. Convergence analysis

The consensus protocol is distributed in nature; meanwhile, there
is a nonzero probability of losing packets over the links in a typical
underwater sensor network. Hence, the relevant question is whether
an underwater sensor network running the consensus protocol achieves
probabilistic consensus, as defined in [23]. This section is devoted to
analysing the convergence of such a network, where the channel is
assumed to be stable for a long duration with respect to the time it
takes to reach a consensus.

Let [𝑘] = (, [𝑘]) be the graph representation of the network at
time instant 𝑘. The vertex set is deterministic and has cardinality
𝑛. The edge set [𝑘] is random, such that the edge (𝑖, 𝑗) ∈ [𝑘] with
probability 𝑝𝑖𝑗 , where we define 𝑝𝑖𝑖 = 0∀ 𝑖. The probabilistic framework
captures both the lossy links and the finite listening time per node,
i.e., packets may either be lost at the receiver, or arrive at the receiver
too late to be included in any given pass.

The adjacency matrix 𝑨[𝑘], where 𝑎𝑖𝑗 = 1 ⟺ (𝑖, 𝑗) ∈ [𝑘], can
thus be modelled as an iid sequence of 𝑛 × 𝑛 Bernoulli matrices with
probabilities 𝑷 . To facilitate the analysis, we introduce the communi-
cation matrix 𝑪 = 𝑨 + 𝑰 , which is equivalent to adding a self-loop at
each vertex in . We refer to row 𝑖 of matrix 𝑨 as 𝑨𝑖∗, and to column
𝑗 of 𝑨 as 𝑨∗𝑗 .

Let 𝒙[𝑘] ∈ R𝑛 be a column vector that contains the state variables
of all nodes, and 𝑞 be the time shift operator, such that 𝑞𝒙[𝑘] = 𝒙[𝑘+1].
Let also 𝒖[𝑘] ∈ R𝑛 be a column vector of iid activation variables, where
𝑢𝑖[𝑘] ∼ Be(𝑣) ∀ 𝑖, whose role is to signify which elements of 𝒙 are to be
updated. We will omit the time index 𝑘 when doing so does not raise
confusion.
10
We make the following assumptions.

1. When all edges with 𝑝𝑖𝑗 > 0 in exist, is rooted, i.e., there
exists an 𝑟 ∈ for which the oriented path (𝑟, 𝑣) exists for all
𝑣 ∈ ∩ {𝑟}𝐶 . By Theorem 3 in [24], this is a necessary and
sufficient condition for reaching consensus in finite time.

2. Also when all edges with 𝑝𝑖𝑗 > 0 exist, is a directed acyclic
graph, or can be reduced to one if it is not. By [23, Corol-
lary 3.2], a strongly connected component with self-loops can
reach consensus, because all vertices in a strongly connected
component have oriented paths to each other.

3. The update step computes the exact average of the state vari-
ables that were successfully received. This is the update policy
that we use in the field experiments, without quantisation and
perturbation.

Under these assumptions, the update equation for vertex 𝑖 is

𝑞𝑥𝑖 =

⎧

⎪

⎨

⎪

⎩

(𝑪∗𝑖)T𝒙
(𝑪∗𝑖)T𝟏

w. p. 𝑣,

𝑥𝑖 w. p. 1 − 𝑣;

across all of , the update equation becomes

𝑞𝒙 = 𝑭 [𝑘]𝒙 (A.1)

=
(

(𝑰 − diag 𝒖) + (diag 𝒖)(diag(𝑪[𝑘]T𝟏))−1𝑪[𝑘]T
)

𝒙, (A.2)

here 𝑭 [𝑘] is a sequence of stochastic matrices.
From Assumption 2, we may permute the vertices in such that
becomes triangular. An important property of triangular matrices

s that their eigenvalues are given by the diagonal elements. We can,
herefore, impose an upper bound on the expected rate of convergence
y studying the expected diagonal of 𝑭 , and considering the second
argest expected eigenvalue (the largest one having to be one if the
rocess describes a consensus one [24]).

Taking the expected value of diag𝑭 , where diag𝑪 is a column vector
onsisting of the diagonal elements of the communication matrix 𝑪,
esults in

E (diag𝑭) = (1 − 𝑣)𝟏 + 𝑣E
(

diag
(

𝑪[𝑘]T𝟏
)−1 diag (𝑪[𝑘])

)

. (A.3)

ecause 𝑐𝑖𝑖[𝑘] = 1 ∀ 𝑖, 𝑘, the factor diag𝑪[𝑘] = 𝟏 is deterministic, and can
e moved out of the expectation operator. To determine the expected
alue (A.3), it remains to determine E

(

diag(𝑪[𝑘]T𝟏)−1
)

𝟏. The factor 𝒄 =
[𝑘]T𝟏 is a column vector of sums of independent and not identically
istributed Bernoulli variables. Each of its elements can therefore be
xpressed as a Poisson binomial variable, where the terms of element 𝑚
ave probabilities

𝑗𝑚 ∈

⎧

⎪

⎨

⎪

⎩

[0, 1], 𝑗 < 𝑚;
{1}, 𝑗 = 𝑚;
{0}, 𝑗 > 𝑚.

ote that the expression for the probabilities associated with the cases
or which 𝑗 ≥ 𝑚 follows from Assumption 2 and that each vertex always
nows its own 𝑥𝑚. This gives element 𝑐𝑚 a total of 𝑚−1 effective terms
nd one constant unit term, so that we can compute its probability mass
unction as [25]

Pr(𝑐𝑚 = 𝜇) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

∈𝑚
𝜇−1

⎛

⎜

⎜

⎝

∏

𝑖∈
𝑝𝑖𝑚

∏

𝑗∈𝐶

(1 − 𝑝𝑗𝑚)
⎞

⎟

⎟

⎠

if 1 ≤ 𝜇 ≤ 𝑚;

0 otherwise,

(A.4)

where 𝑚
𝑘 is the set of

(𝑚−1
𝑘

)

possible choices of 𝑘 integers satisfying
he condition 1 ≤ 𝑛 ≤ 𝑚 − 1. Because the expressions above involve
he inverse of diag 𝒄, we must find E(𝑐−1) for all 𝑚. Using (A.4) and the
𝑚

https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1
https://data.mendeley.com/datasets/8sbvv443wk/1

Computer Networks 244 (2024) 110345E. Wengle et al.
definition of the expected value of a discrete random variable, we find
that

E(𝑐−1𝑚) =
𝑚
∑

𝜇=1
𝜇−1 Pr(𝑐𝑚 = 𝜇). (A.5)

Letting 𝑚 = 1 in (A.5) gives the expectation of the first diagonal
element, which is unity by definition. For the consequent possible
values of 𝑚, we note that each E(𝑐−1𝑚) is upper bounded by

E(𝑐−1𝑚) ≤ Pr(𝑐𝑚 = 1) + 1
2

(

1 − Pr(𝑐𝑚 = 1)
)

, (A.6)

which follows from taking the expected value of a decreasing function
of 𝑐𝑚. We note that this bound is tight for 𝑚 = 2, and tighter bounds can
be achieved by including more Pr(𝑐𝑚 = 𝜇) terms in (A.6). Furthermore,
from Assumption 1, there is necessarily at least one 𝑝𝑗𝑚 > 0, 𝑗 < 𝑚 for
each 𝑚 > 1; hence, the upper bound on (A.5) is necessarily smaller than
one for those 𝑚’s. If there were no 𝑝𝑗𝑚 > 0 for a given 𝑚, then would
not be rooted, the unit eigenvalue of 𝑭 [𝑘] would not be unique, and
probabilistic consensus would not be guaranteed.

Using the bound in (A.6), and the fact that the second largest
eigenvalue of 𝑭 determines the convergence rate, the convergence rate
of (A.1) is bounded by

𝜆M = max
𝑚>1

E(diag𝑭)𝑚 ≤ 1 − 𝑣 + 𝑣max
𝑚>1

1 +
∏𝑚−1

𝜇=1 (1 − 𝑝𝑗𝑚)

2
. (A.7)

It shall be remarked that determining the convergence rate is more
challenging when strongly connected components are present in ,
whereby the update matrix 𝑭 will no longer be triangular, but block
triangular. All expected eigenvalues are in this case not contained in
the diagonal but in the blocks on the diagonal, where each strongly
connected component forms a block of minimum size two. Edges to
nodes in a given connected component from other nodes will affect
the expected eigenvalues of that component, which could affect the
convergence rate. Note that 𝑭 remains stochastic, so 𝑭 will still have
the unit eigenvalue.

References

[1] J. Potter, J. Alves, D. Green, G. Zappa, I. Nissen, K. McCoy, The JANUS
underwater communications standard, in: 2014 Underwater Communications and
Networking, UComms, 2014, pp. 1–4.

[2] Roberto Petroccia, João Alves, Giovanni Zappa, JANUS-based services for oper-
ationally relevant underwater applications, IEEE J. Ocean. Eng. 42 (4) (2017)
994–1006.

[3] Henry Dol, Koen Blom, Paul van Walree, Roald Otnes, Håvard Austad, Till
Wiegand, Dimitri Sotnik, Adaptivity At the Physical Layer, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2020, pp. 13–40.

[4] Emil Wengle, John Potter, Damiano Varagnolo, Hefeng Dong, A JANUS-based
consensus protocol for parametric modulation schemes, in: Proceedings of the
16th International Conference on Underwater Networks & Systems, WUWNet
’22, Association for Computing Machinery, New York, NY, USA, 2022.

[5] Ivor Nissen, Frank Kramer, Bernhard Thalheim, Underwater cooperation and
coordination of manned and unmanned platforms using S-BPM, in: Information
Modelling and Knowledge Bases, vol. 30, IOS Press, 2019, pp. 137–146.

[6] Fatih Bülbül, Thies Petersen, Michael Recker, Fabian Sell, Kim-Fabian Wachlin,
Ivor Nissen, Fehlertoleranz Bei Prozessabläufen: Mit Anwendungen Bei Akustis-
chen Unterwassernetzwerken (Bachelor’s thesis), Christian-Albrechts-Universität
zu Kiel, Kiel, 2017.

[7] Roald Otnes, An underwater first contact method using JANUS, in: 2022 Sixth
Underwater Communications and Networking Conference, UComms, 2022, pp.
1–5.

[8] Jing Yan, Ziqiang Xu, Yan Wan, Cailian Chen, Xiaoyuan Luo, Consensus
estimation-based target localization in underwater acoustic sensor networks,
Internat. J. Robust Nonlinear Control 27 (9) (2017) 1607–1627.

[9] Michael Kevin Maggs, Steven G. O’Keefe, David Victor Thiel, Consensus clock
synchronization for wireless sensor networks, IEEE Sens. J. 12 (6) (2012)
2269–2277.

[10] Hao Chen, Huifang Chen, Ying Zhang, Wen Xu, Decentralized estimation of ocean
current field using underwater acoustic sensor networks, J. Acoust. Soc. Am. 149
(5) (2021) 3106–3121, 05.
11
[11] Mohammad Mehdi Asadi, Amir Ajorlou, Amir G. Aghdam, Stephane Blouin,
Global network connectivity assessment via local data exchange for underwater
acoustic sensor networks, in: Proceedings of the 2013 Research in Adaptive and
Convergent Systems, RACS ’13, Association for Computing Machinery, New York,
NY, USA, 2013, pp. 277–282.

[12] JANUS wiki, Online https://www.januswiki.com/tiki-index.php. (Accessed Feb
2024).

[13] Soummya Kar, José M.F. Moura, Distributed consensus algorithms in sensor
networks: Quantized data and random link failures, IEEE Trans. Signal Process.
58 (3) (2010) 1383–1400.

[14] Tuncer Can Aysal, Mark J. Coates, Michael G. Rabbat, Distributed average
consensus with dithered quantization, IEEE Trans. Signal Process. 56 (10) (2008)
4905–4918.

[15] Acoustic Research Laboratory, UnetStack3, National University of Singapore, and
Subnero Pte Ltd, Online https://unetstack.net/. (Accessed 11 Sep 2023).

[16] Akshay Kashyap, Tamer Başar, R. Srikant, Quantized consensus, Automatica 43
(7) (2007) 1192–1203.

[17] C.J. Clopper, E.S. Pearson, The use of confidence or fiducial limits illustrated in
the case of the binomial, Biometrika 26 (4) (1934) 404–413.

[18] Måns Thulin, The cost of using exact confidence intervals for a binomial
proportion, Electron. J. Stat. 8 (1) (2014) 817–840.

[19] Matti Leppäranta, Kai Myrberg, Physical Oceanography of the Baltic Sea,
Springer Science & Business Media, 2009.

[20] I.P. Chubarenko, N. Yu Demchenko, E.E. Esiukova, O.I. Lobchuk, K.V. Karmanov,
V.A. Pilipchuk, I.A. Isachenko, A.F. Kuleshov, V. Ya Chugaevich, N.B. Stepanova,
V.A. Krechik, A.V. Bagaev, Spring thermocline formation in the coastal zone
of the southeastern Baltic Sea based on field data in 2010–2013, Oceanol.
(Washington. 1965) 57 (5) (2017) 632–638.

[21] Paul A. van Walree, Propagation and scattering effects in underwater acoustic
communication channels, IEEE J. Ocean. Eng. 38 (4) (2013) 614–631.

[22] Mohammad Sharif, Abolghasem Sadeghi-Niaraki, Ubiquitous sensor network
simulation and emulation environments: A survey, J. Netw. Comput. Appl. 93
(2017) 150–181.

[23] Fabio Fagnani, Sandro Zampieri, Randomized consensus algorithms over large
scale networks, IEEE J. Sel. Areas Commun. 26 (4) (2008) 634–649.

[24] Federica Garin, Luca Schenato, A Survey on Distributed Estimation and Control
Applications using Linear Consensus Algorithms, Springer London, London, 2010,
pp. 75–107.

[25] Y.H. Wang, On the number of successes in independent trials, Statist. Sinica 3
(2) (1993) 295–312.

Emil Wengle received the M.Sc. degree in engineering
physics with specialisation in embedded systems from Upp-
sala University, Uppsala, Sweden, in 2020. He is currently
pursuing a Ph.D. in underwater acoustic communication
at the Norwegian University of Science and Technology,
Norway.

Elias Strandell Erstorp received his M.Sc. in Naval Archi-
tecture in 2014 from the KTH Royal Institute of Technology
in Stockholm. He began his doctoral studies in underwater
communication and networking in 2017, following a few
years of work with unmanned surface and underwater
vehicles as a research engineer.

Viktor Lidström received an M.Sc. degree in space engi-
neering, with a specialisation in spacecraft and instrumen-
tation, from the Luleå University of Technology in 2017. He
is currently pursuing a PhD-degree in underwater acoustic
communication, with a focus on robust noncoherent links;
other research interests include link adaptation and flooding
networks.

http://refhub.elsevier.com/S1389-1286(24)00177-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb11
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb14
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
https://unetstack.net/
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00177-4/sb25

Computer Networks 244 (2024) 110345E. Wengle et al.
Damiano Varagnolo received the Dr. Eng. degree in au-
tomation engineering and the Ph.D. degree in information
engineering from the University of Padova respectively in
2005 and 2011. He worked as a research engineer at
Tecnogamma S.p.A., Treviso, Italy during 2006–2007 and
visited UC Berkeley as a scholar researcher in 2010. From
March 2012 to December 2013 he worked as a post-doctoral
scholar at KTH, Royal Institute of Technology, Stockholm.
From January 2014 to November 2019 he worked first as
Associate Senior Lecturer and then as Senior Lecturer at
LTU, Luleå University of Technology in Sweden, teaching
system identification and state-space based automatic con-
trol. He is now serving as Professor at NTNU in Trondheim
within the Department of Engineering Cybernetics. His
research interests include statistical learning, distributed op-
timisation, and distributed nonparametric estimation, with
a special focus on applications including identification and
control for the built environment, learning analytics, and
muscular rehabilitation
12
Hefeng Dong received the B.Sc. and M.Sc. degrees in
physics from the Northeast Normal University, China in
1983 and 1986, respectively, and the Ph. D. degree in
geoacoustics from the Jilin University, China, in 1994.

From 1986 to 1994, she was a lecturer of physics
with the Northeast Normal University, China where she
was associate professor from 1995 to 2000. She was a
visiting scholar and post doctorial fellow at the Norwegian
University of Science and Technology, Norway between
1999 and 2001. From 2001 to 2002 she worked as a re-
search scientist at the SINTEF Petroleum Research, Norway.
Since 2002 she has been Professor in Acoustic Remote
Sensing with the Norwegian University of Science and
Technology, Norway. She was on sabbatical with the Under-
water Acoustics Laboratory, University of Victoria, Canada,
the College of Earth, Ocean and Environment, University
of Delaware, USA, and the Laboratory of Mechanics and
Acoustics, France in the periods of 2008–2009, 2014–2015,
and 2019–2020, respectively. Her research interests include
wave propagation, passive acoustics, geoacoustic modelling
and inversion, signal processing in ocean acoustics and
seismic, and underwater acoustic communication. Dr. Dong
is a member of the Acoustical Society of America and IEEE.

	Experimental assessment of a JANUS-based consensus protocol
	Introduction
	Protocol structure and properties
	Packet structure
	Actions to be taken by the nodes when creating or receiving packets

	Simulation setup
	Field experiments
	Data analysis
	Results
	Verification
	Varying signal power
	Concurrent consensus processes

	Discussion
	Verification
	Varying signal power
	Concurrent consensus processes

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Convergence analysis
	References

